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Abstract: While colonoscopy is the gold standard for diagnosis and classification of
colorectal cancer (CRC), its sensitivity and specificity are operator-dependent and are
especially poor for small and flat lesions. Contemporary imaging modalities, such as optical
coherence tomography (OCT) and near-infrared (NIR) fluorescence, have been investigated
to visualize microvasculature and morphological changes for detecting early stage CRC in the
gastrointestinal (GI) tract. In our study, we developed a multimodal endoscopic system with
simultaneous co-registered OCT and NIR fluorescence imaging. By introducing a contrast
agent into the vascular network, NIR fluorescence is able to highlight the cancer-suspected
area based on significant change of tumor vascular density and morphology caused by
angiogenesis. With the addition of co-registered OCT images to reveal subsurface tissue layer
architecture, the suspected regions can be further investigated by the altered light scattering
resulting from the morphological abnormality. Using this multimodal imaging system, an in
vivo animal study was performed using a F344-Apc’™Uwm rat, in which the layered
architecture and microvasculature of the colorectal wall at different time points were
demonstrated. The co-registered OCT and NIR fluorescence images allowed the identification
and differentiation of normal colon, hyperplastic polyp, adenomatous polyp, and
adenocarcinoma. This multimodal imaging strategy using a single imaging probe has
demonstrated the enhanced capability of identification and classification of CRC compared to
using any of these technologies alone, thus has the potential to provide a new clinical tool to
advance gastroenterology practice.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Colorectal cancer (CRC) is the third most common type of cancer, consisting of about 10% of
all cancer cases globally [1]. In 2012 alone, approximately 1.4 million new cases of, and
almost 0.7 million deaths from, CRC were reported [2]. Colonoscopy (i.e., white light
endoscopy) is the gold standard for CRC diagnostics as it provides visualization of abnormal
tissue growth on the mucous membrane in the colon or rectum, known as colorectal polyps.
In addition to CRC screening, physicians also utilize colonoscopy to excise small polyps, and
biopsy larger polyps or tumors for further diagnosis, in a minimally invasive manner.
However, several disadvantages of colonoscopy exist. While being the standard imaging
technique, colonoscopy provides only surface morphology of the rectal wall and cannot
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resolve the abnormal layer architecture and subsurface microvasculature which are highly
associated with CRC. Hence, cancer staging often requires biopsy, which not only is more
invasive and time-consuming but also has diminishing accuracy limited by the sample
number (four and six biopsy specimens yield accuracies of 68% and 78%, respectively) [3,4].
The size of the polyp also affects the accuracy of CRC diagnostics. The miss rate increases
significantly in smaller sized polyps which is estimated to be as high as 26% for small polyps
(< 5 mm) [5]. An imaging system that provides a high sensitivity and specificity for
differentiating all kinds of polyps is therefore necessary.

To address the limitations of conventional colonoscopy, many endoscopic imaging
modalities, such as endoscopic ultrasound (US), optical coherence tomography (OCT),
Doppler OCT, photoacoustic (PA), and near-infrared (NIR) fluorescence imaging [6-20],
have been applied in GI tract to visualize the layered architecture or subsurface vascular
network for better CRC staging and management. Each modality has its own strengths and
limitations. To improve the diagnostics accuracy, many groups focus on developing
multimodality imaging systems (such as combined OCT/US, PA/US, and OCT/NIR
fluorescence). Among them, combining OCT and NIR fluorescence allows cross-sectional
visualization of the tissue morphology and vasculature with high spatial resolution and
sensitivity, providing a powerful tool to monitor the hallmarks of CRC (i.e., morphological
abnormality and angiogenesis). Furthermore, integrated OCT/NIR fluorescence imaging
decreases the procedure cost and time as only one imaging probe is used to acquire both OCT
and NIR fluorescence data in one session. Several multimodal OCT/NIR fluorescence
systems [9,18,21-24] have been reported, demonstrating their capability of visualizing tissue
morphology and molecular composition simultaneously. However, a successful clinical
adaptation for CRC diagnostic imaging requires a combination of miniaturized endoscopic
packing, FDA approved contrast agent, high-speed and high-resolution 3-dimensional (3D)
imaging, and animal model validation. Currently, none of the reported systems has achieved
all of the above prerequisites.

In this study, we combined OCT and NIR fluorescence into one imaging system and
packaged the imaging probe into a miniature endoscope. OCT and NIR fluorescence imaging
were performed simultaneously with high speed and high resolution. Using an FDA approved
contrast agent ICG, we validated the multimodal system with a diseased rat model by
demonstrating the capability to visualize the change in vascular density and morphology
through NIR fluorescence and study the tissue layer architecture via co-registered OCT
images. This allowed for real-time identification of suspect lesions with microscopic detail in
vivo, leading to better determination of GI tract disorders. Through the animal study, our
preliminary results from a rat model demonstrated the potential of the multimodality imaging
system for detection of CRC and differentiation of cancer stages.

