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On the Trustworthiness of Memory
Analysis—An Empirical Study from the
Perspective of Binary Execution

Aravind Prakash, Eknath Venkataramani, Heng Yin, Member, IEEE, and Zhiqgiang Lin, Member, IEEE

Abstract—Memory analysis serves as a foundation for many security applications such as memory forensics, virtual machine
introspection and malware investigation. However, malware, or more specifically a kernel rootkit, can often tamper with kernel memory
data, putting the trustworthiness of memory analysis under question. With the rapid deployment of cloud computing and increase of
cyber attacks, there is a pressing need to systematically study and understand the problem of memory analysis. In particular, without
ground truth, the quality of the memory analysis tools widely used for analyzing closed-source operating systems (like Windows) has
not been thoroughly studied. Moreover, while it is widely accepted that value manipulation attacks pose a threat to memory analysis, its
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severity has not been explored and well understood. To answer these questions, we have devised a number of novel analysis
techniques including (1) binary level ground-truth collection, and (2) value equivalence set directed field mutation. Our experimental
results demonstrate not only that the existing tools are inaccurate even under a non-malicious context, but also that value manipulation
attacks are practical and severe. Finally, we show that exploiting information redundancy can be a viable direction to mitigate value
manipulation attacks, but checking information equivalence alone is not an ultimate solution.

Index Terms—Memory forensics, operating systems security, invasive software, DKOM, kernel rootkit, virtual machine introspection

1 INTRODUCTION

EMORY analysis aims at extracting the semantic

knowledge from a memory snapshot or a live mem-
ory of a running computer system. Such extraction has been
proven to be valuable for various computer security prob-
lems such as memory forensics (for memory snapshot) and
virtual machine introspection (VMI) (for live memory). For
instance, by examining a memory image, we could extract
semantic information about all of the running processes,
open files, and network connections.

Digital forensics collects evidence of digital crimes, intru-
sions, and malware attacks from a victim’s computer sys-
tem. Although criminals tend to avoid leaving any evidence
in the persistent storage, it is extremely hard for them, if not
impossible, to completely remove their footprints in mem-
ory. Therefore, memory forensics becomes increasingly irre-
placeable. With the knowledge of kernel data structures,
tools such as FATKit [1] and Volatility [2] can parse a mem-
ory image (either a snapshot or a hibernation file), traverse
the kernel data structures, and extract semantic information
for human analysis.

Virtual machine introspection is a technique used by the
virtual machine monitor to reconstruct an out-of-the-box
semantic view of a virtual machine, in order to analyze,
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detect, and prevent intrusions and malware attacks [3], [4],
[5], [6]. Also, VMI is one of the enabling techniques for
cloud security and management. To bridge the semantic
gap [7]-a hard problem in VML, the virtual machine monitor
often has to extract the semantic knowledge from live mem-
ory or a memory snapshot of the virtual machine. From a
memory analysis point of view, VMI and memory forensics
share the same flavor in that they both have to reconstruct
the semantic state of a memory image.

On the flip side, to thwart memory analysis, kernel root-
kits, once having penetrated into an operating system ker-
nel, can arbitrarily alter the kernel code and data.
Particularly, a family of kernel rootkits (e.g., FU Rootkit [8])
can directly tamper with the kernel data structures, also
known as Direct Kernel Object Manipulation (DKOM)
attacks. Consequently, the trustworthiness of memory anal-
ysis becomes questionable, which directly hurts memory
forensics and VML

Some recent efforts have been made to improve the
robustness of memory analysis. For instance, Dolan-Gavitt
et al. proposed a more robust field-based signature scheme
[9]. Specifically, for each data structure of interest, this
scheme identifies a minimum set of value patterns that can-
not be tampered by attackers. Otherwise it may render sys-
tem malfunction or crash. As a result, hidden objects can be
identified with more confidence. Meanwhile, since not all
kernel data structure fields could have a field-value based
robust signature, Lin et al. proposed a complementary
scheme, a graph-based signature built on field points-to
relation to reduce false positives (FP) and false negatives
(EN), at the price of higher scanning performance overhead
[10] because of the pointer traversal. Although these signa-
ture approaches can identify objects of interest with higher
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confidence, the trustworthiness of the semantic values in
these objects are still under question.

While memory analysis serves as a foundation for many
important security applications, the dependability of memory
analysis, remains unclear to the security community. We
aim to conduct first such study. In particular, we focus on
kernel memory analysis, as the operating system semantics
are crucial for security. User-level software memory analy-
sis, such as game cheating and map hacking [11] or browser-
related activities, is out of scope of this paper.

More concretely, we conduct a systematic empirical study
on the dependability of kernel memory analysis under both
honest and deceptive contexts. In the honest context where
the digital evidence in the kernel is not manipulated, we aim
to evaluate the correctness of the existing memory analysis
tools. This is important especially for the closed-source oper-
ating systems like Windows, because these memory analysis
tools are built based on limited knowledge about the closed-
source systems and thus may be error prone.

A key challenge for conducting such an empirical study
is how to obtain the ground truth. While for an open source
OS, one could instrument the source code to collect the
ground truth, the real difficulty is for a closed source OS for
which we have to perform reverse engineering. To this end,
we take a unique perspective from dynamic binary analysis.
That is, we monitor and analyze the binary execution of the
OS. Since the OS binary directly executes on the hardware,
we believe that the semantic knowledge extracted from the
execution provides the ground truth (at least faithful for
this particular execution). Moreover, with dynamic binary
analysis, we are able to evaluate memory analysis tools not
only on open source OS, but also on closed-source OS such
as Microsoft Windows. For this study, we particularly eval-
uated the efficiency and accuracy of the analysis tools in the
Volatility memory analysis framework [2] and two robust
signature schemes [9], [10].

In the deceptive context where the digital evidence may
have been manipulated and/or destroyed, we aim to evalu-
ate the trustworthiness of the existing memory analysis
tools. As prior efforts have been made to defeat pointer
manipulations [10], in this paper, we focus on evaluating
Semantic Value Manipulation (SVM) attacks, which directly
manipulate data values in kernel data structures to mislead
security tools. Therefore, we assess the trustworthiness of
kernel memory analysis by discovering the attack space and
the severity of SVM attacks. On one hand, with the highest
privilege, an attacker can modify arbitrary memory loca-
tions; on the other hand, she does not want these modifica-
tions to introduce noticeable differences in system behavior
(e.g., crash, instability, and malfunction).

Systematic and calculated SVM is a challenging task. A
brute force approach would be to fuzz all the kernel variables
one at a time, but tends to be inefficient. To demonstrate
the severity of the SVM attacks and explore the possible
defense approaches, we devise a new fuzzing technique to
mutate the exact fields pinpointed by our analysis. We have
implemented a prototype system, named MOSS (short for
“Mutating OS Semantics”) that has two unique features: (1) It
is semantic-field oriented, meaning it can cooperate with the test
program and automatically locate the data structure fields
that hold specified OS semantic information and mutate their

values; and (2) it is duplicate-value directed because semantic
values are often duplicated in various data structures.

To further demonstrate the attack impact, we imple-
mented a proof-of-concept kernel rootkit, based on FUTo [8]
(a DKOM rootkit for Windows). Specifically, we installed a
real-world bot, TDSS [12] in a controlled Windows XP guest
OS and using the rootkit, we performed simultaneous muta-
tions to all vulnerable semantic fields identified by MOSS.
The mutations were targeted at hiding and/or misleading
the state-of-the-art security tools without leading to a pro-
gram or a system crash.

Through the empirical study, we make the following
observations:

e The accuracy of basic memory analysis tools (includ-
ing traversal-based and signature-based ones) is not
perfect even under a non-malicious context.

e SVM attacks are practical, and many semantic values
that are critical to security investigation can be
altered without causing adverse effect to the victim
system.

e Exploiting information redundancy could be a viable
solution to detect value manipulation attacks. How-
ever, simply checking duplicate values is not a com-
plete solution to this problem.

This paper is an extended version of the work published
in [13]. Specific extensions include examination of memory
analysis tools under a deceptive and non-deceptive context
(in Sections 2 and 3) and a root-cause analysis on why SVM
attacks succeed (in Section 4.5).

