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“Beyond MELD” – Emerging strategies and technologies for 
improving mortality prediction, organ allocation and outcomes 
in liver transplantation

Jin Ge1, W. Ray Kim2,*, Jennifer C. Lai1, Allison J. Kwong2

1Division of Gastroenterology and Hepatology, Department of Medicine, University of California – 
San Francisco, San Francisco, CA,USA

2Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University 
School of Medicine, Stanford, CA, USA

Summary

In this review article, we discuss the model for end-stage liver disease (MELD) score and its dual 

purpose in general and transplant hepatology. As the landscape of liver disease and transplantation 

has evolved considerably since the advent of the MELD score, we summarise emerging concepts, 

methodologies, and technologies that may improve mortality prognostication in the future. Finally, 

we explore how these novel concepts and technologies may be incorporated into clinical practice.
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Introduction

The deficit of available donor organs in relation to the number of patients in need of liver 

transplantation necessitates systems to allocate organs in an efficient yet equitable manner. 

The current principles of liver allocation in the United States,1 the Eurotransplant region,2,3 

and elsewhere include determination of priority through objective and measurable medical 

criteria, ordered from most to least medically urgent.1,4 Urgency has been represented 

primarily by the model for end-stage liver disease (MELD) score, rather than the Child-Pugh 
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score, to avoid subjective variables such as ascites and encephalopathy and to expand the 

scale (to reduce the number of candidates with identical scores).5,6

The MELD score, which is comprised of serum bilirubin, creatinine, and the international 

normalised ratio, has since served a dual purpose in general and transplant hepatology. It 

effectively predicts short-term (e.g., over 90 days) mortality among patients with chronic 

liver disease, thereby providing clinicians with a critical tool to prognosticate liver-related 

and waitlist mortality. It has been used to determine medical urgency (and hence priority) 

for liver transplant candidates since 2002 in the United States and 2006 in the Eurotransplant 

region, making it an essential tool for transparent and equitable organ allocation.7,8

The landscape of chronic liver disease and liver transplantation has evolved considerably 

in the last two decades. Both waitlist mortality prediction and transplant organ allocation 

require ongoing re-evaluation to ensure accurate prognostication and appropriate distribution 

of donor organs. In 2016, the MELD score was updated to include serum sodium, an 

objective biomarker that is often a surrogate indicator for ascites.9 A new update to and 

recalibration of the MELD score, MELD 3.0, was recently published with the inclusion of 

sex and serum albumin.10 At the same time, a substantial proportion of liver transplants are 

allocated by MELD “exception”, representing indications where the mortality risk and need 

for transplant are not well-represented by the MELD score.11

In addition, emerging technologies, new methodologies, and evolving conceptual 

frameworks for liver disease may improve clinicians’ ability to prognosticate and manage 

patients with end-stage liver disease. In this article, we present emerging tools and 

techniques “beyond MELD” for improvement in liver allocation, prognostication, and 

outcomes in patients with end-stage liver disease.

Beyond MELD – for liver allocation

Improving the MELD score

Over the past two decades of MELD score-based liver allocation, the demographics of 

chronic liver disease and indications for liver transplantation have changed dramatically 

worldwide. The widespread availability of effective direct-acting antiviral therapy for 

hepatitis C and the increasing prevalence of alcohol-associated liver disease and non-

alcoholic steatohepatitis has fundamentally changed the population of patients awaiting liver 

transplantation.11,12 Throughout these changes, however, the MELD score has continued 

to provide robust predictions of short-term waitlist mortality that outperform most other 

clinical scoring systems, with c-statistics that exceed 0.80 in various cohorts.9,10,13 Still, 

it has been perceived that the predictive power of the MELD score may have diminished 

in recent years.14,15 The MELD score may not represent mortality risk as accurately for 

patients with some of the most severe clinical complications of cirrhosis, such as acute-

on-chronic liver failure (ACLF), refractory ascites/hepatic hydrothorax, recurrent variceal 

bleeding, and hepatocellular carcinoma.14,16

In addition, the MELD score has historically underpredicted mortality risks for women.17,18 

