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Summary 26 

We integrated genome-wide associated studies (GWAS) and expression-based quantitative trait 27 

loci (eQTL) studies in Populus trichocarpa to identify genetic elements controlling abundance of 28 

cis- and trans-3-O-caffeoylquinic acid, which are known  to be the main contributors to the free 29 

radical-scavenging activity. Here, we report that abundances of these metabolites were not only 30 

significantly associated with single nucleotide polymorphisms (SNPs) in a Populus 31 

Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (PtHCT2), but were also 32 

correlated with the expression levels of the same gene based on RNA-Seq analysis targeting leaf 33 

tissue. eQTL analysis revealed that PtHCT2 expression was regulated by putative cis-acting 34 

elements, which coincided with GWAS SNP associations, and were also located in the W-box 35 

element, a binding site for WRKY transcription factors (TFs). Further analyses in co-expression 36 

networks, transcriptional response to infection by the fungal pathogen Sphaerulina musiva, and in 37 

vitro validation of transcriptional regulation suggest that PtHCT2 is involved in both 38 

caffeoylquinic acid biosynthesis as well as defense response, and that its expression is regulated 39 

by the defense-responsive WRKY TFs.  40 

 41 
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Introduction 46 

Secondary metabolite biosynthesis is a complex and precise process that is catalyzed by numerous 47 

enzymes that fall under complex transcriptional regulatory networks [1]. The identification of key 48 

regulators in secondary metabolite biosynthesis remains restricted by low throughput techniques. 49 

3-O-caffeoylquinic acid, also known as chlorogenic acid (CGA), is the ester of caffeic acid and 50 

(−)-quinic acid and functioning as an intermediate in lignin biosynthesis [2]. It is widely distributed 51 

among numerous plant species [3] and acts as an antioxidant in both plants and animals [4]. CGA 52 

has been shown to prevent cardiovascular disease and other degenerative, age-related diseases in 53 

animals, such as reduce blood pressure, anti-inflammatory, anti-diabetic, anti-carcinogenic, and 54 

anti-obesity impacts, etc. [5, 6]. 55 

In the phenylpropanoid pathway, hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl 56 

transferase (HCT) catalyzes the conversion of coumaroyl CoA to coumaroyl quinate or coumaroyl 57 

shikimate and also the reverse reaction converting caffeoyl quinate or caffeoyl shikimate back to 58 

caffeoyl CoA [7]. HCT belongs to the BAHD (The BAHD acyltransferase family was named 59 

according to the first letter of each of the first four biochemically characterized enzymes of this 60 

family including BEAT, AHCT, HCBT and DAT) family of acyl-CoA-dependent transferases. 61 

These transferase can use hydroxycinnamoyl-CoAs as a donor for the transfer reaction and 62 

acylating a variety of acceptors [8]. Based on biochemical analysis, the switchgrass HCT genes, 63 

PvHCT1a and PvHCT2a, exhibited the expected HCT activity and prefer shikimic acid as an acyl 64 

acceptor [9]. CcHCT from globe artichoke could accept 3-hydroxyanthranilate as a substrate [10]. 65 

In alfalfa, down-regulation of p-coumarate 3-hydroxylase (C3H) and HCT improved fermentable 66 

sugar yields without acid pretreatment [11]. Based on the one- and two-dimensional nuclear 67 

magnetic resonance (NMR) analyses, a substantial increase in H units as well as a concomitant 68 

decrease in G and S units in C3H and HCT down-regulated alfalfa were observed. 13C NMR 69 

analysis estimated that HCT down-regulation reduced the methoxyl content by ~73%, which was 70 

stronger than C3H down-regulation (~55-58%) [12].  71 

In a wide range of plant species, lignin provides a physical barrier against initial ingress of 72 

pathogens into plant tissues [13]. Lignin or lignin-like phenolic polymers are induced and rapidly 73 

deposited in cell walls in response to both biotic and abiotic stress [14-16]. In many cases, 74 

“defense” lignin shown to have elevated levels of H units [17, 18]. Based on quantitative trait loci 75 
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(QTL) and genome-wide association mapping studies (GWAS) in maize (Zea mays), two key 76 

enzymes in lignin biosynthesis, HCT and caffeoyl CoA O-methyltransferase (CCoAOMT), were 77 

identified adjacent to  SNPs that were highly associated with variation in the severity of 78 

hypersensitive response (HR) triggered by an intragenic recombinant nucleotide binding leucine-79 

rich-repeat (NLR) disease resistance (R) gene Rp1-D21 [19]. Two maize HCT homologs 80 

(HCT1806 and HCT4918) physically interact with and suppress the HR conferred by Rp1-D21 81 

but not other autoactive NLRs [20]. In Arabidopsis and alfalfa, antisense/RNAi suppression of 82 

HCT exhibited constitutive activation of defense responses [21, 22]. In addition, many other 83 

phenolic compounds synthesized by phenylpropanoid pathway, including phenolic phytoalexins, 84 

stilbenes, coumarins, and flavonoids, were also implicated in plant defense [23-26]. For instance, 85 

the hormone salicylic acid (SA) that involved in defense signaling is also synthesized through 86 

phenylpropanoid pathway in some plant species [27, 28]. Furthermore, the expression of genes 87 

encoding monolignol biosynthetic enzymes and corresponding protein levels and enzymatic 88 

activities were induced under biotic stress in many plant species [29, 30].  89 

As a class of plant-specific transcription factors (TFs), WRKY has been well recognized for its 90 

role in regulating abiotic and biotic stresses [31]. The involvement of WRKY TFs in regulation of 91 

a variety of phenolic compounds, including lignin [32-34] has been demonstrated before. Loss of 92 

function of AtWRKY12 in Arabidopsis or its ortholog in M. truncatula resulted in secondary cell 93 

wall thickening in pith cells associated with ectopic deposition of lignin, xylan, and cellulose [34]. 94 

