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BASTet: Shareable and reproducible analysis and visualization of
mass spectrometry imaging data via OpenMSI

Oliver Rübel and Benjamin P. Bowen

Abstract—Mass spectrometry imaging (MSI) is a transformative imaging method that supports the untargeted, quantitative measurement of the
chemical composition and spatial heterogeneity of complex samples with broad applications in life sciences, bioenergy, and health. While MSI data
can be routinely collected, its broad application is currently limited by the lack of easily accessible analysis methods that can process data of the size,
volume, diversity, and complexity generated by MSI experiments. The development and application of cutting-edge analytical methods is a core driver in
MSI research for new scientific discoveries, medical diagnostics, and commercial-innovation. However, the lack of means to share, apply, and reproduce
analyses hinders the broad application, validation, and use of novel MSI analysis methods. To address this central challenge, we introduce the Berkeley
Analysis and Storage Toolkit (BASTet), a novel framework for shareable and reproducible data analysis that supports standardized data and analysis
interfaces, integrated data storage, data provenance, workflow management, and a broad set of integrated tools. Based on BASTet, we describe the
extension of the OpenMSI mass spectrometry imaging science gateway to enable web-based sharing, reuse, analysis, and visualization of data analyses
and derived data products. We demonstrate the application of BASTet and OpenMSI in practice to identify and compare characteristic substructures in
the mouse brain based on their chemical composition measured via MSI.

Index Terms—Mass spectrometry imaging, Data provenance, Visualization, Data management, Analysis Workflows, Data sharing.

1 INTRODUCTION

Mass Spectrometry Imaging (MSI): MSI [11, 36] is a transforma-
tive imaging method that enables the simultaneous, label-free, high-
resolution measurement of the spatial distribution of thousands of
molecules (e.g. lipids, proteins, natural products, etc.) for quantita-
tive analysis of the chemical composition of complex, biological sam-
ples. MSI supports the detailed investigation of metabolic processes at
scales ranging from subcellular to centimeter resolution.

Fig. 1 illustrates a common approach towards acquisition of MSI
data by raster scanning a laser or ion beam across a sample. At each
scan location molecules are desorbed from the sample surface, often
with the assistance of a matrix coating or specially prepared surface
to promote the formation of gas phase ions. The generated ions are
then collected and analyzed via modern mass spectrometry instru-
ments with very high, single electron-mass-level accuracy. The result
is an image of typically 1002 to 10002 discrete locations, each con-
taining one or multiple mass spectra with typically 104 to 106 bins in
m/z. Today, common MSI datasets are on the order of five to tens of
GB, and can range in some cases to hundreds of GB to TBs for very
large images [23]. While the data can be routinely collected, the broad
application of MSI is currently limited by the lack of easily accessi-
ble analysis methods to explore and process data of the size, volume,
diversity, and complexity generated by MSI experiments.

OpenMSI: The goal of the OpenMSI project is to overcome these
challenges by making the most high-performance, advanced data man-
agement, model building, analysis and visualization resources for
mass spectrometry imaging accessible to scientists via the web. Open-
MSI started as a grassroots effort in 2012 and has since grown to be-
come a public resource for storage, sharing, visualization, analysis,
and management of MSI data (see http://openmsi.nersc.gov).

Rübel and Bowen et al. [45, 7] first introduced OpenMSI and de-
scribed a novel, optimized HDF5-based data format for storage of raw
MSI data. Using this novel format enables OpenMSI to accelerate
image access operations by up to more than 2000× compared to tra-
ditional MSI binary formats, enabling spectrum and image retrieval
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Fig. 1. Mass spectrometry images are commonly acquired by raster-
scanning a laser across the surface of a sample slice followed by pro-
cessing of the generated ions via mass spectrometry.

from raw MSI datasets in less than 0.3s across the Internet even for
large MSI data sets. The authors also introduced a simple web API
to enable easy and fast retrieval of data subsets via the web. Based
on this REST API, Rübel et al. also briefly introduced an early pro-
totype of a web-based image and spectrum viewer for exploration of
raw MSI data (an example of the current version is shown later in
Fig. 9). Fischer et al. [23] then described the use of the OpenMSI
web API to analyze raw MSI data in the browser via programmable
Jupyter notebooks. These prior publications have focused mainly on
the programmatic interaction with raw MSI data via a REST API.

Challenge: The development and application of cutting-edge anal-
ysis methods is a core driver in MSI research for new scientific dis-
coveries, commercial-innovations, and development of novel diagnos-
tics. However, advancement of the state-of-the-art in MSI through the
broad application, validation, and use of novel MSI analysis methods
is critically hindered by the lack of means to share, apply, and repro-
duce analyses. To facilitate the in-depth study of MSI datasets and
to enable the MSI research community to build an ecosystem of ad-
vanced analysis methods and protocols, it is critical that we can make
advanced analyses and their results easily accessible to domain scien-
tist for validation, reuse, and interpretation.

Contributions: In this manuscript we introduce for the first time
the Berkeley Analysis and Storage Toolkit (BASTet) (Sec. 3). BASTet
serves as the analysis backend for OpenMSI and enables shareable and
reproducible analysis of MSI data by providing critical support for:
• common interfaces to standardize the definition and use of data

analyses (Sec. 3.1),
• data provenance for reproducible analyses (Sec. 3.2),
• standardized storage to facilitate sharing and reuse of analysis re-
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sults (Sec. 3.3),
• workflow management to facilitate the combination of analyses to

solve complex problems (Sec. 3.4), and
• a broad set of tools and integrated analytics to facilitate the use and

development of analysis methods and workflows (Sec. 3.5).

Based on BASTet, we describe the extension of the OpenMSI sci-
ence gateway to support web-based visualization, management, and
analysis of MSI data and derived analysis data products (Sec. 4).
Specifically, we present:

• the extension of OpenMSI’s web API to enable interaction with ar-
bitrary, derived analysis data (Sec. 4.1), and

• we describe for the first time the visualization, analysis and data
management capabilities of the OpenMSI web service and science
gateway (Sec. 4.2).

Finally, we demonstrate the application of BASTet and OpenMSI
in practice to study characteristic structures in the left coronal hemi-
sphere of a mouse brain and to identify ions important to the chemical
makeup of these structures (Sec. 5.1) and discuss the broader impact
to MSI (Sec. 5.2).