This sex disparity is multifactorial but in part stems from the reliance of the MELD score 
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on the measurement of serum creatinine, which can vary by sex for the same degree of 

renal dysfunction.17,19,20 Women on average have lower muscle mass compared to men, 

leading to systematic underestimation of renal function by serum creatinine.21 Alternatives 

to the creatinine component of the MELD score have been proposed, including MDRD 

(modification of diet in renal disease),18,22 GRAIL (glomerular filtration rate assessment 

in liver disease),23,24 and cystatin C,25,26 but are still less-than-ideal owing to the lack 

of improvement in model performance, inclusion of age and/or race-based equations, or 

clinical availability (cystatin C) (Table 1). The most recent iteration of the MELD score, 

MELD 3.0, incorporates sex as an independent variable to correct for the sex disparity 

due to creatinine, while also updating coefficients, adding serum albumin and adjusting the 

creatinine to a lower cap of 3.0 mg/dl.10 Other factors contributing to the sex disparity, 

including anthropometric differences and thus fewer opportunities for size-appropriate 

organs or the allocation of exception points, may require other types of adjustments to 

fully address the differences in outcomes and access to transplant between sexes.17,19,27,28

While the MELD score remains a reliable indicator of mortality risk in liver disease, it 

can certainly benefit from further refinement. In so doing, the selection of variables should 

be carefully considered. Older age, medical co-morbidities, or certain aetiologies of liver 

disease may be associated with increased mortality risk, yet there is no consensus that these 

variables should influence waitlist priority or access to liver transplantation. Race may also 

be predictive, but this variable in clinical prediction scores can be problematic, as racial 

differences among populations in large datasets are often not genetic or biological, but rather 

reflect socioeconomics and healthcare policy.29 Race adjustment in these situations, while 

well-intentioned, can exacerbate inequity. Lastly, variables should be objective, verifiable, 

and readily available. Although addition of such variables may generate better prediction of 

waitlist mortality, they are not necessarily appropriate for use in organ allocation. Systems 

for organ distribution also need to be interpretable and transparent with regards to how 

changes of a specific variable would impact allocation.

Emerging concepts to improve allocation

The rationale behind organ allocation systems is to maximise the use of available organs and 

reduce deaths on the waiting list. Organ allocation may be driven by 3 important principles:

- Urgency – Allocation to the patient estimated to have the shortest survival without a 

transplant.

- Utility – Allocation to the patient estimated to have the longest post-transplant 

survival.

- Transplant benefit – Allocation based on the difference between the mean survival 

estimates with and without a transplant.

In the past two decades, liver allocation in the United States and parts of Europe has been 

based almost entirely on the principle of urgency – in other words, by risk of death as 

determined by the MELD score.7,8 Although the Final Rule instituted by the Department 

of Health and Human Services in the United States also provides for consideration of 

utility and survival benefit – to make the best use of donated organs, to avoid wasting 
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organs, and to avoid futile transplants.1 However, acceptable standards and thresholds for 

post-transplant longevity and futility have been challenging to define,30 and current models 

for post-transplant survival do not perform well enough alone to be used in allocation.31–33 

Moreover, the net benefit of liver transplant, defined by the difference between survival with 

and without transplant, is largely driven by waitlist mortality, where the candidates with the 

highest MELD score gained the most life-years from transplant.34,35

In many MELD-based liver allocation systems, exception points grant waitlist priority and 

thus access to transplant for patients whose mortality risk and need for transplant is not 

well-represented by the MELD score, the most common exception being for hepatocellular 

carcinoma.36 Calibration of these exception points to approximate the mortality risk and 

urgency for transplant and to equitably allocate organs has turned out to be a moving 

target as patient characteristics and management of various conditions have shifted over 

time. Ensuring equitable allocation for this population may require additional solutions, 

including integration of transplant benefit and flexibility for donor-recipient matching in 

certain cases.37 For example, the United States allocation system does consider utility in 

the specific contexts of hepatocellular carcinoma or cholangiocarcinoma, by which patients 

exceeding certain criteria do not receive standard priority for liver transplant, owing to the 

excess risk of post-transplant recurrence and thus lower transplant benefit.37 Such rules may 

set a precedent for utility to be considered in future liver allocation policies.

