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ABSTRACT OF THE THESIS

Model-driven optimization of

high-throughput in vivo CRISPR screen design

by

Sandy Sung Kim

Master of Science in Bioinformatics

University of California, Los Angeles, 2021

Professor Harold J. Pimentel, Chair

The recent developments of the CRISPR/Cas9 gene-editing system have made way for large-

scale, loss-of-function genetic screens that can identify genes underlying a given phenotype,

known as high-throughput CRISPR screens. By leveraging the precision of CRISPR/Cas9

and the capacity to capture millions of cells in one library preparation, these screens enrich

and deplete the expression of various specific genes, identifying gene functions that help elu-

cidate genotype-phenotype relationships. Furthermore, by modulating genetic interactions,

these screens can uncover gene regulatory mechanisms, revealing genetic dependencies. Al-

though these screens have shown to be incredibly effective, they are often prohibitively

expensive. Additionally, there is a lack of information and tools to determine the optimal

experimental design, such that the most informative data is produced, given experimental

constraints.

Here, we introduce a statistical model that simulates high-throughput in vivo CRISPR

screens to provide insight into optimizing the experimental protocol. We first demonstrate

our model successfully simulates such screens by comparing the generated data with real ex-
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perimental data. Then, we simulate screens across varying parameter inputs and investigate

their influence on statistical power. Given our findings, we conclude with general guidelines

and suggestions for effectively designing high-throughput in vivo CRISPR screens.
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CHAPTER 1

Introduction

The discovery and recent developments of the CRISPR/Cas9 gene-editing system have

greatly expanded the toolbox for genetics [JCF12, HLZ14, WND16, KD18, SJ14]. In par-

ticular, the CRISPR/Cas9 system has shown to be incredibly useful in large-scale, loss-of-

function screens that can identify sets of genes underlying various phenotypes and functions,

known as high-throughput CRISPR screens [SSZ15, DPL16].

By using a genome-scale, single-guide RNA (sgRNA or guide) expressing lentiviral pool,

a library of knockout cells is generated and screened under positive and negative selection.

Each guide can then serve as a distinct DNA barcode that can be used to measure guide

abundance across multiple cells via high-throughput sequencing [SSZ15].

The utility of CRISPR/Cas9 for conducting large-scale genetic screens has shown to

outperform other current functional screening methods such as RNA interference (RNAi)

[MDL16]. This is largely due to the precision of lentiviral transductions in such screens,

enabling the ability to effectively introduce CRISPR/Cas9 into a given cell. High-throughput

CRISPR knockout screens offer other powerful features such as inactivating genes at the

DNA level, measuring multiple cell phenotypes at once, and relatively precise targeting with

significantly less off-target effects compared to other methods [MDL16, GHA14]. As a result,

CRISPR/Cas9 screens have grown increasingly popular in recent years.

Most CRISPR screens have been performed in vitro, using cell lines [GHA14]. However,

given the complexity of physiological cues in living organisms and the growing accessibility of

CRISPR technology, such screens are increasingly being conducted in vivo [CRC13, KLT14,
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WWS14]. Many of these studies contribute primarily in identifying immuno-oncology tar-

gets and pathways [WLZ19, PSK17, PCZ14, CPZ15, KCR16, SLM17]. In vivo enrichment

CRISPR screens are performed by infecting näıve cells from an organism with a lentivi-

ral vector, and identifying enriched and depleted genes within the infected cells to identify

clinically relevant targets [DWC19, WLZ19].

Despite the popularity of such screens, there are an overall lack of methods to optimize

these experiments. While there are methods to help guide the design of the CRISPR/Cas9

complex to increase Cas9 specificity such as detecting off-target effects and selecting sgR-

NAs, there are very few that consider the experimental materials [DFS16, TMH16, CWL17,

HSW13]. One method that aims to optimize the protocol, MAUDE, helps infer expression

changes in sorting-based CRISPR screens [BRH20]. However, MAUDE strictly optimizes

across varying number and sizes of expression bins, which is a feature unique to only sorting-

based screens. There are also models for log fold changes across control and treatment guide

read counts produced by high-throughput enrichment CRISPR screens such as those used

in MAGeCK, a tool that identifies significant guides and genes from such data [LXX14].

However, MAGeCK’s model is overly simplistic, relying on strong assumptions of the distri-

bution of the guide read counts. Most importantly, neither model takes into account how

the design of each step in the protocol may affect the resulting data.

To our knowledge, there exists no method that seeks to produce the most informative data

in an experiment as a function of the experimental steps and parameters for high-throughput

in vivo pooled enrichment CRISPR screens. As a result, experimentalists performing such

screens often rely on heuristic processes, such as following the protocols of previous suc-

cessful and similar experiments, among many other näıve procedures. This evident lack of

information in designing high-throughput in vivo CRISPR screens ultimately result in these

experiments to likely become prohibitively expensive.

In this work, we present a statistical model that simulates a high-throughput in vivo

CRISPR/Cas9 screen. We validate that our model simulates realistic screens by comparing

2



the results of differential guide analysis on the generated data and real experimental data.

