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Article
Tipping points in epithelial-mesenchymal lineages
from single-cell transcriptomics data
Manuel Barcenas,1 Federico Bocci,1,2,* and Qing Nie1,2,*
1Department of Mathematics, University of California Irvine, Irvine, California and 2NSF-Simons Center for Multiscale Cell Fate Research,
University of California Irvine, Irvine, California
ABSTRACT Understanding cell fate decision-making during complex biological processes is an open challenge that is now
aided by high-resolution single-cell sequencing technologies. Specifically, it remains challenging to identify and characterize
transition states corresponding to ‘‘tipping points’’ whereby cells commit to new cell states. Here, we present a computational
method that takes advantage of single-cell transcriptomics data to infer the stability and gene regulatory networks (GRNs) along
cell lineages. Our method uses the unspliced and spliced counts from single-cell RNA sequencing data and cell ordering along
lineage trajectories to train an RNA splicing multivariate model, from which cell-state stability along the lineage is inferred based
on spectral analysis of the model’s Jacobian matrix. Moreover, the model infers the RNA cross-species interactions resulting in
GRNs and their variation along the cell lineage. When applied to epithelial-mesenchymal transition in ovarian and lung cancer-
derived cell lines, our model predicts a saddle-node transition between the epithelial and mesenchymal states passing through
an unstable, intermediate cell state. Furthermore, we show that the underlying GRN controlling epithelial-mesenchymal transi-
tion rearranges during the transition, resulting in denser and less modular networks in the intermediate state. Overall, our
method represents a flexible tool to study cell lineages with a combination of theory-driven modeling and single-cell transcrip-
tomics data.
SIGNIFICANCE Single-cell sequencing technologies offer unprecedented opportunities to inspect the mechanisms of
cell fate commitment along cell lineages, i.e., transition processes whereby cells abandon an initial cell state and transition
toward a new one. Here, we develop a computational model trained on single-cell RNA transcriptomics data to study cell
stability during these transition processes and identify the tipping points whereby cells commit to new cellular states.
Moreover, our model allows us to inspect intracellular gene regulation, thus offering a comprehensive picture of the change
in the transcriptional dynamics during epithelial-mesenchymal transition through intermediate cell states.
INTRODUCTION

Single-cell sequencing technologies enable us now to
closely monitor and dissect cell fate within individual cells,
providing opportunities to study the cell’s decision-making
during cell fate commitment events. A key biological
example of cell fate transition is the epithelial-mesen-
chymal transition (EMT), a trans-differentiation process
whereby epithelial cells lose cell-cell adhesion while gain-
ing motile traits (1). EMT is tightly controlled by gene
regulatory networks (GRNs) including mesenchymal tran-
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scription factors and epithelial noncoding RNAs that have
been previously studied using both mathematical modeling
and data-driven inference methods (2,3). Specifically,
mathematical modeling of the core EMT regulatory circuit
suggests that EMT can be interpreted via one or multiple
saddle-node transitions on an epithelial-mesenchymal
landscape, whereby an initially stable cell state (e.g.,
epithelial) is destabilized, and cells travel through an insta-
bility before reaching the next stable state (e.g., mesen-
chymal) (4–6). The interpretation of cell fate transitions
as pathways in an underlying complex landscape has
been embraced in the biological community for several de-
cades, first through the concept of the Waddington land-
scape whereby a cell navigates valleys (cell types) and
ridges (transition areas) akin to a rolling marble (7,8).
More recently, the Waddington landscape was quantified
through mathematical modeling and stochastic simulations
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in a variety of biological contexts, including EMT (9,10).
The lack of detailed information about biological parame-
ters, however, restricts this purely theoretical approach to
small circuit motifs with, at most, dozens of genes (11,12).

Single-cell data can potentially remedy the low dimen-
sionality by providing high resolution on the expression
patterns for tens of thousands of genes. Recently, several
methods have been proposed to reconstruct an energy land-
scape using single-cell RNA sequencing (scRNA-seq) data
using a variety of mathematical approaches including gene
correlation, dynamical systems theory, and Fokker-Planck
formalism (13–18). A key limitation of transcriptomics
data is the challenge of extracting dynamical information
about gene regulation and cell fate transitions from snapshot
data that typically lack temporal information.

