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Abstract

This dissertation covers various topics ranging from migration to wealth measures in developing

countries and to policy analysis in general. In Chapter 1, I study the internal migration in China

and aim to understand its effect on the human capital accumulation of the later generations. In

Chapter 2, I investigate novel wealth measures and look for ways to understand the low-cost wealth

metrics. In Chapter 3, I discuss a doubly-robust method to estimate causal effects for panel data in

the presence of effect heterogeneity.

In Chapter 1, I investigate the mechanisms through which parental migration affects the

schooling outcomes of children left behind in rural China. This issue affects 61 million children.

Previous literature on this topic focuses on estimating the net effect of migration, whereas this paper

disentangles the net effect into different mechanisms of policy interests. I establish a theoretical

framework to incorporate three essential and widely-studied mechanisms that migration could

affect left-behind children’s school performance: parental accompaniment, child’s study time,

and investment in children. Motivated by the theoretical model’s solution, I apply the structural

equation model to estimate the influence through different mechanisms. I propose an identification

strategy based on instrumental variables and the Heckman selection model. Using the model on

rural household survey data from nine provinces, I find that the effects through parental absence

and investment are both significantly negative with large sizes. In contrast, the impact through the

child’s study time is insignificant with a negligible size. The surprising negative effect through

investment is mainly driven by reduced nutrition investment by the de facto custodians, who

may not have compatible incentives to allocate the remittances to the child. Through a refined

subgroup analysis, I find that girls are suffering ten times more from the underinvestment than

boys, revealing a shocking gender inequality in rural China.

In Chapter 2 (co-authored with Professor Ashish Shenoy), I aim to understand novel poverty

measures. For under-developed countries, wealth measures are essential for measuring economic

growth, policy design, and setting development goals. In particular, I focus on the use of nighttime
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light data. Unlike standard wealth measures based on national accounts or expenditure surveys,

nighttime light data has the advantages of high frequency, low cost, and precision over small

geographic units. These advantages make it an ideal substitute for in-person surveys. Nighttime

light data has been a popular wealth measure in recent years, and previous papers mainly argue

that nighttime light intensity and gross domestic production levels are highly correlated globally.

However, we analyze the relationship between night light growth and economic growth for 179

countries or regions and find heterogeneity in the correlation. To deal with the heterogeneity,

we propose a weighted least squares estimator for the average correlation coefficient by properly

re-weighting each country. We find a significant and positive average correlation among middle-

income countries. Moving beyond the average association, we apply the LASSO regression to

identify and estimate non-zero individual correlation coefficients. This is inspired by the sparsity

of country-level associations observed in the preliminary analysis. We further apply the ”knockoff”

method to control the false discovery rate among the selected countries.

In Chapter 3 (co-authored with Professor Dmitry Arkhangelsky, Professor Guido W. Imbens,

and Lihua Lei), we develop a novel method for causal inference with observational panel data,

which overcomes the limitations of existing methods. Cross-sectional models account for treatment

assignment using methods such as inverse probability weighting. We extend this approach to

panel data. Taking the case of staggered adoption as an example, we model the adoption time

with duration models such as the Cox hazards model. As long as the information about the

assignment mechanism is accurate, our method works under substantially weaker assumptions

than the traditional methods. As a byproduct, we characterize the class of experimental designs

under which the conventional methods are guaranteed to produce consistent estimates of the

causal effects. The method from our paper can be widely applied to empirical analysis, such as

program evaluation.
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CHAPTER 1

How Does Parental Out-migration Affect Left-behind Children’s

Schooling Outcomes?

1.1. Introduction

1.1.1. Background. Labor migrants represent a substantial share of the workforce in many

developing countries. According to Human Development Report 2009 [Klugman, 2009], there are

more than 740 million internal migrants who live and work outside their region of birth within

their home country — approximately 2.6 times as many as international migrants, based on the

estimates by World Migration Report 2020. Due to various kinds of mobility constraints, family

members of migrants are often left behind, facing the potential adverse effects emotionally and

physically [Waddington, 2003]. The separation could have non-negligible consequences on the

education and health of left-behind family members.

In this paper, I focus on left-behind children of internal rural migrants in China. According

to the 2010 Population Census of China, more than 61 million children are left behind in rural

China by migrant parents, accounting for 37.7% of children in rural areas, and 21.88% of children

in China overall. The massive number of left-behind children is a consequence of the hukou system,

the household registration system in China. There are two types of hukou in China: rural and

urban hukou, and it has been difficult to transfer from one type to the other. Prior to the 1970’s,

people with rural hukou were legally prohibited from migrating to urban areas. Since the late

1970’s, to meet the huge labor demand in urban areas generated by the Chinese economic reform,

the government has gradually relaxed the restriction on the hukou system to permit migration from

rural to urban areas. Nevertheless, transfers of the hukou status remains highly restrictive — rural

migrants and their families with rural hukou are generally excluded from the social benefits that

urban citizens enjoy. In particular, children of rural migrants have limited access to free public

schools, health care benefits, housing support, social security, and other resources. Children who

migrate with their parents from rural to urban areas can either choose expensive private schools,

1



or less costly “migrant schools” run by local entrepreneurs, typically with unsatisfactory quality

of education. As a consequence, most migrant parents choose to leave children behind in their

hometown.

Considering the sizable population of left-behind children in rural China, the effect of parental

migration on left-behind children’s educational outcomes has considerable implications on the

accumulation of human capital in China. Although the effect may not be reflected in the short-term

household livelihood, it is highly indicative of the future human capital, which directly affects the

poverty level. Therefore, it is of paramount importance to assess the impact and design policies to

mitigate the negative effects and amplify the positive effects, if any.

Despite the rich literature on internal migration in different developing countries [e.g. Arnold

and Shah, 1984, Booth, 1995, Battistella and Conaco, 1998, Ganepola, 2002, Afsar, 2003, Maruja

and Baggio, 2003, Edwards and Ureta, 2003, Mendoza, 2004, Adams Jr and Page, 2005, Bryant,

2005, Gupta et al., 2009, Arguillas and Williams, 2010, Antman, 2011, McKenzie and Rapoport,

2011, Graham and Jordan, 2011, Antman, 2013], including China [He et al., 2012, Chang et al.,

2011, Chen, 2013, Zhao et al., 2014, Sun et al., 2015], existing works almost exclusively focus on

the net effect of parental migration on left-behind children’s schooling outcomes. While the net

effect is scientifically meaningful, it is less informative for policymakers — even if there is a large

negative net effect, it is neither efficient nor ethical to directly impose restrictions on migration

because education is not the only important factor for social welfare. A more realistic approach is

to design policies targeting specific mechanisms that are more manipulable than the migration

per se, through which the migration affects the left-behind children’s educational outcomes. To

achieve this, the first step is to disentangle the net effect into different causal channels to assess

their respective importance [Huber, 2016].

1.1.2. Contributions. In line with the literature, I investigate three widely-studied mecha-

nisms — parental absence, child’s time allocation, and investment in the child [Démurger, 2015]. In

Section 1.5.3, I further decompose the investment into two sub-mechanisms — nutritional spending

and tuition spending. Each of these mechanism has been partially assessed in various countries.

Nevertheless, previous studies in China and other developing countries almost exclusively focus

on the net effect of each channel separately without taking their high correlation into account. A
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significant net effect of an unimportant mechanism may be purely contributed by another impor-

tant mechanism that is correlated but missing in the analysis. In principle, simultaneous analysis

of different mechanisms mitigates the bias due to correlation, thereby providing a more convincing

comparison of potential policy targets.

To lay the foundation for the simultaneous analysis, I establish a simple two-agent model to

model the decision-making processes of the child and parents jointly. The child’s decision variable

is the study time; the parents’ decision variable is migration; and both agents are maximizing a

weighted average of utilities in the present and in the future. Under reasonable assumptions on

the utility functions and production function of human capital, both the child and parents face a

trade-off between the utilities in two periods, leading to a non-trivial equilibrium. The equilibrium

solution reveals how the child’s educational outcome is affected by migration directly through

parental absence and indirectly through time allocation and monetary investment.

Beyond the lack of simultaneity, most of the existing studies have another important limitation.

The effect through an intermediate variable has two components: the effect of migration on that

variable, and the effect of that variable on the educational outcome. To the best of my knowledge, all

previous works estimate one component only, which provides an incomplete answer. I summarize

a selective set of works in Section 1.1.3. For instance, Chang et al. [2011] and Chen [2013] find

that children of migrants tend to spend more time on housework and thus less time on studying.

However, this conclusion on its own does not prove the effectiveness of a policy that increases

child’s study hours, unless one can further show that increased hours has a positive effect on the

schooling performance, which may or may not be true depending on the relative effect size of stress

or fatigue. Similarly, Kandel and Kao [2000] find that high remittances sent back by migrants may

decrease the child’s schooling performance. However, this is insufficient to guide policymakers

because the negative effect can be either attributed to that the remittances are not allocated to the

child by the de facto custodian or that the remittances increase child’s desire to work and reduce

their aspiration to study.

I overcome this limitation through the mediation analysis, which can provide estimates of

both components, thereby providing a fuller description of the effect through different channels.

Mediation analysis is a standard technique to decompose the net effect of a treatment into a direct

effect and indirect effects through different causal mechanisms. It has been popular for decades in
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psychology [Baron and Kenny, 1986], and was advocated recently in economics [e.g. Heckman et al.,

2013, Heckman and Pinto, 2015, Huber, 2016, 2019, Celli, 2019]. In my problem, the treatment

is the migration decision of parents, the direct effect is given by the absence of parents, and the

indirect effects are given by the child’s time allocation and monetary investment in the child.

Notably, the equations involved in the mediation analysis coincide with the equilibrium solution

of my two-agent model under certain functional specification, rendering the empirical analysis

coherent with the theoretical analysis. In this problem, the mediation analysis is complicated

by unmeasured confounders and non-random missing mediators, namely child’s study time and

monetary investment in the child. I propose a generic identification strategy to handle these two

sources of endogeneity simultaneously.

Applying the mediation analysis on the Rural-Urban Migration in China (RUMiC) survey, I find

significantly negative direct effects of parental migration on both the language and math scores

of left-behind children as shown in the literature [Zhao et al., 2014, Meng and Yamauchi, 2015].

In particular, the direct effect is −0.524 (p < 0.01) for language scores and −0.453 (p < 0.01) for

math scores, measured in standard deviations. The indirect effects through child’s time allocation

are insignificant and near zero, with size 0.003 (p > 0.05) for language scores and 0.002 (p > 0.05)

for math scores in standard deviations, implying that intervention through this channel may not

be effective for left-behind children in China. In contrast to many studies in other developing

countries, I find that the indirect effects through investment in the child are significantly negative

for both the language and math scores with larger magnitudes than the direct effects. Specifically,

this indirect effect is −0.894 (p < 0.001) for language scores and −0.874 (p < 0.001) for math scores

in standard deviations. The seemingly counterintuitive negativity is caused by underinvestment

in the child despite the remittances sent by migrants. This could be driven by incompatible

incentives of guardians in the absence of parents [Niimi et al., 2009, Chen, 2013]. The net effect of

migration on child’s schooling performance by adding up three mechanism-specific effects is −1.42

for language scores and −1.33 for math scores in standard deviations. Despite the large net effect,

the decomposition into mechanism specific effects is clearly more informative for policy makers.

In addition, the gender subgroup analysis shows that girls’ schooling performances are dis-

proportionately affected by migration through underinvestment, revealing a shocking gender

inequality in rural China. In fact, the indirect effect through investment for girls is more than 10
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times larger than that for boys on both language and math scores. By further decomposing the

investment into nutritional spending and educational spending, I find that the underinvestment

is driven by both decreasing nutritional spending and decreasing educational spending, and the

former has a substantially larger effect sizes. This suggests that a policy which compensates for

the nutritional underinvestment tends to be effective in mitigating the negative effects of parental

migration on left-behind children.

1.1.3. Related literature. As mentioned in the last subsection, existing works that I am aware

of are almost exclusively focusing on the net effect of a single mechanism without detailed me-

diation analysis. In this subsection, I will review a selective set of relevant studies and highlight

which net effect they estimate.

The first line of studies estimate the direct effect of migration due to the absence of parents [e.g.

Graham and Jordan, 2011, He et al., 2012, Antman, 2013]. They find that left-behind children’s

schooling performances are negatively affected by higher levels of emotional disruption, stress,

sadness [Ganepola, 2002, Mendoza, 2004], loneliness and abandonment [Battistella and Conaco,

1998, Maruja and Baggio, 2003], and lower self-esteem [Sun et al., 2015]. In addition, the absence of

parents may disrupt the discipline of children [Arnold and Shah, 1984] and reduce their cognitive

preparedness for school [Booth, 1995].

The second line of works focuses on the effect of migration on child’s time allocation. It should

be noted that it is still different from the effect of migration through child’s time allocation since

the former is only a component of the latter. Chen [2013] and Chang et al. [2011] examine the

effect of children’s labor substitution caused by parental migration, concluding that children of

migrant households spend more time on housework and thus have less time for studying. Similar

evidence has been found in Mexico [Antman, 2011, McKenzie and Rapoport, 2011], although there

is no agreement on whether boys or girls suffer more from housework.

The third line of literature studies the effect of remittances sent back by migrants on children’s

schooling performance. Most studies find that the remittances relax the investment constraints

in children, thereby improving children’s living conditions, educational spending, and nutrition

status [e.g. Afsar, 2003, Adams Jr and Page, 2005, Gupta et al., 2009]. The evidence has been

found in Indonesia, Thailand [Bryant, 2005], Philippines [Bryant, 2005, Arguillas and Williams,

2010], Bangladesh [Afsar, 2003], Mexico [Hanson and Woodruff, 2003, Alcaraz et al., 2012], and
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El Salvador [Edwards and Ureta, 2003]. Nevertheless, there are also contradictory findings that

remittance sent home by migrants may not necessarily increase the investment in the child. Olwig

[1999] shows that migrating parents usually leave their children with relatives such as grandparents

or foster families. As a consequence, guardians may not have strong incentives to turn remittances

into investment in the child due to the potential competition between elderlies and children, or

between current and future consumption [Nguyen et al., 2006, Chen, 2013, Niimi et al., 2009,

Knodel and Saengtienchai, 2002].

The rest of this paper is organized as follows. Section 1.2 describes the two-agent model that

lays the foundation for empirical analyses and presents some descriptive results of the equilibrium.

All mathematical derivations are relegated into Appendix A.1. Section 1.3 introduces the RUMiC

survey data, as well as the definitions of the treatment, mediators, and outcome. In Section 1.4,

I describe the identification strategy in detail, including the choices of instrumental variables. I

present the main empirical findings in Section 1.5, with results on all samples and subgroups.

Section 1.6 concludes and discusses future directions.

1.2. Theoretical Modeling Framework

1.2.1. A two-agent model. To understand the interaction between three mechanisms quali-

tatively, I consider a simple model with a household of one child and one parent with two time

periods but without borrowing or savings. In the first period, I assume that the parent is at working

age and the child is at school age, and the household consumption purely relies on the parent’s

income while the child’s income from housework is negligible. In the second period, I assume

that the child has grown up and fully entered the labor market while the parent has retired, so

the household consumption solely relies on child’s income. The child decides on how much time

to spend on studying and the parent decides on migration, with both decisions made in the first

period. The model is arguably over-simplified since it ignores different roles of the father and

mother, behaviors of siblings and de facto custodians, irrationality of decision making from both

sides, etc.. Nevertheless, it is complicated enough to reveal how the mechanisms of interest, namely

the parental absence, child’s study time, and investment in the child, interact and affect the child’s

schooling performance.
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Let uk1 and uk2 denote the utility of the child 1 in period 1 and 2, respectively, and s be the

share of time that the child spends studying. Therefore, (1− s) denotes the share of time that the

child spends on activities other than studying. Furthermore, I denote by h the human capital

level of child in period 1, by h0 the endowment of human capital, by d ∈ [0,1] the proportion of

days that parent migrate away and leave the child behind, by Wp the parent income from work

as a function of d, by βk the child’s discount factor of the second-period utility, and by f (·) the

production function of human capital, which takes the input of parent migration status, child

study time, monetary investment in child, and the endowment in human capital. I assume the

child’s utility in the first period depends on s and child’s consumption ck1, while the second-period

utility depends solely on the household consumption c2. Note that ck1 does not necessarily increase

as the parent income Wp increases, because γ(d), the proportion of total income spent on the child,

is not necessarily increased in d. Essentially, γ(d) is the decision variable of the de facto custodian,

who can decide how much of the remittances sent back by migrants will be spent on the child. If

the custodian has full control of the spending when the parents migrate out, γ(d) can be decreasing

in d [Nguyen et al., 2006, Chen, 2013, Niimi et al., 2009, Knodel and Saengtienchai, 2002]. Due to

the lack of data on guardians, I model γ(d) as an exogenous factor to make the empirical analysis

fully aligned with the theoretical model. Nonetheless, I briefly discuss how the guardian can be

included into an extended three-agent model in Section 1.6 where γ(d) is determined endogenously.

For the second period, I denote by g(h) the return to human capital h. Given all other variables, the

child chooses an optimal study time s that maximizes the total utility from two periods, i.e.

max
s

uk1(s, ck1) + βku
k
2(c2),(1.2.1)

s.t. ck1 = γ(d)Wp(d),

c2 = g(h),

h = f (d,s, ck1,h0).

Similarly, for the parent, let up1 ,u
p
2 be the utility of the parent in period 1 and 2, respectively, and

βp be parent’s discounting factor. I assume that parent consumption in the first period cp1 is a fixed

proportion γp of parent income with 0 < γp < 1 because the parents can decide on their spending

1We use the letter k for ”kid” instead of c for ”child” to avoid similarity with consumption.
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regardless of the migration status. Note that γ(d) +γp ≤ 1 because when parents migrate away, the

de facto custodian might not spend all the remittances on the child. The parent maximizes total

utility by choosing the optimal migration status d∗, i.e.

max
d

u
p
1 (cp1) + βpu

p
2 (c2),(1.2.2)

s.t. c
p
1 = γpWp(d),

c2 = g(h),

h = f (d,s, ck1,h0).

To derive the equilibrium, I make the following assumptions.

•
∂uij
∂cij

> 0 and
∂2uij

∂(cij )
2 < 0, where i ∈ {k,p} and j ∈ {1,2}, implying that the utility in each period

increases while the marginal utility decreases in consumption in that period.

• ∂uk1
∂s < 0 and ∂2uk1

∂s2 < 0, implying a fatiguing effect of studying that is marginally increasing.

• ∂f
∂s ≥ 0, ∂f

∂ck1
≥ 0, ∂

2f
∂s2 ≤ 0, ∂2f

∂(ck1)
2 ≤ 0, implying that the study time and consumption weakly

increase the production of human capital, but with decreasing marginal return.

• ∂f
∂d < 0, implying that parental absence worsens child’ human capital.

• ∂g
∂h ≥ 0 and ∂2g

∂h2 ≤ 0, implying that higher human capital of the child leads to higher income

in the future, though with a decreasing marginal return.

• ∂Wp

∂d ≥ 0, implying the existence of monetary incentives to migrate.

For the rest of this section, I will provide qualitative analyses of the equilibrium solution from

both the child and parent side. Formal mathematical derivations are relegated into Appendix A.1.

In particular, I derive the closed-form solution for the equilibrium assuming specific functional

forms of the utility functions in Appendix A.1.3, which yields the structural equation model that

will be used for empirical analysis in Section 1.4.

1.2.2. Optimal decision of the child. For child utility maximization, there is a trade-off be-

tween current and future utility. Holding parent migration status d fixed, if study time s increases,

the first-period utility decreases due to the fatiguing effect of studying, while the second-period

utility increases because the child’s human capital will increase due to increased study time,

resulting in a higher future consumption c2.
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Intuitively, the child’s optimal study time should be at the intersection of the marginal effect of

study time on current utility (MUk
1 = −∂u

k
1

∂s ) and its marginal effect on future utility (MUk
2 = ∂uk2

∂s ).

The marginal effect of study time on current utility only depends on the level of study time.

Holding the study time fixed, if the parent increases the proportion of days of migration, the

marginal effect of study time on first-period utility is not affected, but the increased migration

status will have a negative direct effect on human capital, and the indirect effect on human capital

is undetermined since the change of investment in child is undetermined. Suppose the indirect

effect of migration on human capital through investment in child is positive, the final effect on

child’s human capital still depends on the relative sizes of these direct and indirect effects. If

the negative direct effect of migration dominates, then child’s human capital worsens, leading

to less income and consumption in the second period, so that the marginal utility from future

consumption increases 2. Graphically, the curve MUk
1 remains unchanged, while the curve MUk

2

shifts up, as shown in Figure 1.1. In general, the optimal child study time is increasing in migration

status if the negative direct effect of migration dominates and is decreasing in migration status

otherwise.

Figure 1.1. Trade-off between current and future utility of the child
The optimal study time s is determined by the intersection of two marginal utility curves. When the

parental migration status d increases, the MUk
1 curve remains unchanged while the MUk

2 curve shifts up or
down, depending on the relative sizes of the direct and indirect effect through investment in the child.

2See Appendix A.1.1 for mathematical details.
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Due to the trade-off, under mild assumptions, we can find an interior solution s∗(d). In

Appendix A.1.3, I derive the closed-form solution of s∗(d) assuming certain functional forms of the

utility function. In general, assuming the existence of the interior optimal solution, I derive that 3

∂s∗

∂d
∝ −

(Investment effect︷        ︸︸        ︷
∂f

∂ck1

∂Wk(d)
∂d

+

Direct effect︷︸︸︷
∂f

∂d

)
,(1.2.3)

where Wk(d) = γ(d)Wp(d), denoting the investment in the child, and ∝ denotes “proportional to”,

which hides a positive multiplicative factor. By the chain rule, ∂Wk(d)
∂d = γ(d)

∂Wp(d)
∂d +Wp(d)∂γ(d)

∂d .

The decomposition of ∂s∗

∂d shows how the left-behind child’s optimal study time changes when

the parent migration status changes. ∂f

∂ck1

∂Wk(d)
∂d represents the effect of migration on the child’s

human capital through investment in the child. ∂f∂d measures the effect of parent absence on child’s

human capital. Since the sign of ∂Wk(d)
∂d is undetermined, equation (1.2.3) shows that the sign of

(∂f∂d + ∂f

∂ck1

∂Wk
∂d ) is undetermined as well. If the indirect effect through investment in the child is

positive, and the negative direct effect of being left-behind is greater in size, then ∂s∗

∂d ≥ 0, suggesting

that the child will increase study time to compensate for worse human capital, and vice versa. This

is consistent with the graphical illustration in Figure 1.1.

1.2.3. Optimal decision of the parent. For parent utility maximization, there is also a trade-

off between current and future consumption. Holding the child’s study time s fixed, if the parental

migration status d increases, then the parent’s first-period utility increases due to the increased

consumption cp1, while the second-period utility decreases since the child’s human capital will

decrease due to the lack of parent accompaniment, resulting in a lower future consumption c2.

Intuitively, the optimal parental migration status is at the intersection of the marginal effect

of migration on current utility (MUp
1 = ∂u

p
1

∂d ) and its marginal effect on future utility (MUp
2 = −∂u

p
2

∂d ).

Parent utility in period 1 only depends on consumption levels. Holding the parental migration

status constant, if the child increases the study time, it will not affect parent consumption or

utility in period 1, but will decrease the marginal utility in period 2. This is because the increased

study time will lead to higher human capital, which translates into higher income and higher

consumption in period 2, so that the marginal utility from future consumption shifts down 4.

3See Appendix A.1.1 for the mathematical derivation.
4See Appendix A.1.2 for mathematical details.
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Graphically, the curve for marginal effect of migration on current utility remains unchanged,

and the curve for marginal effect of migration on future utility shifts down, as shown in Figure

1.2. That is, the optimal migration decision is increasing in child study time. Unlike the child

optimal decision process, the MUp
2 curve always shifts down as the proportion of days of migration

increases.

Due to the trade-off, under mild assumptions, we can find an interior solution d∗(s). In

Appendix A.1.3, I derive the closed-form solution of d∗(s) assuming certain functional forms of the

utility function. In general, assuming the existence of the interior optimal solution, I derive that 5

∂d∗

∂s
∝ −

(Investment effect︷        ︸︸        ︷
∂f

∂ck1

∂Wk(d)
∂d

+

Direct effect︷︸︸︷
∂f

∂d

)
,(1.2.4)

Figure 1.2. Trade-off between current and future utility of the parent

The optimal migration status d∗ is determined by the intersection of two marginal utility curves. When the

child’s study time s increases, the MUp
1 curve remains unchanged while the MUp

2 curve shifts down.

The decomposition of ∂d∗

∂s shows how parent’s optimal migration decision changes as child

study time changes. The meaning of each part of ∂d∗

∂s is the same as in Equation (1.2.3). The

marginal effect of parental migration on current utility is ∂u
p
1

∂c
p
1

∂c
p
1

∂d , and its marginal effect on future

5See Appendix A.1.2 for the mathematical derivation.
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utility is −βp
∂u

p
2

∂h (∂f∂d + ∂f

∂ck1

∂Wk(d)
∂d ). To guarantee an interior solution, we need the future marginal

effect to be nonnegative, that is, ∂f∂d + ∂f

∂ck1

∂Wk(d)
∂d ≤ 0. Therefore, ∂d

∗

∂s ≥ 0. This confirms our intuition

that ∂d
∗

∂s has a definite sign, unlike ∂s∗

∂d . This is consistent to the graphical illustration in Figure 1.2.

1.2.4. Equilibrium solution. In Section 1.2.2 and Section 1.2.3, I show that the child’s optimal

decision on study time is a function of the parental migration status d, and the parent’s optimal

decision on migration is a function of the child study time s. Solving both equations will lead to

the equilibrium. Under specific functional forms to the utility function, human capital production

function, and wage function, I show that there is only one unique equilibrium solution 6. Figure

1.3 is an illustration of the equilibrium solution.

Figure 1.3. The equilibrium study time and migration status

It is determined by the intersection of the child’s optimal study time s∗(d) as a function of d and the parent’s

optimal migration status d∗(s) as a function of s.

Given a migrant family, the theoretical model induces the following relationship among the

observables – child’s human capital h, investment in child Wk , the proportion of time that child’s

spent on studying s, the proportion of days of parent migration d, as well as other covariates X that

account for the heterogeneity of families:

6See Appendix A.1.3 for the mathematical details.
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(1.2.5)

h = f (d,s,Wk ;X)

Wk = γ(d)Wp(d;X)

s = s∗(d;X)

d = d∗(s;X)

The main goal of this work is to study the effects of migration on child’s human capital, i.e. ∂h∂d .

By definition,
∂h
∂d

=
∂f

∂d︸︷︷︸
Direct effect

+
∂f

∂s
∂s
∂d

+
∂f

∂ck1

∂Wk

∂d︸                ︷︷                ︸
Indirect effects

.

This yields the decomposition of the total effect into the direct effect and indirect effects. All

parameters in the decomposition are necessary for answering my research question, and thus the

first three equations in (1.2.5) must be estimated. By contrast, the effect of s on d, i.e. ∂d∂s , does not

have to be known. As a result, we can simplify the last equation by computing d∗∗(X) as the solution

of d = d∗(s∗(d,X),X) for each X, thereby facilitating the system. In Appendix A.1.3, I illustrate this

step under a specific functional specification. To summarize, I focus on the following system:

(1.2.6)

h = f (d,s,Wk ;X)

Wk = γ(d)Wp(d;X)

s = s∗(d;X)

d = d∗∗(X)

It is worth emphasizing that the way to simplify (1.2.5) hinges on the research question and

whether the simplification works depends on whether an effective identification strategy exists.