After, we perform simulations under unobserved conditions and investigate how varying

different parameters in the experimental protocol affects the statistical power of the resulting

data using existing inference methods. We conclude with remarks to guide experimentalists

in optimizing the design of their high-throughput in vivo CRISPR experiments.
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CHAPTER 2

Methods

2.1 High-level description of CRISPR screen

We first give a high-level description of the experimental design of the high-throughput in

vivo CRISPR screen we emulate in our model [DWC19]. A schematic is shown in Figure 2.1.

First, a lentiviral CRISPR vector is designed, generated, and cloned into a mouse genome-

scale guide library containing both gene-specific guides and non-targeting controls. Näıve

CD8+ T cells (control cells) are isolated from the OT-I;Cas9 mice. The guide library

lentivirus vectors are transduced into the isolated control cells and the guides of the cells

are sequenced using high-throughput technology in order to measure guide abundance. The

infected cells are then transferred into the tumors of tumor-bearing OT-I;Cas-9 mice. After a

few days, the tumors are harvested and the guides of the cells (treatment cells) are sequenced

using high-throughput technology to measure guide abundance.

The reads of the guides of the control and treatment cells are aligned to the mouse genome

using read-alignment software. Using sequencing data analysis software, read counts from

the guides of the treatment cells are normalized and compared relative to the normalized

read counts from the guides of the control cells to identify enriched (positively selected) and

depleted (negatively selected) genes and guides as a result of the screen. Enriched genes will

have a significantly higher read counts for their corresponding guides in the treatment cells

than that of controls cells. Conversely, depleted genes will have a significantly higher read

counts in control cells than that of treatment cells.
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Figure 2.1: Schematic of a high-throughput in vivo CRISPR-Cas9 screen in OT-I;Cas9 mice

(Created with BioRender.com).

2.2 Modeling high-throughput in vivo CRISPR screens

2.2.1 Generative model (base model)

A graphical representation of the model is shown in Figure 2.2.

We introduce a generative statistical model created to simulate a high-throughput in vivo

CRISPR screen.

We first simulate the initial library. Suppose we have NsgRNAs guides, where NsgRNAs > 0.

We assume the proportion of guides in the initial library, P0, follows a Dirichlet distribution,

such that we draw a 1×NsgRNAs vector from

P0 ∼ Dirichlet(α0), (2.1)

where α0 = (α01, . . . , α0k), a 1 × NsgRNAs vector containing dispersion values for each

guide (guide concentration per gene), such that the distribution is symmetric; that is, α01 =

5



Figure 2.2: Graph-based representation of generative model of a high-throughput in vivo

CRISPR screen.
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. . . = α0NsgRNAs
. We define the total guide concentration to be the sum of all components in

α0.

The Dirchlet distribution generates a probability distribution that is parametrized by a

vector of positive reals, α, which dictates the variance. In this model, α describes how guides

are dispersed across the cells, i.e. how many cells in the pool receive a given guide, assuming

each cell gets only one guide.

We assume the number of control cells extracted per mouse, T0, follows a Poisson distri-

bution, such that

T0 ∼ Poisson(n), (2.2)

where n is the total number of control cells extracted from all mice.

Then, we draw the absolute number of cells per guide represented as a 1×NsgRNAs vector,

C0, from a multinomial distribution parametrized by (2.2) and (2.1), such that

C0 ∼Multinom(T0, P0), (2.3)

We model the normalized population-level guide effects, q, represented as a 1 × Nguides

vector of log fold changes. Normalized population-level effect for guide g ∈ [1, Nguides] is

calculated by

qg =
C0gβg∑
k C0kβk

, (2.4)

where βg is the effect size of guide g represented as log fold changes, C0g is defined by

(2.3). The summation
∑
k is the sum across all guides k ∈ [1, NsgRNAs].

The effect size, βg, is drawn from Norm(µ, σ2). The estimated mean, µ, is the number

of guides per gene. The estimated variance, σ2, is centered on the guide g’s targeted gene’s

gene-level effect size. This gene-level effect size is assumed to follow Gamma(k, θ), with
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parameters k and θ are learned from the gene effects observed in Wei et al’s REGNASE-1

study [WLZ19]. The direction of the effect, positive or negative, is sampled independently

from q and randomly, from a point mass distribution. The probabilities in the point mass

distribution are defined such that the probability of a positive effect is the number of total

positive effects over the number of total effects and the probability of a negative effect is the

complement.

Next, we simulate the adoptive transfer of infected cells forNanimals mice, whereNanimals >

0. We define j ∈ [1, Nanimals]. For each mouse j, we assume the proportion of guides incor-

porating effects in the pooled screen, Pj follows a Dirichlet distribution, such that

Pj ∼ Dirichlet(α1), (2.5)

where Pj is a 1× k matrix and α1 = α0q, given (2.4).

We assume the number of treatment cells that are extracted from each of the j mice, Tj,

follows a Poisson distribution, such that

Tj ∼ Poisson(λ), (2.6)

where λ is the average number of treatment cells extracted per mouse.

