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A B S T R A C T

Pedestrians often face risks of inhaling a high amount of traffic-related air pollution due to their
proximity to the emission sources and increased breathing rates during walking. This paper
presents an innovative way for pedestrians to mitigate such risks. Specifically, a method for
incorporating the estimated inhaled mass of fine particles (PM2.5) into walking route calculations
was developed, and the calculated low air pollution inhalation route was compared against the
traditional shortest duration route. For the case study of a suburban road network in Riverside,
California, a low inhalation route could be found for 4% of the simulated walking trips in both
morning and afternoon periods. In the morning period, the low inhalation routes would reduce a
pedestrian's inhalation of traffic-related primary PM2.5 by 48% while increasing the walking
duration by only 2% on average. Similarly, in the afternoon period, the low inhalation routes
would reduce the inhalation by 44% while increasing the walking duration by merely 1% on
average. These results indicate that if people who choose to walk can accommodate a slight
increase in walking duration in some of their walking trips, they can substantially reduce the
inhalation of traffic-related primary PM2.5 on those trips. The presented concept of low air
pollution inhalation route can be enhanced by the integration of real-time traffic, weather, and
even roadside air quality data to result in navigation applications for pedestrians. This may be
particularly important for sensitive population groups such as school-aged children and seniors.

1. Introduction

Active transportation modes, such as walking and bicycling, are key elements of sustainable transportation systems. Walking is
advocated as a way to reduce automobile dependency, foster community livability, and boost the local economy. From a health
perspective, walking and bicycling help keep fitness and improve public health (Laverty et al., 2013; Schepers et al., 2015). However,
with increasing motor vehicle traffic, pedestrians often find themselves walking by streets with heavy traffic and are exposed to
various traffic emissions, such as nitrogen dioxide (NO2) and fine particles (PM2.5). Exposure to air pollutants has been shown to
contribute to a range of health problems. Furthermore, roadside measurements have revealed that concentration of traffic-related air
pollutants is elevated near roadways (Zhu et al., 2006; Hu et al., 2009). Among the various road users, pedestrians face risks of higher
exposure of particle and gaseous emissions due to their increased breathing rate during walking (O'Donoghue et al., 2007; Quiros
et al., 2013) as well as the longer time it takes to travel the same distance (for short trips within 3 miles), when compared with drivers
and transit riders.

For the issue of travelers’ exposure to air pollution, one area of research is measuring air pollutant concentration in the
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microenvironment of different transportation modes such as driving, walking, and bicycling (van Wijnen et al., 1995; Ragettli et al.,
2013; Karanasiou et al., 2014). Some studies went a step further by quantifying the exposure of air pollutants for travelers based on
measured or modeled air quality data (Ishaque and Noland, 2008; Gouge et al., 2010; Quiros et al., 2013; Shekarrizfard et al., 2016).
For example, Quiros et al. (2013) used a portable instrument to measure ultrafine particle (UFP) concentration and calculated UFP
inhalation of drivers, bicyclists, and pedestrians. The results indicated that respiratory UFP exposure (number of particles inhaled per
trip) was 30 times higher when walking as compared to driving with windows closed. Dewulf et al. (2016) and Sun et al. (2017)
utilized GPS data to assess the pollutant inhalation of active travelers at high temporal and spatial resolution. Another area of
research attempts to explain and predict travelers’ exposure to traffic-related air pollution (Hatzopoulou et al., 2013a; Bigazzi and
Figliozzi, 2015). For example, Bigazzi and Figliozzi (2015) estimated the effects of roadway and travel variables on bicyclist exposure
concentration, controlling for meteorology and background conditions. Bigazzi et al. (2016) analyzed exposure versus distance trade-
offs among roadway facility types for bicyclists, and recommended that low-traffic routes should be provided in bicycle networks.
Schepers et al. (2015) found that the introduction of bicycle paths and lanes, even along busy roads with mixed traffic, is likely to be
associated with health benefits, primarily due to increased physical activity.