RNA splicing has been recently recognized as a prom-
ising avenue to study cell fate transitions and infer dynam-
ical information from snapshot single-cell data (19,20). The
underlying idea is that knowledge of the relative proportion
of unspliced and spliced RNA counts can provide insight
into gene expression dynamics due to the delay taken by
RNA splicing (21). Specifically, RNA velocity employs a
linear, mass action model based on ordinary differential
equations that includes unspliced RNA production, splicing
reaction generating spliced RNA, and spliced RNA degrada-
tion/dilution. By fitting this model with scRNA-seq data,
RNA velocity successfully captures cell lineages in many
biological contexts including pancreas development and
neurogenesis (19,20). Recently, Dynamo provided a more
general nonlinear framework for RNA splicing dynamics
and even enabled the integration of traditional scRNA-seq
with metabolic labeling (if available) for a more precise
RNA velocity modeling by accurately estimating RNA-spe-
cific splicing rate constants (22). Moreover, we recently pro-
posed spliceJAC, a multivariate model that captures RNA
splicing as well as gene-gene interactions resulting in com-
plex GRNs that are cell-type specific (23). Crucially, this
model-based approach allowed us to estimate the stability
of different cell types—identified in the model as the attrac-
tors in the complex gene-gene interaction landscape (24)—
by reconstructing cell-type-specific Jacobian matrices.
While these methods represent considerable steps forward
in the integration of single cell data and rigorous modeling
approaches, it remains challenging to characterize the
tipping points—or transition points—that are responsible
for cell fate decisions and potentially use this information
to anticipate and predict critical transitions.

Here, we propose a new modeling strategy to analyze
cell-state transition processes from single-cell transcriptom-
ics data and identify unstable regions—or tipping points—in
cell fate. Our method uses the unspliced and spliced scRNA-
seq counts and lineage ordering to infer the stability of cell
states and GRNs along the cell-state lineage. First, we
demonstrate the ability of our method to correctly identify
bifurcation structures in cell fate using synthetic data from
2850 Biophysical Journal 123, 2849–2859, September 3, 2024
small in silico circuits. Furthermore, we apply the method
to two EMT time course data sets, identifying the stable
epithelial and mesenchymal states as well the intermediate,
unstable state. We further show that these tipping points are
associated with rearrangement of the underlying gene cir-
cuitry, indicated, for example, by the increased number of
connections between genes, that is reminiscent of critical
transitions in classical physical systems. Overall, our model
characterizes the cell-state trajectory during EMT and pro-
vides a new framework to identify transition states from sin-
gle-cell transcriptomics data.
MATERIALS AND METHODS

We use a combination of dynamical system theory and machine-learning-

oriented tools to identify and characterize transition states during cell-state

transitions from single-cell transcriptomics data.
Model input

First, our computational pipeline takes as input the preprocessed RNA

counts from scRNA-seq data (Fig. 1 A). Crucially, both the unspliced and

spliced RNA counts are required to develop the RNA splicing model and

downstream analysis, which could be extracted from raw scRNA-seq reads

using several publicly available tools including velocyto and kallisto

(20,25). Second, the method requires a lineage ordering of cells, with pseu-

dotime being the overwhelmingly popular option (Fig. 1 B). Pseudotime

metrics order cells along a ‘‘temporal’’ axis based on gene expression sim-

ilarity, whereby cells in the starting state(s) (such as undifferentiated cells in

stem cell development or epithelial cells in EMT) are expected to have low

pseudotime values whereas cells in the terminal state(s) (such as differen-

tiated cells or mesenchymal cells) are expected to have higher pseudotime

values (26) (Fig. 1 C). Given the large number of available tools to estimate

pseudotime, our pipeline allows flexibility to employ different pseudotime

metrics including scanpy’s diffusion pseudotime, scVelo’s velocity pseudo-

time, and scFates (19,27,28).
Multivariate model of RNA splicing

We set up a multivariate model of RNA splicing based on our existing spli-

ceJAC modeling framework (23), which is in turn an extension of the RNA

velocity model (20). In our model, the dynamics of the unspliced (Ui) and

spliced (Si) copy number of a given RNA species (i) is governed by ordinary

differentiation equations (ODE) as follows:

dUi

dt
¼ A S � biUi (1a)

dSi

dt

¼ biUi � giSi (1b)

where bi is a splicing rate coefficient, gi is a degradation/dilution rate con-

stant for spliced RNA species i, A is a cross-species interaction matrix, and
S ¼ ðS1; S2;.; SNÞ is the vector of copy numbers for all RNA species.

Therefore, Aij represents how species j interacts with species i, whereby a

positive, negative, or null coefficient represents transcriptional activation,

inhibition, or lack thereof. Compared to the ‘‘standard’’ RNA velocity

model that only features a constant production rate for unspliced RNA,

Eqs. 1a and 1b introduce interactions between species and thus provide a

strategy to infer the gene-gene interaction matrix A as discussed in the sec-

tion below.



FIGURE 1 Workflow of computational analysis. The analysis requires (A) the unspliced and spliced counts from scRNA-seq data and (B) a lineage

ordering of cells, such as pseudotime, overlayed here with RNAvelocity transition trajectories. (C) Example of transition marker gene dynamics along pseu-

dotime. After lineage sorting, an inference window is defined (black box). Cells within the window are used to construct a multivariate RNA splicing model

(D), from which a Jacobian matrix is inferred. After each iteration, the inference window moves forward along the pseudotime axis. (E) Spectral analysis of

the inferred Jacobian matrix identifies unstable points along the lineage based on positive eigenvalues. (F) A gene regulatory network (GRN) is constructed

for each pseudotime point to inspect GRN rearrangement and organization through community detection.