Finally, for each mouse j, we draw the absolute number of treatment cells per guide in the

pooled screen represented as a 1×k vector, Cj, from a multinomial distribution parametrized

by (2.6) and (2.5), such that

Cj ∼Multinom(Tj, Pj), (2.7)

Lastly, we convert the absolute cell counts, (2.3) and (2.7), into control and treatment

guide read counts for guide abundance comparison. To do this, we take (2.3) to be the read

counts for the control group and take (2.7) and divide the number of mice in which the

screens were conducted into pools and sum the absolute cell counts of all the mice to get the
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read counts for the treatment groups. Then, we perform comparative analysis between the

control and treatment guide read counts.

2.2.2 Mixture model for effect size of varying guide efficiencies (alternate model)

A graphical representation of the alternate model with a mixture model for the guide effect

sizes, accounting for guide efficiencies, is shown in Figure 2.3.

The population-level guide effects base model is under the assumption all guides work;

that is, they operate with 100% efficiency. However, realistically, this is not the case. Many

guides simply do not work due to various reasons: the guides does not target the correct

DNA sequence of interest, the Cas9 doesn’t snip, etc [SRJ14].

To account for the varying guide efficiencies, we developed an alternate model for the

(normalized) population-level guide effect sizes, q. In this model, population effect size for

guide g is calculated using the mixture model

qg =
C0g1βg + C0g0∑k
i=1C0i1βi + C0i0

, (2.8)

where C0g1, the number of cells with Cas9/guide g complexes that successfully cleave

the targeted gene, is drawn from Binom(C0, e). C0 is defined as the absolute number of

control cells per guide (2.3) and e is the overall guide efficiency. C0g0, the number of cells

with Cas9/guide g complexes that fail to cleave the targeted gene, is simply calculated as

C0g−C0g1. All other parameters are the identical and follow the same distributions as those

in the base model.

2.3 Simulating experiments

Both generative models were implemented in R code [R C20]. Simulations were ran using

combinations of various parameters and corresponding analyses were performed using the
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Figure 2.3: Graph-based representation of generative model with mixture model for varying

guide efficiencies of a high-throughput in vivo CRISPR screen.
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Figure 2.4: Analysis workflow with sample data sets. First, the experiment is simulated

with given unobserved parameters. Then, using the generated guide read counts, significant

guides and genes are identified, guide read counts are normalized, and summary statistics

are calculated. Lastly, sensitivity analysis of the simulation is performed using the MAGeCK

output.

snakemake workflow management system [MJL21].

2.4 Analyzing model performance

2.4.1 MAGeCK

To analyze the performance of our model, we use the state-of-the-art tool, Model-based

Analysis of Genome-wide CRISPR/Cas9 Knockout (MAGeCK), a method that identifies

essential genes from CRISPR knockout screens [LXX14]. We input the control and treat-

ment read counts generated from our model into MAGeCK, which identifies positively and
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negatively selected guides and genes and generates normalized read counts with summary

statistics. A diagram of the analysis workflow is shown in Figure 2.4.

We distinguish summary statistics reported by MAGeCK from those we calculated in our

analyses by prefacing the summary statistics reported by MAGeCK with the word ‘estimated’

and read counts reported by MAGeCK from those we generated by prefacing those reported

by MAGeCK with the word ‘normalized’.

2.4.2 Sensitivity plots

In order to identify simulations with optimal parameters, we performed power analysis by

looking at sensitivity against varying parameter values. Simulations with higher sensitivity

have more statistical power, and therefore, produce more informative data.

Sensitivity is defined as TP
total TP

, where TP is the number of true positives.

Since we had simulated the data, the ground truth was known and we were able to

calculate the sensitivity. To do so, we ordered the genes in ascending order by the estimated

FDR. Sensitivity was then calculated as the cumulative number of genes in which significant

effects were simulated at that given point divided by the total number of significant effects

simulated in the entire screen.

2.4.2.1 Sensitivity versus false discovery rate curves

We also utilized sensitivity versus false discovery rate (FDR) curves to illustrate how well

MAGeCK identified genes that our model had simulated effects on. In a sensitivity versus

FDR curve, the x-axis is the true FDR and the y-axis is the sensitivity. The true FDR is

calculated as FP
total TN

, where FP is the number of false positives and TN is the number of

true negatives. Ideally, in a sensitivity versus FDR plot, sensitivity is maximized while FDR

is minimized.

To calculate the FDR, we ordered the genes in ascending order by the estimated FDR.
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Then, FDR was calculated as the cumulative number of genes in which significant effects

were not simulated at that given point divided by the number genes MAGeCK has classified

as essential at that point.

2.4.3 MA plots

We used MA (log fold change between control and treatment groups versus average) plots

to perform differential guide analysis to identify guides that are significantly enriched or

depleted.

To calculate the average of the normalized read counts, we took the mean of the normal-

ized read counts across the control and treatment groups. The log fold changes were taken

from the summary statistics generated by MAGeCK.

2.4.4 Dispersion plots

We looked at dispersion plots to investigate the dispersion of simulated guide concentrations

and to ensure that the simulations replicated sufficient biological noise, but not such that

the output is not what our model aimed to generate. We utilized both variance versus mean

(index of dispersion) and dispersion versus mean plots.

For the index of dispersion plot, the variance and mean of the normalized read counts

are calculated across all pools and plotted against one another.

