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Abstract

Level set methods are a powerful tool for implicitly representing deformable
surfaces. Since their inception, these techniques have been used to solve prob-
lems in fields as varied as computer vision, scientific visualization, computer
graphics and computational physics. With the power and flexibility of this
approach; however, comes a large computational burden. In the level set ap-
proach, surface motion is computed via a partial differential equation (PDE)
framework. One possibility for accelerating level-set based applications is to
map the solver kernel onto a commodity graphics processing unit (GPU). GPUs
are parallel, vector computers whose power is currently increasing at a faster
rate than that of CPUs. in this work, we demonstrate a GPU-based, three-
dimensional level set solver that is capable of computing curvature flow as well
as other speed terms. Results are shown for this solver segmenting the brain
surface from an MRI data set.



1 Introduction

The level set approach to representing deformable surfaces1 has recently spurred ad-
vances in image processing[1, 2], surface processing[3, 4], image and volume segmentation[5,
6], surface reconstruction[7], and computer animation[8, 9, 10]. The level set tech-
nique represents surfaces implicitly as interfaces, and uses the framework of partial
differential equations (PDEs) to compute surface motion[11]. In general, a set of
speed functions are created to act on the surface and define a level set PDE, which is
solved to find the surface position through time. The details of the speed functions
are defined by the application.

In contrast to other modeling techniques, surfaces represented by a level set can easily
change size, split into multiple entities, merge multiple surfaces into one and change
topological genus. Much of this power and flexibility is due to the fact that level set
methods embed a surface in a space that is one-dimensionally higher. This increase in
dimensionality clearly leads to more computational complexity. The narrow-band[12]
and sparse-field[13] approaches to solving level set equations have reduced the com-
plexity to scale with the hyper-surface area2 of the surface rather than the size of the
space in which it is embedded. Despite these advances, most level set applications do
not run at interactive rates. The surface editing operations in Museth et al.[4] took
tens of seconds, and the surface reconstructions in Elangovan et al.[6] took up to five
hours to compute.

Recent advances in commodity graphics processing units (GPUs) have made them an
attractive alternative computing platform for certain applications. GPUs are parallel
vector processors that are highly optimized for combining streaming two- and three-
dimensional data to make a single, two-dimensional image. In the last two years,
GPUs’ fixed-function graphics pipeline has begun to be replaced with one that is
highly programmable [14, 15, 16]. This programmability, combined with the vector
nature of the processors, has opened up the possibility of using GPUs for computations
other than scan-conversion.

Rumpf et al.[17] were the first to show that the level set equations could be solved
using a graphics accelerator. Their solver implemented the two-dimensional level set
method using a time-invariant speed function for flood-fill-like image segmentation.
The same group and others [18, 19] have published work stating how various scientific

1Surface is used throughout this paper to mean a curve, surface, or hyper-surface.
2The ”Hyper-surface area” is the measure of the n − 1 space defined by a Rn surface. For a

two-dimensional curve, the hyper-surface area is the arc length. For a three-dimensional surface it
is the surface area.



computing primitive operations can be mapped to graphics hardware[20]. It has
been shown that grid-based computations may benefit greatly from the high memory
bandwidth and parallelism available on graphics boards. While these efforts have
helped lay the groundwork for non-graphics use of GPUs, there are some key advances
that must first be made before an easily-customizable, three-dimensional level set
solver will be made to run interactively on a GPU.

From a practical standpoint, writing scientific computing software for current GPUs
is difficult, error-prone, and tedious. The first reason for this is that all GPU in-
structions are issued via a graphics API such as OpenGL[21] or Direct3D[22]. This
fact makes for a non-obvious mapping of scientific computing algorithms to GPUs.
This work addresses this problem. The second difficulty in using GPUs for scien-
tific computing is that current GPUs are only capable of low-precision, fixed-point
arithmetic. As a result, scales and biases must be carefully applied throughout the
calculation. Future GPU releases will be capable of floating-point computations, but
memory limitations may continue to make fixed-point computations an attractive op-
tion. The other obstacle to computing with GPUs is that much of the software must
be written in a hardware-specific assembly language. This of course makes the code
error-prone as well as hard to write, read, and reuse. Proudfoot et al.’s Stanford Shad-
ing Language[23], the OpenGL 2.0 shading language[24], Nvidia’s CG language[25],
and Microsoft’s High Level Shading Language[26] all attempt to provide a high-level
language interface with which to program GPUs. The GPU and operating system
specificity of the language, however, may still remain a challenge to cross-platform
developers until a standard is established.