For (1.2.6), I find a promising identification strategy as detailed in Section 1.4. In principle, we can

also study how child’s human capital affects parent’s migration decision, which can be answered

by (1.2.5) in theory. However, it is arguably more challenging to find a convincing identification

strategy.
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1.3. Data

1.3.1. Data source. The data used in this paper is collected by the Rural-Urban Migration

in China (RUMiC) Project, which is a longitudinal survey [Institute of Labor Economics (IZA)

et al., 2014]. This project is a joint effort by the Australian University, University of Queensland,

Beijing Normal University, and Institute for the Study of Labor (IZA). Starting in 2008, the project

covers 9 provinces or province-level municipalities that are major sending or receiving areas

of out-migration: Anhui, Chongqing, Guangdong, Hebei, Henan, Hubei, Jiangsu, Sichuan, and

Zhejiang. The RUMiC survey includes 8,000 samples in rural household survey (RHS), 5,000 in

urban household survey (UHS), and 5,000 in migrant household survey (MHS). Subjects in each

category are randomly selected in each province. For detailed information on sampling design and

tracking , see Gong et al. [2008], Meng et al. [2010], Kong [2010].

Although survey documents and data for both 2008 and 2009 are available, the 2008 data does

not include important outcome variables such as children’s exam scores or study time. For this

reason, I mainly focus on the cross-sectional data in 2009 survey in this paper, and use the 2008

data for auxiliary purpose.

Since this paper focuses on rural migrants, data from RHS and MHS can both be used for

analysis in principle. However, for the purpose of this paper, data from the RHS is preferable for

several reasons. First, my paper is to compare left-behind children with children whose parent do

not migrate. The RHS involves both groups, while the MHS only involves children of migrants.

Second, RHS has substantially higher quality than MHS in terms of both the sample size and

attrition rate (0.4% v.s. 58.4% attrition at the individual level, and 0.1% v.s. 63.6% at the household

level, according to Akgüç et al. [2014]). Although the main analysis is based on 2009 data, the 2008

data is useful to impute for the missing values of demographic information, thereby increasing

the effective sample size. As a result, RHS is more suitable for my analysis in terms of efficiency.

Finally, this paper is focused on rural households. The RHS draws random samples from the annual

household income and expenditure surveys carried out in rural villages, and tracks subjects having

permanent living addresses. This makes the RHS a representative survey for my purpose.

The raw data has 6899 children in 4843 households. To make the analysis meaningful, I only

include school-age children (6-15 years old) who have never married and with parents older than

16 years old. After filtering, 2666 children in 2112 households are left in the data. I further
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exclude households for which the migration status is unreported, resulting in 1971 children in

1593 households. The parents in the data for my analysis come from 68 cities in 9 provinces, and

their migration destinations spread over 137 cities in 29 provinces.

1.3.2. Descriptive statistics. In this section, I provide some basic information of the data.

Figure 1.4a shows the fractions of children with both parents migrating, with father migrating

only, with mother migrating only and with neither parents migrating. In this figure, a person is

counted as a migrant if she/he migrates for more than 90 days in the past year; see Section 1.3.3

for a more detailed description and explanation. Adding up the proportions of the first three

categories, left-behind children account for roughly 30% of children in rural China.

Figure 1.4b shows the fractions of different guardians whom the left-behind children live with.

When both parents migrate out, grandparents are most common de facto custodians. This shows a

potential source of incentive compatibility on monetary investment since grandparents may not

want to allocate most remittances on children’s education or nutrition, or they may not have a good

sense on the appropriate amount of money spent on children. The second most common guardians

are boarding school teachers, who may not have strong incentives to take care of any single child.

Figure 1.4c presents different reasons why parents do not bring children when migrating to

work in cities. High living and education cost in cities appears to be the driving force to leaving

children behind. This is partly because of the hukou restriction discussed in Section 1.1.1 that

children with rural hukou cannot enjoy the social benefits such as education and housing. The lack

of access to the social welfare system increases their living and education cost if they migrate with

their parents. Another important motivation to leave children behind is that parents are too busy

to take care of their children if they were brought along. This motivation is particularly strong

when other family members who can play the role of caregivers, such as grandparents, are unable

to migrate together.

Figure 1.4d shows the types of migration destinations. We can see that a majority of migrants

move from rural to urban areas. Among rural-to-urban migrants, around two thirds of them move

to an urban city in a different province.

1.3.3. Treatment variable: migration status. According to Meng and Yamauchi [2015], a good

indicator for parental migration is based on very recent migration experience. Thus, I will define
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Figure 1.4. Descriptive statistics of data

the migration status, the treatment variable in my problem, based on the duration of migration in

the past year. In principle, I can define the migration status as the fraction of days migrating out in

the past year as in the Section 1.2. However, this measure is not accurate since it is self-reported.

In fact, I find that a large fraction of reported measures are multiples of 50, indicating potential

lack of reliability of the measurement. Moreover, the estimated effects are harder to interpret and

less transparent based on continuous treatment variables.

For these reasons, I will not use a continuous measure of migration but instead define a dummy

variable D to represent the migration status where D = 1 if at least one parent of the child migrates

out and leaves the child behind for at least 90 days in the past year. This measure is more accurate
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since there are questions that explicitly use 90 days as the threshold 7. In addition, since the control

group in this paper is children in rural areas with non-migrant parents, rather than children who

migrate with their migrant parents, I exclude the children of the latter kind from the analysis.

Figure 1.5 provides the diagram definition of D. Note that the dummy variable D is essentially

I(d ≥ 90) where d is the decision variable of the parent in Section 1.2.

Figure 1.5. Definition of the treatment variable D

1.3.4. Mediation variables: study time and investment in the child. I use the weekly study

time in hours reported by their guardians as a measure of the child’s study time, denoted by T

to be distinguished from the share of study time s used in Section 1.2. For investment in the

child that corresponds to ck1 in the theoretical model, I use the sum of the child’s tuition at school,

supplemental classes inside and outside of school, and food expenditure in 2008 reported by

guardians. To stabilize the variance of the variable, I will use the logarithmic transformation of the

total investment measured in Chinese Yuan as the mediation variable and denote it by W .

1.3.5. Dependent variables: standardized language and math scores. To measure the school-

ing performance, I choose the child exam scores, which are measures of the child human capital

h in the model. In particular, I consider the final exam scores in language and math reported by

parents or other guardians, who are informed of children’s scores during parental meetings at

school every semester. In addition, they would receive the hard copy of children’s score reports

from school at the end of every semester. Therefore, the reported scores are reliable. The test scores

7For example, question C07 4 states that how many days did you work outside your hometown in 2008? (If none, please
fill in ’0’, if ≥ 90, skip to C07 6)
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are also comparable across children in the sample since 7 out of 9 provinces use the same version

of textbooks, while only a few villages in the remaining 2 provinces use another two versions of

textbook. All of the three versions of textbooks and exams are designed closely following the

curriculum standards designed by the Ministry of Education of China. Particularly, the materials

are highly consistent for core subjects such as language and math. To make the scale of scores and

estimated effects more interpretable, I convert test scores into z-scores by subtracting the average

and dividing the standard error of the sample.

Figure 1.6 displays the distribution of exam scores. We could see that for left-behind children,

the distribution of language scores is more left skewed, suggesting that these children perform

worse in language exams on average. But the difference in math score distribution for left-behind

children and other children is less pronounced. The marginal averages in two groups are reported

in Table 1.1. We can see that left-behind children perform worse than children with non-migrant

parents in language exams and slightly better in math exams, though neither of the differences

is statistically significant at the 5% significance level. It is worth emphasizing that the marginal

difference does reflect the effect of any kind because of the endogeneity and non-random missing

values.
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Figure 1.6. Distribution of testing scores

18



1.3.6. Control variables. As for other covariates, I include the personal characteristics of

the child, such as the age, gender, height, weight, and birth weight. I also include parent-level

characteristics such as the years of education of their parents. For those parents with missing

values in these attributes in 2009, I impute them using the values reported in 2008 survey if

available. For those parents who have records in both 2008 and 2009 surveys, if the measurements

are inconsistent, I will choose the higher one. Other potentially important variables are excluded

because they have a large fraction of missing values in the data for reasons that are hard to pinpoint.

Table 1.1 shows the summary statistics of a set of important control variables. We can see that

left-behind children are significantly lighter and shorter than their counterparts. The difference in

parent education levels in two groups is not statistically significant. In the empirical analysis, I

control for covariates that are significantly different across treatment and control groups, and also

include covariates that do not differ significantly to increase estimation efficiency.

Table 1.1. Summary statistics

Variable Migrant Parents Non-migrant Parents Difference (P-value)
Dependent Variables
Language score 0.01 0.08 0.14
Math score 0.08 0.06 0.73
Covariates: Child
Male 0.53 0.55 0.52
Age 11.27 11.52 0.07
Height 135.92 142.44 < 0.001∗∗∗

Weight 38.96 41.46 < 0.001∗∗∗

Birthweight 32.50 32.51 0.94
Covariates: Parents
Mother edu year 7.50 7.36 0.21
Father edu year 8.23 8.19 0.70

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

1.4. Empirical Framework

1.4.1. Structural equation model (SEM) for mediation analysis. Under specific functional

forms as in Appendix A.1.3, I show that the system of equations (1.2.6) have the following linear

forms:

Pi = γ0 +γT · Ti +γW ·Wi +γD ·Di + ξP ·Xi + εP i ,(1.4.1)

Ti = aT + bT ·Di + ξT ·Xi + εT i ,(1.4.2)
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Wi = aW + bW ·Di + ξW ·Xi + εWi ,(1.4.3)

Di = 1(aD + ξD ·Xi + εDi ≥ 0),(1.4.4)

where Pi denotes the schooling performance of child i, measured by normalized final exam scores

in language and mathematics as described in Section 1.3.5, Ti denotes the weekly study time in

hours, and Wi denotes the logarithmic transformation of monetary investment and Di denotes the

dummy variable of the parental migration, as defined in Section 1.3. Recalling Section 1.3.3 that

D is essentially I(d ≥ 90, the last equation has a different form compared to the other three. To

account for individual heterogeneity, other covariates and error terms are included. Xi is the set of

control variables, including characteristics of children and parents introduced in Section 1.3.6. The

error terms εP i , εT i , εWi , and εDi are random errors, and we assume that they are correlated due

to unobserved confounders in order to account for the endogeneity. When εDi is normal, the last

equation is equivalent to a Probit model.

With an identified model, if we define δ to be the total effect of migration on children’s schooling

outcomes, then the total effect can be decomposed into the following three part:

δ = γD(parental absence)︸                      ︷︷                      ︸
Direct effect

+γT bT (study time) +γW bW (investment)︸                                               ︷︷                                               ︸
Indirect effects

,(1.4.5)

where γD captures the direct effect of migration, γT bT captures the indirect effect of migration

through the child’s study time, and γW bW captures the indirect effect of migration through

investment in the child. Figure 1.7 illustrates the decomposition.

Figure 1.7. Decomposition of total effect into direct and indirect effects
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1.4.2. Identification of coefficients via order condition. Since there are many unobserved

factors that affect the parental migration decision, two mediators, and children’s school performance

simultaneously, the migration decision and mediators are all endogenous, rendering the standard

mediation analysis, which assumes mutual independence between the errors (εP i ,εT i ,εWi ,εDi),

implausible due to the omitted variable bias. For instance, variables such as child’s self-control

ability and parent’s attitude toward child’s education maybe correlated with both the parent

migration decision and child’s school performance, so the omission of such variables might lead to

considerable bias.

To remove the confounding bias, I resort to an instrumental variable (IV) approach. Unlike the

usual IV regression with a single endogenous variable and without mediators, the identification is

more complicated for structural equation models with multiple endogenous variables. A necessary

condition for identification is the order condition [e.g. Wooldridge, 2010], that is, for each equation

in the system, the number of excluded exogenous variables, which includes both instrumental

variables and other control covariates, should be larger than or equal to the number of included

endogenous variables minus one. Although the order condition is only necessary but not sufficient,

it is a simple and transparent condition to decide the necessary structure for identification. In the

next subsection I will justify the rank condition, which is sufficient and necessary for identification.

Suppose we are able to find two sets of instrumental variables: Z that can only affect P through

D, and Z̃ that can affect P through D or T or W . Both Z and Z̃ may involve multiple variables

and we denote by |Z | and |Z̃ | their sizes. Unlike Z which is required to be exogenous to both the

outcome and mediators, Z̃ only needs to satisfy a weaker exclusion restriction. For instance, Z̃ is

allowed to have direct effects on the mediators.

The permissible causal paths are illustrated in Figure 1.8a. The path diagram is a schematic

representation of a structural equation model, where each node represents a variable and each

directed edge from variable A to variable B represents the inclusion of A into the equation with B

being the outcome. Note that the absence of an edge encodes an exclusion restriction while the

presence of an edge imposes no constraint. Besides the outcome variable P , mediators T and W ,

and the treatment variable D, I also include the unmeasured confounders U , characterized by a

dashed circle, as well as the instrumental variables Z and Z̃, characterized by blue circles. For

simplicity I ignore other control covariates X that are allowed to link to all observed variables in
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(a) Path diagram representation

(b) Algebraic representation

Figure 1.8. Representations of the SEM for mediation analysis with instrumental
variables

the diagram. The four equations in Figure 1.8b are the algebraic representation of Figure 1.8a.

More precisely, Z should be mean-independent of all residuals (εP ,εT ,εW ,εD ) while Z̃ only needs

to be mean-independent of εP .

The order condition can be read off from Figure 1.8b. For instance, for the equation of P , the

number of endogenous variables is 4, given by P ,T ,W ,D, and the number of excluded exogenous

variables is |Z |+ |Z̃ | since none of those instrumental variables are included in this equation. By

contrast, for the equation of T , the number of endogenous variables is 2, given by T and D, while

the number of excluded exogenous variables is only |Z | since Z̃ is included. Table 1.2 summarizes

these two quantities for each equation.

Table 1.2. Order condition for identification of the SEM in Figure 1.8b

Outcome variable # Excluded Exogenous # Included Endogenous - 1
P |Z |+ |Z̃ | 3
T |Z | 1
W |Z | 1
D 0 0

Therefore, to identify all coefficients in the SEM, the order condition requires

(1.4.6) |Z |+ |Z̃ | ≥ 3, |Z | ≥ 1.
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As a consequence, it suffices to find at least one IV in Z and at least two IVs in Z̃.

1.4.3. Identification of coefficients via rank condition. Rank condition is sufficient and nec-

essary for identification. For the usual IV regression with one endogenous treatment variable, the

order condition is equivalent to the exclusion restriction while the rank condition is equivalent to

the exclusion restriction plus the relevance condition that requires the IV to be correlated with the

treatment.

For general SEMs, the rank condition is much more complicated. Nonetheless, the SEM in

Figure 1.8b is triangular, enabling a more transparent check of the rank condition. Recall that only

five parameters need to be identified: γT ,γW ,γD from the equation of P , bT from the equation of

T , and bW from the equation of W . To identify bT , it is sufficient to focus on the equations of T

and D, which form an usual IV regression model with Z being the instrumental variable and Z̃

being a control covariate. The exclusion restriction is guaranteed by the order condition (1.4.6).

As mentioned above, the rank condition still requires the relevance. In this case, it can be simply

verified by the commonly-used F-test that tests if all coefficients of Z in the equation of D are zero.

The same strategy can be applied to identify bW . An asymptotically equivalent test in this case is

the Anderson’s canonical correlation test, which is designed for multiple endogenous variables and

will be introduced in the next paragraph.

To identify γT ,γW and γD , we can view T ,W ,D as three endogenous treatments for P . Then we

can regard Z,Z̃ as instrumental variables for T ,W ,D because Z,Z̃ only affects P through T ,W ,D by

definition. The well-known rule-of-thumb requires no fewer IVs than endogenous treatments. This

is essentially the order condition and is guaranteed by (1.4.6) in my SEM. However, the relevance

condition for multiple endogenous treatments is more involved. In my SEM, it requires the

3× (|Z |+ |Z̃ |) coefficient matrix by regressing (T ,W ,D) on (Z,Z̃), as well as other control covariates,

to be full-rank (i.e. with rank 3). The usual F-test that borrows the heuristics from the single

treatment case is flawed since it tests the wrong null hypothesis that the rank is zero instead of

the correct null hypothesis that the rank is below 3. A more rigorous test is using the Anderson’s

canonical correlation LM statistic [Anderson, 1951], which is based on the smallest singular value

of the coefficient matrix and thus testing the correct null. It is referred to as an underidentification

test in the literature and is the default test in STATA ivreg2 command [Baum et al., 2007].
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In a nutshell, the rank condition can be justified by the order condition plus three underiden-

tification tests, all based on Anderson’s canonical correlation LM test. The triangular structure

enables a clean interpretation of the identification strategy – when the rank condition holds, bT ,bW

are identified by Z and γT ,γW ,γD are identified jointly by Z and Z̃. The relevance part of the rank

condition is empirically testable so in the next subsection we will focus on justifying the exclusion

restriction, which is generally untestable.

1.4.4. Choice of instrumental variables. I start with the choice of the instrumental variables

Z. By definition, Z should be an IV that affects child performance only through the parental migra-

tion status. Some popular candidates for Z in the literature are religious preference uncommon in

urban locations, dummy variable indicating whether the householder’s first occupation was as a

farmer, distance from home village to provincial capital, and average migration rate in the village

[Xiang et al., 2016, Meng and Yamauchi, 2015]. However, these are not appropriate in my case.

First, the religious tendencies are generally low in China and uncommon religious preferences

are even rarer. Second, the householder’s first occupation as a farmer is inappropriate since the

share of farmers is predominantly high in rural China, implying a low variation of the occupation

indicator. Third, the distance from home village to provincial capital suffers from lack of relevance

for migrants in rural China because most people migrate to other provinces and thus the distance

is less of a concern in deciding migration. The exclusion restriction of this variable is also likely

violated because the general education facilities in regions closer to provincial capital tend to

be better, leading to better schooling outcomes. Last, the average migration rate would not only

influence the migration decision of each household, but also influence tax revenues and educational

investment in that region, thereby influencing the schooling outcomes of children and violating

the exclusion restriction.

In this paper, I use the method of Bartik [1991] to construct shift-share instrumental variables.

Bartik instruments are widely used in migration literature. They are correlated with migration

decision, but are arguably exogenous in the equations of schooling performance, study time, and

investment in the child, which makes them appealing valid IVs [Goldsmith-Pinkham et al., 2020].

The Bartik-style instrument combines migrants’ destination-industry information with changes

in employment rate at destination by industry. The migration information is generated based

on migrant’s origin city, destination city, and the industry they work for using data from China
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1% National Population Sample Survey 2005. The employment information is extracted from

Urban Statistical Yearbook of China. The change in employment rate is generated using 2007 and

2008 employment data of each industry in all cities in China. These years are chosen such that

there is sufficient time for migration flow to change as employment changes, but not too early so

that the correlation between migration and employment would fade away. Specifically, the Bartik

instrument is generated as below:

Zori,2008 =

∑
des

∑
ind(Migori,des,ind,2005 · 4Employmentdes,ind,2007-2008)∑

des
∑

ind Migori,des,ind,2005
,

where ori denotes the origin city that the migrant is from, des denotes the destination city that the

migrant moves to, ind denotes the industry that the migrant works in, Migori,des,ind,2005 denotes the

total number of migrant workers from city ori to city des that work in industry ind in 2005, and

4Employmentdes,ind,2007-2008 denotes the growth rate of employment in industry ind in destination

des from 2007 to 2008. Considering the difference between inter-city (des , ori) and within-city

(des = ori) migration, I generate Bartik instruments for each, where the inter-city Bartik instrument

takes the sum of d over all cities other than o while the within-city Bartik instrument solely takes

d = o into account. Note that having two variables in Z does not violate the order condition

(1.4.6). Later in the empirical analysis, I will conduct Sargan test [Wooldridge, 2010] to test for

overidentification.

As for Z̃, I choose three variables – rainfall shocks in previous years, the inherited gold and

silver accessories, and the birth order among siblings. Abnormally high or low precipitation is

detrimental to agricultural production, which is the main economic activity in rural China. Such

weather shocks push rural residents to migrate away in search of more stable job opportunities, and

also affect the time allocation and wealth of rural households. Apart from through these channels,

weather itself can hardly affect the children’s school performance directly. More specifically, the

rainfall shock is measured based on the 19-year (between 1991 and 2009) annual precipitation

data at the city level obtained from China’s National Meteorological Information Center. For each

city, data from 1991 to 2003 is used to find the mean and standard deviation of precipitation.

For each year in 2004 to 2009, if the annual precipitation is over 1.5 standard deviations below

or above the city’s historical mean, I define the city to have experienced a rainfall shock. Then

I calculate the total number of rainfall shocks experienced in each city during 2004 to 2009. A
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similar instrumental variable is constructed by Meng and Yamauchi [2015], although they treat

high and low levels of precipitation asymmetrically while I treat them equally. The second variable,

namely the inherited gold and silver accessories, measures the wealth level of older generations. It

is thus unlikely confounded with the treatment, mediators, and outcome in the system. On the

other hand, the variable may affect the current wealth level, through which affect the outcome,

but it does not hurt identification since Z̃ is allowed to have such effects as shown in Figure 1.8a.

The relaxed exclusion restriction, compared to that for Z, renders it a valid IV in this case. The

third variable, namely the birth order among siblings, is random within a household and thus

exogenous. Although it may affect the child’s schooling performance through the investment due

to the potentially unequal allocation between elder and younger children, this doesn’t violate

the requirement of Z̃ as specified in Figure 1.8a. Other than through migration, study time, and

investment, it’s unlikely that birth order among siblings can affect child’s schooling performance.

This justifies the relaxed exclusion restriction and renders it a valid IV. Finally, the order condition

(1.4.6) only requires |Z̃ | ≥ 1 given that Z contains two variables, I choose more than one IV for Z̃.

As with Z, I will conduct Sargan overidentification test in empirical analyses for Z̃.

1.4.5. Nonrandom missing patterns. The above subsections address one common source of

endogeneity in variables of interest. In this subsection, I will focus on another source of endogeneity

that originates from nonrandom missing patterns in the study time and investment, especially the

former. It is unlikely that these two variables are missing at random conditionally on observed

covariates because less caring parents may not know the child’s education well and thus fail to

report the information.

Previous studies simply remove observations with missing values in empirical analysis without

accounting for nonrandom missing patterns. However, simply removing the observations with

missing values in these variables may yield underestimation or overestimation of the negative effect

of migration. Instead, I assume that the guardians reports the study time or investment in child

only when a certain utility is above zero. When the utility is a linear function of the covariates

with normal errors, this is precisely a Heckman model. In principle, the Heckman model can

be added into the structural equation model directly and estimated using methods maximum

likelihood. However, the non-standard form will significantly complicate the structure, making

the estimation overly challenging. Therefore I apply a two-step procedure in which I first estimate
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the Heckman model for the study time and investment separately to impute the missing values,

and then estimate the SEM using the imputed data.

1.5. Empirical Results

1.5.1. Main results on all samples. Since my goal is to investigate the effect of migration on

both language and math scores, I consider the extension of (1.4.1) - (1.4.4) that includes two scores

simultaneously:

P` = γ0,` +γT ,` · T +γW,` ·W +γD,` ·D + ξP ,` ·X + εP ,`,

Pm = γ0,m +γT ,m · T +γW,m ·W +γD,m ·D + ξP ,m ·X + εP ,m,

T = aT + bT ·D + ξT ·X + εT ,

W = aW + bW ·D + ξW ·X + εW ,

D = 1(aD + ξD ·X + εD ≥ 0),

where ` and m in the subscripts are short for ”language” and ”math”, and the subscript i for each

unit is suppressed for notational convenience. Recall that P` and Pm are standardized z-scores, T

measures the study time in hours, W is the logarithmic transformation of spending measured in

Chinese Yuan, D is the binary migration decision. Therefore, γD,`,γD,m,bT ,bW measure the average

difference of P`, Pm,T ,W between left-behind children and non-left-behind children, γT ,`,γT ,m

measure the improvement of P`, Pm when the study time increases by one hour, and γW,`,γW,m

measure the improvement of P`, Pm multiplied by 100 when the investment increases by 1%.

Under this specification, the direct and indirect effects are (γD,`,γT ,`bT ,γW,`bW ) and (γD,m,

γT ,mbT , γW,mbW ) for language and math scores, respectively. Here I allow the error terms εP ,` and

εP ,m to be correlated. This expanded SEM can capture the high correlation between the language

and math scores. It is easy to see that the order condition remains the same as (1.4.6), and the rank

condition can be tested exactly in the same way as in Section 1.4.3. Later on I will suppress the

subscripts ` and m when no confusion can arise.

The top panel of Table 1.3 shows the direct and indirect effects of migration using all samples.

The two columns report the effect on normalized language scores and math scores estimated
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with the strategy introduced in Section 1.4. In the bottom panel, I report the underidentifica-

tion, overidentification, and endogeneity tests separately for study time, investment, language

score, and math score. Note that the underidentification results are the same for study time

and investment because they are modelled simultaneously, and the same reasoning applies for

the underidentification results for language and math scores. All underidentification tests reject

the null at the 0.1% significance level, suggesting strong evidence that the rank condition holds.

The test results for overidentification suggest that no evidence has been found against the null

hypothesis that over-identifying restrictions are valid. As for the endogeneity test, although there

is no evidence against the exogeneity of migration decision in the equation for study time, there

is strong evidence against it in the equation for investment. In addition, there is strong evidence

against the exogeneity of migration, study time, and investment jointly in the equations for exam

scores. This marks the importance of accounting for the endogeneity.

For indirect effects, we report p-values from the joint significance test. Although this test

cannot be inverted to a confidence interval as opposed to Sobel test, it is valid for testing the null

effect. In addition, it is found to be powerful compared to alternative methods [e.g. Fritz and

MacKinnon, 2007, Hayes and Scharkow, 2013].

Table 1.3. Effect of parental migration on child schooling outcomes (all sample)

(1) Language (2) Math
Direct Effect
Parental Accompany -0.524∗∗ -0.453∗∗

(0.002) (0.006)
Indirect Effect
Study time 0.003 0.002

(0.096) (0.406)
Investment in children -0.894∗∗∗ -0.874∗∗∗

(0.000) (0.001)

Sepecification Tests (1) Study time (2) Investment (3) Language (4) Math
Underidentification test
(Anderson canon. corr. LM statistic) 29.868∗∗∗ 29.868∗∗∗ 29.859∗∗∗ 29.859∗∗∗

(0.000) (0.000) (0.000) (0.000)
Overidentification test (Sargan statistic) 2.752 0.607 0.360 0.306

(0.097) (0.436) (0.835) (0.858)
Endogeneity test 2.366 10.199∗∗∗ 26.587∗∗∗ 30.409∗∗∗

(0.124) ( 0.001) ( 0.000) (0.000)
Obs. 1971

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Recall that the net effect of migration is the summation of the following three effects: direct

effect of migration γD , which is the effect of parent absence; indirect effect of migration through
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the child’s study time γT bT ; and the indirect effect through investment in the child γW bW . Adding

up the direct and indirect effects, left-behind children perform 1.42 standard deviations worse than

children with non-migrating parents in language, and 1.33 standard deviations worse in math.

From the first column of Table 1.3, the direct effect of migration on language score is -0.52

standard deviations and significant at the 1% level. From the second column of Table 1.3, the direct

effect on math score is -0.45 standard deviations and significant at the 1% level.

As for the indirect effects shown in Table 1.3, the effect of migration on exam scores through

the child’s study time is almost zero and not significant. This might be because migration has little

effect on child’s study time, or because the child’s study time doesn’t change test scores by a lot.

