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SUMMARY:  Biomedical research is plagued with problems of missing data, especially in 

clinical trials of medical and behavioral therapies adopting longitudinal design.  After a 

comprehensive literature review on modeling incomplete longitudinal data based on the full-

likelihood functions, this paper proposes a set of imputation-based strategies for implementing 

three advanced models for handling intermittent missing values and dropouts that are potentially 

nonignorable according to various criteria. In multiple partial imputation (MPI), intermittent 

missing values are first imputed several times. Then, each partially imputed data set is analyzed 

using selection, pattern-mixture, or shared-parameter models to deal with dropouts. If 

imputations are additionally created for dropouts, it is a 2-stage version of MPI. Depending on 

models used for making imputations, various strategies can offer a framework for analyzing the 

sensitivity of parameter estimation to the assumptions of the missingness mechanism. For 

illustration, both continuous and dichotomized binary data from a smoking cessation clinical trial 

are analyzed. Both likelihood-based and Markov Chain Monte Carlo (MCMC) based inferences 

are also described. 

 
KEY WORDS:  Multiple Partial Imputation; Selection Model; Pattern-mixture Model; Markov 

Transition Model, Noingnorable Dropout; Intermittent Missing Values. 

 
 

1. INTRODUCTION 

 

In many fields of biomedical research, longitudinal studies are necessary because disorders 

frequently last many years. Only by measuring each subject repeatedly throughout a period of 

time can the efficacy of a treatment be investigated. Missing data are common in longitudinal 
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studies, often reflecting the chaotic behavior of participants, e.g., drug addiction [1,2] and mental 

health problems [3,4]. The proportion of missing data is sometimes noticeably large, e.g., as 

large as 70% at termination in a randomized study of buprenorphine versus methadone [5]. 

Although investigators may devote substantial efforts to minimize the number of missing values, 

some amount of missing data is inevitable in the practice of randomized medical clinical trials.  

There are a number of different methods for analyzing longitudinal data containing missing 

values, with or without imputations. According to Little and Rubin [6], more than ten options of 

imputation methods can be used to analyze incomplete longitudinal data, e.g., last observation 

carried forward, mean imputation, hot-deck imputation, etc. [4]. Likelihood-based or semi-

parametric methods without imputation are of most common and include complete-case analysis, 

generalized linear mixed models [7], marginal models using generalized estimating equations [8], 

and Markov transition models [9]. These methods have been implemented into mainstream 

software packages (e.g., SAS, S-plus/R, and SPSS), which treat incomplete longitudinal data as 

sequences of unequal length [10].   

In all above methods, missing values are ignored from consideration. Analyses based on 

“ignorabiltiy” could result in biased estimates of treatment effects unless ignorable missingness 

mechanisms have been identified. Unfortunately, there is often evidence that missing values in 

longitudinal data are “nonignorable” [11-13].  

In dealing with nonigborable missing values, advanced methods have been developed in 

the past decade by modeling the joint distribution of the indicators of missingness pattern and the 

values of observed and potentially-observed repeated measures. Accordingly, the likelihood 

function based on this joint distribution is called the full-likelihood function [14]. Literature 

reviews [12, 15] indicate that there are at least three ways to model this joint distribution: (1) 
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outcome-dependence, where missingness indicators are conditioned on the values of repeated 

measures; (2) pattern-dependence, where the distribution of repeated measure values is a mixture 

of distributions for subjects within distinct sub-groups determined by the patterns of missingness; 

and (3) parameter-dependence, where repeated measure values and missingness indicators are 

conditional independent given a group of parameters shared by the two parties. Correspondingly, 

there are three modeling strategies: selection models, pattern-mixture models, and shared-

parameter models.  

In practice, the limitation with any of these models is that they are sensitive to the 

assumptions made on repeated-measures models and missingness mechanisms [16-18]. As 

shown by Molenberghs et al. [10], different analysis methods can have distinct impacts on the 

conclusions of the same study. In this article, the idea of using sensitivity analysis is adopted 

where, given a practical data set, various models with different missing-data assumptions are 

applied to the same data.  

By differentiating intermittent missing values from dropouts, the strategy of multiple 

imputation [19] provides a useful tool in conducting sensitivity analysis. A first approach is to 

make imputations only for the intermittent missing values, and then analyze the partially-

imputed data sets using selection, pattern-mixture, or shared-parameter models to handle 

nonignroable dropouts. This approach was called multiple partial imputation (MPI) by Yang and 

Shoptaw [20]. The second approach is to conduct imputations for intermittent missing values and 

dropouts in a sequential order, a method called 2-stage MPI in this article. The intermittent 

missing values and dropouts are treated separately because there is usually empirical evidence 

suggesting different mechanisms for the two types of missingness. For example, there might be 

auxiliary information suggesting that intermittent missing values are ignorable while dropouts 

 4



are nonignorable. By specifying various assumptions in the development of imputation models, 

the sensitivity of the estimation of the parameters of interest is investigated. This imputation-

based sensitivity offers a flexible framework within which the models for imputation and the 

ones for analysis may be different.  

 

2. A MOTIVATING STUDY 

 

The development of this work was closely related to the analysis of a clinical trial of smoking 

cessation in methadone-maintained tobacco smokers [21]. The demonstration study tested the 

effectiveness of a relapse prevention program (RP) and a contingency management program 

(CM), alone and in combination, for improving smoking cessation outcomes using nicotine 

trans-dermal pharmacotherapy in methadone maintained cigarette smokers. A total of 174 

participants who received nicotine replacement therapy during the study were randomly assigned 

into one of the four behavioral treatment groups: 42 subjects were assigned to a Control group 

that received no behavioral therapy; 42 subjects to RP-only; 43 subjects to CM-only; and 47 

subjects to a combined RP+CM condition. Thirty-six measures of carbon monoxide levels, 

assessed from expired breath, were taken over the 12-week study period, thrice weekly.  

Ignoring missing values, Figure 1 depicts the mean values of observed carbon monoxide 

levels for the four treatment groups, after a log(1+y) transformation. Also depicted are standard 

deviations and point-wise ANOVA analysis results with p-values smaller than 0.01. Nonetheless, 

the 36 p-values cannot be easily combined in making inferences on overall differences and the 

comparisons based on available values are potentially biased due to certain mechanisms of 

missingness. For example, if smokers in the three treatment groups dropped out with higher 

 5



probabilities given higher level of observed previous carbon monoxide, while smokers in the 

control group dropped out completely at random, then mean levels of carbon monoxide in the 

treatment groups would be lower than those in the control group at visit times close to the 

termination of the study, even though there is no actual treatment effects.  

