
UC Merced
UC Merced Previously Published Works

Title
Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation

Permalink
https://escholarship.org/uc/item/96w8n2xn

Authors
Zhang, Hongqiao
Forman, Henry Jay

Publication Date
2017-03-01

DOI
10.1016/j.abb.2016.11.003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/96w8n2xn
https://escholarship.org
http://www.cdlib.org/


Signaling by 4-hydroxy-2-nonenal: exposure protocols, target 
selectivity and degradation

Hongqiao Zhang1 and Henry Jay Forman1

1 Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern 
California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA

Abstract

4-hydroxy-2-nonenal (HNE), a major non-saturated aldehyde product of lipid peroxidation, has 

been extensively studied as a signaling messenger. In these studies a wide range of HNE 

concentrations have been used, ranging from the unstressed plasma concentration to far beyond 

what would be found in actual pathophysiological condition. In addition, accumulating evidence 

suggest that signaling protein modification by HNE is specific with only those proteins with 

cysteine, histidine, and lysine residues located in certain sequence or environments adducted by 

HNE. HNE-signaling is further regulated through the turnover of HNE-signaling protein adducts 

through proteolytic process that involve proteasomes, lysosomes and autophagy. This review 

discusses the HNE concentrations and exposure modes used in signaling studies, the selectivity of 

the HNE-adduction site, and the turnover of signaling protein adducts.
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1. Introduction

4-hydroxy-2-nonenal (HNE) is a major α, β-unsaturated aldehyde derived from the 

decomposition of peroxidation products of omega-6 polyunsaturated fatty acids such as 

arachidonic acid and linoleic acid [1-5]. Besides being produced from the non-enzymatic 

peroxidation process, which has been well recognized and reviewed [3-6], HNE could also 

be generated enzymatically by cyclooxygenase-2 and lipoxygenase [7]. In addition, cells/

organisms may be exposed to HNE from food. HNE produced from dietary polyunsaturated 

fatty acids during food processing and storage [8, 9] could result in exposure of cells in the 

gestrointestinal tract and possibly enter circulation [10] (Fig.1). HNE features two functional 

groups, its carbonyl (−HC=O) and double bond (C2/C3, −C=C-) groups. This combination 

in conjugation makes HNE to react readily with bio-molecules including lipids, nucleic 

acids, and proteins, that can underlie oxidative damage [5]. Therefore, HNE has been widely 

recognized as both a marker of oxidative stress and the culprit in damage since its discovery 
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in the 1980s [3, 11-13]. Later, numerous studies have clearly shown that at physiological 

concentration HNE can act as a potent signaling messenger and be involved in the regulation 

of a variety of signaling pathways [14, 15], cellular processes and functions [16], through 

forming Michael and/or Schiff base adducts with signaling proteins including receptors, 

protein kinases, phosphatases, and transcription factors [13, 17].

Most studies on HNE-induced signaling are conducted in cell models and use a wide range 

of HNE doses. Some doses are far beyond the pathophysiological concentration of HNE and 

thus might be irrelevant to what happens in vivo. In addition, although the adduct reaction of 

HNE with cysteine, histidine, and lysine residues in proteins has been a focus of many 

studies, the selectivity and turnover of the HNE adducts of signaling proteins have not been 

summarized. In this review we intend to summarize the concentration of HNE in cells/

tissues and in vitro cell models used for cell signaling studies, and discuss the adduction 

sites of HNE within signaling proteins and the turnover after adduct formation.

2. Tissue concentration of HNE

2.1. Metabolism of HNE is cell/tissue dependent

HNE in the cells is rapidly degraded through several metabolic pathways including 

conjugation, reduction, and oxidation [18] (Fig.1). Conjugation with GSH, catalyzed by 

GST alpha isoforms especially GSTA4-4 [19], is the predominant pathway of HNE 

metabolism [18, 20-22] and responsible for at least 50% of HNE degradation in cells [21, 

23, 24]. HNE biotransformation in the other pathways leads to its oxidation to 4-hydroxy-2-

nonenoic acid (HNA) by aldehyde dehydrogenase [25, 26], or its reduction to 1, 4-

dihydroxy-2-nonene (DHN) by alcohol dehydrogenase [25] and aldo-keto reductase [27]. 

With reduction, HNE loses its ability to conjugate with proteins [28]. But even though the 

metabolic removal of HNE is efficient, 2-8% of the HNE in cells appears to form conjugates 

with proteins [18], and initiates signaling events.

