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Mendelian Randomization
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insulin and glucose with breast cancer risk:
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Abstract

Background: In addition to the established association between general obesity and

breast cancer risk, central obesity and circulating fasting insulin and glucose have been

linked to the development of this common malignancy. Findings from previous studies,

however, have been inconsistent, and the nature of the associations is unclear.

Methods: We conducted Mendelian randomization analyses to evaluate the association

of breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-h

glucose, body mass index (BMI) and BMI-adjusted waist-hip-ratio (WHRadj BMI). We first
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confirmed the association of these instruments with type 2 diabetes risk in a large diabe-

tes genome-wide association study consortium. We then investigated their associations

with breast cancer risk using individual-level data obtained from 98 842 cases and 83 464

controls of European descent in the Breast Cancer Association Consortium.

Results: All sets of instruments were associated with risk of type 2 diabetes. Associations

with breast cancer risk were found for genetically predicted fasting insulin [odds ratio

(OR) ¼ 1.71 per standard deviation (SD) increase, 95% confidence interval (CI)¼ 1.26-

2.31, p ¼ 5.09 � 10–4], 2-h glucose (OR¼ 1.80 per SD increase, 95% CI¼ 1.3 0-2.49, p ¼
4.02 � 10–4), BMI (OR¼ 0.70 per 5-unit increase, 95% CI¼0.65-0.76, p ¼ 5.05 � 10–19)

and WHRadj BMI (OR¼0.85, 95% CI¼ 0.79-0.91, p ¼ 9.22 � 10–6). Stratified analyses

showed that genetically predicted fasting insulin was more closely related to risk of

estrogen-receptor [ER]-positive cancer, whereas the associations with instruments of 2-

h glucose, BMI and WHRadj BMI were consistent regardless of age, menopausal status, es-

trogen receptor status and family history of breast cancer.

Conclusions: We confirmed the previously reported inverse association of genetically

predicted BMI with breast cancer risk, and showed a positive association of genetically

predicted fasting insulin and 2-h glucose and an inverse association of WHRadj BMI with

breast cancer risk. Our study suggests that genetically determined obesity and glucose/

insulin-related traits have an important role in the aetiology of breast cancer.

Key words: Breast cancer, insulin, glucose, obesity, genetics, Mendelian randomization analysis

Introduction

General and central obesity have been linked to breast can-

cer risk in previous studies.1,2 Body mass index (BMI) and

waist-hip-ratio (WHR) are commonly used to measure

general and central obesity, respectively. Obesity, particu-

larly central obesity, is a major risk factor for insulin resis-

tance and type 2 diabetes, which are often characterized by

elevated fasting insulin and glucose as well as impaired

glucose tolerance (usually measured by blood glucose level

2 h after oral glucose challenge).3 Previous studies have

linked fasting insulin and glucose levels to increased risks

of multiple cancers.4–6 Proposed mechanisms for these

associations include cancer-promoting effects mediated by

insulin and insulin-like growth factor (IGF) signalling

pathways.7 However, the relationship between these

biomarkers and breast cancer remains controversial and

findings from epidemiological studies are inconsistent.8,9

Concerns regarding the validity of these observational

study findings include potential selection biases, reverse

causation, confounding effects, small sample size and dif-

ferences in assays used to measure the biomarkers of

interest.

Mendelian randomization analysis has been used to

evaluate potential causal relationships between exposures

and disease.10,11 Genetic variants are used as instrumental

variables in the analysis. Random assortment of alleles at

the time of gamete formation results in a random assign-

ment of exposures that are related to an allele (or a set of

alleles). Thus, Mendelian randomization analyses may

reduce potential biases that would afflict conventional

Key Messages

• Mendelian randomization studies eliminate potential influence of reverse causation on study results and are less sus-

ceptible to bias and confounding than conventional observational studies. We used this approach to evaluate the as-

sociation of obesity and glucose/insulin-related traits with breast cancer risk, using the data of a large consortium.