For the dispersion versus mean plots, the dispersion parameter φ and the mean of the

normalized read counts are plotted against one another. To calculate φ, we assumed a

negative binomial distribution on the normalized guide read counts. Then, we solved for φ,

which is calculated as σ2−µ
µ2

, where σ2 is the variance of the guide read counts and µ is the

mean of the guide read counts.
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CHAPTER 3

Results

3.1 Comparison of model-generated data to experimental data

parameter value

number of initial control cells 450000000

average number of treatment cells extracted per mouse 500000

number of genes targeted 3017

number of guides per gene 6

number of non-targeting control guides 1000

guide efficiency 0.4

proportion of guides that administer effects 0.1

proportion of effects that are positive 0.1

number of mice 120

number of pools in pooling scheme 3

total guide concentration 2000

Table 3.1: Parameters used in generative model to simulate the REGNASE-1 study.

To compare the data generated from our alternate model and real experimental data,

we used similar parameters to those indicated in Wei, et al’s REGNASE-1 study [WLZ19].

Parameters used in the simulation are listed in Table 3.1.

Guide efficiency was selected based on results from experiments using green fluorescent

14



protein and microscopy that suggest that guide efficiency in in vivo CRISPR screens often

vary from 0.3 to 0.6 [SRJ14].

Total guide concentration was selected based on the appearance of simulating reasonable

dispersion across the normalized guide read counts closely to the REGNASE-1 data.

3.1.1 Gene effect sizes

To compare the data generated from our model and real experimental data, we looked at

effect sizes at both the gene-level and the guide-level of the data generated by the model and

that of the REGNASE-1 study.

3.1.1.1 Gene-level

We first looked at the model’s learned distribution of effect sizes at the gene-level, via

maximum likelihood estimation assuming a gamma distribution. This was done by graphing

a histogram of the distribution of the effect sizes of each gene in the REGNASE-1 study,

determined by MAGeCK and plotting both a density curve and the learned distribution. As

a comparison, we also graphed a histogram of the distribution of the generated gene effect

sizes, as seen in Figure 3.1.

The overall distributions of gene-level effect sizes of the REGNASE-1 study and simula-

tion are similar. Both have the same shape and peak at about the same density. However,

the simulation’s gene-level effect sizes have smaller variance that of the REGNASE-1 study.

On the other hand, the gene-level effect sizes in REGNASE-1 is skewed. This is due to the

fact that the REGNASE-1 study found genes with very large and significant effect sizes, a

quite rare occurrence. As a result, the smaller variance on the simulated data is due to the

truncation of the gene-level distribution in our model to reflect more typical experiments.
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Figure 3.1: Histograms of the density of gene effect sizes of the REGNASE-1 study (above)

and the generative model’s simulation (below). The x-axis shows the gene log fold change and

the y-axis shows the density. The black curves are the fitted densities of the distributions.

The red curve in the REGNASE-1 study histogram is the learned gamma distribution using

maximum likelihood estimation.
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3.1.1.2 Guide-level

In our model, gene-level effect sizes influence guide-level effect sizes and the effect of treat-

ment in a CRISPR screen is quantified by relative guide abundance. Therefore, we per-

formed differential guide analysis on the normalized counts of each data set, as generated by

MAGeCK.

We began with looking at MA plots, which are shown in Figure 3.2. We defined significant

guides to be those with an estimated false discovery rate less than 10%.

The qualitative nature of the two plots are similar; both have the same approximate shape

and effect sizes. However, the REGNASE-1 data has more significant guides compared to

that of the simulated data. In particular, there are many more guides that are negatively

selected. Additionally, the variance of the mean of simulation normalized guide read counts

is much smaller in the REGNASE-1 data compared to the simulated data.

3.1.2 Dispersion

We also looked at the dispersion of the normalized guide read counts using two different

plots: the index of dispersion and the dispersion versus mean plot.

As seen in Figure 3.3, overdispersion is much more prevalent in the simulation than that

in REGNASE-1. We can see in both variation of dispersion plots: In the index of dispersion

plot, there larger distance between the overall fitted curve and line of slope one for the

simulation. In the dispersion versus mean plot, we can see that there is more variation

dispersion parameters for the simulation.

3.1.3 Additional comparative analysis

Additional differential guide analysis was performed using the DESeq2 library [LHA14].

Results are reported in the Supplement (Chapter 5).
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Figure 3.2: MA plots of guide read counts from the REGNASE-1 study (above) and the

generative model’s simulation (below). The x-axis shows the mean of the guide read counts

and the y-axis shows the log fold change of the read counts between the control and treatment

groups. Each point is an guide; blue points indicate significant guides (FDR < 0.1).
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Figure 3.3: Dispersion plots of normalized guide read counts from the REGNASE-1 study

(left) and the generative model’s simulation (right) with blue fitted curves. The plots above

are dispersion versus mean plots. The x-axis shows the mean of the read counts and the

y-axis shows the dispersion parameter of the read counts. The plots below represent the

index of dispersion. The x-axis shows the mean of the read counts and the y-axis shows the

variance of the read counts. The red line has slope 1, indicating an index of dispersion of 1.
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3.2 Base model performance

parameter value

number of initial control cells 35000000

average number of treatment cells extracted per mouse 10000

number of genes targeted 500

number of guides per gene 3

number of non-targeting control guides 1000

proportion of guides that administer effects 0.1

proportion of effects that are positive 0.1

number of mice 60

number of pools in pooling scheme 3, 6, 9

total guide concentration 2000

Table 3.2: Parameters used the base model performance analysis.

