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Abstract 
 
 Neural stem cells in the brain give rise to both neurons and glia cells during 

embryonic development and help maintain tissue homeostasis in adulthood. Although 

transcription factors and intracellular signaling pathways that modulate NSC function in 

embryonic and adult brain have been heavily studied, in vivo functions of long 

noncoding RNAs (lncRNAs) and chromatin regulators in NSCs are still poorly 

understood. Pnky is a nuclear-enriched lncRNA that is transcribed divergently from the 

neighboring proneural transcription factor Pou3f2. In the embryonic cortex, I found that 

Pnky deletion increases neuronal differentiation and depletes NSCs prematurely, 

resulting in defects in cortical laminar structure in postnatal mice. Pnky expression from 

a bacterial artificial chromosome (BAC) transgene rescues the in vivo phenotypes of 

Pnky-deleted brains, supporting the idea that Pnky acts in trans as a key regulator of 

NSC function and neurogenesis in the embryonic cortex. Chromatin regulator JMJD3 is 

a histone demethylase implicated in development and disease of multiple organs. My 

studies show that Jmjd3-deletion in the hippocampus results in depletion of adult NSCs. 

During development, Jmjd3-deleted dentate gyrus precursors precociously differentiate 

into neurons, resulting in failed establishment of the hippocampal NSC niche. Single cell 

RNA-sequencing reveals a broad disruption of genes involved in maintaining stem cell 

function in Jmjd3-deleted NSCs. In the adult brain, loss of Jmjd3 similarly leads to 
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precocious neuronal differentiation, reflecting the loss of gene expression signatures 

related to stem cell maintenance. These data indicate both lncRNA-Pnky and JMJD3 

may control the rate of neurogenesis, acting like a cell-intrinsic clock for NSCs. 
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Chapter 1: Introduction 
 
  

 During both development and adulthood, neural stem cells (NSCs) generate the 

diverse cell neural and glial cell types in the brain through a balance of self-renewal and 

differentiation. NSC populations are maintained through precisely regulated self-

renewing divisions or differentiation into specific cell types. Precise regulation of NSCs 

is crucial for proper development, long-term tissue homeostasis, and response to tissue 

damage. Deficits in these processes have been associated with many human 

neurological diseases, which further highlights the importance of NSCs (Rubin et al., 

2014; De Rubeis et al., 2014; Varela-Nallar et al., 2010). Exact spatiotemporal 

regulation of NSC function and output is necessary to maintain NSCs and ensure the 

proper differentiation into multiple neuronal cell types. Many cell-intrinsic mechanisms 

and extracellular signaling pathways involving transcription factors that maintain NSC 

identity have been discovered (Urban et al., 2014). But it is now clear that other classes 

of genes, including long non-coding RNAs (lncRNAs) and chromatin regulators play 

roles in regulating core stem cell functions (Andersen and Lim, 2018). LncRNAs are a 

diverse class of transcripts that may function via multiple mechanisms. Due to their 

intricate structures and heterogeneity, it has been difficult to study their genetic and 

molecular mechanisms. Similar to lncRNAs, chromatin regulators are also a diverse 

class of genes with multiple subgroups that can modulate gene expression in a 

multitude of ways. To understand how lncRNAs and chromatin regulators affect NSC 

function throughout development and in adulthood, in vivo studies that can target their 

genetic deletion with cell-type specificity are required. 
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Background 

Section 1: Neural Stem cells from development to adulthood  

 Neural stem cells (NSCs) are a unique population of cells in the brain that can 

either undergo self-renewal through proliferation or differentiate into diverse cell types, 

including neurons and glia (astrocytes and oligodendrocytes). In the developing mouse 

brain, shortly after the neural tube closure at embryonic day 9.5 (E9.5), neuroepithelial 

(NE) cells undergo massive proliferation to expand the pool of neural stem cells 

(Molyneaux et al., 2007). These NE cells then transform into embryonic neural stem 

cells that are located in the ventricular zone (VZ) lining the ventricles. The NSCs of the 

embryonic brain are the radial glia (RG), so termed, because they express molecular 

markers of glial cells and they extend elongated radial processes away from VZ 

(Kriegstein and Alvarez-Buylla 2009). Embryonic NSCs can generate either excitatory 

projection neurons or inhibitory interneurons, depending on their location in the 

embryonic brain (pallium and ganglionic eminences, respectively) (Delgado et al., 

2015).   

 The neocortex is a dorsal brain structure consisting of six layers of excitatory 

projection neurons. Over the course of development, excitatory neurons of the cortex 

are generated sequentially in an “inside-out” manner (Molyneaux et al., 2007; 

Rubenstein, 2011). The laminar identity of newly born neurons is correlated with the 

time point at which they were produced from NSCs. Transplantation studies show that 

as development progresses, the fate potential of NSCs to generate specific subtypes 

become progressively more limited (Frantz and McConnell, 1996). When earlier stage 

NSCs are transplanted into later stage neocortex, they are able to produce all subtypes. 
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However, if later stage NSCs are transplanted into earlier stage, they can only produce 

“later-stage neuronal subtypes” (Desai and McConnell, 2000). These data suggest that 

there may be a cell-intrinsic clock which controls the temporal progression of NSCs. 

Besides a cell-intrinsic clock, recent studies show that extracellular Wnt signaling 

pathway allows later stage embryonic NSCs to re-enter earlier stage states, highlighting 

importance of the cell-extrinsic factors for NSCs (Oberst et al., 2019).  Interestingly, 

defects in cortical NSCs have been associated with human neurodevelopmental 

disorders (Lodato and Arlotta, 2015; Molyneaux et al., 2007; Rubenstein, 2011).  

 Most embryonic NSCs stop proliferating around the time of birth, at which point a 

majority of cells in the brain have been produced. In the adult brain, however, a small 

number of NSCs continue to proliferate and retain neurogenic potential in restricted 

regions. These NSCs establish adult NSC niches in the brain and generate neurons 

throughout life to enable circuit plasticity (Bond et al., 2015). Adult NSCs in the 

ventricular-subventricular zone (V-SVZ) give rise to multiple subtypes of inhibitory 

interneurons in the olfactory bulb (OB) (Lledo et al., 2008). Similar to embryonic NSCs, 

V-SVZ adult NSCs also share characteristics of glial cells, and NSCs localized to 

different positions rostro-caudally along the V-SVZ produce distinct neuronal subtypes 

(Kriegstein and Alvarez-Buylla, 2009). A retroviral barcoding experiment has shown that 

V-SVZ NSCs are derived from a subset of embryonic NSCs that is set aside during 

development until their re-activation in adulthood (Fuentealba et al., 2016).  

 The dentate gyrus (DG) of hippocampus is another major adult NSC niche. In the 

DG, NSCs are located in a subgranular zone (SGZ) where they give rise to excitatory 

granule neurons throughout life (Nicola et al., 2015). Similar to V-SVZ NSCs, SGZ 
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NSCs also have radial processes that extend from the SGZ to the granular cell layer 

(Kitabatake et al., 2007). SGZ NSCs arise from a subset of eNSCs located in the dorso-

medial part called primary dentate neuroepithelium (DNE) (Altman and Bayer, 1990). 

Unlike the “set-aside” model proposed to describe the origin of V-SVZ NSCs, recent 

lineage tracing and fate-mapping experiments suggest a “continuous” model for the 

development of the SGZ NSC niche. In the “continuous” model, embryonic NSCs from 

DNE generate additional embryonic NSCs and granule neurons to form the dentate 

gyrus structure, then these embryonic NSCs acquire adult NSC properties in the SGZ 

during postnatal development and continue to generate DG granule neurons in the adult 

(Berg et al., 2020).  Transcriptomic analysis shows high similarity in molecular signature 

between SGZ NSC precursors, postnatal NSCs, and adult NSCs further supporting the 

“continuous” model of their developmental origin (Berg et al., 2020).  

 One essential element of NSC function is the “timed” decision of whether to 

undergo self-renewal or differentiate into a specific cell type. Disrupting this decision,  

(e.g. by prematurely differentiating or excessively proliferating) can have dramatic 

effects on both embryonic and adult neurogenesis. If embryonic NSCs were to 

differentiate precociously at an earlier stage of the development, this would lead to 

depletion of the NSC pool and decrease the production of later stage neurons. In 

addition, given that embryonic NSCs are the developmental origin of adult NSCs, early 

depletion of embryonic NSCs would lead to failed establishment of the adult NSC niche 

(Fuentealba et al., 2015; Berg et al., 2020). Defects in embryonic and adult NSCs have 

been associated with depression, neuro-inflammation, epilepsy, and other numerous 

neurological disorders (Dranovsky and Hen, 2006; Parent et al., 2006; Anacker and 
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Hen, 2017). Depletion of adult NSCs results in cognitive decline and impaired spatial 

memory in mice (Burghardt et al., 2012).  

 The mechanism for long-term NSC function is influenced by both cell-intrinsic 

and -extrinsic factors, which include cell-cell contacts, activity, growth factors signaling, 

and gradients of signaling molecules (Urban et al., 2014). These require precise control 

in gene expression programs related to NSC identity and characteristics. Most 

regulators of in vivo NSC function have been centralized around signaling pathways and 

transcription factors (Notch, Bmp, Wnt, Fgf, and Shh) (Gaiano and Fishell 2000; Cheng 

et al., 2006; Okamoto et al., 2011; Imayoshi et al., 2010; Giachino et al., 2014). But it is 

now clear that lncRNAs and chromatin regulators can also modulate global gene 

expression. LncRNAs have been shown to regulate gene expression through multiple 

mechanisms (e.g., molecular decoy, scaffold, guide) and they can influence either 

neighboring genes or targets far away from their transcription sites in the genome (Rinn 

and Chang, 2012). Histone modifying enzymes are one type of chromatin regulators 

that can influence gene expression related to a specific type of modification it catalyzes 

upon histone proteins (Klose et al., 2006 & 2007). Although there are some hints from 

previous studies using in vitro systems, whether certain lncRNAs and/or chromatin 

regulators play critical, and cell-intrinsic roles for long-term NSC function is still poorly 

understood.  
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Section 2: Long non-coding RNAs (lncRNAs) in development and disease  

 The human genome produces tens of thousands of long noncoding RNAs 

(lncRNAs), transcripts with a length of greater than 200 nucleotides without apparent 

protein coding potential (Rinn and Chang, 2012; Andersen and Lim, 2018). These 

lncRNAs are found in a large diversity of species including yeast, plants, viruses, and 

mammals (Ma et al., 2013). LncRNAs exhibit significant cell and tissue-type specificity 

as compared to protein coding genes (Liu and Horlbeck et a., 2017). Thousands of 

lncRNAs are differentially expressed in various tissues and many of them are 

considered to be brain-specific (Clark et al., 2018; Quan et al., 2017). Interestingly, 

brain-specific lncRNAs show higher evolutionary conservation as compared to other 

tissues. Accumulating evidence suggests that lncRNAs can regulate fundamental 

biological processes, and the dysfunction of some lncRNAs has been associated with 

human diseases (Batista and Chang, 2013; Briggs et al., 2015). However, it remains 

unclear how lncRNAs influence stem cell function during development, underscoring a 

need to carefully dissect cell and region-specific functions of these molecules. (Liu and 

Horlbeck et al., 2017; Lipovich et al., 2014; Kadakkuzha et al., 2015). 

 lncRNAs can be classified based on their genomic location and orientation with 

respect to neighboring protein-coding genes (Mattick and Rinn, 2015). Some lncRNAs 

are transcribed antisense and overlapping with protein coding genes. Intronic lncRNAs 

can be either antisense or in the sense direction. Divergent lncRNAs share regulatory 

elements with the neighbor protein-coding gene and are transcribed in the opposite 

direction. Finally, intergenic lncRNAs are located further away from nearby protein 

coding genes and have their own regulatory elements (Andersen and Lim., 2018).  
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 An additional layer of complexity comes from the fact that lncRNAs can regulate 

transcriptional regulation in cis – regulating neighboring genes - and/or in trans – 

modulating the function of genes at locations away from its production site (Andersen 

and Lim, 2018). A class of divergent lncRNAs are strongly predicted to regulate their 

gene neighbors, suggesting their preferential function as cis regulators. Paupar (lncRNA 

divergent to Pax6), Six3OS (lncRNA divergent to Six), and Lnc-Brn1a (lncRNA 

divergent to Pou3f3) are a few examples of cis-acting divergent lncRNAs involved in 

neural development (Pavlaki et al., 2018; Rapicavoli et al., 2011; Sauvageau et al., 

2013). Firre has shown to be a trans-acting lncRNA involved in hematopoiesis 

(Lewandowski et al., 2019). Importantly, lncRNAs certainly can play multiple distinct 

roles both in cis and in trans (Cajigas et al., 2018; Pavlaki et al., 2018; Feng et al., 

2006). The mechanisms of by which lncRNAs can influence transcriptional regulation 

have been investigated, and these include acting as a decoy, guide, and scaffold (Rinn 

and Chang, 2012).  LncRNA-PANDA was recently discovered to act as a “decoy” 

lncRNA, quenching the binding site of transcription factor NF-YA and thereby preventing 

its binding to target genes that promote apoptosis (Hung et al., 2011). An example 

“guide” lncRNA would be HOTAIR, which was shown to direct chromatin modifier 

complex to specific regions in the genome (Rinn and Chang, 2012). ANRIL, on the other 

hand, is an example of a “scaffold” lncRNA that interacts with two chromatin modifying 

complexes (PRC1 and PRC2) to mediate transcriptional silencing of the Ink4a locus 

(Yap et al., 2010). While there has been some progress in understanding mechanisms 

of lncRNAs, the lack of good genetic tools and in vivo model systems have limited our 

understanding of their roles in development.  
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 Some lncRNAs are involved with NSC proliferation and neuronal differentiation 

(e.g., RMST, Dali, TUNA, Evf2, LncND, Six3OS), and also in neuronal maturation and 

synaptogenesis (e.g., BDNF-AS and Malat1) (Quan et al., 2017). But due to the diverse 

nature of lncRNAs and limited scientific approaches to study them, determining exact 

functions have been challenging. Many studies utilize in vitro cell culture systems using 

primary cells or cell-lines from either mouse or human (Clark et al., 2012; Liu and 

Horlbeck et al., 2017). Tumor cell-lines are often a popular choice due to their high 

proliferation rate. It is clear by now that results from in vitro studies do not always 

translate into similar results in vivo, and such discrepancies may relate to limitations in 

the tools for manipulating lncRNA expression in vivo. Conditional knockout with 

traditional Cre-Lox approaches would provide cell-type specificity and spatiotemporal 

control over deletion of lncRNAs, but for lncRNAs that overlap with essential coding 

genes and/or enhancers, this approach would not work. CRISPR interference/activation 

approach may serve as an alternative strategy to modulate the expression of such 

lncRNAs (Liu and Horlbeck et al., 2017). Also, knock-down approaches using shRNA, 

siRNA, or antisense oligonucleotides (ASO) may also be used. But all of these 

approaches carry the possibility of potential off-target effects and for sh/siRNA, partial 

knockdown may make it difficult to identify phenotypes (Kaczmarek et al., 2017). 