HNE metabolism activities vary among tissues and cell types. Esterbauer et al. reported that 

rat liver exhibited the highest HNE metabolizing activity among liver, lung, brain, heart, 

kidney, and intestine. The last had less than 3% of the HNE metabolizing activity of liver, 

largely due to the lack of alcohol/aldehyde dehydrogenase activity in these tissues [25]. 

Consistently Zheng et al. also found that lung and brain in rat and mouse showed limited 

activity of HNE degradation by alcohol/aldehyde dehydrogenase compared to liver [28]. In 

addition, GST expression level and activity also vary with tissues [28]. Such variation in 

HNE metabolizing activity in different tissues means that HNE concentration may vary from 

tissue to tissue in vivo. HNE may have a relatively longer half-life in some tissues and could 

possibly result in higher and sustained HNE signaling in these tissues. On the other hand, a 

lower capacity for HNE metabolism may reflect a lower rate of lipid peroxidation and not 

result in a greater steady state level of free HNE. It is important to note that HNE 

metabolism may be altered during ontogenesis. For instance, Baradat et al. reported that 

compared to wild type cells, isogenic colon cells with a mutation on the adenomatous 

polyposis coli (APC) gene were more efficient in metabolizing HNE, due to a higher 

expression of HNE metabolizing enzymes [29]. Cancerous cells usually express relatively 

higher levels of antioxidants including GST [30] and thus potentially metabolize HNE at a 
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faster rate compared to normal cells. The relatively higher HNE metabolism capacity results 

in a shorter HNE half-life and less HNE toxicity in cancerous cells. On the other hand it 

suggests that more HNE production may be required to initiate a similar signaling response 

in cancerous cells. Regardless, the tissue-dependent differences in HNE metabolism may 

result in variation of HNE levels in different cells/tissues under physiological conditions.

2.2. Tissue concentration

Free HNE remains at very low level in plasma, cells, and tissues under physiological 

condition. In human plasma it is in the range of 0.28-0.68 μM, similar to that in the plasma 

of dogs and rats [1, 3, 31]. This persistent existence of free HNE [32] under normal 

physiological condition may reflect a homeostatic range between its production and 

metabolism [33]. Plasma HNE may mainly come from tissue cells including vascular 

endothelial cells and hepatocytes, and blood circulating cells such as lymphocyte and 

erythrocytes. HNE concentration in rat hepatocytes is in the range of 2.5 μM-3.8 μM, 

calculated from reports that HNE in rat hepatocytes is 0.86-1.3 nmol/108 cells and that a 

typical hepatocyte volume is 3.4×10−9 cm3 [34]. HNE in human blood monocytes is 3 times 

higher than in rat hepatocytes [3]. In other types of cells, HNE concentration is also much 

higher than its plasma level [5]. Since plasma HNE can reach most tissue cells, it is a fairly 

good indicator of the exogenous exposure level of cells throughout the body. Due to a tissue-

dependent HNE metabolizing capacity as discussed in the above, HNE concentration in 

different tissues may vary under physiological conditions.

Under conditions of oxidative stress and diseases, HNE level is significantly increased in 

plasma and tissues [3, 11-13]. In most of these studies, relative level of HNE-protein adduct, 

instead of free HNE concentration, is usually used as HNE marker, therefore most often only 

the relative comparison to healthy controls was available. Nonetheless, studies have 

demonstrated the increase of HNE in diseases and pathologies including Alzheimer disease 

[35-37], cancer [38], COPD [39], and cardiovascular diseases [40], as summarized in many 

excellent reviews ([16, 41]).

3. HNE doses used in cell signaling study

A wide range of doses has been used in studying HNE effects on cell signaling pathways. At 

concentration as low as 0.01 μM HNE was able to reduce endothelial cell junctional 

communication [42], activate G protein mediated signaling [43], and increase 

phosphoinositide-specific phospholipase C (PLC) activity and neutrophil migration [44]. On 

the other end, HNE level as high as 4 mM was used to investigate the effect of HNE on 

Ca2+-ATPase activity in rat liver plasma membrane [45]. The second highest concentration 

of HNE in the cell signaling literature was 500 μM, at which it inhibited Ca2+/Mg2+-ATPase 

activity on erythrocyte membrane [46] and Na+/K+-ATPase activity in rat striatal 

synaptosomes [47]. Analysis of literatures on HNE-mediated signaling showed that about 