Moreover, WRKYs have been shown to control the production of flavanol and tannin compounds. 95 

For example, Arabidopsis WRKY23 regulates the production of flavanols in an auxin-inducible 96 

manner and it has a negative feedback on phytohormone signaling [35]. 97 

Based on the previous studies, a total of seven HCT members were identified in Populus. Among 98 

them, PtHCT1 and PtHCT6 have been linked to lignin biosynthesis due to their xylem-specific 99 

expression profile [36]. Through next-generation sequencing in a natural Populus nigra 100 

population, PnHCT1 was identified as an essential enzyme in lignin biosynthesis. PnHCT1 101 

converts p-coumaroyl-CoA into p-coumaroyl shikimate. The mutant allele trees with homozygous 102 

PnHCT1-Δ73, which encodes a truncated protein, have a 17-fold increase in H lignin units  [37].  103 

In this study, we sought to identify the genetic determinants of cis- and trans-3-O-caffeoylquinic 104 

acid leaf abundance, measured using gas chromatography-mass spectrometry (GC-MS) on 739 105 
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four-year-old unrelated P. trichocarpa genotypes from the Clatskanie, OR field site [38]. Here we 106 

describe the characterization of another member of the HCT family, PtHCT2 (Potri.018G105500), 107 

in Populus. After integrated analyses of the whole-genome re-sequencing, transcriptomic and 108 

metabolomics data from a natural population of P. trichocarpa to facilitate a high-resolution 109 

GWAS, PtHCT2 was identified as a gene encoding an enzyme associated with biosynthesis of cis-110 

3-O-caffeoylquinic acid, trans-3-O-caffeoylquinic acid, and a partially identified caffeoyl 111 

conjugate metabolite. In addition, PtHCT2 appears to be involved in defense response via the 112 

WRKY transcriptional regulatory pathway. 113 

 114 

Results 115 

GWAS results suggest PtHCT2 is associated with three metabolites 116 

In order to identify key regulators involved in poplar metabolites biosynthesis, we analyzed natural 117 

variation in secondary metabolite abundances using gas chromatography-mass spectrometry (GC-118 

MS) on 739 four-year-old unrelated P. trichocarpa genotypes from the Clatskanie, OR field site 119 

[38]. GWAS performed using a panel of >8.2 Million SNPs and nucleotide insertions and deletions 120 

(indels) revealed that cis- and trans-3-O-caffeoylquinic acid as well as a partially identified 121 

caffeoyl conjugate metabolite with retention time (RT) 16.61 min and key mass-to-charge (m/z) 122 

ratios 219 307 283 were significantly associated with the same interval on chromosome (Chr) 18 123 

of the Populus reference genome, with the most significant SNP at Chr18:13235329 for cis-3-O-124 

caffeoylquinic acid and Chr18:13222746 for trans-3-O-caffeoylquinic acid and the partially 125 

identified caffeoyl conjugate (Fig 1a and S1 Table). Two tandemly-duplicated HCT paralogs 126 

(Potri.018G105400 and Potri.018G105500) were found within this 12.6 kb interval (Fig 1b).  127 

HCTs in poplar are a multigene family generated by duplication events 128 

In Populus, HCT belongs to a multi-gene family. Based on previous studies, seven HCT genes 129 

(PtHCT1-7) were identified in the P. trichocarpa version 1.1 reference genome [36]. However, in 130 

the latest P. trichocarpa genome (V3.1), two more HCT genes were identified and designated as 131 

PtHCT8 (Potri.005G028400) and PtHCT9 (Potri.018G105400) (S2 Table). These nine paralogs 132 

arose either from the Salicoid whole genome duplication or independent tandem duplications 133 

events (“W” and “T” in Fig 1a, respectively). Specifically, PtHCT2/9, PtHCT3/4 and PtHCT5/7/8 134 
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were generated by tandem duplication events and only PtHCT1/6 were generated by the whole 135 

genome duplication event. We compared the nine PtHCTs expression patterns across various 136 

tissues using date from the Populus Gene Atlas Study (S1 Fig). Overall, the PtHCTs in paralogous 137 

pairs showed similar expression patterns across 24 samples from six tissues. PtHCT2/9 were 138 

highly expressed in root, PtHCT1/6 were highly expressed in root and stem and PtHCT3/4 were 139 

highly expressed in leaf and stem. PtHCT5/7/8 are closely located on Chr5, but only PtHCT5/8 140 

showed more similarity in both phylogenic relationship and expression pattern (Fig 2a and S1 Fig). 141 

Based on the correlation analysis, all four PtHCT gene pairs (1/6, 2/9, 3/4 and 5/8) showed 142 

significant positive correlation coefficients (S1 Fig).  143 

To evaluate the differences in regulatory elements in PtHCTs, we compared the conserved cis-144 

acting elements between the promoter regions of paralogous PtHCTs. As shown in S2 Fig, ~84.5% 145 

cis-acting elements containing promoter regions were conserved in 3 kb upstream of translation 146 

start sites (TSS) of paralogous PtHCT2/9. While only 4.2% regions were conserved in PtHCT1/6. 147 

Based on the phylogenetic analysis, three closely-located PtHCTs, PtHCT7 (Potri.005G028000), 148 

PtHCT5 (Potri.005G028100) and PtHCT8 (Potri.005G028400), were phylogenetically grouped 149 

together. When we compared their promoter regions, ~64.7% of the regions were conserved 150 

between PtHCT5 and PtHCT8, whereas only ~35.9% and 28.5% were conserved between 151 