2 QUESTIONS FOR OUR EMPIRICAL STUDY

Examining the memory analysis tools. We aim to examine the
quality and performance of memory analysis tools that
retrieve information pertaining to processes, modules, 1O,
files, etc. Specifically, we attempt to evaluate the Volatility
memory analysis framework with many of its analysis plu-
gins. These plugins can be classified into traversal-based
and signature-based schemes. For example, pslist is a tra-
versal-based plugin that traverses the active process list
and prints the running processes, whereas psscan is a sig-
nature-based plugin that scans the entire memory for
EPROCESS—process objects. Therefore, we can evaluate
both traversal-based and signature-based schemes using
the Volatility framework. Thus, we have the following two
questions:

Q1. How accurate and efficient are the traversal-based

tools under non-deceptive context?

Q2. How accurate and efficient are the signature-

based tools under non-deceptive context?

Examining robust signature schemes. Robust signature
schemes, including field-based SigField [9] and graph-based
SigGraph [10], can be used to defeat value and link manipu-
lation attacks. We aim to evaluate the quality and perfor-
mance of these robust signature schemes.

Q3. How accurate and efficient is the robust field sig-

nature scheme under non-deceptive context?

Q4. How accurate and efficient is the graph signature

scheme under non-deceptive context?

Exploring value manipulation attacks. The power of value
manipulation attacks have not been extensively studied in



PRAKASH ET AL.: ON THE TRUSTWORTHINESS OF MEMORY ANALYSIS—AN EMPIRICAL STUDY FROM THE PERSPECTIVE OF BINARY... 559

the literature. This time, we play the role of an attacker to
explore the attack space.

Q5. How severe can value manipulation attacks be?

Exploiting the information redundancy (especially value
equivalence) in the kernel can be a potential solution to this
attack. To efficiently explore this potential, we devise a
dynamic binary analysis technique to identify these value
equivalence sets during the kernel execution. Having identi-
fied the equivalence sets, we employ a value equivalence set
directed mutation technique to efficiently examine whether
attackers can completely manipulate the values. In particu-
lar, we want to investigate the following question:

Q6. To what degree can value equivalence checking

help detect value manipulation attacks?

3 EVALUATING MEMORY ANALYSIS TOOLS IN
NON-DECEPTIVE CONTEXT

In this section, we describe how we evaluate the most com-
mon memory analysis tools with respect to Q1-Q4, in a non-
deceptive context. We first present how we collect the ground
truth—the most crucial part for our analysis—in Section 3.1,
then describe how we set up our experiment in Section 3.2,
followed by the evaluation of the basic traversal and signature
schemes, and robust signatures in Sections 3.3 and 34,
respectively.

3.1 Constructing the Kernel Data Structure Graph
(DSG)

Before we begin our evaluation, we first acquire the ground
truth, namely the true kernel objects. This is a challenging
task especially for closed source OS. To make our analysis
more general, we take a dynamic binary analysis based
approach to collect the ground truth.

Kernel objects exist in the kernel data structure graph,
and they can be reached from either kernel global variables,
stack variables, or registers. Meanwhile, since the kernel
can not statically anticipate the number of required kernel
objects, and kernel stack for each process usually has lim-
ited size (typically between 4 and 8K), it tends to dynami-
cally allocate kernel objects. Thus, to our knowledge and
also from our experiments, all kernel objects of interest are
dynamically allocated.

Therefore, to acquire our ground truth, we implemented
a plugin for DECAF [14], to monitor the execution of an
operating system and construct the kernel data structure
graph on the fly. To construct this graph, we need to moni-
tor the lifetime of kernel objects and recognize all the links
between these kernel objects. Unlike static analysis which
has to resolve the points-to relationship between pointers,
we do not have to perform any such analysis because in
dynamic analysis we have all the values and we directly
link the points-to data based on the values.

To monitor the lifetime of kernel objects, we hook the
allocation and deallocation routines in the kernel. For Win-
dows, ExAllocatePoolWithTag is used to allocate an
object from a dynamic pool, and ExFreePoolWithTag de-
allocates a kernel object. We hook these two functions to
keep track of live objects in the kernel. In addition, we also
need to keep track of kernel modules, because global data
variables and pointers are located in the memory regions of

these kernel modules. The memory map of these kernel
modules is derived by hooking MmLoadSystemImage.
These functions are located in the main kernel component
ntoskrnl.exe, and the offsets of the functions can be
obtained from the symbol information. Since ntoskrnl.
exe is always loaded at the same base,' the entry points for
these functions can be determined in advance.

To accurately recognize the links between kernel objects,
we make use of dynamic taint analysis, a variant of widely
studied data flow analysis in security. When a new object is
allocated, we mark the return value of the allocation routine
as tainted. In other words, we taint the root pointer of the
newly created object. By keeping track of taint propagation,
we can correctly identify the pointer fields that actually point
to this object. In many cases, a pointer field in an object may
point to the middle of another object. To determine this off-
set, we store the base address of a newly created object into
its taint tag, and when this tag propagates to a pointer field,
we can subtract the actual value in the pointer field by the
base address in the tainted tag to get the offset.

Moreover, a pointer field may also refer to a label in a
static data region of a kernel module. To recognize these
labels and taint them, we perform static analysis on the ker-
nel modules. We leverage the fact that the kernel modules
in Windows (as well as Linux) are actually compiled as relo-
catable, and these labels have to appear in the relocation
tables in these kernel modules. Thus, we can iterate through
the relocation tables and then mark these labels as tainted.

In addition to monitoring of the kernel objects, we also
attempt to infer their types. While an object is being allo-
cated, we examine the call stack of the memory allocation
routine to determine the context under which the object is
allocated. More specifically, we check the return
addresses (experimentally, we found three callers are sen-
sitive enough to distinguish different object types) and
the object size on the call stack. The underlying rationale
is that programs tend to create the same type of objects
under the same context with the same size. By checking
three callers on the stack and object size, we are confident
that the objects allocated with the same callers and size
are of the same type.

3.2 Experiment Setup

Our evaluation in this section mainly aims to study the plu-
gins of Volatility framework, a widely used memory foren-
sics tool. To evaluate their correctness, we run an operating
system on top of DECAF and analyze its execution from
startup and generate the kernel data structure graph on the
fly. After the operating system boots up, we launch several
common tests, such as editing in notepad, visit webpages
in the browser, etc. Then, we pause the virtual machine and
dump the physical memory of the virtual machine along
with the corresponding kernel data structure graph. We
analyze the memory dump using the tools in Volatility and
compare the results with our kernel data structure graph
obtained from binary analysis.

1. In Windows 7, due to address space layout randomization, the
base address of ntoskrnl.exe is randomized. However, as it is
loaded in the earliest boot stage, its base address can be obtained at
runtime.
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TABLE 1 TABLE 2
Efficiency of Volatility Tools Accuracy of Volatility Tools
WinXP-SP3 Win7-SP0 WinXP-SP3 Win7-SP0

Commands Commands

512 M 1G 512M 1G DSG Vol. EN FP DSG Vol. EN FP
pslist 1.18s 1.16s 1.84s 1.97s pslist 22 2 0 0 32 32 0 0
pstree 1.79 s 1.76 s 3.15s 3.27 s psscan 22 22 0 0 32 32 0 0
handles 8.50s 8.51s 14.04 s 12.01s pstree 22 22 0 0 32 32 0 0
dlllist 1.58s 1.60s 298s 3.55s sockets 21 21 3 3 - - - -
sockets 1.18s 1.20s - - sockscan 21 2 0 1 - - - -
connections 1.22s 1.35s - - connections 6 6 0 0 - - - -
getsids 1.26s 127 s 2.07s 2.89s connscan 6 6 0 O - - - -
inspectcache 047 s 047 s 047 s 0.52s filescan 1,586 1,807 6 0 2709 2398 0 0
memmap 32.27 s 2941s 1:08.21 s 24.81s driverscan 74 74 0 0 106 100 O 0
modules 1.22s 1.23s 191s 2.15s thrdscan 325 326 0 1 413 422 0 9
printkey 3.00s 3.01s 3.50s 4.62s mutantscan 149 149 0 O 258 258 0 0
ssdt 3.06s 3.05s 5.64s 543s netscan - - - - 68 70 0 2
vadinfo 6.77 s 6.11s 16.68 s 14.35s
vadtree 2.64s 2.35s 522s 4.76s
vadwalk 342s 3.04s 6.65s 6.01s _
psscan 1.76 s 207 2365 1481s Psscan gnumerates all the heap objects and IF)oks fpr heap
modscan 248 s 2365 252 15.755  Objects with size of EPROCESS, and then applies object spe-
sockscan 1.68s 2.27s - - cific constraints to further filter them. While these optimiza-
connscan 1.78 s 14.48 s - - tions may work well enough in non-malicious context, they
filescan 4.02s 421s 6.55s 1760 s can be exploited by attackers to evade detection. For exam-
driverscan 1.79s 349s 255 15185 ple, to evade the optimized psscan, one may slightly
thrdscan 210 271s 3.20s 15.65s h the object size, and just before the process exits
hivelist* 1155 2385 185s  1498s  Crange the object size, ) proc 4
hivescan 045 0.46 s 047 s 0.78 s recover the object size to ensure proper functioning of OS
imageinfo 1.28 s 17.79 s 1.64s 79.78 s  heap management. Furthermore, the performance of several
mutantscan 1.87s 248s 2.75s 15.40s  signature-based tools (such as imageinfo and connscan)
netscan - - 4.05s 41.55s  degrades significantly while the size of memory dump
kdbgscan 045s 045s 0.50's 047s  increases from 512 MB to 1 GB, which is expected for signa-
kpcrscan 507.19s 1079.42s 0.50s 1068.45 s ture-based tools.