To further investigate the cause, I decompose this indirect effect into γT and bT in the top panel

of Table 1.4. The first column shows the estimate of bT , namely the effect of migration on child’s

study time. The second and third columns show the estimate of γT , namely the effect of study time

on child’s language and math scores respectively. The coefficient bT shows that left-behind children

spend less time studying (bT = −0.29 with p = 0.083) than children with non-migrant parents on

average, but the difference is not statistically significant. The effect of study time on test scores is

neither large nor significant ( |γT | ≤ 0.012 with p ≥ 0.096 for both language and math scores).

Table 1.3 also show that parental migration has significant (at 0.1% significance level) and

large negative indirect effects on both scores through investment, which are almost doubled in

size compared to the corresponding direct effects. This finding is perhaps surprising since most of

existing works conclude that remittances have positive effects on the child’s educational outcomes.

To dig into it, I show the decomposition of this indirect effect into γW and bW in the bottom panel of

Table 1.4. The first column shows the estimate of bW , namely the effect of migration on investment

in the child, and the second and third columns show the estimates of γW , namely the effects of

investment on child’s language and math scores respectively. It turns out that the investment in

left-behind children is significantly lower (bW = −2.38 with p < 0.001) than that in children who

are not left behind, despite that investment is beneficial to child’s school performance (γW ≥ 0.37

with p ≤ 0.001 for both language and math scores). This implies that the negative indirect effect

through investment is driven by underinvestment.

The results in Table 1.3 are based on a careful account of both the endogeneity of migration/-

mediators and non-random missing mediators as discussed in Section 1.4. In Appendix A.2, I
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Table 1.4. Decomposition of indirect effects of migration (all sample)

(1) Mediator (2) Language (3) Math
Through Study Time
Migration (bT ) -0.294

(0.083)
Study time (γT ) -0.012 -0.006

(0.096) (0.406)
Through Investment
Migration (bW ) -2.375∗∗∗

(0.000)
Investment (γW ) 0.376∗∗∗ 0.368∗∗∗

(0.000) (0.001)

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

present the results without accounting for one of them or both of them as sanity checks, showing

that failure of addressing these issues tends to underestimate the direct effect and indirect effect

through investment drastically, despite that all analyses are consistent in the signs of the effects.

1.5.2. Exploring heterogeneous treatment effects. In this subsection, I investigate the het-

erogeneous treatment effects in different subgroups. In particular, I am interested in subgroups

stratified by gender and child birth order. The different attitude of guardians toward boys and

girls, as well as the role that the eldest and younger children play in multiple-children families will

probably lead to heterogeneous treatment effects when parents migrate away. For each subgroup, I

estimate the same SEM and present the results in Table 1.5 and Table 1.7.

Table 1.5 shows the effect of parental migration on left-behind boys and girls separately. Note

that for migration in the equations with study time and investment being the outcome and Z

being the IVs, the underidentification test statistic is marginally significant (p = 0.052) for girls,

suggesting a reasonably strong evidence for the rank condition. The other underidentification tests

all show strong evidence for the rank condition. The overidentification tests and endogeneity tests

yield qualitatively the same results as those for all samples.

In terms of direct effects, left-behind boys are more negatively affected in language scores,

which is consistent with the finding for all samples in Table 1.3. By contrast, left-behind girls are

almost equally affected in language scores and math scores with significant and large negative

effect sizes.

In terms of indirect effects, neither left-behind boys nor girls are largely or significantly affected

through study time. The decomposition of this indirect effect is presented in the top panel of Table

1.6. Left-behind girls experience large and significant reductions in study time, while left-behind
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Table 1.5. Effect of parental migration on child schooling outcomes (subgroup by gender)

Girl Boy
(1) Language (2) Math (3) Language (4) Math

Direct Effect
Parental Accompany -0.413∗ -0.424∗ -0.351∗∗ -0.207

(0.015) (0.030) (0.008) (0.074)
Indirect Effect
Study time 0.002 0.003 -0.006 0.000

(0.602) (0.474) (0.340) (0.974)
Investment in children -1.393∗ -1.621∗ -0.124∗∗ -0.115∗∗

(0.010) (0.010) (0.008) (0.003)

Sepecification Tests (1) Study time (2) Investment (3) Language (4) Math
Girl
Underidentification test
(Anderson canon. corr. LM statistic) 5.904 5.904 13.599∗∗ 13.599∗∗

(0.052) (0.052) ( 0.004) (0.004)
Overidentification test (Sargan statistic) 0.903 1.938 1.486 2.573

(0.342) (0.164) (0.476) (0.276)
Endogeneity test 0.800 9.201∗∗ 9.436∗ 15.019∗∗

(0.371) (0.002) (0.024) (0.002)
Obs. 887
Boy
Underidentification test
(Anderson canon. corr. LM statistic) 28.100∗∗∗ 28.100∗∗∗ 20.772∗∗∗ 20.772∗∗∗

(0.000) (0.000) ( 0.000) (0.000)
Overidentification test (Sargan statistic) 2.622 0.001 1.794 2.798

(0.105) (0.981) (0.408) (0.247)
Endogeneity test 1.156 1.696 18.078∗∗∗ 12.723∗∗

(0.282) (0.193) (0.000) (0.005)
Obs. 1084

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

boys tend to spend more time studying, though the effect is insignificant and cannot be viewed as

positive on this data. As with the analysis for all samples, study time has no significant effect on

either test scores.

Unlike the effect through study time, left-behind boys and girls are all significantly affected

through investment. Notably, the girls are suffering ten times more than boys through this

mechanism, with huge effects that are more than 1 standard deviation in sizes. The decomposition

of this indirect effect is presented in the bottom panel of Table 1.6. Compared with left-behind

boys, left-behind girls are suffering from a much severer reduction in investment, and their scores

are also more vulnerable to underinvestment. This finding reveals a shocking gender inequality in

rural China, at least among the left-behind children.

These results suggest that in order to increase left-behind girls’ school performances, policies

targeted at increasing the monetary investment in them should in general be much more effective

than policies targeting at increasing their study time.
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Table 1.6. Decomposition of indirect effects of migration (subgroup by gender)

Girl Boy
(1) Mediator (2) Language (3) Math (4) Mediator (5) Language (6) Math

Through Study Time
Migration (bT ) -0.524∗ 0.400

(0.022) (0.340)
Study time (γT ) -0.004 -0.006 -0.016 0.000

(0.602) (0.474) (0.096) (0.974)
Through Investment
Migration (bW ) -3.514∗ -0.967∗∗∗

(0.010) (0.001)
Investment (γW ) 0.397∗∗ 0.461∗∗ 0.128∗∗ 0.119∗∗

(0.008) (0.008) (0.008) (0.003)

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Similar to the gender subgroup analysis, I also investigate the heterogeneous treatment effects

with respect to the birth order. In particular, I conduct separate mediation analyses for the eldest

and younger children in households with more than one child. Since the birth order is used as an

instrumental variable, I replace this IV with the number of regular residents in the household. The

number of regular residents is relatively exogenous. On the other hand, it unlikely affects child’s

schooling performance through mechanisms other than migration, household wealth and child’s

study time. Thus it also meets the requirements for Z̃, as shown in Figure 1.8a.

For households with multiple children, usually the eldest child takes care of the younger

children and provide their younger siblings with emotional support. As a consequence, I expect

that the role of parent partially shifts to the eldest child when parents migrate away, so the

subsequent children may suffer less than the eldest child due to parent absence. This is confirmed

by the results in Table 1.7. Due to the absence of parents, the eldest children have approximately 0.7

standard deviations lower scores on average in language and math exams than their non-migrant

counterparts, and these effects are significant at the 1% level approximately. They are much larger

than the direct effects of migration on the subsequent children.

The indirect effects through study time are small in sizes for both subgroups. Even though the

effect on subsequent children’s math scores is significant, I will not over-interpret it due to the tiny

effect size. The top panel of Table 1.8 shows the decomposition of this effect into bT and γT . We can

observe that the eldest child tend to spend more time studying, though the effect is insignificant

and cannot be interpreted as positive, while the subsequent children experience significant and
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Table 1.7. Effect of parental migration on child schooling outcomes (subgroup by birth order)

First child Subsequent children
(1) Language (2) Math (3) Language (4) Math

Direct Effect
Parental Accompany -0.696∗ -0.696∗ -0.289 -0.052

(0.012) (0.013) (0.056) (0.696)
Indirect Effect
Study time -0.014 -0.013 -0.001 -0.011∗

(0.399) (0.399) (0.779) (0.019)
Investment in children -0.295 -0.359∗ -0.470∗ -0.205

(0.092) (0.047) (0.043) (0.310)

Sepecification Tests (1) Study time (2) Investment (3) Language (4) Math
First child
Underidentification test
(Anderson canon. corr. LM statistic) 18.535∗∗∗ 18.535∗∗∗ 7.175∗ 7.175∗

(0.000) (0.000) ( 0.028) (0.028)
Overidentification test (Sargan statistic) 0.050 2.671 0.037 0.612

(0.823) (0.102) (0.848) (0.434)
Endogeneity test 2.011 0.959 12.934∗∗ 16.820∗∗∗

(0.156) (0.327) (0.005) (0.001)
Obs. 891
Subsequent children
Underidentification test
(Anderson canon. corr. LM statistic) 7.183∗ 7.183∗ 7.598∗ 7.598∗

(0.028) (0.028) ( 0.022) (0.022)
Overidentification test (Sargan statistic) 0.619 1.179 0.077 0.247

(0.431) (0.278) (0.781) (0.619)
Endogeneity test 6.058∗ 9.804∗∗ 6.815 4.326

(0.014) (0.002) (0.078) (0.228)
Obs. 860

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1.8. Decomposition of indirect effects of migration (subgroup by birth order)

First child Subsequent children
(1) Mediator (2) Language (3) Math (4) Mediator (5) Language (6) Math

Through Study Time
Migration (bT ) 0.528 -0.641∗∗

(0.399) (0.003)
Study time (γT ) -0.027 -0.025 0.002 0.017∗

(0.110) (0.167) (0.779) (0.019)
Through Investment
Migration (bW ) -1.226∗ -2.251∗

(0.044) (0.012)
Investment (γW ) 0.241 0.293∗ 0.209∗ 0.091

(0.092) (0.047) (0.043) (0.310)

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

large reductions in study time. In line with the results for all samples, the study time has tiny effect

on test scores.

As opposed to the effects through study time, the effects through investment are large in sizes

for both subgroups. In particular, the effect on math scores is significant for the eldest child and the

effect on language scores is significant for subsequent children. The decomposition of the indirect
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effect through investment is presented in the bottom panel of Table 1.8. Compared with the eldest

child, subsequent children suffer from a more severe reduction in investment. From the estimates

of γW ’s, we see that the eldest child’s math performance is more vulnerable to underinvestment,

while the subsequent child’s language performance is more vulnerable to underinvestment. This

might be partially explained by the different cognitive development stages of these children.

1.5.3. Extended analysis. Previous results reveal notable effects of migration through in-

vestment in the child. To decouple the contributions of different types of investment, I further

decompose it into nutrition spending and course-related spending, which includes expenditure on

tuition and remedial classes at school and outside school. I refer to the latter as tuition spending

for simplicity. In this case, three mediators are involved — the child’s study time and two types of

investment. The SEM to estimate becomes slightly more complicated:

P` = γ0,` +γT ,` · T +γW,tu,` ·Wtu +γW,nu,` ·Wnu +γD,` ·D + ξP ,` ·X + εP ,`,

Pm = γ0,m +γT ,m · T +γW,tu,m ·Wtu +γW,nu,m ·Wnu +γD,m ·D + ξP ,m ·X + εP ,m,

T = aT + bT ·D + ξT ·X + εT ,

Wtu = aW,tu + bW,tu ·D + ξW,tu ·X + εW,tu,

Wnu = aW,nu + bW,nu ·D + ξW,nu ·X + εW,nu,

D = 1(aD + ξD ·X + εD ≥ 0),

where the subscript i for each unit is suppressed for notational convenience. Using a similar

argument as in Section 1.4.2 see that the order condition becomes

|Z |+ |Z̃ | ≥ 4, |Z | ≥ 1.

It is clear that the set of instrumental variables in Section 1.4.4 satisfies this condition. The rank

condition can be tested using the same strategy as in Section 1.4.3.

The results are presented in Table 1.9. The model specification results, direct effects and

indirect effects through the child’s study time are all consistent with Table 1.3. Decomposition of

the effects through study time is presented in the top panel of Table 1.10, which shows qualitatively

the same results as previous analyses. As for the investment, the effect through both tuition
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spending and nutrition spending are significant with large negative effect sizes, and the effect

through nutrition spending is larger in sizes. Further decomposing the indirect effects into γW

and bW , as shown in the bottom panel of Table 1.10, the left-behind children are suffering from

underinvestment in both tuition and nutrition, and the latter is more severe. Therefore, policies

targeting at increasing investment in the child should put more weights on nutrition. For instance,

conditional cash transfer programs that improve these children’s food intakes and nutrition status

could be more effective in increasing their school performances than tuition waivers.

Table 1.9. Effect of parental migration on child schooling outcomes (nutrition and tuition)

(1) Language (2) Math
Direct Effect
Parental Accompany -0.431∗∗ -0.357∗

(0.003) (0.011)
Indirect Effect
Study time 0.004 0.002

(0.092) (0.426)
Tuition -0.495∗∗ -0.490∗∗

(0.007) (0.007)
Nutrition -0.950∗∗∗ -0.895∗∗∗

(0.001) (0.001)
Sepecification Tests (1) Study time (2) Tuition (3) Nutrition (4) Language (5) Math
Underidentification test
(Anderson canon. corr. LM statistic) 29.868∗∗∗ 29.868∗∗∗ 29.868∗∗∗ 14.696∗∗∗ 14.696∗∗∗

(0.000) (0.000) (0.000) (0.001) (0.001)
Overidentification test (Sargan statistic) 2.752 1.189 0.559 0.287 0.713

(0.097) (0.276) (0.454) (0.592) (0.398)
Endogeneity test 2.366 2.865 13.350∗∗∗ 26.117∗∗∗ 29.262∗∗∗

(0.124) (0.091) (0.000) (0.000) (0.000)
Obs. 1971

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1.10. Decomposition of indirect effects of migration (nutrition and tuition)

(1) Study Time (2) Tuition (3) Nutrition (4) Language (5) Math
Through Study Time
Migration (bT ) -0.390∗

(0.012)
Study Time (γT ) -0.012 -0.005

(0.092) (0.426)
Through Investment
Migration (bW ) -2.472∗∗∗ -4.128∗∗∗

(0.001) (0.001)
Tuition (γW,tu) 0.200∗∗ 0.198∗∗

(0.007) (0.007)
Nutrition (γW,nu) 0.230∗∗∗ 0.217∗∗∗

(0.001) (0.001)

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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1.6. Conclusion and Discussions

In this paper, I disentangle the total effect of parental out-migration to the child’s schooling

performance into three mechanism-specific effects through parental absence, child’s study time,

and investment in the child via a mediation analysis. Using the RUMiC data on rural households

from nine provinces in China, I find that the effects through parental absence and investment

are both significantly negative with large sizes, while the effect through child’s study time is

insignificant with a negligible size. The surprising negative effect through investment is mainly

driven by reduced nutrition investment by de facto custodians, who may not have compatible

incentives to allocate the remittances on the child. The subgroup analysis reveals a shocking

gender inequality that girls are suffering ten times more from the underinvestment than boys.

These mechanism-specific effects show relative importance of each policy interventional target,

thereby providing stronger policy implications than the net effect estimated in previous works. For

example, the findings in this paper suggest that policies which compensate for underinvestment,

especially for girls and younger children in the household, tend to be more effective in mitigating

the negative effect of migration than other types of policies. In particular, policies that increase

the nutrition spending on left-behind children also tends to be effective in improving the human

capital of left-behind children.

There are a few extensions that are worth discussing. First, the negative effect through in-

vestment corroborates the importance to study the role of de facto custodians. As mentioned in

Section 1.2.1, we can consider a three-agent model with the guardian included. Instead of taking

γ(d) as an exogeneous factor, we can view it as the decision variable of the guardian. Denote

it by γ for simplicity. The first-period utility function of the guardian depends on the his/her

own consumption, which is (1 − γ − γp)Wp(d) by definition. The equilibrium solution for γ is

determined by how much the guardian care about the future human capital of the child, which

can be characterized by the discount factor for the second-period utility. We can study whether

the equilibrium proportion of household income invested in the child is increasing or decreasing

in d. Empirically, one needs to collect more information about the de facto custodians in order to

estimate this part of the model.

Second, the other facet of the problem, namely the effect of the child’s schooling performance

on parent migration decision, is also interesting and of no less policy importance, as pointed
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out in Section 1.2.4. For this research question, the child’s schooling performance becomes the

major endogenous variable. However, compared to parental migration decision, it is much more

challenging to find valid instrumental variables. For instance, the school quality may affect both

the performance and study time, implying that school-level information is needed. However, such

information is not available in the RUMiC survey, which is focused on adult migrants rather than

their children. A well-designed child-centered survey is needed to address this question.

Finally, as shown in Section 1.5.3, it is straightforward to decompose the pathways or add other

pathways into the empirical framework. For instance, one can also investigate the effect through

the child’s time spent on housework since this may have a negative effect due to fatigue or a positive

effect due to the aspiration to leave rural areas. Furthermore, the methodology is quite flexible and

can be applied to evaluate the effect of other types of parents’ labor market participation on child

education.
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CHAPTER 2

What Do We See in the Lights? Lights at Night and Measures of

National Growth

2.1. Introduction

Measuring national-level economic activities is fundamental and crucial to studying economic

growth and poverty. While Gross Domestic Product (GDP) is the most popular metric, the quality

by which it is measured has been a serious concern, especially for less-developed countries lacking

strong government statistical infrastructure. A nation’s ability to collect, analyze, and disseminate

high-quality data about its population and economy is referred to as ”statistical capacity”. 1

According to the Penn World Table (PWT) Version 10.0 [Feenstra et al., 2015, Zeileis, 2021], the

statistical capacity has a highly unequal distribution across countries and over time, which leads

to the uncertainty in international comparisons of GDP [Deaton and Heston, 2010]. Recently,

alternative approaches to measure economic activities have been proposed based on large-scale

surveys. For example, Young [2012] uses the expenditure measures in the Demographic and Health

Survey (DHS) data to estimate the growth rate of real consumption in sub-Saharan countries, which

is higher than that indicated by official accounts. Despite the much higher quality, the availability

is hindered by the high cost of national-level surveys, especially in developing countries.

To break the trade-off between quality and availability, creative proxy measures have been

proposed. Among others, the use of nighttime light data from satellite images has become popular

in recent years. A vast literature argues that the nighttime light luminosity and economic activity

levels are highly correlated, ranging from the world’ largest economy to some least developed

countries [e.g. Croft, 1978, Elvidge et al., 1997, Sutton and Costanza, 2002, Ghosh et al., 2009,

2010, Henderson et al., 2018, Hu and Yao, 2021]. Unlike GDP, which has high availability but

potentially low quality, or the survey-based measures, which have high quality but low availability,

the nighttime light-based measures excel on both ends — advances in remote sensing and image

1Source: https://datatopics.worldbank.org/statisticalcapacity/
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processing technologies have increased the quality of nighttime light measures which are publicly

available at low cost. On top of that, the nighttime light-based measures are available at relatively

high temporal frequency and spatial resolution — the raw data is collected on a daily basis and

further processed by the National Oceanic and Atmospheric Administration (NOAA) into monthly

imagery at a spatial resolution of 30 x 30 arc seconds, or approximately 1000 x 1000 meters at the

equator.

Although nighttime light-based measures have unique advantages in assessing the level of

economic activities, the extremely strong correlation with other measures such as the reported GDP

found in the literature is suspicious. For example, Elvidge et al. [1997] found that the correlation

between GDP and nighttime light luminosity (after log-transformation) is as high as 0.97 for 21

countries. Similarly high correlations have been found for other sub-populations [e.g. Sutton and

Costanza, 2002, Chen and Nordhaus, 2011]. Taking a step back, if we believe that reported GDP is

not reliable enough, the reliability of any other measure that has 80%− 90% correlation with GDP

should be questionable as well. As a result, an extremely strong correlation with the reported GDP

disqualifies the nighttime light measures. On the other hand, it is apparent that the nighttime

could not reflect every aspect of economic activities and, thus, cannot be near-perfectly correlated

with GDP.

In this paper we demonstrate that these high correlations are indeed unreasonable and the main

reason is the failure to adjust for non-stationarity. The correlation between two non-stationary time

series tends to be excessively large even if no such relationship is present in the data generating

process. This phenomenon is called ”spurious correlation” in macro-econometrics [Granger and

Newbold, 1974]; see also standard textbooks [e.g. Stock et al., 2012, Wooldridge, 2015]. After

adjusting for non-stationarity properly, the association declines drastically. The substantial drop

also corroborates that the issue of spurious correlation cannot be neglected.

Another challenge is the heterogeneity in the light-GDP association. One contribution of this

paper is to show that nighttime light is an appropriate measure of GDP in some contexts but not in

others. The marginal impact of ”true” GDP on nightlight intensity can differ across countries with

different geographic or cultural characteristics. In addition, the relationship between ”true” GDP

and measured GDP varies depending on statistical capacity and other things. While most existing

works implicitly assumes the homogeneity in their analyses, we explicitly build the heterogeneity
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into the model. Under our model, we show that the usual ordinary least squares (OLS) and fixed-

effect regression estimators can be misleading in that they weigh countries in a highly imbalanced

way. In particular, they put very low weights on smaller or less-developed countries while the

weights on other countries are unequal and uninterpretable.

To address the heterogeneity, we carefully define our inferential targets. The first class of targets

are the average correlation coefficients (ACC), defined as a weighted average of the individual

correlation coefficients (ICC) between nighttime light and GDP measures for each country with

user-specified weights. In particular, we are interested in the ACC over all countries and ACC

over a certain sub-population, such as the middle-income countries. We propose a weighted least

squares (WLS) first-differencing regression estimator that is an unbiased estimator of the ACC

without assuming stationarity. The p-value and confidence interval can be computed by standard

software. The second class of inferential targets are non-zero ICCs. We cannot expect to estimate

all ICCs to a reasonably high accuracy because the panel is short and data is scarce for each country.

Fortunately, our preliminary analysis shows that the ICC is close to zero for most countries. We

exploit this sparsity and apply the LASSO regression to identify and estimate non-zero ICCs. To

control the fraction of false discoveries, we apply the advanced ”knockoff” method [Barber and

Candès, 2015] to control the false discovery rate (FDR) at level 0.2, meaning that the fraction of

true positives is at least 80% on average. This identifies in 10 countries.

2.1.1. Data. The nighttime light data we analyze in this paper is provided by Proville et al.

[2017] and collected by the Defense Meteorological Satellite Program Operational Linescan System

(DMSP-OLS) satellites, which provides global daily measurements of nocturnal light. Annual

average composite images of nighttime light have been released by NOAA since 1992, including 30

x 30 arc-second grids covering -180 to 180 degrees longitude and -65 to 75 degrees latitude. In

particular, we use the stable light measurements that measures persistent lighting, which dismiss

fires as ephemeral events and remove background noises. Each pixel in the nighttime light image

has a digital number (DN) representing light intensity, ranging from 0 to 63. The measure we

use for light intensity is the area lit during 1992 to 2013. To calculate area lit, the first step is to

calculate pixel count, which is the sum of DN for all pixels with DN > 31 (to remove weak light

signals) in grids of 30 x 30 arc seconds. Next, the pixel counts are converted to the equivalent area
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coverage in square kilometers. This is the area lit measure we use. On the other hand, we use the

World Bank nominal GDP at the current US dollar levels.

2.1.2. Other related work. The nighttime light measures have been used as a proxy for the

level of economic activity in different problems. Ghosh et al. [2009] estimated the light-GDP

association in the United States, and then applied the estimated association in Mexico to predict

Mexico’s economic activity levels, concluding that Mexico’s informal economy and remittances are

much higher than reported in national accounts. Henderson et al. [2018] studied the association

between trade and agricultural factors and the distribution of economic activities proxied by the

nighttime light measure. The nighttime light measures are also used to construct better predictors

for economic growth. For example, Henderson et al. [2012] developed a measure as a weighted

average of the income growth from national accounts and the income growth predicted by the

nighttime light measures. The weight reflects the statistical capacity and differs by countries.

Because of the high spatial resolution, the nighttime light measures are also used as proxies for

economic activities at the sub-national level [e.g. Sutton and Costanza, 2002, Sutton et al., 2007,

Hodler and Raschky, 2014, Harari, 2020], the region level [e.g. Doll et al., 2006], or even abstract

areas such as ethnic homelands [Michalopoulos and Papaioannou, 2013].

The rest of this paper is structured as follows. We begin Section 2 by describing our model and

comparing the limitation of popular methods in estimating model parameters. We then propose a

weighted least square estimator in Section 3, which addresses the limitations of methods mentioned

in Section 2. We also present the estimated relationship between nighttime light and GDP — the

highest and strongest relationship exists only in middle-income countries. With these results of

subgroup average association, we are curious about the individual-level association. In Section 4,

we further estimate the correlation coefficients between nighttime light and GDP for each country.

Inspired by the fact that many country-level associations observed in the preliminary analysis

is close to zero, we apply the LASSO regression to identify and estimate non-zero individual

correlation coefficients. We further apply the ”knockoff” method to control the false discovery rate

among the selected countries with non-zero coefficients, and the results from LASSO regression

and ”knockoff” method are very consistent.
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2.2. Model

2.2.1. A panel data model with country-wise heterogeneity and non-stationarity. For coun-

try i ∈ {1, . . . , I} in year t ∈ {1, . . . ,T }, let Lit denote the logarithmic nighttime light measure, Yit

denote the reported measure of GDP, and Y ∗it denote the (unobserved) measure of actual level of

economic activities. In this paper, we take Yit as logarithm of reported annual GDP, and concep-

tualize Y ∗it as the true annual GDP. Intuitively, Y ∗it is associated with both Yit and Lit, though not

perfectly correlated. Their relationships can be abstracted through the following simplified model:

(2.2.1) Lit = ηLi +γLi Y
∗
it + εLit , Yit = ηYi +γYi Y

∗
it + εYit ,

where (εLit ,ε
Y
it) are error terms that capture the effects of other economic variables. Here, we

consider a country-specific intercept and slope in both equations in order to capture the country-

wise heterogeneity. Indeed, the effect of actual economic activities on the nighttime light measure

depends on the level of industrialization, environmental policies, lifestyles of the citizens, and so

on, while the mechanisms through which each country misreports their GDP are affected by the

statistical capacity, political ideology, technology, etc. It is thus unrealistic to impose a constant

parameter for all countries.

Since Y ∗it is a latent variable, the parameters are unidentifiable without further structural or

distributional assumptions. While some previous works attempted to estimate γL and γY and

recover Y ∗it [e.g. Henderson et al., 2012], this paper is focused on exploring the marginal association

between Lit and Yit. A reduced-form model yielded by (2.2.1) is

Lit = αi + βiYit + εit ,

where

(2.2.2) βi = γLi /γ
Y
i , αi = ηLi − η

Y
i γ

L
i /γ

Y
i , εit = εLit − ε

Y
itγ

L
i /γ

Y
i .

Under the above reduced-form model, the inferential targets are βis, which measures the country-

wise association between the nighttime light measure and the reported GDP.

Since we are analyzing a fairly long panel (with 17 years), we cannot neglect the non-stationarity

of the nighttime light measure and reported GDP. It is widely accepted that GDP measures have a
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unit root [e.g. McCallum, 1993, Libanio, 2005]. Unless the nighttime light measure is cointegrated

with the reported GDP, εit should be a non-stationary process for each country i. The cointegration

is arguably impossible since the nighttime light measure only captures part of economic activities.

