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Simulation of beams or plasmas crossing at relativistic velocity.

J.-L. Vay

Lawrence Berkeley National Laboratory, CA, U.S.A.∗

Abstract

This paper addresses the numerical issues related to the modeling of beams or plasmas crossing

at relativistic velocity using the Particle-In-Cell method. Issues related to the use of the standard

Boris particle pusher are identified and a novel pusher which circumvents them is proposed, whose

effectiveness is demonstrated on single particle tests. A procedure for solving the fields is proposed,

which retains electrostatic, magnetostatic and inductive field effects in the direction of the mean

velocity of the species, is fully explicit and simpler than the full Darwin approximation. Finally,

results are given, from a calculation using the novel features, of an ultra-relativistic beam interacting

with a background of electrons.

∗Electronic address: jlvay@lbl.gov
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I. INTRODUCTION

It was shown recently [1] that for a certain class of problems involving objects (made of

matter or light) propagating near or at the speed of light, the range of space and time scales

spanned by the system depends strongly on the velocity of the frame of reference with regard

to the system (we assume in the entire paper that the frame of reference is inertial). For

commonly used methods in computer physics simulations, which rely on a discretization of

space and time into small contiguous chunks, such as for example the ubiquitous Particle-In-

Cell method in plasma physics, the implication is a difference of orders of magnitude on the

number of mathematical operations needed to solve a problem, based solely on the choice

of the frame of reference.

Since the principle of relativity implies that the laws of physics are the same regardless

of the chosen frame of reference, and that the Particle-In-Cell method is based on the

discretization of the fundamental laws of particle motion and electromagnetism, we might

think that the solution is simple: just do the calculation in the frame which minimizes

the range of space and time scales. In practice, however, the discretized equations may

not preserve some fundamental properties of the continuous equations which may lead to

unacceptably large errors. For example, when electric fields are transformed from one inertial

frame to another using the Lorentz transformation, part of the electric field transforms into

magnetic field and vice-versa. When combined with Newton’s law of motion with the Lorentz

force, part of the force exerted on particles from the electric field cancels with part of the

force exerted by the magnetic field, so that the motion of the particles is identical in both

frames. For Particle-In-Cell calculations involving relativistic species, it implies eventually

that the particle pusher preserves the property of electric field and magnetic field cancellation

in the Lorentz force term, either exactly or to such degree that the associated errors can be

neglected. We have found that the commonly used Boris algorithm, a second-order leapfrog

integrator of the equations of motion [2], does not preserve this property and may thus lead

to large errors when calculating the orbits of relativistic species. We present an alternative

formulation of the second-order leapfrog solver that preserves this property, and contrast

numerical results with the Boris scheme on a few simple test cases. For the fields, we

restrict this paper to the case where waves and retardation can be neglected and present a

system that is simpler than the Darwin set of equations, under the provision of an additional
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approximation. The fully electromagnetic system involves additional complications and is

left for later studies. We finally present an application of the new particle pusher and the

field solver to the modeling of the interaction of an ultra-relativistic beam with a background

of electrons.

II. PUSHING PARTICLES

A. Cancellation of electric and magnetic fields contributions in the Lorentz force

The equations of motion for a particle of mass m and charge q in electric and magnetic

fields E and B may be written

dx

dt
= v, (1)

d (γv)

dt
=

q

m
(E + v × B) . (2)

where x, v and γ = 1/
√

1 − v2/c2 are respectively the position, velocity and relativistic

factor of the particle, t is time and c is the speed of light. A centered finite-difference

discretization of the system is given by

xi+1/2 − xi−1/2

∆t
= vi, (3)

γi+1vi+1 − γivi

∆t
=

q

m

(
Ei+1/2 + v̄i+1/2 ×Bi+1/2

)
. (4)

In order to close the system, v̄i+1/2 must be expressed as a function of the other quantities.

