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Abstract

Applications of Neural Network Models for Conservation Decision-Making and
Ecological Forecasting

by

Marcus Lapeyrolerie

Doctor of Philosophy in Environmental Science, Policy, and Management

University of California, Berkeley

Professor Carl Boettiger, Chair

Improving the ability to manage and forecast ecological processes would enhance con-
servation practices and further our understanding of the natural world. Ecology is tran-
sitioning from a discipline that was once data poor to a discipline that is increasingly
data rich. With the aggregation of data into large repositories, significant investments in
long-term ecological monitoring networks, and the development of richly detailed process-
based simulators, ecologists need new tools to support the analysis of extensive data sets.
Recently, scientists outside of ecology have used neural network models to solve formerly
intractable problems characterized by large data sets. Ecologists have started to use neu-
ral networks to make progress on challenging questions, but the majority of this work has
been limited to automated monitoring. In this dissertation, I explore applications of neu-
ral network models for conservation decision-making and ecological forecasting. Chapter
2 presents how concepts and methods taken from the field of reinforcement learning can
be used to solve decision-making problems in conservation. Chapter 3 investigates the
ability of neural network models to forecast critical transitions observable in ecological
systems. And, lastly, in Chapter 4, I compare the forecasting performance of neural
network models on water quality data taken from the National Ecological Observatory
Network. Together, these chapters demonstrate that neural networks have the capacity
to provide novel insights on ecological processes.
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Chapter 1

Preface

In the current era of global change, we are faced with a multitude of environmental crises.
Biological diversity is declining at an alarming rate in what has been called the sixth mass
extinction event (Ceballos, Ehrlich, and Dirzo 2017). Various ecological communities and
components of the Earth system have critical thresholds that could lead to significant so-
cietal impacts if crossed (Dietz et al. 2021). And freshwater ecosystems, which provide
critical services to humanity, have been acutely affected by anthropogenic causes (Tickner
et al. 2020). To better understand and manage the environmental problems that we face,
there is an urgency to develop tools that can handle the obfuscating complexity character-
istic of ecological systems. This dissertation focuses on the exploration of computational
methods for conservation decision-making and ecological forecasting, disciplines where
classical methods have generally lacked scalability and often become ineffective without
unrealistic approximations.

Neural networks present a way forward as they can model complex patterns directly
from the data without suffering from an inability to scale. A neural network is a com-
putational model that is inspired by how the human brain functions. Neural networks
consist of interconnected layers of nodes (neurons) wherein each node applies a non-linear
function to the inputs from the preceding layer. There are numerous types of neural net-
works that have been designed for a variety of specific applications – e.g., some neural
networks have been designed exclusively for time series, while others have been designed
to work across data types like textual, audio and visual data. For this dissertation, it
is not critical to know all the fine-grained differences between the neural networks that
are presented. Instead, it is important to understand that neural networks are used to
approximate mathematical functions. For decision-making problems, neural networks are
often used to approximate the policy function which maps the observed state of the sys-
tem to an action to be performed by the manager/agent; and, for time-series forecasting,
neural networks are often used to map a sequence of historical values to a sequence of
future values. Through the universal approximator theorem, it has been established that
a neural network with a single layer of arbitrary size can approximate any continuous
non-linear function (Hornik, Stinchcombe, and White 1989). While it is not feasible to
use an arbitrarily wide network in practice as this network could have an exorbitant
number of parameters, it has been well established that neural networks with multiple
layers (which are referred to as deep neural networks) are able to model a wide range of
functions with a tractable amount of parameters (Liang and Srikant 2016). There are
other methods that one can use for function approximation in place of neural networks,
such as Gaussian Processes, but the performance of these methods struggle to match the
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accuracy and scalability achieved with neural networks (Grande, Walsh, and How 2014).

Input Layer

Hidden Layer

Output Layer

Figure 1.1: Feedforward neural network. The feedforward neural network is a commonly used architecture
that illustrates how neural networks work in general. Feedforward networks operate in a unidirectional
manner wherein the input passes to the hidden layer before reaching the output layer. At each node in
the hidden layer, a non-linear function is applied to the sum of inputs from the preceding layer. During
training, the parameters of the neural network are adjusted so that the output of the model approximates
the expected output provided by the data. The network shown in this figure is a shallow neural network
as it has 1 hidden layer. A neural network that has more than 1 hidden layer is described as being "deep".

A connecting theme of this dissertation is the focus on model-free, also referred to as
non-mechanistic, methods. All the algorithms used in this dissertation are model-free:
they do not employ a model that describes the data generating process. These algorithms,
instead, make predictions solely by drawing inferences from the data. This model-free
approach is a departure from the historically common inclination in ecological forecasting
towards methods that rely on understanding the mechanism of the target system. For
instance, in popular textbooks on ecological forecasting, the general forecasting paradigm
that is presented is to write out a set of equations that describes the data generating
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process, estimate this model’s parameters from the data, and then use the estimated
parameters to generate a forecast (M. Dietze 2017). The orientation towards mechanistic
models has partially been a result of there not being enough large data sets in ecology in
the 20th century to accommodate model-free methods; yet, as the rates of data generation
and aggregation have increased rapidly in ecology in the 21st century, model-free methods
offer some significant advantages (Farley et al. 2018). With so much ecological data to be
analyzed now, constructing a mechanistic model that can accommodate all the patterns
that are realizable in the data is an extremely challenging task. A model that can
learn directly from the data without being misled by assumptions offers an appealing
alternative1.

Along with the advantages that neural networks present, there are significant draw-
backs. Neural networks suffer from a variety of practical issues like the tendency to overfit,
instability with respect to hyperparameters, high computational costs, requirements of
specialized hardware, and more. Beyond these technical concerns, neural networks also
present social issues with their development: a significant amount of the foundational
research in machine learning is carried out by private companies, which raises ethical
concerns over whether this work will serve the public’s interest. Yet, whether the model
is mechanistic or non-mechanistic, a neural network or otherwise, the model will always
be wrong. This dissertation is an exploration of where non-mechanistic neural network
models can both succeed and fail to lend insight to ecologists – in the often quoted words
of George Box, “All models are wrong, but some are useful”.

Another commonly perceived disadvantage of neural networks is their focus on predic-
tion at the exclusion of interpretability. The neural networks used in this dissertation are
“black boxes”: it is not possible to explain what the neural networks identify in the in-
put data that results in the neural networks’ outputs. While ecologists have historically
favored methods with strong mechanistic bases, neural networks present a contrastive
paradigm where there is little emphasis placed on understanding the dynamics of the
underlying process. In this comparison, it is important to state that the abilities of a
model to predict and be explainable are independent of each other. For certain problems,
neural networks can provide helpful insights that would be practically unattainable oth-
erwise. Yet, in other contexts, such as safety critical problems, making decisions solely
on the basis of uninterpretable models could lead to catastrophic outcomes (Rudin 2019).
This dissertation does not support the perspective that neural network models should
replace all other methods used in conservation decision-making and ecological forecast-
ing. Instead, this dissertation advocates for neural networks being used in a diverse suite
of methodologies that ecologists and conservation managers can rely on to inform their
decisions.

This dissertation has the primary aim of investigating how neural networks can be em-
ployed for conservation decision-making and ecological forecasting. Accordingly, through-
out Chapters 2, 3 and 4, there will be commonalities regarding the presented methods
and the focus towards prediction, but the systems of interest will be disparate across the
chapters.

Chapter 2 focuses on how neural networks can be used for conservation decision-
making. In this chapter, I present the mathematical formalism of Markov Decision Pro-

1There are nuances in the comparison model-free and model-based methods that I omit for clarity. One distinction that
is worth mentioning is the concept of hybrid models. For example, in the water quality forecasting literature, there is a
body of recent work on process-guided neural networks, which use a mechanistic model to direct what would otherwise
be a model-free neural network (Read et al. 2019). This dissertation focuses on purely model-free methods, but hybrid
models can exhibit performance advantages over more purely mechanistic and model-free methods (Read et al. 2019).
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cesses, and show how decision-making problems in conservation can be posed as Markov
Decision Processes. Throughout this chapter, I provide an introduction to reinforcement
learning, which is the sub-field of machine learning that has the goal of solving Markov
Decision Processes. I present two decision-making problems taken from the conserva-
tion literature, and evaluate how neural network models compare against optimal and
approximate solutions.

Chapter 3 explores the forecasting performance of neural networks on critical tran-
sitions. Critical transitions pose extremely challenging forecasting problems, which ne-
cessitate informative uncertainty estimation rather than point forecasts. In this chapter,
I use neural networks to forecast time series that were generated from models that de-
scribe critical transitions. I compare the neural network-based methods against other
forecasting methods that ecologists commonly use.

In Chapter 4, I compare the forecasting performance of neural network models on
water quality data taken from the National Ecological Observatory Network (NEON). In
this chapter, I use neural networks to forecast time series data that track dissolved oxy-
gen concentration, water temperature, and chlorophyll-a concentration at 34 sites across
North America. The neural network models are compared to a selection of alternative
methods including a historical daily mean model and a naive persistence model.

In conclusion, I offer a short reflection and some thoughts for how this work could be
extended.
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Chapter 2

Deep Reinforcement Learning for
Conservation Decisions

This chapter was previously published, see Lapeyrolerie et al., 2022. It is included here
with permission from the co-authors.

2.1 Introduction

Advances in both available data and computing power are opening the door for machine
learning (ML) to play a greater role in addressing some of our planet’s most pressing
environmental problems. But will ML approaches really help us tackle our most pressing
environmental problems? From the growing frequency and intensity of wildfire (Moritz
et al. 2014), to over-exploited fisheries (Worm et al. 2006) and declining biodiversity
(Dirzo et al. 2014), to emergent zoonotic pandemics (Dobson et al. 2020), the diversity
and scope of environmental problems are unprecedented. Applications of ML in ecology
have to-date illustrated the promise of two methods: supervised learning (M. B. Joseph
2020) and unsupervised learning (Valletta et al. 2017). However, the fields of ecology and
conservation have largely overlooked the third and possibly most promising approach in
the ML triad: reinforcement learning (RL). Three features distinguish RL from other ML
methods in ways that are particularly well suited to addressing issues of global ecological
change:

1) RL is explicitly focused on the task of selecting actions in an uncertain and changing
environment to maximize some objective,

2) RL does not require massive amounts of representative sampled historical data,
3) RL approaches easily integrate with existing ecological models and simulations,

which may be our best guide to understanding and predicting future possibilities.

Despite relevance to decision making under uncertainty that could make RL uniquely
well suited for ecological control, RL has only been applied to this field in a few cases
(Xu et al. 2021; Silvestro et al. 2022; Treloar et al. 2020). To date, the problems
considered by RL research have largely been drawn from examples in robotic movement
and games like Go and Starcraft (OpenAI et al. 2019; Silver et al. 2018; Vinyals et
al. 2019). Complex environmental problems share many similarities to these tasks and
games: the need to plan many moves ahead given a large number of possible outcomes, to
account for uncertainty and to respond with contingency to the unexpected. RL agents
typically develop strategies by interacting with simulators, a practice that should not be
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unsettling to ecologists since learning from simulators is common across ecology. Rich,
processes-based simulations such as the SORTIE model in forest management (Pacala
et al. 1996), Ecopath with Ecosim in fisheries management (Steenbeek et al. 2016), or
climate change policy models (Nordhaus 1992) are already used to explore scenarios and
inform ecosystem management. Decision-theoretic approaches based on optimal control
techniques can only find the best strategy in the simplest of ecological models; the so
called “curse of dimensionality” makes problems with a large number of states or actions
intractable by conventional methods (Wilson et al. 2006; Marescot et al. 2013; Ferrer-
Mestres et al. 2021; Chades et al. 2021). Neural-network-based RL techniques, referred
to as deep RL, have proven particularly effective in problems involving complex, high-
dimensional spaces that have previously proven intractable to classical methods.

While deep RL may have the potential to open up such intractable problems, it also
risks making those problems tractable only for stakeholders with access to extensive com-
putational resources and expertise. It is notable that the landmark advances cited above
have been solved not by academic teams but by specialized research teams of international
technology firms such as Alphabet. Precise estimates of computational resources used
in that research are difficult to establish, but previous estimates benchmarked against
commercially available cloud computing platforms place the training of a single model at
over $35 million (Huang 2018; Hernandez and Brown 2020; Silver et al. 2017), and many
realistic ecological problems will involve even greater complexity than these landmark
examples (Silver et al. 2017, 2018; OpenAI et al. 2019). While the history of improved
efficiency in computing technology has shown a remarkable ability to reduce such bar-
riers, it has simultaneously moved the leading edge of those capabilities farther beyond
reach of traditional ecological research. We believe that ecologists must seek to better
understand the design, capabilities and limitations of these algorithms while keeping in
mind that the application of RL to conservation will surely require the ambitious collab-
oration, resources and expertise on par with the scale of the immense environmental and
ecological problems we face.

In this chapter, we draw on examples from fisheries management and ecological tipping
points to illustrate how deep RL techniques can successfully discover optimal solutions
to previously solved management scenarios and discover highly effective solutions to un-
solved problems. We focus on examining the potential and limitations of deep RL through
the lens of simple, classical models. Over a century of theory and practice in ecology has
demonstrated that simple models can provide meaningful insights which improve man-
agement outcomes (Getz et al. 2018). As Richard Levins successfully established in
his classic paper on the principles of model building (Levins 1966), model complexity
must not be mistaken for model realism. Levins espoused simple mechanistic models
which satisfy the goals of being both realistic and general. More complex models such
as those used in fisheries to guide the management of specific stocks typically sacrifice
generality for precision. Such simple, realistic and general models are still the bedrock of
most theory and practice today (for instance, the notion of maximum sustainable yield,
MSY, in fisheries, or R0 in epidemiology, remain important concepts in management).
These models provide an ideal first benchmark for evaluating the performance of emerg-
ing methods of deep RL for several reasons: Firstly, for some cases the optimal solution
is already known, providing a clear standard-of-comparison to evaluate RL performance.
Prior work sometimes overlooks this essential step, assuming that whatever behavior an
RL agent produces is sufficiently optimal (Mnih et al. 2015). As our evaluations will
illustrate, such an assumption can be quickly misleading. Second, these models are al-
ready widely studied and will be familiar to many readers: Schaefer (1954) is a staple of
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fisheries management textbooks and practice, with over 2800 citations, while Robert M.
May (1977) has become a canonical model of thresholds and tipping points which still
continues to dominate how many ecologists think about these phenomena (Scheffer et al.
2015). Many readers can thus benefit from existing knowledge and intuition about the
behavior and implications of these models in interpreting the performance of deep RL,
something that would not be possible with a more complex model. Third, these models
include or can easily be extended to contexts for which the optimal management policy is
unknown or inaccessible to classical methods. Our implementations of these models have
been published to the python-based PyPi code archive and include many such variations
which represent open problems for RL. We include carefully annotated code which should
allow readers to both reproduce and extend this analysis.