Detecting bifurcations in scRNA-seq data
Identification of tipping points along lineage

To infer information about stability and tipping points along the cell-state

transition lineage, we set up an inference scheme based on the multivariate

RNA splicing model (Fig. 1, C and D) and compute the Jacobian matrix

associated with Eqs. 1a and 1b. First, cells are ordered along the chosen

lineage-ordering metric (pseudotime in Fig. 1 C). Second, an ‘‘inference

window’’ is defined to progressively scan the lineage. At each iteration,

cells within the window are used to learn the parameters of the multivariate

RNA splicing model of Eqs. 1a and 1b. At each ‘‘timestep,’’ the Jacobian is

composed by four quadrants corresponding to regulations between the un-

spliced and spliced RNA species (supporting methods 1). The cross-species

interaction parameters for RNA species i are obtained by setting Eq. 1a to

zero and solving the following regression problem:

Ai0
�;
�
Aij

�� ¼ min
Ai0;fAijg

X
c

 
Ai0 þ

X
jsi

AijSj
c � biUi

c

!2

þ lF
�
Ai0;

�
Aij

��
;

(2)
where the subscript c denotes cells within the inference window. The last

term in Eq. 2 is an additional constraint to the regression problem, for
example in the case of lasso or ridge regression, where the shrinkage param-

eter l can be set to a user-defined value. In the simpler case of linear regres-

sion, l ¼ 0. To further simplify the problem, we assume that the splicing

rate coefficient is same for all RNA species. This assumption enables to set

bi ¼ b ¼ 1 by rescaling time in units of 1=b in Eqs. 1a and 1b. Finally, the

species-dependent degradation/dilution rate coefficient gi can be inferred

with linear regression after setting Eq. 1b to zero, gi ¼ Ui= Si.

By repeating these inference steps for each species, i ¼ ð1;2;.MÞ, the
entire interaction matrix and degradation coefficients are obtained, thus al-

lowing us to compute the Jacobian matrix of Eqs. 1a and 1b within the infer-

ence window. Afterward, the inference window is moved forward along the

pseudotime axis until the entire lineage is analyzed.

The spectral analysis of the Jacobian matrix along the lineage is used to

infer information about stability, for example by evaluating whether the
largest eigenvector becomes positive, thus indicating instability (Fig. 1

E). The 1) width of the inference window, 2) increment between iterations,

and 3) number of genes used in the model are free model parameters that

can be modified by the user.

A key assumption in the inference scheme is the ordering of cells along a

transition coordinate such as pseudotime, as temporal information is normally

not available in single-cell transcriptomics data. Specifically, in the context of

EMT, cells tend to undergo the transition in an asynchronous manner, thus

leading to heterogeneous populations of cells with different epithelial-mesen-

chymal traits and rendering real-time information less effective (29).
GRN reconstruction and downstream analysis

The cross-species interaction matrix A inferred following the scheme of Eq.

2 can be interpreted as a GRN, which is used to study the rearrangement in

gene regulation during the transition. To quantify the global change in the

GRN along the lineage, we quantify the number of communities in the GRN

graph defined as the highly connected sets of nodes (i.e., genes). First, we

rescale the edges in the GRN based on the gene expression of the ‘‘sender’’

node (i.e., the regulator species). Therefore, the connection between genes

is not activated if the regulator gene is not expressed. To estimate the com-

munities, we employ different community search algorithms including the

Girvan-Newman algorithm (30) and the Clauset-Newman-Moore greedy

modularity maximization (31), both of which are implemented in the Net-

workX python package. The number of communities is visualized along the

lineage axis to showcase the emerging GRN structure (Fig. 1 F).
RESULTS

Identification of tipping points from in silico
simulation

To test the method’s ability to recover tipping points in cell-
state transition, we first consider data generated in silico
from stochastic simulations where a ground truth can be
defined for benchmarking.
Biophysical Journal 123, 2849–2859, September 3, 2024 2851



FIGURE 2 Detection of tipping points from simulation of circuit motifs. (A) The toggle switch motif including unspliced RNA production, splicing, degra-

dation/dilution, and mutual feedback inhibition. (B) Phase diagram and nullclines of the toggle switch in the bistable regime. (C) Saddle-node bifurcation

driven by increase of the parameter b1. (D) Temporal dynamics of spliced X (xS, blue) and largest Jacobian eigenvalue (orange) in a deterministic simulation

as b1 is slowly increased. Dashed black line indicates that the largest eigenvalue becomes positive at the bifurcating point. (E) Data points (red) and average

trajectory (black) from stochastic simulation of the toggle switch. (F) Largest eigenvalue of the Jacobian matrix inferred from the simulated data points. (G)

Data points (red) and average trajectory (black) from stochastic simulation of the tristable EMT circuit. (H) Largest eigenvalue of the Jacobian matrix inferred

from the data points (red) of the EMT circuit and smoothened trajectory obtained via Gaussian filter (black). Parameter values for toggle switch and EMT

simulation can be found in the supporting methods 2.1–2.2.