2 RELATED WORK

Supporting the evolution and life-cycle of scientific analysis software
and the derived data products they generate has been the focus of sev-
eral different, complementary technologies, mainly i) analysis frame-
works, ii) provenance and workflow management systems, and iii)
standardized data formats.

Analysis Frameworks: At a high level, some data analysis com-
munities have formed around widely adopted, extensible program-
ming environments—e.g., R, Matlab or Python—that provide easy ac-
cess to a broad range of analysis packages. To create a stable foun-
dation of algorithms, many communities have developed standard li-
braries and toolkits, e.g., VTK [50, 38] for visualization, ITK [30] for
segmentation and registration, or ImageJ [48] for image processing,
among others. Standard libraries play a critical role in defining and
collecting the state-of-the-art in the respective domains. Higher-level
tools often build on these libraries—e.g., VisIt [20] or ParaView [1]
(VTK) or Fiji (ImageJ) [47]—to create user-oriented applications.

Provenance and Workflow Management: Provenance and man-
agement of complex, interdependent analytics has traditionally been a
research focus of workflow and provenance management systems, e.g.,
VisTrails [4], Pegasus [16], Fireworks [28], among many others. In the
context of visualization, VisTrails has notably been integrated with ad-
vanced visualization systems, e.g., ParaView [9] or UV-CDAT [14].

Standardized Data Formats: To facilitate persistent storage and
exchange of analysis data, the scientific community utilizes a broad
range of data formats, each of which typically focuses on different
levels of the data organization and storage problem. In practice, low-
level text and binary formats, e.g., CSV, BOV, JSON, or XML, are
still commonly used for data analysis. While JSON, XML, and other
standardized, text-based formats are portable, they are impractical
for storage and exchange of large scientific data due to large over-
heads and cost for storage, transfer, and I/O. Self-describing formats,
such as HDF5 [53] and NetCDF [44], have gained wide popularity
to store large-scale scientific data. A diverse range of application
sciences have adopted self-describing formats to define application-
specific data standards. Examples include, among many others, the
NeXus [31] format for neutron, x-ray, and muon data, the Open-
MSI format for mass spectrometry imaging data [45], or the CX-
IDB format [35] for coherent x-ray imaging. To bridge the gap be-
tween general, self-describing formats and the need for standardized
tools for data exchange, processing, and interpretation, formats like
VizSchema [51] and XDMF [12], have proposed to augment HDF5
via lightweight, low-level schema (e.g., via XML) to further specify
the data organization. Database technologies, e.g., SciDB [8], Mon-
goDB [37], PostgresSQL [42], and many others, are also used to facil-
itate scientific data analytics and standardized data access.
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Fig. 2. Overview of the typical evolution of scientific data analyses for
research and development (gray pyramid). The white boxes show com-
mon stages of development and use of analysis software. As we transi-
tion between the different phases (arrows) new requirements arise (gray
inset shapes), making transitions challenging and costly. BASTet sup-
ports this process through common interfaces for analyses and data
and a broad set of integrated features and tools for data storage, prove-
nance, workflow management, and analysis (colored boxes).

3 BASTET: INTEGRATED DATA ANALYSIS, PROVENANCE,
WORKFLOW MANAGEMENT, AND STORAGE

Scientific analysis software for research and development evolves, and
in this process undergoes many transitions, e.g., from a research pro-
totype, to production, to the integration with other components for
complex analytics, as well as adoption to larger data or new applica-
tions, and sharing, publication, reproduction, and reuse of results (see
Fig. 2). As our analysis softwares transition between these various
different phases, new—often disruptive—requirements arise, making
transitions challenging and costly and often hindering the adoption of
new analyses in practice. This is particularly critical in growing and
transformative science applications, e.g., mass spectrometry imaging,
where the state-of-the-art in data analysis is evolving rapidly and new
analysis strategies are constantly being proposed and developed.

The goal of BASTet is to help bridge the gaps between these critical
facets of data analysis and to provide users with an environment that
makes it easy to develop and deploy analyses via OpenMSI by provid-
ing standardized analysis interfaces (Sec. 3.1), automatic provenance
(Sec. 3.2), standardized storage (Sec. 3.3), integrated workflow sup-
port (Sec. 3.4) and tools (Sec. 3.5).

While the design of BASTet has been motivated by the needs of
OpenMSI, its core design and functionality are much more broadly
applicable to other applications as well. BASTet is implemented in
Python using NumPy for data processing, h5py for HDF5-based data
storage, and mpi4py for distributed parallel data processing. We
have publicly released BASTet in conjunction with this manuscript via
https://openmsi.nersc.gov/openmsi/client/bastet.html

3.1 Common Interfaces: Standardizing the definition and
use of analyses

Standardization of interfaces is central to enable the structured use of
software and data. However, in many applied science domains like
MSI, the majority of users and developers of new, dedicated analytics
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are domain experts with varying degrees of expertise and experience in
computing. To achieve adoption and enable domain experts to create
new analyses that are accessible to the science community, it is critical
that our solutions are i) easy-to-use, providing a low barrier of entry
and enabling a continuous learning process, and ii) that we provide
developers early on with desirable features that provide incentives to
use the system from the beginning of the development process while
providing access to advanced features as analyses mature.

BASTet provides developers with two easy ways to integrate new
analyses (Suppl. 2). First, the simplest and most basic solution is to
wrap analysis functions using either the @bastet analysis
Python decorator or by explicitly wrapping a function via
wrapped funct = analysis generic.from function(my function).
The latter approach has the advantage that it allows us to easily
generate multiple instances of a function that we can use and track
independently. The ability to simply wrap functions eases early
development and facilitates tracking of results from one-off analyses.

Second, to easily share and fully integrate an analysis with BASTet,
we then create a new class that inherits from BASTet’s base analysis
interface class. Creating a new derived analysis class requires only
minimal effort. In the constructor we need to i) define the inputs of
our analysis using a similar syntax to Python’s argpars module that
many developers are already familiar with and ii) specify the names
for our outputs. Finally, we implement our analysis as part of the
execute analysis() function (see Suppl. 2.3).

Once we have completed the basic integration using any of the
above-described approaches, we immediately have access to a broad
set of desirable features that already early on simplify the develop-
ment of new analyses and that ease transitions as our software evolves
throughout its life-cycle (see also Fig. 2):

• Reproduce and compare results: BASTet automatically tracks the
provenance of analyses, so that we can directly trace their history
and restore, reproduce, and profile analyses. (Sec. 3.2).