For this reason, we model the error terms as a unit-root process of order 1.

For reference, we summarize the model below:

(2.2.3) Lit = αi + βiYit + εit , εit = εi(t−1) + νit , νit is a mean-zero stationary process for each i.

The above model is similar to a non-stationary dynamic panel model because it can be equivalently

formulated as

(2.2.4) Lit = Li(t−1) + βiYit − βiYi(t−1) + νit .

Nevertheless, (2.2.3) is more complicated due to the country-wise heterogeneity, which introduces

the incidental parameter problem.

2.2.2. Inferential targets: average and individual correlation coefficients. It would be ideal

to estimate every individual correlation coefficient (ICC) βi precisely. However, this can only be

achieved with a sufficiently long panel because there are only T observations (Lit ,Yit)
T
t=1 carrying

information on βi , and there are at least two more nuisance parameter: the intercept αi and the

variance of νit. In our case, T = 22 and thus only 20 degree-of-freedom can be used to estimate βi .

Therefore, it is impossible to estimate all βi ’s with a desirable accuracy without further assumptions

(i.e, under unrestricted heterogeneity).

In the presence of unrestricted heterogeneity, a routine approach to summarize the effects is to

consider an average correlation coefficient (ACC), as an average of ICCs with user-specified weights.

For example, we can consider the ACC over all countries

(2.2.5) βall ,
1
I

I∑
i=1

βi .

Sometimes it could be more informative to investigate a weighted average of βi :

(2.2.6) β(v) =
∑I
i=1 viβi∑I
i=1 vi

,
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where the weights depend on, for example, the population size. Similarly, we can define the ACC

over a sub-population, say, the middle-income countries. As we will show in Section 2.3, the

effective sample size for ACC is much larger than T , and hence the variance of the ACC estimator

is much lower than that of the ICC estimator.

The ICCs could also be of interest, when the goal is to find the countries with largest ICCs,

or to explore how the ICC varies with other factors. As mentioned above, we need to impose

additional plausible assumptions in order to ensure inferential reliability. In this paper, we exploit

the sparsity of βi ’s observed from the preliminary analysis. It may sound implausible because the

overall correlation between the nighttime light measure and GDP has been found to be high in

the literature [e.g. Elvidge et al., 1997, Sutton and Costanza, 2002, Chen and Nordhaus, 2011].

However, we will show in Section 2.2.3.1 that the high correlation is spurious due to the failure of

adjusting for non-stationarity. After the correct adjustment, most ICCs are substantially reduced

and close to zero. On the other hand, recalling that βi is the ratio between dLit/dY ∗it and dYit/dY ∗it.

it is large only when either the nighttime light captures most economic activities or there is

substantial amount of under-reporting. Intuitively, neither of them is realistic. Therefore, we argue

that it is reasonable to assume sparsity.

2.2.3. Challenges.

2.2.3.1. Non-stationarity and spurious correlation. It is known in the macro-econometric theory

that the correlation coefficient between two non-stationary sequences is typically large and can

sometimes be close to ±1, even if the two sequences are independent [e.g. Phillips, 1998, Ernst

et al., 2019]. This surprising phenomenon is dubbed ”spurious correlation” in the literature.

Failure to adjust for spurious correlation properly can yield misleading conclusions. In fact, for the

countries under study in this paper, we test for unit root with ADF test (critical ADF p-value >

0.1) [Cheung and Lai, 1995] and KPSS test (critical KPSS p-value < 0.1) [Kwiatkowski et al., 1992].

We find that about 70% of the countries have non-stationarity in GDP, and 40% of countries have

non-stationarity in nighttime light.

Unfortunately, this issue has not been addressed in the literature on nighttime light measures.

Suppose the non-stationarity is absent and thus the spurious correlation does not exist, the cor-

relation coefficient between Lit and Yit (or R2 equivalently) should be similar to that between

∆Lit = Lit − Li(t−1) and ∆Yit = Yit − Yi(t−1). As a sanity check, I perform the ADF test and KPSS

44



test again after taking the first difference for GDP and nighttime light, and the corresponding

share of countries demonstrating non-stationarity drop to about 20% and less than 5% respectively.

Note that we use the 10% significance level here, so there is 10% chance that we get reports of

non-stationarity when there actually is not, Thus, 20% demonstrating non-stationarity is not quite

a large number that we should worry about.

Using our data, if Lit and Yit are given by the levels (without any transformation), the first

correlation is 0.96 (95% confidence interval [0.95,0.97]), coinciding with the observation by Elvidge

et al. [1997], while the second correlation is 0.18 (95% confidence interval [0.10,0.26]); if Lit and Yit

are given by the log-levels, as in our analyses, so that the first-order difference measures the growth

rate, the first correlation is 0.31 (95% confidence interval [0.23,0.39]), while the second correlation

is 0.00 (95% confidence interval [−0.08,0.08]). The confidence intervals are non-overlapping with

a large gap in both cases, suggesting strong evidence for spurious correlation.

2.2.3.2. Failure of OLS estimators on the pooled sample. A popular approach is to run the OLS

regression on the pooled panel data [e.g. Henderson et al., 2012]. However, this approach relies

on three assumptions: homogeneity of ICCs (βi ≡ β), homogeneity of intercepts (αi ≡ α), and

stationarity of error terms. Even if the last two assumptions both hold, the heterogeneity in ICCs

can make the resulting estimator uninterpretable. To illustrate the failure of the OLS estimator,

assume αi = 0 and εit are stationary for a moment. It is not hard to see that

E[β̂OLS] =

∑I
i=1w

OLS
i βi∑I

i=1w
OLS
i

,

where

wOLS
i =

T∑
t=1

Y 2
it .

This limit is a weighted average of ICCs, where the weights are data-dependent. One implication is

that the countries with larger levels of GDP have larger weights. Given the dramatic imbalance in

country-level GDP, the weights for smaller or less developed countries are almost zero. Therefore,

the OLS estimator essentially estimates a weighted average of a few large countries in the world,

which is clearly misleading.

A more sophisticated approach is to add country fixed-effects into the regression [e.g. Hen-

derson et al., 2012]. This relaxes the assumption of homogeneous intercepts. Nevertheless, the
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heterogeneity in βi ’s is still problematic even if the error terms are stationary. Through some

tedious calculations, we can show that,

E[β̂FE] =

∑I
i=1w

FE
i βi∑I

i=1w
FE
i

,

where

wFE
i =

T∑
t=1

(Yit − Ȳi)2, Ȳi =
1
T

T∑
t=1

Yit .

Again, the limit of this estimator severely penalizes smaller or less-developed countries.

Another commonly used method in panel data analysis is the first-difference regression esti-

mator, which regresses ∆Lit = Lit − Li(t−1) on ∆Yit = Yit − Yi(t−1), though we are not aware of the

application in the literature on nighttime light measures. Under our model (2.2.3),

∆Lit = βi∆Yit + νit .

Therefore, the first-difference estimator relaxes the assumptions on both the homogeneity of

intercepts and the stationarity of error terms. Despite being more robust than the aforementioned

two estimators, it still suffers from the same issue under the heterogeneity of ICCs. As with β̂OLS,

we can show that

E[β̂FD] =

∑I
i=1w

FD
i βi∑I

i=1w
FD
i

,

where

wFD
i =

T∑
t=1

(∆Yit)
2.

When Yit is given by the log-GDP, ∆Yit approximately measures GDP growth rate. While the

variation of GDP growth rate is much smaller than that of GDP, the FD weights are still non-

uniform and they are difficult to interpret.
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Table 2.1. Methods for estimating model parameters

Method Assumptions Regression (in R syntax)

Ordinary Least Squares regression

αi ≡ α,

βi ≡ β,

εit is stationary

lm(Lit ∼ α + β ·Yit)

(Country) Fixed-Effects regression
βi ≡ β,

εit is stationary
lm(Lit ∼ αi + β ·Yit)

First-Difference regression βi ≡ β lm(∆tLit ∼ β ·∆tYit)

2.3. Estimating Average Correlation Coefficients

2.3.1. Weighted first-difference regression estimator. As discussed in Section 2.2.3.2, the

first-difference regression estimator requires neither homogeneity of intercepts nor stationarity of

errors. In this section, we will propose an adjustment for the first-difference estimator to handle

the heterogeneity of ICCs. To set the stage, we start by reformulating the model (2.2.3) based on

the first-differenced quantities:

(2.3.1) ∆Lit = βi ·∆Yit + νit .

A natural estimator for β(v) is the aggregated OLS estimator, defined as

β̂(v) =
∑I
i=1 vi β̂i,OLS∑I

i=1 vi
,

where β̂i,OLS is obtained by the OLS regression for unit i (i.e., on (Lit ,Yit)
T
t=1). Clearly, it is an

unbiased estimator of β(v) and

Var
[
β̂(v)

]
=

∑I
i=1 v

2
i Var[β̂i,OLS](∑I
i=1 vi

)2 .

Since β̂i,OLS is the best linear unbiased estimator (BLUE) for βi , β̂(v) is BLUE for β(v). For example,

for βall, the variance of the above estimator is

1
I2

I∑
i=1

Var[β̂i,OLS].
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When the variances of all individual OLS estimators are similar, the above variance can be I times

lower than each, implying that the efficiency to estimate ACC is much higher than the efficiency to

estimate an ICC.

In Section 2.2.3.2, we have seen that the OLS estimator, whose objective function treats every

country equally, does not treats each βi equally. Therefore, the estimator β̂(v), which treats every βi

equally, must treat each country differently. It turns out that β̂(v) can be equivalently formulated

as a weighted least squares (WLS) regression estimator with properly chosen weights:

(2.3.2) β̂(v) = argminβ
1
IT

I∑
i=1

γi

T∑
t=1

(∆Lit − β∆Yit)2, where γi =
vi∑T

t=1(∆Yit)2
.

To see the equivalence, via the standard computation,

β̂(v) =
∑
i γi

∑
t∆Yit∆Lit∑

i γi
∑
t(∆Yit)2 =

∑
i γi β̂i,OLS

∑
t(∆Yit)

2∑
i γi

∑
t(∆Yit)2 =

∑I
i=1 vi β̂i,OLS∑I

i=1 vi
.

Consider the ACC over all countries as an example, in which case γi is inversely proportional

to
∑T
t=1(∆Yit)2. Then β̂(v) down-weights countries with larger growth rates while up-weights

countries with smaller growth rates. This is unsurprising because the unweighted OLS estimator

tends to up-weight the former.

Another advantage of the WLS formulation (2.3.2) is that the variance of β̂(v), and thus the

p-value and confidence interval, can be computed by standard software directly. Comparisons of

these methods are summarized in Table 2.1.

2.3.2. Results. First, we estimate βall, the ACC over all countries defined in (2.2.5). The point

estimate is 0.176 with the 95% confidence interval [0.094,0.258]. Though it is significant at the

1% level, the magnitude is substantially smaller than what is found in previous works which

did not adjust for spurious correlation [e.g. Chen and Nordhaus, 2011, Henderson et al., 2012].

The huge gap between our estimates and the previous ones suggests that the non-stationarity is

non-negligible in studying the relationship between nighttime light measures and measures of

wealth such as GDP. Put another way, both variables should be measured by growth rates instead

of levels.

Next, we estimate the ACC over subpopulations. The association between the nighttime light

measure and GDP is affected by the industrialization levels. As a result, we expect the ACCs to
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vary with the income levels. We stratify the countries by income groups defined by World Bank.

The results are summarized in Table 2.2. Again, the point estimates are not large in general. The

estimates are significant at the 1% level for middle-income countries. This is partly attributed

to the ”capping” effect: for low-income countries, the luminosity is too low to be detected by the

satellites, while for high-income countries, the luminosity is beyond the maximal detectable level.

The latter is called the ”saturation effect” in the remote sensing literature. Therefore, there is

sufficient variation in the nighttime light measure only for middle income countries.

Table 2.2. WLS estimates by income group

Income Group Obs. WLS estimate p-value 95% C.I.
1 Low income 638 0.130 0.121 (-0.034, 0.295)
2 Upper middle income 1100 0.416∗∗∗ <0.001 (0.312, 0.521)
3 High income: non-OECD 924 0.004 0.330 (-0.004, 0.011)
4 Lower middle income 968 0.297∗∗∗ <0.001 (0.177, 0.416)
5 High income: OECD 704 0.111 0.126 (-0.031, 0.253)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.3. WLS estimates by continent

Continent Obs. WLS estimate p-value 95% C.I.
1 South Asia 154 0.465∗∗ 0.023 (0.058, 0.872)
2 Europe & Central Asia 1188 0.017 0.664 (-0.058, 0.092)
3 Middle East & North Africa 440 0.301∗∗∗ <0.001 (0.196, 0.407)
4 East Asia & Pacific 616 0.003 0.382 (-0.004, 0.01)
5 Sub-Saharan Africa 1012 0.112∗ 0.058 (-0.004, 0.227)
6 Latin America & Caribbean 858 0.459∗∗∗ <0.001 (0.34, 0.578)
7 North America 66 0.154 0.617 (-0.446, 0.754)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Lastly, we stratify the countries by geographical locations because the human lifestyles heavily

depend on the geography and climate. In particular, we estimate the ACC over seven continents.

The results are presented in Table 2.3. Interestingly, we found significant ACCs (at at least the 5%

level) at South Asia, Middle East & North Africa, and Latin America & Caribbean, where most

developing countries reside in. This corroborates the findings in Table 2.2.
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2.4. Estimating Individual Correlation Coefficients

2.4.1. Naive estimates: country-wise regressions. As shown in Section 2.2.2, the ICCs can be

estimated by running a first-difference regression for each country separately. Though this naive

approach is inefficient due to data scarcity, we present the result here as a benchmark.
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Figure 2.1. Estimated ICC over initial income levels and corresponding p-values
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For visualization, we plot the estimated ICCs against initial income levels, measured by GDP

or per capita GDP in 1992, the initial year when the nighttime light data is available. Figure 2.1(a)

and 2.1(b) present the scatter-plots of ICC estimates versus GDP and per capita GDP, respectively.

Both figures show the inverse-U shapes, motivating us to fit a quadratic regression:

β̂i = α0 +α1Zi,1992 +α2(Zi,1992)2 + ζi ,(2.4.1)

where β̂i denotes the estimated ICC and Zi,1992 denotes GDP or per capita GDP. Table 2.4 sum-

marizes the regression results. As expected, the coefficient on Z2
i,1992 is negative and statistically

significant, and the coefficient on Zi,1992 is positive and statistically significant. This suggests

that countries distributed in the middle range of income tend to have higher positive ICCs, while

countries distributed at the lowest or highest end tend to have near-zero ICCs.

Next, we compute the p-values for each ICC estimate. Figure 2.2 plots the histogram of -

log(p-values) for ICCs. The vertical blue, red, and green lines correspond to the p = 0.1,0.05,0.01

thresholds. Only 35 out of the 179 countries or regions have a significant ICC estimate at the 10%

level. This could be either due to the fact that the actual ICC is low or that the variance is too large.

Furthermore, Figure 2.1(c) and 2.1(d) show the scatter-plots of -log(p-values) for each country

versus GDP and per capita GDP in the initial year.

The p-values displayed above are only marginally valid for each country. Since there are 179 p-

values, we must adjust for multiplicity to control the number of false discoveries, i.e., the countries

with zero ICCs that are claimed to have significant ICCs. Simply thresholding the p-values at level

10% does not guarantee the fraction of false rejections to be controlled. In particular, we apply the

Benjamini-Hochberg (BH) procedure [Benjamini and Hochberg, 1995] on these p-values to control

the false discovery rate (FDR). Given a target FDR level α, the BH procedure sorts the p-values in

ascending order, denoted as p(1) ≤ . . . ≤ p(I), and rejects all p-values less than or equal to p(R) where

R = max
{
r : p(r) ≤

rα
n

}
.

Unfortunately, the BH procedure cannot reject any p-value even if the target FDR level α = 1. This

suggests that the naive estimates are so inefficient that the evidence is too weak to support any

multiplicity adjustment.
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Table 2.4. Relationship between βi and initial wealth

Dependent variable:

βi

(1) (2)

(Initial GDP)2 -0.009∗

(0.005)

Initial GDP 0.056∗

(0.033)

(Initial GDP per capita)2 -3.657∗∗

(1.431)

Initial GDP per capita 1.119∗∗

(0.519)

Constant 0.200∗∗∗ 0.208∗∗∗

(0.048) (0.046)

R2 0.023 0.040
Adjusted R2 0.010 0.028
Residual Std. Error (df = 160) 0.350 0.347
F Statistic (df = 2; 160) 1.842 3.328∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Next, we apply the BH procedure in each income group separately. This is easier than the

previous task because each group involves far fewer countries. Again, no p-value is rejected from

any group with α = 20%, which is a commonly considered level. If the target level is raised to 50%,

only two countries are rejected: Lao People’s Democratic Republic from the lower middle income

group and Qatar from the high income non-OECD group. This further confirms the inefficiency of

the naive estimates.
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Figure 2.2. Histogram of -log(p-values) for 179 countries or regions

2.4.2. Exploiting the sparsity of ICCs via LASSO regression. In Section 2.4.1, we have seen

that the naive estimates of βi ’s are not only statistically insignificant but also have small sizes.

Inspired by this observation, it is reasonable to assume the sparsity of ICCs, i.e., most βi ’s are zero.

The sparsity enables reliable estimation even when the number of observations used to estimate

each the parameter is small [e.g. Bühlmann and Van De Geer, 2011].

Note that our model (2.3.1) can be reformulated as a generic linear model with coefficients

(β1, . . . ,βI ):

(2.4.2)


∆L1
∆L2
...

∆LI

︸︷︷︸
∆L

=


∆Y1

∆Y2
. . .

∆YI

︸                ︷︷                ︸
∆Y

βββ +


ννν1
ννν2
...
νννI

 ,
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where

∆Li =



Li1

Li2
...

LiT


, ∆Yi =



Yi1

Yi2
...

YiT


, νννi =



νi1

νi2
...

νiT


, βββ =



β1

β2
...

βI


As a result, we can apply the LASSO regression to estimate the sparse βββ. The LASSO regression

estimator is defined as

β̂ββLASSO = argmin
βββ

1
IT

IT∑
j=1

(∆Lj −∆Yj ·βββ)2 +λ
I∑
i=1

|βi |,(2.4.3)

where λ is the penalty level. When λ = 0, the LASSO estimator reduces to the OLS estimator.

As λ grows, the regularization term has a greater effect and thus fewer variables will enter the

model. One way to sort the ICCs is based on the largest λ at which each coefficient turns non-

zero. Specifically, we choose a grid of penalty levels λ1 > λ2 > . . . > λN , which are chosen by the

cv.glmnet function in R, and then solve (2.4.3) to find the set of active countries with non-zero

coefficients for each λk . Figure 2.3 plots the number of active countries in each strata as λ decreases

until 25 countries or regions enter the model, where the x-axis represents the entering point,

namely the minimal k such that the β̂i turns non-zero with λ = λk .
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Figure 2.3. Coefficients from LASSO
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From Figure 2.3, to order the countries, we apply the LARS algorithm [Efron et al., 2004] which

computes the exact λ at which each coefficient turns non-zero. The first 25 countries or regions

that enter the model are listed in Table 2.5.

Table 2.5. The first 25 countries or regions entering the model

Order Country/Region Continent Income group
1 Rwanda Sub-Saharan Africa Low income
2 Grenada Latin America & Caribbean Upper middle income
3 Albania Europe & Central Asia Upper middle income
4 Greenland Europe & Central Asia High income: non-OECD
5 Bosnia and Herzegovina Europe & Central Asia Upper middle income
6 Vanuatu East Asia & Pacific Lower middle income
7 Fiji East Asia & Pacific Upper middle income
8 Gambia Sub-Saharan Africa Low income
9 Belize Latin America & Caribbean Upper middle income

10 Iceland Europe & Central Asia High income: OECD
11 Afghanistan South Asia Low income
12 Liechtenstein Europe & Central Asia High income: non-OECD
13 Equatorial Guinea Sub-Saharan Africa High income: non-OECD
14 Sierra Leone Sub-Saharan Africa Low income
15 Timor-Leste East Asia & Pacific Lower middle income
16 Cape Verde Sub-Saharan Africa Lower middle income
17 Slovenia Europe & Central Asia High income: OECD
18 Haiti Latin America & Caribbean Low income
19 Serbia Europe & Central Asia Upper middle income
20 Georgia Europe & Central Asia Lower middle income
21 Libyan Arab Jamahiriya Middle East & North Africa Upper middle income
22 Guyana Latin America & Caribbean Lower middle income
23 Viet Nam East Asia & Pacific Lower middle income
24 Madagascar Sub-Saharan Africa Low income
25 Armenia Europe & Central Asia Lower middle income

2.4.3. Controlling the fraction of false positives via the knockoff method. While the LASSO

regression yields the ordering of the countries or regions that enter the model, it does not provide

any statistically meaningful control of false positives. As mentioned in Section 2.4.1, it would

be ideal to control the FDR for selected ones. Unfortunately, the BH procedure fails to reject any

country when applied to the p-values obtained from the country-wise regressions because they are

inefficient. Here, we apply a more advanced procedure called the ”knockoff” method which can

control FDR for linear models based on the more efficient LASSO estimates [Barber and Candès,

2015].
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The knockoff method has gained tremendous popularity in statistics and biology since intro-

duced. Roughly speaking, it constructs a ”knockoff” variable as a negative control for each variable

of interest and selects variables whose entry to the LASSO path is significantly earlier than its

knockoff counterpart. The actual procedure is very complicated and we refer to the readers to

Barber and Candès [2015] for a detailed description of the method. Theoretically, the knockoff

method controls FDR in finite samples whenever the errors are homoscedastic and Gaussian. The

performance is also shown to be robust to heteroscedasticity and non-normality.

Here, we set the target FDR level as 0.2, which is a commonly used level in multiple testing,

and apply the knockoff.filter function from the knockoff package in R [Patterson and Sesia,

2018]. The knockoff method rejects the first 10 countries or regions in Table 2.5. An informal

interpretation is that at least 80% of the selected ones are true discoveries on average. Table

2.6 reports the selected countries or regions where we think night lights are the most accurate

measure of GDP. Among the ten that demonstrate selected by the knockoff method, six belong to

the middle-income group (Grenada, Albania, Bosnia and Herzegovina, Vanuatu, Fiji, and Belize),

two belong to the high income group (Greenland, and Iceland), and only two belong to the low

income group (Rwanda, and Gambia). This is a warning that we should be very careful when using

the nighttime light data as a proxy for GDP for low-income countries or regions.

Table 2.6. The 10 countries or regions selected by the knockoff method with FDR
control at level 0.2

Order Country/Regiondisc Continent Income group
1 Rwanda Sub-Saharan Africa Low income
2 Grenada Latin America & Caribbean Upper middle income
3 Albania Europe & Central Asia Upper middle income
4 Greenland Europe & Central Asia High income: non-OECD
5 Bosnia and Herzegovina Europe & Central Asia Upper middle income
6 Vanuatu East Asia & Pacific Lower middle income
7 Fiji East Asia & Pacific Upper middle income
8 Gambia Sub-Saharan Africa Low income
9 Belize Latin America & Caribbean Upper middle income
10 Iceland Europe & Central Asia High income: OECD

2.5. Conclusion

We investigate the association between the nighttime light measures and reported GDP for

179 countries or regions. Our analyses overcome major limitations in previous works by including

56



non-stationarity and heterogeneity explicitly in the model. To adjust for non-stationarity, we

apply the first differencing technique and find a substantially smaller overall correlation than that

found in the literature, suggesting that the latter might be attributed to ”spurious correlation”, a

well-understood phenomenon in macro-econometrics. To deal with heterogeneity, we propose a

weighted least square estimator for the average correlation coefficient by properly re-weighting

each country, which resolves the issue of unequal weighting for the standard OLS and fixed-effect

regression estimators. We find positive and significant average correlation among middle-income

countries. Moving beyond the average association, we apply the LASSO regression to identify and

estimate non-zero individual correlation coefficients. This is inspired by the sparsity of country-

level associations observed in the preliminary analysis. We further apply the ”knockoff” method

to control the false discovery rate among the selected countries. We find that the majority of

countries or regions that demonstrate a strong and significant association between nighttime light

and GDP belongs to the middle-income group. This is a warning that the light-GDP association is

not universally high, and we should be very careful when using the nighttime light data as a proxy

for GDP for low-income countries or regions.
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CHAPTER 3

Double Robust Two-Way-Fixed-Effects Regression For Panel Data

3.1. Introduction

We study estimation of causal effects of a binary treatment in a panel data setting with a

large number of units, a modest (fixed) number of time periods, and general treatment patterns.

Following much of the applied work we focus on least squares estimators with two-way fixed

effects (TWFE). We augment this specification with unit-specific weights, leading to the following

estimator:

(3.1.1) τ̂(γ) = argmin
τ,αi ,λt ,β

∑
it

(Yit −αi −λt − β>Xit − τWit)
2γi

Here Yit is the outcome variable of interest, Wit is a binary treatment, and Xit are observed

exogenous characteristics. Unit-specific weighs γi are constructed using both attributes and

realized assignment paths Wi = (Wi1, . . . ,WiT ), but free of dependence on the outcomes.

We primarily focus on settings with sufficient cross-sectional variation in Wi to consider and

estimate the assignment process – a model for Wit conditional on observed characteristics, past

values of the treatment (but free of dependence on the outcomes). Motivated by the literature

on double robust estimation of treatment effects in cross-section settings (Robins et al. [1994]),

we use this assignment model to construct the weights γ? that guarantee that τ̂(γ?) converges

to the average (equally over units and periods) treatment effect even if the TWFE regression

model is misspecified. Perhaps surprisingly, and in contrast to the cross-section double robust

literature, using (generalized) inverse propensity score weights (e.g., Rosenbaum and Rubin [1983],

Hirano et al. [2003], Imbens and Rubin [2015]) does not work here. The intuition for the failure

of the standard inverse propensity score weighting is that the TWFE regression model does not

correspond to a consistently estimable conditional expectation because it includes unit fixed effects.

In general, we characterize the limiting behavior of τ̂(γ) for a large class of weighting functions

58



and provide an analytic correspondence between the choice of weights and the resulting causal

estimand.

In controlled experiments the assignment process for Wi is known, and in Section 3.2 we show

how to use this knowledge to construct γ? , and conduct design-based inference. Under correct

specification of the assignment model our inference procedure is valid regardless of the underlying

model for potential outcomes, and in particular we do not need to assume any version of parallel

trends. Our results substantially generalize the properties established in Athey and Imbens [2018],

in particular, allowing for arbitrary assignment process (subject to mild overlap restrictions). These

results are then used as a building block in Section 3.3, where the assignment process is unknown,

but can be estimated from the data.

After establishing design-based properties of τ̂(γ?), we turn to the robustness–the behavior

of the estimator in settings where the postulated assignment model is incorrect. At this point,

we use the structure of the regression problem (3.1.1) to demonstrate that τ̂(γ?) has a strong

double-robustness property (Robins et al. [1994], Kang and Schafer [2007], Bang and Robins [2005],

Chernozhukov et al. [2018]): it has a small bias whenever either the assignment or the regression

model is approximately correct. We view these results as the primary motivation for using our

estimator in practice, where we cannot expect the TWFE model or the assignment model to be fully

correct.

To construct γ? , we need to solve a nonlinear equation that depends on the support of Wi .