Therefore, each lncRNA may require a different approach to investigate its function(s) in 

biology. 

 Pnky is a neural specific intergenic lncRNA neighboring Pou3f2 (Brn2), an 

essential neural transcription factor for neocortical development and neural 

reprogramming (Sugitani et al., 2002; Vierbuchen et al., 2010). While Pnky does not 
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overlap with protein coding genes, it is transcribed in a divergent direction to Pou3f2, 

and Pnky has its own distinct regulatory elements. It can thus be classified as an 

intergenic lncRNA. In NSC cultures, knockdown of Pnky leads to increased neuronal 

lineage commitment and the proliferation of intermediate progenitor cells (Andersen and 

Lim, 2018). These results lead to an overall increase in neuronal production in vitro. 

Surprisingly, knock-down of Pnky in NSC in vitro cultures does not change the 

expression of Pou3f2 or other neighboring genes within a 5MB range, suggesting that 

Pnky does not regulate gene expression in cis. Fluorescent in situ hybridization 

experiments show that several (>2) Pnky transcripts are detected in the nucleus, further 

suggesting function in trans (Ramos and Andersen et al., 2015). The exact function of 

Pnky in vivo, however, is still poorly understood. Since Pnky does not overlap with any 

neighboring coding genes and has its own promoter, it is an ideal candidate for 

traditional genetic deletion approaches to study cell-intrinsic functions of Pnky in NSCs 

in vivo.  

 

Section 3: Chromatin regulators influence stem cell function  

 Alterations of chromatin landscape and gene expression changes are closely 

associated with each other. Histone modifiers are one type of chromatin regulators that 

modulate gene expression by attaching chemical modifications to histones. The N-

terminal tail of each core histone protein is subject to various types of post-translational 

modifications (PTMs). Acetylation, methylation, phosphorylation, and ubiquitination are 

the most common types of histone modifications (Wang et al., 2013). These site-specific 

PTMs influence various steps involved in RNA transcription such as activation, 
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repression, elongation, and termination to modulate gene expression (Mellor, 2006) and 

are each catalyzed by specific histone-modifying enzymes. Histone modifiers have been 

associated with fundamental processes of neural development, and their dysfunction 

has been implicated in human neurological disorders (Mirabella et al., 2016). 

 Jumonji domain-containing protein D3 (JMJD3), also called lysine(K)-specific 

demethylase (Kdm6b), was discovered as a histone 3 lysine 27 (H3K27) specific 

demethylase (Hong et al., 2007; Swigut et al., 2007). It is part of a protein family that 

contains a JmjC domain as its catalytic domain required for its demethylase activity 

(Klose et al., 2006). Promoter regions of transcriptionally repressed genes are enriched 

with H3K27me3, a chromatin mark associated with transcriptional repression. 

Therefore, through JMJD3’s demethylase activity, genes appear to be de-repressed, 

allowing for the activation of gene expression programs.  

 JMJD3 has been implicated in various aspects of stem cell regulation from 

development to adulthood. In embryonic stem cells (ESCs), Jmjd3 is involved in the 

formation of the three germ layers (endoderm, mesoderm, and ectoderm) (Burchfield et 

al., 2015). Importantly, Jmjd3-deletion does not seem to affect self-renewal (Mansour et 

al., 2012; Ohtani et al., 2013). Previous studies have shown that JMJD3 interacts with 

germ-layer specific transcription factors to activate lineage-specific genes in embryonic 

stem cells through interaction with various signaling pathways (WNT, TGF-β, BMP, and 

SMAD) (Burchfield et al., 2015). In adult V-SVZ NSCs, JMJD3 is required to activate 

key neurogenic genes via interactions at not only promoter but also enhancer regions. 

Through activation of those essential neural genes, NSCs are able to give rise to 

olfactory bulb neurons (Park et al., 2014). Based on published studies in multiple model 
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systems, it seems that JMJD3 is expressed across multiple cell and tissue types. 

JMJD3 can regulate differentiation, stem cell proliferation, or lineage specification, 

cellular reprogramming, and tissue repair (Martinelli et al., 2011; Zhao et al., 2013; 

Yasui et al., 2011). These functions of JMJD3 and other chromatin regulators depend 

on cell and tissue-type specificity, suggesting that the exact function and molecular 

mechanism of JMJD3 may be context-dependent. But whether JMJD3 has a cell-

intrinsic function for the establishment and long-term maintenance of NSCs in the 

hippocampus is not known. In addition, most known functions of JMJD3 have been 

identified using in vitro cell cultures (Burchfield et al., 2015). Its exact role in vivo would 

further enhance our understandings about chromatin biology and NSC functions. 

 While most embryonic NSCs produce neurons in the developing brain, a subset 

of them transition to establish adult NSC pool in restricted regions where they last for 

the life of the animal (Bond et al., 2015). Mechanisms of regulating embryonic NSC 

function, transition from embryonic to adult NSCs, and maintenance of NSCs for life-

long neurogenesis are poorly understood. There have been some hints from studies of 

major signaling pathways. Notch has been shown to be essential for NSC maintenance. 

Loss of essential Notch components, RBPJk or Jagged1, in embryonic NSCs leads to 

proliferation defects as well as precocious neuronal differentiation causing embryonic 

NSC depletion (Imayoshi et al., 2010). The function of bone morphogenic proteins 

(BMPs) on embryonic NSCs is diverse, and depending on a specific BMP receptor 

(BMPR-1a or BMPR-1b), BMPs regulates either proliferation or neuronal differentiation 

(Panchision et al., 2010). In adult NSC, WNT signaling promotes neuronal 

differentiation, where knockdown of Wnt5a leads to reduced number of newly born 
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neurons in adult hippocampus (Arredondo et al., 2019). Another component of WNT 

signaling, SFRP3, has been shown to regulate adult NSC maintenance, where loss of 

SFRP3 leads to depletion of quiescent NSC pool (Jang et al., 2013). Essential 

neurogenic genes (Ngn2, NeuroD1, and Prox1) are also induced by WNT signaling 

pathways (Kuwabara et al., 2009). In this dissertation, I have studied lncRNA Pnky and 

the chromatin regulator JMJD3 play critical roles in the maintenance of NSCs during 

development and in the adult mouse brain.  
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Chapter 2: The long noncoding RNA Pnky is a trans-acting regulator of neural 

stem cells in vivo 

 

 

 

Summary 

 Despite the recent identification of thousands of lncRNAs, few have been 

definitively shown to regulate specific cellular events in vivo especially with genetic tools 

that can distinguish between cis vs trans mechanisms. Pnky is a nuclear-enriched 

lncRNA that is transcribed divergently from the neighboring proneural transcription 

factor Pou3f2. Here, I show that Pnky from the embryonic cortex regulates the rate of 

the neuronal production, where Pnky deletion leads to precocious neuronal 

differentiation of NSCs and exhausts NSC prematurely. This early depletion of NSCs 

during embryonic development alters postnatal cortical lamination. Surprisingly loss of 

Pnky does not influence the expression level of neighboring gene, Pou3f2. Pnky 

expression from a bacterial artificial chromosome (BAC) transgene rescues the in vivo 

phenotypes of Pnky-deleted NSCs. Thus, I find that Pnky regulates NSC function in the 

embryonic cortex by acting in trans. 
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Introduction 

 Long non-coding RNAs (lncRNAs) are transcripts greater than 200 nucleotides 

without protein coding potential that are produced by the mammalian genome. They are 

differentially expressed in various tissue and disease states, and many have been 

suggested to play essential roles in fundamental cellular processes (Rinn and Chang 

2012; Andersen et al., 2018). Though the level of expression of lncRNAs is generally 

lower than that of protein-coding genes, lncRNAs are highly cell-type specific (Liu and 

Horlbeck et al., 2017). Therefore, deleting lncRNAs in a cell type- or tissue- specific 

manner is crucial to better understand their roles. Even for lncRNAs for which functions 

have been explored, the exact mechanism by which those lncRNAs regulate gene 

expression is still unclear (Kopp and Mendell, 2018). LncRNAs can functions in cis – 

regulating neighboring genes - and/or in trans – modulating the function of genes at 

locations away from its production site (Andersen and Lim, 2018). Understanding how 

lncRNAs regulate biology (cis vs trans) in vivo system is crucial for the lncRNA field.  

 Pnky is a nuclear-enriched lncRNA expressed in NSCs in both the human and 

mouse brain. This 825nt lncRNA is an example of an intergenic lncRNA, which gets 

transcribed divergently in the opposite direction from a neighboring transcription factor, 

Pou3f2 (Ramos and Andersen et al., 2015). Previous studies using short-hairpin RNA 

(shRNA)-mediated Pnky knockdown (KD) show that loss of Pnky leads to increased 

neuronal differentiation in vitro NSC cultures. However, owing to potential off-target 

effects and low shRNA KD efficiency, it has been difficult to determine the exact 

mechanism of action of Pnky using this approach. This observation belies a need for an 

alternate strategy to modulate Pnky expression   
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 In this chapter, I describe a series of experiments utilizing multiple genetic 

approaches to investigate the in vivo function and mechanism of Pnky in NSCs during 

development. I generated mice carrying a conditional allele of Pnky and used Emx1-Cre 

mediated recombination to delete Pnky specifically in the embryonic cortex. Deleting 

Pnky in cortical NSCs and their progeny phenocopied previously reported results from 

studies using shRNA construct to knockdown Pnky (Ramos and Andersen et al., 2015). 

Importantly, the disruption of Pnky did not influence the expression of the neighboring 

transcription factor, Pou3f2, raising the hypothesis that Pnky may act in trans (Ramos 

and Andersen et al., 2015; Andersen and Hong et al., 2019). To directly test this 

hypothesis, I generated another transgenic mouse carrying an integrated bacterial 

artificial chromosome (BAC) construct that expresses Pnky at physiological levels was 

generated (Andersen and Hong et al., 2019). Expression of Pnky from the BAC was 

sufficient to rescue in vivo phenotypes observed in Pnky-deleted mice. Collectively, 

these data from multiple genetic studies show that Pnky regulates NSC function in trans 

to regulate neural development.  

   

Results 

Generation of a conditional Pnky deletion allele 

 In order to obtain tissue- and cell-type specific control over Pnky deletion in vivo, 

I used a Cre-loxP approach. In the design of this genetic approach, I remained agnostic 

about the specific mechanism(s) by which Pnky might function. Therefore, a mouse was 

produced carrying a conditional “floxed” Pnky allele (PnkyF), in which the entire Pnky 

gene including its transcriptional start site (TSS) was flanked by loxP sites (Figure 
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2.1A). Interestingly, conditional deletion of the entire Pnky locus in in vitro NSC cultures 

produced similar phenotypes as those observed using an shRNA-mediated Pnky KD, 

including 3~4 fold increase in neuron production (Andersen and Hong et al., 2019).  

Pnky deletion leads to increase neuronal differentiation in vivo 

 The neocortex is a highly organized dorsal brain structure comprised of six layers 

of excitatory projection neurons. The proper development of these layers is critical to 

cognitive function and defective development has been associated with human 

neurodevelopmental disorders (Lodato and Arlotta, 2015; Molyneaux et al., 2007; 

Rubenstein, 2011). Embryonic NSCs in the neocortex produce multiple subtypes of 

projection neurons. Aside from projection neurons, the neocortex also contains 

inhibitory interneurons generated from NSCs in ventral regions (subpallium) that migrate 

into the cortex during development. Throughout embryonic development, the relative 

abundance of one neuronal type can influence the development of another. For 

example, changes in the production of cortical interneurons can influence the 

generation of projection neurons, and vice versa (Lodato et al., 2011). Pnky transcripts 

are detected in both the pallium and subpallium of the developing brain, suggesting 

roles for Pnky in the generation of both excitatory and inhibitory neurons. (Ramos and 

Andersen et al., 2015). I focused my analysis on pallial NSCs, in order to investigate the 

role of Pnky in stem cell maintenance of the projection neuron lineage.  