PtHCT5/7 and PtHCT8/7, respectively (S2 Fig), suggesting PtHCT7 has diverged with PtHCT5 152 

and PtHCT8 in this gene cluster.  153 

Abundance of cis-3-O-caffeoylquinic acid, trans-3-O-caffeoylquinic acid and a partially 154 

characterized  metabolite positively correlated with the expression of PtHCT2 155 

To provide additional support for this association, we performed RNA-Seq analysis on six-156 

year-old trees from the same Clatskanie field sites. In total 390 leaf and 444 xylem transcriptomes 157 

were obtained (including 321 leaf and 429 xylem genotypes from the same genotypes used for leaf 158 

metabolite profiling). With these data we first performed correlation analysis between transcript 159 

and metabolite abundances for the nine HCT paralogs. Interestingly, only PtHCT2 exhibited 160 

significant correlation (P < 0.001) with cis-, trans-3-O-caffeoyquinic acid and the partially 161 

identified caffeoyl conjugate (RT 16.61 min, m/z 219 307 283) across two independent biological 162 

replicates of the leaf transcriptome, with 321 and 202 genotypes, respectively (Fig 2 and S3 Fig). 163 

These results suggest that abundances of the three metabolites were not only affected by mutations 164 
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at the DNA sequence level but were also affected by the expression levels of PtHCT2 across the 165 

population. A similar analysis with the xylem transcriptome did not show any significant 166 

correlation between expression and metabolite abundances (S4 Fig).  167 

eQTL analysis of PtHCT family  168 

Based on the above data, we propose that PtHCT2 is the primary regulator of the three 169 

metabolites described above among all HCTs in the Populus GWAS mapping population. 170 

Recently, expression-based quantitative trait loci (eQTL) analyses have been used to identify 171 

putative cis- and trans-regulatory elements underlying variation in gene expression that modulates 172 

trait expression [39-41]. To expand on the correlations analysis above, we performed eQTL 173 

analysis using transcript abundances as the phenotypic variable in the GWAS analysis using the 174 

>8.2 Million SNP/indel panel and normalized transcript counts of PtHCTs from 390 leaf and 444 175 

xylem transcriptome datasets. Notably, we identified highly significant associations between 176 

PtHCT2 expression and SNP Chr18:13234933 in leaf and Chr18:13249087 in xylem 177 

transcriptomes (Fig 3a and S1 Table). This 14.2 kb interval overlapped with the 12.6 kb region 178 

containing SNPs with significant GWAS hits for the three metabolites. This was in spite of the 179 

fact that metabolite profiles used for GWAS and leaf and xylem tissue used for eQTL analyses 180 

were collected from four- and six-year-old plants under heterogeneous field conditions, 181 

respectively (Fig 3d). Interestingly, PtHCT2 was regulated by the same cis-eQTLs in both leaf and 182 

xylem; and two SNPs in this region (Chr18:13252615 and Chr18:13252693) affected the core 183 

sequences of W-box element (“TGAC” or “GTCA”; Fig 3b,c), which is the transcription factor 184 

binding site for WRKY TFs that play major roles in defense response [42-44] and secondary wall 185 

formation [33, 34] (S4 Table and S5 Fig).  186 

We also sought to evaluate the level of shared or diverged putative transcriptional regulatory 187 

elements for the other eight HCTs. Among gene pairs in the PtHCT family, PtHCT3/4 shared the 188 

same cis-eQTLs in both leaf and xylem, while PtHCT7/8 shared the same trans-eQTLs in leaf 189 

transcriptome. In contrast, significant eQTLs of PtHCT2/9 as well as PtHCT1/6 were divergent 190 

between gene pairs (Fig 3a,b).  191 

Non-synonymous SNPs affect active site of PtHCT2 192 

To explore the impact of SNPs located in the PtHCT2/9 gene pair on protein function, we 193 

analyzed protein structures of PtHCT2 and PtHCT9. As shown in Fig 4a, the secondary structures 194 
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showed high similarity between the two HCTs. We then performed the structural modeling of 195 

PtHCT2 and PtHCT9 with I-TASSER [45]. Both PtHCT2 and PtHCT9 have a similar structure 196 

with model of PDB entry 4g0b [46], except that PtHCT9 carries an octapeptide tail (MIIAGVEK) 197 

in N-terminal (Fig 4b,e).  198 

A total of 438 and 106 SNPs were identified in PtHCT2 and PtHCT9 genes, respectively (Table 199 

1 and S3 Table). Among the total of nine PtHCT genes, PtHCT2 showed the most variation across 200 

the population. 89.3% (391 of 438) SNPs were located in intronic regions of PtHCT2 and was 201 

significantly higher than that in other PtHCTs (27.9~65.1%) (Table 1). For non-synonymous 202 

SNPs, a total of 19 and 16 non-synonymous SNPs were identified in PtHCT2 and PtHCT9 coding 203 

region, respectively. We compared the effects of non-synonymous SNPs between PtHCT2 and 204 

PtHCT9 (Fig 4b,e) and found that four non-synonymous SNPs affected the protein coding in both 205 

PtHCT2 and PtHCT9, i.e. G46V, G75E, V239L and S284F in PtHCT2 corresponding to G54V, 206 

G83E, V248L and S293F in PtHCT9, respectively. In addition, some non-synonymous SNPs in 207 

PtHCT2 affect the coding amino acid to the type in PtHCT9, and vice versa. For example, T21S, 208 