• Share results: BASTet implements a standard API and format for
storing analysis results in OpenMSI HDF5 files (Sec. 3.3). Once
we have integrated our analysis, we can, hence, immediately save
and share our results in a common format. The integration with the
file format also enables us to immediately share and access analysis
results via OpenMSI’s web services (see Sec. 4.1).

• Integrate and combine analyses to solve complex problems:
BASTet supports delayed execution and direct integration of anal-
yses with other analysis modules to define complex workflows and
shareable workflow scripts. (Sec. 3.4).

• Deploy and apply: BASTet provides standardized interfaces and
tools for executing analyses and workflows. This allows us to ex-
ecute analyses using common tools and interfaces, facilitating de-
ployment to users and integration with other systems (Sec. 3.5).

• Process larger data: BASTet supports storage of large collec-
tions of analysis data via HDF5 and facilitates the parallelization of
analyses across spectra, images, and other data subsets via helper
classes for parallel scheduling of analysis tasks via MPI (Sec. 3.5)

• Develop new analysis: Standardized tools for execution, storage,
provenance, workflows, and support for memory and runtime pro-
filing simplify development and validation of new analyses.

3.2 Provenance: Making analyses reproducible

Reproducibility of analysis results is critical in many applications of
MSI, e.g., science or health, and is essential for data reuse and sharing.
Data provenance provides a historical record of data and its origins by
documenting the inputs, entities, systems, and processes that influ-
ence the data of interest. Provenance data provides critical evidence to
study data dependencies, detect and recover errors, and facilitate inter-
pretation and auditing of analyses. Provenance information can also
be a resource for “reflection-in-action,”—i.e., to support planning and
reframing of objectives—, as well as after the fact to support the inter-
pretation of claims, audit, accountability, or training. To enable users
to easily reproduce analyses, BASTet automatically collects a broad
range of provenance data.

For all analyses, BASTet automatically records all inputs and out-
puts as well as the name of the analysis class. For analyses that have
been wrapped or created dynamically, the analysis function or class it-
self is recorded as well. We here use cloudpickle [41] to serialize
such dynamically created analyses, as it allows us to serialize a much
broader set of objects, including functions defined dynamically in the
Python interpreter, lamdas and nested functions, and a range of other
objects, that are unsupported by the standard Python picklemodule.

Beyond this basic provenance data, BASTet also automatically de-
tects and creates dependencies. Dependencies are descriptions of links
to other data an analysis depends on. Dependencies may point to data
objects in OpenMSI HDF5 files as well as to outputs of other BASTet
analyses in memory that may or may not have been computed yet. For
each dependency we store: i) the name of the target analysis parame-
ter, ii) the source of the dependency described via a combination of the
name of the dataset, the Python object that contains the dataset (e.g, an
instance of another analysis or file object manager), and an optional se-
lection describing the relevant subset of the data. In addition, we also
store iii) an optional help string, iv) the type of the dependency, and
v) the link name to be used for storage. From a user’s perspective the
creation of dependencies is handled transparently and automatically as
part of the assignment of parameter settings. As such, a user can use
an analysis implemented in BASTet as usual, without the need to learn
complex new interfaces. Parameters may be set prior to the execution
of analyses using a Python dictionary-like interface or as part of the
call to execute the analysis directly.

When an analysis is executed, we also automatically collect basic
runtime data, such as, i) start, stop, and execution times, ii) architec-
ture, system, and software metadata, e.g., OS and library versions,
processor metadata etc., and iii) runtime metadata, e.g., basic memory
usage data. In addition, BASTet can optionally collect detailed execu-
tion profiling data using Python’s Profile module and/or memory
profiling data via memory profiler [40]. For MPI-based, parallel
analyses, BASTet transparently supports resolution of dependencies
and collection of runtime data from all compute cores.

When saving an analysis to file (described next in Sec. 3.3) all
provenance data is saved as well. With the provenance of the anal-
ysis captured, we can then restore and/or recreate an analysis from file
via a single function call. This makes it trivial for users to load prior
analyses to: i) visualize and reuse results (see Suppl. 1.4), ii) expand
a prior analysis workflow (see Suppl. 1.2), iii) modify an analysis by
re-executing it with updated parameters (see Suppl 1.3), iv) recreate
an analysis to validate and confirm results (see Suppl 1.3), or to v)
compare results from different analyses.

3.3 Storage: Making analyses shareable
State-of-the-art: In MSI research today, sharing and reuse of analysis
results is fundamentally hindered by a lack of standardized methods
for storage of analysis results. Currently, a broad range of proprietary,
commercial data standards by instrument manufacturers, e.g, Brucker,
Thermo, or Waters, and few open standards, e.g., imzML [49] and
mzML [21], are being used to store MSI data. While the XML-based
mzML format is a widely used standard in mass spectrometry, it is
inefficient for storage of imaging data due to the large overheads for
storing large data volumes in ASCII form. The imzML format ex-
tends mzML by storing metadata in an mzML-like XML file while the
actual MSI data is stored separately as a raw, flat binary file. A cen-
tral advantage of imzML, mzML and the OpenMSI data format are
their transparency, portability, low cost, and compatibility with stan-
dard laboratory automation. However, none of the existing formats
support standardized storage of arbitrary analysis data.

Among the existing MSI formats, the OpenMSI data format [45] is
unique in that it is extensible and based on an open, self-describing
data standard (i.e., HDF5) that is portable across computing platforms
and natively supported by languages, e.g., Matlab, R, C/C++, or For-
tran. Our format also supports storage of large collections of data,
lossless data compression, and optimization of common MSI data ac-
cess operations via data replication to enable fast access to both spectra
and images. In the format, data is organized hierarchically into groups
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Fig. 3. Example showing the basic data layout for storage of analysis
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(see Fig. 3). A HDF5 group can be thought of as a folder within a
file that may contain an arbitrary number of other groups or datasets
(i.e., n-dimensional arrays). Each file may contain an arbitrary num-
ber of experiments (/entry #) consisting of an arbitrary number of
raw MSI measurements, experiment-level metadata about the instru-
ment and methods, and a user-defined identifier. We here describe the
extension of this format to support storage of arbitrary analysis data.