• We found genetically predicted fasting insulin and 2-h glucose levels were positively associated with breast cancer

risk, whereas genetically predicted body mass index and waist-hip-ratio with adjustment of BMI were inversely asso-

ciated with the risk.

• Our study has uncovered complex inter-relations of genetics, obesity, and breast cancer risk, and has provided novel

findings regarding roles of circulating glucose and insulin in the risk of this common cancer.
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observational studies. In the current study, we performed

Mendelian randomization analyses to assess associations

of obesity (i.e. BMI and WHR) and glucose/insulin-related

traits (i.e. fasting glucose, 2-h glucose and fasting insulin)

with breast cancer risk, using data from the Breast Cancer

Association Consortium (BCAC).

Methods

Study population

Included in this analysis are 182 306 participants of

European ancestry, whose samples were genotyped using cus-

tom Illumina iSelect genotyping arrays: OncoArray (56 762

cases and 43 207 controls) or iCOGS array (42 080 cases

and 40 257 controls). Institutional review boards of all in-

volved institutions approved the studies. Selected characteristics

of the two datasets are presented in Supplementary Table 1,

available as Supplementary data at IJE online. Details of the

genotyping protocols in the BCAC are described elsewhere

(iCOGS: http://ccge.medschl.cam.ac.uk/research/consortia/

icogs/; OncoArray: https://epi.grants.cancer.gov/oncoarray/).12,13

Genotyping data were imputed using the program

IMPUTE214 with the 1000 Genomes Project Phase III inte-

grated variant set as the reference panel. Single nucleotide

polymorphisms (SNPs) with low imputation quality (impu-

tation r2 < 0.5) were excluded. Top principal components

(PCs) were included as covariates in regression analysis to

address potential population substructure (iCOGS: top

eight PCs; OncoArray: top 15 PCs).

Selection of SNPs associated with glucose/

insulin-related traits

In December 2016, we searched the National Human Genome

Research Institute-European Bioinformatics Institute Catalog

of Published Genome-Wide Association Studies and the litera-

ture for SNPs associated with the following traits: levels of

2-h glucose (2hrGlu), fasting glucose (FG), fasting insulin

(FI), BMI and waist-hip-ratio with adjustment of BMI

(WHRadj BMI).
15–19 SNPs associated with any of these traits at

the genome-wide significance level (P < 5 � 10–8) in popula-

tions of European ancestry were included. For each GWAS-

identified locus, a representative SNP with the lowest P-value

in the original GWAS publication was selected (linkage disequi-

librium r2 < 0.1, based on 1000 Genome Phase III CEU data).

Construction of instrumental variables

Weighted polygenic scores for each trait (i.e. wPRS-

2hrGlu, wPRS-FG, wPRS-FI, wPRS-BMI and wPRS-

WHRadj BMI) were constructed following the formula:

wPRS-traitj ¼
P

i bi;GX�SNPi, where bi, GX is the beta coef-

ficient of the ith SNP for the trait of interest from the pub-

lished GWAS (Supplementary Table 2, available as

Supplementary data at IJE online). SNPi is the imputed

dosage of the effect allele in BCAC data (range: 0 to 2). To

reduce potential pleiotropic effects, we excluded BMI- and

WHRadj BMI-associated SNPs from instruments of 2hrGlu,

fasting glucose and insulin (r2< 0.8), and vice versa. The

pleiotropic SNPs associated with more than one trait are

presented in Supplementary Table 2, available as

Supplementary data at IJE online. The F-statistic was

taken to indicate whether an instrumental variable was

well-powered for Mendelian randomization analysis, with

10 being a commonly used threshold.20 Variance explained

(%) and F statistics for a specific trait were calculated fol-

lowing the formulae:
P

i 2�b2
i;GX�feffect allele�

1�feffect alleleð Þ
var Xð Þ �

100 and R2 *(n-1-k)/(1-R2)/k, respectively, where: R2 is per-

centage of variance explained by used SNPs; f is the frequency

of the effect allele reported by GWAS for the trait; var(X) is

the variance of trait, see below; n is the sample size of BCAC

data; and k is the number of SNPs used in the instrument.21

For 2-h glucose, fasting glucose and insulin, bi, GX were fur-

ther transformed to represent 1 standard deviation (SD) in-

crease with the unit in the original GWAS (2-h glucose: 1 SD¼
2mmol/L, variance ¼ 4; fasting glucose: 1 SD ¼ 0.65mmol/L,

variance ¼ 0.42; fasting insulin: 1 SD ¼ 0.60 ln[pmol/L], vari-

ance ¼ 0.36)17,22 by the formula: bi,SD ¼ bi,GX [2*f (SNPi)(1-f

(SNPi)]ˆ0.5/SD. wPRS-BMI and wPRS-WHRadj BMI repre-

sented the adjusted 1-SD increase of transformed BMI and

WHRadj BMI, as the original GWAS performed the inverse nor-

mal transformation for both phenotypes.18,19,23 We further

scaled wPRS-BMI to be equivalent to five units of BMI by per-

forming a linear regression among controls in our dataset: ob-

served BMI � wPRS-BMI þ error. Then we calculated the

transformed BMI as BMIwPRS¼ b0þ b1* (wPRS-BMI), where

b0 and b1 are slope and coefficient from the linear regression

model mentioned above, respectively.

Statistical analysis

Given an established association between impaired glucose/

insulin traits and type 2 diabetes, an association between

constructed instruments and risk of type 2 diabetes is to be

expected. We used summary statistics from the DIAbetes

Genetics Replication And Meta-analysis (DIAGRAM)

Consortium and conducted a Mendelian randomization

analysis of our traits using the inverse-variance-weighted

two-sample method.10,24 The Mendelian randomization

estimate and standard error were calculated as
P

i bi;GX�
bi;GY�r�2

i;GY=ð
P

i b
2
i;GX�r�2

i;GYÞ and 1=ð
P

i b
2
i;GX�r�2

i;GYÞ
0:5, re-

spectively. GY represents the association between a, SNP
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and type 2 diabetes risk; thus bi, GY and ri, GY are beta coef-

ficient and standard error, respectively. The P-value was

based on Student’s t distribution, where the degrees of free-

dom were determined by the number of SNPs included in

the instrument for the trait of interest. We calculated

Pearson’s correlations between each pair of wPRSs in the

control data before and after removal of pleiotropic SNPs.

Egger’s regression, as described in Bowden et al.,25 was per-

formed to detect potential pleiotropy of our instruments.

We also included all instruments in the same model to evalu-

ate possible independent associations of each instrument

with breast cancer risk.

Associations of wPRSs with breast cancer risk were evalu-

ated separately in the iCOGs and OncoArray datasets by

treating these scores as continuous variables. A logistic re-

gression was performed with age at interview/diagnosis,

study site/country and PCs as covariates. The results were

then combined using meta-analyses in METAL with a fixed-

effects model.26 We performed additional analyses adjusting

for certain known breast cancer risk factors listed in

Supplementary Table 1, available as Supplementary data at

IJE online. Finally, we conducted subanalyses by estrogen

receptor (ER) status, age at interview/diagnosis (< 50 versus

� 50), menopausal status at interview/breast cancer diagnosis

and family history of breast cancer. All statistical analyses

were conducted using R statistical software (version 3.1.2).

Results

Approximately 90% of cases included in this study were

diagnosed at age 40 or above. A total of 278 SNPs were se-

lected to construct the instruments, for which the number

of SNPs for each trait ranged from 4 to 166 (Table 1). The

variance of each trait explained by its associated variants

ranged from 0.23% for 2-h glucose to 2.89% for BMI

(Table 1).