The next section discusses the technical background behind level set methods and
graphics accelerators. Section 3 describes the mapping of the level set equations to
a GPU and the software framework that has been built to support it. Section 4
discusses our results and possibilities for future work.

2 Technical Background

2.1 Level Set Explanation

In the level set approach, a n-dimensional surface is embedded in a Rn+1 space. A
scalar function, φ(x, t) defines an embedding of a surface, where x ∈ Rn+1 and t is



time. The set of points on the surface, S, are mapped by φ such that

S = {x|φ(x) = k}, (1)

where k is an arbitrary scalar value (often zero). It can also be said that S is the k
level set of φ. A closed form of φ is not known, but an initial estimation of it can be
obtained by building a discrete sampling of it on a Rn+1 grid. This is done by setting
each point in S to k, all points inside the interface to φ > k and positions outside to
φ < k. If the initial sampling of φ sets all values in the range [0, 1], then a curve or
surface can easily be represented by a grayscale image or volume.

In order to propagate φ (and therefore the surface) in time, we define the first-order,
partial differential equation

∂φ

∂t
= F |∇φ|, (2)

where F is a signed, scalar speed function that defines the speed in the direction
normal to φ at any point x. F may be of the form F (x), F (x, t), or F (φ,Dφ, . . .).
The choice of speed function is defined by the application and combinations of them
may be used to capture a desired behavior.

The initial estimation of φ is propagated forward in time via the up-wind scheme[27].
To guarantee a stable solution, the upwind scheme approximates ∇φ using one-sided
derivatives that are always in the “up-wind” direction of the propagating surface.
The largest allowable time step, 4t, is inversely proportional to the maximum speed
at a given time, t. The solution will become unstable if a larger value for 4t is used.
Given that ∂φ

∂t
is defined by equation 2 and the general update equation is

φ(x, t+4t) = φ(x, t) +4t
∂φ

∂t
, (3)

the level set update equation is

φ(x, t+4t) = φ(x, t) +4tF |∇φ|. (4)

The mean curvature of φ, hereafter referred simply as curvature, is commonly used
as a speed function to propagate φ. A surface under curvature flow will become
“smoother” and in fact, under pure curvature flow, a convex surface will converge to
the n-sphere and finally a single point[28]. Curvature flow is often combined with
other speed functions to smooth out an otherwise rough surface solution. The mean
curvature of φ is defined as

H = cn∇ ·
∇φ

|∇φ|
, (5)

where, if n is the dimensionality of the surface, cn = 1/(n − 1). The details of
estimating ∇φ and H are presented in section 3.



2.2 Details of a Graphics Processing Unit

Graphics processing units are designed to render vertex positions, material properties,
lighting information, and texture maps into a single, two-dimensional image. In
addition to the (x, y, z) position, each vertex may have a set of texture coordinates, a
normal vector, and/or a color associated with it. The processing unit can be thought
of as a pipeline (figure 1). This pipeline first transforms vertices into a common model
space, then applies lighting calculations to each vertex. The vertex information is then
rasterized into fragments. A fragment is the generalization of a pixel. In addition to
the (x, y, z) position and (r, g, b, α) values associated with a pixel, a fragment may also
contain a set of interpolated texture coordinates. There can be multiple fragments
that map to the same (x, y) pixel location. After being rasterized a fragment is
textured and then passed through a series of tests before becoming a pixel. These
tests include the scissor, alpha, stencil and depth test. If a fragment survives all
of these and several other operations, it becomes a pixel. The final output is the
(r, g, b, α) 4-tuple as well as the pixel’s depth (z) value.