This chapter does not intend to validate deep RL as a method that should be used
to directly inform decision-making on current conservation problems. Rather, we seek
to provide ecologists with a greater understanding of both potentials and pitfalls of this
emerging approach. We have selected familiar example problems to provide ecologists
with a greater background and intuition to understand these techniques and engage in
the collaborative development of deep RL-based methods, while also highlighting chal-
lenges which ecological problems pose to existing techniques. Validating deep RL for
current conservation problems is beyond the scope of any one paper: this will necessitate
examining a range of more “precise” models which will require more computational re-
sources than is available to most researchers and extensive collaboration between large
teams of ecologists and computer scientists.

2.2 Materials and Methods

All applications of RL can be divided into two components: an environment and an agent.
The environment is typically a computer simulation, though it is possible to use the real
world as the RL environment (Ha et al. 2020). The agent, which is often a computer
program, continuously interacts with the environment. At each time step, the agent
observes the current state of the environment then performs an action1. As a result of
this action, the environment transitions to a new state and transmits a numerical reward
signal to the agent. The goal of the agent is to learn how to maximize its expected
cumulative reward. The agent learns how to achieve this objective during a period called
training. In training, the agent explores the available actions. Once the agent comes
across a highly rewarding sequence of observations and actions, the agent will reinforce
this behavior so that it is more likely for the agent to exploit the same high reward
trajectory in the future. Throughout this process, the agent’s behavior is codified into
what is called a policy, which describes what action an agent should take for a given
observation.

2.2.1 RL Environments

An environment is a mathematical function, computer program, or real world experi-
ence that takes an agent’s proposed action as input and returns an observation of the
environment’s current state and an associated reward as output. In contrast to classical

1The terms observation and state are used nearly interchangeably in describing RL, so it is worth clarifying the dis-
tinction. An observation is the depiction of the environment that is given to the agent at each time step, but the state
is the true underlying description of the environment. When the term observation is used, this usually means that the
observation does not provide an accurate portrayal of the environment’s state. Yet, in cases when the observation and
state are in agreement, the term observation is typically not used at all.
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approaches (Marescot et al. 2013; Chades et al. 2021), there are few restrictions on what
comprises a state or action. States and actions may be continuous or discrete, completely
or partially observed, single or multidimensional. The main focus of building an RL en-
vironment, however, is on the environment’s transition dynamics and reward function.
The designer of the environment can make the environment follow any transition and
reward function provided that both are functions of the current state and action. The
ability to tailor the actions, states, transition dynamics and reward function allows RL
environments to model a broad range of decision making problems. For example, we
can set the transitions to be deterministic or stochastic. We could map any countable
set of actions to a discrete action space. We can also specify the reward function to be
sparse, whereby a positive reward can only be received after a long sequence of actions,
e.g. the end point in a maze. In other environments, an agent may have to learn to forgo
immediate rewards (or even accept an initial negative reward) in order to maximize the
net discounted reward as we illustrate in examples here.

E
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Observation

Agent

Rewaard

Evaluation

Neural
Network

Reset

Parameters

Trial #1

Hyperparameters
ε ε ε
η η η

Training

Env.

ε η ηε Trial #2

ε η

Tuning

Figure 2.1: Deep Reinforcement Learning: A deep RL agent uses a neural network to select an action in
response to an observation of the environment, and receives a reward from the environment as a result.
During training, the agent tries to maximize its cumulative reward by interacting with the environment
and learning from experience. In the RL loop, the agent performs an action, then the environment
returns a reward and an observation of the environment’s state. The agent-environment loop continues
until the environment reaches a terminal state, after which the environment will reset, causing a new
episode to begin. Across training episodes, the agent will continually update the parameters in its neural
network, so that the agent will select better actions. Before training starts, the researcher must input
a set of hyperparameters to the agent; hyperparameters direct the learning process and thus affect the
outcome of training. A researcher finds the best set of hyperparameters during tuning. Hyperparameter
tuning consists of iterative trials, in which the agent is trained with different sets of hyperparameters.
At the end of a trial, the agent is evaluated to see which set of hyperparameters results in the highest
cumulative reward. An agent is evaluated by recording the cumulative reward over one episode, or the
mean reward over multiple episodes. Within evaluation, the agent does not update its neural network;
instead, the agent uses a trained neural network to select actions.

The OpenAI gym software framework was created to address the lack of standardiza-
tion of RL environments and the need for better benchmark environments to advance
RL research (Brockman et al. 2016). The gym framework defines a standard interface
and methods by which a developer can describe an arbitrary environment in a computer
program. This interface allows for the application of software agents that can interact
and learn in that environment without knowing anything about the environment’s in-
ternal details. Using the gym framework, we turn existing ecological models into valid
environmental simulators that can be used with any RL agent.
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Abbreviation Algorithm Name Model
PlaNet Deep Planning Network (Hafner et al. 2019) Model-based
I2A Imagination-Augmented Agents (Weber et al. 2018) Model-based
MBPO Model-based Policy Optimization (Janner et al. 2019) Model-based
DQN Deep Q Networks (Mnih et al. 2015) Model-free
A2C Advantage Actor Critic (Mnih et al. 2016) Model-free
A3C Asynchronous A2C (Babaeizadeh et al. 2017) Model-free
TRPO Trust Region Policy Optimization (Schulman, Levine,et al. 2017) Model-free
PPO Proximal Policy Optimization (Schulman, Wolski, et al. 2017) Model-free
DDPG Deep Deterministic Policy Gradient (Lillicrap et al. 2019) Model-free
TD3 Twin Delayed DDPG (Fujimoto, Hoof, and Meger 2018) Model-free
SAC Soft Actor Critic (Haarnoja et al. 2018) Model-free
IMPALA Importance Weighted Actor Learner (Espeholt et al. 2018) Model-free

Table 2.1: Survey of common deep RL algorithms.

2.2.2 Deep RL Agents

To optimize the RL objective, agents either take a model-free or model-based approach.
The distinction is that model-free algorithms do not attempt to learn or use a predictive
model of the environment; yet, model-based algorithms employ a predictive model of
the environment to achieve the RL objective. A trade-off between these approaches is
that when it is possible to quickly learn a model of the environment or the model is
already known, model-based algorithms tend to require much less interaction with the
environment to learn good-performing policies (Janner et al. 2019; Sutton and Barto
2018). Yet, frequently, learning a model of the environment is very difficult, and in these
cases, model-free algorithms tend to outperform (Janner et al. 2019).

Neural networks become useful in RL when the environment has a large observation-
action space2, which happens frequently with realistic decision-making problems. When-
ever there is a need for an agent to approximate some function, typically a function to
represent the policy and/or to model the transition dynamics, neural networks can be used
in this capacity due to their property of being general function approximators (Hornik,
Stinchcombe, and White 1989). Although there are other function approximators that
can be used in RL, e.g. Gaussian processes (Grande, Walsh, and How 2014), neural net-
works have excelled in this role because of their ability to learn complex, non-linear, high
dimensional functions and their ability to adapt given new information (Arulkumaran
et al. 2017). There is a multitude of deep RL algorithms since there are many design
choices that can be made in constructing a deep RL agent. In Table 2.1, we present some
of the more common deep RL algorithms which serve as good reference points for the
current state of deep RL.

Training a deep RL agent involves allowing the agent to interact with the environment
for potentially thousands to millions of time steps. During training, the deep RL agent
continually updates its neural network parameters so that it will converge to an optimal
policy. The amount of time needed for an agent to learn high reward yielding behavior
cannot be predetermined and depends on a host of factors including the complexity of
the environment, the complexity of the agent, and more. Yet, overall, it has been well
established that deep RL agents tend to be very sample inefficient (Gu et al. 2017), so it
is recommended to provide a generous training budget for these agents.

The deep RL agent controls the learning process with parameters called hyperparame-
2Conventionally, an observation-action space is considered to be large when it is non-tabular, i.e. cannot be represented

in a computationally tractable table.
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ters. Examples of hyperparameters include the step size used for gradient ascent and the
interval to interact with the environment before updating the policy. In contrast, a weight
or bias in an agent’s neural network is simply called a parameter. Parameters are learned
by the agent, but the hyperparameters must be specified by the RL practitioner. Since
the optimal hyperparameters vary across environments and can not be predetermined
(Henderson et al. 2019), it is necessary to find a good-performing set of hyperparam-
eters in a process called hyperparameter tuning which uses standard multi-dimensional
optimization methods.

2.2.3 RL Objective

The reinforcement learning environment is typically formalized as a discrete-time partially
observable Markov decision process (POMDP). A POMDP is a tuple that consists of the
following:

• S: a set of states called the state space

• A: a set of actions called the action space

• Ω : a set of observations called the observation space

• E(ot|st): an emission distribution, which accounts for an agent’s observation being
different from the environment’s state

• T (st+1|st, at): a state transition operator which describes the dynamics of the system

• r(st, at): a reward function

• d0(s0): an initial state distribution

• γ ∈ (0, 1]: a discount factor which describes how much the agent will value rewards
to be received in the distant future versus the immediate future (Colin Whitcomb
Clark 2010)

The agent interacts with the environment in an iterative loop, whereby the
agent only has access to the observation space, action space and the discounted
reward signal, γt r(st, at). As the agent interacts with the environment by se-
lecting actions according to its policy, π(at|ot)3, the agent creates a trajectory,
τ = (s0, o0, a0, . . . , sH−1, oH−1, aH−1, sH). From these definitions, we can provide an
agent’s trajectory distribution for a given policy as,

pπ(τ) = d0(s0)
H−1∏
t=0

π(at|ot) E(ot|st) T (st+1|st, at).

The goal of reinforcement learning is for the agent to find an optimal policy distribu-
tion, π∗(at|ot), that maximizes the expected return, J(π):

π∗ = argmax
π

Eτ∼pπ(τ)

[ H−1∑
t=0

γtr(st, at)
]

= argmax
π

J(π).

Although there are RL-based methods for infinite horizon problems, i.e. when H = ∞,
we will only present episodic or finite horizon POMDPs in this chapter.

3The policy can also be conditioned on a history of observations, (o0, ..., ot).
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2.3 Results

We provide two examples that illustrate the application and potential of deep RL to
ecological and conservation problems, highlighting both the potential and the inherent
challenges. Annotated code for these examples may be found at https://github.com/
boettiger-lab/rl-intro. All algorithms were run on an NVIDIA Quadro RTX 8000 GPU.
The training budget for the fishing scenario was 300K timesteps (3K runs, taking about
25 minutes). The training budget for the tipping point example was 3M timesteps (6K
runs, taking around 3 hours). Software details and hyperparameters are provided in the
associated GitHub repo. Hyperparameter tuning typically required 100s of training runs
using both Optuna, a python-based hyperparameter optimization module, and manual
adjustments.

2.3.1 Sustainable harvest

The first example focuses on the important but well-studied problem of setting harvest
quotas in fisheries management. This provides a natural benchmark for deep RL ap-
proaches, since we can compare the RL solution to the mathematical optimum directly.
Determining fishing quotas is both a critical ecological issue (Worm et al. 2006, 2009;
Costello et al. 2016), and a textbook example that has long informed the management
of renewable resources within fisheries and beyond (Colin W. Clark 1990).

Given a population growth model that predicts the total biomass of a fish stock in the
following year as a function of the current biomass, it is straightforward to determine what
biomass corresponds to the maximum growth rate of the stock, or BMSY, the biomass
at Maximum Sustainable Yield (MSY) (Schaefer 1954). When the population growth
rate is stochastic, the problem is slightly harder to solve, as the harvest quota must
constantly adjust to the ups and downs of stochastic growth, but it is still possible to
show the optimal strategy merely seeks to maintain the stock at BMSY, adjusted for any
discounting of future yields (Reed 1979).

For illustrative purposes, we consider the simplest version of the dynamic optimal
harvest problem as outlined by Colin W. Clark (1973) (for the deterministic case) and
Reed (1979) (under stochastic recruitment). The manager seeks to optimize the net
present value (discounted cumulative catch) of a fishery, observing the stock size each
year and setting an appropriate harvest quota in response. In the classical approach, the
best model of the fish population dynamics must first be estimated from data, potentially
with posterior distributions over parameter estimates reflecting any uncertainty. From
this model, the optimal harvest policy – that is, the function which returns the optimal
quota for each possible observed stock size – can be determined either by analytic (Reed
1979) or numerical (Marescot et al. 2013) methods, depending on the complexity of the
model. In contrast, a model-free deep RL algorithm makes no assumption about the
precise functional form or parameter values underlying the dynamics – it is in principle
agnostic to the details of the simulation.

We illustrate the deep RL approach using the model-free algorithm known as Twin
Delayed Deep Deterministic Policy Gradient or more simply, TD3 (Fujimoto, Hoof, and
Meger 2018). We compare the resulting management, policy, and reward under the RL
agent to that achieved by the optimal management solution [Fig 2]. Despite having no
knowledge of the underlying model, the RL agent learns enough to achieve nearly optimal
performance.

