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Abstract—This paper discusses the constraints imposed by
the path of a moving camera in multi-view sequential scene
reconstruction scenarios such as in aerial video, which allow for
an efficient detection and correction of inaccuracies in the feature
tracking and structure computation processes. The main insight is
that for short, planar segments of a continuous camera trajectory,
parallax movement corresponding to a viewed scene point should
ideally form a scaled and translated version of this trajectory
when projected onto a parallel plane. Two inter-camera and
intra-camera constraints arise, which create a prediction of
where all feature tracks should be located given the consensus
information of all accurate tracks and cameras, which allows for
the detection and correction of inaccurate feature tracks, as well
as a very simple update of scene structure. This procedure differs
from classical approaches such as factorization and RANSAC.
In both aerial video and turntable sequences, the use of such
constraints was proven to correct outlier tracks, detect and
correct tracking drift, allow for a simple updating of scene
structure, and improve bundle adjustment convergence.

I. INTRODUCTION

The amount of work and research dealing with multi-
view scene reconstruction, for example in applications such
as robotics, surveillance and virtual reality, has increased
substantially in the past years. For the reconstruction of general
scenes, state-of-the-art algorithms [1], [2] provide very accu-
rate feature tracking, camera poses and scene structure, based
mainly on sparse feature detection and matching, such as with
the SIFT algorithm [3]. One specific reconstruction scenario
which has become very relevant recently is in the case of
aerial video. Accurate and dense models developed from aerial
video can form a base for large-scale multi-sensor networks
that support activities in detection, surveillance, tracking,
registration, terrain modelling and ultimately semantic scene
analysis. For example, consider a scenario where an aircraft
is flying around an urban environment, carrying an array of
sensors that collects images at high frame rates as the aircraft
circles around the scene over and over again. Once enough data
has been collected, a semantic analysis of the scene becomes
possible, and activity happening in the scene can be inferred.

In aerial video, image acquisition is sequential and camera
movement is smooth, such that it can be modelled as planar
by segments, and in general is parallel to the dominant plane
of the scene. Additionally, intrinsic parameters such as focal
length and principal point remain constant and are usually

(d) Texture-less regions

(e) Occlusions and repetitive patterns

Fig. 1. Dense reconstruction (d and e) of the Walnut Creek dataset (input
images a-c). Inaccuracies in the computed structure due to inaccurate dense
correspondences caused by occlusions (green), repetitive patterns (red) and
texture-less regions (yellow) are highlighted.

assumed known. Extrinsic parameters such as instantaneous
position and orientation are usually at least roughly known
due to GPS and IMU readings, respectively. In the case
calibration data is not available, it can usually be estimated
from feature tracks across the images, but then relies on the
accuracy of such tracks. Overall, the accuracy of the final
multi-view sequential reconstruction relies fundamentally on
accurate feature tracking. Due to varying lighting conditions,
occlusions, repetitive patterns and other issues, feature tracks
may not be perfect and this skews calibration and structure
estimation. Inaccuracies remain even after applying robust
estimation procedures and outlier detection, such as with
RANSAC [4]. An example of the effect of such errors on
a reconstruction based on dense feature tracking is shown in
Fig. 1. Furthermore, due to the lack of ground-truth camera
and/or structure data, reconstruction algorithms usually resort
to non-linear bundle adjustment [S] parameter optimization
to reduce total reprojection error. However, this can be the
most expensive element in a reconstruction pipeline, despite
efficient sparse implementations [6], and for convergence



requires a good starting point close to the global minimum
of the cost function.