The solution proposed by Boris [2] is given by

v̄i+1/2 =
γivi + γi+1vi+1

2γ̄i+1/2
. (5)

The system (4,5) can be solved very efficiently following Boris’ method, where the electric

field push is decoupled from the magnetic push, avoiding having to solve explicitly for γ̄i+1/2

[2]. With the Boris scheme, the relativistic factor of the particle at time i + 1/2 is given by

γ̄i+1/2 =

√

1 + (γivi +
q∆t

2m
Ei+1/2) =

√

1 + (γi+1vi+1 −
q∆t

2m
Ei+1/2). (6)

Let now assume that the particle is submitted to constant non-zero electric and magnetic

fields in such a way that their mutual contributions cancel, i.e. E+v×B = 0. If the particle
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pusher does a correct cancellation of the electric field and magnetic field contributions in

the Lorentz force term, there should be no force acting on the particle and its velocity

should stay unchanged. However, if we apply this condition to the system (4,5,6), by setting

E + vi × B = E + vi+1 × B = 0 and γi+1vi+1 = γivi, we find that the system admits a

solution only if Ei+1/2 = Bi+1/2 = 0. Consequently, the particle will undergo a spurious

force in the general case, where E #= 0 and B #= 0.

Let us now consider, in place of (5), the following velocity average

v̄i+1/2 =
vi + vi+1

2
, (7)

so that (4) becomes

γi+1vi+1 − γivi

∆t
=

q

m

(
Ei+1/2 +

vi + vi+1

2
×Bi+1/2

)
. (8)

Setting Ei+1/2+vi×Bi+1/2 = Ei+1/2+vi+1×Bi+1/2 = 0 and γi+1vi+1 = γivi does not lead to

any constraint on the values of the electric or magnetic field nor the velocity. Consequently,

the velocity update given by (8) is free of the spurious force observed with the Boris velocity

update.

B. A new leapfrog pusher

Solving (8) presents no major difficulty. Setting u = γv and

u′ = ui +
q∆t

m

(
Ei+1/2 +

vi

2
× Bi+1/2

)
, (9)

(8) becomes

ui+1 = u′ +
q∆t

m

(
ui+1

2γi+1
× Bi+1/2

)
. (10)

Solving (10) together with γi+1 =
√

1 + (ui+1/c)2 yields (a detailed demonstration is given

in Appendix A)

γi+1 =

√
σ +

√
σ2 + 4 (τ 2 + u∗2)

2
, (11)

ui+1 = s [u′ + (u′ · t) t + u′ × t] , (12)
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where τ = (q∆t/2m)Bi+1/2, u∗ = u′ · τ/c, σ = γ′2 − τ 2, γ′ =
√

1 + u′2/c2, t = τ/γi+1 and

s = 1/ (1 + t2). Finally, we define the velocities at half time steps, when the positions are

known. We set

ui+1/2 =ui +
q∆t

2m

(
Ei+1/2 + vi ×Bi+1/2

)
= ui+1 −

q∆t

2m

(
Ei+1/2 + vi+1 × Bi+1/2

)
, (13)

which is convenient computationally since the algorithm breaks into the following sequence

for two half steps:

1st half step: get ui+1/2 from ui using (13),

2nd half step: get ui+1 from ui+1/2 using (11), (12) and u′ = ui+1/2 + q∆t
2m Ei+1/2.

Under some circumstances, this choice also provides the correct gyroradius for a particle

rotating in a constant magnetic field, as discussed in Appendix B.

C. Single particle tests of the new pusher

1. Constant uniform magnetic field in the laboratory frame

FIG. 1: (Color online) X and Y positions versus time step of a particle rotating in a constant

magnetic field Bz as computed in the laboratory (left) or in a frame moving along ŷ at γf = 2

(right).

A particle was initialized with a velocity vx = v0 = 10−2c in a constant magnetic field

Bz. The time step was set to ∆t = 10−2 × 2π/ωc and the position of the particle recorded

for 100 steps. The positions in x̂ and ŷ (normalized to the cyclotron radius Rc = v0/ωc)

are contrasted in Fig. 1 against the analytical results for the new pusher, the Boris pusher
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and the Boris pusher with tan (ωc∆t) /ωc∆t correction. The calculation was done also in a

frame moving at γf = 2 with regard to the laboratory in the direction of ŷ, transforming the

initial parameters according to the Lorentz transformation. While the new pusher tracks

very accurately the analytical result in both frames, the results from the Boris pusher (with

or without the tan (ωc∆t) /ωc∆t correction) depart from the analytical result. For both

versions of the Boris pusher, errors are very significant for γf = 3 and grow very quickly as

γf increases. The results from the new pusher for high values of γf were limited only by

the precision of the machine. Running in double precision, we observed a slight departure

from the analytical result starting around γf = 105, for which the maximum velocity in x̂ is

about 10−7 the velocity in ŷ, which leads to 14 significant figures needed in the evaluation of

the relativistic factor γ of the particles, at which roundoff errors start to be non-negligible.