GPU programming consists of two basic types of operations: those that set or unset
pipeline state and those that move data through the pipeline. In a fixed-function
graphics pipeline, render state is set/unset by making graphics API calls. A pro-
grammable pipeline provides an assembly-level or language-level interface for speci-
fying portions of the render state. There are two points of programmability in most
modern GPUs: the vertex stage and the fragment stage. Vertex programs (or shaders
as they are commonly referred to) control the vertex transformation and texture co-
ordinate pipeline stages. Fragment shaders allow a programmer to specify the final
color of a fragment by combining multiple texels, texture coordinates, and colors with
a limited instruction set. A texel is the texture map equivalence of a pixel.

A render pass is defined as one set of data moving entirely through the GPU pipeline.
The destination of a render pass is normally the color buffer, which can then be dis-
played to a video monitor. The destination can alternatively be a non-displayable
buffer called a pixel buffer (pbuffer). Pbuffers can be sized differently than the dis-
play window and can also be associated with a texture (render-to-texture). When
associated with a texture, the pbuffer memory can be both rendered into and bound
as a texture map. This will prove to be an important feature when using GPUs as
computational platforms. We have found that changing between destination buffers
is a very slow process, taking approximately 0.25 milliseconds. We have thus gone to
great lengths to avoid changing pbuffer targets.

A given GPU will support some number of texture units, Nt, which determines how
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many textures may be simultaneously applied in the same render pass. Each textured
vertex may be given up toNt separate texture coordinates (location in a texture map).
Note that each of these coordinates may be for a one, two, or three dimensional
texture. Also note that texture coordinates will generally not fall exactly on a texel
location. The texture sampling can therefore be specified to use the nearest texel or
compute an interpolated value at the texture coordinate position. The interpolation is
linear, bi-linear, or tri-linear depending on the dimensionality of the texture map. Nt

is between two and six in current hardware and is expected to increase substantially
in future cards.

The remaining sections will give specific hardware examples in terms of the ATI
Radeon 8500 GPU because it is the GPU on which we have implemented my level
set solver. While future Nvidia GPUs will be supported, the 8500’s fragment shader
features were the most feature-rich at the time this work began.

Vertex shaders are powerful tools for graphics applications, but for grid-based com-
putations, such as a level set solver, nearly all of the calculations are performed with
the fragment shader. The discussion will thus be focused on the details of the latter.
The input to a fragment shader program consists of up to Nt texture coordinates,
up to Nt textures, two (r, g, b, α) colors, and up to Nc fixed-point constants. Each
texture coordinate may contain up to four, 32-bit floating-point values. All other
inputs are 8-bit, fixed point numbers. The output from a fragment shader is a single,
8-bit, fixed-point (r, g, b, α) 4-tuple. The internal precision of the temporary registers
is generally higher precision than the input and output. As with the other limitations,
it is expected that the available precision will increase on future GPUs. In the short
term, however, the work proposed herein must address the challenges presented by
computing with fixed-point operations.

All fragment shader instructions are vector-type instructions that operate on all frag-
ments in a render pass. The fragments are processed in parallel by multiple functional
units and an entire (r, g, b, α) 4-tuple is processed by each instruction. The number of
instructions allowed in a fragment program, Nf , is limited by the GPU hardware (the
ATI Radeon 8500 allows only sixteen). It is expected that future hardware releases
will substantially increase the number of allowed instructions. Fragment shaders have
a limited number of temporary registers, Nr, available to hold intermediate compu-
tations. This is often the same as the number of texture units. Just as with Nt, Nr

in current hardware is between two and six.

In addition to sampling the input textures, the ATI Radeon 8500’s fragment shader
supports the following operations: add, subtract, multiply, move, conditional choice
of two values and dot product. Division is supported only by divisors of two, four,



and eight. Instruction modifiers allow for the instruction destination to mask any of
the four channels and for an instruction source to repeat any one channel on all four
channels. Branching and subroutine calls do not exist.