<INSERT FIGURE 1 HERE> 

 

In Figure 2, the patterns of missingness in this study are plotted for each treatment group, 

after a sorting process on the dropout times. From the graphs, it is seen that missingness due to 

dropout corresponds to monotonic forms, while intermittent missingness does not associate with 

any specific simple patterns. At the termination of the study, up to 36% of the participants had 

withdrawn. An overall percentage of 4.3% of intermittent missing values are seen. The patterns 

and rates of missingness in this study are typical in substance abuse research.  

<INSERT FIGURE 2 HERE> 

 

3. INCOMPLETE LONGITUDIAL DATA ANALYSIS 

 

For a longitudinal data set with balanced design, J  repeated measures are potentially observed 

on each of the  subjects at times  (N iJi tt ,...,1 Ni ,..., ; Jj ,...,1= ). For the following discussion, 

we use capital symbols to represent variables, e.g., ,…, and  indicating response variables, 

and ,…,  indicating covariates or explanatory variables. Symbols in lower case represent 

observed or missing values:  denoting the value of  and  denotes the value of  

recorded at time  ( ;

1Y JY

1X KX

ijy jY ijkx kX

ijt Ni ,...,1= Jj ,...,1= ; Kk ,...,1= ). Bold symbols represent vectors or 

1=
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matrices, e.g., the vector  indicating values of repeated measures and the matrix 

 consisting of values of time-varying or -independent covariates for the  subject. 

Assuming that repeated measures are distributed as multivariate normal, a repeated-measures 

model with structured covariance matrix can be written as 

T
iJii yy ),...,( 1=y

KJijki x ×= ][X thi

iii εβXy +=  where  

and  is a vector of fixed-effects parameters. Determined by the parameterization of the 

covariance matrix, various forms of mixed models can be derived [22].   

),(~ ii N Σ0ε

β

When some values of repeated measures are missing, we partition  into two parts, 

, with  indicating the observed values, and indicating values that would 

be observed if they were not missing. A vector of missingness indicators is defined as 

 with elements  (or 1) indicating whether  is observed (or missing). 

Theoretically, the joint distribution of the observed data (i.e., ) and missingness patterns (i.e., 

) should be modeled in statistical analysis based on the full likelihood function, 

iy

),( mis
i

obs
ii yyy = obs

iy mis
iy

T
iJii rr ),...,( 1=r 0=ijr ijy

obs
iy

ir

                                                                           (1) ∝),|,( i
obs
iL ryφθ ∏∫

=

N

i

mis
iii df

1

),|,( yφθry

where θ  represents parameters of the model for repeated measures, and φ  represents parameters 

of the missingness mechanism. According to the possible causal path, there exist three ways to 

factor the joint distribution of the complete data and missingness indicators: outcome-dependent 

factorization, pattern-dependent factorization, and parameter-dependent factorization. 

Accordingly, there are three models available for incomplete longitudinal data analysis. 

Selection Model factors the joint distribution  into a marginal distribution 

for   and a conditional distribution of  given , i.e., 

),,|,( φθXry iiif

iy ir iy

),,|(),|(),,|,( φXyrθXyφθXry iiiiiiii fff = ,                                (2) 
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where  can be interpreted as the “self-selection of the  subject into a specific 

missingness group.”  

),,|( φXyr iiif thi

Pattern-Mixture Model, which is a pattern-dependent model, assumes that distribution of 

repeated measures varies with the missingness patterns and that joint distribution is factored as 

),|(),,|(),,|,( φXrθXryφθXry iiiiiiii fff = .                                  (3) 

Assuming that there are P  patterns of missingness in a data set, the marginal model of  is a 

mixture model, 

iy

                                                                                              (4) ∑
=

==
P

p
p

p
iiii prff

1

)( ),,|()( πθXyy

where  represents the parameters of  in the  pattern, )( pθ )( if y thp ),|Pr( φXiip pr ==π , and  

numerates the 

ir

P  patterns. In pattern-mixture models, ,…, and   can be different in 

dimensionality or in value.  

)1(θ )(Pθ

Shared-Parameter Model assumes that  and  are conditionally independent of each 

other, given a group of parameters , i.e., 

iy ir

iξ

                                   iiiiiiiiiii dffff ξξφXξrθXξyφθXry ∫= )(),,|(),,|(),,|,(                     (5) 

From the point view of causation, shared “parameters”  play the role of a confounder for the 

relationship between  and ; they can be either observable variables (e.g., gender) or latent 

variables (e.g., random-effects). For the case of observed confounders, model (5) is in fact a 

mixture model and the analysis can be conducted by a stratification analysis. 

iξ

iy ir

 

3.1. Ignorable versus Nonignorable 
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In certain biomedical studies, both missingness patterns and values of repeated measures are of 

interest. For example, in a heart-disease study, the repeatedly measured blood pressures and the 

survival lengths of the patients can be modeled jointly. In these scenarios, the above selection, 

pattern-mixture, and shared-parameter models can be applied directly or after some modification 

[23]. In a majority biomedical studies, however, only the parameters of repeated measures 

themselves are of interest, while parameters related to missing values are usually viewed as 

nuisance. In this latter case, it is desirable that missing data be ignored.  

Within the setting of outcome-dependent missingness, the concept of “ignorability” was 

defined and extensively addressed. According to Rubn [24], missing values are ignorable when (i) 

 is independent of , given  and ; (ii) θ  and φ  are distinct. Under this ignorability, 

the likelihood function for θ  can be separated from the log-likelihood function for φ , i.e., 

. In Little and Rubin [6], outcome-dependent 

missingness was further divided into sub-categories: missing completely at random (MCAR), 

missing at random (MAR), and not missing at random (NMAR).  

ir
mis
iy obs

iy iX

),|(φ)|(),|,( i
obs
i

obs
ii

obs
i lll ryyθryφθ +=

For intermittent missing values, ignorability can be interpreted as whether the values can be 

interpolated from neighborhood observed values. For dropouts, the assumption corresponds to 

whether missing values after dropout can be extrapolated from the previous observed values. In 

certain applications, occasional omission or nonresponses are due to reasons that are purely 

random in nature, e.g., schedule conflicts or bad weather, thus, can be assumed to be ignorable. 