 I targeted Pnky-deletion to pallial NSCs by crossing mice expressing Cre under 

the control of the “empty spiracles homeobox 1” promoter (Emx1-Cre) with mice 

carrying conditional alleles of Pnky (PnkyF/F) (Gorski et al., 2002). Emx1 drives Cre 

expression in the pallium beginning at ~ embryonic day (E) 9.5 (Briata et al., 1996; 
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Gorski et al., 2002; Simeone et al., 1992). In situ hybridization (ISH) detected Pnky 

expression in the pallial VZ at E10.0 in control animals, whereas its expression was 

ablated in the pallium of Emx1-Cre; PnkyF/F mice, and maintained in the subpallium 

(Andersen and Hong et al., 2019).  

 The laminar structure of neocortex develops in an “inside-out” manner: NSCs first 

give rise to deep layer (DL) projection neurons (Layers 5 and 6), while later-born 

neurons migrate past them to form the upper layers (Layers 2-4) (Lodato and Arlotta, 

2015). In mice, the birth of DL neurons peaks at approximately E13.5. In Emx1-

Cre;PnkyF/F cortices at E13.5, I observed increased numbers of CTIP2+ subcerebral 

neurons in the cortical plate (CP) (+24.3%) compared to littermate controls (Figures 

2.1B-C). This increase in neuronal production was accompanied by a decrease in 

proliferating VZ, as determined by quantification of cells expressing the mitotic indicator 

phosphorylated histone H3 (pH3) (-17.3%) (Figures 2.1D-E) and the radial glial marker 

phosphorylated Vimentin (pVIM) (-11.8%) (Figures 2.1F-G). Thus, consistent with prior 

results from shRNA-mediated Pnky KD (Ramos and Andersen et al., 2015), conditional 

deletion of Pnky (Pnky-cKO) leads to an increase in neuronal differentiation and an 

accompanying but decrease in the number of proliferative NSCs. These findings 

suggest that Pnky is necessary to maintain proliferative NSCs. 

 With the increase in early-born CTIP2+ neurons at E13.5 (Figures 2.1B-C), I 

then followed up at a postnatal time point when the laminar structure of the cortex has 

been set up, allowing to evaluate the longer term effects of Pnky deletion on the 

abundance of neurons in specific layers. By P14, the laminar structure of neocortex is 

fully visible. Consistently with the early increase in the generation of CTIP2+ neurons at 
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E13.5, I observed an increase (+8.1%) in the number of CTIP2+ neurons in layer (L) 6 

in Emx1-Cre; PnkyF/F mice compared to controls (Figures 2.2A-B). As I also observed 

decreased numbers of proliferative NSCs at E13.5, I reasoned that UL neurogenesis 

may be impaired in our mutants, since most UL neurons are generate later, ~E15.5. 

Consistent with this expectation, the P14 cortex of Emx1-Cre;PnkyF/F mice contained 

fewer (-14.4%) CUX1+ UL neurons compared to littermate controls. (Figures 2.2C-D).  

Generation of BACPnky mice 

 Unlike with divergent lncRNAs, whose deletion influences the expression level of 

neighboring genes, Pnky deletion did not affect the expression level of the neighboring 

Pou3f2 transcription factor. The lack of evidence for Pnky regulating Pou3f2 or other 

genes in cis, led us to hypothesize that Pnky may regulate gene expression in trans.  

I thus acquired a bacterial artificial chromosome (BAC) containing ~170kb of the 

genomic sequence surrounding Pnky but lacking the coding sequence of Pou3f2 (only 

other complete gene in this construct) (Figure 2.3A). I then generated transgenic mice 

(BACPnky) that express Pnky from a modified version of this BAC construct (Andersen 

and Hong et al., 2019).  

Pnky functions in trans to regulate neural stem cell function 

 To investigate whether BACPnky can rescue the phenotype of Pnky-deletion in 

vivo, I generated mice with germline Pnky-deletion (PnkyΔ/Δ) and crossed it to the 

BACPnky line to produce PnkyΔ/Δ; BACPnky mice (Figure 2.3B). Unlike PnkyΔ/Δ mice, 

where there were no detectable Pnky transcripts, PnkyΔ/Δ;BACPnky mice exhibited a 

similar level of Pnky expression as Pnky+/+ animals at E13.5 (Figure 2.3C). The PnkyΔ/Δ 

cortex at E13.5 had decreased (-16.6%) number of CTIP2+ neurons in the CP 
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compared to littermate controls (Figures 2.3D-E). This decrease may be due to earlier 

loss of Pnky expediting depletion of NSCs in PnkyΔ/Δ mice compared to Emx1-

Cre;PnkyF/F. Consistent with this idea, I observed a decrease in pH3+ NSCs in the VZ of 

PnkyΔ/Δ brains and reduced overall thickness of the neocortex (Figures 2.3 G-H). 

Surprisingly, the presence of BACPnky transgene was sufficient to reverse the 

phenotype observed in PnkyΔ/Δ mice (Figures 2.3D, F, G, I). Thus, these data suggest 

that the expression of Pnky in trans is sufficient to rescue the phenotype resulting from 

the loss of Pnky in vivo. 

Postnatal laminar defect in PnkyΔ/Δ is rescued by BACPnky transgene  

 To determine whether the decreased in number of CTIP2+ neurons in E13.5 

PnkyΔ/Δ brain leads to persistent defects in laminar structure, I assessed P14 PnkyΔ/Δ 

brains compared to littermate controls. CTIP2+ labels both L5 subcerebral and L6 

corticospinal neurons. I found a decrease in both L6 CTIP2+ (-11.7%) and L5 CTIP2+ (-

12.5%) neurons; however, unlike L5, decrease of L6 did not reach statistical 

significance (p = 0.056) (Figures 2.3J-J’). In addition, P14 PnkyΔ/Δ exhibited a decrease 

in the number of CUX1+ UL neurons (-9.1%) (Figure 2.3K). Thus, Pnky-deletion leads 

to an overall reduction in multiple subtypes of projection neurons in the postnatal cortex. 

Interestingly, adult PnkyΔ/Δ mice (~3 months old) exhibited an impairment in acoustic 

startle threshold, pre-pulse inhibition, and cued fear conditioning (Table 2.1) suggesting 

its potential role in cognition. Astonishingly, even at P14, the presence of BACPnky 

transgene was sufficient to rescue the phenotype resulting from Pnky-deletion (Figures 

2.3L-M). 
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Discussion 

 Despite extensive effort to study the function of lncRNAs, there are relatively few 

genetic in vivo studies of these RNA transcripts. By using a combination of mouse 

genetics (conditional allele of Pnky & BACPnky), I show that Pnky functions in trans to 

regulate eNSCs during neocortical development. Surprisingly, there was no evidence to 

suggest that Pnky-deletion influences the expression of the neighboring Pou3f2 gene, 

suggesting that it does not function in cis (Andersen and Hong et al., 2019). Moreover, 

Pnky expression from a BAC transgene was sufficient to rescue the phenotypes 

observed in PnkyΔ/Δ mice further supporting that it functions in trans. 

 The sequential production of excitatory projection neurons during development is 

essential for the formation of the proper laminar structure of the neocortex. The 

neocortical development is regulated through the temporal progression of NSCs 

generating multiple neuronal subtypes depends on the timing of the neurogenesis 

(Frantz and McConnell, 1996). When Pnky-deletion was targeted to neocortical NSCs, 

the number of deep layer neurons in layer 6 was increased while the number of upper 

layer neurons was decreased. These results show that Pnky-deletion results in early 

neuronal differentiation (deep layer neurons) in vivo at the expense of NSCs 

maintenance which matches the in vitro phenotype previously observed with shRNA-

mediated knockdown of Pnky in NSC cultures (Ramos and Andersen et al., 2015).  

 This increase in neurogenesis observed with Pnky-deletion is distinct compared 

to other known lncRNAs that have been shown to regulate neural development. For 

example, RMST is a lncRNA that interacts with SOX2 to co-regulate essential 

downstream neuronal genes (Dlx1, Hey2, and SP8). This lncRNA gets upregulated 
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during the neuronal differentiation of human embryonic stem cells. Knockdown of RMST 

in NSC culture leads to decrease in neuronal differentiation (Ng et al., 2013). Similar to 

RMST, TUNA is another lncRNA that regulates the neuronal differentiation by 

interacting with multiple RNA-binding proteins. Knockdown of TUNA decreases 

neuronal differentiation in NSC cultures (Lin et al., 2014). Knockdown of other lncRNAs 

such as Six3OS and Dlx1as also lead to reduction in neurogenesis. Interestingly, 

recently published results show that LncND interacts with components of Notch 

signaling where knockdown of LncND actually leads to an increase in neuronal 

differentiation, similar to the phenotype Pnky-deletion (Rani et al., 2016). Notably, most 

of these results are based on in vitro cell cultures; therefore, further in vivo studies are 

required to better understand their potential roles in neural development. 

 Interestingly, unlike phenotypes observed from Emx1-Cre mediated conditional 

deletion of Pnky, constitutive deletion leads to reduction in both deep layer and upper 

layer neurons in the neocortex of PnkyΔ/Δ brain. This result could be due to constitutive 

deletion of Pnky causing a depletion of NSCs (or even neuroepithelial cells) at much 

earlier stages of brain development. Further in vivo analysis at earlier embryonic time 

points might clarify this question. Similar to Pnky, Lnc-Brn1b is a lncRNA located ~10kb 

downstream of Pou3f3 (paralog of the Pnky neighbor Pou3f2) (Sauvageau et al., 2013). 

Constitutive deletion of lnc-Brn1b leads to increase in deep layer neurons and decrease 

in upper layer neurons in the postnatal cortex, which is different from Pnky-specific 

phenotypes (Sauvageau et al., 2013). In addition, while Pnky does not influence the 

expression of Pou3f2, deletion of lnc-Brn1b leads to reduced expression level of 

Pou3f3. Divergent lncRNAs are strongly predicted to regulate its neighboring genes. 
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Lnc-Brn1a is a lncRNA that is divergent to Pou3f3 and shRNA-mediated knockdown of 

lnc-Brn1a leads to reduced expression level of Pou3f3. Paupar (lncRNA divergent to 

Pax6) and Six3OS (lncRNA divergent to Six) are just other examples of divergent 

lncRNAs regulating neighboring coding gene neighbor, highlighting the uniqueness of 

Pnky (Pavlaki et al., 2018; Rapicavoli et al., 2011). 

 Results from both conditional and constitutive deletion of Pnky suggest that Pnky 

is required for the maintenance of NSCs in the embryonic brain. Deletion of Pnky results 

in precocious neuronal differentiation at the expense of NSCs. Surprisingly, Pnky is also 

required for long-term maintenance of adult V-SVZ NSC. Adult NSCs in the V-SVZ give 

rise to transit-amplifying cells and neuroblasts that migrate to the olfactory bulb where 

they differentiate into inhibitory interneurons.  

 Both Nestin-Cre mediated conditional deletion and constitutive deletion of Pnky 

in V-SVZ NSCs result in formation of the neuroblast nodules along the walls of the 

lateral ventricles (Andersen R, UCSF dissertation). BrdU labeling experiments show that 

Pnky-deletion leads to increase in neuronal differentiation suggesting increased 

neuronal production may contribute to the formation of neuroblast nodules in Pnky-

deleted brains. This increase in neuronal production results in stark reduction of adult V- 

NSCs consistent with phenotypes observed in embryonic brain. 

 Based on those results, I propose that Pnky functions in similar ways in 

embryonic NSCs and adult NSCs. Moving forward, determining Pnky’s binding partners 

for its cell-intrinsic NSC function may provide critical insights into how this lncRNA 

functions at the molecular level to regulate long-term NSC function. Based on the 
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similarity between embryonic NSC phenotypes and adult NSC phenotypes, I suggest 

that such Pnky-interacting complex(es) are the same in the embryonic and adult brain.  
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Figures and Tables 

 

Figure 2.1 Pnky regulates the embryonic cortical neurogenesis in vivo 
* = p < 0.05, ** = p < 0.01, two-tailed paired t test. 
A, Schematic of Pnky locus and loxP site insertions. B, CTIP2 IHC with DAPI (blue). C, 
Quantification of (B). D, pH3 IHC with DAPI (blue). E, Quantification of (D). F, pVim IHC 
with DAPI (blue). G, Quantification of (F).  
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Figure 2.2 Pnky regulates the postnatal cortical neurogenesis in vivo 
* = p < 0.05, ** = p < 0.01, two-tailed paired t test. 
A, CTIP2 IHC with DAPI nuclear stain (blue). B, Quantification of CTIP2+ L6 neurons in 
Emx1Cre;PnkyF/F compared to littermate control, two-tailed paired t test. C, CUX1 IHC 
with DAPI nuclear stain (blue). D, Quantification of (C), two-tailed paired t test.  
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Figure 2.3 BAC transgenic expression rescues loss of the endogenous gene. 
* = p < 0.05, ** = p < 0.01, two-tailed paired t test. 
A, Schematic of BACPnky transgene. B, Diagram of genetic crosses for BAC rescue 
experiments. C, ISH of Pnky (brown puncta) with hematoxylin counterstain (blue). 
Representative section with red box indicating approximate region of pallium enlarged 
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on the right. Scale bars = 250um and 25um (inset). D, CTIP2 IHC with DAPI (blue). E 
Quantification of (D) comparing PnkyΔ/Δ to littermate control, two-tailed paired t test. F, 
Quantification of (D) comparing PnkyΔ/Δ;BACPnky to PnkyΔ/Δ, two-tailed paired t test.  G, 
pH3 IHC with DAPI (blue).  H, Quantification of (G) comparing PnkyΔ/Δ to littermate 
control, two-tailed paired t test. I, Quantification of (G) comparing PnkyΔ/Δ;BACPnky to 
PnkyΔ/Δ, two-tailed paired t test. J and J’, Quantification of CTIP2+ neurons in PnkyΔ/Δ 

compared to littermate control. Total CTIP2+ and L5 specific CTIP2+, respectively. K, 
Quantification of CUX1+ neurons in PnkyΔ/Δ compared to littermate control, two-tailed 
paired t test. L, Quantification of CTIP2+ neurons in L5 comparing PnkyΔ/Δ;BACPnky to 
PnkyΔ/Δ, two-tailed paired t test. M, Quantification of CUX1+ neurons comparing 
PnkyΔ/Δ;BACPnky to PnkyΔ/Δ, two-tailed paired t test. 
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Table 2.1: Summary of behavior test results between PnkyΔ/Δ and WT control 
 