The cumulative reward (utility) realized across 100 stochastic replicates is indistin-
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Figure 2.2: Fisheries management using neural network agents trained with RL algorithm TD3 compared
to optimal management. Top panel: mean fish population size over time across 100 replicates. Shaded
region shows the 95% confidence interval over simulations. Lower left: The optimal solution is policy of
constant escapement. Below the target escapement of 0.5, no harvest occurs, while any stock above that
level is immediately harvested back down. The TD3 agent adopts a policy that ceases any harvest below
this level, while allowing a somewhat higher escapement than optimal. TD3 achieves a nearly-optimal
mean utility.

guishable from that of the optimal policy [Fig 2.2]. Nevertheless, comparing the mean
state over replicate simulations reveals some differences in the RL strategy, wherein the
stock is maintained at a slightly higher-than-optimal biomass. Because our state space
and action space are sufficiently low-dimensional in this example, we are also able to
visualize the policy function directly, and compare to the optimal policy [Fig 2.2]. This
confirms that quotas tend to be slightly lower than optimal, most notably at larger stock
sizes. These features highlight a common challenge in the design and training of RL
algorithms. RL cares only about improving the realized cumulative reward, and may
sometimes achieve this in unexpected ways. Because these simulations rarely reach stock
sizes at or above carrying capacity, i.e. larger stock sizes are under-explored, these larger
stock sizes show a greater deviation from the optimal policy than we observe at more
frequently visited lower stock sizes. This observation brings up a point that is well worth
discussing which is how to best identify and resolve under-explored scenarios. Usually,
RL practitioners identify under-explored scenarios by either doing extensive testing or vi-
sualizing the policy, then tweaking the hyperparameters relevant to exploration in hopes
of improving the result.

How could an RL agent be applied to empirical data? One solution would be to train
an agent on a simulation environment that approximates the fishery of interest then
query the policy of the agent to find a quota for the observed stock. To illustrate this, we
examine the quota that would be recommended by our newly trained RL agent, above,
against historical harvest levels of Argentine hake based on stock assessments from 1986
- 2014 (RAM Legacy Stock Assessment Database 2020). Hake stocks showed a marked
decline throughout this period, while harvests decreased only in proportion [Fig 2.3]. In
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contrast, our RL agent would have recommended significantly lower quotas over most of
the same interval, including the closure of the fishery as stocks were sufficiently depleted
– a stark contrast to the management policy evidenced in the historical catch. Note that
we have no way of knowing for sure if the RL quotas would have led to recovery nor
do we know the optimal harvest rates, because we can never know the “true model” of
the Argentine hake dynamics. We can confirm that the fishery closures seen in the RL
agent’s solution are considered optimal under the assumptions of constant escapement
theory (Reed 1979) whenever the stock is below the biomass of maximum sustainable yield
(BMSY ), and that most fisheries models of this stock (RAM Legacy Stock Assessment
Database 2020) would suggest that the populations observed in the latter two decades of
the data are below that threshold.
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Figure 2.3: Setting fisheries harvest quotas using Deep RL. Argentine Hake fish stocks show a marked
decline between 1986 and 2014 (upper panel). Historical harvests (lower panel) declined only slowly in
response to consistently falling stocks, suggesting overfishing. In contrast, RL-based quotas would have
been set considerably lower than observed harvests in each year of the data. As decline persists, the
RL-based management would have closed the fishery to future harvest until the stock recovered.

This approach is not as different from conventional strategies as it may seem. In a
conventional approach, ecological models are first estimated from empirical data, (stock
assessments in the fisheries case). Quotas can then be set based directly on these model
estimates, or by comparing alternative candidate “harvest control rules” (policies) against
model-based simulations of stock dynamics. This latter approach, known in fisheries as
Management Strategy Evaluation [MSE; Punt et al. (2016)] is already closely analogous
to the RL process. Instead of researchers evaluating a handful of control rules, the RL
agent proposes and evaluates a plethora of possible control rules autonomously.

2.3.2 Ecological Tipping Points

Our second example focuses on a case for which we do not have an existing, provably
optimal policy to compare against. We consider the generic problem of an ecosystem
facing slowly deteriorating environmental conditions which move the dynamics closer
towards a tipping point [Fig 2.4]. This model of a critical transition has been posited
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widely in ecological systems, from the simple consumer-resource model of (Robert M.
May 1977) on which our dynamics are based, to microbial dynamics (Dai et al. 2012),
lake ecosystem communities (Stephen R. Carpenter et al. 2011) to planetary ecosystems
(Barnosky et al. 2012). On top of these ecological dynamics we introduce an explicit
ecosystem service model quantifying the value of a more desirable ‘high’ state relative
to the ‘low’ state. For simplicity, we assume a proportional benefit b associated with
the ecosystem state X(t). Thus when the ecosystem is near the ‘high’ equilibrium X̂H ,
the corresponding ecosystem benefit bX̂H is higher than at the low equilibrium, bxL,
consistent with the intuitive description of ecosystem tipping points (Barnosky et al.
2012).

We also enumerate the possible actions which a manager may take in response to
environmental degradation. In the absence of any management response, we assume the
environment deteriorates at a fixed rate α, which can be thought of as the incremental
increase in global mean temperature or similar anthropogenic forcing term. Management
can slow or even reverse this trend by choosing an opposing action At. We assume that
large actions are proportionally more costly than small actions, consistent with the expec-
tation of diminishing returns: taking the cost associated with an action At as equal to cA2

t .
Many alterations of these basic assumptions are also possible: our gym_conservation
implements a range of different scenarios with user-configurable settings. In each case,
the manager observes the current state of the system each year and must then select the
policy response that year.

0.25

0.50

0.75

0.17 0.19 0.21
parameter

st
at

e

equilibrium

stable

unstable

Figure 2.4: Bifurcation diagram for tipping point scenario. The ecosystem begins in the desirable ‘high’
state under an environmental parameter (e.g. global mean temperature, arbitrary units) of 0.19. In the
absence of conservation action, the environment worsens (e.g. rising mean temperature) as the parameter
increases. This results in only a slow degradation of the stable state, until the parameter crosses the
tipping point threshold at about 0.215, where the upper stable branch is annihilated in a fold bifurcation
and the system rapidly transitions to lower stable branch, around state of 0.1. Recovery to the upper
branch requires a much greater conservation investment, reducing the parameter all the way to 0.165
where the reverse bifurcation will carry it back to the upper stable branch.

Because this problem involves a parameter whose value changes over time (the slowly
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deteriorating environment), the resulting ecosystem dynamics are not autonomous. This
precludes our ability to solve for the optimal management policy using classical theory
such as for Markov Decision Processes (MDP, (Marescot et al. 2013)), typically used to
solve sequential decision-making problems. However, it is often argued that simple rules
can achieve nearly optimal management of ecological conservation objectives in many
cases (Meir, Andelman, and Possingham 2004; Wilson et al. 2006; L. N. Joseph, Mal-
oney, and Possingham 2009). A common conservation strategy employs a fixed response
level rather than a dynamic policy which is toggled up or down each year: for example,
declaring certain regions as protected areas in perpetuity. An intuitive strategy faced
with an ecosystem tipping point would be ‘perfect conservation’, in which the manage-
ment response is perfectly calibrated to counter-balance any further decline. While the
precise rate of such decline may not be known in practice (and will not be known to RL
algorithms before-hand either), it is easy to implement such a policy in simulation for
comparative purposes. We compare this rule-of-thumb to a policy found by training an
agent using the TD3 algorithm.
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Figure 2.5: Ecosystem dynamics under management using the steady-state rule-of-thumb strategy com-
pared to management using a neural network trained using the TD3 RL algorithm. Top panel: mean
and 95% confidence interval of ecosystem state over 100 replicate simulations. As more replicates cross
the tipping point threshold under steady-state strategy, the mean slowly decreases, while the TD3 agent
preserves most replicates safely above the tipping point. Lower left: the policy function learned using
TD3 relative to the policy function under the steady state. Lower right: mean rewards under TD3 man-
agement eventually exceed those expected under the steady-state strategy as a large initial investment
in conservation eventually pays off.

The TD3-trained agent proves far more successful in preventing chance transitions
across the tipping point, consistently achieving a higher cumulative ecosystem service
value across replicates than the steady-state strategy.

Examining the replicate management trajectories and corresponding rewards [Fig 2.5]
reveal that the RL agent incurs significantly higher costs in the initial phases of the
simulation, dipping well below the mean steady-state reward initially before exceeding
it in the long run. This initial investment then begins to pay off – by about the 200th
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time step the RL agent has surpassed the performance of the steady-state strategy. The
policy plot provides more intuition for the RL agent’s strategy: at very high state values,
the RL agent opts for no conservation action – so far from the tipping point, no response
is required. Near the tipping point, the RL agent steeply ramps up the conservation
effort, and retains this effort even as the system falls below the critical threshold, where a
sufficiently aggressive response can tip the system back into recovery. For a system at or
very close to the zero-state, the RL agent gives up, opting for no action. Recall that the
quadratic scaling of cost makes the rapid response of the TD3 agent much more costly to
achieve the same net environmental improvement divided into smaller increments over a
longer timeline. However, our RL agent has discovered that the extra investment for a
rapid response is well justified as the risk of crossing a tipping point increases.

A close examination of the trajectories of individual simulations which cross the tipping
point under either management strategy further highlights the difference between these
two approaches. Under the steady-state strategy, the system remains poised too close to
the tipping point: stochastic noise eventually drives most replicates across the threshold,
where the steady-state strategy is too weak to bring them back once they collapse. As
replicate after replicate stochastically crashes, the mean state and mean reward bend
increasingly downwards. In contrast, the RL agent edges the system slightly farther away
from the tipping point, decreasing but not eliminating the odds of a chance transition.
In the few replicates that experience a critical transition anyway, the RL agent usually
responds with sufficient commitment to ensure their recovery. Only 3 out of 100 replicates
degrade far enough for the RL agent to give up the high cost of trying to rescue them.
The RL agent’s use of a more dynamic strategy out-performs the steady-state strategy.
Numerous kinks visible in the RL policy function also suggest that this solution is not
yet optimal. Such quirks are likely to be common features of RL solutions – long as they
have minimal impact on realized rewards. Further tuning of hyper-parameters, increased
training, alterations or alternatives to the training algorithm would likely be able to
further improve upon this performance.

2.3.3 Additional Environments

Ecology holds many open problems for deep RL. To extend the examples presented here
to reflect greater biological complexity or more realistic decision scenarios, the transition,
emission and/or reward functions of the environment can be modified. We provide an
initial library of example environments at https://boettiger-lab.github.io/conservation-
gym. Some environments in this library include a wildfire gym that poses the problem
of wildfire suppression with a cellular automata model, an epidemic gym that examines
timing of interventions to curb disease spread, as well as more complex variations of the
fishing and conservation environments presented above.

2.4 Discussion

Ecological challenges facing the planet today are complex, and their outcomes are both
uncertain and consequential. Even our best models and best research will never provide
a crystal ball to the future, only better elucidate possible scenarios. Consequently, that
research must also confront the challenge of making robust, resilient decisions in a chang-
ing world. The science of ecological management and quantitative decision-making has a
long history (e.g. Schaefer 1954; Walters and Hilborn 1978) and remains an active area
of research (Wilson et al. 2006; Fischer et al. 2009; Polasky et al. 2011a). However, the
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limitations of classical methods such as optimal control frequently constrain applications
to relatively simplified models (Wilson et al. 2006), ignoring elements such as spatial
or temporal heterogeneity and autocorrelation, stochasticity, imperfect observations, age
or state structure, and other sources of complexity that are both pervasive and influ-
ential on ecological dynamics (Hastings and Gross 2012). Complexity comes not only
from the ecological processes but also the available actions. Deep RL agents have proven
remarkably effective in handling such complexity, particularly when leveraging immense
computing resources increasingly available through advances in hardware and software
(Matthews 2018).

This chapter does not set the precedent as the first application of RL to ecology.
There have been a number of studies applying RL to behavioral ecology, typically with
multi-agent environments (Wang, Cheng, and Wang 2020; Frankenhuis, Panchanathan,
and Barto 2019; Perolat et al. 2017). Yet, it is important to distinguish the aim of
these behavioral studies from the aim of applying RL to conservation management. In
previous behavioral ecology studies, RL algorithms as a substitute for animal learning
mechanisms (Wang, Cheng, and Wang 2020; Perolat et al. 2017). When applying deep
RL to conservation management, we do not make the assumption that an RL algorithm
learns analogously to how an animal learns. We instead propose that RL be used as a
tool to search for solutions to decision-making problems.

The examples presented here only scrape the surface of possible RL applications to
conservation problems. The examples we have focused on are intentionally quite simple,
though it is worth remembering that these very same simple models have a long history of
relevance and application in both research and policy contexts. Despite their simplicity,
the optimal strategy is not always obvious before hand, however intuitive it may appear
in retrospect. In the case of the ecosystem tipping point scenario, the optimal strategy is
unknown, and the approximate solution found by our RL implementation could almost
certainly be improved upon. In these simple examples in which the simulation implements
a single model, training is analogous to classical methods which take the model as given
(Marescot et al. 2013). But classical approaches can be difficult to generalize when the
underlying model is unknown. In contrast, the process of training an RL algorithm on
a more complex problem is no different than training on a simple one: we only need
access to a simulation which can generate plausible future states in response to possible
actions. This flexibility of RL could allow us to attain better decision-making insight for
our most realistic ecological models like those used for the management of forests and
wildfire (Pacala et al. 1996; Moritz et al. 2014), disease (Dobson et al. 2020), marine
ecosystems (Steenbeek et al. 2016), or global climate change (Nordhaus 1992).

The rapidly expanding class of model-free RL algorithms is particularly appealing
given the ubiquitous presence of model uncertainty in ecological dynamics. Rarely do we
know the underlying functional forms for ecological processes. Methods which must first
assume something about the structure or functional form of a process before estimating
the corresponding parameter can only ever be as good as those structural assumptions.
Frequently, available ecological data are insufficient to distinguish between possible alter-
native models (Knape and Valpine 2012), or the correct model may be non-identifiable
with any amount of data. Model-free RL approaches offer a powerful solution for this
thorny issue. Model-free algorithms have proven successful at learning effective policies
even when the underlying model is difficult or impossible to learn (Pong et al. 2020), as
long as simulations of possible mechanisms are available.

Successfully applying RL to complex ecological problems is no easy task. Even on rel-

17



Issue Description
Generalization Agents struggle to adapt to tasks not seen in training (Kirk et al.

2022).
Reproducibility It can be very challenging to replicate results due to a host of

reasons like differences in computational hardware (Henderson et
al. 2019).

Lack of Transparency Deep RL users cannot interpret why agents select actions
(Castelvecchi 2016).

Hyperparameter Instability Agent performance can vary significantly over slight alterations in
hyperparameters, like initialization seed (Henderson et al. 2019).

Reward Misspecification Agents commonly learn undesirable behavior that still maximizes
the RL objective (Hadfield-Menell et al. 2020).