I147L, and V188L in PtHCT2 were predicted to change the coding amino acid to the PtHCT9 209 

model (S19, L155 and L196 in PtHCT9). Similarly, I90T, A205T, N243S and I250T in PtHCT9 210 

corresponding to T82, T197, S234 and T241 in PtHCT2 (Fig 4h and S3 Table). 211 

As an important enzyme involved in multiple metabolism steps, PtHCTs could bind to several 212 

ligands through active sites. We then compared the active sites potentially affected by the non-213 

synonymous SNPs in PtHCT2 and PtHCT9. In PtHCT2, H243Y and V328L were active sites for 214 

ligand COA and H248Y, S284F and V328L were active sites for ligand WCA (Fig 4c,d). While 215 

in PtHCT9, only L170I was identified as an active site for 4KE and L170I and S293F as active 216 

sites for COA (Fig 4f,g). Among the two PtHCTs, the same active site (S284F in PtHCT2 and 217 

S293F in PtHCT9) was identified.  218 

Co-expression network of PtHCTs 219 

In order to provide additional context to the proposed function of PtHCT2, we constructed co-220 

expression networks for the nine HCTs using 24 P. trichocarpa transcriptomic data from different 221 

tissues (Phytozome). Subnetworks of PtHCT2 and PtHCT9 were relatively independent although 222 

they were connected by several hub genes (S6 Fig). PtHCT3 and PtHCT7 shared the largest set of 223 

co-expressed genes suggesting that these two might be involved in the same biological processes. 224 
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Between paralogous pairs, PtHCT1/6, which is the only one pair generated by the whole-genome 225 

duplication event (Fig 2a), had subnetworks that showed significant divergence (S6 Fig). We then 226 

performed GO enrichment analysis to compare the functional differences among these 227 

subnetworks. Interestingly, genes co-expressed with PtHCT2 were significantly enriched for 228 

“metabolism” and “defense responses”, while genes co-expressed with PtHCT9 were enriched for 229 

carbohydrate related processes (S7 Fig). Further, two WRKYs (PtWRKY38 and PtWRKY45) were 230 

identified in the PtHCT2 co-expression network (Fig 5a). The WRKY homologs (AtWRKY11 and 231 

AtWRKY17; S8 Fig) in Arabidopsis have been previously implicated in basal resistance to 232 

pathogen infections [43]. To identify the core TFs controlling the PtHCT2 sub-network, the 233 

enriched cis-acting elements of 118 genes co-expressed with PtHCT2 were analyzed using 234 

ELEMENT [47]. Interestingly, the most highly enriched regulatory element in the co-expression 235 

network was the WRKY binding site (W-box; S4 Table).  236 

Based on the functional classification, we further classified the genes co-expressed with 237 

PtHCT2. Among the 188 genes co-expressed with PtHCT2, 24 (12.8%) and 22 (11.7%) genes 238 

were cell wall-related and defense-related, respectively. Outside of these two major clusters, 17 239 

(9%), 15 (8%) and 14 (7.4%) genes were involved in stress response, transport, and proteolysis 240 

processes, respectively (Fig 5a). Noticeable, two WRKY transcription factors (TFs), PtWRKY38 241 

and PtWRKY45, were found in the PtHCT2 co-expression network. These WRKYs homologous 242 

(AtWRKY11 and AtWRKY17, Fig S6) in Arabidopsis have been previously implicated in basal 243 

resistance [43]. 244 

The genes co-expressed with PtHCT2 also response to Sphaerulina musiva 245 

The observed co-expression with defense-related WRKYs is consistent with previous studies 246 

which implicated HCTs in host defense against pathogens via salicylic acid (SA) signaling [21, 247 

22, 48, 49] or by direct physical interaction with other proteins [19, 20]. To provide further 248 

evidence supporting a role for PtHCT2 in defense response, we mined a previous RNA-Seq dataset 249 

[50] from two P. trichocarpa genotypes infected with Sphaerulina musiva, an invasive fungal 250 

pathogen in western North America. As shown in Fig 6a, genes in the PtHCT2 co-expression 251 

network, including defense response, stress-related, cell wall-related, transport-related and 252 

proteolysis-related genes were significantly induced at 24 h and decreased at 72 h after inoculation 253 

in resistance genotype BESC-22, while no significant changes in susceptible BESC-801 during 254 
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this stage. Among the nine PtHCTs, only PtHCT2 were up-regulated at 24 h post-inoculation (Fig 255 

6b). Noticeable, many group II and group III WRKYs were also significantly upregulated at 24 h 256 

(Fig 6c). These included homologs of AtWRKY11 and AtWRKY17 which acted as negative 257 

regulators of basal resistance to Pseudomonas syringae pv. in tomato [43, 51]. During the S. 258 

musiva susceptibility study, 25 out of 100 PtWRKYs were significantly induced in the resistant 259 

genotype (40.7%, 33.3% and 30% members in group IIc, IIb and III, respectively). In addition, 260 

previous studies showed that most of these PtWRKYs (especially in group IIb, IIc, and III) showed 261 

significant response to multiple treatments, including salicylic acid (SA), methyl jasmonate 262 

(MeJA), Marssonina brunnea (Mb), wounding, cold and salinity [52] (S9 Fig). 263 

Transient overexpression of PtWRKYs enhanced the expression of PtHCT2  264 

To validate the transcriptional regulatory relationships between PtWRKYs and PtHCT2, we 265 

analyzed the expression of PtHCT2 in response to overexpression of select PtWRKYs using a 266 

poplar protoplast transient expression system [53]. Based on evidence of induction by S. musiva 267 

and stress treatments mentioned above, we selected PtWRKY60 (group IIa), PtWRKY89 (group III) 268 

and PtWRKY93 (group IIc) (Fig 6 and S9 Fig). In addition, PtWRKY38 and PtWRKY45 (both in 269 

group IId) were selected based on the PtHCT2 co-expression analysis (Fig 5a). When the five 270 