We first introduce analysis of the base model to give some intuitive information on high-

throughput in vivo CRISPR screens. Parameters used in the model to simulate experiments

in the analysis are indicated Table 3.2, unless stated otherwise.

3.2.1 Effect of varying the number of treatment cells extracted from each mouse

We investigated the statistical power as a function of the average number of treatment cells

extracted from each mouse. The number of cells simulated were of values 5000, 10000, 25000,

40000, and 50000.

We can see in Figure 3.4 that as the number of cells increases, the sensitivity eventually

plateaus; this is especially evident when increasing from 40000 and 50000 cells. Therefore, in

most cases, there are diminishing returns when one extracts more treatment cells per mouse.

Additionally, as the number of pools increases, the sensitivity decreases. In the case of 3 and
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Figure 3.4: The effect of the average number of treatment cells extracted from each mouse

on the base model’s performance, stratified by the number of pools in the pooling scheme.

The x-axis shows the average number of treatment cells extracted from each mouse in a

given simulation and the y-axis shows the sensitivity, fixed at FDR < 10%.
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Figure 3.5: The effect of guide concentration on the base model’s performance, stratified by

the number of pools in the pooling scheme. The x-axis shows the guide concentration in a

given simulation and the y-axis shows the sensitivity, fixed at FDR < 10%.

6 pools in this particular simulation, the performance of 3 pools makes larger returns as the

number of cells increases.

3.2.2 Effect of varying the total guide concentration

In addition, we explored how the total guide concentration effects the statistical power of

the data generated by the simulation across different pooling schemes. The total guide

concentration values simulated were 1000, 1500, 2000, 2500, and 3000.

Note that in Figure 3.5, that the statistical power gives a very large return when increasing

from 1000 to 1500 total guide concentration. However, the rate at which statistical power

increases rapidly declines as the total guide concentration increases, and sometimes even
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Figure 3.6: The effect of the number of guides targeting a gene on the base model’s per-

formance, stratified by the number of pools in the pooling scheme. The x-axis shows the

number of guides per gene in a given simulation and the y-axis shows the sensitivity, fixed

at FDR < 10%.

gives a negative return. However, we suspect overregularization in MAGeCK due to the

slow convergence to 1. Statistical power is similar between 3 pools and 6 pools in the

pooling scheme and is lowest in 10 pools.

3.2.3 Effect of varying the number of guides targeting each gene

We also observed the model’s statistical power as a function of the the number of guides

targeting a given gene across different pooling schemes. The number of guides per gene

simulated were 3, 5, 7, and 10.

We can see in Figure 3.6, across the number of guides per gene, there are definite optimal
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parameter value

number of initial control cells 35000000

average number of treatment cells extracted per mouse 10000

number of genes targeted 500

number of guides per gene 3

number of non-targeting control guides 1000

guide efficiency 0, 0.2, 0.4, 0.6, 0.8, 1

proportion of guides that administer effects 0.1

proportion of effects that are positive 0.1

number of mice 60

number of pools in pooling scheme 3, 6, 10

total guide concentration 2000

Table 3.3: Parameters used the alternate model analysis.

choices in each pooling schemes. With 3 and 6 pools, the largest sensitivity is produced

when using 5 guides to target a gene. In 10 pools, it is produced when using 7 guides to

target a gene. Overall, the statistical power is inversely related to the number of pools; as

the number of pools decrease, the sensitivity increases.

3.3 Alternate population-level guide effects model performance

Next, we investigated the model performance in our alternate model. We repeat our analysis,

but focus on lower guide efficiencies which reflect more realistic experimental conditions.

Parameters used in the model to simulate experiments in the analysis are indicated in Table

3.3, unless stated otherwise. Note that the model at a guide efficiency of 1 is equivalent to

the base model, and serves as a control. A guide efficiency of 0 serves as a base line.
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Figure 3.7: Statistical power stratified by guide efficiencies. The x-axis shows the false

discovery rate and the y-axis shows the sensitivity. Marked on the bottom of the graph are

the shapes of the significance levels indicated in the legend at the location of the true false

discovery rate.

3.3.1 Guide efficiency validation

To confirm that the alternate model is behaving well, we observed how statistical power

changes across every gene for each level of guide efficiency. The number of pools in the

pooling scheme was fixed at 3.

We can see in Figure 3.7, simulations with higher guide efficiencies maximizing sensitivity

while minimizing FDR. As expected, this indicates that statistical power increased with guide

efficiency.
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Figure 3.8: The effect of the average number of treatment cells extracted from each mouse

on statistical power, stratified by guide efficiencies. The x-axis shows the average number of

treatment cells extracted per mouse in a given simulation and the y-axis shows the sensitivity,

fixed at FDR < 10%. From left to right, the number of pools in the pooling scheme increases

from 3 to 6 to 10.