High Capital Demands Landmark successes like AlphaGo and AlphaStar have required
very large teams of researchers and large amounts of computa-
tional power (Silver et al. 2017; Vinyals et al. 2019).

Sample Inefficiency Current algorithms require large amounts of interaction with the
environment to achieve reward maximization (Haarnoja et al.
2018).

Table 2.2: Practical issues with deep RL.

atively uncomplicated environments, training an RL agent can be more challenging than
expected due to an entanglement of reasons, see Table 2, like hyperparameter instability
and poor exploration that can be very difficult to resolve (Henderson et al. 2019; Berger-
Tal et al. 2014). It is also worth acknowledging that deep RL algorithms, particularly
model-free algorithms, have poor sample efficiency, which could limit deep RL from being
effective on environments that are slow to run (Haarnoja et al. 2018). Thus, as Sections
5.1 and 5.2 illustrate, it is important to begin with simple problems, including those for
which an optimal strategy is already known. Such examples provide important bench-
marks to calibrate the performance, tuning and training requirements of RL. Once RL
agents have mastered the basics, the examples can be easily extended into more complex
problems by changing the environment. Yet, even in the case that an agent performs well
on a realistic problem, there will be a range of open questions in using deep RL to inform
decision-making. Since deep neural networks lack transparency (Castelvecchi 2016), can
we be confident that the agent will generalize its past experience to new situations –
especially when we cannot readily visualize the policy? To gain such confidence, it will
be necessary to do extensive testing on previously unseen contexts (Kazak et al. 2019),
but even then, it can be difficult to verify that the agent will perform as expected. Given
that there have been many examples of reward misspecification leading to undesirable
behavior (Hadfield-Menell et al. 2020), what if we have selected an objective that unex-
pectedly causes damaging behavior? Reward misspecification is not unique to RL and
has long been a central problem in ecological management and decision-making (Gregory
et al. 2012; Conroy and Peterson 2013), but it is important to make clear that RL does
not resolve this issue. A greater role of algorithms in conservation decision-making also
raises questions about ethics and power, particularly when those algorithms are opaque
or proprietary (Scoville et al. 2021; Chapman et al. 2021).

Yet, a more immediate barrier to the use of deep RL in conservation is deep RL’s
hardware requirements. Depending on the complexity of the RL environment and agent,
the equipment necessary to train an agent can vary widely. The examples shown above
were selected so they can be replicated on a personal computer, but more realistic prob-
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lems will likely require specialized computational resources. For instance, one of the most
notable achievements in RL, Alphastar, required 33 TPUs, processors that are specialized
for deep learning, for more than 40 days (Vinyals et al. 2019). Fully detailed conserva-
tion decision-making problems will likely require comparable specialized algorithms and
hardware that ecologists do not generally have access to. For deep RL to be an effective
tool for conservation, there will need to be large investments of time and money, and
extensive collaboration across computer science and ecology.

Deep RL is still a very young field, where despite several landmark successes, potential
far outstrips practice. Recent advances in the field have proven the potential of the
approach to solve complex problems (Silver et al. 2016, 2017, 2018; Mnih et al. 2015), but
typically leveraging large teams with decades of experience in ML and millions of dollars
worth of computing power (Silver et al. 2017). Successes have so far been concentrated
in applications to games and robotics, not scientific and policy domains, though this
is beginning to change (Popova, Isayev, and Tropsha 2018; Zhou, Li, and Zare 2017).
Iterative improvements to well-posed public challenges have proven immensely effective
in the computer science community in tackling difficult problems, which allow many
teams with diverse expertise not only to compete but to learn from each other (Villarroel,
Taylor, and Tucci 2013; Deng et al. 2009). By working to develop similarly well-posed
challenges as clear benchmarks, ecology and environmental science researchers may be
able to replicate that collaborative, iterative success in cracking hard problems.
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Chapter 3

Limits to Ecological Forecasting:
Estimating Uncertainty for Critical
Transitions with Deep Learning

This chapter was previously published, see Lapeyrolerie and Boettiger, 2023. It is included
here with permission from the co-authors.

Forecasting and decision-making are inherently interconnected. At the core of many
solutions for decision-making problems, including all the deep RL models mentioned pre-
viously, is a forward prediction problem: the agent often has the central task of predicting
the expected cumulative rewards for following a given policy. Thus, improving our ability
to forecast ecological processes will likely improve our ability to make better decisions for
conservation problems. Chapter 3 continues the exploration of neural network models for
issues in ecology and conservation but changes focus from decision-making to time series
forecasting.

3.1 Introduction

Forecasting plays an important and rapidly growing role in both testing our fundamental
understanding of ecological processes, and informing ecological applications and conser-
vation decision-making (M. C. Dietze et al. 2018; Schindler, Armstrong, and Reed 2015).
Meanwhile, recent advances in machine learning have rapidly improved the prevalence
and accuracy of short term forecasts in many fields (Kao et al. 2020; Lyu et al. 2020; Du
et al. 2020). Will these emerging methods improve the capacity for forecasts in ecologi-
cal systems as well? Ecological dynamics are notoriously complex, with uncertainty and
non-linearity playing critical roles (Boettiger 2018a; Hallett et al. 2004; Ovaskainen and
Meerson 2010). These challenges are nowhere more evident than in critical transitions,
sudden shifts in the states or patterns of ecosystem dynamics that are more important
and more difficult to predict than gradual changes. Here, we examine several of the
best-known examples of critical transitions in ecological systems. We evaluate the most
promising machine learning methods for probabilistic forecasts relative to traditional sta-
tistical and mechanistic approaches applied to several classic models in ecology.

In this chapter, we focus on the task of producing quantitative, probabilistic forecasts
reflecting the possible distribution of future states, as frequently called for in ecological
research (J. S. Clark et al. 2001; M. C. Dietze et al. 2018). Such forecasting tasks may
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arise whenever a manager is interested in knowing the future states of a system: such
as setting future catch quotas for a fishery or adjusting eradication effort for an invasive
species. It is important to distinguish this objective from the extensive previous litera-
ture on “early warning signs” of critical transitions, as reviewed in Scheffer et al. (2009),
which has sought to answer only a categorical question: is the system approaching a
critical transition? Recent work such as Bury et al. (2021) has introduced ML methods
to consider classification of this transition in four possible categories (Hopf, saddle-node,
transcritical, or no bifurcation) rather than two (bifurcation or not). These are important
results with considerable promise (Lapeyrolerie and Boettiger 2021), but which neverthe-
less address a very different question using very different methods. Early warning signals
only predict “a big change may be coming soon” – they do not try to forecast when or
how big. As we shall see, there is good reason to focus on that more modest, qualitative
objective when faced with systems that might produce critical transitions. Here, we ex-
amine the more ambitious questions of forecasting when and how much change: or more
precisely, of making probabilistic forecasts of all future states over a given time horizon.

3.2 Materials and Methods

We will focus the analysis on several different forecasting scenarios based around two
classic models in population ecology: Robert May’s consumer-resource model (Robert M.
May 1977), and the Nicholson-Bailey parasitoid-host model (A. J. Nicholson and Bailey
1935). Though these models may appear simple when measured against high-dimensional
and parameter rich models found in some management contexts such as fisheries, they
can exhibit rich nonlinear dynamics and provide greater capacity to generalize (Levins
1966; Getz et al. 2018). These textbook models have been well studied and form the
basis of half a century of research in ecology, including much recent work on topics
such as resilience and tipping points which has had important theoretical and practical
management outcomes (Folke et al. 2004; Fischer et al. 2009; Polasky et al. 2011a).
May’s model exhibits alternative stable states. In this one-dimensional model, transitions
between these states can occur due to intrinsic stochasticity, external forcing, or the
gradual environmental change that results in a catastrophic saddle-node bifurcation and
generates hysteresis. The Nicholson-Bailey model is a two species model which contains
a supercritical Hopf bifurcation, a non-catastrophic bifurcation which either creates or
destroys a limit cycle – a stable oscillatory pattern.

Assessing the accuracy of forecasting methods in the face of such bifurcation dynam-
ics is a particularly important question for ecological systems and global environmental
change problems. Bifurcations represent the kind of non-linear responses complex sys-
tems can make as the result of slowly changing parameters. This can create a particularly
challenging forecasting task when such transitions have not been previously observed in
the same system, requiring the forecast to anticipate dynamics for which there are no
analogs in the historical data. Forecast skill under such no-analog conditions may be
particularly relevant to ecological forecasting in the context of global change (Williams
and Jackson 2007).

We provide fully reproducible coded examples in R and Python for performing, scoring,
and visualizing each of the forecasts considered here. After significant time spent con-
sidering alternative frameworks, we have emphasized those which best met our require-
ments for performance, ease-of-use, flexibility, and support for the latest probabilistic
machine learning models for forecasting. Most of our forecasts use the darts frame-
work, a sophisticated and well documented Python library with support for a wide range
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of methods. Our model-based MCMC forecasts use the greta framework, a R library
that uses Python-based TensorFlow Probability to achieve better performance. While
Python-based frameworks currently have the edge in performance and access modern ML
algorithms, they lag behind in attention to statistical issues such as the computation of
strictly proper skill scores.

Our examples of scoring and visualization will rely on a collection of R packages, in
particular, scoringRules for the efficient calculation of Continuous Ranked Probability
Score (CRPS) and logarithmic probability (Logs) scores for forecast ensembles (Gneiting
and Raftery 2007). Following popular conventions, we express both skill scores in error-
orientation, that is, larger values indicate worse skill (higher degree of error).

We expect greater convergence between methods available in R and Python in the
future, as already illustrated in the example of greta. Complete code for all examples
presented here can be found at https://github.com/boettiger-lab/mee_tipping_point_
forecasting.
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Figure 3.1: Forecast scenarios. A. The Hopf bifurcation: a stable node develops into a limit cycle which
gradually grows larger in this predator-prey model. B. The saddle-node bifurcation in a single species.
C. The stochastic transition in a single species. Plots show historical data used to train the algorithm
in purple, and replicate simulations of the true dynamics (‘future ensemble’) in yellow. Note how the
characteristic time for the critical transition varies across the transitions. We will examine forecasts
of various models (Fig 3.2) which will each produce probablistic forecast distributions (blue, Fig 3.3-5)
seeking to match the true future ensemble (yellow) as closely as possible.
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3.2.1 Scenario 1: Hopf Bifurcation

The Nicholson-Bailey model describes a predator-prey dynamic for the relationship of a
host species and an obligate parasitoid, originally used to model the population dynamics
of blowflies (Lucilia cuprina) (A. J. Nicholson and Bailey 1935; A. Nicholson 1954a,
1954b). We consider the form which includes density dependence in the host species, and
we allow for environmental stochasticity,

Ht+1 = Ht exp
(
r

(
1 − H

Kt

)
− cPt + ηH,t

)
(3.1)

Pt+1 = Ht exp
(
r

(
1 − H

Kt

))
(1 − exp (−cPt + ηP,t)) (3.2)

Kt+1 = Kt + δ (3.3)

Where Ht is the population density of the host species at time t, (in arbitrary units) and
Pt is the population density of the parasitoid. The time step is defined by the generation
time of the parasitoid, which is about two weeks in the case of Nicholson’s blowflies (A.
Nicholson 1954a). Following Dakos et al. (2012), we further allow the carrying capacity
of the host, K to slowly increase at a linear rate, which drives a supercritical Hopf
bifurcation as K becomes sufficiently large. In a Hopf bifurcation, a stable node starts an
oscillatory pattern which grows in amplitude as the bifurcation parameter continues to
increase. In this model, the Hopf bifurcation is dubbed ‘supercritical’ as it creates a stable
limit cycle instead of an unstable one. This example illustrates one of the many kinds of
challenges which nonlinear phenomena pose to forecasting: the “historical” data prior to
the bifurcation never exhibit the cyclical dynamics of growing amplitude that will emerge
after the bifurcation occurs. If we had used a purely deterministic model, the dynamics
would be constrained to a single stable point, corresponding to a slowly changing steady-
state population size of host and parasitoid populations. However, stochasticity in this
case acts as a source of some additional information about the dynamics, as the noise
excites quasi-cycles which are visible in the irregular oscillations that appear significantly
prior to the emergence of true limit cycles which follow the bifurcation (Boettiger 2018b).
Examples use the following parameters: H0 = 9, P0 = 1, r = 0.75, c = 0.1, K0 = 14,
δ = 0.08, σH = 0.02, σP = 0.02.

3.2.2 Scenario 2: The saddle-node bifurcation

A yet more difficult forecasting scenario is created by the saddle-node bifurcation. May’s
consumer-resource model is an one-dimensional model describing the growth of a ‘re-
source’ population (e.g. herbivore) which is grazed by a consumer (Robert M. May and
Anderson 1979). As in the Nicholson-Bailey model, in the absence of that predation,
the resource population density grows under a density-dependent pattern described by a
logistic function. The resource population is also grazed by a consumer at a rate given by
a Holling type III s-curve (typically used to model handling time). For a certain range of
parameter choices, this model supports alternative stable state dynamics, and has been
identified and employed in explaining alternative stable state dynamics in a broad range
of ecological and socio-ecological systems (Scheffer et al. 2001b).
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Nt+1 = Nt + rNt

(
1 − Nt

K

)
− htN

2
t

s2 + N2
t

+ ηt (3.4)

ht+1 = ht + α (3.5)
ηt ∼ N (0, σ) (3.6)

If the environment slowly alters one of the parameters (say, the encounter efficiency,
h_t, in our formulation), one of the stable nodes moves closer and closer to the unstable
saddle point, leading to a bifurcation that destroys the stable state, leaving the system
to suddenly transition to the alternative stable state. Saddle-node bifurcations (also
known as fold bifurcations) also create a phenomenon known as hysteresis, where it is
not sufficient to restore the environment to the previous parameter values to recover the
previous state. Unlike the supercritical Hopf bifurcation which exhibits a continuous
transition from a stable node to a small limit cycle that then grows, the saddle-node
transition is a discontinuous or so-called ‘catastrophic’ bifurcation. Due both to this
sudden, catastrophic nature of the transition and the difficulty in reversing the shift after
it has occurred, saddle-node bifurcations have been the subject of intense study.