* hivelist combines signature scan and traversal. It first scans for a hive
object and then traverses the hive linked list from there.

We conducted this experiment for two Windows OS
releases, namely Windows XP Service Pack 3 and Windows
7 Service Pack 0, both of which have more than tens of mil-
lions of users.

3.3 Evaluating Basic Schemes: Q1 & Q2
3.3.1 Efficiency of Volatility Tools

Table 1 lists the performance of the Volatility tools. For each
of the two operating systems (XP and Windows 7), we cre-
ated two memory dumps: the first one with 512 MB physical
memory, and the second one with 1 GB physical memory.
Then, we ran the analysis tools on the four memory dumps
and measured their runtime performance. In Table 1, we
grouped all traversal-based tools in the upper portion, and
signature-based tools in the lower portion. Note that some
tools are only available for one OS version.

As expected, the traversal-based tools are in general
fairly efficient. Most of the traversal-based tools can provide
analysis results in a few seconds. Moreover, their perfor-
mance is not affected by the size of memory dumps. Sur-
prisingly, many signature-based tools are also very
efficient. Intuitively, a sequential scan of 512 MB or 1 GB
memory image takes more than a few seconds. After exam-
ining the source code, we found that several optimizations
are in place to improve the scan efficiency. For example,
with the knowledge of heap management in Windows,

3.3.2 Accuracy of Volatility Tools

To evaluate the accuracy, we measured the false positives
and false negatives in terms of the number of kernel objects
that are checked. As discussed in Section 3.1, objects allo-
cated under the same context with the same size are
believed to be of the same type. Therefore, by comparing
the objects in the data structure graph and the objects recog-
nized by Volatility, we can establish a mapping from
(caller_list, size) to object type. For example, from dynamic
analysis, we find an object is allocated at callers c1 : ¢2: ¢3
with the size s;, and this object is then recognized as
EPROCESS in Volatility, then we believe that all objects allo-
cated at the same caller list and size are EPROCESS objects.
Note that multiple pairs of (caller_list, size) may be mapped
to one object type. Thus this is a many-to-one mapping.
Considering that Volatility may wrongly identify an object’s
type, we have to verify these mappings. We manually look
up these callers in the Windows kernel binary using IDA
Pro. By examining the disassembly annotated with public
symbols, we found it relatively straightforward to confirm
whether a mapping is correct. We found one mapping for
_DRIVER_OBJECT and one for _FILE_OBJECT to be erro-
neous and were excluded.

We examine some common and relatively simple Volatil-
ity plugins to evaluate their accuracy. As a first step, we
obtain an image along with the ground-truth for the image
obtained via dynamic memory analysis. Then, we subject
the image to Volatility plugins and compare the results
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TABLE 3
Efficiency and Accuracy of Robust Signature Schemes
512 MB 1GB

Tool

Time Objs FN/FP Time Objs FN/FP
SigField 641s 25 0/0 1,283s 28 0/0
SigField_opt 341s 25 0/0 715s 28 0/0
SigGraph 494s 25 0/0 1,006s 28 0/0

against ground truth. The results are tabulated in Table 2.
Signature-based tools (including sockscan, thrdscan,
and netscan) are observed to have some false positives.
We also observed some false negatives—321 for filescan
and 6 for driverscan—in Windows.

After taking a closer look at the false positives and false
negatives, we found that out of the 321 file objects, 315 have
blank file names or have OBJECT_HEADER.Type ==
0xBADOBOBO, a sentinel value used by Windows to flag
objects that have been deleted. The remaining six file objects
were false negatives resulting from a bug in Volatility. The
missing six driver objects were also verified to be marked
for deletion. We believe that these objects are not actively
used at this moment. Therefore, we do not treat them as
false negatives.

In reality, the question if or not to capture deleted objects
could be requirement dependent. For example, in digital
forensics, historic information may be valuable. However,
virtual machine introspection and malware analysis gener-
ally rely on fresh and up-to-date semantic knowledge
thereby eliminating the need for such stale information.
Moreover, our ground truth retrieval technique can be eas-
ily modified to track the deleted objects in the kernel to pro-
vide an analyst with a historic view of the kernel objects
however, that deviates from the goal of our work.

Files missed by volatility. We found some active files that
were missed by the filescan plugin of Volatility on Win-
dows XP SP3. An object allocated through ExAllocate-
PoolWithTag contains a POOL_HEADER object that
contains the Tag information associated with the memory
pool along with the size of the allocation. POOL_HEADER
may be followed by some optional headers specific to the
object instance followed by the OBJECT_HEADER and finally
the object itself (in case of file object, FILE_OBJECT). Volatil-
ity assumes that there is no gap between the end of
FILE_OBJECT structure and the end of the allocation unit.
While this is true for most cases, we found cases when this is
not necessarily true. Specifically, when OBJECT_HEADER.
Flags has a value 0x66 and the object is allocated in pool
type NonPagedPoolCacheAligned, there exists a pool
block size alignment padding between the end of
FILE_OBJECT and the end of allocation unit, due to which
Volatility misses the object. This issue, along with a patch to
fix the problem has been reported to Volatility.

3.4 Evaluating Robust Signature Schemes: Q3 & Q4
With the kernel data structure graph obtained from
dynamic binary analysis, we further evaluate the efficiency
and accuracy of two recent robust signature schemes,
namely SigFeild [9] and SigGraph [10]. The signature for
EPROCESS of SigField in Windows XP is available in

[ EEErTrrmre -
| Virtualized i Emulated Semantics Semantic

| Machine " Machine Extractor Fields

' / \ i \

i F B 1 f

] I Test ! i o | Test \'l

i | Program i M | Program | Fuzz Engine

I e s e -

| : - Duplicate Value Duplicate Value
1 OS Kernel ' 05 Kernel Analyzer Sets

| Virtualizer | | Emulator |

Fig. 1. Architecture of dupcliate-value directed fuzzing.

Volatility. Thus we directly evaluated this tool. For the orig-
inal SigGraph scheme, it requires the access to the OS source
code and there is no graph-based signature available for
Windows. In order to evaluate its quality and efficiency and
compare against other tools, we manually created a graph-
based signature for EPROCESS in Windows XP SP3 by fol-
lowing their algorithm [10]. This is actually feasible because
the definitions for EPROCESS and the structures it points to
are publicly available.

Using the same evaluation strategy in Section 3.3, we eval-
uate the two signatures for EPROCESS and list the results in
Table 3. We can see that although the accuracy of these two
robust signatures on EPROCESS is perfect, their performance
is significantly worse than the basic analysis tools (e.g.,
pslist and psscan). SigGraph is supposed to be slower,
because SigGraph examines pointer and excludes non-
pointer fields in objects up to several layers, whereas SigField
only checks a few values in each object. Surprisingly, our
experiment shows that SigField is actually slower than Sig-
Graph. With further investigation of its source code, we
found that SigField makes expensive get_obj_offset ()
function call frequently to obtain offsets within EPROCESS
structure. In comparison, our implementation of SigGraph
uses hardcoded offsets. To make a fair comparison, we opti-
mized SigField implementation to use hardcoded offsets.
The performance of optimized version (SigField opt) is bet-
ter than SigGraph, as expected.