Our main contribution is to present camera path-based
constraints for improving feature track and structure accuracy
as an intermediate step in sequential scene reconstruction,
for applications such as in aerial video. The main insight
is that for short, planar segments of a continuous camera
trajectory, parallax movement corresponding to a viewed scene
point should ideally form a scaled and translated version of
this trajectory, or a parallax path, when projected onto a
parallel plane. More details and results are presented in Hess-
Flores et al. [7], but the entire algorithm is summarized here,
and expanded with geometrical properties and the application
of homography constraints to the framework. This approach
introduces more and different constraints with respect to
Tomasi and Kanade’s classical factorization approach [8], and
also differs from outlier detection through Fischler and Bolles’
RANSAC algorithm [4]. Additionally, it will be shown how
the same constraints allow for a simplified computation of
scene structure after track correction, which is less expensive
than traditional linear triangulation [9].

For reconstruction of a long, sequential video sequence,
it is treated as a set of segment-wise, sliding window-type
connected set of smaller reconstructions. For a given segment,
beginning at its anchor frame, feature tracks are first com-
puted, followed by camera calibration from these tracks if
not initially available. Then, rays from the segment’s camera
centers and through all computed feature track positions are
intersected with a plane that lies parallel to the best-fit plane
for the segment’s cameras. The key behind this method is that
it uses consensus information from all tracks and the camera
path to introduce additional, strong constraints into feature
tracking. If the cameras or at least some of the initial feature
tracks are accurate, inaccurate tracks can be corrected to
comply with the consensus parallax movement defined by the
cameras and accurate tracks. Scene structure for the segment
can then be computed through a very simple procedure. Such
segment-wise processing can be used as the building block for
sequential reconstruction under more general camera motions,
as many can be well-approximated by planar motions over
small segments. The fixing of tracking inaccuracies at each
step allows for stable sequential reconstructions, where errors
are not allowed to accumulate over time.

An overview of multi-view scene reconstruction is provided
in Section II. An introduction to the concept of parallax paths
is provided in Section IIl. The introduction of path-based
constraints towards improving feature tracking and structure
computation is detailed in Section IV, geometrical properties
of the framework are discussed in Section V, followed by
results (Section VI), future work (Section VII) and conclusions
(Section VIII).

II. RELATED WORK

Typically, the input for scene reconstruction is a set of
images and in some cases camera calibration information,
while the output is usually a 3D point cloud along with

color and/or normal information, representing scene structure.
Camera parameters include intrinsics, such as focal length,
skew and principal point, as well as extrinsic or pose parame-
ters of absolute position and orientation, and radial distortion.
Intrinsics and extrinsics can be encapsulated in 3 x 4 projection
matrices for each camera [9]. For estimating epipolar geometry
information [9] between views, camera calibration (if initially
unknown) and scene structure, most algorithms make use
of feature tracks between images. Software packages such
as Bundler [1] are capable of estimating all calibration and
structure parameters from a set of images. This and other al-
gorithms are based on SIFT feature detection and tracking [3],
or others inspired by its concept such as SURF [10] and
DAISY [11], but there are a number of other sparse and dense
methods in the literature. Dense tracking assigns a correspon-
dence in a destination image to each source image position,
and can be computed through a variety of methods [12],
such as optical flow. They can also be generated using an
epipolar geometry estimate through a process known as guided
matching [9]. However, dense feature tracking approaches
especially suffer from issues such as occlusions, repetitive
patterns, texture-less regions and illumination changes, which
dramatically affect the quality of the tracks and reconstruction.
In the case of sequential image sets, the use of a prior frame
decimation [13] to filter redundant frames ensures mathemati-
cal stability for pose and structure estimation. An overview of
different pose estimation methods based on feature tracking are
given in Rodehorst et al. [14]. Two standard algorithms involve
decomposing the epipolar geometry’s essential matrix [9] in
the case of two views, and camera resectioning to compute
new camera positions from known feature tracks and scene
structure [9]. Scene structure can be computed from feature
tracks and projection matrices using for example linear or
optimal triangulation [9]. Once pose and structure estimates
are available, a common fine-tuning step is to perform a
bundle adjustment, where the total reprojection error of all
computed 3D points in all cameras is minimized using non-
linear techniques [6].