2. Methods
2.1 Contrast agent

Indocyanine green (ICG) is a fluorescent dye used in medical imaging as an indicator
substance and was approved by the FDA in 1959. ICG binds 98% to plasma proteins and
accumulates in the tumor region more than normal tissue after intravenous injection due to the
“enhanced permeability and retention” effect caused by angiogenesis [25,26]. For this reason,
ICG is widely used for angiogram and tumor border delineation [27,28]. Because of tumor
vasculature is more dense and highly tortuous, the morphology and density of tumor
vasculature can be used as biomarker for tumor detection. In this study, ICG was used to
perform angiogram and identify the suspected tumor region based on the altered density and
morphology of vasculature. ICG has a short half-life (~3 minutes) and is cleared from
circulation exclusively by the liver to bile juice quickly. Therefore, the imaging will be
performed right after the intravenous injection and finished in 3 minutes.
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2.2 Animal model

Male rats from the F344-Apc"™Uwm strain were used for this study. The rat model carries a
knockout allele in the gatekeeper gene adenomatous polyposis coli (Apc) and has been
designated the polyposis in the rat colon (Pirc) kindred, which can develop spontaneous
intestinal lesions starting at the 45 days of age which then eventually expand to the colon and
rectum [29]. This model has been widely used in longitudinal analysis of colorectal tumor
biology, chemoprevention, microbiome effects, chemotherapy, and early detection.

2.3 Multimodal OCT and NIR fluorescence imaging system

Figure 1(a) shows the schematic of the integrated multimodal OCT and NIR fluorescence
imaging system. A wavelength division multiplexer (WDM) and a double clad fiber (DCF)
are utilized to fully integrate OCT and NIR fluorescence together. Figure 1(b) shows a
micromotor-based imaging probe, which is able to perform stable and fast 3D scanning. The
system setup and probe design have been described previously [30]. In comparison to our
previous design, the outer diameter of the imaging probe has been reduced to 1.6 mm to
readily access the colon. In addition, an upgraded micromotor and correction algorithm were
applied to provide a stable cross-sectional OCT/NIR fluorescence images. All the software
was written entirely in C + + utilizing the graphics processing unit, which allows fast data
processing and real-time display during the rat imaging.
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Fig. 1. (a) Overall design of endoscopic multimodality OCT and NIR fluorescence system. (b)
Multimodality imaging probe. WDM: wavelength division multiplexer. PMT: photomultiplier
tube. DCF coupler: double clad fiber coupler. OCT: optical coherence tomography. CW:
continuous wavelength. GRIN: gradient index.

2.4 Imaging protocol

The male rats with a certified report were purchased from Rat Resource & Research Center.
The rats were kept on a normal diet upon arrival and were imaged at weeks 1 (after 1 week of
acclimatization), 4, and 8 to track the development of the colorectal tumor. To anesthetize the
rat for the imaging procedure, the rat was first placed in a hermetically sealed plexiglass
chamber for general anesthesia induction and was then removed from the chamber for an
intraperitoneal injection of a ketamine-xylazine mixture (87 mgkg and 10mg/kg,
respectively). After the rat was anesthetized, an enema was performed to remove fecal matter
from the rectum. Then, a plastic tube was inserted to inflate the rectum. After gently warming
the rat tail, ICG (1.5mg/kg) was then administrated intravenously through either of the lateral
tail veins, followed by immediate imaging in consideration of the fast-hepatic uptake and the
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short half-life of ICG (3-4 minutes). The entire imaging was performed and finished within
less than 3 minutes after the ICG injection. 1,200 cross-sectional OCT/fluorescence images
were acquired in each experiment by a ~4-cm longitudinal scan. The rat was sacrificed for
hematoxylin and eosin (H&E) staining right after the last imaging (at week 8). All procedures
were reviewed and approved by the Institutional Animal Care and Use Committee at the
University of California, Irvine, under protocol #2016-3198.

3. Results

3.1 Dual modality imaging

Using our multimodal imaging system, the disease progression of CRC can be visualized by
NIR fluorescence with co-registered OCT images. For NIR fluorescence imaging, the signal
intensity is determined by the concentration of ICG and the distance from probe. A
calibration map (intensity-to-distance) was obtained by measuring the intensity of
fluorescence signal of a plastic tube filled with ICG at different distances. Then, NIR
fluorescence image was calibrated using this calibration map according to the distance
extracted from corresponding OCT images.