Building on the measurement and modeling studies, several researchers have attempted to develop mitigation strategies (Hertel
et al., 2008; Hatzopoulou et al., 2013b; Pattinson et al., 2017), but only a few have proposed mitigation strategies that pedestrians
can proactively use to protect themselves from excessive traffic emission exposure. For instance, individuals were encouraged to use
less-busy street routes to reduce their exposure to vehicle emissions (McAuley and Pedroso, 2012). However, a less-busy street route
may not necessarily have a lower level of air pollutant concentration, for example, if it is downwind of a major roadway with heavy
traffic. Moreover, while information about air quality in U.S. cities is available (e.g., on http://www.airnow.gov/), it does not have
adequate resolution to support pedestrians’ route choice decisions.

In recent years, route planning and navigation tools that find travel routes between an origin and a destination are widely
available. These tools are available on several platforms (e.g., web-based tool, smartphone app, etc.) and for many travel modes
including auto, transit, and walking. As an example, Fig. 1 illustrates the web-based Google Map navigation tool for determining
walking routes (https://www.google.com/maps). The suggested route options are usually the shortest in terms of walking distance or
walking time. In the example in Fig. 1, the tool provides three different route options for a walking trip from home to school in
Riverside, California, that have the same walking distance and walking time. However, these routes may not result in the same
amount of traffic-related air pollution inhalation for the pedestrian. Based on the authors’ knowledge of the area, Magnolia Ave is a
major arterial with heavy traffic. Thus, the pedestrian would likely inhale a higher amount of air pollution if taking the blue dotted
route. Also, parallel to Magnolia Ave to the south is State Route 91 (SR-91) that carries high volumes of traffic and is often congested.
When the wind blows in the northwest direction, the blue dotted route would likely experience higher air pollutant concentration
levels due to its close proximity to this major emission source. Therefore, for this particular trip, the pedestrian may inhale a lower
amount of air pollution taking one of the two gray solid routes.

The main objective of this study is to determine whether and how much route choices, such as the one discussed earlier, can help
reduce pedestrians’ inhalation of traffic-related air pollution. In relation to that, another objective of this study is to evaluate the

Fig. 1. Three walking route options for a home-to-school trip in Riverside, California (source: https://www.google.com/maps).
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travel time impact of taking a lower air pollution inhalation route as opposed to the traditional shortest distance or shortest duration
routes. To meet these objectives, we opted for a modeling approach (instead of a measurement approach) so that the study could be
conducted for a large number of walking trips. We chose the Ramona neighborhood and the adjacent Arlington neighborhood in the
suburb of Riverside, California, as the study area. The city is generally automobile-centric and at the time of the study, the two
neighborhoods were engaged in a walkability improvement project led by the city (Center for Sustainable Suburban Development,
2013). The neighborhoods have well-connected long street blocks with sidewalk and mature tree canopies present for most arterials
(Riverside Neighborhood Walkability Recommendations, 2014). Fig. 2 maps the location of the neighborhoods and two nearby air
quality monitor stations, which provide critical inputs for the air pollutant concentration modeling and validation.

Note that in this study, we only considered primary PM2.5 because even short-term exposure to this pollutant can trigger changes
in several health indicators (Larsson et al., 2007; McCreanor et al., 2007; Weichenthal et al., 2014; Sinharay et al., 2017). We focused
on primary PM2.5 instead of secondary PM2.5, because traffic is the principal source of spatial variation in the concentration of air
pollutants in cities, especially where moderate or large point sources are located outside the area or are subject to strict emissions
controls (Jerrett et al., 2005). We studied only the morning and afternoon peak periods (for calendar year 2014) as traffic and
walking activities were relatively higher in these periods of the day.