2. Constant uniform electric field in the laboratory frame

An electron was initialized with no initial velocity in the laboratory, and pushed through

a constant electric field Ex = 1kV/m with a time step of ∆t = 1ns, for 100 steps. The

same physical system was then modeled in a frame moving at γf = 100 with respect to the

laboratory in the direction of ŷ. The results from the new pusher, the Boris pusher and the

Boris pusher with tan (ωc∆t) /ωc∆t correction are given in Fig.2 and contrasted with the

analytic solution. Again, all three movers track the analytic solution well in the laboratory

frame, but only the new pusher is accurate in the moving frame calculation.

FIG. 2: (Color online) X and Y positions versus time step of a particle accelerated by a constant

electric field Ex as computed in the laboratory (left) or in a frame moving along ŷ at γf = 100

(right).
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III. SOLVING FOR THE FIELDS

Assuming that waves and retardation effects are negligible, Maxwell’s equations reduce

to Darwin’s equations [3, 4]. However, the numerical solution of the Darwin set of equations

leads to an implicit scheme which has been reported to be expensive to solve [5]. We seek a

simpler system by making the following additional assumption: for each species, we assume

that the electrostatic approximation is sufficient when the fields are computed in a co-moving

frame such that, in a frame moving at relativistic velocity −vz with regard to the species,

we can make the approximations vz $ vx, vy and ∂
∂t ≈ vz

∂
∂z . As a result, we get

∂2φ

c2∂t2
−
∂2φ

∂x2
−
∂2φ

∂y2
−
∂2φ

∂z2
≈−

∂2φ

∂x2
−
∂2φ

∂y2
−

∂2φ

∂ (γz)2
=

ρ

ε0
(14)

A ={0, 0,
vzφ

c2
} (15)

E = −
∂A

∂t
− ∇φ ≈ {

∂φ

∂x
,
∂φ

∂y
,
(
1 + β2

) ∂φ
∂z

} (16)

B =∇ ×A ≈ {
vz∂φ

c2∂y
,−

vz∂φ

c2∂x
, 0} (17)

where β = vz/c and γ = 1/
√

1 − β2. Thus, for N species, the field calculation is reduced to

N solves of the Poisson equation (15) where the scale along ẑ is stretched by the factor γ.

Typically, for our applications, N = 1 or 2, and solving N times (15) is much less expensive

than solving the Darwin set of equations.

IV. APPLICATION TO THE MODELING OF AN ULTRA-RELATIVISTIC

BEAM INTERACTING WITH A BACKGROUND OF ELECTRONS

In high-energy physics accelerators, beams travel at near the speed of light and the force

from their own magnetic field almost entirely offsets the one from their own electric field.

They also interact with electron clouds which do not move appreciably in the laboratory

frame. According to [1], the modeling from first principles of the interaction of the beam

with the electron cloud is more efficient if performed in a frame moving at a relativistic

velocity which is a fraction of the beam velocity in the laboratory frame. In such a frame,

both the beam’s and the electron cloud’s self-magnetic fields cancel almost entirely their

respective self-electric field. Consequently, whether one is to perform a simulation from first

principles of the interaction of the beam with the electron clouds in the laboratory frame
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or in a moving frame, the modeling offers the right conditions for the applications of the

present new particle pusher and field solver.

We consider a simplified model of a beam interacting with an electron cloud in the Large

Hadron Collider (LHC), setting the beam parameters as prescribed right after its injection

into the ring (see Table I). In the experiment, the beam is forced onto a near circular

trajectory by a vertical constant magnetic field applied by a succession of magnetic dipoles.

However, since the circumference of the ring is large compared to the beam length, we do

not apply the dipole magnetic field on the beam in the simulations, which is assumed to

propagate on a straight line. However, since the effect of the magnetic dipole field on the

background of electrons is large, it is applied onto the electron motion. In the experiment,

the beam is also focused transversely by a periodic succession of magnetic quadrupoles which

we replaced in our simplified model by a continuous azimuthal magnetic field.