There are a number of successful general reconstruction
algorithms in the literature, and comprehensive overviews
and comparisons of different methods are given in Seitz et
al. [16] and Strecha et al. [17]. For sequential reconstruction
specifically, for example Pollefeys et al. [18] provides a com-
plete algorithm for reconstruction from hand-held cameras,
Nistér [19] deals with reconstruction from trifocal tensor
hierarchies, while Fitzgibbon et al. [20] provides an approach
for turn-table sequences. Our approach differs from these and
other algorithms in its use of additional path-based constraints
into improving feature tracking and scene structure. It is
also important to note the differences with Tomasi-Kanade
factorization [8]. This method can recover shape and motion
from a sequence of images under weak-perspective projection,
making use of the fact that if feature tracks of scene points
are collected in a measurement matrix, scene point trajectories
reside in a certain subspace. This matrix is of reduced rank
because tracks for scene points are constrained, as the motion
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Fig. 2. A scene point traces a unique path if projected from a camera moving
along a plane onto a separate, parallel plane (a). Sparse reconstruction of the
dinoRing dataset [16] with parallax paths traced on a parallel plane (b), with
camera positions rendered in blue and one replica highlighted in red, and a
top view of the obtained replicas for the Dinosaur dataset [21] (c).

of each point is globally described by the rigid transformation
which the object or scene is undergoing. Our end goal of
structure recovery based on a geometric constraint, while being
able to deal with outliers, is similar, but our approach differs
substantially in that we use two constraints under full per-
spective projection, can correct the feature tracks themselves
using a non-algebraic solve, and use correction information
to efficiently compute scene structure. It also differs from
RANSAC [4], where one can for example estimate epipolar
geometry and cameras accurately even in the presence of
some outliers, but structure computation for uncorrected tracks
would still be inaccurate.

III. CONCEPT AND CALCULATION OF PARALLAX PATHS

The primary observation behind our approach is that, for
smooth and planar camera paths, parallax corresponding to
a scene point (X,Y, Z) viewed by the camera is determined
as a unique parallax path on a parallel plane, such that
all viewed scene points trace equal paths up to translation
and scale s, as illustrated in Fig 2(a). A parallax path for
a scene point is defined as the path formed over time, on
the reconstruction plane 7, of rays from the camera center
and through the point. Conversely, a scene point uniquely
determines a feature track in a set of images. Though a
parallax path can be thought of as continuous, it is really
made up of discrete samples, one for each instant an image is

acquired by the camera. For a given camera position in time,
the set of parallax path positions it traces on 7, corresponding
to every scene point viewed at that instant in time, are defined
as replicas. Figs. 2(b,c) show the parallax paths created for
a sparse turntable reconstruction, where each set of replicas
visually resembles a 2D projection of the 3D object onto the
reconstruction plane.

Mathematically, a camera moving on a plane as in Fig. 2(a),
projecting rays through a set of fixed 3D positions onto a
parallel plane, produces identical projected paths up to
scale and translation. Let Z be the axis perpendicular to
the two parallel planes, with X and Y axes tangent to the
planes, and (X;,Y;,1) be the camera point at time ¢, with
Z =0 set as the camera plane. Then for 3D point (X,Y, Z)
the projection of the camera position is (X', Y’ Z") =
(X/2,Y)Z,1)Z — 1)+ (1 — 1/2)) = (Xy,Ys, Z¢), which is
indeed a scaling and translation of (X, Y, Zy).