Using data from DIAGRAM, we demonstrated that all

genetic instruments were associated with risk of type 2 dia-

betes in the direction that would be expected (Table 2). The

strongest association was observed for the genetic instru-

ment for fasting glucose (OR¼ 6.37, P ¼ 5.77 � 10–16

and OR¼ 4.32, P ¼ 1.12 � 10–11 before and after the ex-

clusion of pleiotropic SNPs, respectively).

Removing pleiotropic SNPs did not appreciably change

the associations of instruments with breast cancer risk

(Table 3). A 1-SD increase in genetically predicted 2-h glu-

cose levels was associated with an 80% increased risk of

breast cancer (OR¼ 1.80, 95% CI¼ 1.30-2.49, p ¼ 4.02

Table 1. Summary of instrument variables for obesity and glucose/insulin-related traits used in the current study

All SNPs After exclusion of pleiotropic SNPs

Traits No. of variants Variance explained (%) F statistics No. of variants Variance explained (%) F statistics

2-h glucose 9 0.56 114.9 4a 0.23 105.7

Fasting glucose 36 2.42 125.7 31b 2.30 107.7

Fasting insulin 18 0.59 60.4 10c 0.27 53.9

BMI 166 2.89 32.6 162d 2.84 32.3

WHRadj BMI 54 1.96 67.5 50d 1.79 65.2

aExcluding SNPs (or their correlated SNPs with r2 > 0.8) associated with fasting glucose, fasting insulin, BMI and WHRadj BMI.
bExcluding SNPs (or their correlated SNPs with r2 > 0.8) associated with levels of 2-h glucose, fasting insulin, BMI and WHRadj BMI.
cExcluding SNPs (or their correlated SNPs with r2 > 0.8) associated with levels of 2-h glucose, fasting glucose, BMI and WHRadj BMI.
dExcluding SNPs (or their correlated SNPs with r2 > 0.8) associated with levels of 2-h glucose, fasting glucose and fasting insulin.

Table 2. Associations of obesity and glucose/insulin-related traits with type 2 diabetes using data from DIAGRAM: results from

Mendelian randomization analysis

Traits All SNPs After exclusion of pleiotropic SNPs

IV OR (95% CI) P IV OR (95% CI) P

2-h glucosea 9 12.0 (6.90–21.0) 2.11�10�5 4 21.5 (5.76–80.3) 0.005

Fasting glucosea 36 6.37 (4.87–8.32) 5.77�10�16 31 4.32 (3.26–5.73) 1.12�10�11

Fasting insulina 18 1.92 (1.10–3.35) 0.024 10 4.62 (1.82–11.7) 0.005

BMI 132 1.92 (1.64–2.25) 2.86�10�13 128 2.37 (1.99–2.82) 2.40�10�17

WHRadj BMI 53 1.87 (1.53–2.29) 5.93�10�8 49 1.99 (1.61–2.46) 3.52�10�8

aORs calculated based on 1-SD increase in levels of genetically predicted 2-h glucose (2 mmol/L,22), fasting glucose (0.65 mmol/L,17) and fasting insulin (0.60

ln[pmol/L]17).
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� 10–4). An inverse association was observed for both ge-

netically predicted BMI and WHRadj BMI (per five units of

BMI increase: OR¼0.70, 95% CI¼ 0.66–0.77, P ¼ 5.05

� 10–19; per unit increase of genetic risk score for WHRadj

BMI: OR¼ 0.85, 95% CI ¼ 0.79-0.91, P ¼ 9.22 � 10–6).

The association of breast cancer risk with genetically pre-

dicted fasting insulin became significant after excluding

pleiotropic SNPs (OR¼1.71, 95% CI ¼ 1.26-2.31, P ¼
5.09 � 10–4). No association was observed for genetically

predicted fasting glucose. Results of iCOGS and

OncoArray are shown separately in Supplementary Table

3, available as Supplementary data at IJE online.