Nonetheless, subjects withdraw from a study usually because of study-related reasons, e.g., being 

unsatisfactory with the intervention or notorious side effects of a medical therapy, hence are 

nonignorable [13, 25-26]. 
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The definition of ignorability should be extended to meet the needs of pattern-mixture and 

shared-parameter models. Adopting an informal way, this article redefines “ignorability” as a 

condition under which observed data can be used to estimate θ  without bias.  For selection and 

pattern-mixture models, so long as  and  are independent of each other, given  and , 

missing data can be ignored. For shared-parameter models, ignorability corresponds only to the 

case where  are observable confounders, which are usually viewed as a subset of . Unless 

 and share no random-effects, a shared-parameter model would generally associate with a 

nonignorability assumption.  

ir
mis
iy obs

iy iX

iξ iX

ir iy

 

3.2 Selection and Pattern-Mixture Models for Modeling Dropouts 

 
Because of the monotone format of dropout patterns, it is easier to handle dropouts than 

intermittent missing values. Here, we are especially interested in the parametric selection and 

pattern-mixture models for nonignorable dropouts.  

 

3.2.1 A Selection Model for Dropouts 

 

Let us denote  as the dropout time for the  subject, where 
idt

thi 12 +≤≤ Jdi  ( 1+= Jdi  

indicates a subject who has completed the study). Then, missingness indicators  is a vector of 

 consecutive zeros followed by 

ir

1−id idJ −+1  consecutive ones. Suppressing the dependence 

on covariates, the selection model of Diggle and Kenward [11] assumes: (i) 1)|1Pr( =>= iij djr ; 

(ii) for ,  depends on  and its history ; and (iii) the idj ≤ )1Pr( =ijr ijy T
idiij i

yy ),...,( 11 −=H
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conditional distribution of  given  is . The full likelihood function for the  

subject is expressed as 

ijy ijH ),|( θHijij yf thi

              ,                    (6) [ ] )|1Pr(),(1),|(),|,(
1

1

1

1
ii

ii

idid

d

j
ijijj

d

j
ijiji

obs
ii rypyfL HHθHryφθ =−∝ ∏∏

−

=

−

=

where , indicating the probability of dropout at time . 

Dropout probability 

),,|1Pr(),( φHH ijijijijijj yryp == ijt

∫ === dyyfyrr
iiiii ididijididid ),|(),,|1Pr()|1Pr( θHφHH , if 1+< Jdi ; and 

, if . A natural choice for calculating  is a 

logistic regression model, 

1)|1Pr( ==
ii ididr H 1+= Jdi ),,|1Pr( φH ijijij yr =

                                        210)),,|1(Pr(logit φφ ijijijijij yyr ++== φHφH ,                                       (7) 

where 02 ≠φ  implies that dropout process is outcome-dependent nonignorable. 

The full log-likelihood function of the whole data set for ( , ) can be partitioned into θ φ

                                                 ),()()(),( 321 θφφθφθ llll ++= ,                                                (8) 

where  corresponds to the observed-data log-likelihood function for θ , 

and  and 

∑
=

=
N

i

obs
ifl

1
1 )}(log{)( yθ

∑∑
=

−

=

−=
N

i

d

j
ijijj

i

ypl
1

1

1
2 )},(1log{)( Hφ ∑

≤≤

==
JdNi

idid
i

ii
rl

;
3 )}|1log{Pr(),( Hθφ  together 

determine the log-likelihood function of dropout process, which contains partial information on 

. If dropouts are ignorable, then  depends only on φ  and can therefore be absorbed 

into . Thus estimation of  can be solely derived from .  

θ ),(3 φθl

)(2 φl θ )(1 θl
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For a normal longitudinal data set, with parameters , the 

conditional distribution  is a scalar normal distribution, and the marginal 

distribution  is a multivariate-normal distribution.  

))(,(~ αΣβXy ii N TTT ),( αβθ =

),|( θHijij yf

)(),...,(),|( 11

1

1

obs
iidi

d

j
ijij fyyfyf

i

i

yθH == −

−

=
∏

Selection models originated from the Tobit model of Heckman [27]. Verbeke and 

Molenburghs [13] addressed the theoretical translation from Tobit model to Diggle and 

Kenward’s selection model. Subsequently, Troxel, Harrington, and Lipsitz [28] extended it to the 

non-monotone setting. Selection models for categorical and other type of measures were also 

developed; see Fitzmaurice, Molenberghs, and Lipsitz [29], Molenberghs Kenward, and Lesaffre 

[30], Nordheim [31], and Kenward and Molenburghs [32].  

 
3.2.2 Pattern-Mixture Models for Dropouts  

 

The high sensitivity of selection modeling has led to a growing interest in patter-mixture 

modeling [33-34]. After initial introduction [35-36], they are receiving more attention lately for 

continuous repeated measures (e.g., [15], [37-40]) and for categorical measures (e.g., [41-43]). 

As seen in (3), a pattern-mixture model for dropouts factorizes the joint distribution 

 into the product of the marginal distribution  and the conditional 

distribution , where 

),|,( φθy ii df ),|( φX iidf

),|( )( id
iif θXy 1,...,2 += Jdi  indicate the dropout time. The difficulty in 

pattern-mixture modeling of premature dropouts regards parameter identification. For any 

subject with , the sub-vector of  describing  is generally unidentified, unless 

certain restrictions are applied. Thijs et al. [34] proposed a framework for identifying restrictions. 

By suppressing the subscript “ i ”, the complete data density for pattern 

1+< Jdi
)( idθ mis

iy

j  is given by  
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                                                  ,                                             (9) )|()()( obsmis
j

obs
jj fff yyyy =

where , and  is the density for the conditional distribution, 

which can not be identified within the  pattern. By borrowing information from observed data 

in other patterns where  is observed (

T
j

obs yy ),...,( 1=y )|( obsmis
jf yy

thj

mis
sy y∈ Jjs ,...,1+= ), it is possible that  be 

identified. By introducing some proper weights (i.e., ), we can identify 

 by 

)|( obsmis
jf yy

1=∑
=

J

st
stω

),...,|( 11 −ssj yyyf

                              ,  ∑
=

−− =
J

st
sststssj yyyfyyyf ),...,|(),...,|( 1111 ω Jjs ,...,1+= .                      (10) 

Using this restriction method, the full density in (10) can be expressed as 

                                    .                           (11) ∏ ∑
−−

= −=
−−−− ⎥
⎦

⎤
⎢
⎣

⎡
=

1

0
11, ),...,|()()(

jJ

s

J

sJt
sTsTttsT

obs
jj yyyfff ωyy

Depending on the specification of stω ’s, various schemes of identification can be 

implemented. For example, if all the weights are set to positive values, this will correspond to the 

identification using “available case missing values” (ACMV; [39]). It is of special interest to us 

because it is the natural counterpart of MAR in the outcome-dependence missingness framework.  