Storing arbitrary analysis data: The modular design of the Open-
MSI format allowed us to easily extend it via a new module for storing
analysis data. All data for a given analysis is stored in a separate group
within an experiment (/entry #/analysis #, Fig. 3). Each anal-
ysis stores: i) a user-defined identifier, ii) all outputs of the analysis,
iii) all runtime provenance data, iv) all user-defined parameters, v) all
dependencies, and vi) the analysis type and, in the case of dynam-
ically defined analyses, also the Python pickle of the analysis class
itself. Each analysis dependency is stored in a separate managed sub-
group according to its link name and containing all data describing
the dependency. Dependencies may point to data stored in the same or
in external HDF5 files. We chose to manage dependency information
directly in our own file format—rather than using HDF5 links—in or-
der to make the dependencies explicit and enable flexible extension of
dependencies with additional metadata in the future.

Data Storage API: BASTet implements a dedicated API for the
OpenMSI file format. The API is object-oriented and utilizes the con-
cept of managed objects. A managed object is a group in the HDF5
file that has a corresponding API class responsible for its management,
creation, and interaction. Using the analysis managed object class, cre-
ation and interaction with analysis data is simple. To store an analysis
we simply hand our analysis object—i.e., the instance of our BASTet
analysis or wrapped function—to the create analysis function.
The function in turn creates all required objects in the HDF5 file, saves
the analysis data, and automatically resolves all dependencies. For de-
pendencies that point to analyses that exist only in memory (i.e., anal-
yses that have not been saved previously), we automatically save the
dependent analyses as well. For dependencies that point to analyses
that have already been saved, we resolve the link, avoiding redundant
storage of analyses. A user may optionally suppress the storage of
dependent analyses as well as force storage of all dependencies.

With all dependency data stored in file, we can reconstruct for each
analysis all its inputs, outputs, runtime metadata, and direct dependen-
cies on prior analyses or raw MSI datasets. Using this information,
BASTet provides convenient functions to directly: i) reconstruct the
complete provenance graph for a given analysis, describing all anal-
yses and MSI datasets (nodes) and their inter-dependencies (edges),
and to ii) restore and recreate an analysis from file.
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#	Cluster	spectra	
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Fig. 4. Illustration showing the main steps and code for defining and
executing an example analysis workflow for clustering MSI data. The
workflow is defined via a standard Python script with instructions for
creating analysis tasks (blue) and defining their inputs (red). We can
then execute the workflow, or components of it, directly or save the script
to file (here ws.py) to enable reuse and scheduled execution (green).

3.4 Workflow Management: Combining analyses to solve
complex problems

To enable users to solve complex analysis problems, BASTet supports
the integration of analyses to advanced analysis workflows. As illus-
trated in Fig. 4, BASTet allows us to separate the specification of work-
flows into three logical steps: i) create analysis tasks (blue), ii) define
analysis inputs (red) and iii) execute analyses (green). The creation
of analysis tasks typically consists simply of the instantiation of the
required analysis objects. We then typically define the inputs of anal-
yses prior to their execution using a Python dictionary-like syntax. As
described earlier in Sec. 3.2, as part of this process, we automatically
discover and transparently define dependencies between the analyses,
while the dependencies may point to outputs of analyses that may not
have been computed yet. This strategy allows us to elegantly sepa-
rate the execution of workflows from their specification and to encap-
sulate the creation and definition of workflows in simple scripts. Fi-
nally, we can execute our analyses (Fig. 4, green) by either i) executing
analysis tasks individually (Fig. 4, #1.1), ii) recursively executing sub-
workflows of inter-dependent analyses (Fig. 4, #1.2 and #1.4), or by
iii) executing the workflow as a whole (Fig. 4, #1.3).

To simplify the use of workflows and ease extension of BASTet’s
workflow capabilities in the future, we define extensible base classes
for both workflow drivers and executors. Workflow drivers are respon-
sible for the setup of workflows, i.e., the creation of analysis tasks and
definition of their inputs. Workflow executors then are responsible
for controlling the execution of workflows. To ease sharing, setup,
and running of workflows, BASTet then provides an easy-to-use com-
mand line driver tool, which enables users to run workflows directly
from workflow scripts in a standardized fashion (see Fig. 4, #2.1 and
Suppl. 1.1). In the workflow script, developers can flexibly define
which analysis inputs are fixed and which ones a user should be al-
lowed to customize (see Suppl. 1.1). The command line tool then auto-
matically collects all customizable analysis inputs and exposes them to
the users via corresponding command line options. The combination
of workflow scripts and standard workflow drivers enables us to easily
define complex, shareable, and customizable analysis workflows.

Interactive Visualization and Analytics: In addition to automatic
analyses and workflows, analyses may also define interactive visual-
izations to enable users to manually determine select analysis outputs
(Suppl. 3). To support this use model, the developer creates the inter-
active view in their analysis function and simply returns a dependency
object (i.e., the current value) for any outputs that the user will define
later interactively. This strategy enables independent components of
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Fig. 5. Example interactive analysis workflow.

a workflow to proceed while the user interacts with the visualization.
Once the user has defined the remaining outputs, the analysis then
calls its output ready function to notify BASTet that the outputs
are available. In case that an interactive analysis blocks the completion
of a workflow, BASTet automatically stops the workflow and restarts
it once the blocking analysis is ready. As an example, Fig. 5 shows
an analysis of Fischer’s Iris dataset [24] using BASTet, consisting of
a scatterplot matrix analysis to allow the user to explore and interac-
tively select a data subset of interest which is then further analyzed via
principal component analysis (PCA). Suppl. 3 describes an extended
version of this example in detail. In addition, it is also possible to
expand workflows by creating new analysis tasks in response to inter-
active user inputs (Suppl. 4). The primary focus of BASTet here is to
enable sharing and reuse of data products generated by the interactive
analyses (e.g., data and parameter selections).

Comparison: Existing, advanced workflow systems, such as Fire-
works [28], VisTrails [4], or Pegasus [16], typically follow a process-
centric theme with the goal to enable management, optimization,
provenance and sharing of workflows. As such, these systems fo-
cus on standardization and reuse of workflow specifications but typ-
ically do not provide mechanisms for standardized storage of derived
data products generated by analysis tasks. In contrast, a main goal of
BASTet and OpenMSI is to enable collaborative sharing and reuse of
analysis data products. BASTet, therefore, follows an analysis-centric
theme where each analysis maintains its own provenance information
to enable users to easily reuse analyses in a self-contained fashion and
extend existing workflows post-hoc through the reuse of derived data
products created by select analysis tasks from prior workflows, while
still maintaining the ability to retrace and reproduce complete work-
flows. In contrast to common workflow systems, standardized storage
of derived data products (Sec. 3.3) is, therefore, central to BASTet.