Practically, this means that the construction varies across different types of designs. In Section 3.4

we provide solutions for several prominent examples, including staggered adoption, i.e., a situation

where units opt into treatment sequentially. Another input we need for γ? is the probability

distribution of Wi (generalized propensity score, Imbens [2000])). In Section 3.5 we use two

empirical examples to show how to estimate this distribution for the staggered adoption design

using duration models. This approach is connected to Shaikh and Toulis [2019] that uses a duration

model to test a sharp null hypothesis that specifies that there are no treatment effects.

Our focus on TWFE regression (3.1.1) is motivated by its increased popularity in economics

(see Currie, Kleven, and Zwiers [2020] for documentation on this). In applications, this model

provides a parsimonious approximation for the baseline outcomes, allowing researchers to capture

unobserved confounders and to improve the efficiency of the resulting estimator by reducing
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noise. At the same time, recent research shows that regression estimators for average treatment

effects based on TWFE models might have undesirable properties, in particular, negative weights

for unit-time specific treatment effects. These concerns are particularly salient in settings with

heterogeneity in treatment effects and general assignment patterns (e.g., De Chaisemartin and

d’Haultfoeuille [2020], Goodman-Bacon [2018], Abraham and Sun [2018], Callaway and Sant’Anna

[2018], Borusyak and Jaravel [2017]). Our results show that some of the concerns raised in this

literature regarding negative weights disappear once we properly reweight the observations.

Our analysis assumes that the treatment affects only contemporaneous outcomes, thus not

allowing for dynamic effects. We make this choice to crystallize the connection between the TWFE

regression model (3.1.1) and the assignment process. Importantly, we do not restrict heterogeneity

in contemporaneous treatment effects that can vary over units and periods. To test for, or estimate,

dynamic treatment effects, one has to compare units that receive treatment at different times. Such

comparisons are justified only if we restrict individual heterogeneity in treatment effects or if we

treat the assignment as random. Consequently, it is imperative to model both the assignment

mechanism and the outcome model. In Bojinov et al. [2020a] the authors show how to use the

assignment process to estimate dynamic treatment effects (see also Blackwell and Yamauchi [2021]

for the related analysis in large-T setup). Our results suggest that researchers can construct robust

estimators by combining Bojinov et al. [2020a] approach to estimation with more conventional

dynamic panel regression models using the methods described in the current paper for the static

case.

Our results are related to recent literature on doubly robust estimators with panel data. Concep-

tually the closest paper to us is Arkhangelsky and Imbens [2019] that also emphasizes the role of the

assignment process in the same setting and shows double robustness. Our focus, however, is quite

different. First, we restrict attention to a very particular and transparent class of estimators (3.1.1).

Operationally, our estimator allows applied researchers to combine flexibility and simplicity of

standard regression models with available knowledge about the assignment process while retaining

statistical guarantees. Second, we show how to estimate a flexible class of average treatment effects

with user-specified weights over units and time. The double robustness property in our paper is

distinct from the one analyzed recently in the difference-in-difference setting (e.g., Sant’Anna and
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Zhao [2020]): our estimator is robust to arbitrary violations of parallel trends assumptions, as long

as the assignment model is correctly specified.

We also connect to recent work on causal panel model with experimental data (e.g., Athey and

Imbens [2018], Bojinov et al. [2020a], Roth and Sant’Anna [2021]). Similar to these papers, we

establish properties of regression estimators under design assumptions. Importantly, we consider a

general setting without restricting our attention to staggered adoption design. Our contribution to

this literature is the characterization of the behavior of τ̂(γ) for a large class of weighting functions

and general designs. By establishing a connection between weighting functions and limiting

estimands, we allow users to construct consistent estimators for a pre-specified weighted average

treatment effect of interest.

Finally, the form of our estimator (3.1.1) connects it to the Synthetic Difference in Differences

(SDID) estimator introduced in Arkhangelsky et al. [2019]. The difference between these two

procedures is in the way they construct the weights γ? . The SDID estimator uses pretreatment

outcomes to build a synthetic control unit that follows the path of the average treated unit as closely

as possible (up to an additive shift). This strategy is infeasible if Wit varies over time. However,

precisely in situations with enough variation in Wi , we can estimate the assignment process and

use it to construct the weights γ? . As a result, the two estimators are complementary and can be

used in applications with different assignment patterns.

Throughout the paper, we adopt the standard probability notation O(·), o(·),O
P

(·), o
P

(·). For

any vector v, denote by v> the transpose of v, ‖v‖2 the L2 norm of v, and by diag(v) the diagonal

matrix with the coordinates of v being the diagonal elements. For a pair of vectors v1,v2, we write

〈v1,v2〉 for their inner product v>1 v2. Furthermore, let [m] denote the set {1, . . . ,m}, Im the m ×m

identity matrix, and 1m the m-dimensional vector with all entries 1. Finally, the support of a

discrete distribution F is the set of elements with positive probabilities under F.

3.2. Reshaped IPW Estimator and Design-based Inference

In this section, we consider a pure design-based setting, i.e., assume that assignment paths

Wi have known distributions. The results of this section are directly applicable to situations

where Wi are assigned in a controlled experiment. They also serve as a building block for general

non-experimental results discussed in Section 3.3.
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3.2.1. Setup and Assumptions. We consider a setting with a finite population of n units. In

particular, each unit is characterized by a set of fixed potential outcomes {Yit(1),Yit(0)}t∈[T ]. By

writing the potential outcomes in this form we assume away any dynamic effects of past treatments

on current outcomes (see Imai and Kim [2019] and Arkhangelsky and Imbens [2019]). Given the

realized treatment assignment Wit, the observed outcomes are defined in the usual way:

(3.2.1) Yit = Yit(1)Wit +Yit(0)(1−Wit).

Throughout this paper, we consider the asymptotic regime with n going to infinity, and fixed T ≥ 2,

i.e., T =O(1).

We define the unit and time-specific treatment effect as:

(3.2.2) τit , Yit(1)−Yit(0).

For each time period t, we define the time-specific ATE as:

(3.2.3) τt ,
1
n

n∑
i=1

τit ,

and consider a broad class of weighted average of time-specific ATE:

(3.2.4) τ∗(ξ) ,
T∑
t=1

ξtτt

for some user-specified deterministic weights ξ = (ξ1, . . . ,ξT )> such that

(3.2.5)
T∑
t=1

ξt = 1, ξt ≥ 0.

We refer to (3.2.4) as a doubly average treatment effect (DATE). For example, the weights ξt = 1/T

yield the usual ATE over units and time periods. In the difference-in-differences setting with two

time periods, ξt = 1t=2. In a particular application, one might also be interested in an effect with

time discounting factor that puts more weight on initial periods, i.e. ξt ∝ βt for some β < 1.

For each unit i and a possible assignment path Wi we define the generalized propensity score

(Imbens [2000], Athey and Imbens [2018], Bojinov et al. [2020a,b]) – the marginal probability of
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such path:

(3.2.6) πi(w) = P[Wi = w], ∀w ∈ {0,1}T .

Given our focus on design-based inference we treat πi as known objects. These functions are

unit-specific thus allowing for general experimental designs, for example, stratification based on

observed unit characteristics. We impose minimal overlap restrictions on each πi :

Assumption 3.2.1. There exists a universal constant c > 0 and a non-stochastic subset S∗ ⊂ {0,1}T

with at least two elements and at least one element not in {0T ,1T }, such that

(3.2.7) πi(w) > c, ∀w ∈ S∗, i ∈ [n], almost surely,

To capture different assignment processes we allow Wi to be dependent across units. Such

dependence arises in applications, sometimes for technical reasons (e.g., in case of sampling

without replacement as in Athey and Imbens [2018]), and sometimes by the nature of assignment

process (spatial experiments). To quantify this dependence we follow Rényi [1959] and define the

maximal correlation:

(3.2.8) ρij , sup
f ,g

{
corr

(
f (Wi), g(Wj )

)}
In the main text we maintain a simplified restriction on {ρij}ij leaving a more general one to

Appendix B.1. The assumption is stated as follows:

Assumption 3.2.2. There exists q ∈ (0,1] such that as n approaches infinity the following holds:

(3.2.9)
1
n2

n∑
i,j=1

ρij =O(n−q).

Since by construction 1
n ≤ (1/n2)

∑n
i,j=1ρij ≤ 1, q measures the strength of correlation. When Wi

are independent across units, (3.2.9) holds with q = 1. More generally, when {Wi}ni=1 have a network

dependency with ρij = 0 if there is no edge between i and j, (3.2.9) is satisfied if the number of

edges is O(n2(1−q)). Note that it imposes no constraint on the maximum degree of the dependency

graph. Even if the network is fully connected, it can still hold if the pairwise dependence is weak,

e.g., sampling without replacement; see Appendix B.1.4. On the other hand, (3.2.9) excludes the
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case where different units are perfectly correlated or equi-correlated with a positive maximal

correlation that is bounded away from 0.

Our final assumption puts restrictions on the outcomes by requiring that they are bounded:

Assumption 3.2.3. There exists M <∞ such that maxi,t,w{|Yit(w)|} <M.

It is presented here only for simplicity. We relax it substantially in Appendix B.1.

3.2.2. Reshaped IPW estimator. We consider a class of weighted TWFE regression estimators.

We refer to them as reshaped inverse propensity weighted (RIPW) estimators, and formally define

them as follows:

(3.2.10) τ̂(Π) , argmin
τ,µ,

∑
i αi=

∑
t λt=0

n∑
i=1

T∑
t=1

(Yit −µ−αi −λt −Witτ)2 Π(Wi)
πi(Wi)

,

where Π(w) is a density function on {0,1}T , i.e.,

(3.2.11)
∑

w∈{0,1}T
Π(w) = 1.

We refer to the distribution Π as a reshaped distribution, and the weight Π(Wi)/πi(Wi) as a RIP

weight. To ensure that the RIPW estimator is well-defined, we require Π to be absolutely continuous

with respect to each πi , i.e.

(3.2.12) Π(w) = 0 if πi(w) = 0 and Wi = w for some i ∈ [n].

The estimator (3.2.10) is feasible for any such Π because πi is assumed to be known.

The reshaped distribution Π can be interpreted as an experimental design. If Wi ∼ Π, then

πi = Π and (3.2.10) reduces to the standard unweighted TWFE regression. If this is not the case,

then Π(Wi)/πi(Wi) acts like a likelihood ratio that changes the original design to one provided by

Π. For cross-sectional data, we would like to shift the distribution to uniform {0,1}, making the

weights equal to 1/2πi(Wi) if the fixed effects are not included. This would yield the standard IPW

estimator. However, as we alluded to in the introduction, the situation is more complicated with

the panel data, and shifting towards the uniform design might not deliver consistent estimators for

the DATE of interest. We explore this formally in the next section where we characterize the set of

Π that one can use. This interpretation of Π has one caveat: RIP weights only shift the marginal
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distribution of Wi to Π, but they do not say anything about the joint distribution of {Wi}i∈[n] which

can remain complicated.

3.2.3. DATE equation and consistency of RIPW estimators. We now derive sufficient condi-

tions under which the RIPW estimator is a consistent estimator for a given DATE of interest. The

following theorem presents a precise condition for consistency of τ̂(Π) for τ∗(ξ):

Theorem 3.2.1. Let J = IT − 1T 1>T /T and τi = (τi1, . . . , τiT )>; fix ξ that satisfies (3.2.5). Under

Assumptions 3.2.1, 3.2.2, and 3.2.3, for any reshaped distribution Π with support S∗ that satisfies

Assumption 3.2.1, as n tends to infinity,

τ̂(Π)− τ∗(ξ) =O
P

(Biasτ (ξ)) + o
P

(1),

where

Biasτ (ξ) =
〈
EW∼Π

[
(diag(W )− ξW >)J(W −EW∼Π[W ])

]
,
1
n

n∑
i=1

(τi − τ∗(ξ)1T )
〉
.

This result has two user-specified parameters: time weights ξ, and the reshaped distribution

Π. They are naturally connected: to guarantee consistency for τ∗(ξ) we can select Π such that the

following holds:

(3.2.13) EW∼Π
[
(diag(W )− ξW >)J(W −EW∼Π[W ])

]
= 0.

Alternatively, for a given Π we can look for ξ such that (3.2.13) is satisfied. We call (3.2.13) the

DATE equation hereafter. For a fixed ξ, it is a quadratic system with {Π(w) : w ∈ {0,1}T } being the

variables. Together with the density constraint (3.2.11) and the support constraint in Theorem

3.2.1 that Π(w) = 0 for w < S∗, there are T + 1 + 2T − |S∗| equality constraints and |S∗| inequality

constraints that impose the positivity of Π(w) for each w ∈ S∗. We will show in Section 3.4 that the

DATE equation have closed-form solutions in various examples and provide a generic solver based

on nonlinear programming in Appendix B.2.5.

Without further restrictions on τi , the DATE equation is a necessary condition for consistency

of τ̂(Π) for τ∗(ξ). To see this assume that

(3.2.14) EW∼Π
[
(diag(W )− ξW >)J(W −EW∼Π[W ])

]
= z.
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for some vector z that is not proportional to ξ. Because we can vary individual treatment effects

without changing the average one we can find a set {τi : i ∈ [n]} that yields the same DATE but〈
z, (1/n)

∑n
i=1 (τi − τ∗(ξ)1T )

〉
, 0, leading to inconsistency. For z = bξ we get that the inner product

of the LHS of (3.2.14) and 1T is 0 while that of the RHS and 1T is equal to b. This entails that z = 0,

and thus the DATE equation.

Notably, when the DATE equation has a solution, our estimator is consistent without any

restrictions on the potential outcomes, except Assumption 3.2.3. This is in sharp contrast to

usual results about TWFE estimators which typically require the trends to be parallel, at least

conditionally on observed covariates (e.g., Callaway and Sant’Anna [2018], Sant’Anna and Zhao

[2020]). Theorem 3.2.1 shows that if the assignment process is known and DATE equation has

a solution then we can correct the potentially misspecified TWFE regression model by simply

reweighting the objective function.

Another interpretation of the DATE equation is through the effective estimand given by a fixed

reshaped distribution. (3.2.13) can be rewritten as

(3.2.15)
(
EW∼Π[W >J(W −EW∼Π[W ])]

)
ξ = E[diag(W )J(W −EW∼Π[W ])].

It is easy to see that

EW∼Π[W >J(W −EW∼Π[W ])] = EW∼Π[(W −EW∼Π[W ])>J(W −EW∼Π[W ])]

= EW∼Π

[∥∥∥W̃ −EW∼Π[W̃ ]
∥∥∥2

]
,

where W̃ = JW . It is strictly positive since the support of Π involves a point w < {0T ,1T }, for which

w′ , 0. Therefore, (3.2.15) implies that

(3.2.16) ξ =
EW∼Π[diag(W )J(W −EW∼Π[W ])]

EW∼Π

[∥∥∥W̃ −EW∼Π[W̃ ]
∥∥∥2

] .

By Theorem 3.2.1, in a randomized experiment with πi ≡ Π, the effective estimand of the un-

weighted TWFE regression is the DATE with weight vector ξ.

3.2.4. Design-based inference. To enable statistical inference of DATE, we first present an

asymptotic expansion showing the asymptotic linearity of RIPW estimators.

66



Theorem 3.2.2. Let Y obs
i be the vector (Y obs

i1 , . . . ,Y obs
iT ). Further let Θi = Π(Wi)/πi(Wi), and

Γθ ,
1
n

n∑
i=1

Θi , Γww ,
1
n

n∑
i=1

ΘiW
>
i JWi , Γwy ,

1
n

n∑
i=1

ΘiW
>
i JY

obs
i ,

and

Γ w ,
1
n

n∑
i=1

ΘiJWi , Γ y ,
1
n

n∑
i=1

ΘiJY
obs
i .

Under the same settings as Theorem 3.2.1,

D(τ̂(Π)− τ∗(ξ)) =
1
n

n∑
i=1

(Vi −E[Vi]) +O
P

(
n−2q

)
,

where D = ΓwwΓθ − Γ >wΓ w, and

Vi = Θi

(
E[Γwy]− τ∗(ξ)E[Γww]

)
−
(
E[Γ y]− τ∗(ξ)E[Γ w]

)>
JWi

+E[Γθ]W >
i J

(
Y obs
i − τ∗(ξ)Wi

)
−E[Γ w]>J

(
Y obs
i − τ∗(ξ)Wi

)
Note that the asymptotic linear expansion holds under fairly general dependency structure in

the treatment assignments. Below, we derive a valid confidence intervals for τ∗(ξ) when {Wi : i ∈ [n]}

are independent. The general case is discussed in Appendix B.1.4. If {Vi : i ∈ [n]} are well-behaved,

Theorem 3.2.2 implies that

D ·
√
n(τ̂(Π)− τ∗(ξ))

σ ∗n
≈N (0,1), where σ ∗2n = (1/n)

n∑
i=1

Var(Vi),

where D is known by design. If {Vi : i ∈ [n]} were known, a natural estimator for σ ∗2n would be the

empirical variance:

σ̂ ∗2n =
1

n− 1

n∑
i=1

(Vi − V̄ )2, where V̄ =
1
n

n∑
i=1

Vi .

We should not expect σ̂ ∗n to converge to σ ∗n since E[Vi] in general varies over i. Nonetheless, σ̂ ∗n is an

asymptotically conservative estimate of σ ∗n since

(3.2.17) E[σ̂ ∗2n ] ≈ 1
n

n∑
i=1

E


Vi − 1

n

n∑
i=1

E[Vi]

2 ≈ σ ∗2n +
1

n− 1

n∑
i=1

E[Vi]−
1
n

n∑
i=1

E[Vi]

2

︸                                  ︷︷                                  ︸
empirical variance of E[Vi ]

,
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where the second term measures the heterogeneity of E[Vi] and is always non-negative, implying

that σ̂ ∗2n is a conservative estimator for σ ∗2n . This is unsurprising because even in the cross-section

case, the asymptotic design-based variance is only partially identifiable due to the unknown

correlation structure between two potential outcomes; see e.g. Neyman’s variance formula [Neyman,

1923/1990, Rubin, 1974].

In general, Vi is unknown due to τ∗(ξ) and the expectation terms. Nonetheless, we can estimate

Vi by replacing each expectation with the corresponding plug-in estimate, i.e.

V̂i = Θi

(
Γwy − τ̂Γww

)
−
(
Γ y − τ̂Γ w

)>
JWi

+ ΓθW
>
i J

(
Y obs
i − τ̂Wi

)
− Γ >wJ

(
Y obs
i − τ̂Wi

),(3.2.18)

and use them to compute the variance:

(3.2.19) σ̂2 =
1

n− 1

n∑
i=1

(V̂i − ¯̂V )2, where ¯̂V =
1
n

n∑
i=1

V̂i .

This yields a Wald-type confidence interval for τ∗(ξ) as

(3.2.20) Ĉ1−α = [τ̂(Π)− z1−α/2σ̂ /
√
nD, τ̂(Π) + z1−α/2σ̂ /

√
nD],

where zη is the η-th quantile of the standard normal distribution. Properties of this confidence

interval are established in the next theorem.

Theorem 3.2.3. Assume that {Wi : i ∈ [n]} are independent with

(3.2.21)
1
n

n∑
i=1

Var(Vi) ≥ ν0, for some constant ν0 > 0.

Then under Assumptions 3.2.1 and 3.2.3, for any α ∈ (0,1),

liminf
n→∞

P

(
τ∗(ξ) ∈ Ĉ1−α

)
≥ 1−α.

In Appendix B.1.4, we discuss a generic result for general dependent assignments (Theorem

B.1.6), which covers completely randomized experiments, blocked and matched pair experiments,

two-stage randomized experiments, and so on. We present a detailed result (Theorem B.1.7) for
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completely randomized experiments where Wi ’s are sampled without replacement from a user-

specified subset of [0,1]T . This substantially generalizes the setting of Athey and Imbens [2018]

and Roth and Sant’Anna [2021] where the assignments are sampled without replacement from the

set of T + 1 staggered assignments.

3.2.5. Discussion. Theorem 3.2.1 might appear counter-intuitive given well-understood prob-

lems of TWFE estimators (e.g., de Chaisemartin and d’Haultfoeuille [2019], Goodman-Bacon [2018],

Abraham and Sun [2018]). To put our result in context we emphasize two important features of

the setup. First, we restrict attention to static models, and second, we use the randomness that is

coming from Wi . Both of these restrictions play a key role in Theorem 3.2.1. Absence of dynamic

effects implies that we can meaningfully average units with different histories of past treatments.

A version of this assumption is inescapable if we want the method to work for general designs

where controlling for past history is practically infeasible. As we explain below, randomness

of assignments helps to resolve the issue that TWFE estimators put negative weights on some

individual treatment effects.

In de Chaisemartin and d’Haultfoeuille [2019], Goodman-Bacon [2018], Abraham and Sun

[2018] the authors show that treated units are averaged with potentially negative weights, but

these results are conditional on the assignments W = (W1, . . . ,Wn) being fixed. Let ξit(γ ;W ) be

these weights for the general weighted least squares estimator τ̂(γ) defined in (3.1.1) such that

E[τ̂(γ) |W ] =
n∑
i=1

T∑
t=1

ξit(γ ;W )τit ,

where we now explicitly allow them to depend onW . When the assignments are treated as random,

the large sample limit of τ̂(γ) is

E[τ̂(γ)] =
n∑
i=1

T∑
t=1

ξit(γ)τit ,

where ξit(γ) = EW [ξit(γ ;W )]. While {(i, t) : ξit(γ ;W ) < 0} is non-empty almost surely for every

realization of W , it is still possible that all ξit(γ) are positive due to the averaging over W . For

illustration, we consider a simulation study with n = 100,T = 4 and other details specified in

Section 3.5.1. We consider the conditional and unconditional weights induced by the unweighted

and RIP weighted TWFE estimator in Figure 3.1 and Figure 3.2 respectively. We plot the histograms
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Figure 3.1. Effect weights for the unweighted TWFE estimator

of {(nT ) ·ξit(γ ;W ) : i ∈ [n], t ∈ [T ]} for three realizations of W and the histogram of {(nT ) ·ξit(γ) : i ∈

[n], t ∈ [T ]}, approximately by averaging over a million realizations of W , where the multiplicative

factor nT is chosen to normalize the weights into a more interpretable scale. Clearly, despite the

large fraction of negative weights in each realization, their averages do not have any negatives.

Therefore, the criticism on TWFE estimators does not apply in this case. Indeed, it never applies to

the RIPW estimator because all weights are designed to be 1/nT > 0 when Π is a solution of the

DATE equation with ξ = 1T /T , as shown in Figure 3.2(b), regardless of the data generating process.

The discussion above demonstrates that while for each cell (i, t) a particular realization of

weights can be negative, this fact is not systematic, i.e., on average. If we use the RIPW estimator

designed for the equally-weighted DATE, then all cells will receive the same weight. An alternative

description of the same phenomenon is that once correctly weighted, the realized treatment

paths Wi are uncorrelated with potential outcomes. This independence implies that there cannot

be systematic differences in treatment effects among units with distinct assignment paths. The

presence of such heterogeneity (together with dynamic treatment effects) is the main reason why

negative weights arise in practice.

3.3. Doubly Robust Inference

In this section, we consider a non-experimental setting. In particular, we no longer assume that

the distribution of Wi is known. Moreover, to incorporate the standard TWFE model, we allow

outcomes to be random as well.
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Figure 3.2. Effect weights for our RIPW estimator

3.3.1. An extended causal framework. The finite population framework is insufficent to

handle outcome modelling since the potential outcomes are assumed to be arbitrary fixed quantities.

Therefore, we consider a more general framework that is suitable for both treatment and outcome

modelling and includes the finite population framework as a special case. In particular, we assume

that each unit is characterized by Zi , {(Yit(1),Yit(0),Xit ,Uit ,Wit) : t ∈ [T ]}, where Xit is a vector

of (potentially) time-varying observed confounders, Uit is a vector of (potentially) time-varying

unobserved confounders. We further assume that Zi are i.i.d. samples from a distribution. For

notational convenience, we write Yi(1) for (Yi1(1), . . . ,YiT (1)), Yi(0) for (Yi1(0), . . . ,YiT (0)), Xi for

(Xi1, . . . ,XiT ), and Ui for (Ui1, . . . ,UiT ). We assume latent mean ignorability:

Assumption 3.3.1. (Latent mean ignorability)

(3.3.1) E[(Yi(1),Yi(0)) |Wi ,Xi ,Ui] = E[(Yi(1),Yi(0)) | Xi ,Ui]

The definition of the individual treatment effect is modified as

(3.3.2) τit , E[Yit(1)−Yit(0) | Xi ,Ui].

The time-specific ATE and DATE are defined as in (3.2.3) and (3.2.4), respectively. Throughout

the rest of this section, we treat {(Xi ,Ui) : i ∈ [n]} as fixed. Put another way, the inferential claims,

such as consistency and coverage, are conditional on all observed and unobserved confounders.

Conceptually, the conditional estimand τ∗(ξ) is similar to the unconditional estimand E[τ∗(ξ)];
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indeed, τ∗(ξ)−E[τ∗(ξ)] = O
P

(1/
√
n) because (Xi ,Ui) are i.i.d.. As a consequence, a conditionally

consistent estimator for τ∗(ξ) is also unconditionally consistent for E[τ∗(ξ)].

If we ignore Xit and set Uit = (Yit(1),Yit(0)), which mechanically satisfies Assumption 3.3.1, this

setup can be reduced to the finite population framework considered in Section 3.2. Importantly,

Assumpion 3.3.1 does not imply unconditional or conditional parallel trends (on observed charac-

teristics). This should come at no surprise given our results in Section 3.2; there, the inference of

DATE is valid even if the trends of potential outcomes are arbitrarily heterogeneous across units.

3.3.2. The assignment and outcome models. To characterize double robustness, we first de-

fine two non-nested models. The assignment model is characterized by the generalized propensity

score, defined as

(3.3.3) πi(w) = P[Wi = w | Xi ,Ui], ∀wi ∈ {0,1}T .

Given an estimate π̂i , we say that it estimates the assignment model well if π̂i is close to πi in total

variation distance. Specifically, we define the accuracy of π̂i as

(3.3.4) δπi ,
√
E[(π̂i(Wi)−πi(Wi))2].

Clearly, δπi = 0 if π̂i = πi on the support of Wi .

In the absence of unobserved confounders Ui , it is typical to estimate πi via parametric or

nonparametric regression of the treatment on the observed confounders. The accuracy δπi is then

governed by the complexity of the ground truth, as well as the complexity of the function class

used for estimation. With unobserved Ui , it is generally impossible to get an accurate estimate of

πi . However, it can be constructed under additional structural assumptions. For instance, suppose

that Uit ≡Ui is a time-invariant confounder and (Wi1, . . . ,WiT ) are independent with

(3.3.5) logit (P(Wit = 1 | Xit ,Ui)) = X>itβ +γ(Ui).

The term γ(Ui) is essentially a fixed effect and cannot be estimated consistently when T = O(1)

since there are only a bounded number of observations available for this parameter. Nonetheless,

we can enrich Xi by including an extra covariate W i = (1/T )
∑T
t=1Wit. It is easy to demonstrate that
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Wi ⊥⊥Ui | Xi ,W i and

πi(w) ∝
exp

{∑T
t=1wtX

>
itβ

}
∑
j∈{0,1}T :j=w exp

{∑T
t=1 jtX

>
itβ

} · I {w =W i

}
.

The coefficient vector β can be consistently estimated via the conditional logistic regression [Mc-

Fadden, 1973]. Arkhangelsky and Imbens [2019] discuss various other models under which the

unobserved confounders do not hinder accurate estimation.

The outcome model considered in this paper is a TWFE model. Specifically, the outcome model

assumes that

(3.3.6) E[Yit(w) | Xi ,Ui] = α(Ui) +λt +m(Xit ,Uit) + τ∗w.