17% of studies used 0.1-1 μM of HNE, which is in the physiological range, and that 29% of 

studies used 1-10 μM of HNE, which is in the range where pathology begins. Another 38% 

of studies were performed with a pathological level of HNE (10-50 μM). Overall most 

studies (84%) have used HNE in doses from 0.1-50 μM (Table 1).
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4. Exposure mode of HNE

Exogenous addition of an agent to cultured cells to mimic the in vivo exposure is always a 

challenge. In a review article Forman discussed the pros and cons of the use in cell model 

systems of exogenous application of nontoxic concentration of H2O2, a well-recognized 

second messenger in redox signaling [48]. HNE shares many aspects with H2O2 in terms of 

production and metabolism in signaling studies. Both are generated in vivo, with a higher 

loci concentration, and are degraded rapidly, producing a large gradient of concentration. 

Therefore the challenge of HNE exposure mode in signaling studies is similar as H2O2 -that 

is to mimic the physiologically relevant intracellular concentration at the loci of target. 

Indeed, the physiologically relevant target would need to be close to the site of HNE 

generation in the cell. But, few studies have examined the effect of endogenously generated 

HNE.

Most HNE signaling studies are performed in cell model systems and a variety of exposure 

modes have been applied. In this model, cells are usually cultured in medium containing 

10% or less fetal bovine serum (FBS), in some cases in FBS free medium or buffers. But in 

general, HNE is applied to cells through two modes; i.e., bolus one-time addition or repeated 

addition with intervals for several times. To reach its target signaling proteins, HNE has to 

escape the scavengers in serum-containing medium, the plasma membrane barrier, and the 

intracellular degradation system. Bolus-added HNE disappears rapidly in typical 10% FBS 

cell medium (80% disappears in 30 min) [49, 50], and thus HNE doses much higher than 

pathophysiologic level were usually used to cause effects in these studies. In other words, 

HNE reaching substrate-signaling molecules is obviously lower than the initial HNE 

concentration in the medium.

To mimic a stable HNE level for longer exposure time as is observed in vivo, many studies 

treat cells with a repeated additions of HNE [50-55]. Such an exposure mode was first used 

by Barrera et al. to investigate HNE effects on cell differentiation [56]. This group 

systematically measured and compared HNE concentration in cell medium after bolus or 

repeated addition of HNE [57]. When 10 μM HNE was added to RPMI medium with 10% 

FCS, 40% disappeared within 10 min; and after 30 min, HNE concentration in the medium 

was maintained at 4-6 μM for 1 h, indicating that HNE could be consumed by components 

in FCS. When 10 μM HNE was added to K562 cell suspension (106 cells/ml) in 10% FCS 

medium, it disappeared completely in 1h (undetected), with 78% having disappeared in the 

first 10 min (2.2 μM in medium). On the other hand, when 1 μM of HNE was added every 

45 min for 12 times into cell suspension in 10% FCS medium, HNE concentration in the 

medium remained stable at 1 μM [57]. Similarly, Laurora et al. also measured the HNE 

concentration in medium with the repeated addition of 1μM HNE to cells in 10% FBS 

medium every 45 min for 10 times, and found that HNE concentration in the medium could 

be maintained at around 2 μM [50].

Compared with bolus exposure, the advantages of this exposure mode are obvious. First, a 

stable HNE level is maintained for a longer period of time, more like the in vivo exposure 

situation; secondly, potential influence on cellular response resulting from serum-free 

condition could be avoided; and thirdly, a kinetic response could be detected during the 
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exposure period. In addition, accumulated HNE effects could be studied at lower HNE 

doses. However, since it takes time to reach a stable HNE level, it is inappropriate to 

investigate the initial targets and acute effects of HNE. In this case, bolus exposure seems 

more appropriate.

The biological effects of HNE are closely related to its concentration. At physiological 

levels, HNE is metabolized efficiently and at low intracellular concentration is maintained. 

Thus, its biological effects, if any, are barely observed. Under challenging conditions, where 

its concentration increases, HNE could act as signaling mediator and initiate various 

signaling cascades and regulate gene expression. At non-lethal but stressful concentrations, 

HNE induces processes including autophagy, senescence, and cell cycle arrest due to its 

pathologic modification of proteins and organelles. At lethal concentrations, HNE causes 

apoptosis or necrosis [58].