2. Modeling street-level air pollutant concentration

The first part of the study was to model traffic-related air pollutant concentration in the study area at the street level so that
pedestrians’ inhalation of the air pollution could be estimated. The concentration prediction process involves multiple steps as shown
in Fig. 3. First, a digital map of roadway network was used as input for a traffic model to estimate traffic activity, in terms of flow and

Fig. 2. Neighborhoods in Riverside, California (credit: City of Riverside). Point A and Point B mark the weather station and the air quality mon-
itoring station used in this study, respectively.

Fig. 3. Traffic-related air pollution modeling process.
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speed, on each roadway link in the network. Then, the estimated traffic flow and speed were used in conjunction with an emission
model to estimate the corresponding traffic emissions on each roadway link. Finally, these emission estimates were input into a
dispersion model to estimate air pollution concentration at receptor locations.

2.1. Traffic activity and emissions modeling

Traffic activity data (in terms of traffic volume and speed in the calendar year 2014) on 743 roadway links which cover the study
area were obtained directly from the Riverside County Transportation Analysis Model (RIVTAM) (Riverside County Transportation
Department, 2008). The data were available for four periods: morning (AM; 6–9 a.m.), midday (MD; 9 a.m. to 3 p.m.), afternoon (PM;
3-7 p.m.), and nighttime (NT; 7 p.m. to 6 a.m.). Traffic volume data include separate values for six vehicle types: 1) DA - passenger
car driving alone, 2) SR2 - passenger car shared ride with 2 persons, 3) SR3 - passenger car shared ride with 3 or more persons, 4)
LHDT - light-heavy duty trucks, 5) MHDT - medium-heavy duty trucks, 6) HHDT - heavy-heavy duty trucks. Total volume was the
summation of the volumes of all the six vehicle types (Fig. 4). On the other hand, traffic speed data only has one value that represents
the speed of all vehicle types.

Next, emission factors were obtained from the California Air Resources Board's EMFAC model version 2011 (California Air
Resources Board, 2016c) for the fleet composition in Riverside County in 2014. EMFAC is the regulatory emission model for Cali-
fornia. PM2.5 emission factors for speed from 5mph to 70mph were obtained for multiple vehicle categories in EMFAC, which were
then matched with vehicle types in RIVTAM. After that, the total PM2.5 emission on each roadway link was calculated using Eq. (1):

∑= ∙ ∀ = …E q e v i( ) 1, 2, 3, ,743i
j

i j i j,
(1)

where Ei is total emission on roadway link i (grams); qi,j is volume of vehicle type j on roadway link i (vehicles per hour); and e(vi)j is
emission factor of vehicle type j for the speed on roadway link i (grams per mile). The calculation was performed for all the roadway
links not only in but also around the study area so that the effect of traffic-related air pollution carried into the study area by wind
would be accounted for.

2.2. Air pollutant concentration modeling

CALINE4 (California Department of Transportation, 2016) was used to model PM2.5 concentration in the study area. It is a line
source dispersion model designed to estimate traffic-related air pollution near transportation facilities. CALINE4 is based on the
Gaussian diffusion equation and employs a mixing zone concept to characterize pollutant dispersion over the roadways. It requires an
array of model inputs related to roadway (e.g., type, coordinates, height, mixing zone width), receptor (e.g., coordinates, height),
traffic (e.g., link flow, link emission factor), and meteorology (e.g., wind speed and direction, air temperature, stability class).

Meteorology inputs were obtained from the March Air Reserve Base weather station 300 m north of the study area, shown as Point
A in Fig. 2 (California Air Resources Board, 2016b). As an example, Fig. 5 shows wind roses derived from the weather data for the
entire year of 2012 (newer data were not available at the time of the study). On average, the weather data show that the air
temperature peaked and the humidity reached the lowest point around 2:00 p.m. The wind speed increased significantly in the
afternoon compared with that in the morning. This is a good representation of inland Southern California weather, where strong solar
radiation during noon time drastically increases surface temperature, which induces more atmospheric turbulence.