Barcenas et al.
First, we simulate small, multistable circuits including a
bistable toggle switch and a tristable circuit describing
EMT using stochastic differential equations. The synthetic
toggle switch is a simple motif composed by two genes (X
and Y) that mutually repress each other, which can give rise
to bistability between opposite cell states (32,33) (Fig. 2, A
and B). To simulate the RNA splicing dynamics in the tog-
gle switch, we generalize existing models to incorporate
unspliced and spliced RNAs, resulting in four variables,
including the unspliced and spliced counts for both X and
Y (supporting methods 2.1). The circuit undergoes a sad-
dle-node transition from a state with low expression of X
to a state with high expression of X triggered by the in-
crease of the feedback inhibition parameter b1 (Fig. 2 C).
To study the circuit’s stability during the transition, we first
compute the Jacobian matrix along a deterministic trajec-
tory (i.e., ODE simulated without noise). As expected,
the largest eigenvalue of the Jacobian matrix is negative to-
ward the starting and terminal points of the trajectory, indi-
cating stable fixed points, while it becomes positive in the
intermediate region, thus indicating the transition through
an unstable fixed point (Fig. 2 D). To define a more realistic
biological scenario, we sample in silico data during the
transition using stochastic ODE simulations and obtain a
comprehensive representation of the initial state, transition
cells, and terminal state (Fig. 2 E). When applying our Ja-
cobian inference strategy to the sampled cells ordered by
simulation time, we correctly observed a spike in the value
2852 Biophysical Journal 123, 2849–2859, September 3, 2024
of the Jacobian’s largest eigenvalues corresponding to the
saddle-node transition, demonstrating our method’s ability
to identify the saddle-node transition (Fig. 2 F). We further
test how the Jacobian inference depends on the model
parameters. The largest Jacobian eigenvalue approaches
zero when the sample size of simulated data is large.
Conversely, it spikes but remains negative when the sample
size is smaller (Fig. S1 A). Furthermore, the width of Jaco-
bian inference window and increment step influence the
sharpness and location of the tipping point (Fig. S1,
B–D). Moreover, we test how the timescales for parameter
variation and cell-state transition interact. Specifically,
cells do not complete the transition when the bifurcation
parameter b1 is increased quickly, thus not allowing cells
enough time to complete the saddle-node transition.
Conversely, longer simulation times enable a complete
transition (Fig. S1, E and F).

Furthermore, we simulate a tristable GRN including
epithelial noncoding RNAs and mesenchymal transcription
factors that captures the EMT through an intermediate
epithelial/mesenchymal state (5,34) (supporting methods
2.2). Therefore, a complete EMT trajectory is characterized
by two successive saddle-node transitions including epithe-
lial to intermediate and intermediate to mesenchymal,
which are captured by stochastic simulations of the circuit
(Fig. 2 G). Consistently, our method captures the tipping
points separating the epithelial, intermediate and mesen-
chymal stable cell states as spikes in the value of the largest



FIGURE 3 Inference of tipping points from in silico scRNA-seq data of trifurcating circuit. (A) The trifurcating circuit schematic. (B) Low-dimensional

uniform manifold approximation and projection (UMAP) embedding, clustering, and RNA velocity highlighting the cell-state transitions. (C) Simulation

pseudotime computed via BoolODE. (D–F) Largest eigenvalue of the Jacobian matrix for the three cell-state transition trajectories S-T1 (D), S-T2 (E),

and S-T3 (F). The dashed horizontal line highlights positive values. (G) Instability score in low-dimensional UMAP embedding highlights the tipping points

of the trifurcating circuit.

Detecting bifurcations in scRNA-seq data
Jacobian eigenvalue inferred from the simulated data
(Fig. 2 H). While the overall trend of the largest Jacobian
eigenvalue suggests subsequent saddle-node bifurcations,
the trajectory exhibits stochastic fluctuations that arise as
high-frequency variation (see Fig. 2 H, red curve). These
fluctuations are attenuated by increasing the sampling
size of simulated cells while increasing the noise amplitude
in the simulated data (Fig. S2).