5. Selectivity of HNE modification on signaling proteins

HNE mediates cell signaling mainly through forming adducts with signaling protein 

molecules that results in change of protein activity. Cysteine, histidine, and lysine are the 

most active amino acids to react with HNE and proteins containing these residues could 

form Michael and/or Schiff base adducts with HNE [3, 5, 52, 53]. At the beginning Anti-

HNE adducts Ab and protein activity assay were used to assess HNE adduct formation and 

effects, and many HNE targeted proteins were identified with these approaches [59, 60]. The 

development of mass spectrometry (MS) and proteomic-based approach in the past decade 

has greatly enhanced the investigation of HNE-protein reaction. With the combination with 

other technologies such as Click chemistry, MS analysis becomes a power tool to profile 

HNE targets and spot specific modification sites [54-56].

Protein oxidation, including protein glutathionylation, nitration, and other types of 

electrophile–protein reactions, exhibits a significant degree of selectivity, which is assumed 

to be due to protein structure and location [61, 62]. Studies have identified many protein 

substrates of HNE conjugation, and revealed that HNE-protein reactions do not occur 

indiscriminately, instead similar to other protein oxidation reactions, exhibit a significant 

selectivity at several levels.

First, only proteins with residues of cysteine, histidine, or lysine are potential targets, 

proteins composed of residues other than these are far less likely to form covalent adducts 

with HNE, as evidenced in studies with model peptides [63] and proteins [64, 65] (Table 2). 

The covalent modification is mainly through Michael adduction while Schiff base adduction 

has been less detected.

Secondly, reactivity of the three amino acids residues with HNE is different. Among them, 

Cys is the most preferred, and the reactivity follows the order of Cys>His>Lys [63, 65]. 

However, this is not absolute and in some signaling proteins, His or Lys is preferred other 

than Cys, such as in signaling proteins of insulin [66], ERK1/2 [67], and serine/threonine 

kinase liver kinas B1 (LKB1) [68]. It should be noted that controversy exists on the HNE 

modification sites and reactivity even in the same protein. For example, Aldini et al. 
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investigated the reactivity of the nine residues of Cys, His, and Lys in human serum albumin 

[69] with HNE and found it followed an order of Cys-34 (Michael adduction) >Lys-199 

(Schiff's base adduction)>His-146 (Michael adduction) [65], while Szapacs et al. reported 

that the reactivity of these residues followed the order of His-242 > His-510 > His-67 > 

His-367 > His-247 [70]. Both studies used similar condition (recombinant pure HSA and 

similar reaction ratio of HSA: HNE) and mass spectrometry analysis. It seems that the 

selectivity difference is related with experiment conditions such as reaction concentration 

and time. Uchida et al. reported that HNE preferentially reacted with residues of Cys and 

Lys in GAPDH protein at concentration of less than 0.5 mM, while it reacted with all three 

residues at concentration of 2 mM [64]. Ishii et al. on the other hand, reported that the 

reaction of Cys, His, and Lys in GAPDH were time dependent. Both His-164 and Cys-281 

were very rapidly modified at 5 min, followed by Cys-244 at 15 min and His-327 and 

Lys-331 at 30 min, while the modification of Cys-149 at the catalytic center was not 

observed [71]. These controversies in reactivity and modification sites suggest that more 

studies are required to further elucidate the HNE alkylation sites of specific proteins, 

especially using models with similar condition as in vivo exposure, since most previous data 

were based on isolated pure protein and used HNE concentration that was not 

physiologically relevant. Another aspect about selectivity of HNE modification is that 

specific sequence motifs in proteins or secondary structure may be required for reaction of 

residues of Cys, His, or Lys with HNE. As observed in HSA [65, 72], Trx[73], human 

carboxylesterase1 [74] and other proteins that contain several residues of Cys, His, and Lys, 

only certain residues were able to adduct with HNE, and even these reactive residues 

exhibited different reactivity. The underlying mechanism of this selectivity remains largely 

unknown. Using computational modeling analysis, Aldini et al. showed that the reason why 

Cys374 of actin was the preferred site of HNE adduction was because of its significant 

accessible surface and substantial thiol acidity due to its particular microenvironment 

surrounding [75]. Szapacs et al. investigated the reactivity of HNE adduct residues and motif 

structure of HSA and found that the rate constants of His residues ranged over 4 orders of 

magnitude with the order of reactivity being His-242 > His-510 > His-67 > His-367 > 

