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ABSTRACT OF THE DISSERTATION 

 

Human Entorhinal-Hippocampal Structure in Aging  

& Stimulation Mediated Episodic Memory Enhancement 

by 

Tyler James Wishard 

Doctor of Philosophy in Neuroscience 

University of California, Los Angeles, 2022 

Professor Nanthia A. Suthana, Co-Chair 

Professor Susan Y. Bookheimer, Co-Chair 

  

Decades of accumulated scientific evidence has demonstrated that vital factors (e.g., 

amyloid-β (Aβ) and the gene apolipoprotein E (APOE) ε4) contribute to the neuropathological 

changes and memory deficits observed in Alzheimer's disease (AD) and related dementias. 

Identifying these factors prior to disease onset could facilitate earlier access to disease-

modifying treatments or promote healthy lifestyle modifications that might reduce 

neuropathology or cognitive deficits. However, the relationship between plasma-derived Aβ, 

APOE ε4, and brain atrophy in older adults before the manifestation of clinically relevant 

memory loss remains unclear. Furthermore, brain stimulation has emerged as a powerful 

approach for developing novel neuromodulatory therapies for those with deficits in cognition. 

Thus, these techniques may be used as potential treatments for those at risk for AD and other 

severe memory impairments. 



 iii 

The studies from this dissertation investigated the neural correlates and causal outcomes 

of cognitive and memory-related systems in the aging human brain. The first study examined 

the relationship between plasma-derived Aβ, APOE ε4, and brain atrophy in a large sample of 

160 healthy older adults (ages 50+). The second and third studies showed promising effects on 

memory using invasive and non-invasive brain stimulation in cognitively healthy adults without 

memory impairments. Together these findings suggest that genetic, biological, and neural 

determinants could be combined with neuroimaging-guided brain stimulation to better identify 

individuals at risk for AD and improve their hippocampal-related memory.  

 

Future studies of brain aging in healthy and memory-impaired older adults should monitor 

the molecular and neurobiological markers indicative of cognitive function and study novel 

methods like brain stimulation therapies. Since cognition is detrimentally influenced by these 

factors ensuring memory-enhancing therapies are effective despite indicators of impairment is 

necessary for the development of clinically viable treatments of benign senescence or more 

advanced impairment. Using different MRI modalities, the structural and microstructural 

properties of the brain can be used to predict treatment response or optimize hippocampal 

network targeting to restore aberrant function and alleviate the deficits associated with 

progressive memory loss.   
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AGING-RELATED COGNITIVE DECLINE: ENTORHINAL-HIPPOCAMPAL STRUCTURE,

AMYLOID-β & APOLIPOPROTEIN E BIOMARKERS.
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1.1 Introduction

The Administration on Aging, U.S. Department of Health and Human Services, released a

report in 2020 summarizing the present and projected U.S. population statistics for people

aged 65 years and older. The total U.S. population is currently around 330 million people, with

54 million people aged 65 and older—approximately 16% of the total—which over the next two

decades will increase by 6% [ACL, 2020]. By 2034, adults over 65 will outnumber children under

18 for the first time in U.S. history, and by 2040, the number of working-age adults will

decrease from 4.5 to 2.5 for every person 65 and older [Iriondo & Jordan, 2018].

At present, the most common neurological disease a�ecting this age group is dementia

which impacts 5% of the world’s older population—approximately 55 million people—

significantly contributing to physical, emotional, and economic pressures on individuals,

families, world governments, and health agencies [WHO, 2017]. By 2050, people with dementia

will triple worldwide [WHO, 2021]. These reports forecast urgent complexities regarding social

and public health services and further emphasize the need to understand lifestyle factors that

mitigate disease, maintain a high quality of life with age, and sustain a healthy republic and

thriving democracy for future generations.

Recent demographic surveys of people over 65 show about 125 women for every 100 men,

approximately 55% and 45% of the older U.S. population. These proportions increase to 178

women for every 100 men aged 85 and above. The total number of older adults that are

members of a racial or ethnic minority group is 1 in 4 people and will increase in the next two

to three decades. Regarding educational attainment, 89% of older adults completed High
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school, with around 33% having attained a bachelor’s degree, compared to 1970 when only 28%

had completed High school education. While there are limitations to these estimates, current

e�orts are being made to improve the methodology for U.S. census collection [Mervis, 2022].

Importantly, these figures highlight the dynamics of demographic features necessary for

accurate population-based statistics that describe age-related cognitive and memory abilities

and reflect the current and future U.S. population aged 65 and older. Therefore, we provide

national and study sample demographic averages (Table 1.1). Still, much work is needed to

improve the equitable assessment and fundamental access to public services for older adults,

especially for women and minority groups; we hope the findings presented herein represent

progress towards a healthier and more lively tomorrow for all people.

Study sample (%) National avg. 65+ (%)
SexX

FemaleX 54.80% 55.00%
RaceX

Asian AmericanX 3.75% 5.00%
Black or African AmericanX 10.50% 9.00%

Native American/Alaskan NativeX - 0.60%
Native Hawaiian or Pacific IslanderX - 0.10%

WhiteX 81.20% -
More than one raceX 3.00% 0.80%

Unknown or not reportedX 1.50% -
EthnicityX

Hispanic or LatinoX 9.02% 9.00%
Not Hispanic or LatinoX 91.70% -

Unknown or not reportedX - -
Total Members of Minority GroupsX 26.30% 25.00%

Table 1.1 U.S. population aged 65+ and HCP-A study sample demographics.

The Aging Brain in Health & Disease

Recent e�orts in normative aging research mapped the course of human brain growth

across the lifespan [Bethlehem et al., 2022; Marek et al., 2022]. This study measured several
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features of brain development; each phenotype had a di�erent temporal trajectory across an

individual’s life and age at which the brain measure reached its maximum value assessed using

magnetic resonance imaging (MRI). They divided the brain into broadly distinct areas based on

structural features, such as the cortical and subcortical regions, referring to the location,

density, and neuronal cell layers present. Another structural category of brain tissue is

whether areas appear gray or white in contrast on MRI scans [Nolte, 2013]. The gray matter

regions are densely packed with neuronal cell bodies, dendrites, unmyelinated axons, and

various types of glia. The white matter primarily consists of bundled axon fibers insulated by a

fatty substance called myelin that facilitates signal fidelity between distantly connected regions

forming networks throughout the brain [Campbell et al., 2009]. There are also specialized

cavities that run in series along the brain's midline called ventricles, which are important for

proper maintenance of intracranial pressure and disposal of cellular respiratory waste from

neural activity via the glymphatic and venous circulatory systems [Silverthorn et al., 2006].

On average, the brain reaches its maximum cortical and subcortical gray matter volume

between 6-12 years old. Yet, the cortical white matter volume continues to develop and

increase in size until the thirties [Baum et al., 2022; Paquola et al., 2019], then gradually declines

with age, related to measures of cognitive decline [Dhana et al., 2022]. Ventricular volume

increases until the age of 2, stabilizing into adulthood, then gradually increases until about the

age of 60, then increases exponentially, becoming more variable, towards the end of the life

course [Bethlehem et al., 2022; Kozlov, 2022].

Pioneering studies on memory function have shown that reductions in the size of key

brain regions located within the medial temporal lobe (MTL) are associated with alterations or
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impairments in brain function [Penfield & Milner, 1958; Scoville & Milner, 1957; Milner, 1954].

The hippocampus, a vital brain region in the MTL, plays an integral role in episodic memory,

consolidating the experiences and events of life into a coherent and recallable framework

(Figure 1.1). The hippocampus is a core hub in the memory network, working with di�erent

brain regions to accomplish extraordinary neural phenomena, specifically associative,

episodic, and semantic qualities of intellectual function [Battaglia et al., 2011]. The

hippocampus forms local connections with adjacent MTL regions, collectively referred to as

the parahippocampal gyrus, including the perirhinal, entorhinal, and parahippocampal

cortical areas [Patel et al., 2022].

Figure 1.1 Sagittal view of hippocampal subfields and amygdala nuclei.

In the absence of disease, even subtle changes in brain structure can a�ect cognition

and the ability to remember experiences essential for supporting independence and wellbeing

with age (Figure 1.2) [Gullett et al., 2020; Arfanakis et al., 2016; O’Shea et al., 2016; Fleischman et
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al., 2013; Jagust et al., 2007; Wu et al., 2002]. Currently, there are no e�ective treatments for

modifying the degenerative e�ects of aging on physical and mental capabilities highlighting

the need to identify brain-protective and risk health factors that reduce age-related decline.

Figure 1.2 The (A) neuronal, (B) brain structural, and (C) intellectual changes

in healthy and diseased aging.

Biomarkers of Brain & Cognitive Decline

The most common form of dementia, Alzheimer’s disease (AD), has an early and

late-onset presentation characterized by Amyloid-β (Aβ) plaques and neurofibrillary tangles;

approximately 90-95% of cases are late-onset, meaning the diagnosis occurs after age 65

[Chernecky & Berger, 2012]. Nearly two decades of scientific evidence have demonstrated that

the deposition of the Aβ protein in human brain tissue contributes to the pathogenesis of AD.

The traditional methods for measuring Aβ in vivo are Positron Emission Tomography

(PET) to reveal the location of plaques in the brain or Mass Spectroscopy to measure

cerebrospinal fluid (CSF) metabolites typically collected by a spinal tap or lumbar puncture.

While both of these approaches are technically feasible and have advanced our understanding
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of the contributions of the Aβ burden in cognitive decline [Bourgeat et al., 2022; Morar et al.,

2022; Sala et al., 2021], these measures can be challenging to obtain and may be further

complicated by age-related susceptibility, particularly with comorbid diseases.

A novel assay for detecting Aβ using plasma collected from whole blood samples would

simplify this procedure, improve the availability of diagnostic assessment for dementia, and

potentially promote peoples’ willingness to participate in Aβ-focused research studies.

Therefore, a blood-based assessment of Aβ 40,42 plasma concentrations tightly correlated with

amyloid plaques in the brain would provide appreciable utility in the clinic [Kirmess et al.,

2021; West et al., 2021]. In the U.S., a first-in-class test was certified by the Clinical Laboratory

Improvement Amendments program, and, in the E.U., it received the CE Mark of approval for

in vitro medical diagnostics [Alzforum, 2020; Shapiro et al., 2020]. Currently, plasma-derived

measurements of amyloid pathology are collected in the AD prevention (AHEAD) study

evaluating a monoclonal antibody treatment designed to reduce soluble Aβ in early and

pre-clinical cases [Eisai Inc., 2020]. Similar measures will also be used as trial outcomes in the

Longitudinal Early-Onset Alzheimer's Disease Study (LEADS), developing sensitive biomarker

standards for clinical and research use [Apostolova et al., 2018]. Moreover, several studies have

already confirmed the applicability of plasma-derived Aβ in AD diagnosis [Hu et al., 2022;

Janelidze et al., 2021; Tosun et al., 2021].

The collection procedure for the test involves a blood draw, typical healthcare practice for

older adults, and only requires a minimal (4 mL) sample for analysis. In addition, the projected

cost to implement this diagnostic measure in the clinic is $500 USD, compared to an average

PET brain scan cost of $5000 - $8000 or CSF measurement costs of $1,000 [Everding, 2022].
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Limitations of this technique include the fidelity of peripheral (i.e., non-brain-based)

biomarkers for measuring changes in neuropathological hallmarks a�ecting cognition

[Zetterberg & Karikari, 2021]. Studies using PET and CSF biomarkers reveal that Aβ in AD

patients provides a good marker of early disease state and memory impairment severity;

however, other biological determinants are closely associated with cognition and accurately

predict disease stage [Brier et al., 2016; Lucey, 2016; Vlassenko et al., 2016]. These biomarkers

share an inverse relationship where lower CSF concentrations of Aβ 42 are associated with

greater amyloid positivity on PET using a marker of cortical deposition [Fagan et al., 2014].

Similar to CSF, studies using blood-based measures of Aβ report that lower plasma

concentrations correlate with greater amyloid plaque neuropathology, smaller MTL regions,

and memory deficits [Li et al., 2022; Risacher et al., 2019; Gabelle et al., 2014; Gra�-Radford et

al., 2007; Pomara et al., 2005; Mayeux et al., 2003  ], although variable findings suggest future

studies are needed [Cantero et al., 2016; Blennow et al., 2010; van Oijen et al., 2006], potentially

the result of analytical and statistical di�erences [Chen et al., 2016]. Several studies comparing

these biomarker detection methods, specifically the method used in this report, have reliably

linked peripheral biomarkers acquired from blood plasma with direct brain-based

measurements using either PET or CSF measurements in patients with cognitive impairments

[Zicha et al., 2022; Schindler et al., 2019; Ovod et al., 2017]. More recent studies of brain changes

in typically aging older adults with unimpaired cognition are beginning to shed light on the

age-dependent mechanisms of cognitive decline, suggesting a more common etiology between

Aβ deposition and brain atrophy in older adults before the manifestation of clinically relevant
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memory loss. However, additional research on the early detection of these blood-based

biomarkers and their role in cognitive senescence is needed [Hansson et al., 2022].

Furthermore, the most significant risk factors for the development of AD are age and

apolipoprotein E (APOE) ε4 carrier status [Veldsman et al., 2021], with a higher frequency in

women, accounting for longevity and demographic variables [Nebel et al., 2018]. The APOE gene

codes for a lipid transport protein (ApoE) involved in lipoprotein, triglyceride, and cholesterol

metabolism [Sienski et al., 2021]. ApoE helps repair cell membranes throughout the brain and

body [Lanfranco et al., 2020; Yin & Wang, 2018; Huang & Mahley, 2014]. APOE has three genetic

variations, one of which is the ε4 allele [Yamazaki et al., 2019]. Studies in single carriers with

one ε4 allele are twice as likely to develop late-onset AD, whereas double carriers are 12-15 fold

more likely [Chernecky & Berger, 2012]; however, other studies suggest that a single ε4 allele

only confers a 20% risk [Bookheimer & Burggren, 2009], further highlighting the need to

identify additional early detection factors contributing to memory deficits.

The copy number of the ε4 variant is considered to contribute to volume reductions, Aβ

plaques, and neurofibrillary tangles [Lim et al., 2017; Corder et al., 1993; Strittmatter et al., 1993];

exactly how APOE contributes to AD is unknown. However, mounting evidence suggests the

degree to which APOE influences AD prognosis may not be ubiquitous across racial, ethnic,

and genetic admixture groups [Miyashita et al., 2022; Sepulveda-Falla et al., 2022;

Llibre-Guerra et al., 2022; Suchy-Dicey et al., 2022; Griswold et al., 2021; Kunkle et al., 2021;

Marca-Ysabel et al., 2021; Shigemizu et al., 2021; Reiman et al., 2020; Blue et al., 2019;

Arboleda-Velasquez et al., 2019; Barnes & Bennett, 2015; Kaup et al., 2015; Chung et al., 2013;

Logue et al., 2011; Tang et al., 1998; Farrer et al., 1997].
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Part I – Study Aims & Objectives

Our study used data collected from the Lifespan Human Connectome Project in Aging

(HCP-A) study [Bookheimer et al., 2019], including a sample of cognitively typical older adults

(ages 50-89) collected across four U.S. academic health centers. We aimed to characterize

age-related cognitive decline in mid-to-late life, investigating the relationships between

cognition, Aβ, APOE ε4, and brain structure. We begin by exploring whether subcortical,

cortical, or specific MTL brain regions show age, Aβ, or APOE-dependent changes in volume.

We postulated that reduced regional volumes would be associated with age, pathologic levels of

Aβ, and carriers of at least one ε4 allele.