A parallax path can be traced on 7 for each scene point,
from its corresponding feature track and 3 X 4 projection
matrices P, for each camera location in time. We define
P, = K[R|T] [9], where K corresponds to the camera’s fixed
3 x 3 intrinsic calibration matrix, while R; is its absolute
orientation matrix and 7} its absolute translation at time t.
Each camera location, C; = [ Xy, Yz, Z;, Wy, can be computed
from P; as its right null-space [9]. For any ky; feature track,
a ray from camera center position C; and through its pixel
coordinates xx; on the image plane at time ¢ can be computed
parametrically per (1) [9], with the right pseudo-inverse
P+ = PI(P,PF)~'. A camera ray can be defined with
two points, one being the camera center C; and the other
a point Xj; in space defined by the parameter \. For the
intersection point between such a ray and the reconstruction
plane m = (A, B,C, D), the value of the parametric distance
‘A’ is computed, for which the intersection is achieved. Let
the ray R(A) = Ro+ARg4, A > 0, such that Ry = [Xo, Y, Zo]
corresponds to the camera center coordinates C; at time ¢
and Rq = [Xg4, Yy, Z4) is some point along the ray. Since
the plane is defined as AX + BY + CZ + D = 0, then
A(Xo + Xa)) + B(Yo + Ya\) + (Zo + ZaA) + D = 0,
which yields the value for ‘A’ shown in (2). Performing this
ray-plane intersection for rays from the camera through each
scene point at each time instant results in a discrete parallax
path for each point.

Xit(\) = Cy + A(P)ane - (1

y = —(AXo+ BYy +CZy+ D) )
B AX,+BY,+CZ, '

The chosen reconstruction plane must comply with a series
of criteria. It should lie parallel to the best-fit plane for the
set of segment camera positions, and placed such that scene
structure lies in-between both planes. The only effect of the
distance from 7 to the best-fit camera plane is an absolute
scaling in parallax path coordinates on 7. A non-parallel
reconstruction plane would result in distorted parallax paths
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up to a transformation. Also, the framework can only be used
in cases where scene points do not intersect the visual hull
made up of the scene and cameras, since otherwise rays would
lie directly on the camera plane and parallax paths could not
be traced.

IV. PATH CONSTRAINT-BASED FEATURE TRACK
CORRECTION

In this section, constraints arising from parallax paths will
be described, as well as how these can be used to correct
feature tracks and improve structure estimates. The computa-
tion of parallax paths as described in Section III is performed
by segments of a longer camera trajectory, where movement
per segment is modelled as planar. The segments should be
chosen such that there is overlap and all possible feature
track positions are covered by at least one segment. This
allows for the global solution to feature tracking and structure
computation to be is broken down into individual solves, which
is very important since the amount of images in aerial video
could be arbitrarily long.

For one segment, the process is summarized as follows.
The first step is to place all computed parallax paths in a
2D position-invariant reference, where paths only differ in
scale. In that reference frame, a set of best-fit locus lines and
a consensus path can be computed. Parallax paths are then
corrected to fit the best-fit lines and path, the actual correction
is applied on parallax paths positions over the original re-
construction plane, and reprojected into each camera’s image
plane to obtain new, corrected pixel feature track coordinates.
A flowchart for the correction process is shown in Fig. 3,
for one segment. To each segment, anywhere along the path,
there is an associated anchor frame where it begins, as shown
in Fig. 2(a). For a given segment, the first step is to compute
feature tracks for its m images, beginning at the anchor, along
with the corresponding camera projection matrices, using any
reconstruction algorithm discussed in the Introduction or with
software such as Bundler [1]. Accurate projection matrices
are key towards our algorithm’s success, since inaccuracies
will skew the obtained parallax paths. Next, a reconstruction

plane is chosen parallel to the segment’s best-fit camera plane.
Now, parallax paths can be computed as in Section III using
the computed feature tracks and projection matrices.

A. Position-Invariant Reference Placement

Following parallax paths computation, as shown in Fig. 4(a),
the next step is to eliminate the effect of position, by placing
all paths and projected cameras in a separate, 2D position-
invariant reference location, such that the parallax path posi-
tions of each track at the anchor frame coordinates all coincide
at the same origin. In this representation, shown in Fig. 4(b),
it becomes clear to see that, in the ideal case, the position-
invariant parallax paths follow the shape of the projected
camera path exactly, but at different scales, since parallax
path position and scale uniquely define the parallax of each
scene point. As discussed next, in general this situation will
not occur, and inaccuracies in the shape and scale of parallax
paths will be present.