In particular, this implies a constant treatment effect. When T =O(1), the unit fixed effect α(Ui)

cannot be estimated consistently without further assumptions on α(·) and Ui , because there are

only T samples that carry information on α(Ui). Thus we cannot hope to estimate E[Yit(w) | Xi ,Ui]

consistently even with infinite sample sizes.

Let mit denote the doubly-centered version of {E[Yit(0) | Xi ,Ui] : i ∈ [n], t ∈ [T ]}, i.e.

mit , E[Yit(0) | Xi ,Ui]−
1
n

n∑
i=1

E[Yit(0) | Xi ,Ui]−
1
T

T∑
t=1

E[Yit(0) | Xi ,Ui]

+
1
nT

n∑
i=1

T∑
t=1

E[Yit(0) | Xi ,Ui].(3.3.7)

When the outcome model (3.3.6) is correct, it is easy to see that mit is also the doubly-centered

version of terms {m(Xit ,Uit) : i ∈ [n], t ∈ [T ]}. Given an estimate µ̂it of E[Yit(0) | Xi ,Ui], instead of

requiring µ̂it −E[Yit(0) | Xi ,Ui] to be small, which is generally impossible when T =O(1), we only

require m̂it ≈mit, where

(3.3.8) m̂it , µ̂it −
1
n

n∑
i=1

µ̂it −
1
T

T∑
t=1

µ̂it +
1
nT

n∑
i=1

T∑
t=1

µ̂it .

For notational convenience, we denote bymi the vector (mi1, . . . ,miT ) and m̂i the vector (m̂i1, . . . , m̂iT ).

Specifically, we say that the outcome model is correctly specified and estimated well by µ̂it if δyi ≈ 0,
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where

(3.3.9) δyi ,
√
E[‖m̂i −mi‖22] + ‖τi − τ∗1T ‖2.

For instance, δyi = 0 if

µ̂it = α̃i + λ̃t +mit , and τit = τ∗,

where α̃i and λ̃t can be data-dependent and arbitrarily different from the true unit and time fixed

effects. Under the classical linear TWFE model, i.e.

Yit = µ+α(Ui) +λt +X>itβ + εit

where {εit : i ∈ [n], t ∈ [T ]} are i.i.d. exogenous errors, the unweighted TWFE regression yields a con-

sistent estimator of β even when T =O(1) [e.g., Arellano, 2003]. Then δyi =
√∑T

t=1{X
>
it (β̂ − β)}2 ≈ 0

for µ̂it = α̂i + λ̂t +XTit β̂.

3.3.3. Consistency of RIPW estimators. Given an estimate µ̂it for E[Yit(0) | Xi ,Ui] and π̂i for

πi , we consider the following RIPW estimator

(3.3.10) τ̂(Π) , argmin
τ,µ,

∑
i αi=

∑
t γt=0

n∑
i=1

T∑
t=1

((Y obs
it − m̂it)−µ−αi −γt −Witτ)2 Π(Wi)

π̂i(Wi)
.

This is more general than the following weighted TWFE regression estimator with covariates

τ̂ , argmin
τ,µ,β,

∑
i αi=

∑
t γt=0

n∑
i=1

T∑
t=1

(Y obs
it −µ−αi −γt −Witτ −X>itβ)2 Π(Wi)

π̂i(Wi)
,

which is a special case of (3.3.10) with m̂it = X>it β̂. The two-stage estimator (3.3.10) is more flexible

since it does not require m̂it to be estimated from the same weighted regression for DATE. For

instance, when Ui does not appear in m(Xi ,Ui), we could obtain a more efficient estimate of

E[Yit(0) | Xi], or via an advanced estimation technique to handle complicated functional forms. On

the other hand, the two-stage formulation replaces the regression with covariates by a regression

on the modified outcome (Y obs
it − m̂it) without covariates, yielding a simplified structure which

allows us to use the results from the previous section.

To investigate the consistency of τ̂ , we need extra assumptions. We start with the simplified

case where {m̂i : i ∈ [n], t ∈ [T ]} an {π̂i : i ∈ [n]} are independent of the data and thus can be treated
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as fixed. We consider the modified versions of Assumptions 3.2.1 - 3.2.3 (see Appendix B.1.1 for a

general version).

Assumption 3.3.2. There exists a universal constant c > 0 and a non-stochastic subset S∗ ⊂ {0,1}T

with at least two elements and at least one element not in {0T ,1T }, such that

π̂i(w) > c,πi(w) > c ∀w ∈ S∗, i ∈ [n], almost surely,

Assumption 3.3.3. Zi = (Yi(1),Yi(0),Wi ,Xi ,Ui) are i.i.d..

Assumption 3.3.4. There exists M <∞ such that maxi,t,w |Yit(w)− m̂it | <M.

Theorem 3.2.1 implies that the RIPW estimator with Π being a solution of the DATE equation,

if any, is a consistent estimator of DATE without any outcome model when π̂i = πi is known. On

the other hand, when the outcome model is correct, τ̂ should be intuitively consistent if all RIPWs

are well-behaved, because Y obs
it − m̂it is a linear model with two-way fixed effects and a single

predictor Wit and τ̂ is a general least squares estimator which is consistent under mild conditions

on the weights [e.g., Wooldridge, 2010]. This shows a weak double robustness property that τ̂(Π) is

consistent if either the outcome model or the assignment model is exactly correct. The weak double

robustness has been studied for other causal estimands for panel data under different assumptions

[e.g., Arkhangelsky and Imbens, 2019, Sant’Anna and Zhao, 2020].

For cross-sectional data, the augmented IPW estimator enjoys a strong double robustness

property, which states that the asymptotic bias is the product of estimation errors of the outcome

and assignment models [e.g., Robins et al., 1994, Kang and Schafer, 2007]. Clearly, this implies

the weak double robustness. It further implies the estimator has higher asymptotic precision than

estimators based on merely the outcome or assignment modelling, when both models are estimated

well. Next result provides a sufficient condition for strong double robustness of τ̂(Π) when the

estimated treatment and outcome models are independent of the data.

Theorem 3.3.1. Assume that {(π̂i ,m̂i) : i ∈ [n]} are independent of the data. Under Assumptions

3.3.1 - 3.3.4, τ̂(Π) is a consistent estimator of τ∗(ξ) (conditional on the estimates) if

δ̄πδ̄y = o(1), where δ̄π =

√√
1
n

n∑
i=1

δ2
πi , δ̄y =

√√
1
n

n∑
i=1

δ2
yi .
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3.3.4. Doubly robust inference. Similar to Theorem 3.2.2, we can derive an asymptotic linear

expansion for D(τ̂(Π)− τ∗(ξ)) when {(π̂i ,m̂i) : i ∈ [n]} are independent of the data.

Theorem 3.3.2. Let Γθ ,Γww,Γ w, and D be defined as in Theorem 3.2.2. Redefine Γwy ,Γ y , and Vi by

replacing Y obs
i with Ỹ obs

i = Y obs
i − m̂i . Under Assumptions 3.3.1 - 3.3.4 and that δ̄πδ̄y = o(1/

√
n),

D ·
√
n(τ̂(Π)− τ∗(ξ)) =

1
√
n

n∑
i=1

(Vi −E[Vi]) + o
P

(1) .

As with the design-based inference, we can estimate the asymptotic variance via (3.2.19) and

construct the Wald-type confidence interval as (3.2.20).

Theorem 3.3.3. Under the same settings as in Theorem 3.3.2,

liminf
n→∞

P

(
τ∗(ξ) ∈ Ĉ1−α

)
≥ 1−α,

if, further, (3.2.21) holds.

In practice, it is uncommon to obtain estimates of π̂i and m̂i that are independent of the

data, except in the design-based inference where π̂i = πi and m̂i = 0, or when external data is

available. Usually, both parameters need to be estimated from the data. The resulting dependence

invalidates the assumptions of Theorem 3.3.2 and 3.3.3. Intuitively, (π̂i ,m̂i) cannot depend on the

data arbitrarily because the double-dipping may inflate the Type-I error.

To salvage the situation, we apply the cross fitting technique to restrict the dependency struc-

ture. Specifically, we split the data into K almost equal-sized folds with Ik denoting the index

sets of the k-th fold and |Ik | ∈ {bn/Kc,dn/Ke}. For each i ∈ Ik , we estimate (π̂i ,m̂i) using {Zi : i < Ik}.

Since {Zi : i ∈ [n]} are independent under Assumption 3.3.3, it is obvious that

{(π̂i ,m̂i) : i ∈ Ik} ⊥⊥ {Zi : i ∈ Ik}.

For valid inference, we need an additional assumption on the stability of the estimates.

Assumption 3.3.5. There exist functions {π′i : i ∈ [n]} which satisfy Assumption 3.3.2, and vectors

{m′i : i ∈ [n]} which satisfy Assumption 3.3.4, such that they only depend on {Xi : i ∈ [n]} and

(3.3.11)
1
n

n∑
i=1

{
E[(π̂i(Wi)−π′i(Wi))

2] +E[‖m̂i −m′i‖
2
2]
}

=O(n−r )
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for some r > 0. Furthermore,

(3.3.12) π′i = πi for all i, or m′i =mi for all i.

The condition (3.3.11) states that the estimates need to be asymptotically deterministic given

the confounders (Xi ,Ui). This is a very mild assumption. For example, when π̂i is estimated from a

parametric model {f (Xi ;θ) : θ ∈Rd} as f (Xi ; θ̂), under standard regularity conditions, θ̂ converges

to a limit θ0 even if the model is misspecified. As a result, π̂i converges to π′i = f (Xi ;θ0). Under

certain smoothness assumption, the estimates converge in the standard parametric rate and thus

(3.3.11) holds with r = 1. On the other hand, for design-based inference, (3.3.11) is always satisfied

with π′i = πi and m′i = 0. More generally, if δ̄2
π + δ̄2

y = O(n−r), it is also satisfied with π′i = πi and

m′i = mi . A similar assumption was considered for cross-sectional data by Chernozhukov et al.

[2020].

The condition (3.3.12) allows one of the treatment and outcome models to be inconsistently

estimated. This covers the design-based inference where the outcome model does not need to

be consistently estimated. It also covers the classical model-based inference in which case the

assignment model can be arbitrarily misspecified.

Theorem 3.3.4. Let {(π̂i ,m̂i) : i ∈ [n]} be estimates obtained fromK-fold cross-fitting whereK =O(1).

Under Assumptions 3.3.1 - 3.3.5,

(i) τ̂(Π)− τ∗(ξ) = o
P

(1) if δ̄πδ̄y = o(1);

(ii) Let Ĉ1−α be the same confidence interval as in Theorem 3.3.3. Then

liminf
n→∞

P

(
τ∗(ξ) ∈ Ĉ1−α

)
≥ 1−α

if (a) δ̄πδ̄y = o(1/
√
n), (b) Assumption 3.3.5 holds with r > 1/2, and (c) (3.2.21) holds if (π̂i ,m̂i)

are replaced by (π′i ,m
′
i) in the definition of Vi .

3.4. Solutions of the DATE equation

3.4.1. The case of two periods. When there are two periods, the DATE equation only involves

four variables Π(0,0),Π(0,1), Π(1,0),Π(1,1). Through some tedious algebra presented in Appendix
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B.2.1, we can show that the DATE equation can be simplified into the following equation:

(3.4.1) {Π(1,1)−Π(0,0)}{Π(1,0)−Π(0,1)} = (ξ1 − ξ2)
{
(Π(1,0)−Π(0,1))2 − (Π(1,0) +Π(0,1))

}
.

3.4.1.1. Difference-in-difference designs. In the setting of difference-in-difference (DiD), (0,0)

and (0,1) are the only two possible treatment assignments. As a result, we should set the support

of the reshaped distribution to be S
∗ = {(0,0), (0,1)}. Then (3.4.1) reduces to

Π(0,0)Π(0,1) = (ξ1 − ξ2)(Π(0,1)2 −Π(0,1)) = (ξ2 − ξ1)Π(0,0)Π(0,1).

It has a solution only when ξ2 − ξ1 = 1, i.e. (ξ1,ξ2) = (0,1) and hence τ∗(ξ) = τ2, in which case

any reshaped distribution Π with Π(0,0),Π(0,1) > 0 is a solution. This is not surprising because

for DiD, no unit is treated in the first period and thus τ1 is unidentifiable. Nonetheless, τ2 is an

informative causal estimand in the literature of DiD. This implies that the RIPW estimator with

any Π with Π(0,0),Π(0,1) > 0 and Π(0,0) +Π(0,1) = 1 yields a doubly robust DiD estimator.

3.4.1.2. Cross-over designs. For a two-period cross-over design, (0,1) and (1,0) are the only two

possible treatment assignments. Since the support of Π must contain at least two elements, it has

to be S
∗ = {(1,0), (0,1)}. Then DATE equation reduces to

0 = (ξ1 − ξ2)
{
(Π(1,0)−Π(0,1))2 − (Π(1,0) +Π(0,1))

}
.

When ξ1 , ξ2, it implies that

0 = (Π(1,0)−Π(0,1))2 − (Π(1,0) +Π(0,1)) = (Π(1,0)−Π(0,1))2 − 1.

It never holds since Π(1,0),Π(0,1) > 0. By contrast, when ξ1 = ξ2 = 1/2, any Π with support (1,0)

and (0,1) is a solution.

3.4.1.3. Estimating equally-weighted DATE for general designs. When ξ1 = ξ2 = 1/2, the DATE

equation reduces to

{Π(1,1)−Π(0,0)}{Π(1,0)−Π(0,1)} = 0⇐⇒Π(1,1) = Π(0,0) or Π(1,0) = Π(0,1).
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If S∗ = {(1,1), (0,0), (1,0), (0,1)} in Assumption 3.3.2, that is, when all combinations of treatments

are possible, the solutions are

(Π(1,1),Π(0,0),Π(0,1),Π(1,0)) = (a,a,b,1− 2a− b), a > 0,2a+ b < 1

or (Π(1,1),Π(0,0),Π(0,1),Π(1,0)) = (a,1− a− 2b,b,b), b > 0, a+ 2b < 1.

The uniform distribution on S
∗ is a solution, implying that the IPW weights deliver the average

effect in this case. If S
∗ = {(1,1), (0,0), (0,1)} (staggered adoption), we cannot make Π(1,0) and

Π(0,1) equal since the former must be zero while the latter must be positive. Therefore, the

solutions can be characterized as

(3.4.2) (Π(1,1),Π(0,0),Π(0,1)) = (a,a,1− 2a), a ∈ (0,1/2).

Again, the uniform distribution on S
∗ is a solution. However, we will show in the next section that

the uniform distribution is not a solution for staggered adoption designs with T ≥ 3.

3.4.2. Staggered adoption with multiple periods. For staggered adoption designs, πi is sup-

ported on

W sta
T , {w : w1 = . . . = wi = 0,wi+1 = . . . = wT = 1 for some i = 0,1, . . . ,T }.

For notational convenience, we denote by w(j) the vector in W sta
T with j entries equal to 1 for

j = 0,1, . . . ,T . Thus, the support S∗ of Π must be a subset ofW sta
T . For general weights, the DATE

equation is a quadratic system with complicated structures. Nonetheless, when ξ1 = . . . = ξT = 1/T ,

the solution set is an union of segments on the T -dimensional simplex with closed-form expressions.

We focus on the equally-weighted DATE in this section.

Theorem 3.4.1. Let S∗ = {w(0),w(j1), . . . ,w(jr ),w(T )} with 1 ≤ j1 < . . . < jr ≤ T − 1. Then the set of

solutions of the DATE equation with support S∗ is characterized by the following linear system:

Π(w(T )) = T−jr
T −Π(w(jr )) + 1

T

∑r
k=1 jkΠ(w(jk))

Π(w(jk+1)) +Π(w(jk)) = jk+1−jk
T , k = 1, . . . , r − 1

Π(w(0)) = 1−Π(w(T ))−
∑r
k=1Π(w(jk))

Π(w) > 0 iff w ∈ S∗

(3.4.3)

79



Furthermore, the solution set of (3.4.3) is either an empty set or a 1-dimensional segment in the form of

{λΠ(1) + (1−λ)Π(2) : λ ∈ (0,1)} for some distributions Π(1) and Π(2).

The proof of Theorem 3.4.1 is presented in Appendix B.2.2. In the following corollary, we show

that the solution set with S
∗ =W sta

T is always non-empty with nice explicit expressions.

Corollary 3.4.1. When S
∗ =W sta

T , the solution set of (3.4.3) is {λΠ(1) + (1 −λ)Π(2) : λ ∈ (0,1)}

where

• if T is odd,

Π(1)(w(T )) =
(T + 1)2

4T 2 , Π(1)(w(0)) =
T 2 − 1
4T 2 , Π(1)(wj ) =

I(j is odd)
T

, j = 1, . . . ,T − 1,

and Π(2)(w(j)) = Π(1)(w(T−j)), j = 0, . . . ,T ;

• if T is even,

Π(1)(w(T )) = Π(1)(w(0)) =
1
4
, Π(1)(wj ) =

I(j is odd)
T

, j = 1, . . . ,T − 1,

and Π(2)(w(T )) = Π(2)(w(2)) =
T + 2
4T

, Π(2)(wj ) =
I(j is even)

T
, j = 1, . . . ,T − 1.

In particular, when T = 3 and S
∗ =W sta

T , the solution set is

(3.4.4)
{
(Π(w(0)),Π(w(1)),Π(w(2)),Π(w(3)) = λ

(2
9
,
1
3
,0,

4
9

)
+ (1−λ)

(4
9
,0,

1
3
,
2
9

)
: λ ∈ (0,1)

}
.

Clearly, the uniform distribution on S
∗ is excluded. Thus, although the RIPW estimator with a

uniform reshaped distribution is inconsistent, the non-uniform distribution (1/3,1/6,1/6,1/3),

namely the midpoint of the solution set, induces a consistent RIPW estimator. For general T , it is

easy to see that the midpoint is

(3.4.5) Π(w(T )) = Π(w(0)) =
T + 1
4T

, Π(w(j)) =
1

2T
, j = 1, . . . ,T − 1.

This distribution uniformly assigns probabilities on the subset {w(1), . . . ,w(T−1)} while puts a large

mass on {w(0),w(T )}. Intuitively, the asymmetry is driven by the special roles of w(0) and w(T ): the

former provides the only control group for period T while the latter provides the only treated

group for period 1.
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Corollary 3.4.1 offers a unified recipe for the reshaped distribution when the positivity As-

sumption 3.3.2 holds for all possible assignments. In some applications, certain assignment

never or rarely occurs and we are forced to restrict the support of Π into a smaller subset S∗. To

start with, we provide a detailed account of the case T = 3. When j1 = 1, j2 = 2, (3.4.4) shows

that Π(w(0)),Π(w(3)) > 0, and thus S
∗ must be W3 and cannot be {w(1),w(2)}, {w(0),w(1),w(2)}, or

{w(1),w(2),w(3)}. When j1 = 1, r = 1, via some tedious algebra, the solution set of (3.4.3) is

(3.4.6)
{
(Π(w(0)),Π(w(1)),Π(w(2)),Π(w(3)) = λ (0,1,0,0) + (1−λ)

(1
3
,0,0,

2
3

)
: λ ∈ (0,1)

}
.

Thus, {w(0),w(1),w(3)} is the only support with j1 = 1, r = 1 that induces a non-empty solution set of

(3.4.3). Similarly, we can show that the only support with j2 = 1, r = 1 that induces a non-empty

solution set as

(3.4.7)
{
(Π(w(0)),Π(w(1)),Π(w(2)),Π(w(3)) = λ (0,0,1,0) + (1−λ)

(2
3
,0,0,

1
3

)
: λ ∈ (0,1)

}
.

In sum,W sta
T ,W sta

T \ {w(1)},W sta
T \ {w(2)} are the only three supports with non-empty solution sets,

characterized by (3.4.4), (3.4.6), and (3.4.7), respectively.

For T = 3, {j1, . . . , jr} can be any non-empty subset of {1,2}. Via some tedious algebra, we can

show that this continues to be true for T = 4. However, this no longer holds for T ≥ 5. For instance,

if {j1, . . . , jr} = {1,2,4,5}, the second equation of (3.4.3) implies that

Π(w(1)) +Π(w(2)) = Π(w(4)) +Π(w(5)) =
1
T
, Π(w(2)) +Π(w(4)) =

2
T
.

Under the support constraint, the first two equations imply that Π(w(2)),Π(w(5)) < 1/T , contradict-

ing with the third equation. Nonetheless, the contradiction can be resolved if any of these four

elements is discarded. If this is the case in practice, we can discard the element that is believed to

be the least likely assignment.

3.4.3. Other designs. In many applications, the treatment can be switched on and off at

different periods for a single unit. In general, a design is characterized by a collection of possible

assignments Sdesign. If any subset S∗ ⊂ Sdesign yields a non-empty solution set of the DATE equation,

we can derive a doubly robust estimator of the DATE. In this section, we consider several designs

with more than two periods which are not staggered adoption designs.
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First we consider transient designs with zero or one period being treated and with each period

being treated with a non-zero chance, i.e.,

W tra
T ,1 =

w ∈ {0,1}T :
T∑
t=1

wt ≤ 1

 .
For notational convenience, we denote by w̃(0) the never-treated assignment and w̃(j) the assignment

with only j-th period treated. The above design can be encountered, for example, when the

treatment is a natural disaster. The following theorem characterizes all solutions of the DATE

equation for any ξ.

Theorem 3.4.2. When S
∗ =W tra

T ,1, Π is a solution of the DATE equation iff there exists b > 0 such

that

Π(w̃(t))
{

1−Π(w̃(t))−
Π(w̃(0))

T

}
= ξtb, ∀t ∈ [T ].

In particular, when ξt = 1/T for every t, Theorem 3.4.2 implies that Π ∼Unif(W tra
T ,1) is a solution.

In fact, for any given Π(w̃0) ∈ (0,1), Π is a solution if

Π(· | w , w̃(0)) ∼Unif({w̃(1), . . . , w̃(T )}).

The above decomposition can be used to construct solutions for more general transient designs:

W tra
T ,k =

w ∈ {0,1}T :
T∑
t=1

wt ≤ k

 .
This design is common in marketing experiments where, for example, k is the maximal number

of coupons given to a user and each user can receive coupons in any combination of up to k time

periods.

Theorem 3.4.3. When S
∗ =W tra

T ,1, Π is a solution of the DATE equation with ξt = 1/T (t = 1, . . . ,T ),

if

Π

· | T∑
t=1

wt = k′
 ∼Unif(W tra

T ,k′ \W
tra
T ,k′−1), k′ = 1, . . . , k,
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3.5. Numerical Studies

In this section, we investigate the properties of our estimator in simulations and show how

to apply it to real datasets. The R programs to replicate all results in this section is available at

https://github.com/xiaomanluo/ripwPaper.

3.5.1. Synthetic data. To highlight the central role of the reshaping function in eliminating

the bias, we focus on design-based inference, where the propensity scores are known for every unit,

with a large sample size to avoid finite sample bias. Put another way, in such settings, the bias of

the unweighted or IPW estimators is purely driven by the wrong reshaping function, rather than

other sources of variability. For simplicity, we consider the DATE with ξ = 1T /T .

We consider a short panel with T = 4 and sample size n = 10000. We generate a single time-

invariant covariate Xit = Xi with P (Xi = 1) = 0.7 and P (Xi = 2) = 0.3 and a single time-invariant

unobserved confounder Uit =Ui with Ui ∼Unif({1, . . . ,10}). Within each experiment, the covariates

and unobserved confounders are only generated once and then fixed to ensure a fixed design. For

treatment assignments, we consider a staggered adoption design, i.e., Wi ∈W sta. We assume that

Wi is less likely to be treated when Xi = 1. In particular,

(
πi(w(0)),πi(w(1)),πi(w(2)),πi(w(3)),πi(w(4))

)
=

 (0.8,0.05,0.05,0.05,0.05) (Xi = 1)

(0.1,0.1,0.2,0.3,0.3) (Xi = 2)
.

The potential outcome Yit(0) and the treatment effect τit are generated as follows:

Yit(0) = µ+αi +γt +mit + εit , mit = σmXiβt , τit = στaibt ,

where µ = 0, βt = t − 1, αi = 0.5Ui , γt
i.i.d.∼ N (0,1), bt

i.i.d.∼ N (0,1), and εit
i.i.d.∼ N (0,1). For ai , we

consider two settings: we either set ai = 1 thus making τit unit-invariant; or ai
i.i.d.∼ Unif([0,1]), in

which case τit varies over units and periods. As with the covariates Xi , the time fixed effects γt and

factors ai ,bt are generated once and then fixed over runs. In contrast, εit will be resampled in every

run as the stochastic errors. Note that both mit and τit are generated from rank-one factor models.

The parameters σm and στ measures two types of deviations from the TWFE model: σm

measures the violation of parallel trend because we will not adjust for Xi in the design-based

inference, and στ measures the violation of constant treatment effects. We consider two settings:

we either set σm = 1,στ = 0 — a model without parallel trends, but constant treatment effects;
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Figure 3.3. Boxplots of bias for the unweighted, IPW, and RIPW estimators
Boxplots of bias across 1000 replicates for the unweighted, IPW, and RIPW estimators under (left) violation

of parallel trend (σm = 1,στ = 0), (middle) heterogeneous treatment effect with limited heterogeneity
(σm = 0,στ = 1, ai = 1), and (right) heterogeneous treatment effect with full heterogeneity

(σm = 0,στ = 1, ai ∼Unif([0,1])).

alternatively, we set σm = 0,στ = 1 — a TWFE model with heterogeneous effects, but parallel trends.

In the first setting τit = 0 regardless of the model for ai , thus, we have 3 different scenarios in total.

We consider three estimators: the unweighted TWFE estimator, the IPW estimator, and the

RIPW estimator with Π given by (3.4.5). For each of the three experiments, we resample Wit’s

and εit’s, while keeping other quantities fixed, for 1000 times and collect the estimates and the

confidence intervals. Figure 3.3 presents the boxplots of the bias τ̂(Π)− τ∗(ξ). In all settings, the

unweighted estimator is clearly biased, demonstrating that both the parallel trend and treatment

effect homogeneity are indispensible for classical TWFE regression. In contrast, the IPW estimator

is biased when the treatment effects are heterogeneous, but unbiased otherwise even if the parallel

trend assumption is violated. This is by no means a coincidence; in this case, τi = τ∗(ξ)1T for all

i and, by Theorem 3.2.1, the asymptotic bias ∆τ (ξ) = 0 for RIPW estimators with any reshaped

function including the IPW estimator. Finally, as implied by our theory, the RIPW estimator is

unbiased in all settings. Moreover, the coverage of confidence intervals for the RIPW estimator is

95.1%,95.0%, and 94.8% in these three settings, respectively, confirming the inferential validity

stated in Theorem 3.2.3.

3.5.2. Reanalysis of Bachhuber et al. (2014) on medical cannabis law. In 1996, California

voters first passed the law that legalized the medical usage of medical cannabis. By the end of

2017, 43 more states have passed similar laws. As more states pass the medical cannabis law, there

has been debate on whether legal medical marijuana is associated with an increase or decrease

in opioid overdose mortality. An influential paper by Bachhuber et al. [2014] analyzed the data
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from 1999 to 2010 via the standard TWFE regression and found a significant negative effect on the

state-level opioid overdose mortality rates. Later on, Shover et al. [2019] applied the same method

on the data from 1999 to 2017 and found a significant positive effect instead, though they believe

the association is spurious. Recently, Andrew Baker reanalyzed the data in his blog 1 using the

modern DiD methods for staggered adoption, which is the design in this case since no state ever

repeals the law, and raised concerns about the standard TWFE regression.