An especially powerful feature in programmable GPUs is dependent texture reads.
This allows for the computation of texture coordinates within a fragment shader and
the use of those coordinates to perform a lookup into another texture. Dependent
texture reads allows the use of textures as lookup tables (LUTs). The ATI Radeon’s
hardware allows for two sample stages per fragment shader. In the first stage, up to
Nt textures are sampled and mathematical operations are performed on the input.
The second stage begins when the same textures are sampled again, but now with
the possibility of using a computed result as the texture coordinates for the lookup.

Grid-based computations on GPUs use texture maps to hold all input, intermediate
and output data. Each render pass renders to a texture map via a pbuffer, and
that texture is bound as input to a later pass. As mentioned early, the data in
each texture are 8-bit, fixed-point values. Computations are performed by mapping
multiple texture maps to a single, planar quadrilateral (a compute slab) and using a
fragment shader to combine the inputs into a single output. For three-dimensional
calculations, a stack of compute slabs is used, and the data is stored in multiple two-
dimensional textures. Each compute slab uses data from the slabs above and below
it in addition to its own.

3 Design

Our system consists of an OpenGL-based, 2D and 3D level set solver running on
an ATI Radeon 8500 graphics processing unit. An image and volume segmentation
program has been created based on this solver. The speed function for this application
is created by combining a pre-computed, data-driven speed with the mean curvature.

3.1 Computation Overview

The 2D solver requires five render passes to compute the curvature speed term, a
pass to combine the speed terms, three more passes to compute the up-wind approx-
imation to ∇φ, and a single pass to combine this information and update φ(t) to
φ(t+4t). If only time-invariant speed functions are used, φ can be advanced in six



instead of ten passes. Pseudocode for the 2D solver is shown below. Each numbered
line represents a render pass, with the input textures as function arguments. Destina-
tion pbuffers/textures are considered variables, and temporaries are allocated using
register allocation strategies.

for(int t=0; t < numSteps; t++) {

// Compute first set of derivatives

Tex2D d1 = deriv1( phi[z] ); // 1

// Compute Curvature

Tex2D d2 = deriv3( phi[z] ); // 2

Tex2D d3 = deriv4( phi[z] ); // 3

Tex2D cx = curvX( d1, d2, d3, normalizeLUT ); // 4

Tex2D curv = curvY( d1, d2, d3, cx, normlalizeLUT ); // 5

// Sum the speed functions

Tex2D speed = sumSpeed( curv, G ); // 6

// Upwind Computation

Tex2D minG = minGrad( d1 ); // 7

Tex2D maxG = maxGrad( d1 ); // 8

Tex2D gMag = gradMag1( minG, maxG, speed, // 9

phi[z], l2NormLUT );

// Do PDE timestep update

Tex2D phi[z] = phiUp( gMag, multScaleLUT ); // 10

}

The partitioning of the computation into render passes is dictated by Nt, Nr and
Nf . The current implementation attempts to exploit the fact that entire 4-tuples are
processed in a single instruction, but parallelism is limited by lookup table accesses,
the single output limitation, and of course computational dependencies.

The 3D solver requires seven render passes per slab to compute the mean curvature,
and a total of sixteen render passes per slab to compute an entire time step update.
For a 256x256x175 data set, this means that 2800 render passes are required to update
the entire volume a single PDE time step. Pseudocode for the 3D solver is shown
below.