PtWRKYs were transiently overexpressed in poplar protoplasts, expression levels of PtHCT2 were 271 

significantly increased (Fig 5b), suggesting that the expression of PtHCT2 gene is regulated by 272 

WRKYs. 273 

 274 

Discussion 275 

As a key component of plant innate immunity, SA plays a central role in systemic-acquired 276 

resistance (SAR) [54]. SA is synthesized from chorismite via two alternative pathways, 277 

phenylalanine ammonia-lyase (PAL)-dependent phenylpropanoid route and isochorismate 278 

synthase (ICS)-dependent route [55]. In the phenylpropanoid pathway, PAL catalyzes the 279 

conversion of phenylalanine to cinnamate, and thereby initiates phenylpropanoid metabolism. 280 

Subsequently, through cinnamate 4-hydrozylase (C4H), 4-coumarate:coenzyme A ligase (4CL) 281 

and the specific branch pathways for the formation of monolignols/lignin, benzoic acids, 282 

coumarins, stilbenes and flavonoids/isoflavonoids [26]. From these specific branch pathways, 283 
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HCT catalyzes the conversion from coumaroyl CoA to coumaroyl quinate or coumaroyl shikimate 284 

and from caffeoyl quinate or caffeoyl shikimate to caffeoyl CoA [7]. 285 

Among nine PtHCTs identified in our study, two of them (PtHCT1 and PtHCT6) were identified 286 

as regulators in lignin biosynthesis based on previous studies [37] and their expression patterns in 287 

various tissues and µm-scaled wood-forming zone in poplar (S1 and S10 Fig). The function of 288 

other PtHCT members remains unclear. Here we provide evidence that another member, PtHCT2, 289 

is involved in both metabolites (cis-3-O-caffeoylquinic acid, trans-3-O-caffeoylquinic acid and an 290 

unknown metabolite) biosynthesis and defense response in poplar. Interestingly, not only were 291 

SNPs located in PtHCT2 significant associated with the abundance of three metabolites (cis-3-O-292 

caffeoylquinic acid, trans-3-O-caffeoylquinic acid, and an unknown metabolite; Fig 1), the 293 

expression of PtHCT2 was positively correlated with the metabolites’ abundance across the 294 

Populus GWAS mapping population (Fig 2b). The expression patterns of PtHCT2 in different 295 

allele at specific SNP site (Fig 2c) further indicate that its expression level was affected by the 296 

SNPs located in the PtHCT2 gene body.  297 

Based on the physical location, eQTLs are categorized as cis or trans; i.e. cis eQTLs represent 298 

a polymorphism physically located near the gene itself. For example, a polymorphism located in 299 

the promoter region induce differential expression of the gene [39]. Salvi et al. [40] through 300 

positional cloning and association mapping identified a major flowering-time QTL (Vgt1) located 301 

in 70 kb upstream of an AP2-like TF, Vgt1 functions as a cis-acting element and affects the 302 

transcript levels of the AP2-like TF. In Arabidopsis, a QTL study based on the glucosinolate 303 

content in a population of 403 Bay × Sha recombinant inbred lines showed that all loci controlling 304 

expression variation also affected the accumulation of the resulting metabolites [41]. So, the SNP 305 

variation in PtHCT2 might through regulate the gene expression to affect it mediated regulatory 306 

pathway. In addition, non-synonymous SNPs within the gene body could affect the active site of 307 

PtHCT2. We compared the 3D structures and the amino acids affected by non-synonymous SNPs 308 

in the protein coding region of the paralogous pair PtHCT2/9 (Fig 2). Noticeably, although 309 

PtHCT2 carried more variation within the gene body (89.3% in intron; Table 1), the active site 310 

affected by non-synonymous SNPs showed similar patterns between PtHCT2 and PtHCT9 (S284F 311 

in PtHCT2 and S293F in PtHCT9; S3 Table), which implies poplar maintained conserved active 312 

site to ensure the fundamental function of PtHCT2 during the evolution.  313 
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In addition to metabolites biosynthesis, HCTs have ben also been implicated in host defense 314 

against pathogens. During defense response, plants will synthesize a series natural product, which 315 

can be categorized into three major groups: phytoalexins, phytoanticipins and signal molecules. 316 

Many phenylpropanoids exhibit broad-spectrum antimicrobial activity as preformed 317 

“phytoanticipins” or inducible “phytoalexins” [26, 56]. In Arabidopsis and alfalfa, down-318 

regulation of HCT expression resulted in a dwarf phenotype, elevated SA level, increased PR gene 319 

expression, and constitutive activation of defense responses [21, 22, 48, 49]. When introduce the 320 

NahG gene (encodes a salicylate hydroxylase that removes SA) into HCT-RNAi plants, the plants 321 

restored growth to wild type levels with reduced SA and PR transcript levels [21]. These studies 322 

provided a link between HCT and defense response by SA signaling. In addition, HCT can directly 323 

involve in the defense response through physically interaction with other proteins. Maize HCTs 324 

(HCT1806 and HCT4918) were shown to physically interact with CCoAOMT2 and Rp1 proteins 325 

to form complexes, and suppress Rp1-D21-induced HR [19, 20]. 326 

Despite this link, the transcriptional hierarchy leading to HCT response to pathogen infection 327 

remains unclear. In this study, we observed that PtHCT2 was differentially expressed between a 328 

resistant and susceptible genotype in response to infection by the fungal pathogen S. musiva (Fig 329 

6b). In that regard, it expression pattern was highly correlated with the expression of 10 WRKY 330 