Then, we used linear models to demonstrate the relationship between domain-specific

cognition function, age, and biomarkers (Aβ, APOE ε4). We hypothesized that memory scores

for late-life adults would be lower compared to mid-life adults and relate strongly to

biomarker phenotype. We show that total cognition and fluid intelligence scores are related to

age and Aβ compared to crystalized intelligence, evaluating vocabulary, and reading ability,

which is age-invariant. Here, we assess the relative fit of each cognition model.

Finally, we show that blood-based biomarkers are sensitive to detecting memory

performance variability in typically aging adults. We discuss future avenues of research (e.g.,

neuroinflammation) and address nuanced areas of study requiring further examination.
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1.2 Methods

Figure 1.3 Study design for the Human Connectome Project in Aging. (1) Participants aged 36

and older enrolled in the HCP-A study following an interview that screened for neurological

diseases, psychiatric illnesses, and other health-related concerns. (2) Participants completed

neuropsychological assessments to evaluate domain-specific cognition and other behavioral

elements of typical psychological and physiological function. (3) Brain scans were collected,

including structural MRIs processed through standard neuroimaging pipelines to obtain

volumetric measurements of the brain. (4) Blood samples were measured for Aβ 40,42 plasma

concentrations and screened for APOE variation by C 2N Diagnostics.
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Participants

This study includes a sample from the Lifespan Human Connectome Project in Aging

(HCP-A; Figure 1.3). Participants were well-screened, cognitively unimpaired older adults

(mean age ± S.D. = 73.5 ± 11.9 years; median = 75.2 years; Female n = 73; mean education ± S.D. =

17.7 ± 2.22 years; median = 18 years) with at least one sample of blood analyzed for plasma Aβ

across two study visits. Study sample demographics are detailed (Table 1.1).

A total of 133 participants were included in our analyses. They completed behavioral

assessments, brain MRI scans, and blood draws. Data were removed from the study analyses if

behavioral assessment scores were not available from the same visit as the collection of blood

samples (n = 10) or if an APOE ε2 variant was detected (n = 17).

The Lifespan HCP-A study was comprehensively reviewed [Bookheimer et al., 2019] and

received NIH Neuroscience Blueprint funding [Grant U01AG52564]. The Institutional Review

Board (IRB) at each study site approved research protocols [UCLA IRB#16-001922].

Plasma & Genetic Biomarker Detection

Whole blood samples analyzed by C₂N Diagnostics (St. Louis, MO, 2020) quantified Aβ

40,42 concentrations (pg/mL) derived from blood plasma. The Aβ ratio was determined by the

total concentration of Aβ 42:40, with a value of less than 0.089 indicating protein deposition in

brain tissue associated with PET Aβ positivity [Ovod et al., 2017]. In addition, the apolipoprotein

E (ApoE) proteotype was determined via trypsin-mediated chromatographic separation to

produce isoform-specific peptides detectable using mass spectroscopy. For each of the six

APOE genotypes (ε2/ε2, ε2/ε3, ε2/ε4, ε3/ε3, ε3/ε4, ε4/ε4), ApoE proteotyping quantified the
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presence/absence of the four isoform-specific peptides [Kirmess et al., 2021]. The APOE ε3 and

ε4 variants were included in the study analyses since ε4 carriers have a greater genetic risk of

developing AD compared to ε3 carriers, considered the standard ‘baseline’ allele occurring in

approximately 78% of the general population, and the ε2 variants were removed due to low

subgroup samples needed to di�erentiate between protective e�ects [Phillips, 2014].

Behavioral Measures

Neuropsychological assessments included the Montreal Cognitive Assessment (MoCA), the

Rey Auditory Verbal Learning Test (RAVLT), and the Cognition Battery of the NIH Toolbox. This

study used the RAVLT delayed-recall assessment and the NIH Toolbox composite scores to

investigate age-related cognitive decline.

The MoCA is a cognitive screening test for clinicians and researchers to evaluate problems

[Nasreddine et al., 2005]. The test has a total of 30 items with a maximum score of 30-points

assessing language, memory, visual and spatial thinking, reasoning, and orientation skills.

MoCA score cut-o�s were used to screen for low performance based on age-adjusted norms.

Participants with a MoCA score below 19 (for ages 22-79), 17 (ages 80-89), and 16 (aged 90+)

were not enrolled in the HCP-A study.

The RAVLT was administered to participants using an iPad that presented a list of 15

unrelated words while participants listened [Rey, 1941; Corwin & Bylsma et al., 1993].

Participants were instructed to repeat as many words as possible after the presentation,

repeated over five learning trials using the same word list. Then, a second interference word

list of the same length was verbally administered. This cognitive distractor promotes task
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dependence on hippocampal-mediated memory for subsequent recall of the initial word list.

Finally, participants were asked to repeat as many words as remembered from the first list

only. The short-delay performance was measured as the total words recalled during the trial

following the interference trial. Trials had a maximum score of 15-points, with 1-point assigned

for each correctly recalled word from the proceeding list.

The NIH Toolbox©, administered using an iPad, evaluated five domain-specific cognitive

abilities across a total of seven assessments: (1) executive function and attention (dimensional

change card sort & flanker), (2) episodic memory (picture sequence memory), (3) working

memory (list sorting), (4) processing speed (pattern comparison), and (5) language abilities

(picture vocabulary and oral reading recognition) [Weintraub et al., 2014; Gershon et al., 2014;

Gershon et al., 2013]. Three composite scores, measuring total cognition, fluid intelligence, and

crystallized intelligence, were averaged across all assessments (total), domains 1-4 (fluid), or

domain 5 (crystallized). A higher score represents better cognitive performance and relates to a

percentile group based on a standard distribution of national averages, where a score of 70 or

below represents very low (2%), 85 below-average (16%), 100 average (50%), 115 above-average

(84%), and 130 or above superior cognitive ability (98%) [NIH & Northwestern University, 2021].

Neuroimage Acquisition

Images of the brain were collected at four academic health centers on five 3-Tesla

Siemens MRI systems. These centers included the Washington University in St. Louis, the

University of Minnesota Twin Cities, Massachusetts General Hospital with Harvard University,

and the University of California Los Angeles.
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The imaging centers used standardized protocols to acquire structural MRI and

high-angular resolution di�usion-weighted MRI (dMRI) with advanced pulse sequences. The

current imaging protocols were updated based on understanding gained from the Human

Connectome Project study in young adults [Harms et al., 2018; Van Essen et al., 2012]. The MRI

scan parameters used in this study are briefly summarized below.

This study used three MRI scans, including (1) a T1-weighted MPRAGE (gradient

spin-echo; TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, flip angle = 8°, matrix size = 192 x 192,

FOV = 224 x 224 mm, 280 slices) with 0.7 mm isometric voxels, (2) a T2-weighted hippocampal

high-resolution MRI (TR = 4800 ms, TE = 106 ms, matrix size = 128 x 128, FOV = 150 x 150 mm)

with 0.4 x 0.4 x 2 mm voxels, and (3) a multishell dMRI sequence (TR = 3230 ms, TE = 89.20 ms,

flip angle = 78o, refocus flip angle = 160o, matrix size = 208 x 144, FOV = 210 x 140 mm, slice

thickness = 1.50 mm, multiband factor = 4, echo spacing = 0.69 ms, bandwidth = 1700 Hz/Px,

phase partial Fourier = 6/8, b-values = 1500 and 3000 s/mm2) with 1.25 mm isotropic voxels and

92 blip-up and 92 blip-down volumes and a total of 14 b0 volumes.

Neuroimage Processing

The structural MRI scans were processed using the FreeSurfer (version 7.2.0) and

Automatic Segmentation of Hippocampal Subfields (ASHS; version 2.0) software packages. The

FreeSurfer pipeline parcellated the brain into regional segments using the subcortical [Fischl

et al., 2002; Fischl et al., 2004a], cortical gray matter and white matter parcellations [Desikan et

al., 2006; Fischl et al., 2004b], and hippocampal subfields [Iglesias et al., 2015] atlases. The

subcortical (Figure 1.4) and cortical (Figure 1.5) atlases are provided with a list of brain regions.
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The ASHS pipeline segmented MTL regions using the University of Pennsylvania Memory

Center 3-Tesla atlas for T1-weighted MRI [Xie et al., 2016].

Regional volumetric measures were normalized using an estimated total intracranial

volume. Only normalized values were used for statistical modeling. The R Studio packages

‘ggseg’ and ‘ggseg3d’ were used to visualize brain statistics [Mowinckel & Vidal-Piñeiro, 2019],

and the package ‘showtext’ was used for custom fonts in R Graphs [Qiu, 2022].

Statistical Analyses

Relationships between age, Aβ, APOE ε4, hippocampal volume, and verbal memory scores

were assessed using Spearman correlation and Welch two-sample t-test (⍺ level < 0.05). Linear

regression models were used to study the relationship between brain/blood biomarkers and

cognition. The blood biomarkers were a ratio of plasma-derived Aβ 40,42 and ApoE proteotype,

the neuroimaging markers were regional brain volumes, and the model outcomes were

domain-specific cognition scores, including total, fluid, and crystallized intelligence. The

following regression equation was used: Cognition Score ~ 𝚩ageAge + 𝚩AβAβ + 𝚩APOEAPOE + 𝛜

The total words recalled at the short-delay assessment of the RAVLT and age-uncorrected

scores for NIH Toolbox Cognition Battery composite measures were used. Statistics (p-values)

were False Discovery Rate (FDR)-corrected using the Benjamini-Hochberg procedure. Models

were checked for linearity, predictor collinearity, variance homogeneity, residual normality,

and heteroskedasticity. No predictor or distributional irregularities were detected. Model

estimate coe�cients (𝚩) values, standard deviation (S.D.), standard error of the mean (S.E.M.),

F-values, t-values, and FDR-corrected p-values are provided where appropriate.
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Figure 1.4 Automated segmentation of subcortical brain regions.

Figure 1.5 Cortical gray and white matter brain regions.
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1.3 Results

We assessed the relationships between age, Aβ, and APOE on brain structure using

multiple ANOVAs to explain di�erences in regional volume. First, we examined di�erences in

hippocampal volume and then assessed volume di�erences globally across the whole brain

using three neuroanatomical atlases for (1) archicortical/subcortical, (2) cortical gray matter,

and (3) cortical white matter parcellations. Next, we conducted complementary analyses using

dual segmentation pipelines for hippocampal subfields and MTL volumes to investigate how

sub-regional di�erences contribute to age-related memory decline and assess the consistency

of results across approaches with di�erent automated protocols, boundary conditions, and

geometric assumptions. Lastly, we model domain-specific cognitive performance.

The relationship between age, Aβ, APOE & hippocampal volume

We investigated age-related changes in cognitive function, hippocampal volume, and Aβ

ratio, and found significant associations between these three variables. The hippocampal

volume and cognition scores decreased with age, whereas the plasma-derived measure of Aβ

increased with age. The age-dependent relationships were fit with second-order polynomial

equations and summarized using the coe�cient of determination provided by R2 (Figure 1.6).

Next, we investigated the relationship between these biomarker variables independent of

age-related changes. Aβ was significantly associated with hippocampal volume, where a lower

level of Aβ in the blood plasma, indicating a higher Aβ burden in the brain, was related to

smaller hippocampal volume (Figure 1.6 E). Additionally, APOE ε4 carriers had significantly
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di�erent Aβ levels compared to non-carriers, suggesting more Aβ pathology for individuals

with at least one copy of the ε4 allele (Figure 1.6 C). Nevertheless, we did not find su�cient

evidence to support a relationship between the ε4-carriers and hippocampal volume.

Curiously, the mean hippocampal volume was slightly elevated for carriers compared to

non-carriers (Figure 1.6 F), although not significantly di�erent. This may reflect compensatory

reserve factors yet to be determined within the sample cohort (e.g., exercise or educational

attainment, which are protective lifestyle characteristics against ε4-related neuropathology).

Figure 1.6 The relationships between (A) memory scores by age, (B) Aβ by age, (C) Aβ by APOE

ε4 status (non-carriers = 0.100 ± 0.0009, ε4-carriers = 0.097 ± 0.0016), (D) hippocampal

volume by age, (E) hippocampal volume by Aβ, and (F) hippocampal volume by APOE ε4 status

(non-carriers = 0.0023 ± 0.00004, ε4-carriers = 0.0024 ± 0.00008).
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The e�ects of age, Aβ & APOE on brain volume

We also investigated the extent to which regional volumes across the entire brain varied

by age, Aβ, and APOE ε4 carrier status. Using one-way ANOVA, we found many di�erences

across regional volumes using the automated subcortical segmentation atlas, where an

impressive number of regions were associated with old age and Aβ pathology and relatively

fewer di�erences related to ε4 carrier status (Figure 1.7 A). Overall, we found similar

association patterns in the left and right hemispheres. Test statistics are listed in the Appendix

and were corrected using the Benjamini Hochberg method (Table A1).

In addition, we found similar trends in biomarker relationships using a cortical gray

matter atlas (Figure 1.7 B; Table A2) or a cortical white matter atlas (Figure 1.7 C; Table A3),

where smaller cortical volume was age-dependent and lower plasma Aβ, indicating a more

significant burden of brain-based amyloid pathology. Again, ε4 carrier status had a marginal

e�ect on cortical gray matter volume but more influence on cortical white matter volume.

The e�ects of age, Aβ & APOE on MTL structure

To gain a holistic view of MTL structural changes across age, we used dual segmentation

protocols for delineating regional boundaries within the hippocampal formation and

parahippocampal gyrus. These di�erences are due to assumptions made by the automated

segmentation algorithms [Wisse et al., 2021; Xie et al., 2019; Mueller et al., 2017] and may result

in contradictory findings. Using a multi-atlas approach, we demonstrate the consistency and

variability of associations in age-related and biomarker-mediated MTL regional volume loss.

The test statistics for the analyses described below are listed in the Appendix.

20



Figure 1.7 Volume di�erences in (A) subcortical, (B) cortical gray matter, and (C) white matter

brain regions. The legend illustrates FDR-corrected p-values.
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The hippocampus comprises distinct subfields, broadly classified by their positioning

along the anterior-posterior axis. These categories are often referred to as the hippocampal

head-body-tail or, more succinctly, as the anterior and posterior halves of the hippocampus.

Regarding head-body-tail distinctions of the hippocampus, we found that bilateral volumes

decreased with age. Left hemisphere volumes also decreased with Aβ plasma levels consistent

with the amyloid pathology observed in AD (Table A4). Volumes did not significantly di�er

between carriers and non-carriers; however, the overall trend for ε4 carriers was, on average,

smaller regional volumes than non-carriers. Similarly, we found anterior-posterior

hippocampal volumes decreased bilaterally with age and Aβ, but not in ε4 carriers  ( Table A5).

Next, we explored hippocampal subfield volumes, which generally decreased with age,

except for the hippocampal fissure, which increased with age ( Figure 1.8; Table A4).

Figure 1.8 Segmentation of hippocampal subfields using FreeSurfer. (A) sagittal, (B) anterior

coronal, and (C) posterior coronal view of a high-resolution hippocampal image. The legend

designates subfield labels and parcellation color palette—scale bar (1 cm).
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Typically, fissure enlargement shows the amount of atrophy within the hippocampus over

the lifespan. While most regions showed significant age-dependent volume reductions, the

hippocampal fissure size did not di�er across the age range studied, which may be due to the

unimpaired cognitive profile of study participants. Still, it is remarkable that individuals

approaching their mid-to-late 80s showed no significant change in fissure size compared to

those in their early 50s. Aβ showed identical relationships with regional volumes as age-related

changes, where lower plasma levels were associated with smaller regional volumes.