for(int t=0; t < numSteps; t++) {

for(int z=0; z < numSlabs; z++) {

// Compute two sets of 4-vec derivatives

Tex2D d1 = deriv1( phi[z] ); // 1

Tex2D d2 = deriv2( phi[mz], phi[pz] ); // 2

// Compute Curvature

Tex2D d3 = deriv3( phi[mz], phi[z], phi[pz] ); // 3

Tex2D d4 = deriv4( phi[mz], phi[z], phi[pz] ); // 4

Tex2D d5 = deriv5( phi[mz], phi[z], phi[pz] ); // 5

Tex2D d6 = deriv6( phi[mz], phi[z], phi[pz] ); // 6

Tex2D cx = curvX( d1, d3, d4, normalizeLUT ); // 7

Tex2D cxy = curvY( d1, d3, d5, cx, normlalizeLUT ); // 8

Tex2D curv = curvZ( d1, d2, d6, cxy, normalizeLUT ); // 9

// Sum the speed functions

Tex2D speed = sumSpeed( curv, G ); // 10

// Upwind Computation

Tex2D minG1 = minGrad1( d1, d2 ); // 11

Tex2D minG2 = minGrad2( minG1, d1, d2 ); // 12

Tex2D maxG = maxGrad( d1, d2 ); // 13

Tex2D gMag1 = gradMag1( minG2, maxG, speed, // 14

phi[z], l2NormLUT );

Tex2D gMag2 = gradMag2( gMag1 ); // 15

// Do PDE timestep update

Tex2D phi[z] = phiUp( gMag2, multScaleLUT ); // 16

}

}

For the remainder of the discussion, only the three-dimensional solver will be discussed
in detail, but the two-dimensional case can easily be derived from the discussion.

3.2 Initialization

The initialization stage of the program loads two grayscale volumes into texture mem-
ory on the GPU: the source image to be segmented, I(x, y, z), and the initial level set



image, φ(x, y, z, 0). The initial φ solution is a grayscale volume with pixel values of
255 inside a boundary (often a sphere), 127 on the boundary and 0 outside (figure 2).

The scalar φ data is packed into the RGB channels of RGBA, 2D textures. The slabs
are processed bottom to top and the old version of each slab is stored in the α channel
of each RGB pbuffer in order for the next slab to use to compute the correct derivatives
in the z-direction. Because these special render-to-texture buffers must be in RGB
or RGBA format, this packing both reduces memory usage and avoids the costly
changing of destination buffers. Note that this packing relies on the ability to use a
buffer as both a texture input and a render destination in the the same pass. While
this behavior is explicitly disallowed by the render-to-texture specification, current
display drivers permit this operation. Because the render pipeline computes pixels in
parallel with no guarantees of ordering, the sampling of neighbors in this situation
can be undefined. If, however, one is careful to only sample neighborhoods of data
which is not currently being written, then the usage has a clear meaning. We would
like to emphasize the importance of this feature and encourage GPU manufactures
to allow for this usage model.

The data-driven speed function, G(x, y, z) is computed based on two thresholding
constants, Ilo and Ihi, input from the user interface. This time-invariant, spatial
speed function is computed as

Iave =
Ihi − Ilo
2

(6)

G(x, y) =

{

I(x, y, z)− Ilo if I ≤ Iave
Ihi − I(x, y, z) otherwise

.

This data is stored into texture memory in 2D, luminance textures. This speed
function attracts the level set surface towards grayscale values in the source image
that are ∈ [Ilo, Ihi]. A graph of equation 6 is shown in figure 3.

3.3 Computation Details

For the sake of clarity, all quantities except for the constant scalars, Ilo and Ihi,
are assumed to be three dimensional samplings and the operations thus apply to all
sample points (e.g. φ ⇒ φ(x, y, z)). This notational convention closely matches the
way in which the vector instructions are specified to the GPU. It is also assumed



Figure 2: 2D slice of the initial level set solution.
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that all quantities are sampled at the same time step, t, unless a time argument is
explicitly given as in equation 19.