Key point

While the MELD score remains a reliable indicator of mortality risk in liver disease, 

further refinements, exception points, and continuous distribution are required as we 

move toward truly fair and equitable organ allocation.

Disparities in waitlist outcomes also arise from unequal access to transplant. Patients with 

the same medical urgency should have an equal opportunity of receiving a liver transplant, 

yet this is currently not the case. Upcoming changes in allocation in the United States 

include not only optimisation of the MELD score but also continuous distribution, a 

composite point scoring system that will enable the consideration of additional variables, 

including height, body surface area, blood type, geography, paediatric status, and travel 

efficiency, and indication for transplant (i.e. exceptions), to move closer to fair and equitable 

organ allocation. Under the proposed framework defined by the Organ Procurement and 

Transplantation Network (OPTN) in the United States, continuous distribution will attempt 

to balance 5 goals: medical urgency, post-transplant survival, candidate biology, patient 

access, and placement efficiency, although the specific attributes ultimately included and 

their respective weighting will depend on feedback from the transplant community and 

modelling and analysis. The system is envisioned to provide a more dynamic reflection of 

patient-related factors and thereby improve access.38–40 Consensus processes, such as that 

described by the Italian liver transplant community, may help to develop allocation policy 

that fairly balances the various priorities of liver transplantation, including urgency, utility, 

and transplant benefit.37
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Key point

Factors not traditionally reflected by the MELD score, such as malnutrition, frailty, and 

sarcopenia, have improved prognostication in patients with cirrhosis.

Beyond MELD – For prognostication

Muscle dysfunction as a clinical marker for assessing disease severity in 
patients with cirrhosis—Emerging factors that have not classically been reflected 

by the MELD score, such as malnutrition, frailty, and sarcopenia, have improved our 

ability to dynamically characterise the morbidity and mortality associated with cirrhosis.41 

Malnutrition represents a spectrum of nutritional deficiencies that cause adverse effects on 

physiologic function or clinical outcomes.42 It contributes to and is interdependent with 

measurable clinical manifestations of muscle dysfunction: frailty and sarcopenia.41

Frailty is classically defined as the clinical state of decreased physiologic reserve and 

increased vulnerability to health stressors.43 In patients with cirrhosis, this manifests as the 

phenotypic representation of impaired muscle contractile function.44 Frailty is estimated 

to be present in 17% to 43% of patients with cirrhosis based on different measurement 

standards;45–48 it worsens in patients with cirrhosis over time and has been strongly 

associated with waitlist and post-transplant mortality. For instance, frailty was associated 

with a nearly 2-fold higher adjusted risk of death in 1,044 ambulatory patients with cirrhosis 

awaiting liver transplantation in a multicentre study in the United States.45 Moreover, frailty 

is linked with increased healthcare utilisation both in the ambulatory and hospitalised 

settings. Given frailty’s strong association with post-transplant outcomes, the concept of 

“prehabilitation” or intervening to modify physical reserve prior to surgery has gained 

traction in both transplant and non-transplant surgical fields.49,50 Arrest or reversal of 

the progression of frailty is thought to be a clinically relevant achievement that should 

incentivise liver transplantation.49 As such, the American Association for the Study of 

Liver Diseases now recommends all patients with cirrhosis should be assessed for frailty 

with a standardised tool at baseline and longitudinally;41 and the American Society of 

Transplantation recommends the same for patients awaiting liver transplantation.49

arcopenia is defined as the progressive and generalised loss of skeletal muscles associated 

with increased likelihood of adverse outcomes.51 Sarcopenia is also common in adults 

with cirrhosis, affecting 30% to 70% of patients with strong sex-based differences in 

prevalence.52,53 The gold standard for sarcopenia assessment is computed tomography 

imaging; since abdominal imaging is commonly performed for clinical reasons, muscle 

mass measurements are often obtainable.54,55 Sarcopenia has a robust association with 

waitlist mortality before and after transplant, as well as with hepatic decompensation.52,56,57 

Sarcopenia is progressive in patients with cirrhosis, and serial/longitudinal measures of 

muscle loss have been associated with clinical outcomes including waitlist mortality.58