Furthermore, we investigated biomarker-related changes in parahippocampal gyrus volumes,

including the entorhinal, perirhinal, and parahippocampal cortices. These regions showed age

and Aβ-dependent volume reductions, but not with ε4 carrier status ( Table A5).

Modeling Cognition

We modeled domain-specific cognition and blood biomarkers using linear regression to

explain di�erences across three composite measures from the NIH Toolbox Cognition Battery

for total, fluid, and crystallized intelligence (Figure 1.9). The response variable of the three

models was cognition score, and the explanatory variables included age, Aβ, and ε4 carrier

status. Significant model relationships were found for total cognition (F(3, 129) = 8.34, p < 0.001,

R2-adjusted = 0.35; Residual standard error: 9.99) and fluid intelligence (F(3, 129) = 24.76, p <

0.001, R2-adjusted = 0.35; Residual standard error: 11.04).

There were main e�ects of age in both fluid and total cognition models, where older

individuals had lower scores (Total: Coe�cient = -0.23, Std. Error = 0.090, t-value = -2.6,

p-value < 0.05; Fluid: Coe�cient = -0.53, Std. Error = 0.099, t-value = -5.3, p-value < 0.001).
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Yet, there was only a main e�ect of Aβ on fluid intelligence, where plasma levels indicating Aβ

neuropathology associated with worse performance (Coe�cient = 2.88, Std. Error = 1.20,

t-value = 2.396, p-value = 0.018). By contrast, we did not find su�cient evidence to support a

relationship between the model predictors and performance on the crystalized composite

measure (F(3, 129) = 1.127, p = 0.34, R2-adjusted = 0.0029; Residual standard error: 8.779).

Figure 1.9 NIH Toolbox cognition models and biomarker coe�cients.
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1.4 Conclusions

In this study, we found that memory performance, hippocampal volume, and biomarkers

associated with neurocognitive diseases are intricately related. Principally, verbal memory in

typically aging older adults is age-dependent, where older participants had significantly lower

scores than mid-life adults. The hippocampal volume and plasma-derived Aβ biomarkers were

negatively correlated with age in this group; older participants had smaller hippocampal

volumes and more pathogenic levels of Aβ.

Furthermore, we evaluated the relationship between hippocampal volume and two

biomarkers associated with neurodegeneration. We found that hippocampal volume is related

to the level of Aβ in blood plasma, where smaller hippocampal volumes correspond to a

di�erentiable Aβ burden. In addition, the Aβ burden in individuals with one or two copies of

the APOE ε4 allele di�ered from non-carriers. However, the ε4 carrier status did not relate to

hippocampal volume, which may reflect a participant selection bias predicated on individuals

needing a non-impaired memory assessment score for study enrollment. Consequently, this

may be an intriguing characteristic of the study sample that, when assessed longitudinally,

may elucidate cognitive reserve factors contributing to hippocampal preservation despite the

increased genetic risk associated with having an APOE ε4 allele. Moreover, since the ApoE

protein facilitates the metabolism of lipids throughout the body and nervous system, the

metabolic/lipid profiles of older adults who are carriers of the ε4 allele should be explored in

future studies. Another area for future investigation is lifestyle factors (e.g., exercise, diet),
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which studies have shown benefit body and brain health [Park et al., 2022; Voss et al., 2013;

Vaynman & Gomez-Pinilla et al., 2006].

Importantly, we show that biomarkers derived from blood plasma are sensitive to

detecting variability in typically aging memory performance. In addition, these blood-based

features of declining cognition occur with brain-based biomarkers indicating amyloid

accumulation and structural degeneration in key brain regions important for typical memory

function. Undeniably, these biomarkers are correlated with each other. The direct causality

between Aβ burden, brain structure, and memory impairment requires future investigation to

address the temporal sequence of biomarkers apparent for the earliest detection of

memory-related pathologies [Luo et al., 2022; Poulakis et al., 2021].

Over the last century, the amyloid hypothesis has emerged as the leading theory

contributing to the pathogenesis of AD [Goedert & Spillantini, 2006]; however, this line of

inquiry has recently been the subject of intense scrutiny enveloped by the impropriety of some

individuals in the scientific community with the fabrication of data in support of this

hypothesis [Piller, 2022; Lesné et al., 2006]. While these allegations represent a testimony to the

integrity of the scientific process for discovering truth in biological mechanisms, there is still

much to be said in support of the relationship between Aβ burden and memory loss [Ashe,

2022; Ashe, 2020; Liu et al., 2015]. Notably, Aβ is not the only biological determinant associated

with dementias like AD and works in concert with tau and neurodegeneration, formulating the

revised ATN hypothesis [Frisoni et al., 2022]. Studies of Aβ deposition with and without the tau

protein, called neurofibrillary tangles, have distinct neuropathological and neuropsychological

profiles [Strikwerda-Brown et al., 2022; Thompson et al., 2022; Young et al., 2022].
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The field has also begun to investigate the neuroinflammatory and glial contributions to

AD-like pathologies suggesting that distinct molecular and biochemical factors are integral to

the cognitive resilience/risk of some individuals with marked Aβ and tau pathologies

[Ferrari-Souza et al., 2022; Victor et al., 2022; Schindler et al., 2022; Griswold et al., 2021; Kloske

et al., 2021; Barroeta-Espar et al., 2019; Shi & Holtzman, 2018; Tao et al., 2018]. Whether Aβ will

prove to be the purported causal link between initial neuronal dysfunction and subsequent

memory impairment, several nationwide clinical trials are underway to elucidate if the

reduction of Aβ prior to clinically relevant impairment will prevent the conversion to AD or

reduce the severity of symptomology.

Together these findings represent the first steps toward characterizing age-related

cognitive, brain, and physiological markers in cognitively typical older adults. Over the coming

years, substantial progress will be made toward understanding the contributions of these

markers in delineating typical from atypical aging. A significant feature of the HCP-A study

design was to enroll a representative sample of adults from across the U.S. to tease apart the

biological, sociocultural, and individual trajectories that predict successful or deleterious

e�ects across the lifespan. The knowledge gained from studies of this kind may then be used to

develop directed hypotheses for intervening before the onset of memory loss. We anticipate

these findings will illuminate a brighter future for individuals aged 65+ living within and

beyond the United States, optimizing the set of healthy life course strategies with potential

implications for global health policy and practice [WHO, 2022].
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II

HIPPOCAMPAL-NETWORK TARGETED TRANSCRANIAL MAGNETIC STIMULATION

IMPROVES ASSOCIATIVE MEMORY IN OLDER ADULTS.
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2.1 Introduction

Memory loss a�ects 40% of people aged 65 and older, approximately 16 million in the

United States [Small, 2002]. Within this age group, one in ten older adults has more severe

memory issues referred to as Mild Cognitive Impairment (MCI), of which 15% will advance to a

diagnosis of Alzheimer’s disease (AD) each year. In addition to the impact on memory, an

essential component of AD and dementia-related pathologies is the e�ect on daily function

and independent living. As the proportion of people aged 65 and older in the U.S. grows, and

unless interventions are taken to alleviate memory-related disability, these estimates are

expected to triple over the next two to three decades [CDC, 2003]. Therefore, a primary goal of

learning and memory research has been to explain how brain regions within the medial

temporal lobe (MTL) support cognition [Eichenbaum et al., 2007]. Scientists are interested in

applying knowledge gained from circuit-level and systems-based studies in combination with

neurotechnologies to modulate hippocampal networks and memory performance.

Recent advances in therapeutic drug targets to treat memory impairment have produced

a viable yet contentiously debated treatment for reducing amyloid plaques in the brain

[Rabinovici et al., 2021]. Still, the prohibitively high treatment cost is criticized for outweighing

the clinical benefit (i.e., a significant reduction of Aβ) [Whittington et al., 2022] and contrary to a

clear indication of adverse e�ects (e.g., microhemorrhages occurred in ~35% of patients)

[Glymour et al., 2022]. Furthermore, biologically active therapeutic agents can have

non-specific metabolic and systemic health e�ects (e.g., risk of liver and kidney failure) that

reduce the patient’s quality of life and overall value-based care. Moreover, many therapies only
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show moderate e�cacy with limited e�ectiveness [Casey et al., 2010]. Another approach to

address memory-related concerns is cognitive-behavioral rehabilitation and training

paradigms; however, these dialectical and intervention-based methods have variable benefits

with low success for patients with moderate to severe impairments [Hampstead et al., 2013,

Greenaway et al., 2013, van Paasschen et al., 2013].

While the diagnostic and therapeutic toolbox available to clinicians has remained fixed,

physician-scientists and researchers have focused on developing novel strategies for

preserving or restoring memory, which are urgently needed. Neuromodulation technologies

o�er unparalleled prospects for treating memory impairments by enabling the specific

targeting of select brain regions indicated in the pathophysiology of neurologic and psychiatric

diseases, and these technologies are broadly grouped by their method of accessing the brain.

The invasive type requires surgery to implant electrodes covering the brain's surface or

penetrating the tissue to access deeper structures (e.g., intracranial electrocorticography and

deep brain stimulation). Studies using invasive neurotechnologies have reported that direct

stimulation of the entorhinal area in the MTL facilitated memory [Suthana et al., 2012; Suthana

& Fried et al., 2014; Titiz et al., 2017]. These remarkable findings are, however, qualified by the

risks involved with implanting intracranial electrodes, which have limited its broad application

for use in only specific neurological conditions, hindered further by high procedural costs and

inherent ethical concerns [Vedam-Mai et al., 2021; Cinel et al., 2019].

In contrast, non-invasive neuromodulation can stimulate the brain without the risks

associated with surgical implantation. In recent years, the variety of technologies utilizing this

approach has increased due in part to their versatility in studying and treating brain disease.
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The most common methods are transcranial-focused ultrasound, electrical stimulation, and

transcranial magnetic stimulation (TMS). While each method has specific technical advantages,

the most widely implemented and clinically validated is TMS.

Fundamentally, TMS capitalizes on stimulation protocols that vary the frequency and

intensity of magnetic pulses, allowing researchers and clinicians to entrain neural activity

patterns for activating or inhibiting targeted brain regions. These protocols can deliver many

pulses repetitively in a relatively short period and intermittently to emulate the endogenous

firing of neurons. Specifically, a brief, high-frequency burst of stimulation called a tetanus

block, or more precisely a ‘theta-burst’ because of the timing at which stimulation pulses are

delivered, has been shown to increase synaptic strength, the connection between neurons,

facilitated by long-term potentiation (LTP), the neurobiological substrate of learning and

memory. The phenomenon of LTP has enduring neurophysiological e�ects that have been

examined across various memory paradigms and model organisms, ranging from in vitro

assays of hippocampal neurons to electrophysiological circuit manipulation in animals and

humans [Squire & Kandel et al., 2003].

Studies using theta-burst TMS have successfully improved memory for young adults

[Freedberg et al., 2021; Hebscher et al., 2021; Freedberg et al., 2020; Hermiller et al., 2019;

Nilakantan et al., 2017; Wang et al., 2014], and hold promise for use in older adults, in particular,

to preserve or reverse memory deficits in AD and MCI [Chou et al., 2020].
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Figure 2.1 Research equipment in the TMS Clinic at the UCLA Semel Institute.

Part II – Study Aims & Objectives

Our study used a randomized, condition-blinded, and placebo-controlled trial design of

intermittent theta-burst stimulation (iTBS) TMS to promote memory in older adults (ages 55+).

Participants were assessed for baseline memory function. Using an MRI-guided approach

informed by resting-state activity, the hippocampal network was targeted by stimulating

functionally connected regions in the lateral posterior parietal cortex, a core component of the

network [Ciaramelli et al., 2020], consecutively across five days of iTBS. Behavioral changes in

memory performance were monitored daily. In addition, task-based functional and structural

MRI, as well as electrophysiological scalp recordings, were used to assess the network

dynamics mediating the iTBS protocol for memory enhancement (Figure 2.1).

32



2.2 Methods

Figure 2.2 Study design for iTBS in older adults. Before enrolling in this study, participants

were screened for eligibility. On visit 1, participants provided informed consent and underwent

behavioral and cognitive assessments to determine baseline function. On visit 2, participants

had an initial MRI scan with simultaneous memory testing. On visits 3 thru 7, five iTBS sessions

occurred Monday through Friday, and memory testing was completed daily. On visits 3 and 7,

scalp EEG was collected before, during, and after delivery of iTBS. On visit 7, a follow-up MRI

scan was also performed with memory tests. Finally, on visit 8, a final assessment of memory

occurred 24-72 hours from the last iTBS session. There were a total of 8 study visits, typically

over a 1 to 2-month period. Additionally, the University of California Los Angeles safety and

health protocols were implemented to ensure the health and safety of study participants for

mitigating the spread of COVID-19 per the Los Angeles Department of Public Health and the

U.S. Centers for Disease Control and Prevention recommendations.
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Participants

A total of fifty-six healthy older adults (age 60 to 80 years) were screened and provided

informed consent by an ABPN-certified Psychiatrist for enrollment in the study. Participants

were excluded for past or present diagnosis of neurological disease, major psychiatric illness,

or a Mini-Mental State Examination (MMSE) score of 26 or below. Twenty-two participants

completed the study protocol (Figure 2.2). The study design and protocols were approved by

the University of California Los Angeles Institutional Review Board (IRB) [IRB#15-001366].

Behavioral Measures

Enrolled participants underwent a neuropsychological battery to confirm cognitive

performance typical for demographic-adjusted norms. The behavioral measures included two

scales for Activities of Daily Living [Katz et al., 1963; Lawton & Brody, 1969; Graf, 2008], the

MMSE [Folstein et al., 1975], the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III Digit

Span & Vocabulary Test of Premorbid Functioning-TOPF) [Wechsler, 1997], the Trail Making

Test (Trails A & B), an abbreviated (form 4) Boston Naming Test [Lansing et al., 1999], the

California Verbal Learning Test-Second Edition (CVLT-II) and the Wechsler Memory

Scale-Third Edition (WMS-III Visual Reproduction and Recognition) [Wechsler, 1997].

Participants were screened for subjective reports of memory complaints using two

questionnaires, including prospective and retrospective memory assessments [Crawford et al.,

2003; Smith et al., 2000; Gilewski et al., 1990]. In addition, participants that scored ≥ 8 on the

Hamilton Depression Scale (Ham-D) were not eligible for study enrollment due to confounds

related to a diagnosis of depression and comorbid e�ects on memory function.
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Neuroimage Acquisition

Magnetic resonance imaging (MRI) scans were acquired using a 3-Tesla Siemens PRISMA

system. A total of nine imaging sequences were collected at two di�erent study visits,

including two structural MRIs, a resting-state functional MRI (rs-fMRI), two runs of

task-based fMRI (during object recognition encoding and retrieval), and dual-phase

acquisition high-angular resolution di�usion-weighted MRI (dMRI) scans. These were

collected before and after iTBS treatment on the third and seventh study visits (Figure 2.2),

typically within 1-2 months of study enrollment and completion.

The two structural MRI included: (1) T1-weighted MPRAGE (TR = 2400 ms, TE = 2.22 ms, TI

= 1000 ms, flip angle = 8o, FOV = 256 x 256 mm, voxel size = 0.8 mm3, bandwidth = 220 Hz/Px,

iPAT acceleration factor PE = 2), and (2) T2-weighted hippocampal high-resolution MRI (TR =

5200 ms, TE = 107 ms, flip angle = 139o, FOV = 200 x 200 mm, voxel size = 0.4 x 0.4 x 2.0 mm,

bandwidth = 195 Hz/Px).