Next, to test the method in a more complex scenario
where multiple choices of cell fate are available in the cell
lineage, we consider a trifurcating circuit whereby cells in
the starting state (S) can differentiate into one of three final
cell states (T1, T2, T3) (Fig. 3 A). We generated an in silico
scRNA-seq data set by simulating the dynamics of the trifur-
cating circuit using the BoolODE package (35) (supporting
methods 2.3), whereby cells start in the initial state and
differentiate through one of the three branches during the
simulation, which can be visualized in low-dimensional
embedding of the data (Fig. 3, B and C). First, we focused
on the individual ‘‘branches’’ of the lineage, where different
genes are selectively turned on or off in a branch-specific
manner (Fig. S3). To study the stability along individual
branches, we select only cells in the starting and final state
of choice and apply our stability analysis. In all three
branches, our method correctly identifies the stable attrac-
tors corresponding to initial (S) and final (T1, T2, or T3)
states based on negative eigenvalues of the inferred Jacobian
matrix. Moreover, the largest eigenvalue of the inferred Ja-
cobian matrix transiently becomes positive in the region
separating the stable states in all three branches, indicating
Biophysical Journal 123, 2849–2859, September 3, 2024 2853



FIGURE 4 Saddle-node bifurcation and tipping point during EMT in OVCA420 cells. (A) Low-dimensional UMAP embedding and time course labels of

the OVCA420 time course data set. (B) Mesenchymal score of individual cells as a function of diffusion pseudotime. (C) Violin plot of mesenchymal score

per time point. Error bars showcase extremal values. (D) Low-dimensional UMAP embedding and diffusion pseudotime. (E and F) Expression of EMT

response genes as a function of pseudotime. (G and H) Number of positive Jacobian eigenvalues (G) and largest Jacobian eigenvalue (H) as a function

of diffusion pseudotime. Error bars showcase standard deviation over n ¼ 10 Jacobian inference iterations. (I) Low-dimensional UMAP embedding and

instability score. In (B), (E), and (F), colors indicate experimental time marks, while the black line showcases the trajectory average.
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the unstable region of transition (Fig. 3, D–F). Finally, by
integrating the instability scores along individual branches
(supporting methods 3), we defined a global instability score
that highlights the attractor basins in the landscape (S, T1,
T2, T3) and the transition regions or tipping points sepa-
rating them (Fig. 3 G).

Overall, the benchmarking on synthetic data acquired
both via custom-made stochastic simulations and external
tools supports our method’s ability to identify the stable
attractors and tipping points during cell-state transitions.
Next, we apply the methodology to real data sets to charac-
terize transitions and gene regulation during EMT.
Detection of saddle-node transition during EMT

Next, we test the method on real biological data. First, we
consider a scRNA-seq time course data set of ovarian cancer
epithelial cells OVCA420 undergoing EMT (36). In the
experimental setup, epithelial cancer cells were exposed
to transforming growth factor b1—a well-known EMT
inducer—for a week, followed by a remission period of
3 days without any external stimulus. scRNA-seq was per-
formed at multiple time points, leading to an aggregated
data set with cells with different epithelial-mesenchymal
traits (Fig. 4 A). The transition toward a mesenchymal state
was further highlighted by the increase of a mesenchymal
score, defined as the average expression of a mesenchymal
gene signature (37–39) (Fig. 4, B and C). Pseudotime and
RNA velocity analysis of the data set further suggest that
epithelial cells, mostly identified at early time points in
2854 Biophysical Journal 123, 2849–2859, September 3, 2024
the experiment, gradually transition and become mesen-
chymal cells mostly found at later time points (Fig. 4 D).

Next, we apply our inference scheme to inspect the sta-
bility along the EMT trajectory. We use diffusion pseudo-
time to order cells along an EMT trajectory. This choice
is supported by the observed dynamics of known EMT
marker genes such as TGM2 and SERPINE2, which exhibit
low expression toward the beginning of the lineage and are
activated at later stages (Fig. 4, E and F). When applying
our Jacobian inference method on the EMT lineage, we
inferred the typical saddle-node transition previously
observed in synthetic circuits characterized by two stable
states at the beginning and end of the trajectory separated
by a more unstable region. Notably, the unstable region
emerged when inspecting both the value of the largest Jaco-
bian eigenvalue as well as the overall number of positive
eigenvalues (Fig. 4,G andH). Interestingly, a small number
of Jacobian eigenvalues remain positive even in the sec-
tions of the lineage corresponding to the epithelial and
mesenchymal attractors. To further investigate this finding,
we evaluate the number of positive Jacobian eigenvalues
along the EMT lineage when the dimensionality of the sys-
tem is increased by selecting more top-expressed genes
(see supporting methods 5). Interestingly, the system con-
serves the predicted saddle-node transition characterized
by a peak in the number of positive eigenvalues when the
dimensionality is increased, but the number of positive ei-
genvalues rises (Fig. S4). When normalizing the number of
positive eigenvalues by the total number of genes, however,
systems with different dimensionality behave similarly,
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especially near the area instability (Fig. S4 C). To further
test the robustness of the inferred tipping point, we perform
extensive sensitivity analysis showing that the saddle-node
lineage structure is conserved upon variation of the infer-
ence scheme parameters including the width and increment
of the inference window (Fig. S5). The typical saddle-node
behavior is further observed when a user-curated list of
epithelial and mesenchymal genes is used as gene set for
Jacobian inference (38), further confirming the robustness
of the prediction (Fig. S6). Finally, the stability along the
EMT trajectory is visualized in low-dimensional uniform
manifold approximation and projection embedding, which
highlights a stable epithelial state, an intermediate and un-
stable region corresponding to transitioning cells, and a sta-
ble mesenchymal state that acts as a convergence point for
RNA velocity transition trajectories (Fig. 4 J).