To estimate high-resolution primary vehicular PM2.5 concentration values at the street level, receptors were set up as a
50m×50m gridded network at the height of 1.5 m. It yielded 18,300 receptors in the study area with 743 roadway links. For other
modeling input parameters, roughness length (30 cm) was based on surface characteristics of the city of Riverside (South Coast Air
Quality Management District, 2016). Molecular weight, setting velocity, deposition velocity values were all zero. One-hour average
concentration was needed, so the average period was set as one. Altitude for all receptors were retrieved from a digital elevation map
database (U.S. Geological Survey, 2016), and extracted using ArcMap raster process tools (ESRI, 2016a). All data were written into
matrices and saved in comma-separated values (CSV) files.

Since CALINE4 allows only 20 roadway links and 20 receptors to be modeled at a time, several thousands of model runs were
executed in batch mode using a MATLAB script (Mathworks, 2016). For each receptor, the modeled PM2.5 concentration values from
all the model runs were summed together to result in the total PM2.5 concentration estimate.

Due to the limited resources for the study, it was not practical to conduct expansive measurements of PM2.5 concentrations over
the study area. To evaluate the reasonableness of the modeling results, we obtained historical PM2.5 measurement data from the
government's air quality monitoring station closest to the study area, i.e., Point B in Fig. 2 (California Air Resources Board, 2016a),
which is about 600m away from the SR-91 freeway. The median observed PM2.5 concentration values by period of day are shown in
Fig. 6 where the concentration is highest during the morning period and lowest during the afternoon period. Fig. 6 also shows the
median values of estimated PM2.5 concentration by period of day at the same location, which have the same trend as the observed
values. The differences in the magnitude of concentration are partly because the observed concentration values are the total ambient
concentration contributed by all the emission sources whereas the estimated values only account for traffic sources. Nevertheless,
these values agree with findings in the literature that generally in urbanized areas in the United States, traffic contributes to about a
quarter or less of the total ambient PM2.5 concentration (e.g., Karagulian et al., 2015).

The estimated PM2.5 concentration values at the receptors were used to create concentration contour maps (Fig. 7) using the
Kriging tool in ArcMap software (ESRI, 2016b). Although the traffic flows in both periods were similar, PM2.5 were generally lower in
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the afternoon than in the morning. In the morning the high concentration plume from the SR-91 freeway was approximately one
kilometer wide, while in the afternoon the plume only spread a couple of hundred meters from the freeway. The contour maps were
used to calculate PM2.5 concentration on each roadway link by averaging the values at the starting, mid, and ending points of the link.

Fig. 4. Total volume (vehicles per hour) for morning (a) and afternoon (b) periods.
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3. Evaluating impact of route choices on pedestrians’ air pollution inhalation

3.1. Estimating pedestrians’ inhalation of traffic-related air pollution

Studies of human exposure to traffic-related air pollution mostly focus on inhalation intake in specific microenvironments (Ott
et al., 2006, Quiros et al., 2013). Several exposure models have been developed and used by researchers and practitioners. For
example, the Hazardous Air Pollutant Exposure Model (HAPEM), developed by the U.S. Environmental Protection Agency, is de-
signed to simulate long-term and large-scale exposure to air toxics (U.S. Environmental Protection Agency, 2016). Since the exposure
scenario in this study is a pedestrian's direct exposure to out-of-tailpipe PM2.5 in a near-road outdoor microenvironment, we used
inhaled mass as a metric to quantify the level of exposure. It is a function of PM2.5 concentration during the trip, duration of the trip,
and breathing rate of the pedestrian. In this study, PM2.5 concentration was estimated for each roadway link. Therefore, inhaled mass
of PM2.5 for pedestrian k walking on roadway link i can be expressed as in Eq. (2), assuming that the breathing rate of the pedestrian
remains the same throughout the roadway link.