The restriction called “complete-cases missing variable” (CCMV; [35]) identifies 

 by borrowing information only from the completers, i.e., ),...,|( 11 −ssj yyyf

                                 ),...,|(),...,|( 1111 −− = ssJssj yyyfyyyf ,  Jjs ,...,1+= ,                      (12) 

which is a special case of (11) with 1=sTω  and 0... 1,1, ==== −+ Tsssss ωωω .  

Another special case of identification is via “neighboring case missing values” (NCMV), 

which borrows information from neighbors with observed values on , i.e., sy
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),...,|(),...,|( 1111 −− = sssssj yyyfyyyf ,  Jjs ,...,1+= ,                          (13) 

which corresponds to 1=ssω  and 0... ,2,1, ==== ++ Tsssss ωωω .  

The above identification approach based on (12) is convenient for sensitivity analysis. By 

varying the specification of weights (i.e., stω ), it is equivalent to specify different assumptions 

on the dropout mechanism. When the number of dropout patterns is large, it would be tedious to 

apply the above identification strategy directly using a likelihood-based method to estimate the 

parameters for each pattern and then combine them. As mentioned earlier, the method of 

imputation would be a convenient tool.  

 

3.3. A Shared-Parameter Model for Nonignorable Missing Values 

 

When the dynamic features of the transition pattern in longitudinal data are of interest, an 

appropriate longitudinal approach is a Markov transition model. For binary repeated measures 

with nonigorable missing values, Albert and Follmann [44] developed a Markov transition model 

with random-effects that were shared by the sub-model on measurement and the sub-model on 

missingness indicators.  

In the REMTM for incomplete binary repeated measures, the sub-model for measurement 

process assumes a first-order Markov chain for each series of binary measures. The transitional 

probabilities  ()|( 1, kylyfP jiijkl === − 0=k  or 1; 0=l  or 1) can be modeled by a logistic 

regression with random intercepts, 

                       
iijiijjiij

iijiijjiij

yyP

yyP

νξξ

ξξ

+====

+====

−

−

101,10

011,01

),,1|0(logit)(logit

),,0|1(logit)(logit

βxx

βxx
,                        (14) 
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where  denotes the random intercept,  and ),0(~ 2
ξσξ N

iid

i ν  is the heterogeneity parameter 

indicating the correlation between  and . 10P 01P

 The distribution of misisngness indicators can be modeled by another 

Markov transition model. Redefining , a first-order 

Markov process associates with 

T
iJii rr ),....,( 1=r

⎪
⎩

⎪
⎨

⎧

=
dropout  todue missing is  if    2

ntlyintermitte missing is  if     1
                     observed is  if    0

ij

ij

ij

ij

y
y
y

r

33×  transition probabilities (i.e., )|Pr( 1, krlrP jiijkl === − : 

0, 1, 2; 0, 1, 2). Determined by certain restrictions, the following transition probabilities 

would be always equal to zero: 

=k =l

0212012 === PPP . For other combinations of  and , the 

transition probabilities are calculated in the following way. First, if the previous count measure is 

observed (i.e., =0), then the current one could be observed, intermittent missing, or dropout; 

the 3-category multinomial-logit model [45] can be used to calculate the transition probabilities: 

1, −jir ijr

1, −jir

        

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
++

+

=
++

===

∑

∑

=

=
−

2.or  1k if      
)exp(1

)exp(

     0,k if       
)exp(1

1

)0,,|(

2

1

2

1
1,

l lilij

kikij

l lilij
jiijiij rkrP

γξ

γξ
γξ

ξ

ηx

ηx
ηx

x                 (15) 

Second, if the previous measure is intermittently missing, then the current one may only be 

observed or intermittently missing again. Correspondingly, a logistic regression model is used to 

calculate  and , i.e., 10P 11P

                          

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
++

+

=
++

=== −

1.k if     
)exp(1

)exp(

 0,k if     
)exp(1

1

1),,|(

11

11

11
1,

γξ
γξ
γξ

ξ

iij

iij

iij
jiijiij rkrP

ηx
ηx
ηx

x                         (16) 
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Third, for the absorbing state, we would always have 12),,|2( 1, === −jiijiij rrP xξ . Denoting  

as the time for the last observed measurement for subject i , special considerations should also be 

given to , for which we always have 

iT

iiTy 1)1|0( 1, ==P . In the above logit and logistic 

regression models, regression coefficients  and , respectively, indicate whether intermittent 

missingness and dropout depend on covariates, while 

1η 2η

1γ  and 2γ  respectively indicated whether 

the two types of missing values are nonignorable. 

= −ii TiiT rr

 By combining the above sub-models for measurement and missingness, the likelihood 

function for parameters  and  is expressed as  ),,,( 2
1001 ξσνββθ = T),,,( 1121 γγηηφ =

                .        (17) ∫∏ ∏∏
= =

−
=

−
⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

∝
N

i
ii

J

j
ijiijij

T

j
ijiijij dprrpyypL

i

1 1
1,

1
1, )(),,,|(),,,|(),( ξξξξ φxθxφθ

It should be remarked here that the above REMTM can be easily extended to deal with 

other types of repeated measures. Li et al. [46] applied the REMTMs to Poisson-distributed 

repeated measures with nonignorable missing values. The random-intercept in (15)-(18) can be 

replaced with other types of random effects, including random slopes and random cohort effects. 

The REMTM is only one specific example of shared-parameter models, other longitudinal 

models such as marginal model or random-effects models can be also used to implement shared-

parameters modeling. The shared-parameter model was first developed by Wu and Caroll [47] 

where certain parameters are shared by the measurement model and a censoring process. Other 

examples of shared-parameter models are seen in Little [15], Wu and Bailey [48], Wu and 

Follmann [49], Albert [9], Albert et al. [50], Follaman and Wu [5], Pulkstenis, et al. [51], and 

Ten Have et al. [52].  
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4. MULTIPLE PARTIAL IMPUTATION 

 

For incomplete longitudinal data sets, the method of multiple imputation [19] is especially useful. 

Accurately predicting missing values is possible because repeated measures are often highly 

correlated to each other. When imputing, all above three modeling options can be used. In 

longitudinal data sets, missingness patterns and mechanisms for intermittent missing values and 

dropouts are apt to be distinct, thus requiring different treatment. Our empirical experiences 

suggest that in certain clinical trials intermittent missing values are ignorable due to factors that 

are non-related to the theme of the study, while dropouts should not be simply ignored. In Yang 

and Shoptaw [20], a partial version of multiple imputation, MPI, was first proposed, within 

which only intermittent missing values are imputed. As seen in the application of pattern-mixture 

model, imputation methods can be further employed to implement various schemes of 

identification of restriction for managing dropouts. This leads to a further extension of multiple 

imputation, which we term 2-stage MPI here. Depending on the assumptions of the mechanism 

of intermittent missingness and dropout, there exist many specific forms of MPI and 2-stage MPI. 