Moreover, we compare our calculation of the state-depen-
dent Jacobian matrix with Dynamo, a model based on RNA
splicing dynamics that reconstructs vector fields from
scRNA-seq data (22). To ensure a common ground for the
comparison,we average the Jacobianmatrix predicted byDy-
namo over the same diffusion pseudotime window (support-
ing methods 7) and compare the predicted stability of the
EMT trajectory. We compare the methods under different
conditions for Jacobian inference, including by 1) letting
Dynamo’s preprocessing pick the top candidate genes and
2) manually enforcing the same gene set used for our calcula-
tion. We find that, irrespective of gene set choice, our method
uniquely predicts the instability associatedwith the EMT sad-
dle-node transition, whereas Dynamo consistently predicts
instability throughout the lineage (Fig. S7). It is worth noting
that this comparison does not imply a general trend, and a
more thorough evaluation across different biological systems
with various degrees of complexity would be necessary to
extrapolategeneral conclusions. For example,Dynamo recon-
structs genome-wide, rather than local, vector fields, thus
potentially hampering its ability to capture the local behavior
in specific circumstances, for examplewhen the sample size in
the data set is small, possibly explaining the better perfor-
mance of our linear model.

Finally, we test how real-time information could inform
the stability analysis of the OVCA420 EMT lineage by
inferring the Jacobian matrix over the time points of the
time course, which include five time points for EMT induc-
tion and three time points for remission. Interestingly, the
largest Jacobian eigenvalue peaks 3 days after the beginning
of EMT induction, thus resembling the characteristic sad-
dle-node behavior observed along the pseudotime axis.
The number of positive eigenvalues, however, fluctuates
and does not show a consistent trend (Fig. S8). Overall,
these observations suggest that pseudotime might be a better
‘‘reaction coordinate’’ to describe EMT in this particular
data set.

To test the saddle-node bifurcation structure inferred in
the OVCA420 EMT trajectory, we repeated the analysis
on a different cell line generated in the same original exper-
iment. Specifically, we considered the response of the A549
cell line derived from lung cancer when exposed to the same
EMT inducer (transforming growth factor b1) (Fig. 5 A).
Notably, the diffusion pseudotime used as the lineage-
ordering parameter for OVCA420 cells failed to correlate
with experimental time for the A549 data set (Fig. S9,
A–C). For this reason, we instead considered velocity pseu-
dotime as an alternative ordering parameter. While diffusion
pseudotime is implemented in the scanpy’s package and
solely relies on gene expression cell-cell similarity, velocity
pseudotime is implemented in the scVelo package and also
considers RNA velocity trajectories to rank cells. When us-
ing velocity pseudotime as lineage-ordering parameter,
A549 cells consistently showed a transition toward a mesen-
chymal state highlighted by an increase in the mesenchymal
score (Fig. 5, B and C). Crucially, the Jacobian inference
along the velocity pseudotime axis confirmed a saddle-
node-like bifurcation structure with spikes in both the
largest Jacobian eigenvalue and the overall number of pos-
itive eigenvalues (Fig. 5, D and E), which was further robust
upon variation of inference parameters (Fig. S9, D–G).
When visualized on uniform manifold approximation and
projection embedding, the resulting instability score high-
lighted the starting and terminal states separated by an insta-
bility region (Fig. 5 F).
Emergent rearrangement of GRNs during EMT

Finally, it is expected that cell transitions result in a rear-
rangement of gene-gene interactions exemplified by changes
in the GRN. Starting from the inferred Jacobian matrix, a
GRN can be reconstructed to capture the key interactions be-
tween genes at each point in the cell lineage (supporting
methods 1), resulting in a description of the rearrangement
of gene-gene interactions during EMT (Fig. 6, A–G). From
the inferred GRN, it is further possible to identify the key in-
teractions characterizing the cellular states in the epithelial
and mesenchymal attractors as well as the intermediate
tipping point (Fig. S10).