= ∙ ∙IM c t BRi k i i k i k, , , (2)

where IM is inhaled mass of PM2.5 (µg); c is PM2.5 concentration (µg/m3); t is walking duration (minutes); BR is breathing rate of the
pedestrian (m3/minute). The walking duration on a roadway link was calculated based on the link length (meters) and the assumed
walking speed of an average pedestrian–1.2m/s (Knoblauch et al., 1996; Lam and Cheung, 2000; Fitzpatrick et al. 2006). The
breathing rate of an average pedestrian is assumed to be 0.02m3/min based on health studies (Adams, 1993).

Fig. 5. Wind directions during the morning (a) and afternoon (b) periods for year 2012.

Fig. 6. Comparison of variation in median PM2.5 concentration by period of day between observed values (AM, MD, PM, NT) and estimated values
(AM*, MD*, PM*, NT*) for year 2014.
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3.2. Incorporating pedestrians’ pollution inhalation into route calculation

In general, routing algorithms find a route in the road network that has the lowest travel costs defined by a cost function. In the
case of traditional routing, travel distance or duration is often used as the single cost in route calculation. Because walking speed is
typically assumed to be a constant, the shortest distance and shortest duration routes for pedestrians are essentially the same. In this
study, pedestrians’ air pollution inhalation was incorporated into the route calculation by including estimated inhaled mass of PM2.5,
in addition to walking duration, in the cost function:

Fig. 7. Estimated PM2.5 concentration contour maps for morning (a) and afternoon (b).

J. Luo et al. Journal of Transport & Health 10 (2018) 111–123

117



= ∙ ′+ − ∙ ′Cost w IM w t(1 )i i i (3)

′ =IM IM
IMi

i

max (4)

′ =t t
ti

i

max (5)

where Costi is the travel cost of roadway link i; w is weighting factor; IMmax is the maximum value of the estimated inhaled mass of
PM2.5 among all the roadway links (µg); and tmax is the maximum walking duration among all the roadway links (minutes). If w is set
as 0, then the route calculation will yield the traditional shortest duration route. If it is set as 1, then the calculated route will be the
least air pollution inhalation route. For many trips, the least pollution inhalation route may not be practical because it could be a
detour that increases the walking duration significantly. In the next section, we discuss the setup of the routing experiment, a
sensitivity analysis of the w value, and the tradeoff between walking duration increase and air pollution inhalation reduction.

3.3. Routing experiment

To evaluate walking route choices, we used multiple origin-destination pairs in the study area to represent home-to-amenity trips.
Specifically, the centroids of 242 residential blocks selected from U.S. Census 2010 were used as the origins, and 139 addresses of a
variety of amenities obtained from Google Maps were used as the destinations (see Fig. 8).

Amenities within 1 mile of each origin were used as potential destinations, resulting in more than 9,000 home-to-amenity walking

Fig. 8. Location of homes and amenities used in routing experiment.

Fig. 9. Sensitivity analysis results of weighting factor for morning period.
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trips (Carr et al., 2010). Among different countries and areas, the daily walking time and distance vary significantly. For instance, the
analysis of commute pattern reveals that the average walking distance per trip is 0.53 km (km) in London, 1.21 km in San Diego, and
0.94 km (approximately 14-16 min) in Los Angeles (Moovit Insights, 2018). Considering the long street blocks in the study area and
with the attempt to capture a wide range of walking trips, we chose 30min as the maximum threshold for one-way trips in this study,
which resulted in 1,142 unique trips. Among the 1,142 trips, there are 180 trips (16%) within 10min, 417 trips (36%) between 10 to
20min, and 545 trips (48%) between 20 and 30min. We conducted a sensitivity analysis by varying the weighting factor w from 0.1
to 1.0 and plotted the tradeoff between walking duration increase and air pollution inhalation reduction, for both morning and
afternoon periods.

For each trip, both the shortest duration route (w = 0 in Eq. (3)) and the low inhalation route (w = 0.1, 0.2, 0.3… 1.0 in Eq. (3))
were determined. For both routes, the total IM of PM2.5 and the total walking duration for the trip were calculated.