The rs-fMRI and task-based functional scans used a gradient EPI sequence (TR = 800 ms,

TE = 33.80 ms, flip angle = 52o, FOV = 210 x 210 mm, slice thickness = 1.90 mm, 80 slices, voxel

size = 1.9 mm3, multiband factor = 8, echo spacing = 0.65 ms, bandwidth = 2164 Hz/Px). During

the rs-fMRI scan, participants were instructed to fixate on an illuminated crosshair in the

center of their visual field. During the task-based fMRI scans, participants completed two

rounds of the object recognition task where they learned and recalled images of novel objects.

Responses were recorded using a 4 x 1 button box inside the MRI scanner.

The dMRI scans included two runs acquired with opposite phase-encoding using a

spin-echo EPI sequence (TR = 3230 ms, TE = 89.20 ms, flip angle = 78o, refocusing flip angle =
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160o, FOV = 210 x 140 mm, matrix size = 208 x 144 mm, slice thickness = 1.50 mm, 92 blip-up

and 92 blip-down slices, voxel size = 1.5 mm3, multiband factor = 4, echo spacing = 0.69 ms,

bandwidth = 1700 Hz/Px, phase partial Fourier = 6/8, b-values = 1500 and 3000 s/mm2).

Neuroimage Processing

The structural MRIs were processed using three segmentation protocols across two

software packages for identifying MTL regions: FreeSurfer (version 7.2.0) and Automatic

Segmentation of Hippocampal Subfields (ASHS; version 2.0). Two protocols used the ASHS

pipeline for hippocampal subfields and adjacent MTL regions (including BA 35 & 36 perirhinal

cortex) but used di�erent atlases. The first ASHS protocol used the University of Pennsylvania

(UPenn) Memory Center (PMC) 3-Tesla atlas for T2-weighted MRI [Xie et al., 2017; Yushkevich

et al., 2015; Adler et al., 2014], and the second ASHS protocol used the UPenn PMC 3-Tesla atlas

for T1-weighted MRI [Xie et al., 2016]. The third protocol used the FreeSurfer pipeline to

determine hippocampal subfield volumes using the ex vivo, ultra-high-resolution atlas

[Iglesias et al., 2015].

Hippocampal Network Targeting

To target hippocampal networks, the rs-fMRI scan was processed with the FEAT package

from FMRIB’s Software Library [Smith et al., 2004; Woolrich et al., 2009; Jenkinson et al., 2012]

to produce a high-quality function connectivity analysis. An initial first-level analysis was

performed, which included MCFLIRT motion correction [ Jenkinson et al., 2002], interleaved

slice timing correction, brain extraction, spatial smoothing (FWHM = 3.8 mm), high-pass

36



filtering (100 s cuto�), and MELODIC ICA data exploration [Beckmann et al., 2005]. FLIRT was

applied to the rs-fMRI scan for linear registration to the T1-weighted structural MRI and the

Montreal Neurological Institute (MNI) 152 T1-weighted 2 mm brain MRI [Mazziotta et al., 2001;

Jenkinson & Smith, 2001; Jenkinson et al., 2002]. Components of the MELODIC ICA determined

to be structured noise (or unexpected activation) were filtered from the corrected data.

The left hippocampal-seeded resting-state time series was extracted and used to find

functionally connected brain regions. Finally, regions in the left posterior parietal cortex

(LPPC) with a high degree of functional connectivity to the left hippocampus were used for

identifying a region-of-interest (ROI). The LPPC ROI was used to target the TMS.

Neuronavigation

For localizing the ROI, the visor2™ software (ANT Neuro© 2022) was used for MRI-guided

neuronavigation targeting of the LPPC (Figure 2.3). The program enabled real-time navigation

of the TMS coil guided by the participant’s structural MRI and functional target.

Figure 2.3 MRI-guided neuronavigation of hippocampal network targeting the LPPC.
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Motor Threshold

To calibrate the TMS device (Magstim© 2021), the active motor threshold (aMT) was

determined. The aMT is the minimum electrical energy required to elicit a motor movement. A

board-certified Psychiatrist trained in the clinical use of TMS interrogated the left primary

motor cortex (i.e., a region generally referred to as the ‘hand knob’) with single-pulse TMS to

generate a Motor Evoked Potential (MEP), representing a response in the first dorsal

interosseous muscle of the right hand. The procedure involved light adduction of the index

finger and thumb immediately preceding the TMS pulse. The clinical team gradually increased

the intensity of the TMS coil until the characteristic features of the MEP were observed.

Electrophysiologically, the MEP was recorded as an increase (≥ 50 μV) with a subsequent

decrease in voltage [Bastani & Jaberzadeh, 2012] compared to the baseline muscle activity.

Visually, the MEP response was observed as a muscle contraction, or finger twitch, in the

participant’s right hand.

Stimulation Procedure

Random assortment was used to assign one of two condition-blinded iTBS protocols. The

active iTBS protocol (i.e., the ‘treatment’ condition) was administered at 80% aMT, and the

inactive-sham iTBS protocol (i.e., the ‘control’ condition) was at 10% aMT. Half of the

participants received the iTBS protocol for the treatment condition. Both the treatment and

control conditions had iTBS delivered to the LPPC [Wang et al., 2014].

In a single (10-minute) iTBS session, a total of 1800 pulses were delivered over 60 cycle

repetitions (Figure 2.4). High-frequency bursts had 3 pulses delivered at 50 Hz frequency (i.e., a
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‘triplet burst’), and triplet bursts were delivered at 5 Hz (theta) frequency. Each cycle lasted 10 s

with 10 triplet bursts occurring in 2 s (i.e., a total of 30 pulses/cycle) intermittently spaced by an

8 s wait time where no pulses were delivered. Each day participants received a single iTBS

session for a total of five days.

Figure 2.4 Diagram of the protocol for intermittent theta-burst stimulation (iTBS).

Object Recognition Task

For each iteration of the Object Recognition task, participants learned (encoding) and

recalled (retrieval) images of everyday objects (Figure 2.5). The task consisted of three blocks

(including a novel, previously unseen image in each block and session) alternating between

encoding and retrieval sessions separated by a baseline distractor condition [Shane & Petersen

et al., 2004; Stark & Squire, 2001].

During encoding, a set of 40 images was presented (3 s each) and was proceeded by a

fixation dot, which lasted for a jittered interval (at least 2 s, centered on 2.5 s). During the

baseline distractor condition (30 s), a series of digits were presented quickly (i.e., ~0.7 s each),

prompting participants to identify the numbers as odd or even and press corresponding

buttons. This control task promotes hippocampal-dependent memory of object stimuli, and

baseline-given tasks performed at rest typically show elevated hippocampal activation

[Suthana et al., 2015].
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During retrieval, old previously viewed target images were presented in addition to lure

images (i.e., similar but not identical images), testing the specificity of memory encoding. The

lure and target images were randomly interleaved, during which participants were asked to

respond to whether an image was OLD or NEW and assess how confident they were (i.e.,

1-Definitely new, 2-Likely new, 3-Maybe new, 4-Maybe old, 5-Likely old, 6-Definitely old).

Di�erent images were used in each block and session. Similar versions of this task have

separated familiar-based recognition memory from recollection-dependent hippocampal

memory and found novel object discrimination impairments in typically aging older adults

[Yassa et al., 2011a; Yassa et al., 2011b].

Figure 2.5 Task design for the Object Recognition associative memory assessment.
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Behavioral Analysis

Performance ratios on the Object Recognition task were calculated using the percentage

(%) of correctly/incorrectly identified stimuli (“New” vs. “Old”) over the total number

presented. These include six measures of Target, Lure, Foil, Recollected, Familiar, and Missed

items. In addition, a discrimination ratio (DR) was determined using the equation

[p(“New”|Lure) – p(“New”|Target)]. Following each of the five iTBS sessions, two assessments of

the Object Recognition task were completed (with 40 items per assessment), and an average

composite assessment ratio was determined for each iTBS session. The performance ratio is a

value between “o” and “1,” where a value of “1” on the DR, Target, Lure, Foil, and Recollected

measures indicate the maximum performance. Conversely, a value of “0” on the Missed and

Familiar measures indicates the optimal performance. We used a linear estimate coe�cient

(slope) across the five days of consecutive iTBS sessions to assess behavioral performance

change and account for individual di�erences in baseline performance.

Statistical Analysis

A one-way ANOVA was computed using R Studio to determine the e�ect of behavioral

response type (“Old” vs. “New”), iTBS protocol condition (Treatment vs. Control), and outcome

(change scores) with the post-hoc Kruskal-Wallis rank sum test (⍺ level < 0.05), where the

outcome was performance change (slope), and the predictor was iTBS group condition.

Two-way ANOVAs were used to compare continuous variables (neuropsychological scores and

age) and chi-square tests for categorical variables (biological sex) between groups.
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2.3 Results

A total of twenty-two participants (ncontrol = 11, ntreatment = 11) completed the iTBS study

protocol (mean age ± S.D. = 68 ± 5.3 years; Female n = 13). Baseline memory assessments

confirmed typical neuropsychological and memory-related cognitive function (Table 2.1).

Assessment Measure (Test) Raw score ± S.E.M. Z score ± S.E.M.
General Cognitive Function (MMSE) 29.45 0.16 - -

Depression Scale (Ham-D) 1.81 0.43 - -
Vocabulary (TOPF) 59.00 1.69 1.13 0.12

Psychomotor Processing (Trail A) 39.15 5.06 -0.48 0.26
Executive Functioning (Trail B) 80.43 8.13 -0.13 0.19

Word Retrieval (BNT form 4) 14.59 0.18 0.61 0.15

Table 2.1 Neuropsychological assessments scores.

Associative memory performance

Across five iTBS sessions, stimulation-mediated changes in behavior were monitored

using the Object Recognition task performance ratios. In our analyses, we investigated seven

metrics, including (1) the specificity of recognition memory (Discrimination Ratio, DR), (2) the

proportion of objects correctly identified as “Old” (Target Objects), (3) the proportion of objects

correctly identified as “New” (Lure Objects). A higher value indicates better task performance.

The e�ect of iTBS on memory

First, we examined di�erences between iTBS condition groups (treatment vs. control) in

the DR performance across iTBS sessions. We found that the treatment group receiving active

iTBS had a mean slope of 0.4 compared to the control group, which had a mean slope of 0.2
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and received an inactive sham iTBS (Figure 2.6; Kruskal-Wallis chi-squared = 2.28, df = 1,

p-value = 0.13). The mean and standard error (S.E.M.) of group performance across sessions

and behavioral change score (slope) are provided (Table 2.2).

Figure 2.6 Object Recognition discrimination performance ratio across iTBS sessions (days).

The plot illustrates the mean performance ratio per session (●) and the linear model across

sessions with standard error of the mean (± S.E.M.) as shaded boundaries. Individual

participants’ performance ratios are also shown (✳).

Control Condition Treatment Condition
Mean DR ± S.E.M. Mean DR ± S.E.M.

iTBS day 1 0.59 0.05 0.59 0.05
iTBS day 2 0.61 0.07 0.61 0.05
iTBS day 3 0.68 0.06 0.68 0.06
iTBS day 4 0.65 0.07 0.71 0.04
iTBS day 5 0.68 0.07 0.76 0.04

Slope 0.02 0.00 0.04 0.01

Table 2.2 Group averages across iTBS sessions and slope across days.
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In addition, we assessed behavioral change in performance scores using two approaches

(Figure 2.7). First, we measured change as the di�erence in DR from baseline (day 1) across

sessions (days 2-5). We found no significant between-group change (p = 0.18). Second, we

quantified change as the percent increase in DR from baseline and found no significant

interaction between iTBS conditions across sessions (p = 0.075).

  

Figure 2.7 Behavioral change in DR performance from baseline. Participant scores for mean

di�erence (MD—top panel) and percent change (%—bottom panel) are shown (✳). The legend

identifies marker and group labels.
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Then, we performed post-hoc assessments examining combined di�erence measures

from the first approach showing a significant di�erence in DR for the treatment (p < 0.05) and

control (p < 0.05) groups. However, post-hoc assessments of combined performance from the

second approach revealed a significant di�erence in the treatment group (p < 0.05) that was

not observed in the control group (p = 0.25).

We also investigated whether performance di�ered for pairwise comparisons of iTBS

session and condition. The first method showed the treatment group on the last iTBS session

was significantly di�erent compared to the baseline of either group (p < 0.05). Although, the

second method did not reveal any pairwise di�erences.

Next, we examined performance as the proportion of objects correctly identified as

“Old” or “New” during retrieval, indicating items presented during encoding (i.e., Target) or

novel items not shown during encoding (i.e., Lure and Foil), respectively. By analyzing the

change (slope) across sessions we found that the results of the Kruskal–Wallis test were

significant for target objects, but not for the other measures (Figure 2.8; Target: H = 5.45, 1 d.f.,

p < 0.05; Lure: H = 0.18, 1 d.f., p = 0.67; Foil: H = 0.16, 1 d.f., p = 0.69). On average, the number

of correct responses for target objects increased in the treatment condition compared to the

control, suggesting that active iTBS improved memory encoding.

In addition, we explore participants’ performance ratios for Recollected, Familiar, and

Missed items. The results were significant for missed objects, but not for the other two

measures (Figure 2.8; Recollected: H = 1.81, 1 d.f., p = 0.18; Familiar: H = 0.04, 1 d.f., p = 0.84;

Missed: H = 5.15, 1 d.f., p < 0.05).
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Figure 2.8 Performance ratios for Target, Lure, Foil, Recollected, Familiar, and Missed

objects. The plots illustrate the mean performance ratio per session (●) and a linear model

with standard error of the mean (± S.E.M.) shaded boundaries across sessions. The individual

participant ratios are also shown (✳).
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The e�ect of age & MTL regional volume on memory

Previous studies have shown that an individual’s age and MTL regional brain volume are

associated with memory capabilities. Therefore, we investigated if these factors were related to

the di�erences in behavioral change between iTBS conditions. We found an age-dependent

relationship where older participants had smaller regional volumes in the bilateral CA1, right

CA2 subfields, left parahippocampal cortex, dentate gyri, and hippocampal fissures.

Furthermore, we did not find evidence to support the assumption that di�erences in MTL

volume were related to better or worse performance on the Object Recognition task.

Figure 2.9 Segmentation of hippocampal subfields using the ASHS pipeline [Xie et al., 2017;

Yushkevich et al., 2015; Adler et al., 2014]. (A) sagittal, (B) anterior coronal, and (C) posterior

coronal view of a high-resolution hippocampal image. The legend designates subfield labels

and parcellation color palette—scale bar (1 cm).
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2.4 Conclusions

Overall, these results show that iTBS, a short (~10 min.) non-invasive TMS treatment

delivered over five days, is safe and feasible in older adults. While our data suggest an

improvement in memory-related function for the treatment condition compared to the control

condition, at present certain analyses may be statistically underpowered to detect a di�erence

between conditions. Several suggestions that could improve these results include the

collection of more data from additional participants, oversampling (i.e., collecting more data

from the same participants), denoising methods to remove distant-dependent motion artifacts

[Fair et al., 2012], or implementing real-time MRI monitoring software to improve data quality

and reduce study costs [Dosenbach et al., 2017]. Moreover, variability in response to the iTBS

treatment may be due to di�erences in the distance from the target location to the TMS coil,

where an additional 3% of TMS output is necessary for every millimeter from the stimulating

coil to produce an equivalent level of brain activation as the motor threshold (MT) response

[Stokes et al., 2005]. Thus, the cortical depth of the LPPC target should be considered in

choosing the optimal stimulation parameters. Also, skull thickness, which varies 2.4  ±  0.8  mm

depending on skull bone location (e.g., parietal vs. occipital), age, and sex-based di�erentiation

[Lillie et al., 2015], is critical for maximizing the therapeutic e�ects of TMS. Accordingly, the

treating psychiatrist should scale MT by these measures, improving stimulation quality and

ensuring equitable treatment delivery in the clinic. These measures can be determined by

MRI/CT or demographically-adjusted norms for the specific skull region and target depth

[Peterson & Dechow et al., 2002].
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Furthermore, there may be ways to improve the e�cacy of this intervention in future

studies. Specifically, in clinical trials where TMS is FDA-approved for treating Major

Depressive Disorder, Obsessive-Compulsive Disorder, and smoking cessation, the treatment

duration occurs over six weeks, with multiple days of stimulation sessions each week.