Furthermore, we apply community detection algorithms
to the inferred GRN graph to summarize the emerging
GRN evolution along the EMT lineage at a more coarse-
grained level. Specifically, we apply community detection
algorithms including the Girvan-Newman and greedy
modularity algorithms (supporting methods 8) to quantify
the changing organization of the GRN during EMT.
When applied to the OVCA420 and A549 cancer cell line
data sets, both algorithms detect a large number of GRN
communities at the beginning of the lineage corresponding
to the initial, epithelial state. The number of communities,
however, decreases significantly in the tipping point region
corresponding to the intermediate, unstable state before
increasing again toward the terminal, mesenchymal state
(Fig. 6, H–J). This result suggests that interactions between
Biophysical Journal 123, 2849–2859, September 3, 2024 2855



FIGURE 5 Saddle-node bifurcation and tipping point during EMT in A549 cells. (A) Low-dimensional UMAP embedding and time course labels of the

OVCA420 time course data set. (B) Mesenchymal score of individual cells as a function of diffusion pseudotime. (C) Violin plot of mesenchymal score per

time point. Error bars showcase extremal values. (D and E) Number of positive Jacobian eigenvalues (D) and largest Jacobian eigenvalue (E) as a function of

diffusion pseudotime. Error bars showcase standard deviation over n ¼ 10 Jacobian inference iterations. (F) Low-dimensional UMAP embedding and insta-

bility score. In (B), colors indicate experimental time marks, while the black line showcases the trajectory average.
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genes are more compartmentalized in the epithelial and
mesenchymal states, with GRNs exhibiting a modular
structure. Conversely, genes are more highly connected in
the intermediate, unstable state. This observation is sup-
ported by inspecting the overall GRN edge weight distribu-
tion at different points in pseudotime. The edge weight
distribution is narrower for pseudotime points correspond-
ing to the stable E and M states—indicting that fewer gene-
gene connections are significant—while being broader
for intermediate pseudotime points corresponding to the
tipping point—indicating a larger number of connections
between genes (Fig. 6 K).

Overall, these results suggest a rearrangement of the con-
nections in the GRN during the EMT trajectory.
DISCUSSION

Learning dynamical information from static single-cell tran-
scriptomics data is a key challenge where mathematical and
computational modeling can provide transparent and falsifi-
able predictions. Here, we have presented a new method that
2856 Biophysical Journal 123, 2849–2859, September 3, 2024
utilized the RNA counts from scRNA-seq data to build a
multivariate model of RNA splicing and the tipping points
in cell fate along cell lineages. Using this method, we iden-
tified the intermediate, unstable cell states during EMT
and further characterized the GRN associated with the
transition.

Previously, we adopted a steady-state assumption to
solve an interacting RNA splicing model and characterize
gene expression within individual cell states (23). Here,
we have extended this framework to intermediate cell states
along the epithelial-mesenchymal lineage. This strategy is
justifiable in the context of EMTwhen considering that the
timescales of RNA splicing and EMT are well separated.
While RNA splicing reactions have a typical timescale
of �10 min, EMT progression typically requires up to
3–5 days (2,21). Furthermore, the epithelial-mesenchymal
spectrum is characterized by intermediate checkpoints
whereby hybrid epithelial/mesenchymal cell states can be
maintained over many cell division cycles (2). These spe-
cific considerations might explain why our approach reca-
pitulates the saddle-node transition in the EMT trajectory



FIGURE 6 Variation of gene regulatory network during EMT. (A) The saddle-node behavior exemplified by the number of positive eigenvalues as a func-

tion of diffusion pseudotime in the OVCA420 cell line. Error bars showcase standard deviation over n¼ 10 Jacobian inference iterations. (B andC) Core gene

regulatory network and top genes ranked by betweenness centrality in the tipping point of the OVCA420 lineage. Blue and red arrows indicate activation and

inhibition, respectively, while the node colormap indicated gene expression. (D and E) Same as (B) and (C) in the pseudotime point corresponding to the

epithelial attractor. (F and G) Same as (B) and (C) in the pseudotime point corresponding to the mesenchymal attractor. (H) Number of communities in

the GRN graph as a function of diffusion pseudotime in the EMT trajectory of OVCA420 cells under TGFB1 induction. (I) Same as (H) for the A549

cell line data set. (J) The GRN edge weight distribution in the OVCA420 data set GRN for different points in pseudotime.

Detecting bifurcations in scRNA-seq data
whereas nonequilibrium methods such as Dynamo consis-
tently predict instability throughout the EMT lineage (see
Fig. S7). Specifically, Dynamo does not assume equilibra-
tion of the RNA splicing reaction but rather uses RNA
velocity to solve a time-dependent, nonequilibrated pro-
cess, potentially explaining the different prediction (22).
Certainly, our approach could be improved in the future
by combining interacting RNA splicing models with
more sophisticated inference schemes that do not require
steady-state assumptions, such as Dynamo.