Behavioral Assessments 

Pnky lncRNA Females 
 

(WT, n=11 &  
PnkyΔ/Δ, n=12) 

Pnky lncRNA Males 
 

(WT, n=11 &  
PnkyΔ/Δ, n=14) 

Elevated Plus maze   

-%time Open Arms No change No change 

-Open arm/total distance No change No change 

-Activity measures No change No change 

Open Field activity   

-Ambulatory movement Trend for Increase No change 

-Fine movement Decreased No change 

-Rearing No change No change 

Rotarod   

-Fixed speed (16 RPM) No change No change 

-Accelerating speed (4-40 
RPM) 

No change No change 

Nesting   

-Nesting score No change No change 

-Nesting score x time No change No change 

2-Trial Social Approach   

Habituation – Trial 1 
-Interaction time 

-Interaction time/bout 
-Chamber side time 

 
No change 
No change 
No change 

 
No change 
No change 
No change 

Social Approach – Trial 2 
-Interaction time 

-Interaction time/bout 
-Chamber side time 

 
No change 
No change 
No change 

 
No change 
No change 
No change 

Object-Context 
Congruence 

  

Training Trials 1 & 2 
-Interaction bouts 
-Interaction time 

-Interaction % time 

 
No change 
No change 
No change 

 
No change 
No change 
No change 

Congruence Test – Trial 3 
-Interaction bouts 
-Interaction time 

-Interaction % time 

 
No change 
No change 
No change 

 
No change 
No change 
No change 

Acoustic Startle Threshold   

-Startle threshold Increased Startle No change 

-Startle 70 vs 80 dB No change No change 
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Table 2.1: Summary of behavior test results between PnkyΔ/Δ and WT control 
(continued) 

 Pnky lncRNA Females 
 

(WT, n=11 &  
PnkyΔ/Δ, n=12) 

Pnky lncRNA Males 
 

(WT, n=11 &  
PnkyΔ/Δ, n=14) 

Pre-pulse Inhibition   

-pure startle Increased Startle No change 

-% inhibition Decreased % Inhibition 

@4dB pre-pulse stimuli 

No change 

Cued Fear Conditioning   

Fear conditioning 

-baseline 

-cued 

-cue ITI 

 

No change 

No change 

No change 

 

No change 

No change 

No change 

-Motion index No change No change 

-Fear context recall No change No change 

Cued fear recall 

-baseline 

-cued 

-cue ITI 

 

No change 

No change 

No change 

 

Decreased freezing 

Decreased freezing 

Decreased freezing 

Hot Plate   

-Hind paw withdrawal No change No change 

Body Weight Decreased No change 
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Experimental Procedures 

Mus musculus 

 All mice were group-housed and maintained in the University of California, San 

Francisco Laboratory Animal Resource Center under protocols approved by the 

Institutional Animal Care and Use Committee. All relevant ethical regulations were 

followed. Mice of both sexes were used for all experiments, and were analyzed at 

multiple ages between E13.5 and P14 as described. For Emx1Cre experiments, control 

samples were Emx1-Cre;Pnky+/+ or any combination of Pnky alleles in the absence of 

Emx1Cre. Details regarding mouse strains are as follows 

UBC-Cre-ERT2: Tg(UBC-cre/ERT2)1Ejb, described in (Ruzankina et al., 2007). 

Emx1Cre: Emx1tm1(cre)Krj, described in (Gorski et al., 2002). 

Ai14: Gt(ROSA)26Sortm14(CAG-tdTomato)Hze, described in (Madisen et al., 2010). 

E2a-Cre: Tg(EIIa-cre)C5379Lmgd, described in (Lakso et al., 1996). 

Generation of the Pnky conditional (PnkyF) mouse line 

 A conditional allele of Pnky was created by inGenious Targeting Laboratory 

through homologous recombination in C57BL/6 x 129/SvEv hybrid embryonic stem (ES) 

cells. The targeting construct contained a Neomycin resistance cassette to enable drug 

selection of recombined cells. Targeted ES cells were microinjected into C57BL/6 

blastocysts. Resulting chimeras with a high percentage agouti coat color were mated to 

C57BL/6 FLP mice to remove the Neomycin resistance cassette. The resulting PnkyF 

allele has the entire Pnky gene flanked by loxP sites, with one loxP site 727 bp 

upstream of the TSS and the other 938 bp downstream of the transcriptional end site 

(TES) (Andersen and Hong et al., 2019). 
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Generation of the PnkyΔ/Δ mouse line 

 PnkyΔ/Δ mice was obtained through crossing mouse carrying conditional alleles of 

Pnky (PnkyF/F) with the germline-expressed E2a-Cre mouse line. Progeny with germline 

deletion of Pnky were then mated with wild type mice to breed out the E2a-Cre 

transgene.  

Generation of the BACPnky mouse line 

 BAC clone RP23-451I6 was obtained from the BACPAC Resources Center and 

modified to remove the coding sequence (CDS) from Pou3f2, leaving the UTRs intact 

(Andersen and Hong et al., 2019). Modifications were made as described in (Warming 

et al., 2005), and using the detailed protocols found at 

https://ncifrederick.cancer.gov/research/brb/protocol.aspx. I primarily used 

“Recombineering Protocol  3” and referred to “Recombineering Protocol  1” for 

additional details. The modified BAC was microinjected into C57BL/6 zygotes by the 

Transgenic Gene Targeting Core (Gladstone Institutes, UCSF). 

Mouse Behavior Test 

 Behavior test of PnkyΔ/Δ and WT controls were performed and analyzed by the 

behavioral core at Gladstone, UCSF.  

Polymerase chain reaction (PCR)-based genotyping of Pnky and BACPnky 

 DNA from clipped tail samples was prepared by boiling in 100μL of lysis buffer 

(0.2mM EDTA, 25mM NaOH) at 100oC for 1 hr, followed by quenching in 100μL of 

neutralization buffer (40mM Tris HCl pH 7.5). Genotyping was performed using GoTaq 

(Promega, M3001) and the following reaction components, for a final volume of 12μ  

per reaction: 7.7 μ  of  2O, 2. μ  of  x buffer, 0.3 μ  of  0mM MgCl2, 0.2 μ  of 
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10mM DNTPs, 0.12μ  of primer mix (with each primer at 10μM), 0.12μ  of GoTaq, 1μ  

of sample DNA. Reactions were incubated on a thermocycler as follows: 94°C for 2 min; 

35 cycles of 94°C for 30 seconds (s), 60°C for 30 s, and 72°C for 1 min; 72°C for 5 min; 

4°C hold. Reaction products were separated on a 2% agarose gel with ethidium 

bromide. The following primers were used (all listed  ’ to 3’):  

Primers for PnkyF, Pnky+, and PnkyΔ alleles: 

Pnky GT F: TAAGCTCAAACTCCGGTCCCGGGA 

Pnky GT R1: TCAGGGACAAAGAACCAAAACGAGC 

Pnky GT R2: AATGCTCCCTCTGAGCCTCAATT 

Reaction products: 120bp (Pnkynull), 221bp (Pnky+), and 348 (PnkyF). Since BACPnky 

contains unaltered Pnky, this will produce the 221bp product, even in the absence of 

endogenous Pnky (see next section: Quantitative PCR (qPCR)-based genotyping for 

BACPnky). 

Primers for BACPnky: 

BAC GT F: CACCTGCTACCTGATATAGGA 

BAC GT R: CAGCAGTAATAGCAAGAGCA 

Reaction product: 416bp (contains BACPnky). No amplification in the absence of 

BACPnky. 

Quantitative PCR (qPCR)-based genotyping for BACPnky 

 Because BACPnky contains unmodified Pnky, it is indistinguishable from Pnky+ in 

standard PCR-based genotyping. Therefore, certain genetic crosses required the use of 

qPCR to determine the endogenous Pnky alleles. This was done using 25ng of sample 

DNA (prepared as described above), along with  μ  SYBR green (Roche) and 2μ  of 
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primer mix (with each primer at  μM) per 8μ  qPCR reaction. Reactions were amplified 

on a LightCycler 480 II (Roche) using standard conditions. To quantify the number of 

copies of particular endogenous Pnky alleles, the ΔΔCt method was used: a control 

genomic region was used to normalize for DNA content per reaction, and multiple 

samples with known endogenous Pnky alleles were used to compare to unknown 

samples. 

Primers for control genomic region: 

Ctrl qPCR GT F: TGGTCGTTCTACAGGCCTTC 

Ctrl qPCR GT R: GGACCGGTGACAGAGAACTG 

Primers for Pnkynull allele: 

Pnky qPCR GT F: AGTTGGTCGTCCGCGTACGGTAC 

Pnkynull qPCR GT R (same as Pnky GT R1): 

TCAGGGACAAAGAACCAAAACGAGC 

Product: 97bp from Pnkynull allele. No amplification from other Pnky alleles or 

BACPnky. 

Primers for PnkyF allele: 

Pnky qPCR GT F: AGTTGGTCGTCCGCGTACGGTAC 

PnkyF qPCR GT R: CCGGATCTTTCCTTTACCCGCAATAAC 

Product: 228bp from PnkyF allele. No amplification from other Pnky alleles or BACPnky. 

BrdU administration 

 Mice were administered 5-bromo-2’-deoxyuridine (BrdU, Millipore Sigma) 

reconstituted in sterile PBS through intraperitoneal injection, at a dose of 50mg BrdU 

per kg of mouse weight. 
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Tissue/cell preparation 

 Embryonic brain samples at E13.5 were fixed in 4% PFA as whole heads, up to 

overnight (O/N) at 4°C. For postnatal brain samples, transcardiac perfusion was 

performed on with phosphate buffered saline (PBS) followed by 4% PFA. The brains 

were then dissected out of the skull and additionally fixed in 4% PFA O/N at 4°C. 

Cryo-sectioning 

 All specimens were rinsed in PBS and then cryoprotected with 30% sucrose in 

PBS. Cryoprotected samples were then equilibrated in a 1:1 mixture of 30% sucrose 

and Tissue-Tek Optimal Cutting Temperature (OCT) (Thermo Fisher Scientific) for 1.5 

hour (hr) at 4°C, then frozen in a fresh batch of the same mixture using dry ice. Frozen 

blocks were equilibrated in the cryostat at -23°C for at least 3 hrs prior to sectioning. 

Sections (12-1 μm thick) were collected on Superfrost Plus Microscope Slides (Thermo 

Fisher Scientific) and stored at -80°C. Prior to IHC, tissue slides were rinsed in PBS with 

rotation for 10 minutes (min) at room temperature (RT) to remove sucrose/OCT. 

Immunohistochemistry (IHC) 

 IHC was performed using blocking buffer consisting of PBS with 1% BSA 

(Millipore Sigma), 0.3M glycine (Thermo Fisher Scientific), 0.3% TritonX100 (Millipore 

Sigma), and either 10% normal goat serum or 10% normal donkey serum (Jackson 

ImmunoResearch Laboratories). 

IHC was performed as follows: 

1) Blocking: tissue sections were incubated in blocking buffer for 1hrs (IHC) at RT. 

2) Primary antibodies: incubated in primary antibodies diluted in blocking buffer O/N 

or 48 hours at 4°C (IHC). 
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3) Wash 1: washed 3 times in PBS at RT for 10 (IHC). 

4) Secondary antibodies: incubated in secondary antibodies (Alexa Fluor antibodies 

from Thermo Fisher Scientific, 1:500) and DAPI (Thermo Fisher Scientific, 1:1000) 

diluted in blocking buffer for 30 min at RT (both IHC and ICC).  

5) Wash 2: same as wash 1 above.  

6) Mounting coverslips: slides were mounted with coverslips using Aqua Poly/Mount 

(Polysciences). 

Antigen Retrieval 

 For certain antibodies (see below), antigen retrieval was performed using 10mM 

sodium citrate (p   .0) prior to I C. Slides were incubated horizontally with  00μ  of 

sodium citrate on top of the tissue for 2-3 min at RT. This was replaced with fresh 

sodium citrate, and the slides were moved to a pre-heated vegetable steamer. After 15 

min, the slides were removed from the steamer and allowed to cool for 2-3 min at RT. 

The sodium citrate was then dumped off of the tissue and the slides were rinsed in PBS. 