The goal of BASTet is not to replace advanced workflow systems,
but it is synergistic to them. Through its standardized data storage
mechanisms, BASTet fills a critical gap to enable users to share their
derived data products. BASTet provides MSI users a lightweight and
easy-to-use entry-point to define and manage their workflows without
the often steep learning curves and technical requirements of advanced
workflow systems, while providing avenues for users to graduate to
such systems in the future. Advanced workflow systems can be inte-
grated with BASTet as workflow drivers and executors and analyses
integrated with, e.g., VisTrails, could be easily wrapped to integrate
them with BASTet. Conversely, analyses defined in BASTet could be
easily wrapped to integrate them with VisTrails as well.

3.5 Integrated Tools and Data Analytics

BASTet’s standardized command line tools for execution of individual
analyses (Suppl. 1.2, paragraph 1), and workflows (Suppl. 1.1, para-
graph 3 and Fig. 4, box #2.1), greatly simplify the analysis develop-
ment process and reduce cost by eliminating the need for custom tools
to run and combine different analyses. The ability to run analyses in a
standardized fashion as well as to create custom workflows via com-
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mand line scripts also simplifies deployment to and application and
validation by domain scientists (see Suppl. 1.2, 1.3).

To further facilitate development of new analyses, BASTet provides
a broad range of integrated features, e.g., for logging, data selection,
third-party MSI file formats, or data conversion. For example, in prac-
tice, many MSI analyses can be naturally parallelized across spectra
or image slices. To facilitate the implementation of scalable, parallel
analytics, we provide easy-to-use helper classes for parallel decompo-
sition and execution of analysis tasks via MPI. BASTet also provides
a growing set of integrated analytics, e.g., for clustering, matrix fac-
torization, peak detection, or TIC normalization.

4 WEB-BASED VISUALIZATION, DATA MANAGEMENT, AND
ANALYSIS

So far we have focused on methods to define, execute, store, com-
bine, and track analyses via BASTet. Next, we describe the extension
of the OpenMSI web service (Fig. 6) to enable users to easily access
(Sec. 4.1), explore (Sec. 4.2.1), and visualize (Sec. 4.2.2) analysis re-
sults. Being able to make analysis data quickly and easily accessible
to application experts is critical for evaluation, interpretation, and ap-
plication of analysis methods for scientific knowledge discovery.

The OpenMSI science gateway is hosted at the National Energy Re-
search Scientific Computing Center (NERSC). The science gateway is
implemented in Python using DJANGO [17] and using NEWT [10]
to interact with NERSC high-performance compute systems and re-
sources. Visualizations are implemented via client-side rendering us-
ing D3 [6]. As illustrated in Fig. 6, the implementation consists of
a series of DJANGO apps: i) omsi client manages and serves web
pages, ii) omsi access handles all requests for data via OpenMSI’s web
API (Sec. 4.1), iii) omsi resources implements all data management-
related functionality, e.g., SQL database models and DJANGO views
for managing file permissions, and finally iv) omsi processing is re-
sponsible for creation, submission, and management of all compute
jobs, e.g., for data import and analysis. All data storage, processing,
and analysis functionality are then implemented by BASTet.

4.1 Web API: Standardized web-based data access
OpenMSI’s REST API for interacting with MSI data, as introduced by
Rübel et al. [45], consists of five simple functions: i) qmetadata for
retrieval of metadata about files and their content, ii) qcube to access
arbitrary data subsets from HDF5 datasets, iii) qslices to retrieve im-
age slices from MSI data, iv) qspectrum to retrieve spectra from MSI
data, and v) qmz for collecting information about static axes of data
objects. We here discuss the extension of this base API to enable users
to easily interact with arbitrary analysis data.

4.1.1 General Data Access Functions
The qmetadata and qcube functions enable general-purpose access to
the HDF5 files. Once a user has stored an analysis using BASTet, we
can immediately access all derived analysis data via these REST func-
tions. Simply by wrapping an analysis, we can, hence, immediately
interact with derived analysis data remotely. Similar to the strategies
Fischer et al. [23] described for remote analysis of raw MSI data using



Jupyter notebooks, we can now implement the same kind of remote
analytics also for arbitrary, derived analysis data.

To enable users to easily locate analysis data, we extended
qmetadata and qcube via the following input parameters: i) anaIndex
to locate an analysis based on its index, ii) anaIdenti f ier to locate an
analysis based on the user-defined identifier, and ii) anaDataName to
allow selection of a specific dataset from an analysis. In addition, we
also expanded qmetadata to enable users to retrieve the provenance
graph for analyses and other data objects. We encode the provenance
graph in JSON via node and edge lists. Each node is defined via a dic-
tionary with the objects metadata and each link is defined by the index
of its source, target, and the link type. An illustration of an example
provenance graph is shown later in Fig. 10.

4.1.2 Specialized Subset Data Access Functions
The qslice, qspectrum and qmz functions are designed to facilitate
specific, common data access operations from spectral imaging data,
specifically, the retrieval of image slices, spectra, and descriptions of
static data axes, respectively.

In contrast to raw MSI data, there are often many useful ways to de-
fine image slices and spectra for a given analysis and the appropriate
behaviors are often highly specific. We, therefore, define the behav-
iors of qslice, qspectrum and qmz for a given analysis type via the
corresponding derived BASTet analysis class. For each analysis we
may define an arbitrary number of view options to construct images
and spectra, respectively. A developer can customize the available
view options and define new ones by overwriting the corresponding
functions in the derived analysis class. BASTet defines default im-
plementations for all three patterns, which automatically resolve all
analysis dependencies and adds their views to the list of view options.
This approach enables users to easily navigate all dependencies of an
analysis simply by selecting the corresponding view option via the
new viewerOption parameter of the qslice, qspectrum and qmz pat-
terns. Similar to qmetadata and qcube, we also added the anaIndex,
anaIdenti f ier, and anaDataName parameters. To support sparse rep-
resentations of spectra, we then extended the qspectrum pattern to al-
low the return of custom m/z axes on a per-spectrum basis in addition
to the specification of global axes via qmz.