Genetically predicted fasting insulin was correlated

with both genetically predicted 2-h glucose and WHRadj

BMI (Supplementary Table 4, available as Supplementary

data at IJE online). Exclusion of pleiotropic SNPs attenu-

ated these correlations. Mutual adjustment of all instru-

ments did not materially change the observed associations

with breast cancer risk described above (Supplementary

Table 5, available as Supplementary data at IJE online).

We evaluated the associations of genetically predicted obe-

sity and glucose/insulin-related traits with traditional risk

factors for breast cancer and found that genetically pre-

dicted fasting insulin and WHRadj BMI were associated

with BMI in controls. Further, genetically predicted BMI

was correlated with age at menarche, age at first live birth

and breastfeeding history (Supplementary Table 6, avail-

able as Supplementary data at IJE online). Adjusting for

these covariates did not materially change the observed

associations of genetically predicted fasting insulin, BMI

and WHRadjBMI with breast cancer risk (Supplementary

Table 7, available as Supplementary data at IJE online).

Finally, using Egger’s regression, we found that the inter-

cept in the model was noticeable for genetically predicted

2-h glucose, BMI and WHRadj BMI, indicating a strong

pleiotropic effect for these instruments (P < 0.005 for b0,

Supplementary Table 8, available as Supplementary data

at IJE online).25 No apparent pleiotropy was found for ge-

netically predicted fasting insulin. The Mendelian random-

ization estimates from Egger’s regression remained

significant after accounting for detected pleiotropy for ge-

netically predicted BMI and WHRadj BMI (Supplementary

Table 8, available as Supplementary data at IJE online).

Stratified analysis was performed by age, menopausal

status, ER status and family history of breast cancer.

Genetically predicted 2-h glucose, BMI and WHRadj BMI

were consistently associated with breast cancer across all

strata (Figure 1A, C andD, Phet > 0.05, exclusion of pleio-

tropic SNPs). The association with genetically predicted

fasting insulin was restricted to ER(þ) cancer (Figure 1B,

Phet 0.007, exclusion of pleiotropic SNPs). The results of

stratified analysis are shown for other sets of instrumental

variables in Supplementary Figures 1 (inclusion of pleiotro-

pic SNPs) and 2 (fasting glucose, exclusion of pleiotropic

SNPs), available as Supplementary data at IJE online.

Discussion

In this large study, we found that genetically predicted obe-

sity, 2-h glucose and fasting insulin were associated with

breast cancer risk. Measured BMI has been well estab-

lished to be positively associated with breast cancer risk in

postmenopausal women but inversely related to the risk in

premenopausal women. Results from epidemiological

studies investigating the association of breast cancer risk

with WHR, fasting insulin and glucose have been inconsis-

tent. Traditional epidemiological studies are prone to

biases, including confounding, selection biases, recall

biases and reverse causality. Mendelian randomization

analyses take advantage of the random assignment of

Table 3. Associations of genetically predicted obesity and glucose/insulin-related traits with breast cancer risk: results from

Mendelian randomization analysis

All SNPs After exclusion of pleiotropic SNPs

Traits OR 95% CI P Phet OR 95% CI P Phet

2-h glucosea 1.50 1.21–1.86 2.13 10�4 0.608 1.80 1.30–2.49 4.02�10�4 0.566

Fasting glucosea 1.06 0.95–1.17 0.291 0.543 1.02 0.91–1.14 0.749 0.357

Fasting insulina 1.16 0.96–1.41 0.128 0.939 1.71 1.26–2.31 5.09�10�4 0.442

BMI

per five-unitb 0.70 0.65–0.76 5.25�10�22 0.042 0.70 0.66–0.77 5.05�10�19 0.086

per SDa 0.76 0.72–0.80 5.25�10�22 0.042 0.77 0.73–0.82 5.05�10�19 0.086

WHRadj BMI
a 0.85 0.79–0.91 4.48 � 10�6 0.132 0.85 0.79–0.91 9.22�10�6 0.152

aORs calculated based on 1-SD increase in levels of genetically predicted 2-h glucose (2 mmol/L,22), fasting glucose (0.65 mmol/L,17), fasting insulin (0.60