B. Inter and Intra-camera Constraints

In the ideal case, besides forming position-invariant parallax
paths that are identical yet scaled versions of the camera
path projected onto the plane, all features seen by a given
camera yield parallax path positions that are collinear, along
locus lines. An inter-camera parallax path constraint holds
for all cameras involved in a given feature track, while an
intra-camera locus line constraint holds for the features from
all tracks that are seen by a given camera. This concept is
illustrated in Fig. 4(f), where parallax path positions form a
perfect parallax paths grid at the position-invariant reference.

In the position-invariant reference, we have proven that all
replicas, corresponding to parallax path positions traced for
all scene points seen by the same camera, lie along the same
line along with the projected camera center, known as a locus
line. In a perfect setting, reprojection error is zero for a scene
point whose position-invariant parallax paths lie along such
lines, across all cameras that view it. The very power of
the parallax paths technique lies in the fact that the inter-
camera parallax path and intra-camera locus line constraints
jointly create an intersection ‘grid’ over the position-invariant
reference, which in the perfect case associate both the exact
parallax scale and perfect feature track for a scene point, and
this principle is the main concept behind the proposed feature
track correction scheme. In the general case, however, feature
tracks are inaccurate, such that position-invariant parallax path
positions will not lie on the perfect grid. This is shown in
Fig. 4(g). The proposed feature tracks correction procedure
essentially comes down to creating a best-fit parallax paths
grid from all the available inter-camera and intra-camera
consensus information, such that the resulting grid defines
adjusted feature tracks.

Once on the position-invariant reference, as shown in
Fig. 4(b) for a sample set of initial parallax paths (Fig. 4(a)),
the creation of a best-fit parallax paths grid is a two-step
process. The first step is to obtain a consensus parallax
path. Since our algorithm does not alter camera parameters,
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Fig. 4. Path-based constraint creation [7]. Parallax paths and the projected
camera path (in green) are first obtained on a reconstruction plane for a set
of scene points (a). The paths placed in a 2D position-invariant reference are
shown in (b), where continuous curves for a few paths depict that they only
vary in scale s. Next, the position-invariant paths are scaled (c), and a best-fit
quadratic to the scaled paths is computed (d) along with locus lines, with an
example shown in (e). Finally, the ‘perfect grid’ can be created, as shown in
(f) for the ideal case. In the case of inaccurate feature tracks (g), deviations
exist with respect to this grid. In (f) and (g), position-invariant parallax paths
are shown for five scene points, where discrete path positions are drawn in
a specific color and joined by continuous light-grey curves. Each locus line
is drawn in light green for each of five cameras C7 to Cs. The projected
camera path appears as a discrete set of larger blue squares, joined here by a
light-grey curve. Notice how each curve is a scaled version of the projected
camera path.

the consensus path is the position-invariant projection of the
camera path. Alternatively, to relax the strong dependency on
camera accuracy, in order to achieve a consensus path that
is not necessarily the exact projection of the camera path,
first all parallax paths on the position-invariant reference are
scaled such that they match the scale of the projected camera
trajectory, as shown in Fig. 4(c). Next, a best-fit curve to the
obtained positions is obtained, for example by obtaining the
best-fit quadratic or cubic to the set of equal-scale paths, which
yields low residual errors over short, smooth trajectories, as
shown in Fig. 4(d). For each position-invariant parallax path,
the consensus path is then scaled such that the residual error
with respect to the original path is minimized, and this defines
the final parallax scale for the corresponding scene point.
The second step is to compute a locus line corresponding
to each camera. An example of a locus line is shown in
black in Fig. 4(e), for a perfect grid. Since our algorithm does
not alter camera parameters, such lines are a direct function
of the cameras, defined between the origin of the position-
invariant reference and the camera projection’s position on

this reference. Alternatively, to relax the strong dependency
on camera accuracy, a robust line-fitting technique can be
used, for example linear regression embedded in RANSAC [4].
Finally, the best-fit grid results from intersecting the locus
lines with the scaled consensus parallax path at each position-
invariant parallax path location. It forces outlier tracks to
comply with the constraints imposed by the cameras and/or
inlier tracks, much like in the case of epipolar geometry
constraints.