Primary antibodies for IHC/ICC 

 Please see Key Resources Table for antibody specifications. Antibodies were 

used as follows: Tuj1: diluted 1:1000 for ICC. POU3F2: diluted 1:250 for IHC 

(performed antigen retrieval for tissue of all ages). CTIP2: diluted 1:500 for IHC 

(performed antigen retrieval for postnatal tissue). pH3: diluted 1:400 for IHC. pVim: 

diluted 1:500 for IHC. CUX1: diluted 1:500 for IHC (performed antigen retrieval for 

postnatal tissue). BrdU: diluted 1:200 for IHC (performed antigen retrieval for tissue of 

all ages). tdTomato (Takara or Sicgen): diluted 1:500 for IHC or ICC (does not work 

after antigen retrieval, see below). 
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IHC for tdTomato in combination with antigen retrieval IHC for tdTomato was performed 

as described above, then the tissue was re-fixed with 4% PFA for 45 minutes at RT. 

Slides were rinsed in PBS, then antigen retrieval was performed followed by IHC for the 

other antigens as described above.  

Microscopy and image analysis 

 Samples were imaged using Leica TCS SP5 X confocal, Leica DMi8, Leica 

DMI4000 B, 

and Keyence BZ-X710 inverted microscopes. For tissue samples that had received in 

utero injection of Ad:Cre, the contralateral hemisphere was analyzed whenever 

possible. For all other tissue samples, both hemispheres were analyzed from 2-4 non-

adjacent regions. All image analysis and quantification was performed using Fiji 

(Schindelin et al., 2012). To quantify Tuj1+ area (Figures 3.4H-I), the “threshold” and 

“measure” functions of  iji were used. 

Figure preparation 

 Figures were prepared using Photoshop and Illustrator (Adobe) and Prism 

(GraphPad). 

Quantification and Statistical Analysis 

 All in vivo quantifications were normalized to littermate controls. For in vivo BAC 

rescue experiments, there was a low probability of obtaining all of the relevant 

experimental genotypes (Pnky+/+, Pnkynull/null, and Pnkynull/null;BACPnky) within the 

same litter. Therefore, I used one set of crosses to analyze Pnky+/+ and Pnkynull/null 

littermates as one group, and another set of crosses to analyze Pnkynull/null and  

Pnkynull/null;BACPnky littermates as a separate group. To compare phenotypes 
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between these two groups, I normalized results to the genotype common to both 

(Pnkynull/null), as shown in (Figure 3.S4D). For ICC quantification, technical triplicate 

wells of each genotype and treatment combination were analyzed. All cultures were 

normalized to their own treatment control. The statistical details of each experiment can 

be found in the relevant figure legends, with additional details for RNA-seq experiments 

described below. 
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Chapter 3: Histone lysine demethylase JMJD3/KDM6B is required for the 

establishment and maintenance of neural stem cells in hippocampus 

 

 

 

Summary 

 JMJD3 is a chromatin regulator with histone demethylase activity that is critical 

for the activation of gene expression. Even though JMJD3 is involved in numerous 

cellular processes, the function of JMJD3 in the long-term maintenance of NSCs during 

development is poorly understood. NSCs in the hippocampal dentate gyrus (DG) 

generate new granule neurons throughout life, and defects in DG neurogenesis are 

associated with cognitive and behavioral problems. Here, I show that JMJD3 is required 

for both the establishment and maintenance of NSCs in the hippocampus. Conditional 

deletion of Jmjd3 in results in precocious neuronal differentiation, resulting in reduced 

numbers of DG NSCs and impaired NSC niche establishment. Using the single-cell 

RNA technology, I found that a stem cell maintenance signature is disrupted in Jmjd3-

deleted NSCs. When JMJD3 deletion was targeted adult NSC in a cell-autonomous 

manner, NSCs precociously produced neurons at the expense of the NSC pool. Thus, 

JMJD3 is required for the establishment and maintenance of the hippocampal NSC 

niche. 
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Introduction 

 The DG of the hippocampus is one of two brain regions where NSCs are 

established after embryonic development. This structure is also fundamentally important 

for certain forms of learning, memory and emotional behavior (Deng et al., 2010; 

Kempermann et al., 2015; Ming and Song, 2011). In the DG, NSCs are located in a 

subgranular zone (SGZ) where they give rise to excitatory granule neurons throughout 

life (Nicola et al., 2015). It was shown that genetic depletion NSCs in the hippocampus 

leads to cognitive defects. (Burghardt et al., 2012). This has been suggested to underlie 

human neurodevelopmental and cognitive disorders (Khacho et al., 2017; Li et al., 

2018).  

 Recent studies have implicated mutations in dozens of chromatin regulators as 

causes of human neurodevelopmental and psychiatric disorders (De Rubeis et al., 

2014; Ronan et al., 2013).  Mutations in the chromatin regulator JMJD3 (KDM6B) are 

autosomal recessive for intellectual disability (Najmabadi et al., 2011; Yavarna et al., 

2015).  Furthermore, de novo mutations in JMJD3 are associated with autism spectrum 

disorder (ASD) (De Rubeis et al., 2014; Iossifov et al., 2014; Sanders et al., 2015). 

These genetic data indicate that JMJD3 plays key roles in the development of the brain. 

JMJD3 is a chromatin regulator that has demethylase activity for histone 3 lysine 27 

trimethylation (H3K27me3) (Agger et al., 2007; De Santa et al., 2007), a chromatin 

modification that correlates with transcriptional repression. Consequentially, loss of 

JMJD3 results in a failure to remove the H3K27me3 repressive mark; therefore, genes 

targeted by JMJD3 fail to get de-repressed and are not transcribed. 
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 In mouse ESCs, Jmjd3 is essential for neural lineage commitment (Burgold et al., 

2008), and the expression of Jmjd3 is regulated during mouse forebrain development 

(Jepsen et al., 2007).  Knockdown of Jmjd3 in the chicken embryonic spinal cord (Akizu 

et al., 2010) and mouse retina (Iida et al., 2014) indicate critical roles for this chromatin 

regulator in the developing central nervous system (CNS). In the peripheral nervous 

system, Jmjd3 is essential for nerve injury and recovery by modulating the proliferation 

of Schwann cells (Gomez-Sanchez et a., 2013). Jmjd3 has been also implicated in the 

modulation of neuro-inflammation and neurodegenerative diseases (Burchfield et al., 

2016) where it regulates the balance of microglial cells between the pro-inflammatory or 

anti-inflammatory type (Tang et al., 2014). Dynamic roles of Jmjd3 throughout various 

regions in nervous system suggest that its function is context dependent.   

  Interestingly, in human patients with ASD, MRI studies reveal that the 

hippocampus sub-region containing the DG is also smaller compared to controls (Saitoh 

et al., 2001). Understanding the roles that JMJD3 play in the development of structure 

critical to learning and memory may inform our understandings of certain cognitive 

disorders. Whether JMJD3 is required for the establishment of the NSC niche in 

hippocampus, and whether such deficiency can cause a defect in long-term NSC 

function was not known. Using multiple genetic approaches combined with single cell 

RNA-sequencing technology, I investigated the role of JMJD3 in the DG NSC niche. My 

data indicate that Jmjd3 is essential for not only the establishment of NSCs in the DG 

but also for their long-term maintenance within this niche, allowing for the generation of 

neurons throughout life. More broadly, my findings provide insight into how defective 
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JMJD3 activity can result in developmental CNS problems that may contribute to 

cognitive disorders. 

Results 

Jmjd3 expression in the developing hippocampal dentate gyrus  

 In the subgranular zone (SGZ) of the adult hippocampal DG (Figure 3.1A), 

NSCs produce intermediate-progenitor cells (IPCs), which give rise to neuroblasts that 

migrate into the granule cell layer (GCL). In the GCL, neuroblasts terminally differentiate 

to become excitatory granule neurons (Figure 3.1B).  At postnatal day 21 (P21) in the 

DG, nuclear JMJD3 can be detected in virtually all DG cells including the SGZ NSCs 

(Figure 3.1C, Figure 3.S1F).  The SGZ NSC population arises from embryonic radial 

glial cells – the NSCs of the developing brain – located in a region of the ventricular 

zone called the dentate epithelium (DNE, Figure 3.S1A) (Rolando and Taylor, 2014).  

In situ hybridization (ISH) revealed Jmjd3 expression in the E16.5 DE as well as the 

dentate migratory stream, which contains embryonic NSCs en route to the developing 

DG (Figure 3.S1B-C).  By the end of the first postnatal week, NSCs localize to the inner 

layer of the DG (Nicola et al., 2015). Jmjd3 was detected throughout the DG at both P1 

and P7 (Figure 3.S1D-E).  As postnatal development continues, these NSCs 

consolidate into the SGZ. Jmjd3 expression remained prominent in the SGZ and GCL at 

P21 (Figure 3.S1A, S1F).  These data indicate that Jmjd3 is expressed in the 

developing DG during the time when the SGZ NSC population becomes established.   

Jmjd3 deletion leads to depletion of NSCs in the hippocampus 

 To investigate the role of Jmjd3 in DG development, I targeted Jmjd3-deletion to 

the developing hippocampus by crossing mice expressing Cre under the control of the 



42 
 

human glial fibrillary acidic protein promoter (hGFAP-Cre) with mice carrying conditional 

knockout alleles of Jmjd3 (Jmjd3F/F) (Figure 3.S1B) (Iwamori et al., 2013; Park et al., 

2014).  hGFAP-Cre is expressed in the hippocampal ventricular zone and results in 

efficient recombination in cells of the DNE and developing DG by E16.5 (Han et al., 

2008).  As expected, the DNE and DG of hGFAP-Cre;Jmjd3F/F mice lacked Jmjd3 

transcripts as detected by ISH probes to the deleted genomic region (Figure 3.S1C’, 

S1D’).  hGFAP-Cre;Jmjd3F/F mice and their littermate controls (Jmjd3F/+, Jmjd3F/F and 

hGFAP-Cre;Jmjd3F/+) were born at the expected Mendelian ratios and were similar in 

overall size, weight and survival throughout postnatal and adult life (Park et al., 2014).   

 In adult (P60) hGFAP-Cre;Jmjd3F/F mice, the dentate gyrus was very small and 

hypocellular as compared to littermate controls (Figure 3.1D-D’).  SGZ NSCs express 

NESTIN and GFAP and extend radial processes into the granule cell layer (GCL) 

(Figure 3.1B) (Kempermann et al., 2015).  In wild-type adult mice, I observed 

NESTIN+, GFAP+ cells in the SGZ with radial processes, consistent with the presence 

of SGZ NSCs (Figure 3.1E, 1F, 1G).  In stark contrast, in hGFAP-Cre;Jmjd3F/F mice, I 

could not identify any cells with these morphological and immunohistochemical 

characteristics, suggesting the absence of SGZ NSCs in utant mice (Figure 3.1E’, 1F’, 

1G’).  SOX2 is expressed in SGZ NSCs, and SOX2+ cells were also severely reduced 

in the disorganized and small SGZ of hGFAP-Cre;Jmjd3F/F mice (Figure 3.1H-H’). 

Young neuroblasts express Doublecortin (DCX). While many DCX+ cells were observed 

in the DG of control mice essentially no DCX+ cells were detected in the DG of hGFAP-

Cre;Jmjd3F/F mice (data now shown), consistent with the absence of SGZ NSCs and a 

lack of adult neurogenesis.  Thus, without Jmjd3, the adult DG lacks SGZ NSCs, and 
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proper adult neurogenesis fails.   

Jmjd3 is required for postnatal dentate gyrus development 

 Shortly after birth, the DG continues to grow and by P21 it is considered to be 

fully developed (Nicola et al., 2015). At P0, the developing DG in hGFAP-Cre;Jmjd3F/F 

mice was similar to littermate control mice. While the DG in control mice continued to 

grow, however, exhibiting a progressive increase in its blade length from P0 to P21, the 

DG in hGFAP-Cre;Jmjd3F/F mice failed to increase in size (Figure 3.1I). The failure of 

progressive DG growth correlated with a reduction in NSCs throughout postnatal 

development. Consistent with this, the number of SOX2+ PAX6+ DG precursors was 

already at P0 and this reduction persisted at P7. By P15 and P21, the reduction in the 

number of NSCs, as defined by SOX2+ PAX6+ GFAP+ expression and accompanying 

radial processes was still observed in the SGZ of Jmjd3-deleted brain (Figure 3.1K).  