Six render passes are required to compute the twenty-one different derivatives required
for the curvature and upwind computation. The neighborhood, n, from which these
derivatives are computed is specified with the numbering scheme

6 7 8
3 4 5
0 1 2

. (7)

Note that 4 denotes the center pixel, and n±zi represents the ith sample on the slab
above or below the current one. Neighborhoods are sampled by shifting the texture
coordinates by the desired number of texels in each direction. The derivatives of φ
are defined as

Dx = (n5 − n3)/2
Dy = (n7 − n1)/2
Dz = (n+z

4 − n−z4 )/2

D+
x = n5 − n4

D+
y = n7 − n4

D+
z = n+z

4 − n4

D−
x = n4 − n3

D−
y = n4 − n1

D−
z = n4 − n−z4

D+y
x = (n8 − n6)/2

D−y
x = (n2 − n0)/2

D+z
x = (n+z

5 − n+z
3 )/2

D−z
x = (n−z5 − n−z3 )/2

D+x
y = (n8 − n2)/2

D−x
y = (n6 − n0)/2

D+z
y = (n+z

7 − n+z
1 )/2

D−z
y = (n−z7 − n−z1 )/2

D+x
z = (n+x

5 − n−z5 )/2
D−x
z = (n+x

3 − n−z3 )/2
D+y
z = (n+x

7 − n−z7 )/2
D−y
z = (n+x

1 − n−z1 )/2

. (8)

Note that in order to retain as much precision as possible, φ is stored ∈ [0, 255] but in
order for the derivatives to stay within the same range, they are computed with φ/2.
The range [−127,+127] is represented by [0, 255]. Results of derivatives are shifted
by -127 when used and ∇φ is scaled by 2 in the φ update step (equation 19).

Curvature is computed using the above derivatives and the “difference of normals”
method introduced by Whitaker and Xue[1]. The two normals, n+ and n−, are



computed by
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and

n− =
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(10)

respectively. The components of the divergence from equation 5 are then computed
as

∂nx

∂x
= n+

x − n−x , (11)

∂ny

∂y
= n+

y − n−y , (12)

and
∂nz

∂z
= n+

z − n−z , (13)

Finally, the curvature,

H =
∂nx

∂x
+
∂ny

∂y
+
∂nz

∂z
(14)

is computed. Note that the normalization of n+ and n− are performed with a cube
map lookup table because division and square-root are not instructions available in
the Radeon 8500’s fragment shader hardware. A lookup table is also used because
the intermediate values in the normalization may get quite large, but the end result is
within the limited, available range. The constant factor of four in equation 9 and 10
is necessary to keep the resulting value ∈ [0, 255].



The upwind approximation to ∇φ is then computed using D+
x , D

+
y , D

+
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−
x , D

−
y ,

and D−
z . To begin,

∇φmax =
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is computed followed by

∇φmin =
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. (16)

Just as with the normalization of the gradient vectors, the euclidean norms in the
above equations are computed with a lookup table. The final choice of ∇φ is defined
by

∇φ =

{

‖∇φmax‖2 if F > 0
‖∇φmin‖2 otherwise

, (17)

where F is computed as the linear combination of H and G:

F = c0G+ c1H where c1 = 1− c0 . (18)

The φ(t+4t) values are then computed by

φ(t+4t) = φ(t) +4tcF |∇φ|, (19)

where c is the scaling by two necessitated by φ being stored in [0, 255]. Due to
roundoff errors and other inconsistencies in the GPU processing, c = 1.9 in this
implementation. The next section discusses this issue further. Because c must be
a floating-point value, it is passed into the fragment shader as an “extra” texture
coordinate.

3.4 Object Oriented OpenGL Framework

The current level set solver is built with modules from an object-oriented framework
that has been built on top of OpenGL. The design attempts to provide a framework



in which re-usable OpenGL code can easily be written. Unlike other object-oriented
OpenGL encapsulations such as GLT[29] and OpenInventor[30], my framework is de-
signed for low-level OpenGL developers rather than high-level graphics programmers.
It also does not attempt to encapsulate any windowing-related calls other than the
handling of pbuffers. It is expected that GLUT or some other windowing utility will
be used.

The new framework defines a set of reusable and extensible modules that can be
composited into higher-level objects. The multi-level approach is very flexible in that
a user can choose to work at any level from raw OpenGL code to manipulating entire
render passes. Multiple levels can be used within the same application. Another goal
of the library is to encapsulate all hardware-specific OpenGL code into pluggable
modules so that multiple GPU architectures can be easily supported by an appli-
cation. In addition all OpenGL extensions from Nvidia and ATI are automatically
loaded. This framework is referred to as Glift. A class tree of Glift is shown in
figure 4.