Tipping point dynamics have long been identified as an important but difficult chal-
lenge for forecasting (e.g. Scheffer et al. 2001a; Folke et al. 2004). Much effort in
the ecological literature so far has focused on identifying any ‘early warning signs’ that
a catastrophic bifurcation might occur at all (Scheffer et al. 2009, 2012) rather than
more ambitious attempts to provide quantitative probabilistic forecasts of the likely dis-
tribution of waiting times before such a transition occurs. Tipping points resulting from
saddle-node bifurcations have been demonstrated in examples ranging from laboratory
microcosms (Dai et al. 2012; Dai, Korolev, and Gore 2015) to whole-ecosystem ex-
periments (S. R. Carpenter et al. 2011), and postulated as a model for global change
(Barnosky et al. 2012). Examples use the following parameters: r = 1, K = 1, s = 0.1,
h0 = 0.15, α = 0.000375, σ = 0.02, N0 = 0.75.

3.2.3 Scenario 3: The stochastic transition

Perhaps the most difficult of all events to predict are those in which large transitions are
predominately driven by a random component. An example of such a transition event
is possible to observe in May’s consumer-resource model, in which a stochastic term
occasionally results in a transition between alternative stable states. In such cases, no
forecast can precisely predict when a transition will occur, but it is nonetheless possible
to deduce the correct distribution of waiting times knowing the correct model. In the case
of small noise, transitions are Poisson distributed, such that the distribution of waiting
times is roughly exponential (e.g. Kampen 1992), though post-hoc the trajectories of such
transitions can be mistaken for saddle-node transitions (Boettiger and Hastings 2012).
To consider such cases, we will again use May’s alternative stable state model, though
this time leaving all parameters fixed.

In this context, predicting the probability of a transition in the future based solely on
observations prior to a transition occurring is essentially impossible without additional
information constraining the model estimate, as such data is equally consistent with in-
finitely many models or parameter choices which share the same local linearization about
the stable point. Unlike the saddle-node bifurcation, there is no slowly warping potential
basin which can be detected to inform estimates. Thus, in this scenario, rather than
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considering the problem of predicting the future evolution of a single time series based
only on its historical values, we consider an alternative framing of the task: we imagine
our forecaster has access to historical data from one or more comparable systems which
includes a previous stochastic transition event. Based on this data, our forecaster seeks to
identify the distribution of expected transition times for analogous systems starting from
the same initial condition. This parallels actual practice in which researchers would draw
on previous examples of stochastic transitions in a system - lake-ecosystem shifts, disease
emergence, changing fire regimes, (Scheffer et al. 2001a; Folke et al. 2004). (Note that
such stochastic transitions between alternative stable states can also create oscillatory-
like dynamics when stochasticity is sufficiently high enough to drive repeated transitions
from one attractor to the other and back again. In such cases, it might be reasonable to
estimate a strictly forward-looking forecast of a single system, predicting the distribution
of these transitions.) Model definition is the same as May’s model for the saddle node
with fixed parameter h, values: r = 1, K = 1, s = 0.1, h0 = h = 0.26, α = 0, σ = 0.02,
N0 = 0.55.

3.2.4 Selecting timescales

In each scenario, t=0 is the start time of the training data, while the length of train-
ing data and forecast horizon (with ensembles sampled from the true distribution) are
illustrated in Fig 3.1. For the Hopf bifurcation, forecasts begin at t=100 and extend to
t=200; for the saddle node, forecasts begin at t=250 and extend to t=500; and, for the
stochastic transition, both training data and forecasting tasks begin at 0 and extend to
t=250. While much attention is often paid to the number of data points in training or
testing data, it is essential to realize that these are only meaningful relative to the specific
process in question. Thus, in each case, we have selected these time intervals to focus
on the dynamical process in question, which unfolds at a different rate and tempo in
each scenario. For instance, if the stochastic scenario was restricted to the much shorter
timescale used in the Hopf case, few replicate simulations would experience a transition
at all. If length of the stochastic transition timeseries was made much longer, most of
the timeseries would be spent post-transition. Likewise, if the forecast horizon for the
Hopf scenario was extended much further into the future under the current parameter-
ization, the system would experience a homoclinic bifurcation at which the population
collapses to 0. Using different length timescales allows us to consider the three different
forecasting tasks illustrated in Fig 3.1 that focus around predicting the critical behavior,
rather than predicting long periods of relative stasis. These three critical transitions are
fundamentally different processes, there is no perfect apples-to-apples parameterization
for each that allows the transition to unfold in a way that gives precisely the same time
windows.

3.2.5 Method group 1: Markov Chain Monte Carlo

As a reference case, we consider forecasts produced by MCMC estimates of model pa-
rameters, given the true model. This represents an idealized case where the nature of
the underlying process is known precisely. Uncertainty comes from parameter estimates
and intrinsic stochasticity specified in the model, but does not reflect any uncertainty in
our knowledge of the model structure. Alternative model structures, even when capable
of producing the same nonlinear phenomena (i.e. the same bifurcations) will give very
different forecasts. Even alternative prior distributions of the parameters will generally
yield alternate forecasts, as likelihood ridges are common to nonlinear models. Thus, this
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case represents a theoretical upper bound for the performance of forecasts by techniques
which do not make such strong assumptions about the underlying processes.

3.2.6 Method group 2: Statistical models (ARIMA)

We present forecasts produced by ARIMA models as the model-free analogs to the fore-
casts made using parameter estimation with MCMC. Since ARIMA models make the as-
sumption that the future will resemble the past via ARIMA’s auto-regressive and moving
average components (Hyndman and Athanasopoulos 2018), these models are not well-
suited for problems with complex bifurcation dynamics. Thus, ARIMA-based forecasts
should be treated as a lower bound for the performance of non-mechanistic models. In
contrast to inference with MCMC, uncertainty with ARIMA models is estimated directly
from the learned parameters (Hyndman and Athanasopoulos 2018). Since ARIMA is a
commonly encountered method, we will refer readers to Hyndman and Athanasopoulos
(2018) for further discussion.

3.2.7 Method group 3: Machine Learning models

Over the past decade, deep learning has become very popular for a broad range of chal-
lenging time series prediction problems (Makridakis, Spiliotis, and Assimakopoulos 2018).
Deep learning models are often used to make point forecasts, but for their application to
ecological time series, it will often be necessary to use multi-step, probabilistic forecasts.
For all the deep learning models in this study, we use the same general process. Each
machine learning model is trained on one time series drawn from the three scenarios de-
scribed previously. For the Hopf and saddle node cases, these time series consist of the
period leading up to the bifurcation. A critical transition is, however, included in the
training set for the stochastic transition case. Each model is trained to learn the param-
eters of a Laplace distribution for every time step in the forecast horizon. To produce a
forecast, we input a time series into a model, then we draw samples from the distributions
that were learned during training.

A major nuisance with deep learning methods is their instability to hyperparameters
and initialization seeds (Madhyastha and Jain 2019). We found that for the same set
of hyperparameters, we could produce starkly different forecasts if we trained the same
model with different initialization seeds. One explanation for this instability is that
machine learning models often get stuck on the local optima of loss surfaces (Madhyastha
and Jain 2019). Another likely cause is that machine learning models commonly overfit
the training data (Mehta et al. 2019). Across deep learning, overfitting is a fundamental
issue, arising from neural networks being highly overparameterized (Dar, Muthukumar,
and Baraniuk 2021). With so many parameters, deep learning models tend to have high
variance and thus overfit the training data, a consequence of the bias-variance trade-off
common across statistics and machine learning (Mehta et al. 2019). One frequently used
method to reduce overfitting is K-fold cross validation (Raschka 2020), but this approach
cannot be effectively employed when there is one or few time series in the training set.
To remedy the instability problem, we use an ensemble-based method, wherein each ML
forecast is the union of forecasts from 5 individual models that were trained with different
initialization seeds. We found this simple ensemble technique to be an effective way to
improve generalizability in the limited data regime.

Recently, it has become established that using memory or attention-based neural net-
works, and an encoder-decoder architecture is crucial for improving forecasting perfor-
mance on time series data (Kao et al. 2020; Lyu et al. 2020; Du et al. 2020). Herein
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we will provide some background on what these machine learning methods are and their
benefits.

3.2.7.1 Recurrent Neural Networks

Recurrent neural networks (RNN’s) are the predominant memory-based deep learning
method. Recurrent neural networks differ from feed-forward neural networks in that a re-
current neural network provides feedback to itself between time steps (Sherstinsky 2020).
By providing self-feedback, recurrent neural networks are able to retain information from
previous time steps and thus learn temporal dependencies. However, a standard recur-
rent neural network is unwieldy to train because of the vanishing and exploding gradient
problem (Pascanu, Mikolov, and Bengio 2013), so there have been specialized neural net-
work architectures designed to avoid these gradient problems. Long Short-term Memory
(LSTM) and Gated Recurrent Units (GRU) Networks are considered to be the state of
the art recurrent neural networks that address exploding and vanishing gradients (Chung
et al. 2014). These methods avoid gradient problems by regulating the self-feedback via
gates which perform operations on the feedback signal – see Chung et al. (2014) for more
details. While GRU’s and LSTM’s commonly outperform standard RNN’s, it is difficult
to anticipate whether GRU’s or LSTM’s will be best suited for any time series problem
(Chung et al. 2014), so we investigate both methods.

3.2.7.2 Transformers

The Transformer is a state of the art ML architecture that is able to model long and short
term dependencies on sequence to sequence tasks (Vaswani et al. 2017). Transformers
use a mechanism called self-attention which interrelates different positions of the input
sequence in order to find an informative representation of the input sequence (Vaswani
et al. 2017). For example, if given a sentence, a transformer could learn the contextual
relationship between a subject and a direct object, but a recurrent neural network would
process all the words as one phrase. Because of self-attention, Transformers do not need to
process data sequentially and thus can be parallelized, offering significant computational
advantages (Vaswani et al. 2017). The Transformer is likely to be a foundational method
for future AI research (Bommasani et al. 2021), so we considered it critical to investigate
Transformers in this study.

3.2.7.3 Encoder-Decoders

Encoder-decoder architectures have been shown empirically to excel on sequence to se-
quence tasks (Aitken et al. 2021). Encoder-decoders work by processing the input se-
quence into a fixed-length vector then decoding this fixed-length vector to an output se-
quence. It is thought that by encoding the input sequence to a vector, encoder-decoders
find informative representations of the input sequence that make the prediction task much
easier (Sutskever, Vinyals, and Le 2014). Note that it is possible to use any type of neural
network as the encoder and the decoder, but it is most common to use recurrent neural
networks or networks with attention mechanisms (Aitken et al. 2021). Of the models
that we present, Block RNN’s are a direct example of an encoder-decoder-based model
since a Block RNN employs a RNN as an encoder and a separate RNN as a decoder.
Transformers also have an encoder and decoder component.
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3.2.8 Forecast skill: strictly proper scores

To compare forecasts, we focus exclusively on metrics of forecast skill which satisfy the
property from Gneiting and Raftery (2007) of a strictly proper score. This ensures the
very desirable behavior that no probabilistic forecast Q(x, t) can have a score as high
as the score of the true process P (x, t) on average. In other words, while it is possible
for any of the models considered to overfit the data against which they are trained,
i.e. have a higher likelihood than the true process, it is not possible for these models
to overfit the data against which they are scored. It is worth noting that this property
applies specifically to probabilistic forecasts and not point forecasts. Not all common
metrics often used to compare forecasts are strictly proper – such as the average root-
mean-square error or the average absolute error. Concerns about over-fitting arise in
most types of model estimation and are a particularly acute concern to machine learning
methods due to the bias-variance trade-off (Mehta et al. 2019). This makes the use of
strictly proper scoring especially relevant in assessing machine learning predictions.

Not even all strictly proper scores will agree on the same relative ranking between
forecasts. We will focus on two of the most common such skill metrics, CRPS score
and log probability score (negative log likelihood) (e.g. see Gneiting and Raftery 2007;
Gneiting and Katzfuss 2014). We define these scores explicitly in Equations 7-8, where
F and f respectively correspond to the cumulative distribution function and probability
density function of the forecast; and, y denotes an observation. Of the two metrics,
the logs probability score puts a much a greater penalty on unexpected observations
than CRPS, and may be more suitable when the occurrence of unexpected events incurs
a particularly high cost. Note that while the minus log-likelihood can be negative for
sufficiently high probability densities, we use a fixed scalar shift of logs score to ensure
the log skill score is strictly positive, which facilitates visualization without impacting
relative rankings.

LogS(F, y) = − log f(y) (3.7)

CRPS(F, y) =
∫

(F (z) − 1{y ≤ z})2 dz (3.8)

3.3 Results

We examine forecast skill for each of the six forecasting methods (MCMC, ARIMA, block-
RNN, GRU, LSTM, and Transformer) in each of our three scenarios (Hopf bifurcation,
saddle-node bifurcation, and stochastic transition). In addition to these cases, we also
consider an “ensemble model”, generated by drawing from the distribution of all models
except the MCMC model – throughout our figures, this ensemble model is denoted by
“ml_ensemble”. Such ensemble techniques can better reflect uncertainty than relying
on any single method (Gneiting and Raftery 2005). For simplicity, we consider the
unweighted case, where each model is represented equally in the ensemble. Using model-
based simulations allows us to examine performance against multiple (n=100) replicates
of the “true” process, which further helps identify differences that may occur solely due
to chance. By taking the true model structure as given, MCMC methods can be used to
determine a theoretical limit of forecasting skill. Note that in both bifurcation scenarios,
future dynamics will visit states never previously observed in the historical data that was
used to train each of the methods (e.g. very small population sizes). This no-analog aspect
of forecasting bifurcation dynamics means that even with many sample points in the
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training data and perfect knowledge of the true model structure, posterior distributions
of parameter values are still influenced by the choice of priors.

Figure 3.2: Overall distribution of skill scores across models, including an ensemble of methods. Smaller
scores are better (indicating smaller errors). Black bars indicate means. The points indicate all individual
predictions over time and replicate ’true’ simulations of the given scenario.