Being able to define the behavior for specialized data access oper-
ations directly in the corresponding analysis class has several critical
advantages. First, developers can create new analyses for OpenMSI
in a self-contained, plug-in-like fashion, with all analysis-specific be-
haviors being defined by a single class. Second, resolution and visu-
alization of dependencies is handled automatically. Third, users can
retrieve images and spectra for analyses without having to know spe-
cific implementation details of the analysis. For example, the required
dataset(s) and transformations are typically automatically determined
by the specific implementation of qslice, qspectrum and qmz based on
the given viewerOption. Fourth, developers can make their analyses
with minimal effort accessible to users for testing, evaluation, and ulti-
mately production use. Users in turn can access and visualize analyses
results in a standardized fashion (Sec. 4.2), significantly lowering the
barrier for use and adoption.

4.1.3 Programmable Data Processing Pipelines
When requesting data subsets via the REST API, data is transferred
via the internet in JSON, PNG, or binary HDF5 format. To achieve
high performance for interactive applications, it is critical to reduce
already early on the amount of data that needs to be transferred. For
example, visualization of the spatial distribution of ions is often based
on normalized projections from tens to hundreds of image slices. By
performing such data reductions prior to the data leaving the NERSC
HPC network infrastructure, we can greatly reduce the need for large
external data transfers.

We previously described the use of a small, fixed set of simple
data reduction operations—specifically, maximum, minimum, aver-
age, standard deviation, and variance—as part of data requests [45].
However, the specific data reduction operations needed are in practice
often complex and highly application specific. We, therefore, extended
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Fig. 7. Illustration showing a single qspectrum web request for retrieval
of the difference spectrum of the normalized, background-subtracted,
average spectrum from two distinct 2×2 regions in space.

the qcube, qslice, and qspectrum data retrieval functions to support
custom, programmable data reduction pipelines defined via JSON. To
balance web-server load and security needs with flexibility, we define
a broad list of allowed operations and focus on data-parallel, loop-free
processing pipelines as part of web requests. In the JSON specifica-
tion, users can combine data transformation and reduction operations
to define advanced processing pipelines (see Suppl. 6 for further de-
tails). We use this functionality in the web-based viewer (Sec. 4.2.2),
to reduce data transfer cost by computing normalized ion images as
part of qslice requests directly while allowing the user to easily cus-
tomize normalization parameters via the UI.

To facilitate common comparative analyses of spectra, we fur-
ther extended qspectrum to enable retrieval of two sets of spectra,
each of which may be processed via separate user-defined processing
pipelines. The two spectra are then combined via a third pipeline and
the resulting spectrum can optionally be further processed via a fourth
pipeline. Finally, a user may choose between a standard 1D linear and
a 2D hilbert curve [2] layout for the spectrum data.

Fig. 7 illustrates a common use-case for such advanced spectrum re-
quests. We here first compute the normalized, background-subtracted,
average spectrum for two distinct 2 × 2 regions in the left coronal
hemisphere of a mouse brain. Finally, we subtract the two average
spectra and select the spectrum layout. The resulting difference spec-
trum aids in the identification of differences in the chemical composi-
tion of the two tissues (see Suppl. 6.2).

4.2 Web interfaces: Visualization and Management of MSI
Data and Analyses

The typical workflow for a user interacting with the OpenMSI science
gateway consists of the following steps (see Suppl. 7 for renderings of
the main pages). First, the user uploads their raw MSI data to NERSC
using the embedded Globus web service [26] via the data upload page
or other alternative methods (e.g., ftp). Using the data import page, the
user then initiates the file conversion to HDF5 and further data process-
ing steps (e.g., NMF or peak detection). Data processing is performed
via scheduled jobs using the Cori and Edison high-performance com-
pute systems at NERSC. A user can view and manage their compute
jobs directly via OpenMSI’s job management page. Once the data has
been imported, users can i) browse and explore files via the integrated
file browser (Sec. 4.2.1 and Fig. 8) ii) visualize the data via the inte-
grated web-based viewer (Sec. 4.2.2 and Fig. 9) iii) share the data with
others (Fig. 8, b) and, as mentioned in Sec. 4.1, iv) access their data
programmatically via the REST API for remote analytics.
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Fig. 8. (a) Online file browser with a searchable list of files (left) and
an interactive tree-view showing the content of the current file (right).
From here, users can download the file, manage access permissions
for sharing with other users (see b), and launch the web-based viewer
(see c) for the available MSI and analyses datasets.

4.2.1 File Browser
To enable users to easily browse and explore their data files online, we
developed a web-based file browser (Fig. 8). The file browser allows
users to browse and search files via a list view (Fig. 8a, left) and to
explore the content of HDF5 files via an interactive tree view (Fig. 8a,
right). Small metadata, e.g., information about dependencies, analysis
parameters, types, etc., is displayed directly as part of the tree view.
From the tree view, users can download the HDF5 file and manage file
access and sharing permissions (Fig. 8b). For any object that can be
viewed via the web-based viewer (e.g., analyses, raw MSI, or depen-
dencies), the user can directly launch the viewer from here (Fig. 8c).

4.2.2 Viewer
A central goal of the web-based viewer (Fig. 9, 8c) is to make MSI data
easily accessible to novice users and users with no programming ex-
perience. The viewer consists of two intuitive views. The image slice
viewer (left) allows users to explore the spatial composition of sam-
ples and to interactively select two locations of interest. The spectrum
viewer (right) then displays the spectra associated with the selected
image locations. The interactive zoom and pan locations are synchro-
nized between the two spectrum plots, allowing users to easily explore
and compare the makeup of the different loci. We here describe the
extension of the viewer to support visualization of arbitrary derived
analysis data and their dependencies.

The web-based viewer is based on the qslice, qspectrum, and qmz
URL patterns and, hence, does not require any specific knowledge
about different analyses or dataset names. The viewer and the user
remain in this way isolated from any analysis and application specific
implementation details and can flexibly explore images and spectra for
raw data and all derived analyses and their dependencies.