We performed a first-principles simulation using the Particle-In-Cell code Warp [6], in

which we have implemented the new particle pusher and the field solve procedure described

above, using the numerical parameters given in Table II. The calculation was made in a

frame moving at γ ≈ 16.5. We tried first a calculation using the Boris algorithm with or

without the tan (ωc∆t) /ωc∆t correction. In both cases, both the beam and the electron

macroparticles were lost at an unphysically fast rate. Using the new particle pusher, the

beam interacted with the electrons and underwent a hose-like instability, as expected on

physical grounds. The history of the fractional emittance in the vertical direction is plotted

in Fig. 3. It is contrasted to one obtained by running Warp in a quasi-static mode [7–9],

where the particle positions were pushed in the laboratory frame using linear maps which

contain the effect of the continuous focusing built-in, while the electrons were pushed in the

laboratory frame using the Boris pusher. Both the quasi-static calculation in the laboratory

frame and the Particle-In-Cell calculation in the moving frame predicted the same growth

rate and saturation level of the emittance.

V. CONCLUSION

We showed that the modeling of relativistic systems involves the issue of cancellation of

electric and magnetic field contributions in the Lorentz force. We demonstrated that the

Boris particle pusher does not cancel the two components exactly and showed on single test
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TABLE I: Parameters used for simplified configuration of LHC at injection.

electron cloud density ρe 1014 m−3

bunch population Nb 1.1 × 1011

beta functions βx,y 66.0, 71.54 m

rms bunch length σz 0.13 m

rms beam size σx,y 0.884 mm

rms momentum spread δrms 0

circumference C 26.659 km

nominal tunes Qx,y 64.28, 59.31

relativistic factor γ 479.6

pipe radius Rp 2.2 cm (with flat tops at ±1.8 cm)

initial beam position offset δy 0.1 σy

dipole field (electrons only) By0 8.39T

TABLE II: Simulation parameters.

# of macro-protons Np 3×105

# of macro-electrons Ne ≈ 2 × 106

transverse size of the grid Lx × Ly 4.4cm×4.4cm

# of grid points Nx × Ny 128×128

bunch/grid extension in z Lz ±4 σz

# of slices Nz 128

# of ecloud stations Nstn 10-3000

# of turns Nt 1

# of processors Nproc 32

particles that this might lead to large errors in the calculation of particles trajectories. We

derived a new leapfrog particle pusher which satisfies exactly the cancellation property and

demonstrated its effectiveness in single particle tests. We also presented a procedure for

solving the fields which retains electrostatic, magnetostatic and inductive field effects in the
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FIG. 3: (Color online) Fractional emittance growth in the vertical direction for a 500GeV proton

beam interacting with a background of 1014m−3 electrons.

direction of the mean velocity of the species, is fully explicit and simpler than the full Darwin

approximation. The results from a calculation of an ultra-relativistic beam interacting with

a background of electrons, which uses the novel features, were contrasted to calculations

using the quasi-static approximation and showed good agreement. As part of the analysis

of the particle pusher, it was also demonstrated that under some provision it reproduces

the correct gyroradius of particles moving in a constant magnetic field for any time step.

Further work will analyze the algorithm in more detail and evaluate whether it might have

properties that extend its range of usefulness to other areas of plasma modeling. Finally,

the issues related to fully electromagnetic Particle-In-Cell simulations, like the numerical

Cerenkov effect for example, will be analyzed in details and remediations will be explored.
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Appendix A: Detailed calculation of the explicit solution of the quantities ui+1 and

γi+1 in the new pusher

Setting τ = (q∆t/2m)Bi+1/2, t = τ/γi+1, and using the notation shortcuts u ≡ ui+1

and B ≡ Bi+1/2, (2.10) becomes

u = u′ + u× t (A1)

or, equivalently

ux = u′

x + uytz − uzty, (A2)

uy = u′

y + uztx − uxtz, (A3)

uz = u′

z + uxty − uytx. (A4)

Solving by substitution for ux, eliminating uy and uz gives

ux =
u′

x +
(
u′

xtx + u′

yty + u′

ztz
)
tx + u′

ytz − u′

zty
1 + t2x + t2y + t2z

. (A5)

The expressions for uy and uz are obtained from (A5) by circular permutation of the indices,

and we get, in vector notation

ui+1 = u = s [u′ + (u′ · t) t + u′ × t] , (A6)

where s = 1/ (1 + t2). Note that the expressions of each component of u depend on the

other components only through the relativistic factor γi+1 (which appears implicitly in the

terms t and s).