3.3.2 Effect of varying the average number of treatment cells extracted from

each mouse

We examined how statistical power is affected by the average number of treatment cells

extracted per mouse across different guide efficiencies and pooling schemes. The number of

cells simulated were of values 5000, 10000, 25000, 40000, and 50000.

In Figure 3.8, we can see that as the number of cells increases, as guide efficiencies lower,

the statistical power actually fluctuates and often decreases after some threshold. Generally,
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Figure 3.9: The effect of the total guide concentration on statistical power, stratified by

guide efficiencies. The x-axis shows the total guide concentration in a given simulation and

the y-axis shows the sensitivity, fixed at FDR < 10%. From left to right, the number of

pools in the pooling scheme increases from 3 to 6 to 10.

sensitivity is higher when there is a smaller number of pools in the pooling scheme.

3.3.3 Effect of varying the guide concentration

Then, we observed how guide concentration influences statistical power across different guide

efficiencies and pooling schemes. The total guide concentration values simulated were 1000,

1500, 2000, 2500, and 3000.

Figure 3.9 shows that across all guide efficiencies, as the total guide concentration grows

larger, the sensitivity will increase until it approaches 1. Also, the statistical power is similar

in pooling schemes of 3 and 6 pools, but is smaller in 10 pools.
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Figure 3.10: The effect of the number of guides per gene on statistical power, stratified by

guide efficiencies. The x-axis shows the number of guides per gene in a given simmulation

and the y-axis shows the sensitivity, fixed at FDR < 10%. From left to right, the number of

pools in the pooling scheme increases from 3 to 6 to 10.

3.3.4 Effect of varying the number of guides targeting each gene

We looked at how the number of guides per gene affects statistical power across different

guide efficiencies and pooling schemes. The number of guides per gene simulated were 3, 5,

7, and 10.

As seen in Figure 3.10, there is a point at which sensitivity peaks in all guide efficiencies

and across all pooling schemes. For most simulations, 5 guides per gene produces the highest

statistical power. However, at low efficiencies the rate at which sensitivity decreases is overall

much higher that that of higher efficiencies.
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CHAPTER 4

Discussion

Our statistical model is able to simulate high-throughput in vivo CRISPR screens relatively

well. Due to the the learned parameters from the REGNASE-1 study’s gene-level effect

sizes, the generated data was able to emulate similar gene-level effect sizes under the same

conditions. Differential guide analysis also uncovered similar structures in positively and

negatively selected guides as determined by MAGeCK. In addition, although dispersion of

the simulated normalized guide read counts was much higher than that of the REGNASE-1

study, both figures beared similarities in their shapes and trajectories. We believe the dis-

crepancy in the mean of read counts between the simulation and REGNASE-1 study may

be attributed to the normalization techniques used in MAGeCK. Due to this, we tested

additional methods that normalize read counts as part of our analysis to ensure that these

similarities are maintained; results using DESeq2 are reported in the Supplement. Accord-

ingly, we argue that these simulations provide valuable information to guide the design of

high-throughput CRISPR screen experiments.

We also demonstrated that we can simulate experiments under different combinations of

parameter inputs used in a typical protocol of an in vivo CRISPR screen. We also show

that our alternate model is consistent with the expectation; that is, statistical power will

increase with guide efficiency. With the generated data from our simulations, we performed

statistical power analysis to gain insight on optimizing experimental design and general

guiding practices.

From the simulations performed, by varying the average number of treatment cells ex-
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tracted from each mouse, as the number of treatment cells increase, there was a threshold in

which statistical power either plateaus or even decreases. That is, at some point, increasing

the number of cells yields diminishing returns. We believe that this is a result of saturation;

that is, as the number of cells approaches infinity, that the statistical power will eventually

converge to a fixed value, determined by the total guide concentration.

The case is also similar with the total guide concentration, as when the total guide

concentration increases, the rate at which statistical power increases becomes smaller. This

is consistent with the fact that with a larger total guide concentration, there is less of

variance across the guides read counts. At more realistic guide efficiencies, performance drops

significantly. We believe that this is due to larger amounts of dropout at lower efficiencies.

However, we observed that when the number of guides per gene are varied, there is a

clear and distinct point at which sensitivity is maximized. Beyond this point, sensitivity

either plateaus or decreases. At more realistic guide efficiencies, the latter behavior is often

exhibited. Therefore, we presume that the number of guides per gene is one of the most

crucial parameters that affect the output of the screen. It is counter-intuitive as if there

were infinite cells extracted, the more guides per gene should give more power. But since

the number of cells extracted and the guide concentration is fixed, increasing the number

of guides per genes results in fewer reads corresponding to each guide, resulting in weak

estimates for each guide abundance due to the lack of coverage.

In all simulations, in most cases, statistical power is inversely related to the number of

pools used in the pooling scheme. It is important to note that this is only the case when there

is a restriction on the number of cells extracted, a scenario consistent with in vivo screens,

as the number of treatment cells that can be extracted is limited by the number of cells

one can get from an animal. This behavior stems from the bias-variance trade-off. As the

number of pools in the pooling scheme increases, the number of mice in each pool decreases.

This smaller region leads to higher variance in the statistical power amongst the mice, as a

fluctuation in just one mouse can generate results in the pool that are not representative of
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the biological variance nor the experiment at hand.