 The reduced SGZ NSC population in hGFAP-Cre;Jmjd3F/F mice could potentially 

result from increased cell death.  However, I did not observe an increase in activated 

Caspase3+ cells in the DG of P0 and P7 hGFAP-Cre;Jmjd3F/F mice (Figure 3.S2A-

S2D), suggesting that increased apoptosis did not account for the DG phenotype 

observed. Similarly, previous studies have not observed increased cell death with Jmjd3 

deficiency in mouse postnatal subventricular zone NSCs (Park et al., 2014), retinal 

progenitors (Iida et al., 2014), developing medulla (Burgold et al., 2012) and ESCs 

(Burgold et al., 2008).  Taken together, Jmjd3-deletion leads to impaired DG growth and 

reduction in NSCs, and these phenotypes are not due to increased apoptosis.  
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Without Jmjd3, DG precursor cells undergo precocious neuronal differentiation 

 To investigate the phenotype of Jmjd3-deletion in precursor cells, I performed 5-

bromo-2-deoxyuridine (BrdU) birthdating experiments. At E15.5, the number of SOX2+ 

neural progenitor cells (NPCs), as well as the number of proliferative cells was very 

similar between hGFAP-Cre;Jmjd3F/F and control mice (Figure 3.S3A-C). I pulse-

labeled E15.5 embryos (Jmjd3-deleted vs control) by injecting pregnant mice with BrdU 

and subsequently analyzed the DG for BrdU+ cells 2 days and 4 days post injection 

(dpi) (Figure 3.2A). In the wild type DG at E17.5 (2dpi), DG precursor cells start to 

migrate away from the DNE, forming dentate migratory stream (DMS) toward the final 

location where the DG blades will develop (Figure 3.2B). I quantified the number of 

BrdU+, SOX2+ neural precursor cells and BrdU+, TBR2+ intermediate progenitor cells 

(IPCs) in the developing DG. In Jmjd3-deleted brains, the number of BrdU+, TBR2+ 

IPCs was increased compared to littermate controls. This increase was observed in 

both areas of migrating precursor cells and developing DG blade (Figure 3.2C-D). The 

increase in the number of BrdU+, TBR2+ IPCs was accompanied by a reduced number 

of BrdU+, SOX2+ precursor cells in the developing DG blade (Figure 3.2D). At P.5 

(4dpi), the increased number of IPCs differentiated into BrdU+, TBR2+, PROX1+ young 

neuroblasts, suggesting that excess BrdU+ TBR2+ IPCs are able to further differentiate 

down the neurogenic lineage in Jmjd3-deleted brain (Figure 3.2E-F). These increases 

in IPCs and neuroblasts were accompanied by a reduced numbers of BrdU+ SOX2+ 

neural progenitor cells. Thus, without Jmjd3, SGZ precursor cells precociously 

differentiate into neurons, resulting in reduced of SGZ NSCs in hGFAP-Cre;Jmjd3F/F 

and failure to properly establish the SGZ (Figure 3.1K). 
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Single-cell RNA sequencing resolves the cellular heterogeneity in the developing 

DG 

 The developing DG consists of multiple cell types. Since bulk tissue RNA-seq 

analysis would only reveal the “merged” transcriptome of these cell types and states, I 

performed droplet-based single-cell RNA sequencing (scRNA-seq) on micro-dissected 

DG from P2 control and hGFAP-Cre;Jmjd3F/F mice (n=2 per group) (Figure 3.3A). 

ScRNA-seq would also enable the discovery of specific neural cell types as well as 

important aspects of their cell state. (e.g., stemness, quiescence and proliferation). 

Unsupervised clustering of cells with high-quality transcriptomes (3163 and 2077 DG 

cells from control and hGFAP-Cre;Jmjd3F/F animals, respectively) revealed 16 

transcriptionally distinct cell clusters (Figure 3.S4A). Jmjd3-deletion was confirmed by 

examining read alignment data (not shown). Major cell types were identified based on 

expression levels of well-characterized marker genes, with the most abundant cell types 

coming from the hippocampal neurogenic lineage (NSCs, IPCs, and granule neurons) 

(Figure 3.S4B). I identified an “NSC cluster” (~13% of the population for both control 

and Jmjd3-deleted NSCs) based on co-expression of HOPX, SOX2, PAX6, and GFAP 

(Figure 3.3B-C). I also identified several other expected cell types, including inhibitory 

interneurons, microglia, endothelial cells, Cajal-Retzius cells, stromal cells, and 

oligodendrocyte precursor cells (Figure 3.S4C). Analysis of cell clusters based on 

genotypes (hGFAP-Cre;Jmjd3F/F vs control) revealed  wild-type and Jmjd3-deleted cells 

to be present in all clusters (Figure 3.S4D).  
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Jmjd3-deleted DG NSCs have an impaired NSC maintenance gene signature 

 To gain insight into the Jmjd3-dependent transcriptome of DG NSCs, I performed 

differential gene expression analysis between NSCs from hGFAP-Cre;Jmjd3F/F mice 

and littermate controls. I identified 339 statistically significant differentially expressed 

(DE) genes (119 and 218, down-regulated and up-regulated in Jmjd3-deleted NSCs, 

respectively) at a Bonferroni adjusted p-value <0.05) (Figure 3.3D). These DE genes 

showed statistically significant enrichment for genes previously reported to be important 

in hippocampal NSCs (Figure 3.S4E) (Shin et al., 2015). To investigate whether JMJD3 

localizes to the promoters of these DE genes, I analyzed published JMJD3 ChIP-seq 

data from NSCs derived from E12.5 mouse cortex (Fueyo et al., 2018). Of the 339 DE 

genes in Jmjd3-deleted NSCs, 185 (54.6%) exhibited JMJD3 enrichment (Figure 

3.S4F). I did not find differences in the expression of the other known H3K27me3 

specific demethylase Utx (Kdm6a) or the primary H3K27me3 methyltransferase Ezh2.   

 Jmjd3-deleted NSCs expressed significantly lower levels of inhibitors of DNA 

binding and cell differentiation (Id) genes (Figure 3.3E). Id family members, including 

Id1, Id2, and Id3 have been previously shown to be essential for NSC maintenance, 

with knockout or knockdown causing precocious neuronal differentiation (Niola et al., 

2012). Other genes implicated in NSC maintenance such as insulin growth factor 

binding protein 2 (Igfbp2) were also down-regulated (Figure 3.3E). Igfbp2 promotes 

self-renewal of NSCs, Igfbp2 knockdown results in precocious neuronal differentiation 

(Shen et al., 2018). Milk fat globule-EGF factor (Mfge8) and glutamate receptor (Grm5) 

were also both down-regulated in Jmjd3-deleted NSCs (Figure 3.3E). Low expression 

level of either of these genes leads to NSC depletion due to premature neuronal 



47 
 

differentiation (Xiao et al., 2013). Mfge8 is also essential for NSC maintenance, as 

deletion of Mfge8 leads to depletion of NSCs due to due to their overactivation (Zhou et 

al., 2018).  

 Fatty acid degradation pathways and glycolysis are molecular signatures 

enriched in hippocampal NSCs (Shin et al, 2013). In my analyses, numerous genes 

involved in glycolysis (Aldoa, Ldha, Ldhb), fatty acid degradation (Acsbg1), and drug 

metabolism (Hspd1, Pgk1, Pgam1, Eno1, Gpi1) were down-regulated in Jmjd3-deleted 

NSCs (Figure 3.3E).  Gene ontology analysis of down-regulated DE genes revealed 

statistically significant enrichment of terms related to glycolysis and other metabolic 

processes (e.g., “Glucogenesis,” and “ATP generation”) (Figure 3.3F) (Shin et al., 

2015). Interestingly genes that have been reported to promote neuronal differentiation, 

such as Wnt signaling pathway genes (Wnt5a, Fzd, Wls), were upregulated. Our 

findings show that scRNA-seq can be used not only for studying subpopulations of cells 

in a complex tissue, but also for studying study cell-specific phenotypes following 

genetic manipulation. Together, these data suggest that the stem cell maintenance 

molecular signature was disrupted in Jmjd3-deleted NSCs, changes that could lead to 

precocious neuronal differentiation.  

JMJD3 is required for the maintenance of adult hippocampal NSCs 

 My postnatal analysis of NSCs in hGFAP-Cre;Jmjd3F/F mice does not distinguish 

between the roles of JMJD3 in the establishment and maintenance of the NSC 

population. Furthermore, since hGFAP-Cre deleted Jmjd3 in most DG precursors 

starting E13.5, non cell-autonomous effects may have contributed to defective NSC 

maintenance at P2. To investigate whether Jmjd3 plays a cell-autonomous role in DG 



48 
 

NSC maintenance, I used a tamoxifen (TAM)-inducible Nestin-CreERT2 (Lagace et al., 

2007) strain to acutely induce Jmjd3 deletion in adult mice. To follow the fate of cells 

that had undergone recombination, I used the Ai14 Cre-reporter transgene, which 

express tdTomato after excision of a “floxed-stop” cassette (Madisen et al., 2009). 

Nestin-CreERT2; Jmjd3F/F;Ai14 and Nestin-CreERT2 ;Jmjd3F/+;Ai14 (littermate controls) 

mice were administered tamoxifen (TAM) for 5 days starting at P60. At 1 day post last 

injection (dpi) of TAM administration, the total number of tdTomato+ cells in the DG of 

Nestin-CreERT2: Jmjd3F/F mice was similar compared to littermate control suggesting that 

deletion of Jmjd3 does not have an impact on labeling efficiency (Figure 3.4A). 

However, at 10dpi, I observed a 28% increase in tdTomato+ Tbr2+ intermediate 

progenitors and 43% increase in tdTomato+ DCX+ Tbr2+ neuroblasts in Nestin-

CreERT2;Jmjd3F/F;Ai14 mice, suggesting that these animals exhibited precocious 

neuronal differentiation (Figure 3.4C-D). To evaluate whether this precocious neuronal 

differentiation results in depletion of DG NSCs (tdTomato+ SOX2+ with radial 

processes), I analyzed animals 30dpi. As expected, I observed a decrease in the 

number of DG NSCs (~25%) in Nestin-CreERT2;Jmjd3F/F;Ai14 mice compared to 

littermate controls (Figure 3.4E-F). These results suggest that Jmjd3 is required for 

NSCs maintenance, as Jmjd3 loss results in precocious neuronal differentiation similar 

to its earlier role in the establishment of SGZ NSCs.  
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Discussion 

 Chromatin regulators have been implicated in essential processes throughout 

neural development, and mutations in a diverse array of chromatin regulators are 

associated with human neurodevelopmental and psychiatric disorders (Pedersen and 

Helin, 2010). A key unanswered question about the function of chromatin regulators is 

whether they play a cell-intrinsic role in the establishment and long-term maintenance of 

NSCs in vivo. Using a combination of transgenic mice, I have shown that Jmjd3 

regulates long-term NSC functions cell-intrinsically in the hippocampal dentate gyrus. 

By targeting Jmjd3-deletion to NSCs in the embryonic and adult brain, I found that 

Jmjd3 regulates NSC function such that loss of Jmjd3 leads to precocious neuronal 

production at the expense of NSCs. Single cell RNA-sequencing revealed a disruption 

of genes involved in maintaining NSC identity, consistent with the idea that Jmjd3 is 

required for NSC maintenance. 

 Jmjd3-deletion results in depletion of NSCs due to failure to establish the NSC 

population as well as impaired maintenance of the stem cell pool. The phenotyuupe of 

precocious neuronal differentiation suggests that Jmjd3 acts like a cell-intrinsic clock, 

deciding the timing of neuronal differentiation vs. self-renewing cell divisions. 

Interestingly, the function of Jmjd3 in hippocampal NSCs appears to be distinct as 

compared to a previous study in the other adult NSC niche, the V-SVZ (Park et al., 

2014). In V-SVZ NSCs, Jmjd3 is required to activate essential neurogenic gene 

expression via interactions at enhancer and promoter regions. Jmjd3-deleted NSCs in 

the V-SVZ seem to be “stalled” in the precursor state, resulting in a severe reduction in 

olfactory bulb neurogenesis. In the adult V-SVZ of Jmjd3-deleted brains, accumulation 



50 
 

of NSCs is observed with no evidence of defects in cell proliferation nor an increase in 

cell death (Park et al., 2014).  

 Other studies suggest that Jmjd3 plays distinct roles in a cell type-specific 

manner. In mesenchymal stem cells (MSC), the function of Jmjd3 is related to 

preferential lineage specification. Jmjd3 preferentially regulates adoption of an 

osteogenic lineage over the adipogenic lineage through its interaction with the Runx2 

transcription factor (Zhang et al., 2015). During lung development, Jmjd3 functions in a 

stage-, and tissue-specific manner. Depending on the timing and localization of Jmjd3 

deletion, embryos can either survive or die shortly after birth due to respiratory problems 

(Li et al., 2014). Jmjd3 also regulates cellular programming, acting as a negative 

regulator of reprogramming in the generation of induced pluripotent stem cells (iPSCs) 

(Zhao et al., 2013). During development, Jmjd3 is required for a lineage specification of 

embryonic stem cells. Therefore, when somatic cells are driven to undergo cellular 

reprogramming to pluripotency, Jmjd3 may serve as a roadblock (Burchfield et al., 

2015). These data, taken together with our studies, illustrate that Jmjd3 can regulate 

stem cell functions in various ways and its precise function and mechanism of action 

depends on context (e.g. cell and tissue type differences).  

 One major unanswered question in the chromatin biology field is how these 

enzymes get recruited to specific regions in the genome. The dynamic nature of Jmjd3 

functions may be attributed to different binding or interaction partners, whose 

expression is cell or tissue-specific. JMJD3 itself does not have a DNA binding domain, 

indicating that in order to exert its functions on gene expression, it likely has to interact 

with other proteins or complexes to be recruited. It has been shown that Jmjd3 can 
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interact with transcription factors (e.g. SMAD, NKX2.1, TBX3, and others) (Estaras et 

al., 2012; Akizu et al., 2010; Kartikasari et al; 2013), chromatin remodelers (e.g. CHD8, 

BAF) (Miller at el., 2010; Fueyo et al., 2018; Narayanan et al., 2015), and even lncRNAs 

(HOTAIR and ARHGAP27P1) (Xia and Yao et al., 2017; Zhang et al., 2019). In V-SVZ 

NSCs, it is thought that Jmjd3 interacts with ASCL1, proneural transcription factor 

(Aydine et al., 2019). Motif analysis has suggested that the enhancer element of DLX2 

that is bound by JMJD3 is also bound by ASCL1 (Liu et al., 2017; Lindtner et al., 2019). 

Future studies aimed at determining JMJD3’s binding partners will provide critical 

insights into how one histone modifying enzyme can carry out multiple functions in a 

context-dependent manner.  

 Single cell RNA technology shed additional light on our Jmjd3 mutant mouse 

phenotype, revealing defects in a stem cell maintenance gene expression signature 

upon loss of Jmjd3 in the hippocampal DG. For instance, Inhibitors of DNA binding and 

cell differentiation (Id) genes, well known for their essential roles in stem cell 

maintenance and promote self-renewal, are down-regulated in Jmjd3-deleted NSCs. 