The design supports two types of OpenGL calls: those that set/unset pipeline state
and those that initiate processing of data through the pipeline. A third type of call,
pipeline status queries, are not currently supported but could be added later. All
OpenGL calls that set/unset state are encapsulated by the class tree based on the
Attribute interface. This interface specifies a bind() and release() virtual method.
OpenGL calls that move data through the pipeline are encapsulated by the class tree
based on the Drawable interface. Drawable simply specifies a draw() method. A
third class tree based on the Renderable interface combines all the Attributes and
Drawables that specify an entire render pass.

In addition, all Glift objects support a compile() method that attempts to compile
the OpenGL commands encapsulated by the object into a display list. Note that
this feature provides a way to “compile away” the abstraction penalty that might
otherwise exist. My experience thus far has shown, however, that the current level
set solver is completely GPU-bound and the Glift abstraction layers do not affect the
execution speed of the code.

Glift is designed to provide a minimal amount of pre-encapsulated OpenGL state
and have obvious extension points for adding more functionality as desired. As Glift
matures, more functionality can come pre-defined by the library. The following is a
list of current extension points:



Attribute

BasicTexture

Command

Compilable

Drawable

DrawAlgArrDrawAlgorithm

DrawAlgStd

EmptyTexture

GenAttrib

LineLoopGL

LinesGL

LineStripGL

MultiPrim

MultiTexture

PBuffer

PixelShader PixelShaderATI

PlanarQuad

PointsGL

PolygonGLPrimGL

ProgShader

QuadsGL

QuadStripGL

QuadTexGen

RawPrim

Renderable RenderPass

ScaleTexGen2D

ShadedPrim

Shader

SinglePrim

SingleTexture

SubdivPlanarQuad

TexConst

TexCoordGen

TexTrans

Texture

TriangleFanGL

TriangleGL

TriangleStripGL

VertexShader

WrappedPrim

Figure 4: Class tree for the Glift, object-oriented OpenGL framework.



Class Name Purpose
GenAttrib Defining any bind/release attribute that is not already defined.
PixelShader Defining interfaces to hardware-specific fragment shaders
VertexShader Defining interfaces to hardware-specific vertex shaders
WrappedPrim Defining high-level drawables that contain only a single PrimGL object
MultiPrim Defining high-level drawables that contain multiple PrimGL objects
RenderPass Defining a render pass with functionality different than

has been provided
DrawAlgorithm Defining a drawing algorithm other than the standard

(glBegin(. . .)/glEnd(. . .) or vertex array method
TexCoordGen Defining texture coordinate generation algorithms

To build a render pass, the attributes are first combined into a Shader object. The
Drawables are then defined and put into a MultiPrim. The Shader object and the
Multiprim (or any other RawPrim) are combined into a ShadedPrim object. At this
point, any texture coordinate perturbations (texture coordinate offsets and texture
coordinate constants) that are defined by the shader are applied to the texture coor-
dinates for the primitives. In addition, if multiple textures are specified in the shader,
multiple sets of texture coordinates are generated. This ShadedPrim object (or any
Drawable) is combined optionally with a texture and/or pbuffer destination into a
RenderPass.

Glift has been used to build a ComputeSlab class that serves as a base class to all
the render passes in the level set solver. The subclasses of ComputeSlab define only
their input textures (SingleTexture pointers), the shading language being used, the
destination pbuffer, texture coordinate perturbations, and the fragment shader (po-
tentially in multiple languages). A ComputeSlab can be thought of as a function call
where the input textures are the arguments, the fragment program is the subroutine
code, and the destination pbuffer holds the results.