MCMC algorithms for creating imputations are described in Section 5. 

 

4.1 MPI and 2-Stage MPI 

  

We further partitioned  into ( , ) to denote intermittent missing values and dropouts. 

For MPI, we draw  independent values , , …,  using the posterior 

predictive distribution . Within the 2-stage MPI, for each of the partial imputation 

for intermittent missing values, n  conditionally independent values , , …, 

mis
iy IM

iy DM
iy

1>m )1(IM
iy )2(IM

iy )(mIM
iy

),|( i
obs
i

im
ip ryy

)1,( jDM
iy )2,( jDM
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),( njDM
iy  are additionally drawn from the predictive distribution , 

. As mentioned earlier, the 2-stage MPI provides a natural framework for fitting 

pattern-mixture models by identifying restrictions with information borrowed from completers, 

neighboring cases, or available cases. If we use selection models or REMTMs, imputations for 

dropouts can be similarly conducted by applying appropriate MCMC algorithms. 

),|( )()1,( jIM
i

obs
i

jDM
ip yyy

mj ,...,1=

 

4.2 Consolidating Results from Post-Imputation Analyses 

 

A main concern for multiple imputation is how to combine the multiple point estimators to make 

an overall inferential statement. A set of rules for combination was originally developed by 

Rubin and Schenker [53], which can be used directly for MPI. In Shen [54], the idea was 

extended for the case of 2-step multiple imputation, which can be viewed as a general approach 

for a 2-stage MPI. More specifically, nm ∗  complete data sets are obtained eventually in the 2-

stage MPI, : ),,( ),()(),( kjDM
i

jIM
i

obs
i

kj
i yyyy = mj ,...,1= , nk ,...,1= . A noticeable problem with 

these complete data sets is that they are not independent from each other, because each block or 

nest ( , , …, ) contains identical values for . By denoting  and 

 as the point and variance estimates for Q  from the  completed data set, the overall 

point estimate for  is still the simply grand average, i.e.,  

)1,( jDM
iy )2,( jDM

iy ),( njDM
iy )( jIM

iy ),(ˆ kjQ

),(ˆ kjU thkj ),(

Q

                                                                  ∑∑
= =

=
m

j

n

k

kjQ
mn

Q
1 1

),(ˆ1 .                                                  (18) 

The associated variance for Q  involves three components, i.e., 

                                                       B
m

W
n

UT )11()11( ++−+=                                                 (19) 
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where ∑∑
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⋅ =
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k
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n

Q
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),(),( ˆ1 . Inferences about Q  are based on the Student’s t-

distribution νtT
QQ ~)( −  with d.f. 

22 )/11(
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1)/11(
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1
⎥⎦
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−
+⎥⎦

⎤W . Other 

formulas such as rates of missing information and relative efficiency are seen in Shen [54]. 

Examples of 2-stage multiple imputation in cross-sectional studies are seen in Harel [55] and 

Rubin [56]. 
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⎡ −

−
=

T
Wm

mT
n

nm
ν

 

5. MCMC Algorithms for Model Fitting and Imputation 

 

For the longitudinal models based on full-likelihood functions, parameter estimation based on 

asymptotic normal theory is difficult to apply mainly because of the complicated form of 

likelihood functions. Without an analytical solution for the score function and Hessian matrix, 

optimization is challenging. Diggle and Kenward [11] resort to the simplex algorithm [57], 

which does not depend on derivatives. Unfortunately it converges unacceptably slowly and 

provides no Fisher information matrix. We implemented the nonlinear optimization algorithms 

of Dennis and Schnabel [58] with numerical derivatives, but found that global maximum 

remained difficult to obtain in practical settings. When calculating the dropout probabilities in 

the selection model or integrating over the random-effects in the REMTMs, time-consuming 

numerical integration is demanded, such as the method of Gauss-Hermit. Bayesian inferences 
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based on MCMC provide a more affordable and appropriate alternative. By sampling parameters 

and missisng values, the method of Monte Carlo using Gibbs sampler or Metropolis-Hasting 

algorithm offers a natural option for integration and optimization, without relying on fully 

determined density functions or expressive derivatives.  

 

5.1 A Hybrid Gibbs Sampler for Fitting REMTM  

 

For the REMTM, we denote  and  without differentiating 

intermittent missing values from dropouts. By setting “

),,,( 2
ξσξϕ iθψ = ),( mis

i
obs
ii yyy =

0=t ” and initializing the parameters and 

missing values with  and , we repeat the following Gibbs steps. )0(ψψ = )0(mis
i

mis
i yy =

1. Imputation Step: Draw imputations for missing values. For ni ,...,1=  and , if is 
missing, an imputation would be drawn using  

Jj ,...,1= ity

                                                                                   ),,|(~ )()(
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+

where  and  are observed or imputed values at the previous iteration. )(
1,

t
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t
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2. Estimation Step: draw parameters and random effects in the following order, 
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where , )(θf )(ϕf , )( if ξ , and  are prior distributions of the parameters, and 

 represents the current imputed values. 

)( 2
ξσf

)1( +tmis
iy

3. Set  and go to step 1.  1+= tt
 

Running this Gibbs sampler with large enough iterations, the procedure would converge under 

regularity conditions and we obtain a series . By discarding the first  )()()0()0( ,,...,, T
mis

T
mis YψYψ 0T
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burning samples (e.g., ), ( ) can be used to estimate the posterior 

distribution of ψ  and further inferences can be made accordingly. This algorithm provides a 

structure for fitting any forms of REMTM depending on the types of repeated measure. For 

Poisson-distributed count data, see implementations in Li et al., [46].  

TT ∗= %100
)()( ,...,0 TT ψψ

 Depending on the option chosen for modeling measurements and missingness mechanisms, 

different version of Gibbs samplers are conceivable. For example, the selection model for 

continuous repeated measures with nonignorable dropouts can be implemented with 

, a Gaussian distribution (i.e., ) for drawing missing values, and 

logistic regression modeling the dropouts [59].  

),,( φβαψ = ),|( ψyy obs
i

mis
if

  

5.2 Sampling Conditional Distributions and Prior Specification  

 

The above algorithm is called a hybrid Gibbs sampler because various sampling schemes can be 

embedded to simulate parameters from the fully conditional densities. If a conditional 

distribution has a known form, the corresponding parameter vector is sampled directly. For 

example, missing values of continuous repeated measures in a selection model can be sampled 

from a Gaussian distribution. If the conditional distribution has a log-concave form after proper 

transformation (e.g., the density for regression coefficients and residual variance), the efficient 

scheme called adaptive rejection sampling [60] can be applied. Otherwise, less efficient but 

more robust methods can be applied,  e.g., Metropolis-Hasting or the giddy Gibbs sampler [61].  