The treatment effect is highly heterogeneous in both states and time because of the complicated

sociological and biological mechanisms through which the legal medical cannabis affects the opioid

overdose mortality. On the other hand, the adoption time of the medical cannabis law involves a

great amount of uncertainty, which is arguably easier to model than the mortality. For example,

a duration model can be applied in this context. This suggests the potential benefit of our RIPW

estimator which lends more robustness by leveraging the additional information from the adoption

process, another important source of variation that might help with causal identification.

Following Bachhuber et al. [2014] and Shover et al. [2019], we use the logarithm of age-adjusted

opioid overdose death rate per 100,000 population as the outcome, and include four time-varying

covariates: annual state unemployment rate and presence of the following: prescription drug

monitoring program, pain management clinic oversight laws, and law requiring or allowing

pharmacists to request patient identification. As with Andrew Baker’s blog, we remove North

Dakota due to the high missing rate and impute the remaining missing values in the outcome, law

adoption status, and unemployment using the matrix completion technique by Athey et al. [2018].

Since the previous contradicting finding occur at 2010 and 2017, we estimate the effect from 1999

to Tend for each Tend ∈ {2008,2009, . . . ,2017}. In particular, we choose the causal estimand as the

equally-weighted DATE, which is close to the research question of Bachhuber et al. [2014] and

Shover et al. [2019] in spirit.

For the RIPW estimator, we fit a standard TWFE regression to derive an estimate of the outcome

model, i.e., m̂it = X>it β̂. This step guarantees that the resulting RIPW estimator is acceptable if

the analyses of Bachhuber et al. [2014] and Shover et al. [2019] are because all estimate the same

outcome model. On top of that, we fit a Cox proportional hazard model [Cox, 1972, Kalbfleisch

and Prentice, 2011] with the same set of covariates to model the right-censored adoption time.

1
https://andrewcbaker.netlify.app/2019/12/31/

what-can-we-say-about-medical-marijuana-and-opioid-overdose-mortality/
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Figure 3.4. Results for the data on medical cannabis law
(Left) Diagnostics for the Cox proportional hazard model on adoption times; (right) the unweighted TWFE

regression estimates (UNW) and RIPW estimates. The x-axis represents Tend.

Specifically, letting Ti be the year in which the state i passes the medical cannabis law, a Cox

proportional hazard model with time-varying covariates Xit assumes that

hi(t | Xit) = h0(t)exp{X>itβ}

where hi(t | ·) denotes the hazard function for state i, and h0(t) denotea a nonparametric baseline

hazard function. The estimates ĥ0 and β̂ yield an estimate F̂i(t) of the survival function P(Ti ≥ t)

for state i, differencing which yields an estimate generalized propensity score

π̂i(Wi) =

 F̂i(Ti)− F̂i(Ti + 1) (State i passed the law before 2017)

1− F̂i(2017) (otherwise)
.

The reshaped distribution is chosen as the midpoint solution (3.4.5). Finally, we apply the standard

10-fold cross-fitting to derive the estimates of the outcome and treatment models.

The proportional hazard assumption imposed by the Cox model is often controversial. Here,

we apply the standard statistical tests based on Schoenfeld residuals [Schoenfeld, 1980] as a specifi-

cation test for the Cox model. Figure 3.4a presents the p-values yielded by the Schoenfeld’s test for

each Tend without data splitting. Clearly, none of them show evidence against the proportional

hazard assumption.

Figure 3.4b presents the RIPW estimates of equally-weighted DATE and the unweighted TWFE

regression estimates for Tend ∈ {2008,2009, . . . ,2017}. It also displays the 95% pointwise confidence
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intervals; here, the cluster-robust standard error is used for the unweighted estimator. The point

estimates of the RIPW estimator and the unweighted estimator are similar when Tend ≥ 2013,

though the RIPW estimates are closer to zero otherwise. Moreover, the unweighted estimator shows

significant negative effect when Tend = 2010 and significant positive effect when Tend ≥ 2015. In

contrast, the RIPW estimator does not show any significant effect due to the larger standard error

to adjust for effect heterogeneity. This result corroborates the suspicion of Shover et al. [2019] on

the invalidity of the unweighted TWFE regression estimates.

3.5.3. Analysis of OpenTable data in the early COVID-19 pandemic. On February 29th,

2020, Washington declared a state of emergency in response to the COVID-19 pandemic. A state

of emergency is a situation in which a government is empowered to perform actions or impose

policies that it would normally not be permitted to undertake 2. It alerts citizens to change their

behaviors and urges government agencies to implement emergency plans. As the pandemic has

swept across the country, more states declared the state of emergency in response to the COVID-19

outbreak.

The state of emergency restricts various human activities. It would be valuable for governments

and policymakers to get a sense of the short-term effect of this urgent action. Since mid-Feburary

of 2020, OpenTable has been releasing daily data of year-over-year seated diners for a sample

of restaurants on the OpenTable network through online reservations, phone reservations, and

walk-ins.3 This provides an opportunity to study how the state of emergency affects the restaurant

industry in a short time frame. The data covers 36 states in the United States, which we will focus

our analysis on.

Policy evaluation in the pandemic is extremely challenging due to the complex confounding

and endogeneity issues [e.g., Chetty et al., 2020, Chinazzi et al., 2020, Goodman-Bacon and Marcus,

2020, Holtz et al., 2020, Kraemer et al., 2020, Abouk and Heydari, 2021]. Fortunately, compared to

the policies in the later stage of the pandemic, the state of emergency was less confounded since it

was basically the first policy that affected the vast majority of the public. On the other hand, the

restaurant industry is responding to the policy swiftly because the restaurants are forced to limit

and change operations, thereby eliminating some confounders that cannot take effect in a few days.

2Definition from Wikipedia: https://en.wikipedia.org/wiki/State_of_emergency.
3Source: https://www.opentable.com/state-of-industry.
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Despite being more approachable, the problem remains challenging due to the effect hetero-

geneity and the difficulty to build a reliable model for the dine-in rates in a short time window. In

contrast, the declaration time of the state of emergency is arguably less complex to model because it

is mainly drive by the progress of the pandemic and the authority’s attitude towards the pandemic.

We demonstrate our RIPW estimator on this data. The outcome variable is the daily state-

level year-over-year percentage change in seated diners provided by OpenTable. 4 The treatment

variable is the indicator whether the state of emergency has been declared. 5 We also include

the state-level accumulated confirmed cases to measure the progress of the pandemic, 6 the vote

share of Democrats based on the 2016 presidential election data to measure the political attitude

towards COVID-19, 7 and the number of hospital beds per-capita as a proxy for the amount of

regular medical resources. 8 For demonstration purpose, we restrict the analysis into Feburary

29th – March 13th, the first 14 days since the first declaration by Washington. As of March 13th,

34 out of 36 states have declared the state of emergency, and thus the declaration times are slightly

right-censored.

Analogous to Section 3.5.2, we fit a Cox proportional hazard model on the declaration date

to derive an estimate of the generalized propensity scores. Here, we include as the covariates the

logarithms of the accumulated confirmed cases and the number of hospital beds per-capita, and

the vote share. The p-value of the Schoenfeld’s test is 0.34, suggesting no evidence against the

specification. For the outcome model, we fit a standard TWFE regression with the same set of

covariates, as detailed in Section 3.5.2. With these estimates, we compute the RIPW estimator for

equally-weighted DATE with the reshaped distribution (3.4.5) and 10-fold cross-fitting. The RIPW

estimate is −4.01% with the 95% confidence interval [−8.63%,0.61%] and the 90% confidence

interval [−7.89%,−0.13%]. Thus, the effect is negative but only significant at the 10% level. As a

comparison, the unweighted TWFE regression estimate is −1.1% with the 95% confidence interval

is [−4.28%,2.09%] and 90% confidence interval is [−3.77%,1.58%].

4Source: https://www.opentable.com/state-of-industry.
5Source: https://www.businessinsider.com/
california-washington-state-of-emergency-coronavirus-what-it-means-2020-3.
6Source: https://coronavirus.jhu.edu/.
7Source: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ.
8Source: https://github.com/rbracco/covidcompare.
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3.6. Conclusion

We demonstrate both theoretically and empirically that the unit-specific reweighting of the

OLS objective function improves the robustness of the resulting treatment effects estimator in

applications with panel data. The proposed weights are constructed using the assignment process

(either known or estimated) and thus appropriate in situations with substantial cross-sectional

variation in the treatment paths. Practically, our results allow applied researchers to exploit

domain knowledge about outcomes and assignments, thus resulting in a more balanced approach

to identification and estimation.

Our focus on a very particular OLS problem – two-way fixed effects regression – is motivated

by its popularity in applied work. We believe that our results can be extended to more general

models, including those with interactive fixed effects, and models with dynamic treatment effects

and state dependence. We view this as a part of the broad research agenda that connects different

aspects of the causal inference problem – assignments and outcomes – to build more robust and

transparent estimators.
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APPENDIX A

Long Title of Appendix A

A.1. Mathematical Details of The Two-agent Model

A.1.1. Child utility maximization. The utility of child is

max
s

uk1(s, ck1) + βku
k
2(c2),(A.1.1)

s.t. ck1 = γ(d)Wp(d),

c2 = g(h),

h = f (d,s, ck1,h0).

Plugging constraints to utility function

Lk = uk1(s,γ(d)Wp(d)) + βku
k
2(g(f (d,s, ck1,h0)))

Taking the derivative with respect to s and obtain the first order condition

∂Lk

∂s
=
∂uk1
∂s

+ βk
∂uk2
∂c2

∂g

∂h

∂f

∂s
= 0.

The marginal effect of studying time on current utility is MUk
1 = −∂u

k
1

∂s , and its marginal effect on

future utility is MUk
2 = βk

∂uk2
∂c2

∂g
∂h

∂f
∂s . Note that we assume ck1 = γ(d)Wp(d) =Wk(d) for simplicity here,

so we don’t assume a certain sign on ∂Wk(d)
∂d . The goal is to study the effect of d on s∗, so further take

the derivative of ∂Lk

∂s with respect to d,

∂2Lk

∂s∂d
=
∂2uk1
∂s2

∂s
∂d

+
∂2uk1
∂s∂ck1

∂ck1
∂d

+ βkA(
∂f

∂d
+
∂f

∂s
∂s
∂d

+
∂f

∂ck1

∂Wk(d)
∂d

)+

βk
∂uk2
∂c2

∂g

∂h

∂2f

∂s2
∂s
∂d

+ βk
∂uk2
∂c2

∂g

∂h
(
∂2f

∂s∂d
+
∂2f

∂s∂ck1

∂Wk(d)
∂d

) = 0,
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where

A =
∂2uk2
∂c2

2

(
∂g

∂h
)2∂f

∂s
+
∂uk2
∂c2

∂f

∂s

∂2g

∂h2 < 0.

Therefore,

∂s∗

∂d
= −

βkA

(Investment effect︷        ︸︸        ︷
∂f

∂ck1

∂Wk(d)
∂d

+

Direct effect︷︸︸︷
∂f

∂d

)
+ βk

∂uk2
∂c2

∂g
∂h ( ∂

2f
∂s∂d + ∂2f

∂s∂ck1

∂Wk(d)
∂d ) + ∂2uk1

∂s∂ck1

∂Wk(d)
∂d

∂2uk1
∂s2 + βk

∂uk2
∂c2

∂g
∂h

∂2f
∂s2 + βkA

∂f
∂s

.

If we further assume the separability of the child utility function and human capital production

function, we will get rid of terms of ∂2uk1
∂s∂ck1

, ∂
2f

∂s∂d , and ∂2f

∂s∂ck1
, then ∂s

∂d is simplified to

∂s∗

∂d
= −

βkA

(Investment effect︷        ︸︸        ︷
∂f

∂ck1

∂Wk(d)
∂d

+

Direct effect︷︸︸︷
∂f

∂d

)
∂2uk1
∂s2 + βk

∂uk2
∂c2

∂g
∂h

∂2f
∂s2 + βkA

∂f
∂s

.

The denominator of ∂s
∗

∂d is negative, so the sign of ∂s
∗

∂d depends on its numerator, and specifically

depends on the relative size of ∂f
∂d and ∂f

∂ck1

∂Wk(d)
∂d . If assume that ∂Wk(d)

∂d ≥ 0 so that ∂f

∂ck1

∂Wk(d)
∂d ≥ 0,

and the negative direct effect of being left-behind is larger than the positive indirect effect through

income, then ∂s∗

∂d ≥ 0, suggesting that the child will increase study time to compensate for worse

performance due to the absence of parent, and vice versa.

Graphically, the original equilibrium of child study time should be at the intersection of

the marginal utility of studying in period 1 and period 2, which is s∗ in Figure 1.1. For the

child, holding study time fixed, if there is a change in parent migration status d, then the child’s

human capital will change due to the direct effect of migration and its indirect effect through

income/consumption, thereby affecting the income and consumption in the future. However, it will

not affect consumption in the first period. This is equivalent to stating that holding s fixed, when d

changes, h and c2 will be affected. Recall that the marginal effect of study on current utility only

depends on study time s, so even if d changes, the current marginal effect won’t change because s

is held fixed. The marginal utility of migration in period 2 depends on the discounted marginal

effect of study time on future utility through consumption in that period (βk
∂uk2
∂c2

∂g
∂h

∂f
∂s ). When d

91



changes, the discount rate βk won’t change, and education production through the indirect effect of

study time won’ change either because s is held constant. However, education production will be

directly affected by migration status and indirectly affected by migration through investment in

the child, and thus the returns to education will change. In addition, the change in human capital

leads to change in the consumption level, which will affect the marginal utility of consumption

in the second period. Considering the changes in returns to education and marginal utility of

consumption, the marginal utility of study time in period 2 will be affected.

If d increases, on the one hand, the direct effect of migration will lead to lower human capital.

Since the return to education decreases as human capital increases, we would expect an increase in

the return to education. As human capital worsens, future income and future consumption will

drop, which leads to an increase in the marginal utility of consumption since it’s decreasing in

consumption levels. Therefore, considering the direct effect of migration, we expect the return to

education and the marginal utility of consumption to increase as d increases, and thus the marginal

utility of study time in period 2 increases as d increases. Graphically, the curve for marginal utility

of study time in period 2 shifts up since the new marginal effect of studying on future utility

becomes higher for every level of s. If d increases, on the other hand, the indirect effect of migration

through investment in child will lead to higher human capital. Since the return to education

decreases as human capital increases, we would expect to see a drop in the return to education.

As the child human capital becomes higher, future income and future consumption will increase,

leading to a decrease in the marginal utility of consumption since it’s decreasing in consumption

levels. Due to the indirect effect of migration through income, as d increases, we expect the return

to education and the marginal utility of consumption to decrease, and thus the marginal effect of

study time on future utility decreases. Graphically, the future marginal effect curve shifts down

since the new marginal effect of study on future utility becomes lower for every level of s.

In summary, when migration status increases, although the current marginal effect curve of

study time remains unchanged, the shift of the future marginal effect curve will depend on the

relative sizes of the two forces from the direct and indirect effect of migration. If the two effects

add up to be negative, then the curve will finally shift up and the new equilibrium study time will

increase to s∗
′
, suggesting that if d increases, s∗ is expected to increase, as shown in Figure 1.1. This
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suggests that the child will have to study longer to compensate for the large detrimental effect of

migration on their school performances. This is consistent to our findings in Appendix A.1.1.

A.1.2. Parental utility maximization. The utility of parent is

max
d

u
p
1 (cp1) + βpu

p
2 (c2),(A.1.2)

s.t. c
p
1 = γpWp(d),

c2 = g(h),

h = f (d,s, ck1,h0).

Since γp is a positive fixed number, I simply omit it from the first period consumption. Plugging

constraints to the utility function:

Lp = up1 (Wp) + βpu
p
2 (g(h))

With a slight abuse of notation, we write u2(h) for u2(g(h)). Then we know that

∂u
p
2

∂h
=
∂u

p
2

∂c2

∂g

∂h
≥ 0,

∂2u
p
2

∂h2 =
∂2u2

∂c2
2

(
∂g

∂h
)2 +

∂2g

∂h2

∂u
p
2

∂c2
≤ 0.

Taking the derivative with respect to d and obtain the first order condition

∂Lp

∂d
=
∂u

p
1

∂c
p
1

∂c
p
1

∂d
+ βp

∂u
p
2

∂h
(
∂f

∂d
+
∂f

∂ck1

∂Wk(d)
∂d

) = 0.

For the parent, when they migrate out, they are potentially benefiting from higher consumption

due to higher income in the first period, but at the cost of their child’s human capital and thus

their future income and consumption. From the first-order condition, we know the marginal effect

of parental migration on current utility is MUp
1 = ∂u

p
1

∂c
p
1

∂c
p
1

∂d , and its marginal effect on future utility is

MUp
2 = −βp

∂u
p
2

∂h (∂f∂d + ∂f

∂ck1

∂Wk(d)
∂d ). To guarantee an interior solution, we need the marginal effect on

future utility to be nonnegative, that is, ∂f∂d + ∂f

∂ck1

∂Wk(d)
∂d ≤ 0.

From the first-order condition, we can derive parent’s optimal migration decision d∗ as a

function of child’s study time s. Our goal is to study the effect of s on d∗, so further take the
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derivative of ∂L
∂d with respect to s,

∂2Lp

∂s∂d
=
∂u

p
1

∂c
p
1

∂2c
p
1

∂d2
∂d
∂s

+
∂2u

p
1

∂c
p
1

2 (
∂c
p
1

∂d
)2∂d
∂s

+

βp(
∂f

∂d
+
∂f

∂ck1

∂Wk(d)
∂d

)
∂2u

p
2

∂h2 (
∂f

∂d
∂d
∂s

+
∂f

∂s
+
∂f

∂ck1

∂Wk(d)
∂d

∂d
∂s

)+

βp
∂u

p
2

∂h
[
∂Wk(d)
∂d

(
∂2f

∂ck1∂d

∂d
∂s

+
∂2f

∂ck1∂s
+
∂2f

∂ck1
2
∂Wk(d)
∂d

∂d
∂s

) +
∂f

∂ck1

∂2Wk(d)
∂d2

∂d
∂s

] = 0.

Since we assume the separability of human capital production function, i.e., ∂2f
∂s∂d = ∂2f

∂s∂ck1
= ∂2f

∂ck1∂d
= 0,

the second-order condition can be simplified, and thus

∂d∗

∂s
=

−βp
∂2u

p
2

∂h2
∂f
∂s (∂f∂d + ∂f

∂ck1

∂Wk(d)
∂d )

∂u
p
1

∂c
p
1

∂2c
p
1

∂d2 + ∂2u
p
1

∂c
p
1

2 (∂c
p
1

∂d )2 + βp
∂2u

p
2

∂h2 (∂f∂d + ∂f

∂ck1

∂Wk(d)
∂d )2 + βp

∂u
p
2

∂h [∂
2f
∂d2 + ∂2f

∂ck1
2 (∂Wk(d)

∂d )2 + ∂f

∂ck1

∂2Wk(d)
∂d2 ]

.

Since ∂u
p
1

∂c
p
1
≥ 0, ∂

2u
p
1

∂c
p
1

2 ≤ 0; ∂u
p
2

∂h ≥ 0, ∂
2u

p
2

∂h2 ≤ 0; ∂c
p
1

∂d ≥ 0, ∂
2c
p
1

∂d2 ≤ 0; ∂f
∂ck1
≥ 0, ∂

2f

∂ck1
2 ≤ 0; ∂f∂d ≤ 0, ∂

2f
∂d2 ≤ 0, and

βp > 0, the denominator of ∂d∗

∂s is negative. The numerator is also negative since ∂f
∂s ≥ 0 and

∂f
∂d + ∂f

∂ck1

∂Wk(d)
∂d ≤ 0. Thus, ∂d

∗

∂s ≥ 0 as long as there is an interior solution. This suggests that if the

child is willing to study for longer times, parent will be more “assured” and more likely to migrate

out.

Graphically, the original equilibrium of parent migration decision should be at the intersection

of the marginal utility of migration in the first period and the marginal utility in the second

period, which is d∗0 in Figure 1.2. Holding parent migration status constant, if there is a change in

child’s study time, then the child’s human capital will be affected, thereby affecting the income and

consumption in the second period. However, it will not affect the consumption in the first period.

This is equivalent to stating that when holding d fixed and changing s, cp1 will remain unchanged

but h and c2 will be affected. Recall that the marginal utility from migration in the first period is the

marginal effect of migration status on current utility through consumption in that period (∂u
p
1

∂c
p
1

∂c
p
1

∂d ),

so even if s changes, the marginal utility in the first period won’t change because d and cp1 remain the

same. The marginal utility in the second period is the discounted marginal effect of migration status

on future utility through consumption in that period (−βp
∂u

p
2

∂h (∂f∂d + ∂f

∂ck1

∂Wk(d)
∂d )). future consumption

depends only on child human capital. When child study time s changes, education production
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will be affected 1, the marginal utility in the second period from consumption/human capital

will be affected, so the marginal utility of migration in the second period will be affected. If s

increases, h will increase as the marginal effect of study time on human capital production is

positive. Therefore, consumption in the second period increases as child human capital increases.

Since the marginal utility is decreasing in consumption, we expect to see a decrease in marginal

utility from future consumption, so the marginal utility of migration in Period 2 will decrease.

Therefore, when the child increases study time, although parent’s marginal utility in Period 1 will

not change, the curve for marginal utility in Period 2 will shift down since it becomes lower for

every level of d. This results in the new equilibrium of migration status to increase, as shown in

Figure 1.2. That is, d∗ is increasing in s. This is consistent to our findings in Appendix A.1.2.

A.1.3. A specific functional form. There might be some concern in the above decision making

process since I am assuming simultaneous decisions. In this section, I will use specific functional

forms to show that the joint decision process of parent and child will lead to one unique equilibrium.

In that case, it makes no difference if we are assuming a simultaneous decision process or a

sequential one. In addition, the specific functional forms I choose is also consistent with my

empirical model.

For the child decision process, the utility maximization satisfying the previous assumptions

could be depicted by:

max
s

log[(1− s)T0] + log(ck1) + βk log(c2),

s.t. ck1 ≤ a+w1 · d,

c2 ≤ w2 · e,

h ≤ γT · s · T0 +γW (a+w1d) +γD · d,

where T0 is total weekly time available to the child, and d is a measure of parent migration status.

For simplicity, I assume γ(D) in Equation (A.1.1) to be constant.

1Education production through the direct effect of migration or the indirect effect through current consumption

(∂f
∂d

+ ∂f

∂ck1

∂Wk(d)
∂d

) won’t change because ck1 and d remain the same.
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Plugging the constraints into the objective function, we have

Lk = log[(1− s)T0] + log(a+w1 · d) + βk log[w2(γT · s · T0 +γW (a+w1d) +γDd)].

Taking its first-order derivative with respect to s, we have

∂Lk

∂s
= − 1

1− s
+

γT · T0 · βk
γT · s · T0 +γW (a+w1d) +γDd

Setting the first-order condition to 0, we could solve for s∗, the optimal time decision of children:

s∗ =
γT · T0 · βk + a ·γW + (γD +w1 ·γW ) · d

γT T0(βk − 1)
(A.1.3)

Since γD + γWw1 = ∂f
∂d + ∂f

∂ck1

∂Wk(d)
∂d ≤ 0, and γT T0(βk − 1) < 0 due to the fact that discount factor

0 ≤ βk < 1, we know that s∗ is non-decreasing as d increases, which is consistent to our findings in

Appendix A.1.1.

For the parent decision process, the utility maximization process is depicted by:

max
d

log(cp1) + βp log(c2),

s.t. c
p
1 ≤ a+w1 · d,

c2 ≤ w2 · e,

h ≤ γT · s · T0 +γW (a+w1d) +γD · d.

Plugging in the constraints to the objective function,

Lp = log(a+w1 · d) + βp log[w2(γT · s · T0 +γW (a+w1d) +γD · d)].

Taking the first-order derivative with respect to D, we have

∂Lp

∂d
=

w1

a+w1d
−

γWw1 +γDβp
γT · s · T0 +γW (a+w1d) +γD · d

.

Setting the first-order condition to 0, we have

d∗ =
−aγDβp +w1γT T0s

w1γD(βp − 1)
.(A.1.4)
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Sincew1γT T0 ≥ 0, andw1γD(βp−1) > 0 because γD < 0 and 0 ≤ βp < 1, we know d∗ is non-decreasing

as s increases, which is consistent to our finding in Appendix A.1.2.

Next I will show there is a unique equilibrium (s∗∗,d∗∗). If we draw the reaction function of the

parent and the child on one graph with d on the horizontal axis and s on the vertical axis, this is

equivalent to show that the reactions curves have different slopes. The slope of child’s reaction

function is γD+w1γW
γT T0(βk−1) , and the slope of parent’s reaction function is

w1γD (βp−1)
w1γT T0

:

γD +w1γW
γT T0(βk − 1)

−
w1γD(βp − 1)

w1γT T0

=
w1(γD +w1γW )−w1γD(βp − 1)(βk − 1)

w1γT T0(βk − 1)

=
w2

1γW −w1γD(βpβk − βp − βk)
w1γT T0(βk − 1)

=
w1[w1γW −γD(βpβk − βp − βk)]

w1γT T0(βk − 1)

We already know the denominator of the difference is negative since βk − 1 < 0, so the value of the

difference only depends on the numerator. As long as we have w1γW , γD(βpβk−βp−βk), the slopes

will be different. Since −1 < βpβk −βp −βk ≤ 0, if the negative direct effect γD is very large, then the

numerator of the difference would be negative so the difference would be positive, suggesting that

the slope of child’s reaction function would be steeper. This also makes intuitive sense because if

γD is very large, then based on the graph of marginal utility, to compensate for the negative direct

effect, the child tends to increase study time by a lot, and the reaction is stronger than parent’s.

The graph for this case is depicted in Figure 1.3. The equilibrium study time s∗∗ and equilibrium

migration decision d∗∗ is unique. Since the observed data are in equilibrium, we have s∗∗ is given by

(A.1.3) with d = d∗∗ and d∗∗ is the solution of (A.1.3) and (A.1.4). This provides a concrete example

for the abstract system (1.2.6).

A.2. Complementary empirical results

In this appendix, I will present supplementary results by imposing stronger yet potentially

invalid assumptions like exogeneity of treatments/mediators or missing-at-random mediators.

These results should be viewed as robustness checks or even sanity checks, which highlight the

issues of failure to handle endogeneity and non-random missing values carefully.
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A.2.1. Results without accounting for non-random missing values (no imputation). When

the mediators are missing at random, there is no non-random missing issue and thus one can

estimate the model on units without missing values. Table A.1 - A.3 present the results under the

same setting as Table 1.3 - 1.7, except that Heckman model is not applied to impute the missing

study time and investment in child.

We can observe that for both all sample and subgroup analysis, the direct effect shrinks slightly

and the indirect effect through investment shrinks drastically, despite that the sample size only

drops by 35%. This corroborates my speculation that simply removing these observations tend to

underestimate the impact of migration, because those whose parents or guardians fail to report

their study time or investment in them are likely suffering more from parental migration.