4 Results

We have built a two- and three-dimensional, GPU-based level set solver and used
it to create an image and volume segmentation application. To our knowledge, this
is the first level set solver implemented on a GPU that includes curvature flow. For
two dimensions and small three-dimensional datasets, the program runs at interactive



Figure 5: Initial level set solution (white line) superimposed on a slice of MRI data
courtesy of David Weinstein.

rates. This allows users, for the first time, to use parameters such as the fraction of
curvature flow as visualization parameters to achieve the desired segmentation.

Figure 5 shows the source image for a 2D segmentation with the initial level set
solution as a white circle near the center. The segmentation was accomplished in
three stages. Each stage consisted of enough time steps (500) to allow the level set
solution to converge. The grayscale thresholding constants, Ilo and Ihi were set to 0.3
and 0.55 respectively for all three stages. In the first stage, the speed function was
composed entirely of G with no curvature flow included. This created the noisy image
surface shown in figure 6. The second stage (figure 7) used a speed function with 50%
curvature flow. Note that much of the fine detail has been lost due to the smoothing
effect of the curvature. In the last stage, only 5% curvature was used in the speed
function (figure 8) in order to regain much of the fine detail present in 6 but without
the noise. These segmentations qualitatively match the results of a floating-point,
software level set solver.

In the current version of the solver, one time step on a 256 x 256 image takes 4 millisec-
onds with curvature flow enabled and 2 milliseconds without it. This is approximately
the same speed as a highly-optimized, sparse-field software implementation. This re-
sult is disappointing but not surprising, given the fact that the GPU-based solver
is computing an update at every pixel whereas the software implementation is only
computing updates on or near the isosurface.

Figure 10 shows a brain surface extracted from a 256x256x175, MRI data set (figure



Figure 6: Level set solution after the first segmentation stage (white line). Grayscale
threshold values were set to Ilo = 0.3 and Ihi = 0.55, and no curvature flow was used.

Figure 7: Level set solution after the second segmentation stage (white line). Grayscale
threshold values were set to Ilo = 0.3 and Ihi = 0.55, and 50% curvature flow was
used.



Figure 8: Level set solution after the third segmentation stage (white line). Grayscale
threshold values were set to Ilo = 0.3 and Ihi = 0.55, and 5% curvature flow was used.

Figure 9: Slice of the 256x256x175 MRI data from which figures 10 and 11 were
segmented.



Figure 10: Brain surface segmented using the GPU-based level set solver. Both the
data-driven and curvature speed terms were used to obtain this surface.

Figure 11: Brain surface segmented using a CPU, software-based solver. The same
data-driven and curvature speed terms used for the GPU-based segmentations were
also used to obtain this surface.



9) using our GPU-based level set solver. Figure 11 shows the brain surface extracted
from the same data set using a floating-point, software solver. Note that the sur-
faces are qualitatively similar. Our solver is approximately two times faster than
the software implementation despite that it is performing roughly ten times as many
calculations. If the GPU solver were only processing the voxels near the isosurface,
the theoretical speedup is greater than twenty times over the software version. Note
that GPUs are also increasing in power at a faster rate than CPUs so this gap will
continue to increase over time.

5 Discussion

We have implemented a two- and three-dimensional level set solver, that includes
mean curvature flow, on the ATI Radeon 8500. All computations are performed in
8-bit, fixed-point arithmetic. In 2D, this solver runs at approximately the same speed
as an optimized software implementation. A 3D example running on a 256x256x175
data set runs at twice the speed of the CPU-based solution. Although these results
are encouraging, they are merely a proof of concept.

Future work will take advantage of more the powerful fragment programs of the next
generation of GPUs. It currently takes sixteen render passes per slice for a single
PDE time step update. This number will be significantly reduced on new GPUs due
to an increased instruction limit, a richer instruction set, and the ability to output
more than four values per pass.

Our solver is computing PDE updates at all pixel/voxel locations, and is thus not
taking advantage of the sparse nature of the moving wavefront. We estimate that
speedups of at least twenty five times are possible by computing only those values
near the surface. Future work will explore the use of depth and stencil culling, hier-
archical spatial decompositions, compression of the dynamic texture data, and other
possibilities to achieve this optimization.
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