 When there is no historical data or auxiliary information at hand, a convenient choice is 

the flat or non-informative prior. According to our experience, flat uniform distributions for 

covariance parameters or diffused normal distributions for regression coefficients usually work 
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well. In certain situation, conjugate priors should be adopted if possible, e.g., a Normal-Wishart 

distribution for the joint distribution of mean and covariance matrix of a multivariate normal 

repeated measures. 

 

5.3 Creating Imputations in the MPI and the 2-stage MPI:   

 

The above hybrid Gibbs sampler can be used directly to make model-based imputations. 

Running the Gibbs sampler, we obtain ( ), from which a subset of 

( ) can be selected as multiple imputations (  represents the burning period). Again, 

depending on the model used for analysis, various imputation schemes can be realized by the 

specific version of the hybrid Gibbs sampler. For imputation based on the pattern-mixture model 

with restriction identification, the procedure of Thijs et al. [34] can be used to draw imputations. 

For details of implementation, refer to the data augmentation of Schafer [14]. 

)()()0()0( ,,...,, T
mis

T
mis YψYψ

)()( ,...,0 T
mis

T
mis YY 0T

 If there is empirical evidence suggesting an ignorable mechanism for intermittent 

missingess, the data augmentation can be applied directly. More specifically, the PROC MI of 

SAS for close-to-monotone missingness patterns can be applied. Otherwise, the model-based 

hybrid Gibbs sampler can be used to make partial imputations in MPI. A simple way is to keep 

only the imputed  after obtaining  imputations for . IM
iy m ),( DM

i
IM
i

mis
i yyy =

  The 2-stage MPI is mainly used for conducting sensitivity analysis. By sequentially 

applying a Gibbs sampler for imputing  and a potentially different Gibbs sampler for 

imputing , we can obtain multiple complete data sets that incorporate various assumptions 

on the mechanism of missingness and dropout.   

IM
iy

DM
iy
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6. APPLICATION  

 

6.1. Selection Model for Continuous Carbon Monoxide Levels 

 

As seen from Figure 1, the mean carbon monoxide levels declined quickly within the first week 

from the same beginning level and then remain leveling off at different levels through the rest of 

the study period. Using a piecewise linear mixed-effects model with ignorability, Shoptaw et al. 

[21] reported a significantly effective treatment of CM. Here, we reanalyzed the data using only 

the carbon monoxide levels after the first week. For carbon monoxide levels, the mixed model 

with AR(1) covariance was used. After a step-wise selection procedure, the following mean 

structure was chosen to make inferences on treatment effects for contingency management and 

relapse prevention, 

           iiiiiiij PatchesBaseCOCMRPRPCMy 543210 * ββββββ +++++=                        (20) 

where  and  respectively indicate whether the  smoker received CM or RP,  

indicates baseline carbon monoxide level, and  represents the number of nicotine 

patches the smoker received during the study.  To model the dropouts, the logistic regression 

model was used,  

iCM iRP thi iBaseCO

iPatches

iii didiid YYpit ,21,10)(log φφφ ++= − ,                                                 (21) 

where  indicates the dropout time of the  participant.   id thi

PROC MI with monotone option was run to generate four partially-imputed data sets. Then, 

the above selection model was applied to each of the four data sets. The estimates of interesting 

parameters are shown in Table 1, which shows that the between-imputation variances are very 
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small for all the parameters. In other words, the fraction of missing information due to 

intermittent missingness is low. After consolidating the four sets of estimates, it is seen that the 

treatment effect of CM is significant ( ; 28.01̂ −=β 88.52490 −=T  with p<0.0001). RP turns out to 

be ineffective and there is no significant interaction-effect between CM and RP. The regression 

coefficient 2φ  is significantly larger than zero ( ; 28.12̂ =φ 86.32024 =T  with p=0.0002), 

suggesting that the higher the underlying missing value is, the larger probability of dropping out. 

In other words, the dropouts are outcome-dependent nonignorable.  

<INSERT TABLE 1 HERE>     

 

6.2. Pattern-Mixture Models for Continuous Carbon Monoxide Levels 

 

Mainly to illustrate the application of pattern-mixture models, only the efficacy of CM is 

investigated in the following analyses. We first clustered participants into two groups: 

completers ( 112) and early terminators (=1n =2n 62). Then within each group, the efficacy of 

CM was investigated. As seen from Figure 3, contingency management seems to be less 

effective for the early terminators. The mixed model with AR(1) covariance structure and 

predictors, , , and , was selected for analyzing the carbon monoxide 

levels starting from the second week,  

iCM iBaseCO iPatches

                            iiiij PatchesBaseCOCMy 3210 ββββ +++= .                                       (22) 

This model was applied separately for the completers and early terminators.  Let  and  

denote the point estimators of 

c
1̂β

w
1̂β

1β  respectively for the completers and early terminators, and 

%64ˆ =cπ  the estimated probability of being completion, then the overall pointer estimator 
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across dropout patterns is the weighted average, , with variance derived 

using the delta method [62]. 

w
c

c
c 111

ˆ)ˆ1(ˆˆˆ βπβπβ −+=

Since the fractions of missing information due to intermittent missing were low, only 3 

instead of 4 partial imputations were created. The pattern-averaged point estimators and standard 

errors for the treatment effect of 1β  are listed in Table 2. After consolidation using Rubin’s rule, 

the overall mean is 25.0ˆ
1 −=β  with standard deviation =)ˆ(Var β 0.13. The test based on a t-

test suggests a p-value of 0.06.  

<INSET FIGURE 3 HERE> 

<INSET TABLE 2 HERE> 

 

When the number of target dropout patterns becomes large, the application of pattern-

mixture models without imputation becomes less useful. For example, the mean profiles of 

carbon monoxide levels across four dropout patterns are plotted in Figure 4, from which we 

observe notable variances across and within the four patterns. As the number of patterns 

increases, the number of pattern-specific subjects becomes smaller, and it becomes tedious even 

infeasible to conduct pattern-specific analysis and then combine the results across patterns. 

Hence, the approach of 2-stage MPI with restriction identification provides a reasonable 

alternative solution. 