Also, in all simulations, there is a large amount of variance in performance across the

guide efficiencies. Our findings suggest the importance of assessing guide efficiency of the

CRISPR library prior to performing the screen. The performance in higher guide efficiencies

such as 0.8 are high regardless of how parameters may vary. However, at more realistic guide

efficiencies such as 0.4 there is significant effects on the performance by varying parameters,

which is where our model serves the most helpful. At lower guide efficiencies like 0.2, we

would suggest that the CRISPR screen should not be performed as regardless of whether or

not the parameters are optimally selected, the return on power is still not enough.

While our model has been able to provide insight on better designing high-throughput

in vivo CRISPR screens, many assumptions and methods used to make our model that may

not generalize to all in vivo CRISPR screens. For instance, there are many ways to perform

screens, beyond the protocol that we had emulated. We chose to select the specific protocol

we had emulated due to the fact that it has been done before in multiple studies. However,

in principle, our model can extended and multiple adaptations can be made easily. A few

examples include: if there were no pooling schemes, setting the number of pools to 1 would

suffice and if the control cells were never extracted from the animal prior to infection and

rather cells were directly infected in the animals, setting the number of control cells equal to

the number of treatment cells extracted per mouse would suffice. Also, we do not incorporate

multiplicity of infection as a parameter in our model as our model assumes only one guide

is expressed in a given cell. This would require a model at the cell-level with the ability to

infer cell-level effects. Additionally, the gene effect sizes are learned from the REGNASE-1

study using maximum likelihood estimation; however, we must assume distributions of all

random variables due to the variability across experiments. Lastly, we hold our suspicions

on different methods used in MAGeCK in their analysis such as their read normalization

and other summary statistic calculations.

In our future work, we hope to implement an model that can be used to infer different
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variables in the design. Using sampling techniques such as Markov chain Monte Carlo, we can

infer the posterior distributions of various random variables such as the guide dispersion. We

believe that learning the distribution of these variables rather than using maximum likelihood

estimation to estimate fixed parameters of distributions will significantly improve our model,

as it will take into account the fact that each experiment will be subject to different effects.

Moreover, we hope to implement our model as a tool with an easy-to-use interface, where

experimentalists can input their own parameters to optimally design their experiments with

the resources they have.
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CHAPTER 5

Supplement

5.1 REGNASE-1 and simulation differential guide analysis com-

parison using DESeq2

For additional differential guide analysis, we use DESeq2 [LHA14]. We assume the read

counts generated in our model are from paired-end reads to remain consistent with the

analysis performed in the REGNASE-1 study [WLZ19]. Prior to the analysis, the log fold

changes were shrunk using the native DESeq2 apeglm log fold change shrinkage estimator

to prepare the data for visualization [ZIL19].

We first looked at the generated MA-plots from the REGNASE-1 study’s data and the

simulation’s data. As seen in Figure 5.1, most guides in both of the plots follow similar

qualitative patterns. First, the mass of the guides lie against log fold change off. Secondly,

at the apex of the mass, the guides follow a striped pattern, creating relatively parallel

lines. But, we do note that these stripes may be due to normalization issues. However,

the REGNASE-1 data’s MA-plot shows there are more positively-selected significant guides

identified than that of the simulation data. Also, the scale of mean of normalized counts

and log fold changes in the simulation are slightly larger than that of REGNASE-1. These

findings from our analysis using DESeq2 are consistent with our analysis reported in the

main text.

Next, we looked at the dispersion and fitted estimates of the guide counts. Figure 5.2

shows that there is much more variation in dispersion across the guide read counts of the
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Figure 5.1: DESeq2-generated MA plots of guide read counts from the REGNASE-1 study

(above) and the generative model’s simulation (below). The x-axis shows the mean of the

normalized guide read counts and the y-axis shows the log fold change of the read counts

between the control and treatment groups. Each point is an guide; points in a triangular

shape lie outside the plotted window, blue points indicate significant guides (p < 0.1).
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Figure 5.2: DESeq2-generated dispersion plots of guide read counts from REGNASE-1 study

(above) and the generative model’s simulation (below). The x-axis shows the mean of nor-

malized guide read counts and the y-axis shows the dispersion of the read counts. Each point

is a guide; the red line is an estimated fitted curve, blue points are shrunk towards the fitted

value, black points are outliers.
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REGNASE-1 study, relative to that of the simulation’s. However, there is more variation

in the mean of guide read counts in the simulation’s data than in that of the REGNASE-1

study’s. Also, there is more curvature in the fitted curve of the REGNASE-1’s dispersion

than that of the simulation’s. But, overall, the mass of dispersion plots are similar. These

findings are also consistent with those reported in the results of the main text.
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Scuoppo, and Jerry Pelletier. “A CRISPR/Cas9 Functional Screen Identifies Rare
Tumor Suppressors.” Scientific Reports, 6(1):38968, December 2016. Number: 1
Publisher: Nature Publishing Group.

[KD18] Gavin J. Knott and Jennifer A. Doudna. “CRISPR-Cas guides the future of ge-
netic engineering.” Science, 361(6405):866–869, August 2018. Publisher: Amer-
ican Association for the Advancement of Science Section: Review.