Knockout or knockdown of Id genes leads to precocious differentiation, and deletion of 

Id1, Id2, and Id3 in NSCs results in neuronal differentiation accompanied by depletion of 

embryonic NSCs, similar to what I observe in Jmjd3 mutant brains (Niola et al., 2012). 

Based on published Jmjd3 ChIP-seq data, all of Id genes exhibit Jmjd3 enrichment at 

their promoter regions, suggesting that Id genes may be down-stream targets of Jmjd3 

(Fueyo et al., 2018).  

Gene-ontology analysis of disrupted genes in Jmjd3-deleted NSCs also revealed 

an enrichment for genes involved in glycolysis and metabolism. While it is possible that 
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this change may be due to indirect effects of Jmjd3-deletion, the majority of these genes 

exhibit JMJD3-enrichment at their promoter regions, further suggesting involvement of 

JMJD3 in the regulation of energy metabolism and glycolysis (Fueyo et al., 2018). To 

date, there has been some speculations regarding histone demethylases having an 

effect on metabolism, but direct evidence is lacking.  

Aside from Id genes and metabolism genes, components of the WNT signaling 

pathway (Wnt5a, Fzd, Wls) are upregulated in Jmjd3-deleted NSCs. In the 

hippocampus, WNTs are secreted by NSCs, astrocytes, and granule neurons, and 

WNTs gave been shown to regulate NSC function in both cell-intrinsic and cell-extrinsic 

ways (Okamoto et al., 2011). Interestingly, Wnt5a has been shown to promote neuronal 

differentiation, which may at least in part explain the increased neuronal production 

observed in Jmjd3-deleted NSCs. Jmjd3 may also be involved in regulating the Notch 

signaling pathway. Components of Notch signaling pathway, Hes1 and Notch2, were 

differentially expressed in Jmjd3-deleted NSCs. Both genes exhibited Jmjd3 enrichment 

at their promoter region (Fueyo et al., 2018). Interestingly, loss of the essential Notch 

components, RBPJk or Jag1, in embryonic NSCs leads to proliferation defects as well 

as precocious neuronal differentiation, resulting in NSC depletion (Imayoshi et al., 

2010). Taken together, these data suggest that essential signaling pathways for stem 

cell function may be regulated through chromatin modifiers.  

My results also suggest a potential neurodevelopmental link between Jmjd3 

mutations and aberrant hippocampal development and neurogenesis, providing new 

insights into how mutations in chromatin regulators may contribute to learning disorders 

and other neurological disorders. Given that JMJD3 mutations have been causally 
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implicated in autosomal recessive forms of intellectual disability (Najmabadi et al., 2011; 

Yavarna et al., 2015), it is interesting to consider the possibility that the DG in these 

patients is abnormal in structure and deficient in adult neurogenesis. De novo mutations 

in JMJD3 that likely cause haploinsufficiency have also been identified in patients with 

ASD (De Rubeis et al., 2014; Iossifov et al., 2014; Sanders et al., 2015).  Interestingly, 

Jmjd3-heterozygote mice exhibited small (~10%) but statistically significant reduction in 

the size of the dentate gyrus (Figure 3.1J), hinting at potential dosage-dependent 

functions of Jmjd3. Using MRI, a previous study reported that patients with ASD had a 

smaller dentate gyrus (~13.5%) compared to healthy controls (Saitoh et al., 2001). I 

speculate that the increased complexity and duration of human brain development may 

increase vulnerability to JMJD3 haploinsufficiency (e.g., via reduced gene dosage, or 

monoallelic expression). 

As NSCs in embryonic and adult brain differentiate, the rate at which neurons are 

produced must be precisely regulated. Correct timing of differentiation may be regulated 

by a cell-intrinsic clock, and dysfunction of this clock can lead to precocious neuronal 

differentiation at the expense of NSCs. Based on in vivo data presented above, Jmjd3 is 

required to maintain NSCs by acting as a clock balancing between self-renewal vs 

differentiation during development. Jmjd3-dependent transcriptome analysis revealed a 

disruption of NSC maintenance gene expression signature that includes previously 

characterized regulators of NSC maintenance (WNT, NOTCH, and Id genes) 

(Arredondo et al., 2019; Imayoshi et al., 2010; Niola et al., 2012). Taken together, my 

data suggest that JMJD3, as a chromatin regulator, orchestrates a broad transcriptome 

required for NSC maintenance, modulating multiple signaling pathways simultaneously.  
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Figures and Tables 

 
Figure 3.1 Absence of NSCs in the DG of hGFAP-Cre;Jmjd3F/F mice. 
* = p < 0.05, ** = p < 0.01, *** = p < 0.0005, **** = p < 0.0001, NS = not significant 
A, Schematic coronal section showing the dentate gyrus of the hippocampus; red box 
indicates regions shown in (B). B, Schematic illustration of neurogenesis in the DG. C, 
JMJD3 (green) expression in the DG of P21 mouse brains. Immunohistochemistry (IHC) 
is shown for SOX2 and NESTIN. D-G’ IHC for NESTIN (green), GFAP (red), and DAPI 
(white or blue) in coronal DG sections of P60 control (D-G) and hGFAP-Cre;Jmjd3F/F 
mice (D’-G’). H-H’, IHC for SOX2 (red) and DAPI (blue) in coronal DG sections of 
control (H) and hGFAP-Cre;Jmjd3F/F mice ( ’). I, Quantification of length of the DG in 
control and hGFAP-Cre;Jmjd3F/F mice from P0 and P21 (n = 3 each), two-tailed 
unpaired t test. J, Quantification of length of the DG in control and hGFAP-Cre;Jmjd3F/+ 
mice P15 and P21 (n = 3 each), two-tailed unpaired t test. K, Quantification of neural 
precursor/NSCs in control and hGFAP-Cre;Jmjd3F/F mice from P0 and P21 (n = 3 each), 
two-tailed unpaired t test. 
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Figure 3.2 Precocious neuronal differentiation of SGZ precursors in hGFAP-
Cre;Jmjd3F/F mice. 
* = p < 0.05, ** = p < 0.01 
A, Schematic of experimental design. B, IHC for BrdU (green) and TBR2 (white) with 
DAPI (blue) in coronal sections of developing DG in control and hGFAP-Cre;Jmjd3F/F 
mice at E17.5. C, Dentate migratory stream (DMS) and quantification of BrdU+ TBR2+ 
cells in dentate migratory stream, two-tailed unpaired t test. D, Quantification of BrdU+ 
TBR2+ and BrdU+ SOX2+ cells in coronal sections of DG in control and hGFAP-
Cre;Jmjd3F/F mice, two-tailed unpaired t test. E, IHC for BrdU (green), PROX1 (red), 
TBR2 (white), and DAPI (blue) in coronal sections of DG in control and hGFAP-
Cre;Jmjd3F/F mice at P0.5. F, Quantification of (E), two-tailed paired t test.  
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Figure 3.3 Single cell RNA-seq reveals disrupted stem cell maintenance gene 
signature in Jmjd3-deleted NSCs 
A, Schematic of single cell RNA-seq experiment design. B, t-SNE plot of DG cells from 
hGFAP-Cre;Jmjd3F/F and control mice labeled with corresponding cell type identity. C, t-
SNE plot of DG cells with specific marker expression. D, Volcano plot of differentially 
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expressed genes in NSCs. E, Density plot of down-regulated genes in Jmjd3-deleted 
NSCs comparing to control, genes are grouped into, Id genes, glycolysis pathway 
genes, fatty acid pathway, and previously identified “stem-cell maintenance genes”. F, 
Gene ontology terms identified for statistically significant down-regulated genes in 
Jmjd3-deleted NSCs.  
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Figure 3.4 Jmjd3 is required for maintenance of adult SGZ NSCs 
* = p < 0.05, NS = not significant 
A, Schematic of experimental design. B, Quantification of number of tdTomato+ cells at 
the end of TAM administration comparing Nestin-CreERT2;Jmjd3F/F;Ai14 to control. Two-
tailed unpaired t test. C, IHC for tdTomato (red), TBR2 (green), DCX (white), and DAPI 
in coronal sections of Nestin-CreERT2;Jmjd3F/F;Ai14 to control 10dpi. D, Quantification of 
(C), two-tailed paired t test. E, IHC for tdTomato (red), SOX2 (green), and DAPI (blue) 
in coronal sections of Nestin-CreERT2;Jmjd3F/F;Ai14 to control 30dpi. F, Quantification of 
(E), two-tailed paired t test.    
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Figure 3.S1 Jmjd3 is expressed in the developing hippocampal dentate gyrus 
(DG) 
A, Schematic illustration of DG development. B, Schematic illustration of Jmjd3 floxed 
allele and position of in situ hybridization (ISH) probe. C-D’, ISH for Jmjd3 in coronal DG 
sections of control (C-D) and Jmjd3-deleted mice (C’-D’) at  1 .  (C-C’) and P1 (D-D’). 
E-F, ISH for Jmjd3 in coronal DG sections of control at P7 (E) and P21 (F). DNE: 
Dentate neuroepithelium SGZ: Subgranular zone   
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Figure 3.S2 Increased cell death is not observed in hGFAP-Cre;Jmjd3F/F mice  
A-C’, IHC for cleaved caspase 3 (CC3) (red) and DAPI (blue) in coronal DG sections of 
P0 to P15 control (A-C) and hGFAP-Cre;Jmjd3F/F mice (A’-C’). D, Quantification of (C) 
two-tailed unpaired t test, NS = not significant.  
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Figure 3.S3 Similar number of SGZ NSC precursor cells at E15.5 between Jmjd3-
deleted and control brain 
A-B’, IHC for SOX2 (green), EdU (white) and DAPI (blue) in coronal DG sections of 
E15.5 control (A-A’) and hGFAP-Cre;Jmjd3F/F mice (B-B’). C, Quantification of (A) two-
tailed unpaired t test. NS = not significant 
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Figure 3.S4 Single-cell RNA sequencing resolves the tissue heterogeneity in 
developing DG 
A, unlabeled t-SNE plot of DG cells from hGFAP-Cre;Jmjd3F/F and control mice. B, t-
SNE plot of well-known marker expression for each cell type. C, t-SNE plot of known 
NSC marker. D, t-SNE plot of DG cells based on the genotype of mice. E, Correlation 
analysis between enrichment of differentially expressed genes with genes from 
previously published paper (Shin et al., 2015). F, Correlation analysis between 
differentially expressed genes and JMJD3 ChIP-seq data from NSCs derived from 
E12.5 mouse cortex (Fueyo et al., 2018). 
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Experimental Procedures 

Mus musculus 

 Jmjd3 F/F mice which contain Jmjd3 alleles with loxP sites flanking the JmjC 

catalytic domain were maintained and genotyped as described (Iwamori et al., 2013; 

Park et al., 2014). Mice of both sexes were included in all experiments, and were 

analyzed at multiple time point between E15.5 and P60 as described in the text and 

figure legends for each corresponding experiment. All samples were analyzed relative 

to littermate control mice. Experiments were performed in accordance to protocols 

approved by Institutional Animal Care and Use Committee at UCSF. For the purpose of 

the adult fate-tracing, >P60 mice received 5mg of TAM (Sigma) dissolved in 100% corn 

oil (Sigma) by oral gavage per 30 grams of the body weight once a day for 5 

consecutive days.   

hGFAP-Cre: Tg(GFAP-Cre)25Mes/J, described in (Zhou et al., 2001). 

Nestin-CreERT2: Tg(Nes-cre/ERT2)KEisc/J, described in (Lagace et al., 2007). 

Ai14: Gt(ROSA)26Sortm14(CAG-tdTomato)Hze, described in (Madisen et al., 2010).  

BrdU administration 

 Mice were injected 5-bromo-2’-deoxyuridine (BrdU, Millipore Sigma) 

reconstituted in sterile PBS (10mg/ml) intraperitoneally at a dose of 50mg of BrdU per 

kg in mouse weight  

Immunohistochemistry 

 Brains were fixed by intracardiac perfusion (Park et al., 2014) and sectioned on a 

cryostat ( eica) at 1  μm thickness or a vibratome ( eica) at  0 μm thickness. After 

blocking with 10% normal goat serum, 0.3% Triton-X 100, 1% bovine serum albumin, 
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and 0.3M glycine in PBS for 1hr at room temperature, primary antibodies were 

incubated at 4 °C overnight. For JMJD3 staining, rabbit anti-JMJD3 antibodies (Abgent) 

were affinity purified using EpiMAX Affinity Purification kit (Abcam) and epitope retrieval 

was performed with 2N HCl. Fluorescence signal was amplified using TSA Plus 

fluorescence kit (PerkinElmer). The following primary antibodies were used in this study: 

rabbit anti-JMJD3 (epitope purified, 1:5, Abgent), rat anti-GFAP (1:500, Invitrogen), 

guinea pig anti-Doublecortin (1:1000, Millipore), rat anti-BrdU (1:500, Abcam), mouse 

anti-NeuN (1:500, Chemicon), mouse anti-NESTIN (1:500, Millipore), rabbit anti-

Cleaved Caspase 3 (1:250, Covance), rabbit anti-Ki67 (1:500, Abcam), rabbit anti-

NeuroD2 (1:300, Abcam), rat anti-Ctip2 (1:300, Abcam), mouse anti-Calbindin1 (1:300, 

Swant), goat anti-SOX2 (1:300, Santa Cruz) , rabbit anti-PROX1 (1:300, Covance). 