TFs from group II or III (Fig 6c). Specifically, three group IIa members, AtWRKY18, AtWRKY40 331 

and AtWRKY60 known to form both homocomplexes and heterocomplexes and interact both 332 

physically and functionally in response to different types of microbial pathogens, however, 333 

AtWRKY18 plays a more important role than the other two [57]. Four PtWRKYs (28, 71, 92 and 334 

93) were significantly differentially expressed when response to S. musiva in poplar, and they 335 

clustered together with AtWRKY8 and AtWRKY28 in group IIc (Fig S6). In Arabidopsis, 336 

AtWRKY8 plays opposite effects on two pathogens, which is a negative regulator of basal 337 

resistance to P. syringae and positive regulator to Botrytis cinereal [44]. In addition, AtWRKY8 is 338 

also involved in the response of long-distance movement of crucifer-infecting tobacco mosaic 339 

virus (TMV-cg) through mediating the crosstalk between ABA and ethylene signaling [58]. 340 

PtWRKY38 and PtWRKY45 belong to group IId WRKY, but no specific orthologs were identified 341 

in Arabidopsis based on the phylogenetic tree (Fig S6). In group IId, several AtWRKYs were known 342 

involved in defense response. For example, the two group IId WRKYs, AtWRKY11 and 343 

AtWRKY17, act as negative regulators of basal resistance to Pseudomonas syringae pv. tomato 344 
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(Pst) [43]. Moreover, AtWRKY11 could work with group III member AtWRKY70 to serve as 345 

regulator in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pst DC3000 346 

through activating the JA and SA signaling pathway, respectively [51]. AtWRKY70 is one of the 347 

most represented defense genes. Based on the phylogenetic tree, three group III PtWRKYs (54, 62 348 

and 89), which were highly induced by S. musiva, were closely clustered with AtWRKY70 (Fig 6 349 

and S8 Fig). Furthermore, WRKYs regulate the biosynthesis of a variety of phenolic compounds, 350 

including lignin [34]. Because lignin is derived from the same phenylpropanoid pathway with 351 

other specialized metabolites, the WRKYs regulating lignin biosynthesis or deposition will also 352 

affect flux to other phenolic-based metabolites through the phenylpropanoid pathway in directly 353 

or indirectly manner [31]. Loss of function of AtWRKY12 in Arabidopsis and its ortholog in M. 354 

truncatula, SECONDARY WALL THICKENING IN PITH (STP), result in ectopic deposition of 355 

lignin, cellulose and xylan, and secondary cell wall thickening in pitch cells [34]. Here, we show 356 

that five PtWRKYs (38, 45, 60, 89 and 93) were induced by S. musiva (Fig 6 and S8 Fig) and could 357 

also act as activators for PtHCT2 (Fig 5b).  358 

 359 

In summary, PtHCT2 was identified via GWAS and eQTL analyses as a key regulator for 360 

biosynthesis of cis-and trans-3-O-caffeoylquinic acid as well as a partially identified caffeoyl 361 

conjugate in the Populus GWAS mapping population. eQTL mapping revealed that the cis-eQTL 362 

is the primary regulatory mechanism of PtHCT2. The integrated results from co-expression 363 

network analysis, cis-acting elements enrichment and response to S. musiva suggested the 364 

expression of PtHCT2 is regulated by defense-responsive WRKYs, which was further validated in 365 

the poplar protoplast transient expression system. This study provides a new insight to into genetic 366 

regulation of three important metabolites and lays a foundation for data-driven characterization of 367 

the genetic basis of secondary metabolite biosynthesis in complex perennial plants.  368 

 369 
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Materials and Methods 370 

Plant materials 371 

Leaf sample for metabolite profiling were collected from the Clatskanie field site in July 2012 and 372 

leaf and xylem for RNA-Seq analysis were collected from the same site in July 2014. For each 373 

sampling plant materials were immediately frozen on dry ice before processing.  374 

Metabolomic analysis 375 

Freeze-dried leaves were ground to 20 mesh with a micro-Wiley mill and ~25 mg DW was 376 

subsequently twice extracted with 2.5 mL 80% ethanol overnight and then combined prior to 377 

drying a 0.5 ml aliquot in a nitrogen stream. Sorbitol (75 µL of a 1 mg/mL aqueous solution) was 378 

added before extraction as an internal standard to correct for differences in extraction efficiency, 379 

subsequent differences in derivatization efficiency and changes in sample volume during heating. 380 

Dried extracts were silylated for 1 h at 70°C to generate trimethylsilyl (TMS) derivatives, which 381 

were analyzed after 2 days with an Agilent Technologies Inc. (Santa Clara, CA) 5975C inert XL 382 

gas chromatograph-mass spectrometer as describes elsewhere [59]. Metabolite peak extraction, 383 

identification, and quantification were as described previously [59], and unidentified metabolites 384 

were denoted by their retention time as well as key m/z ratios. 385 

RNA-Seq and data analysis 386 

Stored tissue was ground in liquid nitrogen and total RNA was extracted using a combined method 387 

including CTAB lysis buffer and a Spectrum Total Plant RNA extraction kit (Sigma). 388 

Approximately 100mg of flash frozen ground tissue was incubated in 850ul of CTAB buffer (1.0% 389 

β-Mercaptoethanol) at 65°C for 5 minutes, 600 µl chloroform:isoamylalcohol (24:1) was added 390 

and samples were spun at full speed for 8 minutes. The supernatant (~730 µl) was removed from 391 

the top layer and applied to a filter column provided in the Spectrum kit. RNA was precipitated in 392 