Figure 2 shows the representative fluorescence imaging results obtained at weeks 1, 4, and
8 from one of the mutation rats. Well-defined microvasculature without abnormality was
demonstrated in the fluorescence images of week 1 [Fig. 2(a)] and week 4 [Fig. 2(b)]. No
lesion was identified at these two time points. At week 8, several abnormal masses were
found in the fluorescence image, indicative of lesions [Fig. 2(c), white arrows]. Figure 2(d)
shows the excised rectum that corresponded to these lesions.

(a) Week 1 (b) Week 4

Fig. 2. Unfolded NIR fluorescence images of rectal wall with different time points. (a) NIR
fluorescence image at week 1. (b) NIR fluorescence image at week 4. (c) NIR fluorescence
image at week 8. (d) Photo of the excised rectum. Scale bar: lmm

Figure 3 shows the corresponding co-registered OCT (inner) and NIR fluorescence (outer)
images of the rat rectum at three time points. At week 1, the layer structures were well
delineated and easily observed [Figs. 3(Ia) and (Ib)]. At week 4, the boundary between
different layers indicated by the green dashed box in Fig. 3(IIb) became blurred. In addition,
several small gaps, indicated by the yellow arrows, between the layers can be found in Fig.
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3(Ila). At week 8, a large polyp [Fig. 3(Illa)] and suspected adenocarcinoma [Fig. 3(I1Ib)]
were observed.

I: week 1 Il: week 4 I1l: week 8

Fig. 3. Combined OCT and NIR fluorescence B-scan images of colorectal wall with different
time points: (I) week 1, (II) week 4, (III) week 8. Green dashed boxes: abnormal lesions.
Yellow arrows: small gaps between different layers.

To demonstrate the benefit of dual modality imaging, Fig. 4 shows the en face 2D NIR
fluorescence image and the corresponding co-registered OCT and NIR fluorescence images
with abnormal morphology. From these 2D fluorescence images, polyps can be identified
clearly, but the polyp’s types (raised or flat one) cannot be determined due to the lack of
depth information. The white arrows in Fig. 4(g) indicate lesions, and each corresponds to a
cross-sectional OCT image for better visualization of the abnormality. Figures 4(a), 4(c), 4(d),
and 4(e) show the polyps in varying sizes. In Fig. 4(c), a region of low intensity with a
disrupted layer structure can be observed, indicative of adenoma/adenocarcinoma. In Fig.
4(f), layer detachment can be found (indicated by the yellow arrows). In the NIR fluorescence
image, the density of vasculature is much higher in abnormal regions (i.e., adenoma and
hyperplastic polyps) and thus can help identify lesions and abnormalities quickly as the first
step. In contrast, a healthy layered architecture is accompanied by a more homogenous NIR
fluorescence signal [Fig. 4(b)].
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Fig. 4. Combined OCT and NIR fluorescence images and en face NIR fluorescence images of
colorectal wall. (a)-(f) Combined OCT and NIR fluorescence images at different longitudinal
positions. (g) En face NIR fluorescence images.

Figure 5 shows the 3D OCT, NIR fluorescence, and combined images of the colorectal
wall. 3D reconstruction of OCT provides information on the shape of the lumen, and the
fluorescence data is transformed and morphed into 3D rendering according to the lumen
shape. The fluorescence images shown in 3D allows visualization and identification of polyp
types (flat polyp or raised polyp). In Fig. 5, several polyps indicated by white arrows can be
clearly identified from both 3D OCT and NIR images. With respect to the small polyps and
flat polyps indicated by green arrows which are often missed by conventional colonoscopy,
they can also be visualized by 3D NIR fluorescence images. Although small and flat polyps
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are difficult to find in 3D OCT images, they can be clearly identified by cross-sectional OCT
images as shown in Figs. 3 and 4.

(b)

J
- !'{ h
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Fig. 5. 3D OCT and NIR fluorescence images. (a)-(f) En face 3D images of colorectal wall
with different views (field of view: 0°-360°). (g)-(h) Volumetric 3D images of colorectal wall
(field of view: 0°-250°).

3.2 Histological comparison

Histology of the sample was obtained and compared with the images obtained from the dual
modality system for histological confirmation. All the histology photos were read by a
histopathologist. Cases of a healthy rectum, a hyperplastic polyp, an adenoma, and
adenocarcinoma are representatively presented as follows.

Healthy rectum: As demonstrated in Fig. 6, the OCT image shows well-defined layer
structures and allows the differentiation of mucosa, submucosa, and muscularis propria [Fig.
6(b)] which is confirmed by histology [Fig. 6(c)]. In Fig. 6(a), the intensity of the NIR
fluorescence signals is shown at the circumference of the OCT image, and the discrete
brightness corresponds to the presence of the blood vessels.