Fig. 9 shows that in the morning period, as the w value increases, the average walking duration and the number of low inhalation
routes increase as well. However, the average IM reduction of the low inhalation routes does not increase significantly, and even
decreases in some cases. This is because higher w values result in longer walking duration, which excludes a number of trips as a
result of the time increase limit. A similar trend is also observed for the afternoon period, as shown in Fig. 10.

To balance between the IM reduction and the undesired walking time increase, we chose the value of w to be 0.8 and 0.6 for the
morning and afternoon periods, respectively.

3.4. Results and discussion

In this study, a low inhalation route is designated as an “improved trip” if the walking duration of the route does not increase by
more than a time increase limit, as compared to the shortest duration route. We set the time increase limit to be 10%, but this value
can be changed based on a pedestrian's preference. Additionally, the three cases of time increase limit, i.e., 10% (improved trips),
20%, and 30%, are compared in Table 1. Pedestrians can select the limit based on their preferences. For example, if a pedestrian is
willing to walk for a longer time to reduce a higher amount of air pollution inhalation, then he or she could choose a higher time
increase limit.

As shown in Table 1, when the time increase limit is 10%, improved trips could be found for about 4% of the walking trips, both in
the morning and in the afternoon. On average, the improved trips would reduce the inhaled mass of PM2.5 in the morning by 48%
while increasing the walking duration by only 2%. In the afternoon, the improved trips would reduce the inhaled mass of PM2.5 by
44% while increasing the walking duration by merely 1% on average. As the time increase limit becomes higher, more low inhalation
routes can be found. Note that, as seen in Fig. 7, the study area is upwind of the SR-91 freeway. Therefore, the overall level of traffic-
related air pollution is relatively low as compared to that of the neighborhoods downwind of the freeway. It is expected that more

Fig. 10. Sensitivity analysis results of weighting factor for afternoon period.

Table 1
Statistics of low inhalation routes.

Max trip travel time increase Analysis period Trips under 30 min Low inhalation route PM 2.5 IM reduction (%) Walking duration increase (%)

Trips % Max Mean Max Mean

10% Morning 1,142 50 4.4 86.1 48.1 9.5 1.5
Afternoon 1,142 49 4.3 86.8 43.9 9.5 1.2

20% Morning 1,142 57 5.0 86.1 50.0 19.6 3.2
Afternoon 1,142 57 5.0 86.8 46.9 19.6 3.1

30% Morning 1,142 63 5.5 86.1 50.9 26.2 5.0
Afternoon 1,142 63 5.5 86.8 50.2 26.2 4.9
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improved trips would be found in those neighborhoods where the pollutant plumes from the freeway extend into.
Fig. 11 shows the scatter plots of the reduction in inhaled mass of PM2.5 versus the increase in walking duration with the time

increase limit of 30% (also includes 10% and 20%). The data points in both plots are mostly clustered on the left side of the plots,
indicating that for the majority of the trips, the pedestrians could considerably reduce the amount of PM2.5 inhaled if they accept a
slight increase in walking duration.

We also analyzed the impact of waiting time at roadway intersections on the amount of air pollution inhaled. On average, the
roadway links in the study area have a length of 314 m, which will take 4.4 min to traverse at a walking speed of 1.2 m/second. The
average inhaled mass on each link, based on Eq. (2), is 0.049 µg in the morning and 0.026 µg in the afternoon. If we assume that the
average waiting time of pedestrians at an intersection varies from 1 to 10 seconds (Huang and Cynecki, 2001; Shirazi and Morris,
2016), then the air pollution inhalation while waiting at the intersection will range from 8.7 × 10-5 µg to 8.7 × 10-4 µg in the
morning, and 4.7 × 10-5 µg to 4.7 × 10-4 µg in the afternoon. Therefore, waiting at intersections will add an extra 0.2% to 1.8% to
the overall inhaled mass. This range will vary by trip length, specific traffic condition at intersections, and individual pedestrians’

Fig. 11. Reduction in PM2.5 inhalation versus increase in walking duration.