500 µl of 100% ethanol and applied to a Spectrum kit binding column. The protocol provided by 393 

the Spectrum kit was followed from that point on and the optional on-column DNase treatment 394 

was done to rid the samples of residual genomic DNA. RNA quality and quantity were determined 395 

using a Nanodrop Spectrophotometer (Thermo Scientific).  396 

Stranded RNA-Seq library(s) were generated and quantified using qPCR. Sequencing was 397 

performed on an Illumina HiSeq 2500 (150mer paired end sequencing). Raw fastq file reads were 398 
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filtered and trimmed using the JGI QC pipeline. Using BBDuk 399 

(https://sourceforge.net/projects/bbmap/), raw reads were evaluated for sequence artifacts by kmer 400 

matching (kmer=25) allowing 1 mismatch and detected artifacts were trimmed from the 3' end of 401 

the reads. RNA spike-in reads, PhiX reads and reads containing any Ns were removed. Quality 402 

trimming was performed using the phred trimming method set at Q6. Following trimming, reads 403 

under the length threshold were removed (minimum length 25 bases or 1/3 of the original read 404 

length; whichever was longer). Raw reads from each library were aligned to the P. trichocarpa 405 

reference genome [60] using TopHat2 [61]. Only reads that mapped uniquely to one locus were 406 

counted. FeatureCounts [62] was used to generate raw gene counts. Raw gene counts were used to 407 

evaluate the level of correlation between biological replicates, using Pearson's correlation to 408 

identify which replicates would be used in the DGE analysis. DESeq2 (v1.2.10) [63] was 409 

subsequently used to determine which genes were differentially expressed between pairs of 410 

conditions. The parameters used to “call a gene” between conditions was determined at a P-value 411 

<0.05. 412 

GO enrichment was performed using agriGO (http://bioinfo.cau.edu.cn/agriGO/). For the 413 

promoter analysis, the cis-elements enrichment in PtHCT2 co-expression network was analyzed 414 

using ELEMENT software [47]. 415 

Genome-Wide Association Study (GWAS) and eQTL analyses 416 

Whole genome resequencing, SNP/indel calling and SNPeFF analysis for this 545 individuals of 417 

this Populus GWAS population was previously described by Evans et al. [64]. In this study, we 418 

used the same sequencing and analytical pipelines to incorporate an additional 337 genotypes. The 419 

resulting SNP and indel dataset is available at http://bioenergycenter.org/besc/gwas/. To assess 420 

genetic control, we used the EMMA algorithm in the EMMAX software with kinship as the 421 

correction factor for genetic background effects [65] to compute genotype to phenotype 422 

associations using 8.253,066 million SNP variants with minor allele frequencies >0.05 identified 423 

from whole-genome resequencing. Metabolite abundances from the GC-MS profiling and 424 

normalized FPKM transcript counts were used as phenotypes. A P-value threshold of 6.1 × 10-09 425 

(0.05/8,253,066) was used to determine significance based on the Bonferroni correction for 426 

multiple testing. 427 
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Protein structural modeling 428 

The 3D structures of PtHCT2 and PtHCT9 were built using the Iterative Threading ASSEmbly 429 

Refinement (I-TASSER, version 5.1) protein structure modeling toolkit [66]. Structure-based 430 

functional annotations and ligand/cofactor predictions of the constructed models were carried out 431 

using COFACTOR [67]. 432 

Co-expression analysis 433 

FPKM values and co-expression relationships of PtHCTs were downloaded from Phytozome 434 

(https://phytozome.jgi.doe.gov/pz/portal.html). For the co-expression network, a threshold greater 435 

than or equal to 0.85 was applied to the resulting. Cytoscape [68] was used to visualize the resulting 436 

network. 437 

For overrepresented cis-acting elements identification, 2 kb of upstream sequence relative to the 438 

transcription start site of genes in PtHCT2 co-expression network were analyzed using the 439 

ELEMENT program [47]. The significant elements were selected at Benjamini-Hochberg FDR P-440 

value < 0.05. 441 

Transient overexpression in poplar protoplast 442 

Protoplasts from Populus were isolated and subsequently transfected as previous described [53]. 443 

The full-length CDS of five PtWRKYs (38, 45, 60, 89 and 93) were determined according to the 444 

sequence information available at Phytozome. Gene specific primers were designed to amplify the 445 

full-length CDS of each PtWRKY from P. trichocarpa cDNA. Subsequently, the CDS of each 446 

PtWRKYs was introduced into the pENTRTM/D-TOPO vector (Life Technologies). The correct 447 

product validated by sequencing was transferred into gateway destination vector driven by 2×35S 448 

promoter via LR reaction. 449 

RNA extraction and quantitative RT-PCR (qRT-PCR) 450 

Total RNA from transformed and control poplar protoplast were extracted using the SpectrumTM 451 

Plant Total RNA isolation kit (Sigma). Three µg of total RNA were reversely transcribed to cDNA 452 

using RevertAid Reverse Transcriptase (Thermo Fisher Scientific). qRT-PCR was performed 453 

using Maxima SYBR Green/ROX qPCR Master Mix (Thermo Fisher Scientific). Populus 454 

Ubiquitin was used as an internal control for normalizing the relative transcript level. All PCR 455 
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reactions were done with at least three replicates. The primers used for gene clone and qRT-PCR 456 

were listed in S5 Table. 457 
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Tables 665 