C. Feature Track Adjustment and Final Structure Computation

Once the best-fit parallax paths grid has been created, the
difference between the original position-invariant paths and
the grid is computed. Finally, this difference is applied on the
original reconstruction plane parallax paths. Each corrected
path position is then reprojected to each respective camera, in
order to obtain corrected feature tracks.

Another advantage of this framework is that it allows for a
very simple update of scene structure. For the k;; corrected
feature track, the corresponding scene point X can be com-
puted in terms of its previously-recovered scale s; as shown
in (3) using the corrected parallax path coordinates on the
reconstruction plane for the anchor camera, T} 1, and anchor
camera center C7, which uses simple interpolation assuming
a scale of ‘0’ at the reconstruction plane and ‘1’ right at the
camera center’s position.

Xi(sk) = (sk)C1 + (1 — s)T 1 - 3)

Given that rays through corrected tracks now intersect exactly
in space, this is much more simple than having to use for
example multi-view linear triangulation [9], where a system
of the form AX = 0 is solved for a best-fit 3D position, with
an A matrix of size 2N x 4 for N cameras, using for example
Singular Value Decomposition.

D. Segment-Wise Concatenation

The parallax paths correction can be performed totally
independently for different segments, but always making sure
and adjusting any feature tracks that span multiple adjacent
segments such that they always have the same parallax scales,
since each scene point corresponding to a track has a unique
parallax movement as seen by the total set of cameras.

V. GEOMETRICAL PROPERTIES OF PARALLAX PATHS

It will now be discussed how the presented framework meets
all epipolar geometry constraints. Given projection matrices
for each of the cameras in a segment, it is possible to extract
pairwise fundamental matrices F;; between any camera pairs.
In general, let P; be the projection matrix for the first camera
of a pair, P; for the second camera, P;+ is the pseudo-inverse
of P; and C}; is the camera center for the first camera. The
fundamental matrix between the two views is then given by

An important observation is that a locus line on the position-
invariant reference, when placed on the original reconstruction
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tion

Fig. 5.  Feature track position in red (a) at frame 1, the anchor, and
corresponding epipolar lines in frames 3, 5 and 7 (b-d), for the Dinosaur
dataset. An intersection of epipolar lines is shown in (e).

plane such that it intersects the parallax path position corre-
sponding to a feature track position seen in a given camera,
reprojects on that camera’s image plane as an epipolar line,
associated to the fundamental matrix computed between itself
and the anchor camera, as well as the anchor frame feature
track position. An example of this is shown in Fig. 5, where
the left-most image shows in red the first feature of a track, and
the remaining images show the corresponding epipolar lines
resulting from the set of perfect locus lines, along which the
rest of the feature track positions should lie, where parallax
scales are color-coded such that black corresponds to the
smallest and white to the largest. Furthermore, if locus lines
are computed for any two cameras Cy and Cs and a pixel
feature track position xp; is known for the M;, camera, the
exact corresponding feature track position xy in the Ny
image is given by an intersection of epipolar lines with respect
to both camera M and anchor camera 1, as shown in (4).

{EN:(FNJ *xl)x(FN’M*mM) . (4)

A. Homography Constraints on Scales

As previously mentioned, the scale for a scene point can
vary from ‘0’, if its position is right on the reconstruction
plane, to ‘1°, when coinciding with any of the camera centers
which view it. It has been assumed so far that track scales are
known, but now assume a very inaccurate track, for which a
reliable range for its scale is initially unknown, or one that we
wish to initialize. By making use of homographies [9] between
pairwise consecutive camera frames, it becomes possible to
achieve a much-reduced range of the scales to search over and
achieve an accurate track. In experiments with aerial video,
typically 90% of scales are removed after this filter.