Clearly, these robust signature schemes cannot be
directly used for the security applications (e.g., virtual
machine introspection) that need to obtain semantic infor-
mation in a timely manner.

4 EXPLORING SEMANTIC VALUE MANIPULATION
ATTACKS

In this Section, we aim to evaluate the value manipulation
attack, i.e., Q5 & Q6, from an offender’s perspective.

4.1 Our Techniques

Fig. 1 illustrates an overview of our fuzz testing system. We
run the OS of interest within DECAF [14], a whole-system
binary analysis platform. Such a virtualized testing environ-
ment facilitates fuzz testing for several reasons. First, it is sim-
ple to modify arbitrary memory values. Second, it can easily
revert the virtual machine to the previously saved state to
conduct fuzz testing in the next round. Last and most impor-
tantly, it can dynamically switch between emulation and vir-
tualization mode during testing. In the emulation mode, we
perform fine-grained binary analysis to locate duplicate
semantic values, and then switch to the virtualization mode
to fuzz these duplicate values for better testing efficiency.
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More specifically, inside the virtual machine, we run a
test program to activate the kernel side execution. Note that
we are mutating the semantic values that are related to
malicious activities. That is, the attacker attempts to manip-
ulate semantic values pertaining to malicious behavior,
such as the name of the malicious process, the file that has
been accessed, and so on. These malicious activities are
often stealthy and have infrequent interactions with the vic-
tim system. To mimic these malicious activities, our test
program does not need to achieve the high test coverage of
the OS kernel code. Instead, our test program just need con-
duct some common tests to exercise different OS subsys-
tems, such as task management, file system, network stack,
etc. Therefore, if all the mutation attempts on a semantic
value do not cause adverse effect in these test cases, we can
conclude that such a semantic value is mutable. Otherwise,
if a semantic value is sensitive enough to all the mutation
attempts on it, we have confidence that this semantic value
is immutable and thus tend to be trustworthy. From an
attacker’s standpoint, some semantic values are in between:
some mutations cause system instability while some others
do not. These semantic values are partially mutable. Note
that partially mutable semantics are pertinent in an attack
scenario and may be fully mutable under a different context
(e.g., as a result of legitimate kernel functionality).

On top of DECAF, we develop three components: seman-
tics extractor, fuzz engine, and duplicate value analyzer. The
semantics extractor, which will be discussed in Section 4.1.1,
locates the semantic values from the memory snapshot of the
guest system. The duplicate value analyzer monitors the ker-
nel execution and performs dynamic duplicate value analy-
sis, which will be detailed in Section 4.1.2. At a high level, it
clusters the memory locations into sets, each of which holds
the same semantic value. The fuzz engine coordinates with
the other two components to conduct automated fuzz test-
ing, which will be discussed in Section 4.1.3.

4.1.1 Locating Semantic Values

At a certain execution point, we need to locate the semantic
values to be mutated. Semantic values for mutation are
selected in cooperation with the test program inside the vir-
tual machine. A test point has been defined within the test
program, dictating which semantic value or which set of val-
ues need to be mutated. More details will be discussed in
Section 4.1.3. Then, the semantic extractor needs to locate the
selected semantic value in the guest kernel memory space.

We leveraged Volatility memory forensics framework [2]
and implemented a plug-in to locate the semantic values of
interest. More specifically, at the test point, the virtual
machine is paused, and a memory snapshot is taken. Then
our Volatility plug-in will parse the kernel data structures
in the memory snapshot and identify both virtual and phys-
ical addresses for the selected value. The virtual address
will be used as input to find duplicate value sets, which will
then be mutated individually and simultaneously in the
subsequent fuzz testing.

4.1.2 Dynamic Duplicate Value Analysis

Many memory locations share the same value at a given
moment, either coincidentally, or because of program logic.

TABLE 4

Algorithm Execution on the Sample Code
Statement S, Sy, S. Sy S, Sy
1:a=b {a,b} {a,b}
2: c=a {a,b,c} {a,b,c} {a,b,c}
3:d=b+c {ab,c} {a,b,c} {a,b,c}
4: e=a {ajb,cel f{abcel {abcel {a,b,c.e}
5: b=2 {a,ce} {a,cel {a,ce}
6: f=c {a,c,e f} {a,cef} {a,cef} {acef)

Our interest is in the latter case since such duplicates hold
values which have the same semantic meaning. We call
these variables true duplicates. To identify true duplicate
values, we devise a dynamic binary analysis algorithm that
classifies variables (memory locations or registers) into clus-
ters. Variables belonging to the same cluster hold the same
semantic value because of the program logic in this particu-
lar program execution.

To better explain the idea of dynamic duplicate value
analysis, consider the example code in Table 4. After execut-
ing the six statements under “Statement” column of Table 4,
variables a, ¢, ¢, and f should have the same value, so these
variables should belong to the same cluster. b belongs to
this cluster till line 5, where b is assigned to a different
value. Suppose that e is identified to have a semantic mean-
ing such as pid of a process, we can conclude that the other
variables (a, ¢, and f) in the same cluster should also hold
the pid of that process. Therefore, we need to perform data-
flow analysis to compute these clusters.

Yet, the existing forward dataflow analysis (i.e., taint
analysis [15]) and backward dataflow analysis (i.e., back-
ward slicing [16]) cannot solve this problem. For taint analy-
sis, the taint source needs to be known in advance.
However, in our case, semantic values can only be identified
at a later stage. Backward slicing is not a solution either.
Starting from line 4 and walking backward the code snip-
pet, backward slicing can identify e is directly copied from
a and b, but c and f are missing. Moreover, b should not be
a redundant value, because b is later assigned to a different
value at line 5. To solve this problem, we devise a new
dynamic dataflow analysis algorithm called dynamic dupli-
cate value analysis to compute the clusters at runtime. The
basic algorithm is shown in Algorithm 1.

The idea behind our Algorithm 1 is as follows. At mem-
ory byte granularity, we treat each memory byte as a vari-
able r and a redundancy cluster S, is associated with each
variable r. Based on each instruction’s semantics from the
execution traces, we perform data flow analysis. More
specifically,

e Direct assignment. For each instruction 7 in the execu-
tion trace, we check if 7 is an assignment operation.
In x86, assignment operations include mov, push,
pOp, MOVS, MOVZX, MOVSX, etc. As a variable repre-
sents a memory byte, we break an assignment into
one or more per-byte assignments, and for each
source and destination byte pair (u,v), we update
the duplicate sets accordingly (as shown in
DoAssign). First of all, the destination v is no longer
equivalent to the other variables 7 in its old duplicate
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set S,, and thus v needs to be removed from S,. Fur-
thermore, since v is now equivalent to u, v also needs
to be added into the duplicate set S,, where r € S,,.
Lastly, the duplicate set of v will be updated to that
of u. In general, a membership change of a variable
in its duplicate set needs to propagate around to
maintain consistent membership information. SSE
and MMX instructions may also serve as data trans-
fer operations. We do not consider these instructions
because we found in our experiments that these
instructions rarely appear in the kernel execution.

o  Other operations. For the rest of the instructions,
while the duplicate sets for the source operands
remain the same, the duplicate set for the destina-
tion operand needs to be reset. Therefore, for each
byte v of the destination operand, DoRemove noti-
fies all variables in v’s duplicate set that v is no
longer their duplicate.

Table 4 gives a step-by-step demonstration of how the

algorithm executes on the sequence of statements.

Algorithm 1. Dynamic Duplicate Value Analysis

Procedure DYNVALUEANALYsIS (Trace t)
for all instruction ¢ € ¢t do
if i.type is assignment operation then
for each src & dst byte pair(u,v) do
DoAssign(u,v)
end for
else
for each byte v in the dst operand do
DoRemove(v)
end for
end if
end for
end procedure

procedure DOASSIGN (u,v)
for all variable r € S, do

Sy — S, —{v}

end for

for all variable r € S, do
Sy — S, +{v}

end for

Sy Sy

end procedure

procedure DOREMOVE(v)
for all variable r € S, do
S, — S, — {v}
end for
end procedure

Extension for string conversions. Algorithm 1 only han-
dles literal value equivalence. For strings, the operating
system kernel often makes conversions, such as from
ANSI to UNICODE or vice versa, or from upper case to
lower case or vice versa. Semantically, a converted string
is equivalent to the original string. Therefore, we have to
extend the basic algorithm to maintain the equivalence
relation between the converted and original strings. We
hook the string handling functions in Windows and
directly call DoAssign to make the duplicate value asso-
ciation between the input and the output.