His-247. The most reactive site H242 was located in a fatty acid- and drug-binding cavity of 

HSA. Further analysis of adduction kinetics together with HSA structure and pK(a) values 

of target residues suggested that location in the hydrophobic binding cavity and low 

predicted pK(a) of His-242 could account for its high reactivity toward HNE [70]. The 

relation between reactivity (selectivity) and motif sequence is further supported by a study 

from Doorn et al. [63], in which addition of a methionine to peptides significantly increased 

the reactivity of HNE reactive residues contained in them. Recently Yang et al. developed a 

chemoproteomics platform employing a novel, isotope-labeled Az-UV-biotin reagent and 

analyzed HNE alkylation sites on cysteine and histidine residues in about 400 proteins and 

revealed a characteristic sequence motif of CxxxK for HNE S-alkylation [76]. This powerful 

tool has a potential to expand the inventory of HNE modification sites of signaling proteins 

in complex biological samples. It is important for characterizing the interactions of HNE 

with redox sensitive cell signaling proteins and understanding how it may modulate their 

activities under either physiologic or disease conditions. With the combination of 

computation-based structure analysis, this technology would greatly further the 

understanding of the site selection of HNE covalent adduction in signaling proteins.
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Summarizing this section, it is important to understand that while the rate of adduct 

formation is much greater for Cys than the other two amino acids, the thiolate form of Cys 

(S−) is by far a better nucleophile than the thiol (SH) form. Nonetheless Cys, and 

particularly its thiolate form, are in lower abundance than either His or Lys in proteins. 

Furthermore, even with its far greater rate constant, Cys in its thiolate form is usually less 

accessible to adduction than are Lys or His that would tend to be at the protein/solvent 

interface.

HNE concentration would also affect which amino acids are modified. Aside from the 

accessibility issue for the Cys thiolate, at low concentrations of HNE, its modification would 

be greatly favored. When the concentration of HNE is high however, Cys adduction is still 

the favored reaction kinetically, but the likelihood of adduction to HNE with His and Lys 

increase. The bottom line is that while kinetics would largely favor Cys modification, 

geometry and relative abundance limit the modification of Cys, and that higher 

concentration of HNE makes Lys and His modification increase. Thus, it is important to 

determine the modifications for each individual target protein at realistic concentrations of 

HNE.

6. Stability and turnover of HNE-adducted signaling proteins

Protein modification by HNE is often associated with conformation change and loss of 

normal function. The accumulation of these non-native proteins could lead to harmful effects 

and is associated with pathologic changes. Therefore, HNE-adducted proteins are labeled as 

abnormal by cell protein quality control system, and are either repaired, removed, or 

accumulate as aggregated proteins in cells. Although the underlying mechanism of how cells 

discriminate between native and oxidized form of proteins including HNE-adducts remains 

to be further elucidated, a growing body of evidence suggests that oxidation of amino acid 

residues could cause protein unfolding and exposure of hydrophobic regions, which are 

normally buried in native form. The exposed hydrophobic patches could serve as signals for 

molecular chaperones and proteolytic system, and result in the refolding or degradation of 

target proteins [77]. A majority of studies indicate that oxidized proteins are mainly 

degraded by 20S proteasome [78-80], while there are also evidence suggest that ubiquitin-

dependent 26S proteasome, immunoproteasome [81, 82] and lysosome [77] are also 

involved in the degradation of oxidized proteins. Accumulating evidence suggests that 

autophagy may play a significant role in the degradation of heavily oxidized and aggregated 

proteins, which are poor substrate of proteasome system [83, 84]. It is generally considered 

that like other types of protein oxidation, HNE-modified proteins are degraded through 

proteasomes especially 20S proteasome. In addition, lysosome [85] and autophagy may also 

play a key role in the degradation and recycling of HNE-protein adducts [86, 87] (Fig.2). 