Compared to existing methods relying on single-cell tran-
scriptomics data, our model presents significant advantages.
First, several methods reconstruct the underlying gene
expression landscape by relying exclusively on standard
scRNA-seq data (i.e., only the spliced RNA counts). For
example, MuTrans employs a multiscale reduction technique
and constructs a dynamical manifold based on Langevin
equation and rate theory that depicts stable and transitioning
cells as well as transition paths (18). Moreover, GraphFP (16)
employs the Fokker-Planck formalism to construct a transi-
tion graph between cells using time series transcriptomics
data. Conversely, scEpath constructs a landscape based on
single-cell energy whereby the energy is defined based on
maximum entropy of a gene-gene correlation graph within
individual cells (15). DensityPath constructs an intrinsic
landscape structure in the low-dimensional embedding of
the data on which optimal transition paths are inferred
(14). The landscape of differentiation dynamics models a sto-
chastic process based on the Fokker-Planck equation to learn
cell population density and reconstruct a lineage in pseudo-
time (13). Compared to these methods, our model has the
distinct advantage of utilizing both the unspliced and spliced
RNA counts from single-cell transcriptomics, which pro-
vides more information about gene regulation and enables
us to infer a directed GRN and Jacobian matrix to quantify
cell-state stability.

Furthermore, a few existing methods include unspliced
RNA counts for better modeling and inference. First, RNA
Biophysical Journal 123, 2849–2859, September 3, 2024 2857
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velocity builds an ordinary differential equation-based
model including RNA production, splicing, and degradation
(19,20). Recently, Dynamo presented a framework to recon-
struct analytical vector fields and learn systems biology
models from RNA velocity vectors by assuming Markovian
dynamics. In this sense, our proposed method can be under-
stood as a local linear approximation of the more general
nonlinear vector field predicted by Dynamo (22). Recently,
this framework was extended to preserve velocity magnitude
in low-dimensional embedding and reconstruct a data-
driven Fokker-Planck equation that captures the transition
dynamics in the entire data set (40). Similarly, scMomentum
uses RNA velocity to infer a gene-gene interaction matrix
and further defines an energy landscape based on a Hopfield
model using gene-gene interactions (41). Compared to these
methods, which fit noninteracting models to the data, we
develop a multivariate model including transcriptional regu-
lation between genes. Therefore, we are able to infer a Jaco-
bian matrix that encodes information about cell-state
stability and GRNs. Recently, Wang and collaborators pro-
posed an interacting RNA splicing model to quantify the
GRN along a cell phenotype transition reaction coordinate
(42). In their framework, the transition path between two
cell-state attractors is identified using a finite temperature
string method in conjunction with a nonlinear vector field
computed with Dynamo. Notably, when applied to the
A549 single-cell time course EMT data set, the authors
reached a similar conclusion that the gene-gene interaction
density—quantified in their work in terms of the GRN frus-
tration—is maximal in the intermediate, transitory state, re-
flecting our finding that the number of communities in the
GRN graph is minimized in the intermediate, transitory
state.
CONCLUSIONS

While providing new, exciting insight, we acknowledge ex-
isting limitations in our model. One potential drawback of
our approach is the reliance on lineage inference methods,
such as pseudotime, to order cells along transition trajec-
tories. Specifically, pseudotime might provide conflicting
predictions on cell ordering, especially in more complex
lineage structures including multiple coexisting cell states
and choices in cell fate commitment. Extending the existing
inference framework to such complex lineage structures
could be the focus of future research, perhaps by integrating
our model with existing tools for to infer lineage structure
and/or by exploring data sets with real-time information
such as metabolic label-based transcriptomics. Another
important limitation of our approach is a constant splicing
rate for all RNA species. This assumption, which is shared
with several existing RNA splicing models including veloc-
yto, scVelo, and spliceJAC (43), is not necessarily biologi-
cally accurate and might be revisited in the presence of
additional information to estimate gene-dependent splicing
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rates, such as the above-mentioned metabolic labeling-
based scRNA-seq, following a modeling strategy similar
to Dynamo (22). Furthermore, it is assumed in our model
of gene-gene interactions that the RNA abundance could
approximate the copy number of transcription factors
well, which might not necessarily be true. An interesting
future direction would be the integration of single-cell tran-
scriptomics data with protein-level measurements, such as
protein fluorescence or the promising single-cell prote-
omics. When combined with transcriptomics data, protein
data would provide more insight into gene expression dy-
namics and could potentially help to benchmark the predic-
tion of GRN. Furthermore, data sparsity represents a key
drawback of scRNA-seq, which can potentially compromise
the quality of the inference. Including both unspliced and
spliced RNA counts potentially amplifies the sparsity prob-
lem, as unspliced RNAs are typically rarer than spliced
RNAs (about 10%–20% of the total RNA population). Tack-
ling these existing issues with more elaborate models might,
in the future, provide an even more accurate picture of the
EMT process and reconcile observations that are currently
poorly understood, such as our model’s lack of a true steady
state exemplified by positive Jacobian eigenvalue in the
epithelial and mesenchymal cell-state attractors. Moreover,
it will enable the application of this model to nonequilib-
rium biological processes whereby steady-state assumptions
might not be feasible.
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