ln[pmol/L],17), BMI and WHRadj BMI.
bORs calculated based on 5-unit increase of genetically predicted BMI (see Methods).
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genetic alleles during gamete formation to minimize the

biases commonly encountered in traditional epidemiologi-

cal studies. When instrumental variables are not associated

with any potential confounders and are not linked to the

outcome via any alternative pathway, Mendelian randomi-

zation analysis using such instrumental variables resemble

randomized clinical trials, and thus could provide strong

results for causal inference for the exposure of interest.10

We found that the risk of breast cancer increased ap-

proximately 70% for each 1-SD increase of genetically pre-

dicted fasting insulin levels. Previous epidemiological

studies were unable to reach a conclusion regarding the as-

sociation between fasting insulin and breast cancer risk. A

meta-analysis reported a null association for fasting insu-

lin.8 However the I2, an indicator of heterogeneity across

studies, was considerable. Our results provide strong evi-

dence to support a positive association. Insulin is an impor-

tant growth factor with cancer-promoting features such as

stimulating cell mitosis and migration and inhibiting apo-

ptosis. Its mitogenic effects involve the activation of Ras

and the mitogen-activated protein kinase pathway,27 of

which the role in cancer development has been recog-

nized.28 Further, insulin may inhibit the production of sex

hormone-binding globulin and lead to elevated bioavail-

able estrogen levels.29 It also has been shown that knock-

down of insulin and IGF-1 receptors inhibits hormone-

dependent growth of ER(þ) breast cancer cells.30 This may

explain the association of fasting insulin with ER(þ) breast

cancer observed in this study.

Previous epidemiological studies have suggested that

fasting glucose may be a risk factor for breast cancer, but

few have assessed 2-h glucose levels, as the latter are diffi-

cult to investigate in large prospective cohort studies.

Overall, a meta-analysis of prospective studies showed no

strong evidence to support an association of fasting glucose

levels and risk of breast cancer in non-diabetic women.9

In the current study, we found a positive association with

breast cancer for genetically predicted 2-h glucose levels

but not for fasting glucose. Although fasting glucose and

2-h glucose are closely correlated,31 they represent differ-

ent biological processes. The genetically determined fasting

glucose levels primarily reflect the glycogenolysis activity

in liver and hepatic insulin sensitivity.32 On the other

hand, the levels of post-challenge glucose are mainly deter-

mined by the amount and pace of insulin released into

blood stream in response to the challenge as well as by the

Figure 1. Associations of genetically predicted obesity and levels of circulating glucose and insulin with overall breast cancer risk: stratified analysis.

The Pheterogeneity was obtained from heterogeneity test across strata.
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glucose uptake in skeletal muscle cells (in other words, it

primarily reflects beta cell function and skeletal muscle in-

sulin sensitivity33). The reasons why genetically predicted

2-h glucose, but not fasting glucose, is associated with in-

creased risk of breast cancer are not clear. One animal

study has provided evidence that transgenic mice with

inactivated insulin and IGF-1 receptors in skeletal muscles

(impaired skeletal muscle insulin sensitivity) can manifest

hyperinsulinaemia and an accelerated development of

breast cancer.34 Since genetically predicted 2-h glucose is

correlated with instruments for other traits, we cannot

completely rule out the possibility that the association of

2-h glucose may be mediated by other insulin-related traits;

even these traits were carefully adjusted, and pleiotropic

SNPs were excluded in our analyses.