*Pause VM

*Save VM state

+Compute duplicate values
*Locate semantic values

Start test program

Start VM *Trace kernel execution

o - )’

*Observe VM execution
*Revert to the saved state

*Mutate a value or a value set
*Resume VM

Fig. 2. Fuzz Testing Cycle. A gray node indicates the virtual machine at
that moment is running in the emulation mode, whereas a white node
stands for the virtualization mode.

Discussion. Through direct assignments and restricted
string conversion, our algorithm captures how normal pro-
gram execution operates on duplicate values. Thus, it is
able to correctly identify duplicate values in regular pro-
grams. However, a program may be obfuscated to evade
our analysis. As an example, a direct assignment can be
replaced by a sequence of arithmetic or logic operations. As
we apply this algorithm to benign kernel code analysis, this
limitation does not apply.

Moreover, as a dynamic analysis technique, the identi-
fied duplicates depend on the program execution. In our
setting, we trace the kernel execution from the start of the
test program to a designated test point, so the creation and
propagation of the semantic values associated with the test
program should be completely captured and analyzed.

4.1.3 Testing Procedure

Testing cycle. As depicted in Fig. 2, a testing cycle proceeds
as follows: (1) In the virtualization mode, start the virtual
machine and boot up the guest system. (2) Switch to emula-
tion mode, run the test program and start to trace kernel
execution for duplicate value analysis. (3) At a predeter-
mined test point, pause the virtual machine and save the
current VM state; in the meantime consult the semantics
extractor to locate important semantic values and query the
duplicate value analyzer to compute duplicate value sets;
and switch to the virtualization mode. (4) Choose to mutate
a single value or a set of duplicate values, and resume the
virtual machine; (5) The test program finishes normally or
prematurely or system crashes; revert to the saved VM state
and go to step 4 to fuzz another semantic value or another
duplicate value set. We define multiple test points to mutate
different sets of semantic values and conduct the above test
cycle multiple times, once for each test point.

Test program. We design our test program to exercise
basic and common operations that are commonly per-
formed by programs and that are typically exhibited by
malware. Various test points and test cases exercised by the
test program are enumerated in Table 5. We can see that the
test program exercises process and thread management,
DLL load and unload, kernel module management, file
operations, network operations, and registry key accesses
(for Windows only). In all, six test points are defined at pre-
cise moments, when the virtual machine will be paused and
selected semantic values will be mutated. These test points
capture the moment when certain kind of values have been
created and will be used for later operations. For example,
for file related semantic values, the test point is defined after
the files are open and before read and write operations are
performed on these files. Furthermore, in order to prevent
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TABLE 5
Test Cases and Test Points
No Test Case
1 Start test program

Test Point 1: mutate process & thread related values
Run other test cases

2 Load a user DLL
Test Point 2: mutate DLL related values
Call a function in the DLL repeatedly
Unload the DLL

3 Load a kernel module
Test Point 3: mutate kernel module values
Send IO requests to the kernel module
Unload the kernel module

4 Open two files, one each for read and write
Test Point 4: mutate file values
Read and write the two files repeatedly
close the files

5 Open a TCP connection
Test Point 5: mutate values related to this connection
Send and receive data through this connection
Close the connection

6 Open a registry key (Windows only)
Test Point 6: Mutate registry key related values
Read and write this registry key repeatedly
Close the key

reverting of the VM from interfering with the HTTP session
for network related tests, we launch a light weight HTTP
server on the guest OS where tests are conducted.

The identified test points are tested individually. For
instance, when we conduct fuzzing on the first test point,
the other test points are simply skipped, however the test
program continues to perform all the operations listed in
Table 5 during all the tests. This is important since a change
in a test point could have an implication in multiple func-
tionalities. For instance, a change to a thread related seman-
tic value might result in dropping of the connection that the
thread has made. Also, the order of the test cases listed in
Table 5 does not reflect the actual order of our fuzz testing.
Suppose that we are conducting test case 5 for the network
connection. We actually move this test case earlier, immedi-
ately after the test program starts, such that we can observe
if the mutation of network-related semantic values will
affect the execution of the other test cases.

Mutation rules. To avoid system instability due to muta-
tion, the changes have to satisfy the type constraint of the
original value. In other words, the mutation rules depend
on the type of the semantic value to be mutated. In contrast,
other fuzz testing projects (such as in [9], [17]) aim to ran-
domly fuzz certain data values to identify their value con-
straints or to explore the program space.

TABLE 6
Value Mutation Rules

Type Mutation Rules

ID 0, copy from another ID, increment or decrement
by a small constant

Size/Offset 0, increment or decrement by a small constant

String “, copy from another string, mutate one character

TABLE 7
Semantic Fields Selected for Windows XP SP3
and Their Mutability

Category: Semantic Field Mutability
Structures
Process: struct UniqueProcessld, ExitStatus, Image- v
EPROCESS FileName, CreateTime, GrantedAc-
cess, InheritedFromUniqueProcessld,
ObjectTable.HandleCount,
ObjectHeader.ObjectType
ActiveThreads, Flags X
Token p
Thread: . .
StartAddress, Cid.UniqueThread, Ob- v
struct ETHREAI jectHeader.ObjectTypef1
Cid.UniqueProcess X
DLL & Kernel DlIBase, EntryPoint, FullDIIName, v
Module: struct BaseDIIName, Flags, LoadCount,
LDR_DATA _- PatchInfo
TABLE_ENTRY
Registry  Key, Name, NameLength, LastWriteTime, v
CM_KEY_- SubkeyCounts, Flags, Signature, Par-
NODE ent
Security X
Network TCPT_OBJECT.RemotelpAddress, X
TCPT_OBJECT.RemotePort,
TCPT_OBIJECT.LocalAddress,
TCPT_OBJECT.LocalPort,
TCPT_OBJECT.Pid
TCP_LISTENER.AddressFamily, v
TCP_LISTENER.Owner,
TCP_LISTENER.CreateTime,
TCP_ENDPOINT.State
Memory PoolTag, BlockSize v
Pool: struct
POOL_HEADER

We list the mutation rules in Table 6. For example, for an
ID (e.g., pid, tid), we consider 0 as an input, because 0 is
often reserved for system process and thread. Similarly, for
a string, we use an empty string as an input since the OS
may have special handling for empty strings, such as ignor-
ing and skipping an object if its name is empty. An attacker
may exploit this feature to hide certain objects.

4.2 Experiment Setup

We perform our empirical study on two popular operating
systems, which are Windows XP with service pack 3
(XPSP3) and Ubuntu 10.04 with Linux kernel version 2.6.32-
25 (Linux). We conducted the experiments on a system with
Intel Pentium Core i7 3 GHz processor and 4 GB RAM. The
host operating system is 32-bit Ubuntu 10.04 with kernel
version 2.6.32-38. We analyzed both operating systems indi-
vidually as a virtual machine running inside DECAF.
512 MB RAM was allocated for the virtual machine.

We compiled two lists of semantic fields, one for Win-
dows XP (Table 7) and the other for Linux (Table 8). Foren-
sic tools (such as Volatility [2]) query these semantic fields
to extract semantic information from a memory dump.
Although these lists are not nearly complete, we believe
that they provide a fairly good coverage on important
semantic fields.