Electronic health data and multicentre electronic consortiums—Recent advances 

in computing power in conjunction with the availability of large databases and analytical 

methodologies have dramatically increased the tools available for clinical research in 
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hepatology. Historically, the predominant forms of large clinical research databases in the 

United States and Europe have been based on either patient registries, such as the Scientific 

Registry of Transplant Recipients or Eurotransplant databases,11,59,60 multicentre curated 

cohorts, or administrative claims databases.61–63 Beyond these large databases, there has 

been a growing movement towards aggregation of longitudinal electronic health records 

(EHRs) across multiple institutions and health systems.64–66

In the United States and the European Union, EHRs now have greater than 96% penetration 

in acute care hospital and physicians’ offices.67,68 EHR data, gathered as the transactional 

record of health care delivery and operations, are now viewed as a key resource to generate 

unique insights.69 Novel applications of data science and clinical informatics on EHR data 

have the potential to accelerate clinical research and improve patient care. One of the key 

advantages of EHR data is its dynamic longitudinal nature with data acquisition occurring 

at every interaction that the patient has with the healthcare system. Correctly harnessed, 

integration of longitudinal data could produce more comprehensive reflections of patients’ 

clinical trajectory.

For instance, incorporation of time-variant variables, such as laboratory values and vital 

signs, captured in EHRs have enabled continuous prediction of the development of 

acute kidney injury during inpatient admissions.70,71 Moreover, the use of longitudinal 

and sequential data elements gathered from EHR flowsheets, medication administrations, 

physician notes, and radiology reports have enabled the construction of deep-learning 

models to more accurately predict in-hospital mortality, 30-day readmissions, and prolonged 

length of stay.72 In clinical hepatology, the integration of longitudinal EHR elements, such 

as structured flowsheet entries, medication administration, procedure orders, vital signs, and 

laboratory values, has enabled dynamic calculations of the North American Consortium for 

the Study of End-Stage Liver Disease-ACLF and Chronic Liver Failure Consortium-ACLF 

prognostication scores in hospitalised patients with ACLF.73

Despite the potential for longitudinal EHR data to improve outcome prediction, the lack 

of standards, lack of semantic interoperability, and disparate EHR systems/implementations 

have historically limited large multi-institution collaborations.74 Early regional-based EHR 

consortiums, such as HealthLNK based in the Chicago area, have demonstrated the value 

of multicentre EHR data in predicting factors associated with mortality in patients with 

cirrhosis.75

Key point

Longitudinal electronic health records hold great promise for dynamic outcome 

prediction, particularly with the application of common data models and the 

centralisation of data.

The development and wider availability of common data models, such as the observational 

medical outcomes partnership (OMOP) model and the fast healthcare interoperability 

resources (FHIR) model, may now facilitate larger EHR-based collaboratives.64,76 Examples 

of such large EHR-based research collaboratives include the Observational Health Data 

Ge et al. Page 6

J Hepatol. Author manuscript; available in PMC 2023 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sciences and Informatics group based in the United States and the European Health 

Data and Evidence Network based in the European Union.64,77 While the trend towards 

common data models and centralised EHR data for observational research had already been 

underway, the COVID-19 pandemic drastically accelerated this movement with the creation 

of the National COVID Cohort Collaborative (N3C).65,78

N3C is a novel, centralised, and harmonised repository of EHR data from more than 64 

sites from across the United States built on the OMOP platform, formed in response to the 

need for rapid accrual and analyses of clinical data during the COVID-19 pandemic.65,78 

Its effective use has allowed for the rapid generation of insights into the mortality risk of 

SARS-CoV-2 infection among patients with cirrhosis.79 The work highlights the prospect 

of transplant hepatology-specific multicentre EHR collaboratives with deep clinical content 

expertise, which may accelerate the development of comprehensive models for mortality 

prediction in patients with end-stage liver disease.