A homography is a simpler model than epipolar geometry,
allowing for a 2D prediction of a 3D movement, and since it
doesn’t correctly account for parallax, it generally presents a
residual error for a given feature match. Let = be a 2D pixel
position in an image, and z’ its match in a second image. The
relationship between the matches is ' = Hz, where H is a
3 x 3 homography matrix. For strictly planar scenes, ' can
be recovered exactly from z. For general scenes with parallax,
we can still make use of residual measurements over the set of
available feature matches (obtained for example from SIFT) to
create bounds on the expected image-to-image 2D movements
of feature matches, to greatly constrain a multi-view feature
track’s allowed pixel movement. In fact, to determine just
how accurate the homography model is to the more general
epipolar geometry model, Torr’s GRIC metric [22] can be

Fig. 6.  Homography constraints on scale space, where a dense plane
was rendered using our technique coupled with constraining homographies
assuming a perfectly planar scene, for the Dinosaur [21] dataset. Actual scene
points protrude from the computed plane.

used, keeping in mind that for large baselines, the homography
model quickly becomes very inaccurate. In practice, after per-
forming the parallax paths constraint computations, and taking
into account the extra homography constraints, we do the
following. Given an anchor position, for the remaining images
we can move the resulting homography prediction position the
closest distance to the locus line, and then move up or down
that line within the maximum residual distance, searching
only over those scales for the ‘best’ one. The definition of
‘best” we have adopted refers to the best intensity consensus;
for example where the standard deviations of intensities for
candidate feature track positions take their lowest values. To
show an example of our use of homography constraints, Fig. 6
shows a dense plane that was computed by initializing all
image positions assuming a perfect homography, with the
actual computed structure protruding from the computed plane,
for the Dinosaur [21] dataset.

VI. RESULTS

A number of tests were designed to analyze the general
behavior and accuracy of the proposed feature track correction
framework on smooth, continuous camera trajectories. All tests
were conducted on a dual-core Intel Core 2 Duo machine at
2.13 GHz with 2 GB of RAM, on one thread. Both sparse and
dense feature tracking were analyzed.

One way to test the overall harmony of the resulting feature
tracks and structure after correction is to compare the number
of iterations, processing time and total reprojection error after
applying bundle adjustment on the corrected set, referred to
as PPBA, as opposed to applying it on the original feature
tracks and structure, which will be referred to as TBA. The
cost function to minimize is the sum of squares of the repro-
jection error of each scene point with respect to each of its
corresponding feature track positions, summed over all scene
points. The sparse S BA implementation of bundle adjustment
was used [6]. The results are shown in Table I. In general, the
time it takes to compute the parallax paths correction and run
PPBA is faster than TBA, and converges in less iterations,
and always with a significantly lower final reprojection error.
Performing bundle adjustments more efficiently per segment,



TABLE I
COMPARISON OF TOTAL REPROJECTION ERROR € IN PIXELS, PROCESSING TIME ¢ IN SECONDS AND ITERATIONS I OF LEVENBERG-MARQUARDT, FOR
BUNDLE ADJUSTMENT APPLIED USING THE OUTPUT OF THE PROPOSED ALGORITHM (P PBA) VERSUS BUNDLE ADJUSTMENT APPLIED USING THE
ORIGINAL FEATURE TRACKS AND STRUCTURE (T'BA), ALONG WITH NUMBER OF SCENE POINTS Ngp [7].