Overall forecasting skill scores for each model across all three scenarios are summarized
in Fig 3.2. Average scores (black lines) hide wide variation in forecast skill. Generally, ML
performance tends to be bracketed between MCMC (essentially the theoretical optimum),
and the statistical ARIMA model, though sometimes performing worse than ARIMA or
better than MCMC. Under scenarios with alternative stable states (saddle and stochas-
tic), the distribution of scores is often bimodal for ML models, though not MCMC. The
ML ensemble model often performs as well as the best ML model on average. Note that a
wide prediction of uncertainty does not mean a wide range in the score skill – for instance
the ensemble model which has the widest array of outcomes often has a relatively tight
distribution of score, especially in logs skill. This reflects the relative contributions of
accuracy and uncertainty as components in the forecasts. Most ML scores are compara-
ble to MCMC skill except for the scenario of the saddle-node bifurcation, where all other
models are much worse. To get a deeper understanding of these general patterns, we now
turn to examine each of the forecast distributions themselves in comparison to the future
ensemble produced by the true generative process model, Fig 3.3-5.

Forecasts of the Hopf bifurcation (Fig 3.3) are roughly comparable across the phe-
nomenological models (ARIMA and machine learning models). All models are trained
using 100 time points drawn from the period of time prior to the onset of the Hopf bi-
furcation, which leads to a stable limit cycle that gradually grows in magnitude. Most
models predict a roughly constant mean with a spread roughly equal to that created by
the stochastic oscillations around the stable node as seen in the training data prior to the
bifurcation. Notably, the GRU model picks up the oscillatory nature of the dynamics,
despite the fact that no true oscillations were yet present in the training data. However,
like the other ML models, it fails to predict the growing amplitude of those oscillations.
Having access to the true model structure, the MCMC model alone predicts the transition
into a pattern of oscillations which grows over time, though it tends to overestimate the
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Figure 3.3: Forecasts of the Hopf bifurcation under each model, compared to 15 realizations of the true
model. The bifurcation occurs soon after the forecasting period begins, leading to progressively larger
oscillations. Prior to the bifurcation, pseudo-cycles are visible in the training data due to stochastic
excitations. Following the bifurcation, stochasticity blurs the oscillatory pattern across replicate simula-
tions. Only the last 25 time points of the training data are shown.
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amplitude of those oscillations initially. Despite this, all methods score comparably in
CRPS score (Fig 3.2) with most ML methods actually out-performing the MCMC score
on average (Fig 3.5), albeit with much greater variation in individual scores. A clearer
picture can be seen by looking at these skill scores over time (Fig 3.6-7), which show that
MCMC is initially performing worse (over-predicting variance) but as oscillations grow
further, it starts outperforming the more stationary forecasts of the ML models.
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Figure 3.4: Forecasts of the saddle-node bifurcation under each model, compared to 15 realizations of
the true model. Training data precedes the bifurcation, making accurate prediction without knowledge
of the underlying model very difficult.

The saddle node bifurcation proves even more difficult for most methods (Fig 3.4).
Only the MCMC model anticipates the sharp transition to an alternative state. Even
accurate estimation of the MCMC requires slightly informative priors, though still broad
enough to reflect a wide range of possible outcomes. Two ML methods – Block RNN’s
and Transformers – resemble a naive prediction extrapolating the last observed state,
failing to reflect the slow downward trend of the training data. LSTM’s indicate greater
uncertainty, while GRU’s show very large variability which spans the alternative stable
state range. With additional tuning, better performance may be possible for these ML
models. The selected ARIMA model reflects wide uncertainty that is nevertheless not
broad enough to span the alternative stable state. Consequentially, the MCMC estimate
easily outperforms the ML models (Fig 3.2).

Machine learning methods do markedly better on the stochastic transition scenario
than in the two bifurcation scenarios (Fig 3.5). This occurs because the training data
includes the transition phenomenon of interest. All ML models accurately capture the
dynamics of a sharp transition between alternative stable states – a dynamic the sta-
tistical ARIMA model entirely fails to reflect. Stochastic transition events should be
approximately exponentially distributed, as seen in the wide range of waiting times for
transitions to occur in replicates of the true ‘observed’ process (Fig 3.5). Transformer
and Block RNN distribution times are much more concentrated, while again GRU and
especially the LSTM do a better job reflecting the uncertainty in range of transition
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Figure 3.5: Forecasts of the stochastic transition under each model, compared to 15 realizations of the
true model. In contrast to the other challenges, this case considers the prediction of replicate systems
starting from the same initial condition, rather than forecasting the future evolution of the model after
the stochastic transition has already occurred.

times.

Examining patterns in the scores over time (Fig 3.6-7) provides a more nuanced un-
derstanding of the forecast dynamics than aggregate scores alone (Fig 3.2). In the Hopf
bifurcation, CRPS scores get worse over time across all methods, including the MCMC
forecasts. In the saddle node bifurcation and stochastic transition, the same pattern holds
somewhat more dramatically for non-MCMC forecasts, while MCMC scores are at their
worst around the middle of the forecast horizon. Comparing CRPS scores to logs score
also emphasizes the relative role of uncertainty: for instance, the MCMC scores for the
Hopf bifurcation get steadily worse under CRPS but not under logs score. A relatively
sharp transition can be seen under both MCMC scores on the Hopf bifurcation once
the magnitude of the oscillations exceeds the variance created by mere stochasticity: the
MCMC model no longer over-estimates the spread of the data, while the ML models now
underestimate that variation. CRPS scores for stochastic transitions exhibit a distinct
two-branch pattern, with scores for a given replicate being either very high (poor skill)
or very low, reflecting whether the individual ‘true’ replicate matches the mean state
predicted by the forecast. Logs skill score may be a better measure in this context, where
correctly capturing the uncertainty in the forecast means that this bi-modal structure
in scores can be avoided entirely, e.g. by the MCMC predictions. The forecast-skill-over
time plots illustrate different reasons for the bi-modal distribution in skill seen for the
saddle-node and stochastic transition scenarios in Fig 3.2 respectively: in the case of the
saddle node, the two modes are distinguished by time-horizon; short term forecasts are
relatively accurate, and longer term forecasts (i.e. after the catastrophic transition) are
poor. In the case of the stochastic transition model, the two modes are not structured
by horizon but by replicate, with some replicates having transitioned and others still in
the original state.
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Figure 3.6: CRPS scores over time for each scenario. Each line represents the CRPS scores against a
replicate of time series observations from the ‘true model’. The general pattern across these plots is that
forecast skill gets worse over time – gradually in the case of a Hopf bifurcation or suddenly in response to
the saddle-node bifurcation. In the stochastic transition case, the scores tend to diverge in two branches,
where high values indicate periods of time when the forecast predicts the wrong equilibrium state and
the lower branch indicates predictions of the correct one. The time axis in this plot and in Figure 3.7
refers to the time from the beginning of the forecast horizon, not the time from the beginning of the
time series as in other plots.
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Figure 3.7: Logs skill score over time. Forecasts which underestimate uncertainty do substantially worse
in logs score than in CRPS score. Comparing this panel to those in Figure 3.6 highlights scenarios
that most often underestimate uncertainty. Generally, MCMC performs better relative to other models
under this metric than it does under CRPS, reflecting the bias-variance tradeoff taken when using biased
estimators in machine learning. The time axis in this plot and in Figure 3.6 refers to the time from the
beginning of the forecast horizon, not the time from the beginning of the time series as in other plots.

3.4 Discussion

Ecological systems have long been acknowledged as complex, due not only to the immense
span of dimension and scale such processes involve, but also the frequency of emergent
and non-linear phenomena such as stochastic resonance, including bifurcations, tipping
points, and hysteresis examined here. Calls for increased forecasting efforts from ecolo-
gists frequently reference the role of changing climate and other anthropogenic change,
which raise the challenge of prediction in no-analog environments, anticipating ecosystem
responses to conditions that have not been previously observed (J. S. Clark et al. 2001;
M. C. Dietze et al. 2018). This motivates the question, “What methods will be most
reliable in the face of unobserved conditions?”

In this chapter, we carry out an initial exploration on how deep learning methods can
perform on predicting critical transition events. We compare the ability of several cutting
edge machine learning approaches against statistical and process-based models, and show
that deep learning methods are generally able to strike a middle ground between what
we consider as acceptable and ideal case forecasting methods, ARIMA and MCMC-based
parameter estimation respectively. Although most ML-based forecasting applications
focus on point predictions, we have emphasized examples that can provide estimates of
uncertainty. When the ML models are able to observe transition phenomena, as in the
stochastic case, they performed comparably to MCMC-based forecasting with respect
to CRPS and log probability score but under-performed MCMC when there were no
transition events in the training sets as in the Hopf and saddle-node examples. An
ensemble forecast combining the predictions of all four ML methods generally scores
as well or better than any one of the ML methods alone. Yet, examining summary
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statistics, CRPS and log probability scores obscures finer detailed components of the
forecasts. For instance, forecast skill varies with the length of the forecast horizon in
a non-monotonic fashion. This is the result of multiple factors: for some dynamics,
such as those involving tipping points, the long term behavior can be easier to predict
than transient transitions. Both predicted uncertainty and forecast skill can be better
on longer horizons than on shorter ones, as in the MCMC predictions of tipping point
dynamics. It is also important to remember that probabilistic forecast skill scores do not
only measure how close observations are to expectation, but also reflect the predicted
uncertainty: therefore, over-confidence about predictive accuracy can result in worse
scores than scores from forecasts that are less accurate on average but correctly reflect a
greater degree of uncertainty. The ability to better reflect uncertainty rather than better
average predictions explains much of the performance of the ensemble model.

The success of these ML models on the stochastic transition case is particularly no-
table. All methods are given only a single previous replicate of a stochastic transition (Fig
3.5) on which to base their estimates. This is typical of ecological scenarios where data
is so often limited. While even one observation of a transition is more than the methods
have in our other forecasts, this still presents a significant challenge to model estimation.
Unlike the MCMC case, the ML models have no prior expectation of a model structure
that contains sharp transitions – we might have expected these models to perform little
differently than the ARIMA model. Given this single replicate, all four ML models suc-
cessfully capture the phenomenological pattern of a sharp shift between two stable states
– this is behavior that the structurally simpler family of ARIMA models cannot express.
This provides a clear illustration of the much broader array of phenomenological behav-
iors that can be accurately modeled with ML models compared to classical statistical
models. In this way, the ML models can be seen as imposing even fewer assumptions on
the phenomenological behavior of the system than the ARIMA model. In contrast, the
MCMC performance benefits from very strong process-based assumptions, which happen
to match the ‘true’ model in this case and thus provide a comparison of the theoretical
optimal performance.

The MCMC case illustrates some of the hard limits to ecological forecasting of critical
transitions. Our MCMC forecast assumes that the data-generating process is known, so
the forecaster need only infer the posterior distribution of model parameters. This is a
much stronger assumption than that made by the ML models, though this assumption
can potentially be justified on the basis of a mechanistic understanding of the processes
involved. It is important not to confound the MCMC example here with the use of
MCMC in process based models of real systems. In the real world, this is never the case:
all models are at best approximations of the underlying processes (Oreskes, Shrader-
Frechette, and Belitz 1994). Despite this advantage, even the MCMC forecasts differ
from the distribution of the true process. Because the available data come from only
a small region of the dynamical state space, they are consistent with many possible
parameterizations of the same model structure – which creates likelihood ridges and
non-identifiability of specific parameter values. Using more simplified versions of the
dynamical processes in question, such as the canonical form of a bifurcation, can mitigate
this issue in some cases. Even when such non-identifiability issues cannot be avoided
entirely, they can usually be diagnosed by examining the degree of mixing in MCMC
sampling and comparing posterior to prior distributions.

When examining the performance of the ML models, it is clear that there is no single
method that excels in all scenarios. Neither is there one class of ML methods that
outperforms the others – a fact we found surprising given the reported dominance of
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encoder-decoders in the field of sequence-to-sequence deep learning (Aitken et al. 2021).
These observations underscore the point that ML is a very empirically-driven field in
which there are few guarantees on performance. Furthermore, due to the black-box-
ness of deep learning and other reasons like instability to initialization seed, it is often
impossible to provide an explanation for why certain methods over-perform or fail to
meet expectations.

Overall, ML models and the more traditional ARIMA model fail to predict the quali-
tative shift in dynamic behavior that occurs in the critical transition scenarios (Hopf and
saddle node). This is not surprising, as the training data provide no prior example of
such behavior (e.g. growing oscillations or a sudden shift). Nevertheless, this should be
an important reminder of a central difficulty in ecological forecasting. Note that in such
scenarios, near-term forecasts (M. C. Dietze et al. 2018) may be very accurate right up
to the transition event before becoming widely wrong. Nor can the possibility of such
non-linear behavior be easily dismissed in ecological models – the examples considered
here have been bedrock of ecological modeling and management practices for over half
a century (Folke et al. 2004), and if anything are only too simple, representing a small
slice of possible dynamical behavior of more complicated models.

It may be natural to ask whether this performance would be remedied if the ML
models were trained on data which includes prior examples of supercritical Hopf or saddle
node bifurcations. This question is not as easy to answer as it may seem, because of
the difficulty in defining the corresponding forecasting scenario. The scenarios we have
considered are true, pure forecasts: the training data comes from a single realization of
a specific generative process, and the task is to predict the future states of that system
before they occur. Would it be possible to train a predictive algorithm on ‘analogous’
examples of critical transitions? For instance, could data from other lakes, which may
have experienced a critical transition such as an eutrophication event in the past, be used
to train machine learning models to predict such events in some focal lake in the future
(Scheffer et al. 2001a)? Perhaps, but it depends on what we mean by an ‘analogous’
system. Even if the underlying mechanism was accurately captured by the same model,
say, the saddle-node model of Robert M. May (1977) we consider here, it is likely that most
of the individual model parameters would be quite different, even after accounting for
re-scaling or non-dimensionalization of the model (Hastings 1996). Rarely do ecologists
have access to completely controlled replicates for fitting or training models. The ability
for ML models to successfully generalize from training in such cases remains an open
problem and a promising subject of further investigation.

There are a number of questions that we have left unanswered that we hope will be
addressed in future work. In this chapter, we have explored a small number of machine
learning and statistical models that can be used for forecasting, so comprehensive conclu-
sions can not be drawn on whether statistical or machine learning-based approaches are
better suited for critical transition forecasting problems. Neither can we claim that ML
methods will translate well to all sudden transition event forecasting problems in reality,
since working with real data will introduce additional difficulties like how to deal with
missing data, sparse data and observation errors.