Novel modelling methodologies for mortality risk prediction

While high-dimension multicentre EHR data has tremendous potential, their “big data” 

nature may require the use of novel analytical techniques.80,81 “Big data” is an amorphous 

term that is classically defined in terms of the 5 “Vs” (volume, velocity, variety, veracity, and 

value) to describe large datasets that may be more effectively analysed using 82,83 artificial 

intelligence-based methods, such as machine learning (ML), which permit data-driven rather 

than hypothesis-driven discovery.84,85 The most prevalent ML algorithms are divided into 

supervised (classification) and unsupervised (sorting) methods (Table 2).84,86,87

There is often some overlap between traditional statistical and ML approaches: Logistic 

regression is such an example of a methodology common to both. In general, classification 

trees and neural network-based methods have generally been the predominant ML 

algorithms applied to contemporary hepatology research. The cirrhosis mortality model, 

developed from the United States Veterans Affairs Corporate Data Warehouse (VHACDW) 

using a combination of gradient boosting and logistic regression methods, offered 

significantly improved discrimination compared to the MELD score.88 Of particular interest 

are artificial neural networks (ANNs), which are learning algorithms that can be employed 

for both supervised and unsupervised tasks. Neural networks are inspired by neuroanatomy 

– each neuron is a computing unit, and all neurons are connected to build a network. Signals 

travel from input layer to the output layer going through multiple hidden layers – which 

represent higher complexity.89–91 Deep neural networks, characterised by multiple layers 

between the input and output layers,91 have been utilised for longitudinal analyses of EHR 

data to predict outcomes of cirrhosis.92

In liver transplant, ML methodologies have been used to explore waitlist mortality and 

organ allocation.87,88,92–96 One of the first ML models in transplant hepatology developed 

in 2003 was an ANN model to predict 1-year mortality in a cohort of 92 patients. While 

limited in scale, this ANN model outperformed logistic regression and the Child-Pugh 

score.93 Similarly, an ANN-based mortality model derived from patients awaiting liver 

transplantation in Italy and validated in the United Kingdom showed better predictive ability 

than the original MELD score.94 The optimised prediction of mortality model – developed 
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in 2019 and trained on OPTN data using ML optimal classification trees – demonstrated 

superior mortality prediction vs. the MELD score, and led to decreased mortality and 

increased survival benefit across all candidate demographics, diagnoses, and geographic 

regions in liver simulated allocation model simulations.97

Despite these encouraging results, ML models for waitlist mortality have several limitations, 

including interoperability and complexity. In addition, many early applications of ML 

methodologies have only considered binary outcomes rather than a time-dependent survival 

function which is key in the accurate determination of transplant urgency and waitlist 

priority. Due to these limitations and challenges in practical implementation, waitlist 

mortality models based on ML have yet to gain much traction in organ allocation.98,99 ML 

models have the potential to better predict post-transplant outcomes through the real-time 

considerations of longitudinal candidate variables, donor variables, and the interaction of 

donor-candidate matching, which may play a role in continuous distribution.38,39

Potential pitfalls of algorithms for clinical prediction

While there is substantial potential for ML to influence clinical practice in transplant 

hepatology and potentially improve patient outcomes, limitations of these technologies 

must be recognised.85 First, additional complexity may not improve predictive performance 

if underlying data and variables are the same. When comparing the ability of ML 

models (support vector classification and random forest) vs. logistic regression to predict 

readmission and death in 2,179 North American patients with ACLF, ML model accuracies 

were equivalent to models generated using only the MELD score. The performance of future 

ML modelling may improve if higher density data incorporating novel variables, such as 

sarcopenia and frailty, are available.100

Second, despite harmonisation and rationalisation of different ontologies and semantics, 

data quality, shift, and reproducibility are still ongoing issues in the modelling of EHR 

data.80,101 Dataset shift describes the changes in model performance due to temporal or 

spatial shifts between the population used for training and the population upon which the 

algorithm is deployed.102,103 One prominent recent example is the University of Michigan’s 

deactivation of a proprietary sepsis-alert model due to shifts in patient populations during the 

COVID-19 pandemic.104 Dataset shift is not exclusive to ML algorithms but also to other 

clinical prediction scoring systems. Periodic audits and updating of scoring systems, such as 

the update of MELD to MELD 3.0,10 are necessary to adapt our clinical tools to changing 

conditions.