Dataset PPBA € (px) | PPBAt (s) | Ipp | TBA e (px) | TBAt (s) | I Nsp
Stockton 0.126 1.45 26 4.991 1.58 27 4991
Stockton dense 0.003 25.35 29 0.1041 27.73 31 151098
Sfountain-P11 0.232 0.80 82 4.851 0.32 31 1219
Dinosaur 1.208e-09 0.04 17 2.256 0.09 39 257
dinoRing 0.009 0.01 18 6.929 0.03 29 92

’

(b) Detected drift

(a) Perfect grid

Fig. 7. Perfect grid computed from a few select SIFT-based parallax paths, for
the dinoRing dataset [16] (a). The positional difference between original and
corrected paths (b) shows feature track drift detection is possible, as evidenced
by greater deviations from the reconstruction plane origin that correspond to
track positions for cameras farther from the anchor frame.

after the extra correction step, further increases the robustness
of the final sequential reconstruction. It is also important to
note that radial distortion is not accounted for directly and that
we assume mainly static scenes, though inaccurate tracks due
to movers are also fixed to comply with the consensus parallax
movement.

Another test dealt with analyzing the quality of the resulting
feature tracks. Fig. 7(a) shows a perfect grid computed plot
of SIFT-based tracks in image space. Fig. 7(b) shows the
difference between the original and corrected parallax paths,
for a small set of feature tracks. The greatest differences are
obtained for paths corresponding to track positions whose
cameras lie farthest from the anchor, caused by the build-up
of errors due to drifting in feature tracking. Besides correcting
very inaccurate tracks, the proposed algorithm also detects
and prevents such drifting for any track, allowing for error
minimization in concatenation across segments and the ability
to process very long image sequences without accumulating
significant tracking errors.

Finally, the positive effect of the proposed correction on
scene reconstruction can be shown. In Fig. 8, notice how
outlier tracks, as evidenced in Fig. 8(b), are corrected to fit
the geometry of the good tracks and cameras. It can also be
seen that inaccuracies in structure, such as the dip highlighted
in red in Fig. 8(a), are corrected with our method, resulting in
a better structure such as the smooth road in Fig. 8(d).

VII. FUTURE WORK

The presented framework has the potential to open the door
to many applications, mainly in aerial imagery scenarios. One
such possibility is improved dense tracking. For initialization
of a new track based on the constraints, a 1D search over scales

(b) Position-invariance

(d) Updated reconstruction

(c) Best-fit grid

Fig. 8. Feature track improvement for a segment of the Stockton dataset.
Segment reconstruction without track correction (a), paths at the position-
invariant reference (b), best-fit parallax paths grid (c¢) and final scene structure
after correction (d).

must be performed, which could involve searching for the
position where image intensities best agree, and aided by using
resolution pyramids, feature descriptors, and the homography
constraints presented in Section V-A to provide bounds on
the scales to search over. Track auto-completion, mainly with
tracks which become occluded tracks and re-appear, also
becomes possible by searching for parallax paths of equal scale
and merging the separate track sections into a single feature
track from the projected parallax path. Given a concatenated
track, virtual pixels can be computed to indicate where a scene
point is located in an image, even if it cannot actually be seen
due to the effect of occlusions. Looking further, the framework
could also be potentially used for the compression of both
images and structure parameters, by storing only scale-based
information. If used jointly with color segmentation, the joint
analysis of computed tracks could make for a novel algorithm
for getting accurate matches and structure over texture-less
regions. Also, we’re looking into the mathematical definition
of a multi-view tensor based on the proposed algorithm.

VIII. CONCLUSIONS

This paper discussed the strong constraints imposed by the
projection of a planar camera path onto a parallel plane, which
allows for feature track outlier detection and correction along
with a simple and improved structure computation, for applica-
tions such as in aerial video and turntable sequences. Analysis
is performed over continuous segments of the camera’s path,
where intra-camera and inter-camera constraints arising from
the consensus of all initial feature track and camera calibration
information create a prediction of where each feature track



should lie, such that outliers can be detected and corrected in
a non-iterative manner, while also allowing for a simple and
accurate final structure computation. Results on both real and
synthetic aerial video and turntable sequences show that the
framework corrects outlier tracks, detects and corrects drift,
and improves scene structure, while also improving bundle
adjustment convergence.
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