Table 1. SNPs identified in PtHCT genes. 666 

SNP Effects PtHCTs 
1 2 3 4 5 6 7 8 9 

Synonymous coding 20 18 12 14 26 20 21 13 14 
Non-synonymous coding* 23 19 32 34 56 18 39 25 16 
Start gained* 4 2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Stop gained* n.a. n.a. n.a. 2 5 1 2 n.a. n.a. 
Synonymous stop n.a. n.a. n.a. n.a. n.a. 1 n.a. n.a. n.a. 
Frame shift* 1 1 2 3 1 n.a. 1 1 1 
Codon change plus codon insertion* 1 n.a. n.a. n.a. n.a. n.a. 1 n.a. 1 
Splice site acceptor* n.a. n.a. n.a. n.a. n.a. 1 n.a. n.a. n.a. 
Splice site donor* 1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Intron 151 391 73 26 34 100 41 32 62 
5’-UTR prime 10 5 2 2 n.a. 7 2 n.a. n.a. 
3’-UTR prime 21 2 13 5 n.a. 42 1 1 12 
Summary 232 438 134 86 122 190 108 72 106 

Notes: *, functional effects. n.a., not available in this dataset. Details of the non-synonymous SNPs 667 

in PtHCT2 and PtHCT9 was shown in S3 Table.  668 
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Figure Legends 670 

Fig 1. Genome-wide association analysis of three metabolites (cis-3-O-caffeoylquinic acid, 671 

trans-3-O-caffeoylquinic acid and a partially-identified caffeoyl conjugate; RT 16.61 min, 672 

key m/z 219 307 283) accumulation in leaves among the P. trichocarpa natural population. 673 

(a) Manhattan plots of the three metabolites. Chromosome (Chr) 18 with highly association with 674 
the three metabolites was labelled with green. The location of nine PtHCT genes on Populus 675 
genome was labelled at bottom. The letters “T” and “W” on the links indicate putative tandem 676 
duplication and whole-genome duplication, respectively. 677 
(b) Zoom in of Manhattan plots on Chr 18 (upper) and the highly-associated region (yellow 678 
background, lower). The highest-associated SNPs located in the gene body of PtHCT2. 679 

  680 
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Fig 2. Expression of PtHCT2 was positively correlated with accumulation of the three 682 

metabolites. 683 

(a) Phylogenetic relationship of nine PtHCTs in Populus genome. Phylogenetic tree was 684 
constructed using the Neighbour-Joining methods with 1,000 bootstrap replicates. The letters “T” 685 
and “W” on the branches indicate putative tandem duplication and whole-genome duplication, 686 
respectively. 687 
(b) The correlation coefficient between gene expression of nine PtHCTs and abundance of the 688 
three metabolites in leaves across populations from two replicates for independent metabolomic 689 
analysis (321 and 202 leaf samples, respectively) of the Clatskanie field site.  690 

(c) Relationships between expression of PtHCT2, abundance of the three metabolites and SNPs. 691 
Two selected SNPs (Chr18:13235329 and Chr18:13235575) are shown. 692 

 693 
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Fig 3. eQTL mapping of PtHCT genes in leaf and xylem. 695 

(a) eQTLs associated with nine PtHCTs expression in leaf (left panel) and xylem (right panel). 696 
Red dots are significant eQTLs with -log10 P value > 5. Blue and green arrows indicate extremely 697 
highly associated (-log10P >10) cis- and trans-eQTLs, respectively. 698 

(b) Overlapped eQTLs between PtHCT gene pairs in leaf and xylem tissues. 699 
(c) cis-eQTLs of PtHCT2. Among eight overlapped eQTLs of PtHCT2 between leaf and xylem, 700 
six are cis-eQTLs, two of which (Chr18:13246177 and Chr18:13252693) affect the core sequences 701 
(“GTCA” or “TGAC”) of W-box element. 702 

(d) Overlap of interval of PtHCT2 cis-eQTL and significant SNP interval of GWAS from the three 703 
metabolites. 704 
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Fig 4. Structural models of PtHCT2 and PtHCT9. 707 

(a) Secondary structures of PtHCT2 and PtHCT9. 708 

(b, e) 3D structures of PtHCT2 and PtHCT9. Yellow chains indicate the PtHCT2 (b) and PtHCT9 709 
(e), blue chains indicate the best identified structural analogs 4g0bA in PDB. Amino acid changes 710 
caused by non-synonymous SNPs are labelled in white letters. 711 
(c, d) The active site affected by non-synonymous SNPs in PtHCT2 (H248Y, S284F and V328L). 712 

(f, g) The active site affected by non-synonymous SNPs in PtHCT9 (L170I and S293F). 713 
(h) Sequence alignment of amino acids of PtHCT2 and PtHCT9. Orange shadows, different 714 
sequences between PtHCT2 and PtHCT9; green letters, active site affected by non-synonymous 715 
SNPs; blue letters, other site affected by non-synonymous SNPs. 716 
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Fig 5. Co-expression network of PtHCTs in Populus. 719 

(a) Based on the functional annotation, the genes in the PtHCT2 co-expression network were 720 
classified into the following groups: defense response (orange), stress response (pink), cell wall 721 
related (green), transport (cyan), proteolysis (purple) and others (grey). Two WRKYs (WRKY38 722 
and WRKY45) are among the PtHCT2 co-expression network. 723 
(b) Regulation of PtHCT2 by PtWRKYs. Five PtWRKYs (PtWRKY38, 45, 60, 89 and 93) were 724 
transiently overexpressed in Populus protoplasts. The transcript levels of PtHCT2 were analyzed 725 
by using qRT-PCR with three biological replicates.  726 
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Fig 6. Involvement of genes co-expressed with PtHCT2 in defense response. 729 

(a) Expression response of five classes genes in PtHCT2 co-expression network in two P. 730 
trichocarpa genotypes (BESC22 and BESC801) inoculated with S. musiva. 731 
(b) Expression patterns of nine PtHCTs response to S. musiva. PtHCT5 was not detected during 732 
this process. 733 
(c) Expression patterns of ten selected PtWRKYs response to S. musiva. 734 

 735 