Fig. 6. Normal rectum. (a) The combined OCT and NIR fluorescence image. (b) Enlarged view
of the dashed box in (a). (¢) Histology. M: mucosa; SM: submucosa; MP: muscularis propria.

Hyperplastic polyp: Fig. 7 shows the results from a hyperplastic polyp. In the OCT image,
the thickening in the mucosal layer can be observed, accompanied by a slight increase in the
NIR fluorescence data. This thickened mucosa exhibits similar intensity with the adjacent
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healthy tissue, suggestive of a hyperplastic polyp (HP). Corresponding histology supporting
findings of hyperplastic polyp with the dual modality data is shown in Fig. 7(c).

W

Fig. 7. Hyperplastic polyp. (a) The combined OCT and NIR fluorescence image. (b) Enlarged
view of the dashed box in (a). (c) Histology. HP: hyperplastic polyp.

Adenomatous polyp: In comparison to the hyperplastic polyp, adenoma exhibits further
thickening in the mucosal layer [Fig. 8(b)]. In addition, due to the increased thickening, lower
intensity in the deeper tissue layers with respect to the neighboring healthy tissue is also
observed. In the deeper region, several dark patches are observed, indicating increased
secretion of the optically transparent mucus by the cancer cells. The NIR fluorescence signal
is also increased [Fig. 8(a)]. The corresponding histological evidence is shown in Fig. 8(c) in
which the tubular structure can be clearly visualized.

Fig. 8. Adenomatous polyp. (a) The combined OCT and NIR fluorescence image. (b) Enlarged
view of the dashed box in (a). (c) Histology. AP: adenomatous polyp.

Adenocarcinoma: Fig. 9 shows a combined OCT and NIR fluorescence image of a rectum
with adenocarcinoma. The OCT image shows the thickened mucosal layer and uneven dark
areas, which are caused by high signal absorption in the necrotic tissue. Furthermore, the
corresponding NIR fluorescence images show increased intensity. From the histology, a
darker area, thickened mucosa, and large numbers of cancer cells can be identified that match
the images well.
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Fig. 9. Adenocarcinoma. (a) The combined OCT and NIR fluorescence image. (b) Enlarged
view of the dashed box in (a). (c) Histology.

4. Conclusion

While OCT and NIR fluorescence imaging each can individually provide clinically valuable
information to supplement conventional white-light colonoscopy, combining these two
imaging modalities further enhances the practicality of this dual-modality system.
Colonoscopy allows viewing of the colorectal surface morphology and is intuitive for the
surgeon, but because of lower sensitivity and specificity it cannot access information from
subsurface tissue layers. With the multimodal imaging system, NIR fluorescence imaging can
be used to identify the suspect lesions rapidly, and OCT endoscopy helps visualize the
microanatomy of the subsurface layer structures with microscopic detail for further diagnosis,
allowing better staging and diagnosis of GI tract disorders.

With histological confirmation, our results demonstrated the capability of the multimodal
imaging system to identify and differentiate healthy tissue, hyperplastic polyps, adenomatous
polyps, and adenocarcinoma. In NIR fluorescence images, the contrast is from vascular
network. The vascular density gradually increases, and vascular morphology becomes more
tortuous with disease progression. In OCT images, tissue layered architecture alters as the
disease progresses. We observed that different types of polyps exhibit unique patterns, which
can be used for differentiating polyps. In healthy colorectal wall, well-defined layers can be
visualized: the intensity of each layer is uniform, and boundaries are well-demarcated. In
hyperplastic polyps, mucosal thickening is observed, and the OCT signal intensity of the
thickened mucosa is similar to the neighboring healthy tissue. In adenomatous polyps,
mucosal thickening is also visualized, but the OCT signal intensity is reduced in contrast with
the surrounding normal tissue due to lowered light scattering. For the adenocarcinoma,
boundaries are blurred and intensity of OCT images are non-uniform (e.g., the uneven dark
areas in Fig. 9).

The endoscopic multimodal imaging is minimally invasive and can be performed in real
time. With its small size (probe outer diameter < 3 mm), the multimodal imaging probe can
access the colon through the accessory channel of a commercial endoscope. This approach
can be easily integrated into clinical practice as surgeons can still rely on intuitive
colonoscopy guidance but also gain additional subsurface information provided by the
multimodal imaging system. Such integration can help differentiate polyps observed by
colonoscopy to provide a better diagnostic yield.

Future studies will focus on determining sensitivity and specificity of the proposed
multimodal imaging system with respect to colorectal cancer. A larger sample size will be
proposed for quantitative analysis. Additionally, it is also possible to utilize autofluorescence
rather than NIR fluorescence, which can eliminate the need of a contrast agent, further
reducing the invasiveness of our multimodal approach.
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