We now seek the solution of γ. Taking the dot product of (A1) and u, we get

u2 =u′ · u, (A7)

which, divided by the square of the speed of light and adding one, becomes

γ2 =1 + u2/c2 = 1 + u′ · u/c2, (A8)

where we have used the notation shortcut γ ≡ γi+1. Plugging (A6) into (A8) gives

γ2 =1 + s
[
u′2 + (u′ · t)2

]
/c2, (A9)
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which, written explicitly as a function of γ, becomes

γ2 =1 +
u′2 + (u′ · τ/γ)2

c2 (1 + τ 2/γ2)
. (A10)

Factoring in powers of γ finally leads to the equation

γ4 +
(
τ 2 − γ′2

)
γ2 − τ 2 − u∗2 =0 (A11)

where γ′ =
√

1 + u′2/c2 and u∗ = u′ · τ/c. Solving (A11), and discarding the negative or

imaginary solutions, we get

γ = γi+1 =

√
σ +

√
σ2 + 4 (τ 2 + u∗2)

2
, (A12)

where σ = γ′2 − τ 2.

Appendix B: Motion in a constant magnetic field

Let us assume that the particle moves in a constant magnetic field B and no electric field.

Eq. (8) becomes then

γi+1vi+1 − γivi

∆t
=

q

m

(
vi + vi+1

2
× B

)
, (B1)

which is known [5] to generate a rotation of angle

∆θ = ω∆t = 2 arctan

(
ωc∆t

2

)
, (B2)

where ωc = qB
γm is the cyclotron frequency and ω is the numerical angular frequency of

rotation of the particle, which is the same as the one obtained with the Boris scheme without

the tan (ωc∆t) /ωc∆t correction [5]. Solving (13) for E = 0 leads to

vi+1/2 =

[

1 +

(
ωc∆t

2

)2
]

vi + vi+1

2
. (B3)

From (3), we also get that

xi+3/2 − xi−1/2

∆t
=vi + vi+1. (B4)

Since the particle moves on a circle of radius R at the angular velocity ω, we also have

‖xi+3/2 − xi−1/2‖ =2R| sin (ω∆t) |, (B5)

‖vi + vi+1‖

2
=‖vi‖ · | cos

ω∆t

2
| = ‖vi+1‖ · | cos

ω∆t

2
| (B6)
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Solving (B2-B6), we find

R =
‖vi+1/2‖

ωc
=

[

1 +

(
ωc∆t

2

)2
]1/2

‖vi‖

ωc
. (B7)

Hence, if vi+1/2 = v0, then the new pusher recovers the physical gyroradius for any ∆t, while

if vi = v0 then the numerical gyroradius is larger than the physical gyroradius by the factor
[
1 +

(
ωc∆t

2

)2
]1/2

, similarly to the Boris pusher, as shown in [10]. This observation leads to a

potentially interesting comparison of the new pusher with the interpolated pusher presented

in [11, 12], which obtains the physical gyroradius by setting an effective velocity which is

used to push the particles positions and is an interpolation between the velocity obtained

from the Boris push and the drift velocity obtained from gyrokinetic motion. For large ∆t,

the magnitude of the effective velocity is much smaller than the velocity of the particles

by the factor 1/
[
1 +

(
ωc∆t

2

)2
]
, ensuring that the numerical particle gyroradius equals the

physical one. In the new pusher, we can identify the velocity that is computed at integer

time steps (i,i + 1,...), which is the one that is used to update the positions, as the effective

velocity in [11, 12]. Whether the numerical gyroradius that will be computed will be the

same as the physical one depends on whether the velocity that is computed at the half

time steps will match the physical instantaneous velocity of the particle (vi+1/2 = v0 in our

example) or not. This involves an analysis that goes beyond the scope of the present paper

and will be treated elsewhere.
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