HNE-mediated signaling is usually transient and turned on and off in a time-dependent 

manner, and this is obviously related to the removal of bolus-added HNE and turnover of the 

signaling proteins initially adducted by HNE. Studies suggest that the appearance of HNE-

signaling protein adducts is substrate dependent, some occur within minutes while others 

occur at as late as several hours after HNE exposure. For instance, IκB-HNE adduct level in 

response to uniaxial cyclic stretch reached the highest level at 2 min [88] and HNE inhibited 

protein tyrosine phosphatase 1B (PTP1B ) activity in 5 min [89], while platelet derived 
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growth factor (PDGF)-HNE adduct was detected only after 2 h of HNE exposure [81]. This 

time difference in the occurrence of HNE-adducts may be related to the local HNE 

concentration. Rinna et al. investigated the response of SHP1 activity to different HNE 

concentrations and found that at 15μM, HNE inhibited SHP1 as early as in 5 min but at 5 

μM it needed 15 min to reach the same degree of SHP1 inhibition. In addition, reactivity and 

the location of the protein substrates may also play important roles in this time-dependent 

difference in adduct occurrence. To clarify the exact mechanism however, further studies are 

needed.

The stability or the turnover rate of HNE-signaling protein adducts also exhibit variation 

among target proteins. After formation, IκB-HNE adduct returned to basal level in 2 minutes 

[88], while HNE adducts with epithelial growth factor (EGFR) and insulin receptor substrate 

(IRS) remained detectable for at least 5 h [90, 91]. The presence of HNE-protein adduct 

however, seems to be due to accumulation other than resistance to degradation, as evidenced 

by both Dolinsky et al. [92] and Ma et al. [93] who observed that LKB1-HNE adduct level 

was higher in 1h of HNE exposure, but the total LKB1 protein was decreased. Consistently, 

Demozay et al. also found that even though the increase of HNE-IRS adducts level lasted for 

at least 6 h, the total IRS protein was significantly decreased [91]. However, it remains 

unclear whether other mechanisms such as increased secretion or inhibited translation are 

involved in the decrease in total proteins in the above cases. In contrast, Shearn et al. 
reported that AKT2-HNE level increased by 40 times in 2 h, and the total AKT2 protein did 

not change [94]. In summary, these limited data suggest that the turnover of HNE-signaling 

protein adducts may be substrate dependent. This point is supported by a recent study by 

Yang et al., who investigated the turnover of 398 HNE-protein adducts using a mass 

spectrometry-based quantitative chemoproteomics platform and found that the adduct 

turnover rates varied in a site-specific manner [76]. In contrast, studies found that HNE-

modified proteins usually decreased rapidly after removing HNE from medium and then 

remained at a stable level for longer time [85, 95]. For instance, Liu et al. reported that 

overall HNE protein adducts level decreased by 60% in 2 min of HNE exposure and then 

remained stable for at least 1h [87]. It remains unclear if proteasome was responsible for the 

rapid degradation of HNE-adducts, as it is hard to explain why the left 40% could be stable 

for 1 h. It is worthy to note that most HNE signaling studies are performed in cell models, 

which usually means short observation period and transient HNE exposure, compared to in 
vivo situation where HNE exposure persists and a possible balance between adduct 

formation and turnover could be reached. Further investigation of HNE-adduct turnover 

under these conditions would further our understanding of the mechanism of HNE-mediated 

signaling.

7. Conclusion and future studies

As a potent signaling mediator, HNE plays important roles in maintaining cellular 

homeostasis and in oxidative stress-implicated pathological changes [12, 96]. Most studies 

on HNE signaling in cultured cells were performed with HNE concentrations in the 

pathophysiologic range and whether HNE contributes to signaling effects at physiological 

concentration in vivo remains largely unknown. In addition, future studies on HNE signaling 
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should consider the exposure mode; i.e., bolus-addition and repeat exposure, which is 

closely related to the effective HNE doses and reaction time with targets.

Selectivity of HNE adduction reaction is an important topic in the research of HNE 

signaling, and is relatively less studied. Most previous studies on HNE target sites and 

selectivity assay were conducted on recombinant protein instead of living cells, in which 

different HNE concentration, protein structure, and microenvironment may exist. More 

studies with in vivo models, and with mass spectrometry based technologies [76], are needed 

before a clear and general rule in the selectivity of HNE target can be drawn
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Highlight

• A wide range of HNE concentrations have been used in studies of HNE 

signaling

• Bolus and repeated addition of HNE are useful, but do not exactly mimic 

physiologic exposure

• HNE conjugates with and modifies signaling proteins selectively

• HNE-signaling protein adducts are subsequently degraded
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Figure 1. 
HNE formation and pathway of metabolism. LOX, lipoxygenase; COX-2, 

cyclooxygenase-2; AR, aldo-keto reductase; GSTs, glutathione S-transferases; ALDH, 

aldehyde dehydrogenase; DHN, 1, 4-dihydroxy-2-nonene; GS-HNE, glutathione-HNE 

conjugate; HNE HNA, 4-hydroxy-2-nonenoic acid.
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Figure 2. 
Turnover of HNE-modified signaling molecules.
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Table 1