Fig. 12. Example of an improved trip in the study area.
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physical condition.
Fig. 12 illustrates an example of improved trips. It is a trip between a house and a school in the study area. The shortest duration

route is shown in pink while the improved trip is shown in green. The shortest duration route is the same both in the morning and in
the afternoon. The same is true for the improved trip. When overlaid on the PM2.5 concentration maps as in Fig. 12, it can be clearly
seen that the improved trip traverses roadway links with relatively lower PM2.5 concentration. In the morning, the improved trip
would reduce inhaled mass of PM2.5 by 68% with a mere 2% increase in walking duration as compared to the shortest duration route.
In the afternoon, the improved trip would result in a 40% reduction in inhaled mass of PM2.5 with a 2% increase in walking duration.
For this particular example, the slight increase in walking duration coupled with the significant reduction in the inhaled mass of
PM2.5 could make the improved trip appealing for students and parents who are aware of the health effects of traffic emissions.
Similarly, other residents in the study area could apply such information in making route choice decisions for their walking trips (e.g.,
seniors walk from home to restaurant, pharmacy, etc.).

4. Conclusions and future directions

Pedestrians often face risks of inhaling a high amount of traffic-related air pollution due to their proximity to the emission sources
and increased breathing rates during walking. Many studies have investigated the relationships between walking and exposure to
traffic-related air pollution. However, very few have sought mitigation measures that pedestrians can proactively use to protect
themselves from excessive exposure and reduce the amount of air pollution inhalation. This study examines route choices as one such
measure and evaluates its potential through modeling and simulation. Specifically, a method for incorporating the estimated inhaled
mass of PM2.5 into walking route calculation was developed, and the calculated low inhalation route was compared against the
traditional shortest duration route. For the case study of a suburban road network in Riverside, California, it was found that among
the samples of 1142 walking trips under 30min:

• A low inhalation route could be found for about 4% of the walking trips in both morning and afternoon periods.

• On average, the low inhalation routes would reduce the inhaled mass of traffic-related primary PM2.5 in the morning period by
48% while increasing the walking duration by only 2%.

• In the afternoon period, the low inhalation routes would reduce the inhaled mass of traffic-related primary PM2.5 by 44% while
increasing the walking duration by merely 1% on average.

These results indicate that if pedestrians can accommodate a slight increase in walking duration in some of their walking trips,
they can substantially reduce their inhalation of traffic-related primary PM2.5 on those trips. This may be particularly important for
sensitive population groups such as children, seniors, and people with respiratory health problems. Note that the results presented in
this paper are for the specific road network topology, traffic conditions, and weather patterns in the study area. The impacts of route
choices may be different in other areas.

The public should be encouraged to harness the health benefits of walking, and the low air pollution inhalation routing concept
presented in this paper can be applied in several ways. For example, in the short term it can be used to assist Safe Routes to School
programs (McAuley and Pedroso, 2012) to select walking routes that address both safety and air quality concerns for children in
heavy-traffic areas. In the long term, the concept can be applied in conjunction with other efforts by cities, such as promoting clean
vehicles and expanding sidewalk network, in order to improve accessibility, safety, and air quality for travelers in a holistic manner.

In terms of future research directions, this study has established a framework for determining low air pollution inhalation routes
for pedestrians. Several aspects can be improved and expanded in the future, for instance:

• Accounting for other sources of emissions and background concentration,

• Refining walking speed and breathing rate assumptions by using values specific to demographic groups such as school-aged
children,

• Evaluating the benefits of low inhalation route choices in other settings (e.g., urban road network with more complex terrain), and

• Integrating with real-time traffic, weather, and even roadside air quality data to result in navigation applications for pedestrians.
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