Third, underlying bias can be amplified by clinical prediction and ML-based 

algorithms.105,106 The most prominent example in transplantation is the incorporation of 

race in estimated glomerular filtration rate (eGFR) calculations, which have disadvantaged 

racial minorities in listing practices and allocation for kidney transplant.29,107 In transplant 

hepatology, eGFR has been avoided in clinical prognostication modelling due to its potential 

for exacerbating race- and sex-based disparities. Human intelligence, in addition to artificial 

intelligence, remains critically important for the thoughtful and deliberate selection of data 

features, variables and analytic methodologies.

Ge et al. Page 8

J Hepatol. Author manuscript; available in PMC 2023 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fourth, structured data, which forms the basis for most classical models and ML algorithms 

at this time, are limited by coding. For example, efforts to diagnose Fontan-associated 

liver disease were limited by the lack of specific structured diagnostic codes across 

multiple clinical databases.108 The volume of unstructured data far exceeds structured data, 

with an estimated 90% of digital data in healthcare being unstructured. Incorporating or 

converting unstructured data elements in the EHR, such as imaging reports, pathology 

reports, and clinical documentation, into structured or tagged features remains challenging. 

Transformation of such data into structured data requires substantial cleaning, splitting, 

merging, validating, and sorting, but does improve clinical representation in predictive 

analytics.109

Finally, algorithms are not anticipated to completely replace the “subjective” judgment of 

clinicians involved in the care of the peritransplant patient.110 For instance, significant 

technical expertise is required to conduct split liver transplantation,111 to use donor organs 

with technical variants or higher risk features,112 or to successfully transplant patients with 

complex surgical histories.113 These institution- and clinicianspecific knowledge and skills 

are often illcaptured and ill-evaluated by algorithms.

Key point

There is an increasing push to develop data-driven machine learning-based algorithms to 

further improve outcome prediction in patients with liver disease.

For these reasons, the application of ML-based artificial intelligence has received a mixed 

reception from both clinicians and the general population.114–116 Among clinicians, there 

are latent fears that algorithms may ultimately replace their skills or functions.116,117 In 

addition, many clinicians are uncomfortable with “black box” ML tools, even though 

examples of similar opacity abound in other diagnostic and therapeutic areas of clinical 

medicine.118 Among providers and patients, there is a concern about the loss of patient-

provider relationships, privacy in data use, and accountability – namely who is responsible 

for adverse outcomes due to clinical decisions influenced or augmented by artificial 

intelligence.114,115,119 There is an increasing recognition that transparency, interpretability, 

and explainability are necessary for long-term acceptance of artificial intelligence tools. 

Ante hoc systems, which are interpretable by design, and post hoc systems, which provide 

local and reproducible explanations for algorithm outputs, are now commonly utilised 

to enable greater trust in ML algorithms.116,120 Similarly, active incorporation of human 

knowledge, or expert-augmentation, in the algorithm construction process is another strategy 

to improve “explainability.”121 To begin to address these concerns, the development of 

standardised tools and evaluations on transplant reporting and assessments of bias in applied 

ML techniques is currently underway.102,122
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Key point

Clinical decision support and prospective risk modelling are emerging areas of research 

that are hoped to lead to improvements in the management of patients with cirrhosis and 

those on the liver transplant waiting list.

Beyond MELD – for improvement in patient outcomes

Emerging technologies to actively manage waitlist mortality risk—One 

technology to overcome issues with unstructured data is natural language processing (NLP), 

which is a suite of related techniques to convert unstructured or narrative text into tagged 

or structured elements for analysis.123,124 There has been particular interest in utilising NLP 

for the diagnosis of non-alcoholic fatty liver disease as this condition is poorly documented 

in structured EHR data.125,126 NLP has been used on abdominal ultrasound, computerised 

tomography, and magnetic resonance imaging reports from the VHACDW to rapidly screen 

patients with radiographic evidence of fatty liver disease.126 In an analysis of clinical notes 

available for 38,575 patients enrolled in the Mount Sinai BioMe cohort, NLP methods 

outperformed ICD codes and text search.125

Real-time clinical decision support (CDS) and prospective risk modelling are also emerging 

areas of research/implementation in the management of patients with cirrhosis. Simple 

decision support tools have been implemented to support targeted quality improvement 

efforts, such as the proper use of ceruloplasmin in liver disease evaluation,127 improving 

hepatitis C screening,128 and albumin utilisation.129 The substitutable medical applications 

and reusable technologies on FHIR (SMART-on-FHIR) application programming interface 

allows for the development of more complex and prospective CDS systems by securely and 

automatically pulling in relevant patient data from disparate locations in the EHR.130,131 