Usage of HNE concentration in signaling study

HNE concentration (μM) Percentage of studies (%)

≥500 1.7

100<HNE<500 1.7

50<HNE≤100 11.7

10<HNE≤50 38.0

1<HNE≤10 29.0

0.1≤HNE≤1 16.8

<0.1 1.1

Note. HNE concentration was calculated from the amount of HNE added and volume of medium or buffer and was based on 179 studies of HNE 
effect on signaling molecules/pathways from 1987-2015.

Arch Biochem Biophys. Author manuscript; available in PMC 2018 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang and Forman Page 21

Table 2

Modification of proteins by HNEa

Protein Adducted Residues Adducts Type Reactivity Detection method Reference

Insulin Two His and one Lys Michael adduct His>Lys HPLC, MS, and amino acid 
sequencing

[66]

GAPDH Cys, His, and Lys Michael, Schiff base 
adducts, and 

intramolecular and 
intermolecular crosslink

When [HNE]<0.5 mM, 
preferentially with Cys 

and Lys; when 
[HNE]=2 mM react 

with all three residues

HPLC [64]

β-lactoglobulin B Cysteine, histidine, 
and lysine.

Mainly Michael adducts Adducts containing 
from three to nine 

aldehyde molecules 
per molecule of protein

Electrospray ionization (ESI) 
MS

[97]

Protein kinas C (PKC) NA NA NA Anti-HNE adducts Ab [98]

Na (+)-K(+)-ATPase Cys and Lys NA NA Anti-HNE adducts Ab [99]

Erythrocyte membrane proteins NA NA Mainly with Cys at 
0-0.5 mM

Anti-HNE adducts Ab [100]

c-Jun N-terminal kinas (JNK) NA NA NA Anti-HNE histidine Ab [49]

FR-1 Cys298 Michael adduct NA ESI-MS [95]

Tau Lys NA NA Anti-HNE Lysine Ab [96]

Cytochrome c oxidase NA NA NA Anti HNE-histidine Ab [101]

IκB kinas (Frikke-Schmidt, 
#312)

NA NA NA Anti-HNE adducts Ab [102]

Bovine cathepsin B Cys29 and Michael adducts NA Pure protein, tandem MS and 
Anti-HNE adducts Ab

[103]

GAPDH His-164, Cys-244, 
Cys-281, His-327, 
and Lys-331 and 

revealed

Michael adducts His-164 and Cys-281 
were modified at 5 
min, followed by 

Cys-244 at 15 min and 
His-327 and Lys-331 
at 30 min, Cys-149 

modification was not 
observed

Pure protein, ESI liquid 
chromatography-mass 

spectrometry (ESI-LC-MS)

[71]

Carnosine NA Schiff base NA Anti-HNE adducts Ab [104]

Model peptides Cys, His and Lys are 
modified by 4HNE;

Michael adducts Cys>>His>Lys MALDI-TOF-MS [63]

Alpha 6/C2 subunit of 20s 
proteasome

NA NA NA MALDI-TOF MS [105]

Actin Cys374 NA Reactivity of Cys374 
is due to a significant 
accessible surface and 
substantial thiol acidity 

due to the particular 
microenvironment

Pure protein LC-ESI-MS/MS [75]

Protein disulfide isomerase 
(PDI)

Cys NA NA MS [102]

Carnosine Cys NA NA ESI-MS [106]

Epithelial growth factor receptor 
(EGFR)

NA NA NA Anti-HNE adducts Ab [107]

Human serum albumin [65] His-67, His-146, 
His-242, His-288, 
His-510, Lys-195, 

8 Michael Adducts 
(MA), 3 Schiff Base 

(SB)

Cys-34 (MA)>Lys-199 
(SB)>His-146 (MA)

LC-ESI-MS/MS [65]
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Protein Adducted Residues Adducts Type Reactivity Detection method Reference

Lys-199, Lys-525 
and Cys-34

Thioredoxin reductase Cys-496 NA NA MS [108]