[KLT14] Hiroko Koike-Yusa, Yilong Li, E.-Pien Tan, Martin Del Castillo Velasco-Herrera,
and Kosuke Yusa. “Genome-wide recessive genetic screening in mammalian cells
with a lentiviral CRISPR-guide RNA library.” Nature Biotechnology, 32(3):267–
273, March 2014. Number: 3 Publisher: Nature Publishing Group.

[LHA14] Michael I. Love, Wolfgang Huber, and Simon Anders. “Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology,
15(12):550, December 2014.

[LXX14] Wei Li, Han Xu, Tengfei Xiao, Le Cong, Michael I. Love, Feng Zhang, Rafael A.
Irizarry, Jun S. Liu, Myles Brown, and X. Shirley Liu. “MAGeCK enables ro-
bust identification of essential genes from genome-scale CRISPR/Cas9 knockout
screens.” Genome Biology, 15(12):554, December 2014.

[MDL16] David W. Morgens, Richard M. Deans, Amy Li, and Michael C. Bassik. “System-
atic comparison of CRISPR/Cas9 and RNAi screens for essential genes.” Nature

38



Biotechnology, 34(6):634–636, June 2016. Number: 6 Publisher: Nature Publish-
ing Group.
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Sven Nahnsen, and Johannes Köster. “Sustainable data analysis with Snake-
make.” F1000Research, 10:33, April 2021.

[PCZ14] Randall J. Platt, Sidi Chen, Yang Zhou, Michael J. Yim, Lukasz Swiech, Han-
nah R. Kempton, James E. Dahlman, Oren Parnas, Thomas M. Eisenhaure,
Marko Jovanovic, Daniel B. Graham, Siddharth Jhunjhunwala, Matthias Hei-
denreich, Ramnik J. Xavier, Robert Langer, Daniel G. Anderson, Nir Hacohen,
Aviv Regev, Guoping Feng, Phillip A. Sharp, and Feng Zhang. “CRISPR-Cas9
Knockin Mice for Genome Editing and Cancer Modeling.” Cell, 159(2):440–455,
October 2014.

[PSK17] Shashank J. Patel, Neville E. Sanjana, Rigel J. Kishton, Arash Eidizadeh,
Suman K. Vodnala, Maggie Cam, Jared J. Gartner, Li Jia, Seth M. Steinberg,
Tori N. Yamamoto, Anand S. Merchant, Gautam U. Mehta, Anna Chichura,
Ophir Shalem, Eric Tran, Robert Eil, Madhusudhanan Sukumar, Eva Perez Gui-
jarro, Chi-Ping Day, Paul Robbins, Steve Feldman, Glenn Merlino, Feng Zhang,
and Nicholas P. Restifo. “Identification of essential genes for cancer immunother-
apy.” Nature, 548(7669):537–542, August 2017. Number: 7669 Publisher: Nature
Publishing Group.

[R C20] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2020.

[SJ14] Jeffry D. Sander and J. Keith Joung. “CRISPR-Cas systems for editing, regu-
lating and targeting genomes.” Nature Biotechnology, 32(4):347–355, April 2014.
Number: 4 Publisher: Nature Publishing Group.

[SLM17] Chun-Qing Song, Yingxiang Li, Haiwei Mou, Jill Moore, Angela Park, Yotsawat
Pomyen, Soren Hough, Zachary Kennedy, Andrew Fischer, Hao Yin, Daniel G.
Anderson, Darryl Conte, Lars Zender, Xin Wei Wang, Snorri Thorgeirsson, Zhip-
ing Weng, and Wen Xue. “Genome-Wide CRISPR Screen Identifies Regulators
of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice.”
Gastroenterology, 152(5):1161–1173.e1, April 2017.

[SRJ14] Samuel H. Sternberg, Sy Redding, Martin Jinek, Eric C. Greene, and Jennifer A.
Doudna. “DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.”
Nature, 507(7490):62–67, March 2014. Number: 7490 Publisher: Nature Pub-
lishing Group.

39



[SSZ15] Ophir Shalem, Neville E. Sanjana, and Feng Zhang. “High-throughput functional
genomics using CRISPR–Cas9.” Nature Reviews Genetics, 16(5):299–311, May
2015. Number: 5 Publisher: Nature Publishing Group.

[TMH16] Josh Tycko, Vic E. Myer, and Patrick D. Hsu. “Methods for Optimizing CRISPR-
Cas9 Genome Editing Specificity.” Molecular Cell, 63(3):355–370, August 2016.
Publisher: Elsevier.

[WLZ19] Jun Wei, Lingyun Long, Wenting Zheng, Yogesh Dhungana, Seon Ah Lim, Cliff
Guy, Yanyan Wang, Yong-Dong Wang, Chenxi Qian, Beisi Xu, Anil Kc, Jordy
Saravia, Hongling Huang, Jiyang Yu, John G. Doench, Terrence L. Geiger, and
Hongbo Chi. “Targeting REGNASE-1 programs long-lived effector T cells for
cancer therapy.” Nature, 576(7787):471–476, December 2019. Number: 7787
Publisher: Nature Publishing Group.
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