Therefore, longer interventions (> 1-week protocols) may yield more potent memory e�ects.

The participants recruited for this study included adults (ages 55+) without clinically apparent

memory deficits and who received iTBS treatment over five consecutive days, so it is also

plausible that individuals with impairment (e.g., MCI) might be more resistant/sensitive to the

intervention [Sundman et al., 2020]. Future research studies are needed to shed light on the

treatment duration, the longevity of improvement, the specific target population, and the

optimal treatment window for promoting memory. These four components will be essential for

the e�ective clinical implementation of TMS for memory loss.

In this study, we utilized an MRI-guided approach for targeting the iTBS treatment, which

capitalized on the functional architecture of cortical areas in the posterior parietal lobe that

lay on the surface of the brain and were highly connected to the hippocampus. These deeper

and medial regions of the brain are impractical for direct targeting with TMS. Therefore, our

approach was designed to maximize hippocampal-cortical connectivity using resting-state

brain activity as a marker of the optimal location for treatment delivery. However, various

other MRI modalities can be used to investigate hippocampal network connectivity (e.g.,

arterial spin labeling and di�usion-weighted MRI) and guide the stimulation targeting

functionally or structurally connected brain regions.
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Arterial spin labeling (ASL) measures tissue perfusion using magnetically tagged blood

flow and is more routinely used in clinical practice than resting-state functional MRI. Also, the

measurement of cerebral blood flow derived from ASL perfusion MRI protocols is a reliable

biomarker for predicting cognitive function in older adults [De Vis et al., 2018]. Therefore,

detecting brain regions with perfusion ASL can reveal which brain regions within the

hippocampal memory network have su�cient or deficient blood flow. These measures can

inform the cortical topography for target selection in combination with TMS. The MRI-guided

approach allows targeting of physiologically intact regions considered suitable for modulation.

In addition, brain regions identified with insu�cient perfusion may indicate dysfunctional

brain areas or damaged cortical tissue that ought to be circumvented during target selection.

Indeed, this technique has been combined with transcranial electrical stimulation to the

prefrontal cortex showing perfusion changes originating in the locus coeruleus and broadly

distributed throughout the cortex [Sherwood et al., 2018].

Both the resting-state fMRI and ASL perfusion MRI approaches use blood-based

indicators of brain connectivity. An alternative approach for future studies modulating

hippocampal network activity would be to use di�usion MRI (dMRI) to estimate the location

and structure of axon fiber bundles that form short and long-range connections between

cortical and hippocampal brain regions. Arguably, the cell body is the computational center of

the neuron that integrates neural signals and determines subsequent activity dependent on

the fidelity of its inputs. Yet another neuronal structure, the axon, facilitates the propagation of

these signals throughout the brain. Groups of individual axons form fasciculated bundles that

relay activity in a particular brain region with proximally and distally connected regions.

50



Recently, a study investigating TMS to improve memory in older adults with MCI used a

dMRI-guided approach for targeting stimulation to specific brain regions [Chen et al., 2022].

The investigators demonstrate how theta-burst stimulation of superficial cortical regions in

the parietal lobe is distributed to the hippocampus via the inferior longitudinal fasciculus and

produces hippocampal network changes in resting-state functional connectivity related to

associative memory improvement previously reported [Hermiller et al., 2020]. Since dMRI

measures constitute a statistical approach to understanding brain connectomics, careful

attention should be used when interpreting these results; however, these findings may be

methodologically improved when well-validated priors are used to constrain analyses to

estimate connections that are supported by neuroanatomical ground truth ascertained

through direct observation [ Jenkinson & Chappell, 2018].

Together our results show that neuroimaging-guided iTBS holds promise for modulating

memory in older adults. Future studies should characterize the magnitude of iTBS e�ects in

larger sample sizes, patients with memory impairment (e.g., MCI, AD), on di�erent types of

memory changes (e.g., explicit verbal/visuospatial associative functions) and elucidate

systems-level (e.g., brain structural) mediators which will reliably predict memory

performance changes in response to treatment.
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III

MEMORY ENHANCEMENT WITH ENTORHINAL-HIPPOCAMPAL

MICROSTRUCTURAL INTEGRITY & PROXIMITY OF DEEP BRAIN STIMULATION.
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3.1 Introduction

Decades of research and clinical observations have established that episodic memory, the

ability to remember event-related experiences, is a critical higher-level cognitive function

dependent on the hippocampus and the adjacent cortical regions, including the entorhinal

cortex and its a�erent white matter projections to the hippocampus—the perforant pathway

[Squire et al., 2004; Eichenbaum, 2000; Ramón y Cajal, 1904; Ramón y Cajal, 1894].

In animal studies (Figure 3.1), electrical stimulation of the entorhinal-hippocampal

perforant path can produce long-term potentiation (LTP) [Fain & O'Dell, 2014; Bliss & Cooke,

2011; Vertes, 2005; Williams & Givens et al., 2003; Bliss & Lomo, 1973], and cholinergic input

onto the parahippocampal gyrus modulates these connections [Lin et al., 2022; Haam & Yakel,

2017]. Both outcomes are associated with memory improvement [Pastalkova et al., 2006; Ehret

et al., 2001; Feuerstein et al., 1997].

Figure 3.1 Theta-burst stimulation to the hippocampal circuit (e.g., the Scha�er collateral

or perforant pathway) elicits LTP in rodent model organisms.
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Figure 3.2 The entorhinal-hippocampal memory circuit in humans.

In human participants (Figure 3.2), a few studies on the e�ect of electrical stimulation of

the entorhinal white matter region, specifically within the angular bundle, have arrived at

contrary findings, with some reporting memory enhancement [Mankin et al., 2021; Titiz et al.,

2017; Suthana et al., 2012] and others reporting impairment [Halgren et al., 1985; Jacobs et al.,

2016]. The angular bundle consists of several myelinated fiber pathways, and it is unknown

which specific tract electrical stimulation worked to facilitate memory [Mankin et al., 2020].

The perforant pathway is one potential candidate tract within the angular bundle and is

highly conserved across rodents and primates [Zeineh et al., 2017; Witter et al., 2007]. Within

the angular bundle, myelin-stained sections of brains from patients with Alzheimer’s disease

showed a reduced intensity of staining in the perforant path compared to controls [Hyman et
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al., 1986], reporting a congruence between the presence of Aβ plaques in the molecular layer of

the dentate gyrus at the site of projection fiber termination. This suggests that accumulation of

neuropathology in the entorhinal-hippocampal circuit influences the severity of memory

impairments in AD. However, postmortem tissue analysis can only reveal certain aspects of the

structure-function relationship between perforant pathway fibers and memory. To understand

the causality of these associations, the pathway needs to be studied in vivo and directly

modulated to elicit performance changes in memory.

For instance, di�usion-weighted MRI (dMRI) is used to investigate the microstructural

properties of brain tissue [Soares et al., 2013]. By fitting tensors to the dMRI signal, researchers

can estimate fiber bundles derived from measurements of the restricted di�usion of water as a

molecular probe of brain tissue microstructure. In unrestricted compartments of the brain,

such as ventricles filled with CSF, water molecules di�use freely via a property called

Brownian motion. This characteristic reflects the isotropic displacement of water such that

any molecule has an equal probability of moving in any direction from its initial position.

Conversely, in restricted compartments, such as white matter with densely packed axon

fiber bundles, di�usion of water is constrained perpendicular to the cell membrane and

myelin sheath but relatively unconstrained parallel to the axonal process. This quality of

unequal di�usion along neuronal axes is called anisotropy. By measuring the direction and

magnitude of molecular displacement in three dimensions, a di�usion tensor is determined

for every voxel, a unit of brain space (mm3), in the dMRI. From these measurements, estimates

of the microstructural organization of the brain, in particular for regions with a high

prevalence and density of axon fiber bundles, are determined [Hua et al., 2008].
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Figure 3.3 Fundamentals of modeling di�usion characteristics for evaluating the

microstructure of brain tissue.

Thus, using a tensor, which describes a multilinear relationship, is a concise way of

representing molecular displacement in three dimensions. Within each voxel, the di�usion of

water molecules is summarized as an eigenvector, the direction molecules move in a given

time across three principal directions, illustrated by the red, green, and blue axes (Figure 3.3).

The distance traveled, or the total molecular displacement along a particular direction, is an

eigenvalue, indicated by λ1, λ2, and λ3 terms, ordered by magnitude. In estimating whether the

displacement is equal (isotropic) or unequal (anisotropic), fractional anisotropy (FA) is used to

relate the proportion of di�usion on the primary axis to the secondary and tertiary axes.

The following equation determines the value of FA:

FA   =
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The value of FA is essentially a ratio describing the degree of anisotropic di�usion (i.e.,

movement favored along the primary axis) determined for every voxel of the brain. Moreover,

in axons, di�usion across the neuronal membrane is restricted but less so along the length of

the process, meaning there is less movement along the two radial axes, λ2 and λ3, compared to

the longitudinal axis, λ1. A large FA is given by a value of one.

Conversely, a low FA, value of zero, represents di�usion equally distributed across the

three directions. It is important to note, however, that similar FA values can result from

di�erences in any of the three eigenvalues. For example, radial di�usion lengths of 0.45 in λ2

and λ3 and a longitudinal di�usion length of 0.96 in λ1 produce an FA of 0.44 (where the

di�usion length constant (λ) is in units of 10-3 mm2/s). But a longitudinal di�usion of 1.2 and

radial di�usions of 0.57 would give the same value of FA [ Johansen-Berg & Behrens et al., 2014].

Therefore, specific microstructural changes in the axon or myelin can be attributed to

di�erences in radial and longitudinal di�usion, respectively.

These interpretations have been experimentally confirmed using a mouse model of retinal

ischemia to investigate the biological foundations of di�usion properties, showing that optic

nerve degeneration resulted in di�erent longitudinal and radial di�usion changes over time

[Song et al., 2002; Song et al., 2003]. Acute changes reduced longitudinal di�usion with radial

di�usion unchanged and resulted from axonal degradation with intact myelin sheaths.

Whereas chronic changes increased radial di�usion that resulted from myelin degeneration

validated with immunohistochemistry. Although myelination contributes to FA, other sources,

including the axon structure itself, contribute the greatest di�erence to FA.
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Studies in typically aging adults relating microstructural changes with di�erences in

memory performance have utilized high-resolution dMRI sequences to resolve fiber bundles

on the submillimeter scale and found age-dependent decreases in connectivity for older adults

compared to young adults [Yassa et al., 2010]. Studies in diseases a�ecting memory have used a

variety of dMRI analytic approaches to discern microstructural and hippocampal degeneration

in the prodromal stages of AD [Zhang et al., 2014].

For example, probabilistic tractography using ex vivo dMRI has been used to investigate

entorhinal-hippocampal connectivity with a dual-step approach (i.e., by assessing these

connections in segments from the entorhinal cortex to the subiculum and the subiculum to the

dentate gyrus). This approach revealed robust connectivity maps between the subiculum and

the anterior hippocampus compared to the posterior hippocampus [Augustinack et al., 2010].

Connectivity maps between the entorhinal cortex and subiculum were feasible; however,

restricting the analysis to layer II of the entorhinal cortex, where perforant pathway fibers

emanate, was too constrained for proper estimation. In addition, deterministic tractography

resolved the perforant pathway and alvear pathway fibers, and has been corroborated by

histological studies in animals [Bell et al., 2021; Shukla & Bridges, 2001; Deller et al., 1996].

Pertinently, dMRI tractography methods enable non-invasive assessment of tissue

microstructure that can be used to explain di�erences in clinical populations or applied in

combination with neurotechnologies for directly targeting specific brain circuits.
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Part III – Study Aims & Objectives

In this study, we investigate connectivity between the entorhinal cortex and hippocampal

formation using probabilistic tractography to optimize direct electrical stimulation for

memory performance improvement. By examining the location of intracranial electrodes in

relation to the perforant pathway, we associate the proximity of stimulation and performance

enhancement across four hippocampal-dependent episodic memory tasks. Our findings

suggest that the e�ects of stimulation on behavior are dependent on electrode placement

within the entorhinal white matter area, which is consistent with decades of findings that

high-frequency theta-burst stimulation applied to the perforant pathway supports LTP of the

hippocampal circuit and positively influences episodic memory. Additionally, we suggest that

connectomic measures, the integrity of fibers, density, and location, can inform MTL targeting

for next-generation personalized neuromodulation of cognitive function.

To date, dMRI is the only available tool for in vivo study of neuroanatomical white matter

pathways, which we coupled with the direct evaluation of MTL circuit modulation for

influencing memory capacity. In sum, we present the role of entorhinal-hippocampal

microstructure and electrode proximity in enhancing episodic memory in humans.
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3.2 Methods

Participants

The study included nineteen adults (mean age ± S.D. = 34 ± 12.59 years; Range 20-63 years;

Female n = 10; right-handed n = 14) with pharmacoresistant epilepsy implanted with

intracranial depth electrodes for 7-14 days for clinical evaluation. A total of 33 electrode sites

were used to deliver direct current stimulation within the MTL. The locations of fifteen

electrodes were in white matter (left n = 4) between the entorhinal cortex and hippocampus,

and eight were in MTL gray matter (left n = 10) regions.

Participants volunteered for the study and were informed of the risks and benefits of the

study protocols, approved by the University of California Los Angeles Institutional Review

Board (IRB) for human biomedical research [IRB#10-000973 & 15-000548].

Neuroimage Acquisition

Magnetic Resonance Images (MRIs) were acquired on a 3-Tesla Siemens PRISMA scanner,

including (1) a T2-weighted hippocampal high-resolution MRI (spin echo, TR = 5200 ms, TE =

105 ms, 24 slices, contiguous, matrix size = 512 x 512, voxel size = 0.391 x 0.391 x 3 mm), (2) a

T1-weighted whole-brain MPRAGE (TR = 1800 ms, TE = 2.93 s, voxel size = 0.9 x 0.9 x 0.8 mm),

and (3) a di�usion-weighted MRI (dMRI; TR = 9900 ms, TE = 81 ms, flip angle = 90, FOV = 256

mm × 256 mm, matrix size = 128 × 128, voxel size = 2.0 × 2.0 × 2.0 mm) with 64 acquisition

directions (b = 1000 s/mm2) and a single b0 image (b0 = 0 s/mm2). The images were acquired

preoperatively 1-2 weeks before implantation of the intracranial depth electrodes.
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Hippocampal Segmentation

Automatic Segmentation of Hippocampal Subfields (ASHS; version 2.0) software package

was used to identify MTL brain regions and obtain volume measures. For tractography, three

regions, including the hippocampus, subiculum, and entorhinal cortex, were used.