We have extended the viewer to allow users to independently select
the analysis viewerOption (described earlier in Sec. 4.1.2) for the im-
age slice and spectrum viewer via easy-to-use drop-down menus. This
enables the user to easily create mixed visualizations where the im-
age and spectrum viewer show related data from different stages of an
analysis workflow (e.g., in Fig. 9 raw mass spectra selected based on
NMF images). Using the provenance graph to automatically construct
the list of dependent view options makes it easy for users to locate and
visualize dependent data and avoids critical errors. To allow users to
easily explore a file without having to switch between the file browser

Fig. 9. Screenshot of the web-based data viewer. The image viewer
(left) shows a three-channel image from a non-negative matrix factor-
ization (NMF). Each channel represents a select NMF component im-
age and is mapped to the red, green, or blue component of the RGB
image, respectively. The user selected in the viewer two locations in
distinct regions of the sample, marked by two white crosshair symbols.
The spectrum viewer (right) shows the corresponding spectra from the
raw MSI dataset for which the NMF was computed.

and viewer page, the file browser (Fig. 8) can also be rendered in an
overlay to the viewer. Suppl. 7.5 provides an overview of the graphical
user interface of the web-based viewer.

The web-based viewer allows us to make results of highly com-
plex analyses and workflows easily accessible to target users, further
lowering the barriers for use, adoption, and deployment. Users can
download URLs that capture the data and visualizations parameters,
so that they can easily record and share interactive visualizations with
collaborators and the science community at large.

4.2.3 Comparison to Existing MSI Analysis Tools
To date, MSI analysis tools—e.g., TissueView, BioMap, flexImag-
ing, ImageQuest, MITICS among others—have been largely desktop-
oriented. To the best of our knowledge, OmniSpect [39] is the only
other publicly available web-based system for MSI analysis. OmniS-
pect is based on MATLAB and allows users to execute a static analy-
sis workflow remotely and to afterwards download output files or view
static plots. In contrast to these existing tools, OpenMSI in combina-
tion with BASTet is, to the best of our knowledge, the only MSI anal-
ysis system that supports: i) private and public sharing of large-scale
MSI data and derived analysis data via the web, ii) remote analytics
of raw and derived data products via a REST API, iii) interactive vi-
sualization and exploration of large MSI data and derived analyses via
the web, iv) automatic, built-in provenance of analyses and complex
workflows, v) easy reuse and reproduction of analyses, and vi) that
enables users to utilize state-of-the-art high-performance computing
systems for large-scale parallel analytics.

5 EVALUATION

Next, we demonstrate the application of our system to study the
metabolic makeup of a mouse brain sample (Sec. 5.1) and then dis-
cuss the broader impact on MSI (Sec. 5.2).

5.1 Application Case Study
Across applications of MSI, some of the most common, central ques-
tions are: i) which characteristic structures does a sample comprise,
e.g., different tissues, ii) how do they differ, and iii) which ions are
most important to the chemical composition of these structures. Here
we demonstrate the application of our system to study these questions
for an MSI dataset of the left coronal hemisphere of a mouse brain.

Analysis Workflow: Fig. 10 illustrates the analysis workflow. Us-
ing peak finding, we first identify the most intense ions and integrate
the peaks. Using this approach, the dataset is reduced from a series
of 80,399 images, each spanning a narrow range in m/z, to a set of
697 ion images each representing a singe main peak. Next, we nor-
malize the spectra by dividing by the per-spectrum total ion count;
also refered to as TIC normalization. Due to desorption and ionization
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Fig. 10. Cluster analysis workflow showing i) the analysis tasks (white
boxes), ii) dependent analysis task inputs (blue boxes), iii) analysis task
outputs (red boxes), and iv) data flow connection lines with data flowing
from red to blue and labels and line width indicating data size.

from heterogeneous surfaces, TIC normalization is commonly applied
to help even out the ion-intensities across an image.

Clustering is widely used in MSI to find ions with similar spatial
patterns and pixels with similar spectra. To be able to focus our analy-
sis on the main sample, we next apply kmeans clustering and automat-
ically classify the clusters into two groups (background vs. sample)
based on whether a cluster is dominated by ions with an m/z< 500Da.
Fig. 11a summarizes the results of the mask computation.

Using the resulting mask, we next classify the spectra of the sample
into 10 distinct clusters using kmeans clustering. Finally we compute
the average raw spectrum for each of the clusters and compare it with
the remaining spectra. Fig. 11b shows the spectral centers computed
from the full MSI data and the spatial map of the selected pixels for
each cluster. We can see that the clusters are highly localized, selecting
distinct tissues within the left coronal hemisphere of the mouse brain.

We next perform CX [55] matrix factorization independently for
each of the clusters to identify which ions are most important to their
chemical composition. The resulting leverage scores provide a ranking
of all ions based on their contribution to the submatrix of spectra of the
given region. Fig. 11c shows for each of the 10 clusters (rows) the top
10 important ions (columns) identified via CX matrix factorization, of
which 20 are unique. Tab. 1 summarizes these ions and the clusters in
which each was ranked within the top 10. 7 ions were ranked among
the top ten in all or most clusters (Tab. 1, left column). Another 7
ions where ranked among the top ten in 3 to 5 clusters (Tab. 1, middle
column). Finally, 6 ions were ranked among the top 10 in only 1 or 2
clusters (Tab. 1, right column). The identity and localization of these
ions is comprehensively covered in a previous work by Lee et al.[18].

Implementation: We implemented the above workflow using
BASTet via a combination of reusable workflow scripts and a series
of Jupyter notebooks. Fig. 4 shows a code example of a similar but
simplified workflow. The complete Jupyter notebooks are available in
Suppl. 1. In this process, BASTet’s workflow, provenance, and stor-
age capabilities have shown to be complementary to the provenance
capabilities and interactivity that Jupyter notebooks provide. Using
BASTet allowed us to efficiently specify and validate the analysis

m/z in top 10 m/z in top 10 m/z in top 10
852.7 all 806.71 [1,3,6,9,10] 800.66 [2,6]
844.7 all 389.1 [1,5,7,8] 840.66 [4,5]
868.7 all 409.11 [1,3,7,8] 403.26 [5,6]
828.69 all but [4] 469.28 [2,4,9,10] 332.41 [7,8]
824.68 all but [1,7] 804.69 [1,2,3,6] 845.69 [9]
822.7 all but [7,8] 798.74 [3,7,8] 853.7 [4]
497.32 all but [3,5] 869.69 [4,5,10]

Table 1. Top ions identified via per-cluster CX matrix factorization and
the clusters (row in Fig. 11b, c) in which they were ranked in the top 10.

workflow in an interactive and self-contained fashion while avoiding
the need for user interaction as part of the workflow execution itself.
The time-consuming execution of the analyses can in this way be eas-
ily delayed to the end of the notebook or even be offloaded to the com-
mand line for scheduled, offline execution (Suppl. 1.1). Being able
to easily save and restore analyses to/from file then enabled us to ele-
gantly separate the execution of the workflow from the visualization of
analysis results (see Suppl. 1.4). BASTet’s provenance and storage ca-
pabilities fill in this way a critical gap in the provenance capabilities of
Jupyter notebooks, as it allows us to record the results and provenance
of large-scale analyses not captured in the output of Jupyter code cells.