Furthermore, our analysis has focused on the task of making a single forecast prior to
the occurrence of a critical transition. Forecasting is ideally a more iterative process of
data assimilation, where forecasts are updated with respect to additional observations,
rather than projecting 100s of time steps into the future (M. C. Dietze et al. 2018).
Updating a forecast after a critical transition has already occurred may be of little use in
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the context of hysteresis, such as under the saddle node or stochastic transition – recog-
nizing the alternative stable state only after the system is stuck in that basin will often be
considered ‘too late’. Assimilation may be more applicable to the Hopf bifurcation, where
additional observations of slowly growing oscillations may lead to more accurate forecasts.
Such models may even accurately predict the homoclinic bifurcation that occurs when
the limit cycle grows too large, eventually hitting a saddle point of zero population size
for the host species. We leave these cases to future exploration rather than attempting
to explore all such variations in a single narrative.

Ecological forecasting is invariably difficult, even in the idealized cases of ample mea-
surement data and clearly identified structural models. This chapter is not intended to
give a complete answer to whether deep learning is the best suited method for tipping
point forecasting problems as this will take numerous studies to resolve; instead, this
chapter aims to be an early exploration on whether deep learning methods should be
considered as viable tools for this extremely challenging class of prediction problems.
Given the difficulty of forecasting never-before-observed behavior, as illustrated by the
Hopf and saddle-node bifurcation scenarios, there is good reason for research to focus
more on the kind of qualitative predictions long emphasized in the literature on early
warning signals and resilience (Scheffer et al. 2012). Recently, ML techniques developed
for classification rather than the ML methods used in regression and forecasting models
considered here have demonstrated a more nuanced ability to reliably detect different
classes of critical transitions in time-series data (Bury et al. 2021; Lapeyrolerie and
Boettiger 2021). Rather than seeking to provide managers with quantitative, probabilis-
tic forecasts reflecting a broad uncertainty in possible outcomes, this literature has sought
to emphasize only a more qualitative form of prediction, such as establishing whether a
system is either “resilient” or “approaching a critical transition.” Decision sciences have
long emphasized the importance of reconciling the qualitative predictions of resilience
thinking with quantitative forecasts of future states (Fischer et al. 2009; Polasky et al.
2011b). Such approaches could be valuable in concert with probabilistic forecasts con-
sidered here, providing a possible mechanism to identify when the probabilistic forecast
is least reliable.
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Chapter 4

A Comparison of Neural Network
Models for Water Quality
Forecasting

This chapter will be submitted with Carl Boettiger as a co-author. It is included here with
permission from the co-author.

Chapter 4 continues the exploration of neural network models for ecological time series
forecasting. In Chapter 3, I posed a challenging prediction problem, where I tested
how well neural networks could forecast novel tipping point dynamics in a limited data
regime. In Chapter 4, I evaluate how neural networks perform on a water quality data,
where there is much more information provided to support inference-making. These two
chapters provide examination on the performance of neural networks on ecological time
series forecasting problems that are characterized by limited and large data regimes.

4.1 Introduction

The ability to accurately forecast water quality variables has become increasingly impor-
tant in the era of global change. Freshwater ecosystems have been disproportionately
impacted by anthropogenic activities, a trend that is expected to continue throughout
the 21st century (Albert et al. 2021). Since water quality variables influence many bi-
ological and physical processes in freshwater ecosystems, preemptive water quality fore-
casts could allow managers to evade situations with far-reaching negative consequences
(Ouellet-Proulx, St-Hilaire, and Boucher 2017; Stajkowski et al. 2020; Chen et al. 2024).
This chapter gives particular consideration to the variables of dissolved oxygen, water
temperature and chlorophyll-a (chla), which are key indicators of the health of freshwa-
ter ecosystems: water temperature influences how fast aquatic organisms can grow and
where they can be found (Caissie 2006); if dissolved oxygen levels become too low (a con-
dition called hypoxia), there can be massive mortalities of fishes and marine mammals
(Pollock, Clarke, and Dubé 2007); and, chla is an indicator for the amount of algae present
in a body of water, which makes it critical to monitor as algae blooms can produce toxins
and cause hypoxia (Catherine et al. 2013). Limnologists have historically used statistical,
process-based and machine learning models to forecast water quality metrics (Maier and
Dandy 2000); but, in recent years, researchers have shown that machine learning models
are particularly well suited to take advantage of recent advancements in computer science
and the rising availability of water quality data (Hanson et al. 2020; Zwart et al. 2023).
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A shortcoming of past limnological forecasting studies that support the use of machine
learning is that they tend to focus on a narrow selection of sites that are not representa-
tive of freshwater systems across a broad geographic scale. This chapter has the primary
aim of making a comprehensive comparison of state-of-the-art machine learning methods
by evaluating forecasts at 34 different sites across North America at different times of the
year.

The time series that are used in this chapter come from the National Ecological Obser-
vatory Network’s (NEON) Ecological Forecasting Challenge, a competition where teams
can submit forecasts for data that is collected and made publicly accessible by NEON
(Thomas, Boettiger, et al. 2023). A common finding across the challenge is that a day
of year historical mean model (also referred to as the climatology model) commonly pro-
duced top scoring forecasts (Wheeler et al. 2024; Thomas, McClure, et al. 2023). For
instance, in a model comparison that examined the forecasts for phenology, Wheeler et
al. (2024) found that the climatology model outperformed all except one of the submitted
models; and, the best performing model only marginally outperformed the climatology
model. Thus, a primary consideration in this chapter is comparing the performance of
the machine learning models against the historical null model.

There are many promising neural network architectures that have not yet been evalu-
ated for water quality forecasting. Most applications of neural networks to limnological
time series have focused on the long-short-term-memory (LSTM) network, a model that
was published in 1997 (Hochreiter and Schmidhuber 1997). Over the nearly 30 years
since LSTM’s were introduced, researchers in computer science have built upon these
earlier neural network architectures, introducing new models that achieve state of the art
performance (Lim et al. 2019; Bai, Kolter, and Koltun 2018; Oreshkin et al. 2019). Many
recent studies that use neural networks for water quality forecasting have not explored
more contemporary neural network architectures. We address this gap in the literature by
comparing 8 neural network models including LSTM’s as well as more recently developed
neural network models.

4.2 Materials and Methods

We evaluated the forecasting performance of 12 different forecasting models on water
temperature, dissolved oxygen and chla time series recorded by in-situ sensors at 34
freshwater sites across North America. In Figure 4.1, we display where these sites are
located in the United States and Puerto Rico. These sites consist of Lakes, Non-wadeable
Rivers and Wadeable Streams, subtypes classified by NEON. There is variability across
sites in which target variables were observed. Additionally, maintenance issues led to
gaps in the data which also varied across locations. Provided the lack of time series and
large gaps at certain sites, we evaluated the forecast performance for water temperature,
dissolved oxygen and chla at 33, 32 and 9 sites respectively.

The imputation of missing data proved to be critical to the performance of the ML
models. After experimenting with data filling methods that resulted in poor model per-
formance, we developed an imputation method inspired by the climatology model. If the
gap size was less than 5 days, then the gap was filled using a Gaussian Process Filter. For
gaps over 5 days, missing data was estimated using the daily historical mean when this
statistic is available; and, when there were no data collected for a day of the year, either
the monthly median, quarterly median, previous observation or global median was used in
this order of preference. The intuition behind this method for missing data imputation is
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Figure 4.1: Map of site locations across the United States and Puerto Rico.
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that this method biases the neural networks towards the climatology model. Since it has
been established that a climatology model produces top performing forecasts throughout
the NEON forecasting challenge, backfilling with the climatology model seems likely to
induce improved accuracy for the neural network models (Wheeler et al. 2024; Thomas,
McClure, et al. 2023).

We compared the performance of the neural network models to the climatology and
naive persistence model. The climatology model generates forecasts by finding the daily
mean and standard deviation and draws samples from a Gaussian distribution with these
parameters. The naive persistence model finds the last observed value from the target
time series and predicts this value for each day in the forecast horizon. For each model, we
computed the Continuous Ranked Probability Score (CRPS) and the Root Mean Square
Error (RMSE). To gauge how models performed in relation to the climatology model, we
computed the Continuous Ranked Probability Skill Score (CRPSS) which we defined as

CRPSSmodel = 1 − CRPSmodel

CRPSclim

. (4.1)

Similarly, using the naive persistence model as a reference, we computed the RMSE Skill
Score,

RMSE − SSmodel = 1 − RMSEmodel

RMSEnaive

. (4.2)

If a target model outperforms the reference model, then the target model will have a
positive skill score. If the target model performs worse than the reference model, the skill
score will be negative.

4.2.1 Method Group 1: Statistical Models (Theta)

To compare the performance of neural network models with a representative statistical
model, we evaluated forecasts generated by the Theta model. Provided a seasonally
adjusted univariate time series, the Theta model creates forecasts by modifying the second
differences of the data (Assimakopoulos and Nikolopoulos 2000). The magnitude of local
curvature modifications is given by the Theta coefficient,

∇2Zt(θ) = θ ∇2Xt, (4.3)

where ∇ is the difference operator, Zt is defined as a theta line and Xt is the original
data. When θ < 1, the second differences are reduced from the data, yielding a Theta
line that amplifies the long term trends of the data. For instance, if θ = 0, the theta
line will be a linear regression of the data. And if θ > 1, the short term behavior of
the data will be magnified in the Theta line. The Theta model generates a forecast by
extrapolating the linear combination of two or more Theta lines. Although the Theta
model is relatively simple, it has performed remarkably well in prominent forecasting
competitions that include hard to predict data (Makridakis and Hibon 2000; Makridakis,
Spiliotis, and Assimakopoulos 2020). Since the Theta model was originally presented in
2000, new variations of the Theta model have been developed that outperform the original
Theta model (Fiorucci et al. 2016). Throughout this study, we use the StatsForecast
AutoTheta model which selects the best performing model from a range of Theta model
variants.
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4.2.2 Method Group 2: Neural Network Models

All the machine learning algorithms that are used in this chapter are based on neural
network architectures. Neural networks have the property of being universal function
approximators, so it is theoretically possible that all of these models could exactly ap-
proximate the data generating process (Hanin 2019). Yet, it is often the case that neural
networks greatly underperform their function approximation capabilities in practice (Ad-
cock and Dexter 2020). This performance gap can be due to a variety of reasons including
overfitting and insufficient hyperparameter tuning (Adcock and Dexter 2020). The dis-
crepancy between theory and practice in function approximation with neural networks
motivates research on how machine learning models perform in specific domains.

The 8 machine learning models that we compare take a variety of approaches with the
design of their neural networks. We will not go into detail on how these different models
work, but for those interested to learn more, we list the models and their references
in Table 4.1. An important concept to understand is that the neural network models
considered in this study learn directly from the data and are not instilled with domain
knowledge. This non-mechanisitic basis is at once very powerful as it does not restrict
the models with misleading assumptions, but neural networks are also limiting in that
they are not readily interpretable and often require more data than knowledge-guided
methods to perform well (Karpatne, Jia, and Kumar 2024; Read et al. 2019). For
the management of critical resources like water, the lack of interpretability could be a
deterrent to the adoption of NN methods, and there may not be enough data for some
water systems to accommodate ML approaches (Zhi et al. 2024).

The neural network models are configured in this study to provide estimates for pre-
dictive uncertainty. The neural network architectures that we use are deterministic, so
they are not able to produce probabilistic forecasts intrinsically. We work around this
limitation by performing quantile regression whereby the neural networks are trained to
output quantiles at each time step in the forecast window. Probabilistic forecasts are
then generated by drawing samples according to these quantiles.

For the 8 neural network models that we investigate, there are varying design choices
made regarding the type of covariates that can be used. For this study, we employed 2
groups of models: one group used past covariates and the other used future covariates.
For the models that accept past covariates (which included TCN, BlockRNN, NLinear,
DLinear, Transformer and NBEATS), we used the other target variables recorded at that
site as well as air temperature as covariates. For the models that only accept future
covariates (which included TFT and RNN), we used the day of the year as the sole
covariate. All the time series were split into training and validation sets, whereby the
models were trained on time series from 2020 to 2023 and validated at 12 30-day non-
overlapping intervals in 2023.

We provide fully reproducible code for fitting, scoring and visualizing the forecasts. All
the machine learning forecasts were generated using the darts python library (Herzen et
al. 2021). darts is similar to other libraries like scikit-learn in Python or tidymodels
in R in that the library allows users to employ a variety of time series forecasting models
without having to implement them. The github repo for this study can be found at
https://github.com/boettiger-lab/neon4cast-darts-ml.
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Abbreviation Algorithm Name
RNN Recurrent Neural Network (Hochreiter and Schmidhuber 1997)
BlockRNN Block Recurrent Neural Network (Du et al. 2020)
TCN Temporal Convolutional Network (Bai, Kolter, and Koltun 2018)
NLinear NLinear (Zeng et al. 2022)
DLinear DLinear (Zeng et al. 2022)
TFT Temporal Fusion (Lim et al. 2019)
Transformer Transformer (Vaswani et al. 2017)

Table 4.1: The neural network-based time series forecasting models used in this chapter.

4.3 Results

We examine the forecast skill of 8 neural network models (RNN, BlockRNN, NBEATS,
NLinear, DLinear, TFT, TCN and Transformer), 1 statistical model (AutoTheta) and
2 null models (naive persistence and climatology) on time series taken from the NEON
Forecasting Challenge’s Aquatics Theme. Following recent work that has established that
multi-model ensembles offer advantages over individual models for water temperature
forecasting (Olsson et al. 2024), we were inspired to investigate multi-model ensembles
in this comparative study. So, in addition to the ML, empirical and null models, we
created an ensemble model that aggregates the forecasts taken from all the neural network
models. For this neural network ensemble, all the NN models are represented equally,
hence its name “Naive Ensemble”.

In Table 4.2, we present the mean CRPS and RMSE scores for the respective target
variables. For dissolved oxygen (DO) and water temperature (WT), the models perform
similarly: the neural network models outperform the AutoTheta, naive persistence and
climatology model with few exceptions; and the naive ensemble model is the best per-
forming model with respect to both CRPS and RMSE. Yet, with chla, there are different
patterns in model performance: while the neural network models still generally outper-
form the reference models in CRPS, the Naive Ensemble model is no longer the top
performing model in either CRPS or RMSE. Instead, BlockRNN and the naive persis-
tence model attain the best performance with respect to CRPS and RMSE, respectively.