Electrode Localization

The depth electrodes implanted for clinical epilepsy monitoring [Fried et al., 1999] were

localized following implantation with high-quality Spiral Computed Tomography (CT) scans

(acquired with 1 s rotation, 1.5 helical pitch, 1 mm slice collimation, and 0.5 mm reconstruction

interval). Using a 3-way registration protocol in BrainLab, CTs were registered to T2-weighted

hippocampal high-resolution and T1-weighted whole-brain MPRAGE MRIs.

MTL subregions were determined from neuroanatomical boundaries that demarcated

regions from atlases correlating MRI visible landmarks with underlying histological features

[Duvernoy et al., 2013; Insausti & Amaral, 2003]. These methods have been used to localize

microelectrodes in MTL [Suthana et al., 2009; Ekstrom et al., 2008; Zeineh et al., 2003].

Di�usion MRI Processing

The dMRI scans were processed using the FMRIB Software Library (FSL) package [Smith et

al., 2004; Jenkinson & Smith, 2001], including eddy current correction [Smith et al., 2002a],

brain extraction [Smith et al., 2002b], and fitting of di�usion tensors to the data [Basser et al.,

1994; Pierpaoli et al., 1996]. The output of tensor fitting yields voxel-wise maps.
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Tract-Based Spatial Statistics

Using Tract-Based Spatial Statistics, a skeleton-wise analysis was performed on the FA

image to generate a white matter spleen that identifies the center of tracts [Smith et al., 2006].

The FA skeleton threshold will be set at 2000 (corresponding to FA > 0.2) to remove voxels

containing gray matter or cerebrospinal fluid.

To assess crossing fibers, cleaned and corrected dMRI scans were processed using

BEDPOSTX (Bayesian Estimation of Di�usion Parameters Obtained using Sampling Techniques

for Modeling Crossing Fibers) [Behrens et al., 2007]. The approach provides estimates of the

probability density functions across three principal directions using Markov Chain Monte

Carlo sampling to determine the number of crossing fibers voxel-wise throughout the brain.

Probabilistic Tractography

The corrected, tensor fit, and di�usion estimated dMRI scans were analyzed using FSL’s

Di�usion Toolbox (FDT) to obtain probabilistic tractography estimates of global brain

connectivity between any two region-of-interests (ROIs) given the likelihood of a connection

existing based on the di�usion characteristics and fiber modeling [Behrens et al., 2003]. FSL’s

FDT repetitively samples the distributions on voxel-wise principal di�usion directions.

To generate a probabilistic connectivity distribution, three (ROIs) identifying the

entorhinal cortex (ERC), the hippocampal formation, including the Cornu Ammonis (CA) fields

1-3, and Fascia dentata (dentate gyrus), together referred to as the hippocampus, and the

subiculum, were used to sample the di�usion distributions. The probabilistic tractography

analyses were run in Seed Mask Mode, and the parameters are provided (Table 3.1).
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FDT Probabilistic Tractography ProbtractX Options
Sample Number 5000

Curvature Threshold 0.05 (= 89.7°)
Max. Step Number 5000

Step Length 0.5 mm
Fiber Volume Fraction 0.01

Loopcheck ✓

Euler Streamlining ✓

Constrained Tracking ✓

Distance Correction ✓

Waypoint Options
Bidirectional Independence ✓

Ordered Crossing ✓

Condition and
Matrix Option

Matrix Seed x Seed

Table 3.1 FMRIB's Di�usion Toolbox (FDT) version 5.0 probabilistic tractography parameters.

The seed space was set to a single mask of the Entorhinal cortex. The targets included

waypoint masks of the Subiculum and Hippocampus (crossing in listed order) with termination

in the Hippocampus. These masks were registered to native di�usion space for tractography.

In order to accurately measure the perforant pathway fibers and obtain di�usion metrics

about their microstructure features, the regions listed above were used as anatomical priors

for the analysis. The tracks began from the entorhinal cortex (seed ROI) to generate a local

connectivity map ending in the hippocampus. Tracks were confined by a waypoint ROI

(subiculum) such that viable tracks must pass through the subicular region as perforant path

fibers traverse (or perforate) this brain region. The following track parameters were used: step

length = 0.5 mm, total number of steps = 5000, and curvature threshold = 0.05 (~89.7°)

[Augustinack et al., 2010]. The connection probability from the seed region was calculated as
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the proportion of the total number of samples reaching the target that also passed through the

waypoint region. The connectivity maps were used to extract di�usion tensor metrics about

the angular bundle tissue microstructure, including the dMRI measures (FA, MD, AD, and RD)

previously described.

Electrode Distance Analysis

To estimate the contribution of electrode position in DBS-related memory enhancement,

custom scripts in python were used to analyze the distance of the stimulating electrode to the

perforant pathway (i.e., the probabilistic connectivity distribution map). Distance (mm) was

calculated in two ways from the center of each stimulating electrode to either (1) the center of

mass (the average location of the perforant pathway weighted by the density of the crossing

fibers), or (2) the location of the highest density of pathway fibers.

Behavioral Tasks

Participants completed at least one of four behavioral tasks, designed to probe

hippocampal-dependent episodic memory, with a cognitively engaging distractor task

between encoding and retrieval phases, including (1) Person Recognition, (2) Object

Recognition, (3) Verbal Free-Recall, and (4) Face-Name Association. Full descriptions of these

tasks are published (Figure 3.4) [Mankin et al., 2021; Titiz et al., 2017].

The tasks included three parts: (1) a learning (encoding) period, (2) a distraction period (30

s) with an odd/even number task, and (3) a recall (retrieval) period. Participants completed the

tasks on a laptop using Mathworks' Matlab with Psychtoolbox extensions [Brainard, 1997].
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Using a within-subject design, a randomly selected half of the stimuli presented had electrical

stimulation delivered before stimulus presentation. Composite scores were assessed across

tasks for performance on stimulated vs. non-stimulated trials.

Figure 3.4 Schematized illustration of four hippocampal-dependent episodic memory tasks

[Mankin et al., 2021; Titiz et al., 2017] (A) Person Recognition. (B) Object Recognition. (C) Verbal

Free-Recall. (D) Face-Name Association. The stimulation trials are shown in dotted red, and

the trials without stimulation are shown in black. The stimulus delay is shown in gray.
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Behavioral Analysis

The ‘simulation performance index’ was calculated, per electrode, by taking the

percentage di�erence of performance scores across trials grouped by stimulation condition

and averaged across behavioral tasks.

Statistical Analysis

The relationships between simulation performance index, electrode proximity, and tissue

microstructure were determined using a Generalized Linear Model (GLM) in SPSS (IBM

Corporation, Armonk, NY). The GLM approach provides a more flexible form of regression

capable of handling non-Gaussian distributions.
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3.3 Results

Entorhinal white matter stimulation enhances memory

We used a meta-analytic approach to ascertain the key variables predicting

stimulation-related memory improvement (Figure 3.5). We found significant di�erences in

stimulation performance index for stimulated trials compared to non-stimulated trials,

meaning that participants accurately recalled more task stimuli on trials that received

stimulation, demonstrating a positive or enhancing e�ect on episodic memory encoding.

Visualization of entorhinal-hippocampal perforant pathway

Connectivity distributions (Figure 3.6), generated by probabilistic tractography, were used

to visualize entorhinal-hippocampal perforant path inputs onto the hippocampus originating

from the entorhinal cortex and traversing through the subicular region of the hippocampal

formation. The tractography analyses were informed by neuroanatomical priors supported by

findings from cytohistological and lipid staining techniques of perforant path connectivity.

Path accuracy was improved by requiring tracts to cross through both the subiculum and

hippocampus constrained by crossing order such that a path from the entorhinal cortex was

viable if it first passed through the subiculum and then the hippocampus.

Tensor maps were skeletonized to extract microstructural estimates, and an FA threshold

greater than 0.2 was applied, ensuring estimates were within a range typically observed for

white matter regions.
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Using a Generalized Linear Model in SPSS, we evaluated Fractional Anisotropy (FA), a

probabilistic tractography measure of structural organization, in the perforant pathway and

the contribution of electrode proximity to the perforant path for DBS-related behavioral

improvement (nelectrodes = 9).

Figure 3.5 The stimulation performance index by electrode location in gray or white matter.

(A) Entorhinal white matter (blue) simulation that immediately preceded the presentation of

task stimuli (i.e., encoding period) resulted in, on average, better performance. In contrast,

nearby MTL gray matter (red) stimulation showed no significant e�ect. (B) The stimulation

performance index was significantly di�erent across white versus gray matter stimulation

conditions (p < 0.001, two-sided non-parametric Wilcoxon Rank-sum test), with white matter

exhibiting memory improvement (blue curve; median, [25th, 75th percentile] = 21.51, [5.73, 31.35];

p < 0.001, Wilcoxon Signed-rank test, nwhite = 15) and gray matter showing a trend towards

memory impairment (red curve; median, [25th, 75th percentile] = -11.82, [-28.27, 2.53]; p = 0.053,

Wilcoxon Signed-rank test, ngray = 18). The stimulation electrode (%) represents the proportion

of electrodes positioned in each region. The vertical dashed lines indicate median values.
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Figure 3.6 Visualization of an example electrode localization, MTL regions, and probabilistic

tractography. Top panel, electrode contacts were localized by co-registration of CT and MRI

scans. Bipolar (✚ symbols) and micro-wire contacts (✛ symbols), with the left-most reference

for recording and the second left for micro-stimulation. Bottom panel, the left hippocampus

CA fields 1-3 (dark blue), dentate gyrus (light blue), subiculum (green), entorhinal cortex

(yellow), and contacts (white) are overlaid on a high-resolution hippocampal MRI. The heat

map (red-yellow) illustrates the entorhinal-hippocampal connectivity distribution, indicating

low (red) to high (yellow) connectivity. Slices are anterior (top left) to posterior (bottom right).
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Figure 3.7 The relationship between stimulation performance index and (A) electrode

distance from the perforant pathway (PP), and (B) fractional anisotropy (FA) of the PP. Positive

(negative) stimulation performance index values indicate an improved (impaired) memory

performance with stimulated trials compared to non-stimulated trials. The plot shows

negative (blue) and positive (red) changes in the simulation performance index, where the

marker color corresponds to the index value. Electrode distance was measured two ways from

the location of the highest fiber density and the global average of the path. Both measures were

significant and negatively correlated with the stimulation performance index (i.e., the farther

stimulation occurred from the entorhinal-hippocampal connections, the less memory was

facilitated). Global average distance results are not shown.

Electrode location & microstructural integrity influence memory

Of the 19 subjects, 9 had dMRI scans, which were distortion corrected, processed using

FSL, and di�usion tensor fitted. Probabilistic connectivity distributions were used to measure

electrode distance from the entorhinal-hippocampal connections of the perforant pathway.
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The distance of the electrode was assessed using two approaches. Either from the maximal

density of crossing fibers or the path’s center of gravity.

Then, we used a linear regression model to investigate the relationship between FA and

electrode proximity to stimulation performance index, a composite of the four

hippocampal-dependent memory tasks. FA and distance were significantly associated with the

simulation performance index. FA was positively related (β = 402.36, Wald 2 = 6.9, p < 0.05),

where a higher FA value (representing greater path integrity) conferred a performance

enhancement (Figure 3.7). Distance, measured as the electrode proximity to the perforant

pathway, was negatively related (β = -7.93, Wald 2 = 7.95, p < 0.05), where the closer

stimulation occurred to the path’s center of mass facilitated performance (Figure 3.8).

Figure 3.8 The distribution of connectivity strength (shaded red) and electrode contact (blue).

The connection heat map represents the total number of paths per voxel and is a measure of

the maximum number of samples taken during the tractography analyses of 5000 possible

connections. For visibility, the electrode is shown as larger than the actual size.
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3.4 Conclusions

These results suggest that microstructural properties of the perforant pathway modulate

the stimulation performance index and that electrical stimulation in close proximity to this

crucial pathway is important for episodic memory enhancement in these participants. These

principal modulating factors determine the optimal DBS site that may be essential for

developing therapeutic memory treatments in humans.

Furthermore, although the results are promising, it is necessary to acknowledge that they

were carried out in patients with epilepsy, which may limit the extent to which these findings

can be generalized to other clinical populations. Future research studies are needed to shed

light on additional features to be considered in target placement and should investigate the

duration of improvement. These components will be essential for the e�ective clinical

implementation of invasive neurotechnologies for severe memory loss. However, given the

focal delivery of this approach and advances in the implantation of intracranial electrodes, the

application of DBS in earlier stages of the AD continuum (e.g., MCI) could have profound e�ects

on the quality of life and improvements to memory faculties and is known to be the case for

early treatment of Parkinson’s disease. Indeed, the concept of circuit-level and systems-based

neuromodulation approaches has broad and potentially far-reaching clinical applications for a

myriad of neurological and psychiatric diseases, when applied with scientific and medical

integrity [Pham et al., 2022; Macrina, 2015].

For instance, alternative targets for modulating memory functions include a series of gray

matter regions and white matter connections that comprise the Papez circuit, which has been
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implicated in AD pathophysiology [Forno et al., 2021]. Our experiments explored hippocampal

input stimulation to improve memory function. Yet, the entorhinal-hippocampal connections

are only one aspect, albeit a central component, of the Papez circuit. Downstream from these

apical fibers, the network extends brain-wide connecting sensory input in the thalamus with

frontoparietal regions and then looping back into the parahippocampal gyrus in the MTL via

cingulum projections. These connections, when damaged, can disrupt typical memory

functioning and thus may also be viable targets for alleviating cognitive impairments,

especially for individuals where entorhinal-hippocampal targeting may not be practical or if

the microstructural properties indicate a suboptimal e�ect. Therefore, understanding how

modulation at specific nodes influences di�erential aspects of episodic memory performance

will be pivotal for addressing a spectrum of intellectual disabilities.

In conclusion, our results suggest that the location and microstructural integrity of the

entorhinal-hippocampal perforant pathway contribute to stimulation-mediated episodic

memory improvement. In addition, these findings may inform future approaches that aim to

modulate MTL brain regions by selecting targets relative to this pathway. The opportunity to

study the direct e�ects of electrical stimulation in the entorhinal-hippocampal circuit is not

currently possible under alternative circumstances. It, therefore, constitutes the application of

a fundamental understanding of hippocampal-mediated memory and its neurobiological

constituents. Overall, this study is a testament to decades of scientific research using

high-frequency electrical stimulation to modulate learning and memory, incorporating

state-of-the-art neurotechnological approaches with in vivo assessment of brain connectivity.
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Summary & Significance

In Part I, we show that cognition and memory scores are related to biomarkers obtained

from the blood and the brain. The level of Aβ derived from blood plasma was correlated with

domain-specific cognitive scores across several neuropsychological assessments. Since it is

known that memory relies on the hippocampus, we also assessed the relationship between

verbal memory scores and total hippocampal volume. We found that participants with smaller

hippocampal volumes had lower assessment performance. Also, that APOE ε4 carriers, known

to be at higher risk for developing late-onset AD, had more pathogenic levels of Aβ. Smaller

hippocampal volume was related to the levels of Aβ. Together these factors (Aβ, cognition,

hippocampal volume) were associated with age such that older participants had more

progressed biomarker phenotypes. Since the hippocampus changes with age and is associated

with age-related memory decline, we wanted to apply these findings in combination with

brain stimulation to improve cognition in older adults.