Adopting the procedure described in Thijs et al. [34], three restriction schemes (CCMV, 

NCMV, and ACMV) were used to impute the dropouts. Within this 2-stage MPI, the numbers of 

partial imputations were set as 2=m  for the first stage and 3=n  for the second stage. So 

together, six complete data sets were generated. For each, the AR(1) mixed model with 

predictors , , and Patches  was applied. Using the consolidation procedure as CM BaseCO
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described in Section 4.2, the overall point estimates and fractions of missing information for the 

treatment effect of CM are shown in Table 3 along with the p-vales of a one-sided hypothesis 

test using the t-statistics. It is seen that the overall fraction of missing information due to 

intermittent and dropout is much higher then that due to intermittent missingness alone. Two out 

of three identification strategies strong support the favorable treatment efficacy of CM.  

<INSET FIGURE 4 HERE> 

<INSET TABLE 3 HERE> 

 

6.3. REMTMs for Dichotomized Carbon Monoxide Data 

 

We reanalyzed the same group of carbon monoxide levels using the REMTM after 

dichotomizing them to indicate use or non-use of cigarettes. This dichotomized version of carbon 

monoxide data was analyzed by Yang et al. [12] using a REMTM with maximum likelihood 

estimation. Here it was reanalyzed using the hybrid Gibbs sampler for REMTM with predictors: 

, , and  as defined in Section 6.1. Table 4 depicts the estimated posterior 

means, standard deviations, and 95% credible intervals (C.I.) for all the parameters of interest.  

iCM iRP iCMRP *

The estimated parameters for , 2σ 1γ , and 2γ  jointly suggest that both intermittent 

missingness and dropout are parameter-dependent nonignorable. The introduced random 

intercept effects (i.e., iξ ) capture the heterogeneity on missingness across the subjects. Among 

all the estimated parameters of , only the one corresponding to CM is significantly different 

from zero (i.e., ), indicating that smokers receiving CM were less likely to miss their 

clinic visits occasionally than subjects who did not receive CM. The negative value of estimated 

1η

19.13
1 −=ξ

ν  suggests that individuals with large transition probabilities from non-use to use had lower 
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transition probabilities from use to non-use. In other words, individuals had an affinity for 

staying at either the “use” or “abstinence” state, and the shift of use to non-use or from non-use 

to use were less common (see Figure 5). Of most interest, the fitted REMTM confirmed a 

strongly favorable treatment efficacy of CM by increasing the probability of instilling smoking 

abstinence  (i.e.,  with 95% C.I.=(1.69, 3.53)) and the probability for maintaining 

abstinence  (i.e.,  with 95% C.I.=(-1.86, -0.52)). 

10P 61.2ˆ 3
10 =β

00P 19.1ˆ 3
01 −=β

<INSET FIGURE 5 HERE> 

<INSET TABLE 4 HERE> 

 

7. DISCUSSION  

 

This paper reviews three modeling strategies for incomplete longitudinal data using full-

likelihood functions and demonstrates their application within the MPI framework using a 

carbon monoxide data set. Selection, pattern-mixture, and shared-parameter models are 

generalized versions of standard longitudinal models (marginal models using GEE, mixed-

effects models, and transition models). For example, the mixed-effects model ignoring missing 

values is in fact a selection model with ignorable missingness mechanisms. Though continuous 

and binary repeated measures are used in this illustration, the three modeling strategies can 

suggest a wide range of modeling solutions for various formats of repeated measures.  

The most notable limitation with practical data analysis with missing values is that the true 

model and mechanism for measurements and missingness are usually unverifiable. Thus, in 

many settings, selection, pattern-mixture, or shared-parameter models should be viewed as 

models with rich assumptions. Our guideline is to always investigate the sensitivity of the 
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inferences on fixed parameters to varying assumptions. Inspired by the idea of pattern-mixture 

with restriction identification, the MPI-based frameworks were proposed. In the statistical 

literature, model-based sensitivity analyses are sometimes seen; e.g., selection model with local 

influence [13] and pattern-mixture model with varying restrictions [34]. However, extending use 

of a specific model further beyond assumptions might not be supported by the practical data. 

This is especially true in phase I, II, and III clinical trials, where sample sizes are usually not 

large enough to support over-fitting of the model.  

For the same set of data from the smoking trial, we applied various models to analyze the 

treatment efficacy of two behavioral therapies: contingency management and relapse prevention. 

Selection models and pattern-mixture models were jointly applied to the original continuous 

carbon monoxide levels. After dichotomizing the data, the Markov transition model with random 

intercepts was applied. Overall results depict a consistent image in supporting the favorable 

efficacy of the contingency management.  

Our previous endeavors in methodology development for incomplete longitudinal data 

analysis mainly focused on software development and MCMC-based Bayesian computations. 

Simulation studies and practical applications for full-likelihood models have proved acceptable 

performance; see Yang and Shoptaw [20], Yang et al [12], Li et al. [46], and Yang and Li [59]. 

Currently, we are conducting simulation studies to evaluate and compare the selection, pattern-

mixture, and shared-parameter models. We developed a software package to implement all the 

three modeling functions within the framework of one or two stage MPI; see 

www.Bayessoft.com/MPI. This package also provides tools for visual data exploration and 

formal assessment on missing-data assumptions; see an example from Yang and Shoptaw [20]. 
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Currently, we are implementing more functions to this package so that most types of repeated 

measures with distribution from the exponential family can be modeled.  

When describing the hybrid Gibbs sampler for model fitting and imputation, only the general 

structure and ideas were presented. For details related to the theoretical basis and technical 

implementation, refer to Yang and Li [59] and Li et al. [46]. Results of simulation studies for 

selection models and random-intercept Markov transition models are also presented in these two 

articles.  
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Figure 1.  Average and SD Curves for the Log-scaled Carbon Monoxide Levels 
 
 
 
 
 
 
 
 

 
 

 

 

 

Notes: (1) The vertical bars indicate the estimated standard errors for the average carbon monoxide levels. 

(2) The stares over the x-axis indicates the time points where the p-value of the point-wise 

ANOVA is smaller than 0.001.   
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Figure 2.  Missingness Patterns for the Smoking Cessation Study 
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Figure 3. Mean Carbon Monoxide Levels for Completers and Early terminators. 
 