Impact: In practice, MSI data analyses are often based on lab-
specific combinations of vendor-specific and custom tools and output
formats, a process that hinders provenance, sharing, and reuse of anal-
ysis results. Beyond the advantages already seen during the implemen-
tation above, BASTet greatly simplified the development and subse-
quent integration and deployment of the individual analyses. BASTet
also allowed us to easily share the workflow, analysis results, and vi-
sualizations with target users for validation, customization, and exe-
cution throughout the development process while avoiding the need
for costly reexecution of analyses. Another main advantage of our ap-
proach has been the ability to reuse and extend workflows. E.g., sev-
eral users requested the ability to use non-negative matrix factorization
(NMF) to study the diversity of samples and to compute characteristic
spectra. BASTet’s provenance capabilities and command line analysis
tools enabled us to easily expand the workflow (Fig. 10) after-the-fact
by adding NMF based on the global peak finding results (Suppl. 1.2).
Using the OpenMSI science gateway then greatly simplified the shar-
ing of data and enabled users to easily access and explore analysis
results interactively via the website and web API. For example, us-
ing the online viewer (see Fig. 9) we can study the spatial diversity
of the brain sample via NMF images (left) while assessing metabolic
differences between tissues using raw MSI spectra (right).

5.2 Broad Impact to MSI

One important measure for success is broader impact. Users have
applied the visualization, analysis, and data management capabilities
we have described here to study a broad range of biological phenom-
ena. For example, Dalisay et al. [15] have successfully used Open-
MSI for plant-biology studies, specifically to investigate the formation
of dirigent protein-mediated lignan and cyanogenic glucoside in flax
seeds. Silva and Northen [52] and Louie et al. [34] have used Open-
MSI to study microbial chemical interactions and to deconstruct how
cells interact to transform their small molecule environment. Raad et
al. [43] are applying OpenMSI to perform large-scale assays of spotted
samples (e.g, Fig. 8c) for bio-energy applications and have developed
OMAAT, an advanced tool for analysis of arrayed experiments based
on OpenMSI. Beyond these select published applications, users are
also applying OpenMSI to study the heterogeneity and metabolism of
tumors for applications in cancer research, and many others.

Users of OpenMSI have made a number of MSI datasets available
to the public from a broad range of applications, e.g., images of a
mouse brain [18], rat lung [22], mouse liver [32], cultures of micro-
bial interactions [34] poplar leaf [13], potato, and flax pod [15]. The
public sharing of data is an important resource for the scientific com-
munity at large. For example, other scientists have used this public
data to study a broad range of topics, e.g., the application of i) multi-
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Fig. 11. Overview of results of the analysis workflow outlined in Fig. 10. (a) Visualization of the initial clustering results with curve plots of the mean
spectra and spatial maps of the selected locations for each cluster. In contrast to the sample (red), the background clusters (blue) predominantly
show high peaks for ions at m/z < 500Da. (b) Visualization of clustering results after masking with curve plots showing for each cluster the mean
spectrum computed from the full MSI data and a map showing the locations selected by the cluster (black) and sample mask (gray). (c) Intensity
maps of the ten most informative ions identified for each cluster via CX matrix factorization and ranked by their leverage scores.

variate curve resolution to MSI [29], ii) automatic data reorganization
to accelerate data analysis [19], or iii) the application of CUR matrix
decomposition to MSI to identify important ions and positions [55].

Finally, OpenMSI has been selected as one of the 100 most techno-
logically significant new products of the year in Software/Services by
the prestigious R&D100 awards in 2015 [27] and ImaBiotech, a CRO
company developing and offering MSI services, applications, and soft-
ware, licensed OpenMSI intellectual property in 2016 [25].

6 CONCLUSION

We have introduced BASTet, a novel framework for shareable and
reproducible data analysis that supports standardized data and anal-
ysis interfaces, integrated data storage, data provenance, workflow
management, and a broad set of integrated tools. Based on BASTet,
we have described the extension of the OpenMSI mass spectrometry
imaging science gateway to enable web-based sharing, reuse, analysis,
and visualization of data analyses and derived data products.

BASTet and OpenMSI together provide critical means to share, ap-
ply, and reproduce MSI analyses. This research provides an important
path for the MSI community towards enabling the broad application,
validation, and use of novel MSI analysis methods and for building an
ecosystem of standard and validated analysis methods, protocols, and
workflows. Making sharebale and reproducible analysis methods and
data easily accessible holds promise to enable the broad application of
MSI across disciplines and ultimately to move MSI from the research
bench to routine application in hospitals, drug development, and other
commercial applications.

To enable sharing of visualization methods, our system currently
supports the design of custom remote visualization and analysis

tools based on OpenMSI’s web API (e.g., Fischer et al. [23] or
OMAAT [43]) as well as integration of interactive analyses as part
of BASTet (Sec. 3.4). To further expand support for sharing of custom
visualizations, we plan in the future to: i) expand the integration of the
Jupyter web service [54] with OpenMSI and ii) extend BASTet’s anal-
ysis API to support specification and sharing of declarative, analysis-
specific visualizations [33], e.g., defined via Vega [46] or Bokeh [5],
in combination with corresponding extensions of OpenMSI’s web API
and interface to facilitate access and display. We also plan to further
expand the workflow management capabilities of BASTet by integrat-
ing complimentary workflow and provenance tools, e.g., VisTrails [4]
or Tigres [3]. Finally, we plan to further generalize our system and
demonstrate its application to other application domains, e.g., atomic
force microscopy. For example, Suppl. 5 demonstrates the application
of BASTet and OpenMSI to neuroscience electrophysiology data.
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