Using the value mutation rules listed in Table 6, we
designed three mutation tests (including one whole-set
mutation) for each field in Tables 7 and 8 resulting in a total
of 258 test cases. The test cases were distributed across 12
test points (six test points in each of the two OSs), with
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TABLE 8
Semantic Fields Selected for Linux and Their Mutability

Category: Semantic Field Mutability
Structures
Process: state, flags, comm, start_time, stime, v
struct task_struct .

exit_code

fds X

pid P
File:
struct dentry task_struct.files.fd[i].f_owner, v
struct inode task_struct.files.fd[i].f_mode,

task_struct.files.fd[i].f_pos, d_name,

d_iname, d_flags, d_time, i_uid,

i_gid, i_size, i_atime, i_ctime,

i_mtime
Module: struct name, num_syms, state, core_size, v
module, struct core_text_size, num_kp, vm_flags
vim_area_start

vm_start, vim_end, X
Network: saddr, daddr, sport, dport X
struct
inet_sock,
struct skc_family, skc_refcount, skc_state, v
sock_common, sk_protocol, sk_flags, sk_type, sk_err
struct sock

average trace gathering time of approximately 15 minutes
per test point. Depending on the test point in question and
the size of trace, redundancy identification and semantic
value location took between 7 min (best case) to 32 min
(worst case) with 92 percent of the time consumed during
redundancy identification. Each test case execution involv-
ing VM restoration and fuzzing took 25 to 60 seconds. After
fuzzing, the execution continued for 3 minutes as a part of
behavior assessment. Additionally, we implemented a root-
kit to examine the effects of semantic mutations on the OS
information retrieval tools. In one shot, we mutated the
primitives listed in Table 11 and observed the impact on the
system.

The key component of MOSS is Duplicate Semantic Value
Analysis, which in theory is independent of the OS. There-
fore, with the kernel data structure information for the key
kernel data structures, careful identification of test points
and a corresponding test program, one can perform single-
field and duplicate-field mutations on any guest OS to iden-
tify the semantic fields susceptible to mutation. In this
paper, as a proof-of-concept, we consider Windows XP SP3
and Linux 2.6.32-25 to perform the empirical study. How-
ever, it is often the case that a new version of an OS retains a
significant part of the previous version. Therefore, it is pos-
sible that the mutability results tabulated in Tables 7 and 8
are applicable to other versions of Windows and Linux
OSes, respectively.

4.3 Single Field Mutation

We consider a semantic field to be immutable only if all of
the mutation attempts on it cause system or program insta-
bility. If some of the mutations do not cause critical failures,
then attackers may potentially make similar modifications
and thus mislead the security tools. Based on this standard,
we have listed the results in the last column of Tables 7 and
8. A ‘p’ in the mutability column indicates that the seman-
tic field showed no system or program instabilities for cer-
tain mutations, while it did for some others.

From the mutability column in Tables 7 and 8, we can see
that most of the semantic fields, including process name, file
name, module name and many others can be changed by an
attacker without adverse effects on the system or a program.
This observation immediately raises a question about the
trust issue for all the security applications (such as memory
forensics and virtual machine introspection) that critically
rely on the correctness of these semantic fields.

For both operating systems, network related semantic
fields tend to be reliable. Mutations to source and destina-
tion IP addresses and port numbers immediately cause fail-
ures to subsequent operations on the network connection.
This is good news, implying that network security tools that
make security decisions based on the network connections
can be trusted, as long as these connection objects can be
reliably located.

For Windows XP, the UniqueProcessId in ETHREAD
tends to be reliable. A mutation will either crash the entire
system or the test program. The Pid in the TCP connection
object (TCPT_OBJECT) can also be relied upon. A mutation
on it will immediately drop the connection. It is worth not-
ing that security tools usually read Pid from EPROCESS.
UniqueProcessId, which turns out to be not reliable at
all, because none of the mutations on it causes severe fail-
ures. This finding suggests to retrieve the UniqueProces-
sId in the ETHREAD objects or Pid in the TCPT_OBJECT
objects (if available) instead.

Interestingly, strings are completely mutable (that is, all
occurrences of the string can be mutated without adverse
effect on the system) for both the operating systems we
tested. OS kernels usually rely on pointers and integers
(such as handles and IDs) for operations as opposed to
strings. String mappings for resources (e.g., file handle to
file name) are often maintained in instances that involve
interpretation by a human. This observation is particularly
worrisome since strings like process name, file name, regis-
try key name, etc., have severe security relevance and are
fully mutable.

Similarly, it turns out that all the time related information
(such as, process creation time, exit time, etc.) are also fully
mutable and therefore not reliable. This observation has far
reaching impacts. For instance, time information is crucial
in a memory forensic context. One may need to use the time
stamps of certain malicious activites as crime evidence.
With DKOM as a possibility, such time stamps cannot be
assumed correct.

4.4 Duplicate Field Mutation

In addition to mutating the selected semantic fields individ-
ually, we also identified their duplicate fields and mutated
these duplicates both separately and simultaneously. We
present these results in Tables 9 and 10 for Windows XP
and Linux respectively. For each primary semantic field
that has at least one duplicate, we list the number of dupli-
cates (including the primary) identified through MOSS, the
types of these duplicates, immutable duplicates if any, and
whether the entire duplicate set is mutable. Due to the
dynamic nature of our analysis, the number of duplicates
depends on the start execution point, the end execution
point, and the particular execution path. In our experiment,
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TABLE 9
Duplicate Fields for Windows XP and Their Mutability
Primary Field # of | Type of Immutable Set
‘ Dups | Duplicates Duplicates Mutability ‘

_EPROCESS.UniqueProcessld 36 _ETHREAD.Cid.UniqueProcess, _ETHREAD.Cid.UniqueProcess X

_HANDLE_TABLE.UniqueProcessld,

_CM_KEY_BODY.Processld,

_EPROCESS .InheritedFromUniqueProcessld,

_ETIMER .Lock, _TEB.ClientId,

_TEB.RealClientld, 0x9b57b6d0, 0x9ccdaef0,

0x9cce697c...
_EPROCESS.ImageFileName 4 _OBJECT_NAME_INFORMATION.Name, None v

_RTL_USER_PROC_PARAMS.ImagePathName,

_SE_AUDIT_PROCESS_INFO.ImageFileName
_EPROCESS.CreateTime 2 _ETHREAD.CreateTime None v
_EPROCESS.ActiveThreads 2 _EPROCESS.ActiveThreadsHighWatermark None v
_HANDLE_TABLE.HandleCount 2 _HANDLE_TABLE.HandleCountHighWatermark None v
_FILE_OBJECT.FileName (Data file) 7 0x003a948e, 0x822df33a, 0x822df35c, ... None v
_LDR_DATA_TABLE_ENTRY.FullDIIName 3 _LDR_DATA_TABLE_ENTRY.BaseDIIName, None v

_FILE_OBIJECT.FileName
_LDR_DATA_TABLE_ENTRY.BaseDIIName 3 _LDR_DATA_TABLE_ENTRY.FullDIIName, None v

_FILE_OBIJECT.FileName
_CM_KEY_NODE.LastWriteTime 2 0x9b43ea60 None v
_CM_KEY_NODE.Parent 4 0x94d20a20, 0x9adc7940, 0x9adc7948 None v
_CM_KEY_NODE.Security 2 0x822c7880 _CM_KEY_NODE.Security X
_ETHREAD.StartAddress 2 _SECTION_OBIJECT.Starting Va _SECTION_OBIJECT.StartingVa X

duplicate values were identified by dynamic duplicate
value analysis from the start of the test program to a prede-
termined test point. Therefore, these duplicates may not
always hold true for different test cases. For each duplicate
value, we further identify the data structure and field in
which the value is located. Again, we use Volatility for
locating kernel data structures. Due to the limited coverage
of Volatility, we may not always be able to recognize the
corresponding data structures. In such cases, we list only
the virtual addresses in the third column.

The immutable duplicates, if any, indicate which duplicate
fields (other than the primary) may be reliable. The knowledge
about immutable duplicates is valuable, because it means that
security tools could examine these alternative fields instead of
the primary ones to obtain more reliable OS semantics.

The last column indicates if the entire duplicate set is
simultaneously mutable. If not, security tools may be
able to perform a consistency check on the entire set to
obtain more reliable outputs. Of course, the underlying
assumption is that the security tool is smart enough to
locate all the duplicate fields, which in practice may be
difficult, especially for closed-source operating systems
like Windows.