In Part II, we used non-invasive Transcranial Magnetic Stimulation (TMS) to target

hippocampal networks to improve associative memory function. We found that an intermittent

theta-burst stimulation protocol is feasible in adults (aged 55+), and our results represent

hopeful progress toward developing novel approaches for mitigating age-related memory

decline. Studies like this, and others ongoing, will determine if TMS for modulating brain

networks important for memory will be e�ective in those with more advanced impairments.
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In Part III, we explored how Deep Brain Stimulation (DBS) of entorhinal-hippocampal

circuits could be used to improve memory. DBS techniques have only been used in a few

memory studies finding variable e�ects. We found the microstructural integrity of the

hippocampal input pathway from the entorhinal cortex was associated with performance

enhancement for stimulated compared to non-stimulated trials. In addition, the e�ect was

most evident when the stimulation occurred at electrodes closer to the locus of the

entorhinal-hippocampal connection density. Our results provide insights into how

hippocampal inputs might preferentially be used to develop novel therapeutic targets for

treating severe deficits in memory and cognitive function.

In summary, this dissertation reflects the work of a team of neuroscientists and clinical

professionals working to understand age-dependent changes in the brain and body that

contribute to benign senescence or constitute the initial pathological hallmarks of progressive

brain changes resulting in cognitive impairment. We believe that the neurotechnologies

presented in this manuscript will pioneer a new era of therapeutics, informed by and in

conjunction with molecular and neurobiological approaches, for treating brain disease.
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Appendix

Tables with test statistics for regional brain volumes assessed in the HCP-A study (Part I).

P-values, significance, F-values, and FDR-corrected p-values (p-correct), using the Benjamini

Hochberg method, are shown.

Table A1 Left Hemisphere Right Hemisphere
Factor Region Label p-value significant F-value p-correct p-value significant F-value p-correct

Age thalamus 0.000 significant 36.1 0.000 0.000 significant 43.2 0.000
caudate 0.010 significant 6.9 0.010 0.069 - 3.4 0.070

putamen 0.000 significant 65.7 0.000 0.000 significant 65.7 0.000
pallidum 0.000 significant 99.4 0.000 0.000 significant 76.6 0.000

hippocampus 0.000 significant 123.4 0.000 0.000 significant 152.6 0.000
amygdala 0.000 significant 121.3 0.000 0.000 significant 109.0 0.000

Aβ thalamus 0.012 significant 6.5 0.013 0.003 significant 9.5 0.003
caudate 0.417 - 0.7 0.422 0.501 - 0.5 0.504

putamen 0.000 significant 14.7 0.000 0.000 significant 19.1 0.000
pallidum 0.000 significant 21.3 0.000 0.000 significant 19.0 0.000

hippocampus 0.000 significant 33.6 0.000 0.000 significant 33.5 0.000
amygdala 0.000 significant 29.6 0.000 0.000 significant 31.2 0.000

APOE thalamus 0.049 significant 3.1 0.065 0.020 significant 4.0 0.027
caudate 0.080 - 2.6 0.104 0.193 - 1.7 0.233

putamen 0.703 - 0.4 0.747 0.715 - 0.3 0.755
pallidum 0.294 - 1.2 0.343 0.296 - 1.2 0.345

hippocampus 0.301 - 1.2 0.349 0.418 - 0.9 0.466
amygdala 0.629 - 0.5 0.676 0.570 - 0.6 0.619

Table A1. Subcortical brain regional volumes using the FreeSurfer pipeline (version 7.2.0) from

the ‘aseg’ atlas [Fischl et al., 2002; Fischl et al., 2004a].
Table A2 Left Hemisphere Right Hemisphere

Factor Region Label p-value significant F-value p-correct p-value significant F-value p-correct
Age caudalanteriorcingulate 0.000 significant 29.6 0.000 0.000 significant 18.8 0.000

caudalmiddlefrontal 0.000 significant 27.2 0.000 0.025 significant 5.1 0.026
cuneus 0.000 significant 27.9 0.000 0.000 significant 22.9 0.000

entorhinal 0.000 significant 15.1 0.000 0.000 significant 18.5 0.000
fusiform 0.000 significant 48.1 0.000 0.000 significant 44.4 0.000

inferiorparietal 0.000 significant 51.1 0.000 0.000 significant 57.8 0.000
inferiortemporal 0.000 significant 33.6 0.000 0.000 significant 41.8 0.000
isthmuscingulate 0.000 significant 25.8 0.000 0.000 significant 18.7 0.000

lateraloccipital 0.000 significant 42.1 0.000 0.000 significant 35.7 0.000
lateralorbitofrontal 0.000 significant 50.4 0.000 0.005 significant 8.3 0.005

lingual 0.000 significant 38.1 0.000 0.000 significant 35.1 0.000
medialorbitofrontal 0.297 - 1.1 0.298 0.917 - 0.0 0.917

middletemporal 0.000 significant 86.3 0.000 0.000 significant 52.0 0.000
parahippocampal 0.000 significant 46.8 0.000 0.000 significant 67.0 0.000

paracentral 0.000 significant 56.1 0.000 0.000 significant 44.2 0.000
parsopercularis 0.000 significant 14.9 0.000 0.006 significant 7.9 0.006

parsorbitalis 0.000 significant 43.7 0.000 0.000 significant 38.0 0.000
parstriangularis 0.000 significant 43.6 0.000 0.000 significant 34.4 0.000

pericalcarine 0.027 significant 5.0 0.027 0.002 significant 10.2 0.002
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postcentral 0.000 significant 56.0 0.000 0.000 significant 84.9 0.000
posteriorcingulate 0.000 significant 35.9 0.000 0.000 significant 48.8 0.000

precentral 0.000 significant 67.2 0.000 0.000 significant 64.7 0.000
precuneus 0.000 significant 56.1 0.000 0.000 significant 68.2 0.000

rostralanteriorcingulate 0.000 significant 14.5 0.000 0.000 significant 15.9 0.000
rostralmiddlefrontal 0.000 significant 73.5 0.000 0.000 significant 20.3 0.000

superiorfrontal 0.000 significant 70.3 0.000 0.000 significant 31.1 0.000
superiorparietal 0.000 significant 47.1 0.000 0.000 significant 45.4 0.000

superiortemporal 0.000 significant 60.0 0.000 0.000 significant 62.2 0.000
supramarginal 0.000 significant 33.0 0.000 0.000 significant 51.0 0.000

transversetemporal 0.000 significant 53.3 0.000 0.000 significant 17.9 0.000
insula 0.000 significant 26.7 0.000 0.000 significant 23.7 0.000

Aβ caudalanteriorcingulate 0.008 significant 7.3 0.008 0.010 significant 6.9 0.011
caudalmiddlefrontal 0.001 significant 11.3 0.001 0.122 - 2.4 0.124

cuneus 0.016 significant 6.0 0.017 0.001 significant 12.1 0.001
entorhinal 0.071 - 3.3 0.073 0.032 significant 4.7 0.033
fusiform 0.000 significant 19.2 0.000 0.011 significant 6.7 0.011

inferiorparietal 0.000 significant 21.2 0.000 0.000 significant 23.8 0.000
inferiortemporal 0.000 significant 15.3 0.000 0.000 significant 16.8 0.000
isthmuscingulate 0.000 significant 13.2 0.000 0.006 significant 7.7 0.007

lateraloccipital 0.000 significant 16.8 0.000 0.001 significant 11.3 0.001
lateralorbitofrontal 0.000 significant 25.3 0.000 0.000 significant 13.8 0.000

lingual 0.001 significant 10.9 0.001 0.004 significant 8.7 0.004
medialorbitofrontal 0.983 - 0.0 0.983 0.280 - 1.2 0.284

middletemporal 0.000 significant 25.3 0.000 0.000 significant 21.9 0.000
parahippocampal 0.000 significant 20.8 0.000 0.000 significant 28.5 0.000

paracentral 0.000 significant 25.2 0.000 0.000 significant 22.5 0.000
parsopercularis 0.023 significant 5.3 0.024 0.002 significant 10.2 0.002

parsorbitalis 0.000 significant 23.8 0.000 0.000 significant 19.6 0.000
parstriangularis 0.000 significant 15.3 0.000 0.000 significant 17.6 0.000

pericalcarine 0.331 - 1.0 0.335 0.030 significant 4.8 0.031
postcentral 0.000 significant 33.3 0.000 0.000 significant 29.3 0.000

posteriorcingulate 0.000 significant 14.8 0.000 0.000 significant 14.8 0.000
precentral 0.000 significant 31.3 0.000 0.000 significant 24.3 0.000
precuneus 0.000 significant 33.1 0.000 0.000 significant 37.6 0.000

rostralanteriorcingulate 0.066 - 3.4 0.067 0.008 significant 7.2 0.009
rostralmiddlefrontal 0.000 significant 15.0 0.000 0.020 significant 5.5 0.021

superiorfrontal 0.000 significant 26.3 0.000 0.004 significant 8.6 0.004
superiorparietal 0.000 significant 28.8 0.000 0.000 significant 32.1 0.000

superiortemporal 0.000 significant 23.2 0.000 0.000 significant 29.6 0.000
supramarginal 0.000 significant 20.2 0.000 0.000 significant 19.3 0.000

transversetemporal 0.000 significant 25.3 0.000 0.000 significant 14.9 0.000
insula 0.000 significant 16.4 0.000 0.002 significant 10.0 0.002

APOE caudalanteriorcingulate 0.175 - 1.8 0.215 0.827 - 0.2 0.849
caudalmiddlefrontal 0.308 - 1.2 0.355 0.560 - 0.6 0.611

cuneus 0.730 - 0.3 0.765 0.743 - 0.3 0.775
entorhinal 0.365 - 1.0 0.416 0.943 - 0.1 0.947
fusiform 0.370 - 1.0 0.419 0.187 - 1.7 0.228

inferiorparietal 0.178 - 1.7 0.219 0.291 - 1.2 0.341
inferiortemporal 0.759 - 0.3 0.787 0.957 - 0.0 0.957
isthmuscingulate 0.305 - 1.2 0.352 0.866 - 0.1 0.882

lateraloccipital 0.092 - 2.4 0.119 0.008 significant 5.0 0.011
lateralorbitofrontal 0.278 - 1.3 0.327 0.169 - 1.8 0.210

lingual 0.944 - 0.1 0.947 0.947 - 0.1 0.949
medialorbitofrontal 0.237 - 1.5 0.283 0.370 - 1.0 0.419

middletemporal 0.104 - 2.3 0.133 0.235 - 1.5 0.282
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parahippocampal 0.559 - 0.6 0.611 0.415 - 0.9 0.464
paracentral 0.077 - 2.6 0.100 0.171 - 1.8 0.211

parsopercularis 0.315 - 1.2 0.362 0.810 - 0.2 0.835
parsorbitalis 0.707 - 0.3 0.749 0.375 - 1.0 0.423

parstriangularis 0.095 - 2.4 0.123 0.606 - 0.5 0.653
pericalcarine 0.472 - 0.8 0.520 0.831 - 0.2 0.849
postcentral 0.280 - 1.3 0.330 0.727 - 0.3 0.765

posteriorcingulate 0.914 - 0.1 0.929 0.605 - 0.5 0.653
precentral 0.419 - 0.9 0.466 0.563 - 0.6 0.613
precuneus 0.922 - 0.1 0.935 0.924 - 0.1 0.935

rostralanteriorcingulate 0.678 - 0.4 0.726 0.588 - 0.5 0.638
rostralmiddlefrontal 0.498 - 0.7 0.548 0.139 - 2.0 0.176

superiorfrontal 0.374 - 1.0 0.422 0.160 - 1.9 0.200
superiorparietal 0.683 - 0.4 0.728 0.145 - 2.0 0.183

superiortemporal 0.079 - 2.6 0.103 0.169 - 1.8 0.210
supramarginal 0.334 - 1.1 0.383 0.148 - 1.9 0.187

transversetemporal 0.103 - 2.3 0.133 0.366 - 1.0 0.416
insula 0.236 - 1.5 0.282 0.291 - 1.2 0.341

Table A2. Cortical gray matter parcellation using the FreeSurfer pipeline (version 7.2.0) from

the Desikan-Killiany atlas [Desikan et al., 2006].
Table A3 Left Hemisphere Right Hemisphere

Factor Region Label p-value significant F-value p-correct p-value significant F-value p-correct
Age caudalanteriorcingulate 0.000 significant 37.7 0.000 0.000 significant 55.4 0.000

caudalmiddlefrontal 0.000 significant 17.3 0.000 0.090 - 2.9 0.090
cuneus 0.000 significant 32.4 0.000 0.000 significant 17.0 0.000

entorhinal 0.000 significant 42.3 0.000 0.000 significant 42.8 0.000
fusiform 0.000 significant 87.2 0.000 0.000 significant 65.8 0.000

inferiorparietal 0.000 significant 36.9 0.000 0.000 significant 21.3 0.000
inferiortemporal 0.000 significant 55.1 0.000 0.000 significant 51.5 0.000
isthmuscingulate 0.000 significant 32.3 0.000 0.000 significant 17.3 0.000

lateraloccipital 0.000 significant 23.5 0.000 0.000 significant 22.4 0.000
lateralorbitofrontal 0.000 significant 103.2 0.000 0.000 significant 81.0 0.000

lingual 0.000 significant 77.0 0.000 0.000 significant 44.0 0.000
medialorbitofrontal 0.000 significant 54.4 0.000 0.000 significant 48.7 0.000

middletemporal 0.000 significant 70.6 0.000 0.000 significant 76.3 0.000
parahippocampal 0.000 significant 120.0 0.000 0.000 significant 121.8 0.000

paracentral 0.000 significant 56.4 0.000 0.000 significant 33.2 0.000
parsopercularis 0.000 significant 20.2 0.000 0.000 significant 29.2 0.000

parsorbitalis 0.000 significant 49.4 0.000 0.000 significant 60.3 0.000
parstriangularis 0.000 significant 59.8 0.000 0.000 significant 54.9 0.000

pericalcarine 0.001 significant 12.3 0.001 0.014 significant 6.2 0.014
postcentral 0.000 significant 23.4 0.000 0.000 significant 30.5 0.000

posteriorcingulate 0.000 significant 55.3 0.000 0.000 significant 69.2 0.000
precentral 0.000 significant 27.5 0.000 0.000 significant 17.3 0.000
precuneus 0.000 significant 45.0 0.000 0.000 significant 59.1 0.000

rostralanteriorcingulate 0.000 significant 21.9 0.000 0.000 significant 22.7 0.000
rostralmiddlefrontal 0.000 significant 56.7 0.000 0.000 significant 19.3 0.000

superiorfrontal 0.000 significant 75.0 0.000 0.000 significant 50.5 0.000
superiorparietal 0.000 significant 40.3 0.000 0.000 significant 35.8 0.000

superiortemporal 0.000 significant 31.8 0.000 0.000 significant 37.0 0.000
supramarginal 0.000 significant 19.8 0.000 0.000 significant 30.4 0.000

frontalpole 0.000 significant 23.9 0.000 0.048 significant 4.0 0.048
temporalpole 0.000 significant 26.2 0.000 0.000 significant 18.0 0.000

transversetemporal 0.000 significant 25.8 0.000 0.000 significant 14.0 0.000
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insula 0.000 significant 55.2 0.000 0.000 significant 48.4 0.000
Aβ caudalanteriorcingulate 0.035 significant 4.5 0.036 0.000 significant 13.3 0.000

caudalmiddlefrontal 0.021 significant 5.5 0.022 0.498 - 0.5 0.502
cuneus 0.028 significant 5.0 0.029 0.052 - 3.8 0.054

entorhinal 0.000 significant 18.0 0.000 0.000 significant 14.2 0.000
fusiform 0.000 significant 21.4 0.000 0.000 significant 13.2 0.000

inferiorparietal 0.001 significant 11.0 0.001 0.002 significant 9.7 0.003
inferiortemporal 0.000 significant 14.9 0.000 0.004 significant 8.7 0.004
isthmuscingulate 0.000 significant 12.8 0.001 0.005 significant 8.1 0.006

lateraloccipital 0.006 significant 7.7 0.007 0.072 - 3.3 0.074
lateralorbitofrontal 0.000 significant 19.7 0.000 0.000 significant 26.4 0.000

lingual 0.001 significant 11.5 0.001 0.008 significant 7.4 0.008
medialorbitofrontal 0.000 significant 23.2 0.000 0.002 significant 10.4 0.002

middletemporal 0.001 significant 11.5 0.001 0.000 significant 18.8 0.000
parahippocampal 0.000 significant 27.1 0.000 0.000 significant 24.6 0.000

paracentral 0.000 significant 15.6 0.000 0.003 significant 9.2 0.003
parsopercularis 0.012 significant 6.5 0.013 0.000 significant 16.3 0.000

parsorbitalis 0.001 significant 11.5 0.001 0.001 significant 10.6 0.002
parstriangularis 0.000 significant 15.2 0.000 0.000 significant 19.0 0.000

pericalcarine 0.582 - 0.3 0.584 0.635 - 0.2 0.636
postcentral 0.006 significant 7.7 0.007 0.015 significant 6.1 0.016

posteriorcingulate 0.000 significant 16.1 0.000 0.000 significant 14.4 0.000
precentral 0.018 significant 5.7 0.019 0.115 - 2.5 0.117
precuneus 0.001 significant 11.4 0.001 0.000 significant 23.7 0.000

rostralanteriorcingulate 0.255 - 1.3 0.259 0.009 significant 7.0 0.010
rostralmiddlefrontal 0.003 significant 9.4 0.003 0.065 - 3.5 0.067

superiorfrontal 0.001 significant 12.1 0.001 0.017 significant 5.8 0.018
superiorparietal 0.000 significant 14.0 0.000 0.000 significant 20.5 0.000

superiortemporal 0.024 significant 5.2 0.025 0.005 significant 8.3 0.005
supramarginal 0.001 significant 12.1 0.001 0.002 significant 9.9 0.002

frontalpole 0.000 significant 20.2 0.000 0.040 significant 4.3 0.041
temporalpole 0.005 significant 8.1 0.006 0.014 significant 6.2 0.015

transversetemporal 0.038 significant 4.4 0.040 0.154 - 2.1 0.157
insula 0.000 significant 15.5 0.000 0.000 significant 14.5 0.000