We reported previously that genetically predicted BMI

was inversely associated with breast cancer risk in both pre-

and postmenopausal women.35 We have now confirmed this

finding with a much larger sample size and more BMI-

associated SNPs. Whereas our finding for premenopausal

breast cancer is consistent with previous observational stud-

ies, the inverse association observed in our study between ge-

netically predicted BMI and postmenopausal breast cancer

risk contradicts previous findings based on measured BMI.

Multiple lines of evidence suggest that early life body size

may be inversely associated with both premenopausal and

postmenopausal breast cancer risk.36,37 It has been specu-

lated that reduced serum estradiol and progesterone levels,

due to an increased frequency of anovulation, play a role. In

addition, the association is further supported by the observa-

tion that early life fatness was inversely correlated with IGF-

1 levels measured in later adulthood.38 We hypothesize that

genetically predicted BMI may be more closely correlated to

early life body weight, and obesity determined using mea-

sured BMI later in life may be more closely related to envi-

ronmental and lifestyle factors that are associated with

breast cancer risk. Indeed, one previous study found that a

BMI-genetic score was positively associated with weight

gain before reaching middle age but inversely associated

with weight gain after reaching middle age.39 If the hypothe-

sis is correct, our study may provide additional support for

preventing weight gain later in life to reduce the risk of

breast cancer.

Results from previous studies regarding the association of

WHR with breast cancer risk have been inconsistent.

Although several previous studies reported that measured

WHR was associated with breast cancer risk,40 we recently

found that this association was substantially attenuated after

adjusting for BMI using data from a large prospective cohort

study conducted among Chinese women.41 In the current

study, we observed an inverse association between geneti-

cally predicted WHRadj BMI and breast cancer risk in both

pre- and postmenopausal women. This finding was unex-

pected, given the close association of measured WHR with

type 2 diabetes.42 As discussed previously for the BMI find-

ings, we hypothesize that genetically predicted WHRadj BMI

may reflect visceral adipose tissue level in early life, whereas

measured WHR in late adulthood may reflect accumulation

of visceral fats later in life. Additional research is needed to

understand the inter-relationship of genetically predicted

WHR, measured WHR and breast cancer risk.

We showed that genetically predicted obesity and circu-

lating insulin and glucose levels were positively correlated

with risk of type 2 diabetes. Epidemiological studies have

shown that a previous diagnosis of type 2 diabetes was re-

lated to an elevated risk of breast cancer risk, although the

association was weak to moderate.43 However, in a previ-

ous study, we found a null association between a polyge-

netic risk score for type 2 diabetes and breast cancer risk.44

It is possible that lifestyle changes after diabetes diagnosis

and/or diabetes treatment may have confounded this asso-

ciation. Given the significant association we found in this

study for breast cancer risk with genetically predicted fast-

ing insulin and 2-h glucose, two factors that are strongly

associated with type 2 diabetes risk, we suggest that type 2

diabetes may be associated with breast cancer risk.

The sample size of our study is very large, providing us

sufficient statistical power for Mendelian randomization

analyses of multiple obesity, glucose/insulin-related traits

and breast cancer risk. Our ability to perform Mendelian

randomization analysis is limited by the genetic variants

identified to date in GWAS, and the variance explained by

these genetic variants for some traits is small. We used 10

instruments in our main analysis, which could lead to false-

positive findings due to multiple comparisons. However, the

associations reported in this study for 2-h glucose, fasting

insulin, BMI and WHRadj BMI were robust, reaching the

stringent Bonferroni corrected significance level (P < 0.05/

10¼0.005). Pleiotropy was found for the associations of

obesity, but it is not likely that the observed associations

can be primarily explained by pleiotropic effects.

In summary, this study provided new evidence that ge-

netically predicted fasting insulin, 2-h glucose, BMI and

WHRadj BMI are associated with breast cancer risk in

women. Further research into the complex association of

genetics, obesity, glucose/insulin-related traits and breast

cancer risk will help to improve the understanding of un-

derlying biological mechanisms for the associations ob-

served in this study and may provide tools to reduce breast

cancer risk.
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