By examining some of the individual forecasts, as shown in Figure 4.6, it is possible
to gain intuition for why the neural network models perform well across the target vari-
ables. The AutoTheta model produces forecasts that resemble linear regressions based
upon recently observed values. These relatively simple forecasts perform well for many
evaluation intervals, but there a few cases when AutoTheta fails catastrophically, nega-
tively impacting the model’s overall performance. For instance, after a peak of dissolved
oxygen in the winter of 2024, the AutoTheta model forecasts that DO will continue to
increase which is opposed to the trend that DO peaks in the winter and declines through
the spring. Similarly with chla, the AutoTheta model wrongly extrapolates that a spike
in chla will lead to higher chla concentrations instead of an immediate reversion to the
non-bloom state.

Conversely, the neural network models are able to learn from historical trends. For
instance, at the beginning of 2024, the neural network models have learned from the
training data that DO peaks in the winter and declines through the spring. With chla,
however, we see that the neural network models fail to predict any of the spikes in
concentration which originate from algae blooms; instead, the neural networks take a
conservative approach, only predicting that the chla concentration will remain at non-
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bloom levels throughout the year.
These general patterns in model performance can be observed in the skill score plots

displayed in Figures 4.2, 4.3, 4.4. The AutoTheta model tends to have longer tails,
indicating that the AutoTheta forecasts are more likely to perform very well or very badly.
Meanwhile, the neural network models generally have fewer forecasts that underperform
relative to AutoTheta as well as fewer forecasts that are outlier outperformers. The
distributions of NN skill scores are more skewed towards outperforming than AutoTheta’s
skill scores are. In these plots, we display scores according to water body type, but we
did not see any significant differences in performance across these categories. However,
this may be due to an underreporting of scores for lakes and non-wadeable rivers relative
to the number of scores found for wadeable streams.

When examining the performance of the models within a forecast horizon, additional
nuances emerge, confusing the perspective that neural network models are the best per-
forming model class. In Figure 4.5, the AutoTheta model is consistently the best per-
forming model for short-time horizons (t < 5) across target variables, but by the end
of the 30-day horizon, the AutoTheta model is the worst perfoming model universally.
Meanwhile the neural network models underperform AutoTheta during the early stages
of the forecast window, but their forecast skill declines less rapidly than the skill score
of AutoTheta. So while, the neural networks generally outperform AutoTheta and the
null models according to coarse scoring metrics like mean CRPS and RMSE, AutoTheta
is the best performer in short-time horizons.

Figure 4.2: Skill score distributions for dissolved oxygen. The CRPSS plot measures the CRPS skill
relative to the climatology model. The RMSE-SS plot measures the RMSE skill relative to the naive
persistence model. Each point is the skill score that has been aggregated over each 30-day forecast. A
guideline is plotted at the threshold for underperformance: a score above this line denotes that a forecast
is underperforming the reference model; a score below this line denotes that a forecast is outperforming
the reference model. The AutoTheta model exhibits longer tails relative to most of the neural network
models, indicating that AutoTheta has a larger amount of forecasts that do either very well or very
poorly. The neural network models tend to have shorter tails in the underperforming region.

4.4 Discussion

In the hands of decision-makers in water resource management, models that can accu-
rately forecast water quality variables would enable more proactive management strate-
gies. For instance, water resource managers could use these forecasts to release water
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(a) Dissolved Oxygen (mg L−1)

Model Mean CRPS Mean RMSE
Climatology 0.62 0.92
Naive Persistence 1.55
AutoTheta 0.67 1.02
BlockRNN 0.52 0.80
DLinear 0.52 0.81
NBEATS 0.51 0.80
NLinear 0.52 0.80
NaiveEnsemble 0.47 0.74
RNN 0.60 0.92
TCN 0.62 0.98
TFT 0.52 0.80
Transformer 0.51 0.80

(b) Water Temperature (◦C)

Model Mean CRPS Mean RMSE
Climatology 1.46 2.19
Naive Persistence 6.05
AutoTheta 1.55 2.35
BlockRNN 1.45 2.26
DLinear 1.35 2.08
NBEATS 1.36 2.10
NLinear 1.33 2.06
NaiveEnsemble 1.18 1.80
RNN 1.32 2.03
TCN 1.89 3.02
TFT 1.19 1.86
Transformer 1.32 2.05

(c) Chlorophyll-a (mg L−1)

Model Mean CRPS Mean RMSE
Climatology 4.83 7.50
Naive Persistence 4.86
AutoTheta 4.20 6.31
BlockRNN 3.14 5.16
DLinear 3.47 5.48
NBEATS 3.78 5.95
NLinear 3.67 5.63
NaiveEnsemble 3.44 5.50
RNN 4.15 6.40
TCN 3.72 5.77
TFT 3.67 5.87
Transformer 4.02 6.35

Table 4.2: Mean CRPS and RMSE for dissolved oxygen, water temperature and chla forecasts. The
neural network-based models generally outperform the statistical benchmark model, AutoTheta, as well
as the null models, naive persistence and climatology, across the target variables. For dissolved oxygen
and water temperature, the NN ensemble model is the best performing model with respect to CRPS
and RMSE. With chla, BlockRNN attains the best CRPS score, and naive persistence attains the best
RMSE.
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Figure 4.3: Skill score distributions for water temperature. A guideline is plotted at the threshold for
underperformance: a score above this line denotes that a forecast is underperforming the reference model;
a score below this line denotes that a forecast is outperforming the reference model. AutoTheta does
not have the long tails as seen in the skill score distributions for dissolved oxygen and chla, instead the
neural network models have heavier tails in the outperforming region. This indicates that the neural
network models are producing high accuracy forecasts more frequently than the AutoTheta model.

Figure 4.4: Skill score distributions for chla. A guideline is plotted at the threshold for underperformance:
a score above this line denotes that a forecast is underperforming the reference model; a score below this
line denotes that a forecast is outperforming the reference model. The neural network models have shorter
tails in the underperforming region relative to AutoTheta, indicating that the neural network models are
producing a smaller amount of inaccurate forecasts. The naive persistence null model attained the lowest
RMSE on chla, and this is apparent in the RMSE-SS plot as the models have skill score distributions
that are generally centered above the underperformance threshold.
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Figure 4.5: Mean skill scores within the 30-day forecast horizon for oxygen, water temperature and chla in
descending order vertically. A guideline is plotted at the threshold for underperformance: contrary to the
skill score distribution plots, a score above the guideline here denotes that a forecast is outperforming
the reference model; a score below this line denotes that a forecast is underperforming the reference
model. In the early phase of the forecast horizon (t < 5), the AutoTheta model is universally the top
performing model. However, the performance of the AutoTheta model rapidly declines over the course
of the 30-day horizon, concluding in AutoTheta being the worst performing model universally at the end
of the horizon. The neural network models do not perform as well as AutoTheta at the beginning of the
forecast horizon, but their performance declines less rapidly throughout the horizon.
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Figure 4.6: 30-day forecasts of dissolved oxygen and chla. These plots present forecasts from 12 30-
day intervals spanning 2023 and 2024. The AutoTheta model produces accurate forecasts most of the
year, especially for dissolved oxygen; but, there are some intervals where AutoTheta produces extremely
inaccurate forecasts. After peaks in dissolved oxygen and chla, the AutoTheta model wrongly predicts
that the values will continue to increase. Conversely, the neural network-based forecasts from the TFT
and the Naive Ensemble model have learned from the training data that high levels of dissolved oxygen
in the winter are followed by a steady decline throughout the spring. With chla, the neural networks
take a conservative strategy where they predict that chla will remain in a non-bloom state and never
take the risk of forecasting that a bloom will occur.
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from reservoirs, enact controls to adjust nutrient levels and engage in other activities
to combat events like hypoxia and toxic algae blooms that harm aquatic ecosystems.
During the last 10 years, there has been a growing focus in limnology around the use of
neural networks for water quality forecasting, but this focus has primarily centered on
older neural network architectures with little exploration of newer methods. This chapter
aims to address this research gap by performing a comprehensive comparison of neural
network models that includes more recently developed models.

Instead of identifying that there is an individual model that performs exceptionally
well at forecasting water quality, this chapter has affirmed the conventional wisdom that
ensemble forecasts are often more accurate and robust than forecasts from individual
models. We found that an ensemble model which aggregates the forecasts from all the
neural network models was the best performing model overall, surpassing the accuracy of
all the other models on the target variables of dissolved oxygen and water temperature,
while also performing well for chla, attaining the second and third best CRPS and RMSE
respectively. This result affirms recent work from Olsson et al. (2024) which established
that multi-model ensembles offer significant advantages over individual models for water
temperature forecasting.

Yet, as is often the case when judging whether one method is superior to another,
we have found that subtle changes to our criteria may have produced radically different
results. For instance, if we had used the same forecasts abbreviated to a 5 day horizon,
then the AutoTheta model would have been the best performing model according to the
scoring metrics used in this study. But, it is important to qualify that if we changed the
model training configurations to consider short-time horizons (t < 5), this would produce
forecasts that would be different than the ones we evaluated for the 30-day horizon. Thus,
how neural networks models perform over different forecast horizons warrants additional
exploration.

The neural network models struggled to forecast chla, a result that is not surprising
given that forecasting algae blooms is well established as a challenging prediction problem
in limnology (Chen et al. 2024). With chla, the neural network models displayed a
tendency to take a conservative strategy, regularly predicting that the chla concentration
would remain in a non-bloom state. It is possible that the neural network models settled
on this conservative behavior because we did not provide enough information to predict
blooms; the neural networks were not provided with some of the typical covariates used in
process-based models like Nitrogen and Phosphorous concentrations, and photosynthetic
active radiation. Yet, it is also plausible that this conservative strategy was driven by
the length of the forecast horizon. Blooms are stochastic events, characterized by rapid
fluctuations in chla. Predicting the timing of such an event in a long-time horizon (t ~
30) will be more difficult than performing the same prediction on a shorter horizon as
there are more opportunities in the long-time horizon to be wrong. With this reasoning,
it is sensible that the neural networks would take a conservative approach.

This chapter has generated an abundance of research questions and ideas for future
work. Outside of exploring how the performance of neural networks will vary with fore-
cast horizon, other promising directions for exploration include cross-learning and hybrid
models. Throughout this chapter, we trained individual models for each target time se-
ries. Cross-learning presents a different approach where one model would be trained on a
collection of target time series. Recently, cross-learning has been shown to improved fore-
cast performance as models that employ cross-learning are able to learn patterns across
time series that transfer to making more accurate forecasts on an individual time series,
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particularly when there is a limited amount of data points in the individual time series
(Semenoglou et al. 2021). Another promising direction for future work would be to de-
velop a model hybridized across modeling classes. Since we observed that the AutoTheta
model performed well early in the forecast horizon and that neural networks performed
well later in the forecast horizon, it is sensible that a hybrid ML-statistical model could
achieve better performance than a purely statistical or machine learning model. For
instance, a model that relies on exponential smoothing at the beginning of a forecast
horizon then favors a ML model towards the end of forecast window could achieve better
performance than the models explored in this chapter.

Neural networks offer some promising advantages over classical methods for limnolog-
ical forecasting as neural networks can learn complex patterns from data without being
restrained by a need for domain knowledge. As there are large water quality data sets
that exist currently, and increasing amounts of limnological data will come online as sen-
sor costs decline, neural networks present a way forward for the analysis of such data
sets. Furthermore, the performance of neural networks has the potential to improve over
time as neural networks often perform better with more data. Yet, neural networks also
present a range of problems like a lack of interpretability and generalizability that could
restrain them from being useful decision support tools for the safety critical problem
of water resource management. Furthermore, in the era of global change, it is possible
that there could be significant distribution shifts in the data that could lead to poorly
performing neural network models as neural networks operate on the premise that future
data will be similar to the historical data seen in training. This chapter does not attempt
to provide a definitive answer as to whether neural networks will be the best method
class moving forward as resolving such a question will require a much larger body of work
than what is presented here. Instead, the hope is that this work will generate ideas and
incite momentum towards improving our ability to forecast and manage water quality.
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Chapter 5

Conclusion

This dissertation supports that neural network models can improve our ability to forecast
ecological time series and helpfully inform conservation decision-making. In Chapter 2, I
show that neural network-based RL agents approximate the optimal solution on a classic
harvest selection problem and outperform a reasonable rule-of-thumb strategy on a non-
stationary conservation management problem where the optimal solution is not known.
In Chapters 3 and 4, I demonstrate that neural network-based time series forecasting
models are able to outperform a selection of reference models on critical transition and
water quality time series. Yet, along with their successes, neural network models have
shortcomings. For instance, I found that neural network-based methods fail to outperform
a simple null model when forecasting chla concentration in Chapter 4. To use models
effectively, it is essential that we understand where they excel and fall short.

Every chapter in this dissertation possesses a clear path ahead for subsequent research.
Chapter 2 presents a paradigm for how ecologists can approach decision-making problems
in conservation. In this chapter, I examined some relatively simple reinforcement learn-
ing environments, but the methodology could readily be applied to environments with
higher dimensionality and more complex dynamics. Recently, Equihua, Beckmann, and
Seppelt (2024) have achieved this by extending RL framework from Chapter 2 to study
connectivity conservation planning. Chapter 3 which centered on analyzing simulated
time series could be extended to observed time series that display critical transitions.
And, from Chapter 4, follow-up work could be done to improve the performance of the
neural network models on the chla time series.

Ecology has transitioned from a discipline that was once data poor to one that is
increasingly data rich. Neural networks have been used for various problems in ecological
data analysis since the 1990’s (Fielding 1999); but, due to recent advances in compu-
tational power and algorithmic development, neural networks are now particularly well
suited to handle the large amount of ecological data that is currently available. Over
the last decade, there have been hundreds of studies that have used neural networks to
analyze ecological data, yet most of this work has centered on applications in automated
monitoring (Borowiec et al. 2022). This dissertation contributes to the literature by
providing methodological guidance on how neural networks can be used to inform conser-
vation decision-making, and by investigating the performance of neural network models
for critical transition and water quality forecasting. In these areas, I have shown that
neural networks offer advantages over classical methods, but I have also been careful to
highlight that neural network models have significant limitations. With further method
development and careful consideration of their limitations, neural networks will play a
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key role in the analysis of ecological data.
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