Goat or Donkey Alexa-Fluor secondary antibodies (Invitrogen) were used, and nuclei 

were counterstained with DAPI (Sigma).   

Single-cell RNA-seq Analysis 

 DG were micro-dissected from P2 hGFAP-Cre;Jmjd3F/F mice and littermate 

controls (2 animals per condition) and dissociated into single cells using the 

Worthington Papain Dissociation system following all manufacturer protocol steps 

including ovomucoid gradient. Single-cell libraries were generated using the 10x 

Genomics Chromium Single Cell 3’ Assay with a targeted cell recovery of  000 (2 00 

cells per condition). Libraries were sequenced to a mean depth of approximately 55,000 

reads/cell and processed through cellranger 3.0.2 (10x Genomics) with a raw recovery 

of 5847 cells (3555 WT and 2292 KO). All subsequent processing and analyses were 

performed using the Seurat v3 R package. Quality filtering was performed on the basis 
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mitochondrial and ribosomal content before log normalization and scaling. WT and KO 

datasets were then integrated using canonical correlation analysis and the integrated 

dataset was used for dimensionality reduction by principal components analysis (PCA) 

and t-distributed stochastic neighbor embedding (t-SNE). Cluster analysis on the 

integrated was conducted using the Louvain algorithm on the shared nearest neighbor 

network, with resolution set to 0.4. Major cell types were assigned to clusters using 

canonical markers from the experimental literature as well as other published scRNA-

seq datasets of the rodent hippocampus. Differential expression testing was performed 

between WT and KO cells within pertinent clusters using the likelihood-ratio test for 

single-cell gene expression (“bimod” setting) and p-values were adjusted using the 

Bonferroni correction. Enrichment analysis of DE genes for other datasets (e.g. JMJD3 

ChIP-Seq, DG NSC waterfall genes) were conducted using the Fisher Exact test. 

Microscopic Analysis 

 For in vivo DG cell quantification, I used at least 3 animals per group.  Confocal 

images were obtained with a Leica TCS SP5X with 20X objective; from each animal, at 

least three separate coronal sections including both hemispheres were analyzed using 

ImageJ.  Statistical tests of significance were performed using paired t-Test in 

GraphPad Prism.   

Human Fetal Tissue 

 Fetal hippocampal tissue (GW16) was collected from elective pregnancy 

termination specimens at San Francisco General Hospital, usually within 2 hours of the 

procedures. Research protocols were approved by the Committee on Human Research 

(institutional review board) at University of California, San Francisco. 
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In Situ Hybridization (ISH) 

 ISH on brain tissue was performed as previously described (Wallace and Raff, 

1999) with DIG-labeled RNA probe designed against JmjC domain of Jmjd3.  ISH 

images were obtained using a DMI4000B microscope (Leica). 
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Chapter 4: Conclusions and Future Directions 

 While most embryonic NSCs stop proliferating at birth, a subset of them 

transitions to establish the adult NSC pool in restricted regions where they last through 

the life of the animal (Kriegstein and Alvarez-Buylla, 2009). V-SVZ NSCs give rise to 

neuroblasts, which then migrate to the olfactory bulb (OB) where they differentiate to 

become inhibitory interneurons (Altman 1969; Lois and Alvarez-Buylla, 1994). In 

contrast, SGZ NSCs in the hippocampus give rise to excitatory granule neurons 

(Kitabatake et al., 2007). At the cellular level, NSCs produce new neurons that are able 

to become integrated into pre-existing neural circuits (Belluzzi et al., 2003; Carleton et 

al., 2003). But a key question is whether adult NSCs have relevance to brain and 

cognitive function.  

 Accumulating studies suggest that adult neurogenesis may be associated with 

corresponding brain functions in each adult NSC niche. For V-SVZ-OB neurogenesis, 

mice exposed to an odor-enriched environment exhibited an increased neuronal 

production in the OB compared to controls (Rochefort et al., 2002). Interestingly, this 

increased neuronal production was not observed in the hippocampus suggesting the 

specificity to olfactory memory not spatial memory. In contrast, mice that performed 

various spatial learning tasks exhibited an increase in number of newly born neurons in 

the dentate gyrus (Kitabatake et al., 2007). While these studies may address potential 

roles of NSCs, it is important to recognize that there are also other studies showing 

either no effect or even a decrease in neuronal production (Pham et al., 2005; Merrill et 

al., 2003). Therefore, further in vivo studies are required to assess the correlation 

between adult neurogenesis its role in cognition and memory. 
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 With the availability of various transgenic mouse lines, there have been 

advancements in understanding the exact roles that adult NSCs play for cognition. 

When Diphtheria toxin A (DTA) was targeted to selectively kill Nestin+ NSCs in the adult 

brain, mice exhibited defects only in hippocampal-mediated behaviors and not olfactory-

mediated behaviors (Imayoshi et al., 2008). Even though the DTA killed adult NSCs in 

both SVZ and SGZ, only spatial memory was impaired despite huge reduction of OB 

neurogenesis, suggesting that the functional relevance of adult NSCs may be context-

dependent. In addition, impaired hippocampal neurogenesis has been associated with 

depression, neuro-inflammation, epilepsy, and other numerous neurological disorders 

(Dranovsky and Hen, 2006; Parent et al., 2006; Anacker and Hen, 2017). Thus, 

understanding requirements for long-term NSC maintenance may provide critical 

insights into how NSCs contribute to essential brain functions coupled with how their 

dysfunctions may lead to neurological disorders. 

 NSC’s self-renewal and differentiation are modulated by both cell-intrinsic and -

extrinsic factors during development and adulthood. Cell-intrinsic regulators include 

signaling pathways (e.g. Wnt, Notch, Bmp, Shh, Fgf, and others) or transcription factors 

expressed by NSCs that directly control NSCs’ self-renewal and differentiation (Patten 

et al., 2006; Gaiano and Fishell, 2000; Panchision et al., 2010; Imayoshi et al., 2010; 

Arredondo et al., 2019). Extrinsic factors consist of extracellular signaling are produced 

by other cell types in the NSC (Urban et al., 2014). Insulin or insulin-like growth factors 

(Igfs) signaling from cerebrospinal fluid (CSF) has been implicated in NSC regulation 

(Woods et al., 2003). Insulin signaling may interact with proneural transcription factor 

Ascl1 to promote activation of the NSC pool. Neurotransmitters such as GABA (γ-
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aminobutyric acid) and acetylcholine are other examples of extracellular signaling 

essential for NSC functions. GABA, which is released from inhibitory interneurons, can 

promote neuronal differentiation and inhibit proliferation in embryonic NSCs. In adult 

NSCs, deletion of GABA receptors (GABAAR and GABABR) may increase embryonic 

NSC proliferation (Giachino et al., 2014a; Song et al., 2012). Conversely, acetylcholine 

is an excitatory neurotransmitter that has been shown to have opposing NSC regulatory 

function (Berg et al., 2013). 

 This dissertation demonstrates that a chromatin regulator and a long noncoding 

RNA are both cell-intrinsic regulators for long-term maintenance of NSCs. Though our 

current understanding of regulators of NSC function during development mostly revolve 

around signaling pathways or transcription factors, it is now clear that other classes of 

genes also play critical roles (Urban et al., 2014). Mutations of chromatin regulators 

have been associated with human neurodevelopmental and psychiatric disorders (De 

Rubeis et al., 2014; Iossifov et al., 2014; Sanders et al., 2015). Depletion of adult NSCs 

exhibit cognitive deficits in mice (Imayoshi et al., 2008). Therefore, gaining better 

understanding of how NSCs are modulated during development and into adulthood will 

provide critical insights into the mechanisms underlying neurodevelopmental disorders. 

 Using multiple genetic approaches, I have shown that the lncRNA-Pnky regulates 

NSC function in the neocortex. Loss of Pnky leads to increased neuronal differentiation, 

despite its close proximity to Pou3f2 gene. Pnky expression from BACPnky is sufficient to 

rescue the embryonic and postnatal phenotypes resulting from Pnky deletion, 

suggesting that it functions in trans. Based on impaired NSC functions during cortical 

development observed in PnkyΔ/Δ mice, I hypothesized that PnkyΔ/Δ mice may exhibit 
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behavioral phenotypes due to the well-known association between the cortex and 

cognitive function (Molyneaux et al., 2007). Indeed, adult PnkyΔ/Δ mice (~3 months old) 

exhibited an impairment in acoustic startle threshold, pre-pulse inhibition, and cued fear 

conditioning (Table 2.1). Although this behavior phenotype was sex-dependent, these 

data suggest that Pnky-deletion may impair cognitive functions. To my knowledge, this 

is one of the very first studies suggesting roles for a lncRNA in cognition. It would be 

interesting then to investigate whether BACPnky can also rescue this behavior 

phenotype, to more conclusively demonstrate that Pnky directly influences cognition 

through its effects on NSC functions. 

 Pnky has been shown to be conserved in the human with similar expression 

pattern. Similar to mice, PNKY is also enriched in the VZ of developing human cortex 

and human cerebral organoids (Ramos and Andersen et al., 2015). Given the 

conservation of expression pattern and sequence between mouse Pnky and human 

PNKY, it would be interesting to determine whether this lncRNA plays a role in human 

NSC function and brain development. In addition, aside from the VZ of the developing 

human and mouse cortex, PNKY is expressed in the cortical plate where projection 

neurons reside (Ramos and Andersen et al., 2015). Given that lncRNAs are highly cell-

type specific, understanding the function of PNKY in postmitotic neurons would further 

broaden the knowledge about the role that lncRNAs play in cell biology. 

 My studies also show that the chromatin regulator Jmjd3 is required for the 

establishment and long-term function of the NSC niche in the hippocampus. Loss of 

Jmjd3 leads to a defective stem cell maintenance gene expression signature and an 

accompanying impairment in maintenance of adult NSCs. Similar to previous studies 
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using DTA to selectively kills NSCs, NSC depletion from Jmjd3-deletion result in 

hippocampal-dependent cognitive function (data not shown). Essential roles of 

chromatin regulators in NSC maintenance may explain why chromatin regulators are 

often mutated in human neurodevelopmental disorders (Najmabadi et al., 2011; 

Rubenstein, 2011).  

 A key next step would involve identifying the molecular mechanism through 

which Jmjd3 acts. Jmjd3 is involved in various cell biological processes, including 

differentiation, proliferation, lineage specification, reprogramming, and senescence in 

multiple organs, suggesting that its role may be context dependent (Burchfield et al., 

2015). Even within the brain, its function may vary in different regions and cell types. A 

previous study of Jmjd3 in V-SVZ NSCs show that JMJD3 and its demethylase activity 

is required to activate neurogenic gene expression via interactions at promoters and 

enhancers (Park et al., 2014). Unlike the loss of SGZ NSCs, deletion of Jmjd3 in the V-

SVZ causes an accumulation of V-SVZ NSCs. This may be due to interactions with 

different cell type-specific binding partners or employment of different mechanisms of 

action.  

 A recent study in which 30,416 cells from the human hippocampus were 

sequenced between gestational weeks 16-27 revealed that JMJD3 is also expressed in 

the developing human hippocampus (Zhong et al., 2020). It would thus also be 

interesting to determine whether the role of JMJD3 in human NSC function is similar to 

that observed in the mouse.  

 Further investigating the potential role of Jmjd3 in cellular metabolism would also 

be of great interest. JMJD3 uses α-KG as one of the co-factors for its demethylase 
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activity. α-KG, one of the intermediates of the TCA cycle, is converted to succinate 

( lose et al., 200 ). The balance between the concentration of α-KG and succinate has 

been previously associated with stem cell differentiation, where α-KG has been shown 

to accelerate the initial differentiation of primed human stem cells (Carey et al., 2015; 

TeSlaa et al., 2016). Interestingly, accelerated differentiation was reversed when 

succinate was introduced to balance the concentration gradient. Therefore, I speculate 

that Jmjd3 deletion may lead to increased [α-KG] and a decreased in [succinate], which 

may explain the disruption of metabolic genes in Jmjd3-deleted NSCs.  

 In this dissertation, I have shown that JMJD3 and lncRNA Pnky regulates NSC 

function. Given that normal stem cells and cancer stem cells utilize similar molecular 

mechanisms of self-renewal, I speculate that similar regulatory principles may be 

relevant for cancer biology. Glioblastoma (GBM) is one of most aggressive brain tumors 

where self-renewing GBM stem cells have been associated with high tumorigenicity and 

poor survival rate (Lathia et al., 2015). A transcription factor, STAT3, is implicated as a 

key modulator for both NSCs and GBM stem cells (Sherry-Lynes et al., 2017; Wang et 

al., 2015). Previous studies show that Jmjd3 may be a direct target of STAT3 regulating 

self-renewal of GBM stem cells responsible for long-term maintenance (Sheey-Lynes et 

al., 2017). Jmjd3 has also been implicated in regulating other types of cancer stem cells 

(e.g. prostate, brain, gastric, breast, skin, and others) (Yin et al., 2019). Since chromatin 

regulators can exhibit cell type-specific expression and function, they may be ideal 

therapeutic candidates for cancer. In addition, many lncRNAs are differentially 

expressed in various types of cancers and tumors (Andersen and Lim, 2018). Recent 

data suggests that depletion of lncRNAs using an ASO can selectivity kill tumor cells, 
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indicating potential to serve as a therapeutic approach (Liu and Malatesta et al., 2020). 

Therefore, deeper insights into how chromatin regulators and lncRNAs function may not 

only contribute to our basic understanding of molecular biology and development, but 

also may serve as a foundation for future therapeutics for various types of diseases.   
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