From the results in Tables 9 and 10, we can see that infor-
mation redundancy does exist for some important OS
semantics. This is the case for both operating systems. For
example, in Windows, EPROCESS.UniqueProcessId
appears as the UniqueProcess in all the ETHREAD objects
belonging to that process, and also appears in the
HANDLE_TABLE. For a process which has established at
least one TCP connection, the pid should also appear in the
TCPT_OBJECT.pid [18], which MOSS could not identify at
test point 1. This is because the network operations hap-
pened after test point 1 in our experiment and the corre-
sponding TCPT_OBJECT was not created at that point. In
fact, at test point 5, we confirmed that TCPT_OBJECT.pid
indeed is one of the duplicates. For the process name —
EPROCESS. ImageFileName, we found duplicates in

OBJECT_NAME_INFORMATION.Name and RTL_USER_-
PROCESS_PARAMETERS . ImagePathName. As the main
module, the process name also appears in the base module
name BaseD11Name and full module name FullDl1Name
in LDR_DATA_TABLE_ENTRY. These results are also consis-
tent with publicly available Windows documentation [18].

For Linux, we found that the pid of the test program rep-
licates in the group id task_struct.t_gid, and also the
light-weight process (Iwp)’s group id, which specifies the
pid of the hosting process of a thread in Linux. Similarly,
the process name in task_struct.comm also shares the
same value with its light-wight processes. vma.vm_start
has a duplicate in vma.vm_end of the preceding vma
structure, and vma.vm_end has a duplicate in vma.
vm_start of the subsequent vma structure. We also found
that the source IP address and the destination IP address are
duplicate to each other. This is because in our test, both the
server and the client programs are running in the localhost,
so both source and destination IP addresses are 127.0.0.1.
These findings are in agreement with the source code of the
OS kernel.

Unfortunately, our results show that most of these dupli-
cate values are mutable both individually and simulta-
neously. In very limited cases, the information redundancy
can help improve the integrity of semantic information.
As discussed earlier, though UniqueProcessId in
EPROCESS is mutable, its duplicate, UnigqueProcess
in ETHREAD is immutable. ETHREAD. StartAddress in
Windows is another such case. The primary ETHREAD.
StartAddress can be manipulated, but its duplicate
StartingVa in _SECTION_OBJECT is more sensitive to
mutations.

Tables 9 and 10 also show that the result of mutating the
entire duplicate set is the same as mutating the individual
duplicate fields. This indicates that the operating systems
process these semantic fields separately, and perform no
cross checking on these duplicates. From the defender’s per-
spective, if one can reliably locate one immutable field
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TABLE 10
Duplicate Fields for Linux and Their Mutability
Primary Field # of Type of Immutable Set
Dups Duplicates Duplicates Mutability

task_struct.pid 4 task_struct.t_gid, task_struct.t_gid(Iwp), 0xf63916dc None v
task_struct.comm 2 task_struct.comm(wp) None v
task_struct.static prio 3 task.parent.static_prio, task.static_prio (Iwp) None v
task_struct.exit_code 3 task.parent.exit_code, task.exit_code (Iwp) None v
task_struct.fds 3 0xf7179080, Oxf61bae84 0xf7179080, task.fds X
module.name 2 0xd93c524¢ None v
module.num_syms 12 module.num_kp, 0xe086¢15¢, 0xe086¢170... None v
vma.vm_start 2 vma.vm_end vma.vm_start X
vma.vm_end 2 vma.vm_start vma.vm_end X
dentry.d_name 2 0xf583f0d8 None v
inet_sock.saddr 24 inet_sock.rcv_saddr inet_sock.daddr Oxde49147c inet_sock.rcv_saddr inet_sock.daddr X

0xde49148¢c . .. 0xde49147c 0xde49148c ...
inet_sock.daddr 24 inet_sock.rcv_saddr inet_sock.saddr Oxde49147c inet_sock.rcv_saddr inet_sock.daddr X

0Oxde49148¢c . .. 0xde49147c 0xde49148c ...

(either the primary or a duplicate), checking the entire
duplicate set is not necessary.

4.5 Impact on Security Tools

System administration and security tools are a doorway for
system administrators to investigate various aspects of a
running OS. If an SVM attack can either successfully mis-
represent (i.e., provide false information) or completely
evade (i.e.,, hide from) security tools, it impacts investiga-
tion. To this end, we selected a set of adminstration and
security tools. Specifically, we picked (1) Task Manager and
Process Explorer [18] that use Windows APIs to retrieve
information from the OS, (2) Volatility plugins (scan based
and traversal based) that directly operate on the guest OS
memory, (3) SigGraph [10]* and Robust Signatures—two of
the state-of-the-art tools to detect data structures in the
memory and finally (4) DECAF [14], an in-house state-of-
the-art execution monitor built on top of QEMU. DECAF
retrieves semantic information from a guest operating sys-
tem by first locating the global data structures in the guest
memory and traversing them. Specifically, it can retrieve
process, thread and module information from the guest
operating system. These tools were selected based on free
availability, popularity and technique used to retrieve infor-
mation from the guest OS.

To evaluate the impact on the above tools and to further
emphasize the results from fuzz testing in Tables 9 and 10,
we implemented a proof-of-concept SVM rootkit for Win-
dows. Given a specific malware process, this SVM rootkit
manipulates all the mutable semantic fields associated with
the process, and their duplicates that can be identified. The
SVM rootkit changes the integer values to 0 and string val-
ues to empty string. Also, the rootkit changes the pool tags
to “None” to indicate that the object is associated with the
default pool. To demonstrate the power of this rootkit, we
ran a bot named TDSS [12] in Windows XP SP3 in a con-
trolled environment. We kept TDSS running for over
3 hours before recording the outputs of various security

2. We implemented SigGraph as a plugin to Volatility and created a
signature for EPROCESS.

tools, to ensure that neither the system nor the program
crashed because of the SVM rootkit.

Table 11 lists the impact of the SVM rootkit on the
selected security tools. It presents what primary semantic
fields are manipulated and the mutation impacts on the
security tools. We can see that there are mainly two kinds of
symptoms: either the OS entities become hidden (H), or the
misleading new values are fetched and displayed (N). Vola-
tility traversal tools (i.e., pslist, threads, modules) are
misled to show meaningless values. For scan tools, while
the process and thread information is hidden from psscan
and thrdscan, modscan can still identify the module
information, which unfortunately has been manipulated
and thus has become meaningless. The reason why process
and thread objects are hidden is because their pool tags
have been manipulated, and psscan and thrdscan rely
on pool tags to identify process and thread objects. The two
robust signature schemes are also misled or evaded. The
graph signature [10] for EPROCESS is reliable enough to
find malware’s process, but the obtained process informa-
tion is invalid. The value-invariant signature [9] is even
worse. It failed to identify the malware process because the
ExitTime of the malware process has been manipulated
and the signature uses the ExitTime value to remove noisy
and dead process objects. The result of DECAF’s VMI tool is
similar to that of the Volatility traversal tools. That is,
although the information about the malware execution can
be extracted, it is incorrect. Consequently, unless the integ-
rity of the kernel can be guaranteed, we cannot leverage the
knowledge obtained from VMI tools to perform analysis on
the malware execution.

Root-Causes. Identifying the true causes why SVM attacks
succeed on a closed source OS like Windows is hard. We
found three main causes that make SVM attacks possible.

First, by design, there is an inherent presumption of data
integrity within the kernel. From the perspective of security
applications, the information retrieved from the kernel is
assumed correct and corner cases like IDs being “NULL”,
names being empty, etc. may not be handled. For example,
if the process name is an empty string, one application may
display the remaining process attributes with an empty
name whereas, another application may completely skip
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TABLE 11
Impact of SVM Rootkit on Security Tools
Category Primary Fields Mutated Task Proc Volatility Volatility Sig  Robust Sign VMI
Mgr Exp (scan) (traversal) Graph

Process EPROCESS. UniqueProcessld H H H N N H N
EPROCESS.InheritedFromUniqueProcessld - H H N N H N
EPROCESS.POOL_HEADER .PoolTag - - H N N H N
EPROCESS.POOL_HEADER.BlockSize - - H N N H N
EPROCESS.CreateTime - H H N N H N
EPROCESS.ExitTime - H H N N H N
EPROCESS.ImageFileName H H H N N H N
EPROCESS.ExitStatus - - H N N H N

Thread ETHREAD.CreateTime - H H N - - N
ETHREAD.ExitTime - H H N - - N
ETHREAD.Cid.UniqueThread - H H N - - N
ETHREAD.StartAddress - H H N - - N
ETHREAD.POOL_HEADER.PoolTag - H H N - - N
ETHREAD.POOL_HEADER.ObjectSize - H H N - - N

Kernel LDR_DATA TABLE ENTRY.DIlIBase - H N N - - N

Module & LDR_DATA _TABLE_ENTRY.EntryPoint - - N N - - N

User DLL LDR DATA_TABLE_ENTRY.SizeOfImage - H N N - - N
LDR DATA TABLE ENTRY.FullDlIIName - H N N - - N
LDR DATA TABLE ENTRY.BaseDIIName - H N N - - N
LDR _DATA TABLE ENTRY.Flags - - N N - - N
LDR_DATA_TABLE_ENTRY.PatchInformation - H N N - - N
LDR DATA TABLE ENTRY.LoadCount - H N N - - N

“H” indicates that the entity was completely hidden from the tool when the value was set to 0 or an empty string, and a value of “N” indicates that the the tool

reports the mutated value.

the process as invalid. Depending on the application behav-
ior, an attacker can pick the mutations that will have the
desired effect.