 
 
 
 
 
 
 
 

No-CM + 
Complete 
CM + 
Complete 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 36



Figure 4. Pattern-Dependent Distribution Carbon Monoxide Levels 
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Figure 5. Transition Probabilities for the Dichotomized Carbon Monoxide Levels 
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Figure 1.  The average and SD curves for the log-scaled carbon monoxide levels. On this plot, 

the four mean curves of the log-scaled carbon monoxide levels and the corresponding point-wise 

standard errors are drawn for each of the four treatment conditions: Control, RP-only, CM-only, 

and RP+CM (RP=Relapse Prevention, CM=contingency Management). Vertical bars indicate the 

estimated standard errors of average carbon monoxide levels. The stars (“*”) over the x-axis 

mark the time points (i.e., visit numbers) where the carbon monoxide levels are significantly 

different indicated by a point-wise ANOVA (P-value<0.001). Y-axis indicates values of carbon 

monoxide levels after log(1+x) transform. X-axis represents number of clinic visit for study 

participants (1 ,…, 36).   

 

Figure 2.  Missingness patterns for the carbon monoxide levels across treatment conditions.  For 

each treatment condition, an image depicts the missingness indicators of carbon monoxide levels 

for each smoker at each research visit. Dark colored area indicates that the corresponding carbon 

monoxide levels were observed while white colored area indicates that the corresponding data 

were missing intermittently or missing after dropout. The four treatment conditions are Control, 

RP-only, CM-only, and RP+CM (RP=Relapse Prevention, CM=contingency Management). 

 

Figure 3. Mean Carbon Monoxide Levels for Completers and Early terminators.  By diving the 

174 smokers into two groups: Completers ( =112) and Early terminators ( =62), the mean 

curves of carbon monoxide levels for subjects receiving CM (contingency management) and for 

subjects receiving no CM are depicted within each of the two groups (completers and early 

terminators). 

1n 1n
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Figure 4. Pattern-Dependent Distribution of Carbon Monoxide Levels.  Using the software 

package named “MPI 2.0”, profiles and mean curves of carbon monoxide levels are drawn 

within each of the five groups determined by the dropout times: dropout before week 5 (a), 7 (b), 

9 (c), 11 (d), and 12 (e). In plots (a) to (e), green curves correspond to the mean carbon 

monoxide levels of subjects who received CM (contingency management), red curves indicate 

the mean curves of the subjects who did not receive CM, and gray-colored dash-lines depicts the 

profiles of all the subjects within each group. The plot (f) depicts all the mean profiles 

corresponding to the five dropout patterns. 

 

Figure 5. Transition Probabilities for the Dichotomized Carbon Monoxide Levels. Within each 

the four treatment groups, the scatter plot displays the transition probabilities calculated from the 

observed repeated measures for each subject. Because 111100100 =+=+ PPPP , only  and  

are displayed.   

01P 10P
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Partial 
Imputations 1 2 3 4 Overall 

1̂β  (S.D.) -0.29 
(0.05) 

-0.27 
(0.05) 

-0.28 
(0.05) 

-0.28 
(0.05) 

-0.28 
(0.05) 

2β̂  (S.D.) 0.01 
(0.05) 

0.02 
(0.05) 

0.02 
(0.05) 

0.02 
(0.05) 

0.02 
(0.05) 

1̂β  (S.D.) -0.08 
(0.06) 

-0.10 
(0.06) 

-0.08 
(0.07) 

-0.08 
(0.06) 

-0.08 
(0.07) 

1̂φ  (S.D.) -0.02 
(0.24) 

-0.08 
(0.24) 

-0.00 
(0.23) 

-0.02 
(0.23) 

-0.03 
(0.23) 

2̂φ  (S.D.) 1.27 
(0.37) 

1.37 
(0.28) 

1.24 
(0.34) 

1.25 
(0.31) 

1.28 
(0.33) 

 
 
 

Table 1. Estimates Treatment Effects and Parameters of the Dropout Model for the Four 
Partially Imputed Carbon Monoxide Data Sets. 
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Imputations Completers Early 
terminators Average 

1 -0.35 (0.06) -0.11 (0.09) 0.26 (0.13) 

2 -0.34 (0.05) -0.07 (0.10) 0.24 (0.13) 

3 -0.34 (0.06) -0.10 (0.09) 0.25 (0.13) 

 
 

Table 2.   Estimated Treatment Effect of Contingency Management (  (S.D.)) using the 
Pattern-Mixture Model with two Patterns (Complete vs. Dropout)

1̂β
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Overall Estimate 
(S.D) FMI P-value 

CCMV 
 -0.46 (0.22) 11% 0.02 

ACMV 
 -0.42 (0.19) 9% 0.01 

NCMV 
 -0.43 (0.28) 16% 0.06 

 
 

Table 3. Estimated Treatment Effect of Contingency Management using the Pattern-
Mixture Models within the Framework of 2-stage MPI 
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Parameter 
 

Estimates Std. De. 95% C.I.

Transition Probability ( ) 01P  

--Intercept ( ) 1
01β -0.39 0.16 (-0.70,  -0.07)

--RP ( ) 2
01β                0.14 0.50 (-0.84,  1.12)

--CM ( ) 3
01β -1.19 0.34 (-1.86, -0.52)

--RP*CM ( ) 4
01β 0.16 0.61 (-1.04,  1.36)

Transition Probability ( ) 10P
--Intercept ( ) 1

10β -1.69 0.37 (-2.42, -0.96)

--Baclofen ( ) 2
10β 0.90 0.66 ( 0.39,  2.19)

--Baseline ( ) 3
10β 2.61 0.47 (1.69,  3.53)

--RP*CM ( ) 4
10β -1.21 0.81 (-2.80, 0.38)

Variance of Random Intercept ( ) 2σ 3.32 0.64 ( 2.07,  4.57)
Heterogeneity Parameter (ν ) -1.43 0.14 (-1.70, -1.15)
Nonignorable Missingness 

--Intermittent Missingness ( 1γ ) 0.93 0.11 ( 0.71,  1.14)

--Dropout ( 2γ ) 0.56 0.14 ( 0.29,  0.83)
Covariate-Dependent Missingness for 

Intermittent Missing ( ) 1η
--Intercept ( ) 1

1η -2.28 0.25 (-2.77, -1.79)

--RP ( ) 2
1η -0.48 0.47 (-1.40,  0.44)

--CM ( ) 3
1η -1.19 0.34 (-1.85, -0.52)

--RP*CM ( ) 4
1η 1.14 0.57 (0.02,   2.26)

Dropout ( ) 2η  

--Intercept ( ) 1
2η -4.76 0.37 (-5.49, -4.03)

--RP ( ) 2
2η 0.14 0.52 (-0.88,  1.16)

--CM ( ) 3
2η -0.21 0.50 (-1.19,  0.77)

--RP*CM ( ) 4
2η -0.01 0.70 (-1.38,  1.36)

 
 

Table 4. Posterior Parameter Estimation with Standard Deviation and 95% Credible 
Intervals Using the REMTM to the Dinchotomized Carbon Monoxide Data 
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