APOE caudalanteriorcingulate 0.448 - 0.8 0.495 0.746 - 0.3 0.776
caudalmiddlefrontal 0.124 - 2.1 0.158 0.160 - 1.9 0.200

cuneus 0.813 - 0.2 0.836 0.267 - 1.3 0.316
entorhinal 0.858 - 0.2 0.875 0.428 - 0.9 0.475
fusiform 0.642 - 0.4 0.689 0.183 - 1.7 0.223

inferiorparietal 0.031 significant 3.6 0.042 0.345 - 1.1 0.395
inferiortemporal 0.765 - 0.3 0.790 0.220 - 1.5 0.264
isthmuscingulate 0.348 - 1.1 0.397 0.722 - 0.3 0.762

lateraloccipital 0.066 - 2.8 0.087 0.004 significant 5.8 0.005
lateralorbitofrontal 0.038 significant 3.3 0.052 0.175 - 1.8 0.216

lingual 0.736 - 0.3 0.770 0.683 - 0.4 0.728
medialorbitofrontal 0.295 - 1.2 0.343 0.013 significant 4.5 0.017

middletemporal 0.080 - 2.6 0.104 0.200 - 1.6 0.241
parahippocampal 0.744 - 0.3 0.775 0.124 - 2.1 0.158

paracentral 0.156 - 1.9 0.196 0.144 - 2.0 0.183
parsopercularis 0.194 - 1.7 0.234 0.697 - 0.4 0.741

parsorbitalis 0.066 - 2.8 0.087 0.070 - 2.7 0.093
parstriangularis 0.254 - 1.4 0.302 0.252 - 1.4 0.299

pericalcarine 0.763 - 0.3 0.790 0.929 - 0.1 0.938
postcentral 0.016 significant 4.3 0.022 0.589 - 0.5 0.638

posteriorcingulate 0.420 - 0.9 0.466 0.560 - 0.6 0.611
precentral 0.050 - 3.1 0.067 0.190 - 1.7 0.230
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precuneus 0.729 - 0.3 0.765 0.937 - 0.1 0.945
rostralanteriorcingulate 0.440 - 0.8 0.486 0.028 significant 3.7 0.038

rostralmiddlefrontal 0.166 - 1.8 0.206 0.023 significant 3.9 0.031
superiorfrontal 0.029 significant 3.6 0.040 0.057 - 2.9 0.076
superiorparietal 0.114 - 2.2 0.146 0.091 - 2.4 0.119

superiortemporal 0.018 significant 4.1 0.025 0.039 significant 3.3 0.053
supramarginal 0.395 - 0.9 0.442 0.166 - 1.8 0.206

frontalpole 0.180 - 1.7 0.220 0.051 - 3.0 0.069
temporalpole 0.054 - 3.0 0.072 0.303 - 1.2 0.350

transversetemporal 0.386 - 1.0 0.433 0.830 - 0.2 0.849
insula 0.276 - 1.3 0.326 0.160 - 1.9 0.200

Table A3. Cortical white matter parcellation using the FreeSurfer pipeline (version 7.2.0) from

the Desikan-Killiany atlas [Desikan et al., 2006; Fischl et al., 2004b].
Table A4 Left Hemisphere Right Hemisphere

Factor Region Label p-value significant F-value p-correct p-value significant F-value p-correct
Age hippocampal.body 0.000 significant 119.0 0.000 0.000 significant 68.8 0.000

hippocampal.head 0.000 significant 69.0 0.000 0.000 significant 20.1 0.000
hippocampal.tail 0.000 significant 130.1 0.000 0.000 significant 68.4 0.000
parasubiculum 0.171 - 1.9 0.171 0.530 - 0.4 0.530

presubiculum.head 0.000 significant 19.5 0.000 0.000 significant 38.0 0.000
presubiculum.body 0.010 significant 6.8 0.010 0.000 significant 23.9 0.000

subiculum.head 0.000 significant 50.8 0.000 0.000 significant 68.3 0.000
subiculum.body 0.000 significant 114.7 0.000 0.000 significant 136.7 0.000

hippocampal.fissure 0.081 - 3.1 0.081 0.057 - 3.7 0.057
molecular.layer.HP.head 0.000 significant 57.8 0.000 0.000 significant 55.3 0.000
molecular.layer.HP.body 0.000 significant 62.2 0.000 0.000 significant 75.0 0.000

GC.ML.DG.head 0.000 significant 81.8 0.000 0.000 significant 108.3 0.000
GC.ML.DG.body 0.000 significant 123.2 0.000 0.000 significant 119.6 0.000

CA1.head 0.000 significant 71.5 0.000 0.000 significant 105.1 0.000
CA1.body 0.000 significant 77.2 0.000 0.000 significant 105.5 0.000

CA2.3.head 0.000 significant 53.0 0.000 0.000 significant 60.2 0.000
CA2.3.body 0.000 significant 32.2 0.000 0.000 significant 48.0 0.000
CA4.head 0.000 significant 79.1 0.000 0.000 significant 99.7 0.000
CA4.body 0.000 significant 100.6 0.000 0.000 significant 95.8 0.000
fimbria 0.000 significant 101.5 0.000 0.000 significant 78.5 0.000

Aβ hippocampal.body 0.000 significant 32.0 0.000 0.003 significant 9.3 0.003
hippocampal.head 0.000 significant 24.2 0.000 0.062 - 3.5 0.063
hippocampal.tail 0.000 significant 27.0 0.000 0.018 significant 5.7 0.018
parasubiculum 0.477 - 0.5 0.478 0.430 - 0.6 0.430

presubiculum.head 0.001 significant 11.1 0.001 0.000 significant 17.0 0.000
presubiculum.body 0.044 significant 4.1 0.044 0.011 significant 6.6 0.011

subiculum.head 0.000 significant 23.6 0.000 0.000 significant 25.2 0.000
subiculum.body 0.000 significant 28.7 0.000 0.000 significant 35.2 0.000

hippocampal.fissure 0.378 - 0.8 0.379 0.501 - 0.5 0.501
molecular.layer.HP.head 0.000 significant 20.4 0.000 0.000 significant 20.9 0.000
molecular.layer.HP.body 0.000 significant 22.9 0.000 0.000 significant 16.7 0.000

GC.ML.DG.head 0.000 significant 24.0 0.000 0.000 significant 24.8 0.000
GC.ML.DG.body 0.000 significant 31.8 0.000 0.000 significant 26.4 0.000

CA1.head 0.000 significant 25.4 0.000 0.000 significant 29.2 0.000
CA1.body 0.000 significant 19.6 0.000 0.000 significant 31.3 0.000

CA2.3.head 0.000 significant 13.6 0.000 0.000 significant 15.9 0.000
CA2.3.body 0.003 significant 9.2 0.003 0.000 significant 23.6 0.000
CA4.head 0.000 significant 24.4 0.000 0.000 significant 25.3 0.000
CA4.body 0.000 significant 23.9 0.000 0.000 significant 24.4 0.000
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fimbria 0.000 significant 35.8 0.000 0.000 significant 21.6 0.000
APOE hippocampal.body 0.180 - 1.7 0.185 0.781 - 0.2 0.783

hippocampal.head 0.203 - 1.6 0.207 0.784 - 0.2 0.786
hippocampal.tail 0.410 - 0.9 0.416 0.822 - 0.2 0.824
parasubiculum 0.555 - 0.6 0.560 0.932 - 0.1 0.932

presubiculum.head 0.320 - 1.1 0.326 0.558 - 0.6 0.562
presubiculum.body 0.356 - 1.0 0.361 0.260 - 1.4 0.265

subiculum.head 0.567 - 0.6 0.571 0.786 - 0.2 0.788
subiculum.body 0.199 - 1.6 0.203 0.523 - 0.7 0.528

hippocampal.fissure 0.083 - 2.5 0.085 0.602 - 0.5 0.606
molecular.layer.HP.head 0.220 - 1.5 0.225 0.240 - 1.4 0.245
molecular.layer.HP.body 0.146 - 2.0 0.150 0.346 - 1.1 0.352

GC.ML.DG.head 0.183 - 1.7 0.187 0.419 - 0.9 0.425
GC.ML.DG.body 0.240 - 1.4 0.245 0.105 - 2.3 0.108

CA1.head 0.194 - 1.7 0.199 0.647 - 0.4 0.650
CA1.body 0.238 - 1.5 0.243 0.613 - 0.5 0.617

CA2.3.head 0.185 - 1.7 0.189 0.346 - 1.1 0.351
CA2.3.body 0.499 - 0.7 0.504 0.427 - 0.9 0.432
CA4.head 0.333 - 1.1 0.339 0.505 - 0.7 0.510
CA4.body 0.342 - 1.1 0.348 0.178 - 1.7 0.183
fimbria 0.650 - 0.4 0.653 0.482 - 0.7 0.487

Table A4. Hippocampal subfields using the FreeSurfer pipeline (version 7.2.0) from the ex vivo,

ultra-high-resolution atlas [Iglesias et al., 2015].
Table A5 Left Hemisphere Right Hemisphere
Factor Region Label p-value significant F-value p-correct p-value significant F-value p-correct

Age anterior hippocampus 0.000 significant 60.5 0.000 0.000 significant 64.2 0.000
posterior hippocampus 0.000 significant 99.8 0.000 0.000 significant 98.4 0.000

entorhinal cortex 0.000 significant 32.2 0.000 0.000 significant 23.4 0.000
perirhinal cortex (BA 35) 0.000 significant 93.3 0.000 0.000 significant 79.7 0.000
perirhinal cortex (BA 36) 0.000 significant 44.7 0.000 0.000 significant 34.1 0.000
parahippocampal cortex 0.000 significant 100.9 0.000 0.000 significant 95.1 0.000

Aβ anterior hippocampus 0.000 significant 18.0 0.000 0.000 significant 20.8 0.000
posterior hippocampus 0.000 significant 29.5 0.000 0.000 significant 29.1 0.000

entorhinal cortex 0.000 significant 16.0 0.000 0.000 significant 18.1 0.000
perirhinal cortex (BA 35) 0.000 significant 28.7 0.000 0.000 significant 33.7 0.000
perirhinal cortex (BA 36) 0.000 significant 18.6 0.000 0.002 significant 10.2 0.002
parahippocampal cortex 0.000 significant 26.9 0.000 0.000 significant 30.8 0.000

APOE anterior hippocampus 0.923 - 0.1 0.923 0.878 - 0.1 0.879
posterior hippocampus 0.245 - 1.4 0.250 0.209 - 1.6 0.214

entorhinal cortex 0.679 - 0.4 0.682 0.556 - 0.6 0.560
perirhinal cortex (BA 35) 0.439 - 0.8 0.444 0.274 - 1.3 0.279
perirhinal cortex (BA 36) 0.467 - 0.8 0.473 0.138 - 2.0 0.142
parahippocampal cortex 0.591 - 0.5 0.595 0.151 - 1.9 0.155

Table A5. Hippocampal and MTL brain regions using the ASHS pipeline (version 2.0) from the

University of Pennsylvania Memory Center 3-Tesla atlas for T1-weighted MRI [Xie et al., 2016].
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Diversity Statement

Recent work in several fields of science has identified a bias in citation practices such that

papers from women and other minority scholars are under-cited relative to the number of

such papers in the field [Mitchell et al., 2013; Dion et al., 2018; Caplar et al., 2017; Maliniak et al.,

2013; Dworkin et al., 2020; Bertolero et al., 2020; Wang et al., 2021; Chatterjee & Werner, 2021;

Fulvio et al., 2021]. Here we sought to proactively consider choosing references that reflect the

diversity of the field in thought, form of contribution, gender, race, ethnicity, and other

factors. First, we obtained the predicted gender of the first and last author of each reference

by using databases that store the probability of a first name being carried by a woman

[Dworkin et al., 2020; Zhou et al., 2020]. By this measure, our references contain 13.6%

woman(first)/woman(last), 11.1% man(first)/woman(last), 19.8% woman(first)/man(last), and

56.1% man(last)/man(last). For the top 5 neuroscience journals, the expected gender

proportions are 6.7% for woman(first)/woman(last), 9.4% for man(first)/woman(last), 25.5% for

woman(first)/man(last), and 58.4% for man(first)/man(last) [Dworkin et al., 2020].
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This method is limited in that a) names, pronouns, and social media profiles used to

construct the databases may not, in every case, be indicative of gender identity, and b) it

cannot account for intersex, non-binary, or transgender people.

Second, we obtained the predicted racial/ethnic category of the first and last author of

each reference by databases that store the probability of a first and last name being carried by

an author of color [Ambekar et al., 2009; Sood & Laohaprapanon, 2018]. By this measure, our

references contain 10.8% author of color(first)/author of color(last), 13.4% white(first)/author of

color(last), 18.7% author of color(first)/white(last), and 57.2% white(first)/white(last). Using a

similar random draw model regressing for relevant variables, the expected race proportions

were 11.9% for author of color/author of color, 12.8% for white(first)/author of color, 23.5% for

author of color(first)/white(last), and 51.8% for white(first)/white(last) [Bertolero et al., 2020].

This method is limited in that a) names and Florida Voter Data to make the predictions

may not be indicative of racial/ethnic identity, and b) it cannot account for Indigenous and

mixed-race authors or those who may face di�erential biases due to the ambiguous

racialization or ethnicization of their names. We look forward to future work that could help us

to better understand how to support equitable practices in science.
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