Second, kernel functionality seldom depends on strings
and certain time related fields, and mutations to such fields
have no effect on the system. This is expected since the ker-
nel mainly uses strings for bookkeeping and user interac-
tion. For example, in the linux kernel, the process name is
represented by the task_struct.comn field in “sched.h”.
Its usage is mainly confined to logging and error reporting.

Finally, we found that the kernel APIs do not take muta-
bility into consideration while retrieving semantic values
because kernel code tends to prioritize performance and
convenience over mutability. This is reasonable since direct
mutations to data is not an attack vector in the OS threat
model. For example, in GetProcessId API, instead of
retrieving the process ID from an immutable semantic (if
any) such as a process’ thread (i.e., ETHREAD.Cid.
UniqueProcess), the process ID is retrieved from EPRO-
CESS.UniqueProcessId, which is mutable.

4.6 Attack Severity

An attack is severe if through a successful SVM attack, an
attacker can mislead an administrator to accomplish mali-
cious tasks. Note that—from Sections 4.1 and 4.2—an attack
is successful if the mutation does not result in any adverse
affect on the system. From Table 11, we see that mutating
certain fields can hide entities or mis-represent their values
to the examining tools. Administrators often examine the
modules running within a system and schedule forensic
tasks if an unrecognized (or non-whitelisted) module is
detected. Through SVM attacks, for example, an attacker
could change the load address and name of a malicious

DLL to impersonate a well known non-malicious DLL (such
as “kernel23.dll”) thereby evading further examination. In
fact, using such a technique, we were able to successfully
mis-represent a malicious DLL when the memory was
examined using Volatility.

Moreover, in both OSs, changing the name of the file in
the file object and all the duplicates, the file becomes
completely inaccessible even to an administrator. An
attacker could hide in plain sight using such a technique.
An anti-virus or other state-of-the-art forensic tools can nei-
ther delete nor quarantine such files. Also, in Windows, by
changing the EPROCESS . Flags value to OxFFFFFFFF, an
attacker could prevent the process from termination. Upon
attempting to terminate the process, a dialog pops up with
a message that the process is a system process and terminat-
ing it would result in a restart. Force quitting it abruptly
restarts the OS. An attacker may use this trick to prevent a
malicious process from being killed.

While some of the tasks like hiding a process, escalating
privileges, etc. can be accomplished by modern rootkits,
they usually involve complex operations requiring exten-
sive domain knowledge. Our observations highlight how
even simple mutations to semantic fields could yield drastic
outcomes. Moreover, to the best of our knowledge, no exist-
ing rootkit considers all duplicate semantic values during
DKOM.

5 DiscussIONS AND FUTURE WORK

Memory analysis on closed-source OSs lacks completeness. As
demonstrated by Volatility, while community’s domain
knowledge may be sufficient to harness heuristics to gather
information from a memory image, it can not be deemed
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complete. False positives can be analyzed and excluded by a
domain expert, but there is no way to know about the exis-
tence of a missed object. We have highlighted the usefulness
of ground-truth by relying on it to identify a bug in the fil -
escan plugin of Volatility. In a deceptive context, we
believe reliance on ground-truth is a requirement.

SVM attack space is vast. In our experiments, we have lim-
ited our changes to single value mutations and duplicate set
mutations, but an attacker is not restricted to making these
changes. In general, we did not attempt to test multiple
mutations, since it leads to a very large number of combina-
tions, which are infeasible to test. However, our current test-
ing infrastructure does support multi-mutation based tests
and can be extended in future. The key focus of our tests are
to highlight the seriousness of single value and duplicate
set mutations, which we believe is a large attack space
in itself.

We need more trustworthy VMI techniques. The current VMI
techniques [3], [5], [19], [20] more or less rely on memory
analysis, and can therefore be incorrect. Triggered by cer-
tain events (e.g., system calls) or demanded by the adminis-
trator, the current VMI techniques traverse important
kernel data structures of the guest system, and then extract
the operating system semantics. Virtuoso [19] and VMST
[20] have greatly narrowed the semantic gap and improved
the usability of VMI, but these new approaches do not
change the fact that they directly read from the virtual
machine memory, disregard of other runtime events. Once
the guest kernel is compromised, the current VMI techni-
ques will fail, just like memory forensics.

6 RELATED WORK

Dynamic Binary Analysis. Dynamic taint analysis has been
extensively used to solve various security problems, such as
data life time tracking [21], exploit detection [15], vulnera-
bility fuzzing [17], malware analysis [4], protocol reverse
engineering [22], [23], [24], and data structure reverse engi-
neering [25], [26], [27]. We leverage dynamic taint analysis
to construct the ground-truth and reliably identify links
between kernel objects.

Our approach for data structure reconstruction is also dif-
ferent from the previous approaches, such as REWARDS
[25] and Howard [27]. As we are mainly interested in the
inter-connections between kernel objects, we only monitor
the lifetime of kernel objects and keep track of pointers. With
this trade-off, dynamic analysis can be efficient enough to
analyze the kernel execution. In comparison, REWARDS
and Howard perform more heavyweight instrumentation on
each instruction, and thus can not be directly applied to ana-
lyze the kernel execution in a timely manner. At some level,
our algorithm to track equivalent variables and direct our
mutation is related to the abstract variable binding technique
for automatic reverse engineering of malware emulators
[28], in which two kinds of dataflow algorithms (i.e., forward
binding and backward binding) are proposed.

Kernel rootkit detection. Rootkit is a kernel-level malware,
which hides the presence of important kernel objects. It
has posed a significant threat to the integrity of operating
systems. Early research uses specification based approach
deployed in hardware (e.g., [29]), or binary analysis [30] to

detect kernel rootkits. Recent advances include state-based
control flow integrity checking (e.g., SBCFI [31] and KOP
[32]), and data structure invariant based checking [9], [10],
[33]. Patagonix [34] maintains a database of approved
binaries and taps into hardware features to detect all run-
ning executables and thereby detect unapproved binaries.
Our work extends rootkit DKOM techniques by exploring
automated single- and redundant-value manipulation
based attacks.

Virtual machine introspection. Introspecting a virtual
machine often requires interpreting the low level bits and
bytes of guest OS kernel to high level semantic state. This is
a non-trivial task, because of the semantic-gap [7]. Early
approaches [3], [29], [35] have used manual efforts to locate
the kernel objects by traversing from the exported kernel
symbols or searching for invariants. Recent advances show
that we can largely automate this process [19]. Prakash et al.
[36] leverage hardware events to recover key semantics of
interests. Our work sheds some light on the VMI techni-
ques. We show that in many cases the semantic knowledge
extracted by VMI cannot be trusted, and we call for more
trustworthy VMI techniques.

7 CONCLUSION

We have conducted an empirical study on the state-of-the-
art memory analysis tools, especially those for Windows—a
closed-source operating system. To acquire the ground
truth, we have devised dynamic binary analysis techniques.
Our experimental results demonstrate that both traversal-
based and signature-based analysis tools are not perfectly
accurate even under a non-deceptive context. To further
evaluate the attack space of value manipulation attacks, we
designed a value equivalence set directed field mutation
technique. Through our directed mutation, we found that
these attacks are practical and many semantic values can be
altered without being noticed and cause adverse effect to
the victim system.
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