Previous SMART-on-FHIR CDS applications created to support the American Academic of 

Pediatrics guideline on management of neonatal hyperbilirubinemia were shown to have 

excellent usability and improved order rates for clinically appropriate phototherapy.132 

SMART-on-FHIR CDS applications have yet to be widely pilot tested or implemented in 

the care of patients with cirrhosis.

Potential applications of encounter-level CDS include improving adherence to guideline-

recommended care in cirrhosis, promoting timely intervention before anticipated/forecasted 

clinical decompensation,133,134 or aiding immunosuppression surveillance in the post-

transplant setting.135 On a patient or precision-level, CDS could allow for the calculation 

of “personalised” risk models for progression of fibrosis to cirrhosis, development of 

hepatocellular carcinoma, and risk of waitlist dropout.136 The use of these models and 

CDS systems may help inform decisions surrounding organ allocation and acceptance in 

the future. Prospective implementation of such CDS systems could allow for real-world 

“electronic” experiments or clinical trials (Fig. 1).137,138 These concepts remain unexplored 

in chronic liver disease and liver transplantation, but may generate significant real-world 

evidence that could be used to optimise organ allocation and reduce waitlist mortality.
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Conclusions

While the demographics and epidemiology of chronic liver diseases have changed 

dramatically in the past two decades, the MELD score and its successors have continued 

to provide robust predictions of short-term waitlist mortality. Continued refinements of 

the MELD score, such as MELD 3.0, improve its predictive ability and actively address 

deficiencies such as sex-based differences in waitlist mortality. Continuous distribution has 

emerged as a conceptual framework to optimise organ allocation by weighing factors beyond 

waitlist mortality. The selection of variables for changes to the liver allocation system, 

however, remains fraught with challenges, requiring careful consideration of objectivity, 

verifiability, and availability.

In the management of patients with cirrhosis and hepatic decompensation, more accurate, 

comprehensive, and real-time prediction of mortality, based on availability of the large 

amounts of information in EHRs, has the potential to dramatically change how we approach 

the clinical care of patients with cirrhosis and its complications. In addition, novel concepts 

and emerging technologies may play a major role in refining mortality prediction in an 

individual patient. For example, the prognosis of a patient with cirrhosis may be accurately 

assessed by deep neural network-based algorithms incorporating past clinical data in the 

EHR, current MELD 3.0, frailty measurements, and muscle mass volume derived from 

a computed tomography scan on an integrated SMART-on-FHIR application in the EHR 

system. We hope that, sometime in the near future, these novel tools will provide clinically 

actionable information to alter a patient’s outcome, well beyond determining a patient’s 

priority ranking for liver allocation.
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Abbreviations

ACLF acute-on-chronic liver failure

ANNs artificial neural networks

CDS clinical decision support

eGFR estimated glomerular filtration rate

EHR electronic health record

FHIR fast healthcare interoperability resources

GRAIL glomerular filtration rate assessment in liver disease
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MELD model for end-stage liver disease

MDRD modification of diet in renal disease

ML machine learning

N3C National COVID Cohort Collaborative

NLP natural language processing

OMOP observational medical outcomes partnership

OPTN Organ Procurement and Transplantation Network

SMART-on-FHIR substitutable medical applications and reusable technologies on fast 

health interoperability resources

VHACDW Veterans Affairs Corporate Data Warehouse
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Fig. 1. Rapid-cycle testing in ‘electronic’ randomised controlled trials.
Schematic of rapid-cycle ‘electronic’ randomised controlled trials could be implemented 

using CDS systems: computational risk assessment allows a patient to be randomised for an 

intervention associated with a CDS, the results of which could then be used to iteratively 

modify the risk stratification algorithm or the CDS system. CDS, clinical decision support.
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