Enolase 3b, aldolase and 
triosephosphate isomerase 1, 

creatine kinase, carbonic 
anyhdrase III, aconitase 2, 

dihydrolipoamide 
dehydrogenase, and electron 

transfer flavoprotein-beta

NA NA NA MS [106]

Type II collagen and MMP-13 NA Anti-HNE adducts Ab [109]

HSA 10 His and Lys 
residues

Michael Adducts H242 > H510 > H67 > 
H367 > H247

LC-MS-MS [70]

α-synuclein His-50 NA NA LC-MS/MS [110]

ADP/ATP translocase 1 Cys-256 Michael adducts NA MALDI-MS/MS [111]

Extracellular signal-regulated 
kinas ½ (ERK1/2)

His-178 NA NA LC-MS/MS [67]

Tubulin Cys-347, Cys-376, 
and Cys-303

Tubulin cross-links are 
Lys-dependent

NA LC-MS/MS [112]

HSA Cys-34 NA NA LC-ESI-MS/MS [113]

HSA Cys-34 and Lys-199 Cys-34 (MS) and 
Lys-199 (SB)

NA LC-ESI-MS/MS [72]

Akt NA NA NA Anti-HNE adducts Ab [114]

HSP70 and HSP90 NA NA NA Click chemistry and 
proteomics

[115]

Liver kinas B1 (LKB1) NA NA NA Anti-HNE adducts Ab [92]

Toll like receptor 4 (TLR4) Cys NA NA LC-MS/MS [116]

Trx Cys-73 and Cys-32 NA Cys-73 > Cys-32 NMR [73]

Type II collagen NA NA NA Anti-HNE adducts Ab [117]

Glutamate cysteine ligase: 
catalytic (GCLC) and modifier 

subunit (GCLM)

Cys-553 on GCLC 
and Cys-35 on 

GCLM

NA NA Pure protein, MALDI-TOF [118]

Human carboxylesterase1 Lys-105 and Cys-389 Only Lys-105 adducted MS [74]

SIRT3 deacetylase Cys-280 NA NA MS/MS [119]

AKT2 His-196, His-267, 
and Cys-311 of rat 

Akt2

Michael Adducts NA Anti-HNE adducts Ab and 
MALDI-TOF

[94]

Phosphatase and tensin homolog 
(PTEN)

NA Single Michael adduct NA Anti-HNE adducts Ab and 
MALDI-TOF/TOF

[120]

EGFR NA NA NA Anti-HNE adducts Ab [121]

LKB1 Lys-97 NA NA Anti-HNE adducts Ab [68]

IκBα NA NA NA Anti-HNE adducts Ab [122]

PKC NA NA NA Anti-HNE adducts Ab [123]

Liver fatty acid-binding protein 
(L-FABP)

Lys-57 and Cys-69 
on apo and Lys-6, 
Lys-31, His-43, 

Lys-46, Lys-57 and 
Cys-69) on holo 

protein

NA NA Pure protein, MALDI-
TOF/TOF MS

[124]
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Protein Adducted Residues Adducts Type Reactivity Detection method Reference

Peptidyl-prolyl cis/trans-
isomerase A1 (Pin1)

His-157 and Cys-113 Michael adducts Cys-113 is the primary MALDI-TOF/TOF MS [125]

Mitochondrial aconitase (ACO2) Cys Michael adducts The most reactive sites 
were Cys-358, 

Cys-421, Cys-424, 
Cys-99 and Cys-565

MS [126]

Angiotensin II (Ang II) NA NA NA Anti-HNE adducts Ab [127]

GRP78 Lys and His NA Marked propensity for 
Lys and His adduction 

within the ATPase 
domain

MS [128]

Lactate dehydrogenase (LDH) His-68, Cys-164, 
Cys-186, and 

Cys-294

Michael adducts NA Purified protein, MS [129]

5′ AMP protein kinase (AMPK) Cys-130, Cys-174, 
Cys-227, and 

Cys-304 on AMPKα 
and Cys-225 on 

AMPKβ

Michael adducts NA Pure protein, MS [130]

Protein kinase A Cys-199 NA NA MS [131]

Src Cys-248 NA NA LC-MS/MS [132]

398 proteins 386 Cys sites and 12 
His sites

Michael adducts NA MS [76]

Cyclin-dependent kinas 2 
(CDK2)

NA NA NA MS [133]

Apoptosis inducing factor 
(AIFm2)

His-174 NA NA MS [134]

Note. NA, not available; MS, mass spectrometry.
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