Table A.1. Effect of parental migration on child schooling outcomes (IV, all sample, not imputed)

(1) Language (2) Math
Direct Effect
Parental Accompany -0.458∗∗∗ -0.411∗∗

(0.001) (0.003)
Indirect Effect
Study time -0.008 -0.006

(0.096) (0.203)
Investment in children -0.402∗∗ -0.437∗∗∗

(0.003) (0.001)

Sepecification Tests (1) Study time (2) Investment (3) Language (4) Math
Underidentification test
(Anderson canon. corr. LM statistic) 34.769∗∗∗ 34.769∗∗∗ 18.155∗∗∗ 18.155∗∗∗

(0.000) (0.000) (0.000) (0.000)
Overidentification test (Sargan statistic) 5.183∗ 3.629 1.561 1.487

(0.023) (0.057) (0.458) (0.475)
Endogeneity test 0.281 5.175∗ 19.310∗∗∗ 30.792∗∗∗

(0.596) ( 0.023) ( 0.000) (0.000)
Obs. 1277

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A.2. Effect of parental migration on child schooling outcomes (IV, subgroup by gender, not Imputed)

Girl Boy
(1) Language (2) Math (3) Language (4) Math

Direct Effect
Parental Accompany -0.350∗ -0.371 -0.340∗∗ -0.236∗

(0.035) (0.057) (0.009) (0.029)
Indirect Effect
Study time -0.000 -0.001 -0.026 -0.007

(0.762) (0.721) (0.056) (0.586)
Investment in children -0.600∗ -0.780∗ -0.121∗ -0.129∗∗∗

(0.043) (0.030) (0.011) (0.001)

Sepecification Tests (1) Study time (2) Investment (3) Language (4) Math
Girl
Underidentification test
(Anderson canon. corr. LM statistic) 5.242 5.242 7.516 7.516

(0.073) (0.073) ( 0.057) (0.057)
Overidentification test (Sargan statistic) 2.518 5.040∗ 0.959 1.256

(0.113) (0.025) (0.619) (0.534)
Endogeneity test 0.021 3.314 3.684 10.138∗

(0.885) (0.069) (0.298) (0.017)
Obs. 571
Boy
Underidentification test
(Anderson canon. corr. LM statistic) 36.416∗∗∗ 36.416∗∗∗ 9.968∗ 9.968∗

(0.000) (0.000) ( 0.019) (0.019)
Overidentification test (Sargan statistic) 3.559 0.531 1.081 0.781

(0.059) (0.466) (0.582) (0.677)
Endogeneity test 0.069 0.871 19.510∗∗∗ 21.147∗∗∗

(0.793) (0.351) (0.000) (0.000)
Obs. 706

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A.3. Effect of parental migration on child schooling outcomes (IV, subgroup by birth order, not imputed)

First child Subsequent children
(1) Language (2) Math (3) Language (4) Math

Direct Effect
Parental Accompany -0.552 -0.647∗ -0.469∗ -0.282

(0.075) (0.040) (0.014) (0.091)
Indirect Effect
Study time -0.038 -0.046 0.001 -0.001

(0.303) (0.303) (0.766) (0.766)
Investment in children -0.168 -0.260 -0.624∗ -0.496∗

(0.227) (0.114) (0.025) (0.028)

Sepecification Tests (1) Study time (2) Investment (3) Language (4) Math
First child
Underidentification test
(Anderson canon. corr. LM statistic) 14.970∗∗∗ 14.970∗∗∗ 2.693 2.693

(0.001) (0.001) ( 0.260) (0.260)
Overidentification test (Sargan statistic) 0.469 3.359 0.001 0.291

(0.493) (0.067) (0.980) (0.590)
Endogeneity test 0.636 0.119 6.198 14.192∗∗

(0.425) (0.730) (0.102) (0.003)
Obs. 590
Subsequent children
Underidentification test
(Anderson canon. corr. LM statistic) 7.995∗ 7.995∗ 4.635 4.635

(0.018) (0.018) ( 0.099) (0.099)
Overidentification test (Sargan statistic) 3.313 0.160 0.974 1.797

(0.069) (0.690) (0.324) (0.180)
Endogeneity test 1.288 9.416∗∗ 9.994∗ 6.080

(0.256) (0.002) (0.019) (0.108)
Obs. 535

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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A.2.2. Results without accounting for endogeneity (no IV). Recall the structural equation

model (1.4.1) - (1.4.4) in Section 1.4. If D,T ,W were all exogenous, εP i ,εT i ,εWi ,εDi would be

mutually independent, in which case no instrumental variable is needed for identification because

the coefficients can be identified separately from each single equation. The results are presented in

Table A.4 - 1.7.

Nevertheless, the endogeneity tests in Table 1.3 - 1.7 show strong evidence against exogeneity.

Therefore, the results in Table A.4 - 1.7 should be taken as a robustness check. We can observe

that both the direct effect and indirect effect through investment have the same signs as the results

in Section 1.5, but they are underestimated drastically for both all samples and subgroups. This

highlights the importance to handle the endogeneity in this problem.

Table A.4. Effect of parental migration on child schooling outcomes (no IV, all sample, imputed)

Language Score Math Score
Direct Effect
Parental Accompany -0.074∗∗ -0.015

(0.007) (0.610)
Indirect Effect
Study time -0.002 -0.005∗∗

(0.159) (0.008)
Investment in children -0.004∗ -0.005∗

(0.035) (0.035)
Obs. 1971

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.5. Effect of parental migration on child schooling outcomes (no IV, subgroup by gender, imputed)

Girl Boy
(1) Language (2) Math (3) Language (4) Math

Direct Effect
Parental Accompany -0.126∗∗∗ -0.077∗ -0.018 0.050

(0.001) (0.045) (0.650) (0.253)
Indirect Effect
Study time -0.003 -0.003 -0.002 -0.010∗∗

(0.370) (0.403) (0.428) (0.003)
Investment in children -0.002 -0.002 -0.007∗ -0.012∗∗

(0.387) (0.387) (0.026) (0.009)
Obs. 887 1084

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

A.2.3. Results without accounting for both. Finally I present the results without accounting

for either endogeneity or non-random missing values in Table A.7 - A.9 as an additional sanity

check. This analysis even fails to capture the significant negative effect through investment.
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Table A.6. Effect of parental migration on child schooling outcomes (no IV, subgroup by birth order, imputed)

First child Subsequent children
(1) Language (2) Math (3) Language (4) Math

Direct Effect
Parental Accompany -0.132∗∗∗ -0.067 -0.042 0.037

(0.000) (0.094) (0.340) (0.437)
Indirect Effect
Study time 0.001 -0.002 -0.007∗ -0.013∗∗∗

(0.743) (0.464) (0.016) (0.000)
Investment in children -0.001 -0.007∗ -0.005 -0.005

(0.713) (0.026) (0.217) (0.217)
Obs. 891 860

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.7. Effect of parental migration on child schooling outcomes (no IV, all sample, not imputed)

Language Score Math Score
Direct Effect
Parental Accompany -0.074∗ -0.013

(0.016) (0.688)
Indirect Effect
Study time -0.001 -0.002

(0.392) (0.392)
Investment in children -0.002 -0.004

(0.301) (0.301)
Obs. 1277

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.8. Effect of parental migration on child schooling outcomes (no IV, subgroup by gender, not imputed)

Girl Boy
(1) Language (2) Math (3) Language (4) Math

Direct Effect
Parental Accompany -0.110∗ -0.052 -0.045 0.021

(0.013) (0.254) (0.281) (0.659)
Indirect Effect
Study time -0.001 -0.001 -0.000 -0.003

(0.501) (0.501) (0.700) (0.391)
Investment in children -0.001 -0.001 -0.005 -0.009

(0.806) (0.806) (0.169) (0.169)
Obs. 571 706

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A.9. Effect of parental migration on child schooling outcomes (no IV, subgroup by birth order, not imputed)

First child Subsequent children
(1) Language (2) Math (3) Language (4) Math

Direct Effect
Parental Accompany -0.084∗ -0.024 -0.107∗ -0.018

(0.036) (0.601) (0.035) (0.730)
Indirect Effect
Study time 0.001 -0.001 0.005 0.008

(0.751) (0.716) (0.174) (0.174)
Investment in children -0.000 -0.007 0.010 0.011

(0.899) (0.101) (0.200) (0.200)
Obs. 590 535

p-values in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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APPENDIX B

Long Title of Appendix B

B.1. Statistical Properties of RIPW Estimators

B.1.1. Notation, assumptions, and preliminaries. Throughout this section we consider a

generalized version of the extended causal framework introduced in Section 3.3.1. Since the

inferential target DATE is defined conditional on {(Xi ,Ui) : i ∈ [n]}, we treat them as fixed quantities.

As discussed in Section 3.3.1, we can suppress {(Xi ,Ui) : i ∈ [n]} and treat the quantities Zi =

(Yi(1),Yi(0),Wi) as non-identically distributed units.

In Section 3.3.1, we consider the special case where (Yi(1),Yi(0),Wi ,Xi ,Ui) are i.i.d. (Assumption

3.3.3), in which case Zi are independent. Here we consider the more general case where Zi can be

dependent (conditioning on {(Xi ,Ui) : i ∈ [n]}). The (conditional) maximal correlation ρij between

Zi = (Yi(1),Yi(0),Wi) and Zj = (Yj(1),Yj(0),Wj ) is defined as

ρij = sup
f ,g

Corr(f (Zi), g(Zj ) | X1, . . . ,Xn,U1, . . . ,Un).

For design-based inference, (Yi(1),Yi(0),Xi ,Ui) are all fixed and thus the above definition coincides

with (3.2.8).

To simplify the notation, we use the symbol E and P to denote the expectation and probability

conditioning on {(Xi ,Ui) : i ∈ [n]}. Occasionally, we use Efull and Pfull to denote the unconditional

expectation and probability. We emphasize that Efull and Pfull will only be used to make connec-

tions with the simplified results in Section 3.3, but will not be used anywhere in the proofs. With

this notation,

τit = E[Yit(1)−Yit(0)], πi(w) = P[Wi = w],

and

mit = E[Yit(0)]− 1
n

n∑
i=1

E[Yit(0)]− 1
T

T∑
t=1

E[Yit(0)] +
1
nT

n∑
i=1

T∑
t=1

E[Yit(0)].
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The DATE estimand with weight ξ is defined as

τ∗(ξ) =
T∑
t=1

ξt

1
n

n∑
i=1

τit

 .
With a reshaped distribution Π on {0,1}T , the RIPW estimator is defined as

τ̂(Π) , argmin
τ,µ,

∑
i αi=

∑
t γt=0

n∑
i=1

T∑
t=1

((Y obs
it − m̂it)−µ−αi −γt −Witτ)2 Π(Wi)

π̂i(Wi)
.

We will suppress ξ from τ∗(ξ) and Π from τ̂(Π) throughout the section.

It is easy to see that τ̂ is invariant if Yit(w) is replaced by Yit(w)−µ′ −α′i −γ
′
t for any constants

µ′ , {α′i : i ∈ [n]}, {γ ′t : t ∈ [T ]}, and in particular,

µ′ =
1
nT

n∑
i=1

T∑
t=1

E[Yit(0)], α′i =
1
T

T∑
t=1

E[Yit(0)]−µ′ , γ ′t =
1
n

n∑
i=1

E[Yit(0)]−µ′ .

Therefore, we can assume without loss of generality that

1
n

n∑
i=1

E[Yit(0)] =
1
T

T∑
t=1

E[Yit(0)] = 0, t = 1, . . . ,T , i = 1, . . . ,n.

In this case,

(B.1.1) mi = E[Yi(0)], Ỹi(0) = Yi(0)−E[Yi(0)]− (m̂i −mi).

To be self-contained, we summarize all notation here. First, for notational convenience, we

use the bold letter with a subscript i to denote the vector across T time periods. For instance,

Y obs
i = (Y obs

i1 , . . . ,Y obs
iT ). It also includes Yi(1),Yi(0),mi ,m̂i ,τi . Let J = IT − 1T 1>T /T ,

Θi = Π(Wi)/π̂i(Wi), Ỹ obs
i = Y obs

i − m̂i , Ỹi(w) = Yi(w)− m̂i , w ∈ {0,1},

and

Γθ ,
1
n

n∑
i=1

Θi , Γww ,
1
n

n∑
i=1

ΘiW
>
i JWi , Γwy ,

1
n

n∑
i=1

ΘiW
>
i JỸ

obs
i ,

Γ w ,
1
n

n∑
i=1

ΘiJWi , Γ y ,
1
n

n∑
i=1

ΘiJỸ
obs
i .
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Furthermore, we define

Vi = Θi

(
E[Γwy]− τ∗E[Γww]

)
−
(
E[Γ y]− τ∗E[Γ w]

)>
JWi

+E[Γθ]W >
i J

(
Ỹ obs
i − τ∗Wi

)
−E[Γ w]>J

(
Ỹ obs
i − τ∗Wi

).
This coincides with the definition in Theorem 3.2.2 when π̂i = πi and m̂i = 0.

Next, we define the treatment and outcome models. the treatment model is perfectly estimated

for unit i if

π̂i(w) = πi(w), ∀w ∈ {0,1}T ,

and the precision is defined as

∆πi =
√
E [π̂i(Wi)−πi(Wi) | π̂i]2.

The outcome model is perfectly estimated for unit i if

m̂it =mit , τit = τ∗,

and the precision is defined as

∆yi =
√
E[‖m̂i −mi‖22 | m̂i] + ‖τi − τ∗1T ‖2.

We also define the average precision ∆̄π, ∆̄y , and ∆̄πy as

∆̄π =

√√
1
n

n∑
i=1

∆2
πi , ∆̄y =

√√
1
n

n∑
i=1

∆2
yi .

The above precision measures are essentially the conditional versions of δπi ,δyi , δ̄y , and δ̄π in

Section 3.3. Specifically,

δ2
πi = Efull[∆

2
πi], δ2

yi = Efull[∆
2
yi], δ̄2

π = Efull[∆̄
2
π], δ̄2

y = Efull[∆̄
2
y].

As a result, by Markov’s inequality,

δ̄πδ̄y = o(1) =⇒ P

(
∆̄π∆̄y ≥ εn

)
≥ 1− εn,

106



for some deterministic sequence εn→ 0. Therefore, if we can prove the double robustness only

assuming ∆̄π∆̄y = o(1) conditional on (Xi ,Ui , π̂i ,m̂i)
n
i=1, we can prove it assuming that δ̄πδ̄y = o(1)

as in Section 3.3.

Finally, we state the core assumptions. We start by restating the latent mean ignorability

assumption based on the simplified notation.

Assumption B.1.1. (Latent mean ignorability)

(B.1.2) E[(Yi(1),Yi(0)) |Wi] = E[(Yi(1),Yi(0))]

Next, we restate the overlap condition (Assumption 3.3.2) below with the constant c replaced

by cπ to be more informative in the proofs.

Assumption B.1.2. There exists a universal constant c > 0 and a non-stochastic subset S∗ ⊂ {0,1}T

with at least two elements and at least one element not in {0T ,1T }, such that

(B.1.3) π̂i(w) > cπ,πi(w) > cπ, ∀w ∈ S∗, i ∈ [n], almost surely.

Finally, we state the following assumption that unify and substantially generalize Assumptions

3.2.2-3.2.3 for design-based inference and Assumptions 3.3.3-3.3.4 for doubly-robust inference.

Assumption B.1.3. There exists q ∈ (0,1],

1
n2

n∑
i=1

ρi
{
E‖Ỹi(1)‖22 +E‖Ỹi(0)‖22 + 1

}
=O(n−q),

and
1
n

n∑
i=1

{
E‖Ỹi(1)‖22 +E‖Ỹi(0)‖22

}
=O(1).

We close this section by a basic property of the maximal correlation.

Lemma B.1.1. Let fi be any deterministic function on the domain of Zi . Then

Var

 n∑
i=1

fi(Zi)

 ≤ 1
2

n∑
i=1

Var[fi(Zi)]ρi .

Proof. By definition of ρij ,

Cov
(
fi(Zi), fj(Zj )

)
≤ ρij

√
Var[fi(Zi)]Var[fj(Zj )] ≤

ρij
2

{
Var[fi(Zi)] + Var[fj(Zj )]

}
.
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Thus,

Var

 n∑
i=1

fi(Zi)

 =
n∑

i,j=1

Cov(fi(Zi), fj(Zj ))

≤
n∑

i,j=1

ρij
2

{
Var[fi(Zi)] + Var[fj(Zj )]

}
=

n∑
i=1

Var[fi(Zi)]ρi .

�

B.1.2. A non-stochastic formula of RIPW estimators.

Theorem B.1.1. With the same notation as Theorem 3.2.2, τ̂ =N /D, where

(B.1.4) N = ΓwyΓθ − Γ >wΓ y , D = ΓwwΓθ − Γ >wΓ w.

Proof. Let γ = (γ1, . . . ,γt)> be any vector with γ>1T = 0. First we derive the optimum µ̂(γ , τ),

α̂i(γ , τ) given any values of γ and τ . Recall that

(µ̂(γ , τ), α̂i(γ , τ)) = argmin∑
i αi=0

n∑
i=1

 T∑
t=1

(Ỹ obs
it −µ−αi −γt −Witτ)2

Θi .
Since the weight Θi only depends on i, it is easy to see that

µ̂(γ , τ) + α̂i(γ , τ) =
1
T

T∑
t=1

(Ỹ obs
it −γt −Witτ), µ̂(γ , τ) =

1
nT

n∑
i=1

T∑
t=1

(Ỹ obs
it −γt −Witτ).

As a result,

T∑
t=1

(Ỹ obs
it − µ̂(γ ,µ)− α̂i(γ ,µ)−γt −Witτ)2

=
∥∥∥∥∥(Ỹ obs

i −γ −Wiτ
)
−

1T 1>T
T

(
Ỹ obs
i −γ −Wiτ

)∥∥∥∥∥2

2

=
∥∥∥∥∥J (Ỹ obs

i −γ −Wiτ
)∥∥∥∥∥2

2
.

This yields a profile loss function for γ and τ :

(γ̂ , τ̂) = argmin
γ>1T =0

n∑
i=1

∥∥∥∥∥J (Ỹ obs
i −γ −Wiτ

)∥∥∥∥∥2

2
Θi = argmin

γ>1T =0

n∑
i=1

∥∥∥∥∥J (Ỹ obs
i −Wiτ

)
−γ

∥∥∥∥∥2

2
Θi ,
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where the last equality uses the fact that Jγ = γ . Given τ , the optimizer γ̂(τ) is simply the weighted

average of {J(Ỹ obs
i −Wiτ)}ni=1 in absence of the constraint γ>1T = 0, i.e.

γ̂(τ) =

∑n
i=1ΘiJ(Ỹ

obs
i −Wiτ)∑n

i=1Θi
=
Γ y

Γθ
− Γ w

Γθ
τ.

Noting that γ̂(τ)>1T = 0 since J1T = 0, γ̂(τ) is also the minimizer of the constrained problem, i.e.

γ̂(τ) = argmin
γ>1T =0

n∑
i=1

∥∥∥∥∥J (Ỹ obs
i −Wiτ

)
−γ

∥∥∥∥∥2

2
Θi .

Plugging in γ̂(τ) yields a profile loss function for τ

τ̂ = argmin
n∑
i=1

∥∥∥∥∥J (Ỹ obs
i −Wiτ

)
− γ̂(τ)

∥∥∥∥∥2

2
Θi , L(τ).

A direct calculation shows that

L′(τ)
2n

=
1
n

n∑
i=1

Θi

(
−JWi +

Γ w
Γθ

)> (
J
(
Ỹ obs
i −Wiτ

)
−
Γ y

Γθ
+
Γ w
Γθ
τ

)

=
1
n

 n∑
i=1

Θi

(
JWi −

Γ w
Γθ

)> (
JWi −

Γ w
Γθ

)τ − 1
n

 n∑
i=1

Θi

(
JWi −

Γ w
Γθ

)> (
JỸi −

Γ y

Γθ

)
=
{
Γww −

Γ >wΓ w
Γθ

}
τ −

{
Γwy −

Γ >wΓ y

Γθ

}
Since L(τ) is a convex quadratic function of τ , the first-order condition is sufficient and necessary

to determine the optimality. The proof is then completed by solving L′(τ̂) = 0. �

B.1.3. Statistical properties of RIPW estimators with deterministic (π̂i ,m̂i).

B.1.3.1. Asymptotic linear expansion of RIPW estimators. As a warm-up, we assume (π̂i ,m̂i)
n
i=1

are deterministic. This, for example, includes the pure design-based inference where π̂i = πi and

m̂i = 0. In this case, the measures of accuracy can be simplified as

(B.1.5) ∆πi =
√
E [π̂i(Wi)−πi(Wi)]

2, ∆yi =
√
E[‖m̂i −mi‖22] + ‖τi − τ∗1T ‖2.

As a result, (∆πi ,∆yi) are deterministic (conditional on {(Xi ,Ui) : i ∈ [n]}).

We start by a lemma showing that Γθ ,Γwy ,Γww,Γ w,Γ y concentrate around their means. For

notational convenience, we let Var(Z) denote E‖Z −E[Z]‖22 for a random vector Z.
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Lemma B.1.2. Under Assumptions B.1.2 and B.1.3,

|E[Γθ]|+ |E[Γwy]|+ |E[Γww]|+ ‖E[Γ w]‖2 + ‖E[Γ y]‖2 =O(1),

and

Var(Γθ) + Var(Γwy) + Var(Γww) + Var(Γ w) + Var(Γ y) =O(n−q).

As a consequence,

∣∣∣Γθ −E[Γθ]
∣∣∣+

∣∣∣Γwy −E[Γwy]
∣∣∣+

∣∣∣Γww −E[Γww]
∣∣∣+

∥∥∥Γ w −E[Γ w]
∥∥∥

2
+
∥∥∥Γ y −E[Γ y]

∥∥∥
2

=O
P

(
n−q/2

)
.

Proof. By Assumption B.1.2, Θi ≤ 1/cπ almost surely. Moreover, ‖Wi‖2 ≤
√
T since Wit ∈ {0,1}.

Thus,

‖Γ w‖2 ≤
√
T
cπ
, |Γww| ≤

T
cπ
, |Γθ | ≤

1
cπ

=⇒ E‖Γ w‖2 +E|Γww|+E|Γθ | =O(1).

Next, we derive bounds for (E[Γwy])2 and ‖E[Γ y]‖22 separately. For (E[Γwy])2,

(E[Γwy])2 ≤

1
n

n∑
i=1

E[ΘiW
>
i JỸ

obs
i ]

2

≤ 1
n

n∑
i=1

E[ΘiW
>
i JỸ

obs
i ]2

≤ 1

nc2
π

n∑
i=1

E[W >
i JỸ

obs
i ]2 ≤ T

nc2
π

n∑
i=1

E‖Ỹ obs
i ‖

2
2

≤ T

nc2
π

n∑
i=1

{
E‖Ỹi(0)‖22 +E‖Ỹi(1)‖22

}
=O(1),

where the last step follows from the Assumption B.1.3. For ‖E[Γ y]‖22,

‖E[Γ y]‖22 ≤
1
n

n∑
i=1

(E[ΘiJỸ
obs
i ])2 ≤ 1

nc2
π

n∑
i=1

‖Ỹ obs
i ‖

2
2

≤ 1

nc2
π

n∑
i=1

{
E‖Ỹi(0)‖22 +E‖Ỹi(1)‖22

}
=O(1),

where the last step follows from the Assumption B.1.3. Putting the pieces together, the bound on

the sum of expectations is proved.
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Next, we turn to the bound on the variances. By Lemma B.1.1,

Var(Γθ) ≤ 1
n2

n∑
i=1

Var(Θi)ρi ≤
1

n2c2
π

n∑
i=1

ρi .

The Assumption B.1.2 implies that
1
n2

n∑
i=1

ρi =O(n−q).

Therefore, Var(Γθ) =O(n−q). For Γww,

Var(Γww) ≤ 1
n2

n∑
i=1

Var(ΘiW
>
i JWi)ρi ≤

1
n2

n∑
i=1

E(ΘiW
>
i JWi)

2ρi

≤ T

n2c2
π

n∑
i=1

E‖Wi‖22ρi ≤
T

n2c2
π

n∑
i=1

ρi =O(n−q),

where the last equality uses the fact that ‖Wi‖2 ≤
√
T . For Γwy ,

Var(Γwy) ≤ 1
n2

n∑
i=1

Var(ΘiW
>
i JỸ

obs
i )ρi ≤

1
n2

n∑
i=1

E(ΘiW
>
i JỸ

obs
i )2ρi

(i)
≤ 1

n2c2
π

n∑
i=1

E

[
‖Wi‖22 · ‖Ỹ

obs
i ‖

2
2

]
ρi

(ii)
≤ T

n2c2
π

n∑
i=1

(
E‖Ỹi(1)‖22 +E‖Ỹi(0)‖22

)
ρi

(iii)
= O(n−q),

where (i) follows from the Cauchy-Schwarz inequality and that ‖J‖op = 1, (ii) is obtained from the

fact that ‖Wi‖22 ≤ T and Ỹ obs
i ∈ {Ỹi(1), Ỹi(0)}, and (iii) follows from the Assumption B.1.3.

For Γ w, recall that Var(Γ w) is the sum of the variance of each coordinate of Γ w. By Lemma B.1.1,

Var(Γ w) ≤ 1
n2

n∑
i=1

Var(ΘiJWi)ρi ≤
1
n2

n∑
i=1

E‖ΘiJWi‖22ρi

≤ 1

n2c2
π

n∑
i=1

E‖Wi‖22ρi ≤
T

n2c2
π

n∑
i=1

ρi =O(n−q).
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For Γ y , analogues to inequalities (i) - (iii) for Γwy , we obtain that

Var(Γ y) ≤ 1
n2

n∑
i=1

Var(ΘiJỸ
obs
i )ρi ≤

1
n2

n∑
i=1

E‖ΘiJỸ obs
i ‖

2
2ρi

≤ 1

n2c2
π

n∑
i=1

(
‖Ỹi(1)‖22 + ‖Ỹi(0)‖22

)
ρi =O(n−q),

where the last step follows from the Assumption B.1.3.

Finally, by Markov’s inequality,

∣∣∣Γθ −E[Γθ]
∣∣∣+

∣∣∣Γwy −E[Γwy]
∣∣∣+

∣∣∣Γww −E[Γww]
∣∣∣+

∥∥∥Γ w −E[Γ w]
∥∥∥

2
+
∥∥∥Γ y −E[Γ y]

∥∥∥
2

=O
P

(√
Var(Γθ) + Var(Γwy) + Var(Γww) + Var(Γ w) + Var(Γ y)

)
=O

P
(n−q/2).

�

The following lemma shows that the denominator of τ̂ is bounded away from 0.

Lemma B.1.3. Under Assumptions B.1.3, regardless of the dependence between (π̂i ,m̂i) and the data,

D ≥ c2
D

1
n

n∑
i=1

I(Wi = w1)


1
n

n∑
i=1

I(Wi = w2)

 ,
for some constant cD that only depends on Π. As a result, D ≥ 0 almost surely. If Assumption B.1.2 also

holds, 1

E[D] ≥ c2
Dc

2
π −

1
n2

n∑
i=1

ρi , D ≥ c2
Dc

2
π − oP(1).

Proof. By definition,

D =

1
n

n∑
i=1

ΘiW̃
>
i JW̃i


1
n

n∑
i=1

Θi

−
∥∥∥∥∥∥∥1
n

n∑
i=1

ΘiJW̃i

∥∥∥∥∥∥∥
2

2

=
1
n2

n∑
i,j=1

ΘiΘj

(
W̃ >
i JW̃i + W̃ >

j JW̃j − 2W̃ >
i JW̃j

)
=

1
n2

n∑
i,j=1

ΘiΘj‖J(Wi −Wj )‖22.

1A more rigorous version of the second statement is max{c2Dc
2
π −D,0} = oP(1)
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Let w1,w2 be two distinct elements from S
∗ with w1 < {0T ,1T } and

(B.1.6)
1
n

n∑
i=1

πi(wk) > cπ, k ∈ {1,2}.

This is enabled by Assumption B.1.2. Note that J(w1 −w2) = 0 iff w1 −w2 = a1T for some a ∈ R,

which is impossible since w1 < {0T ,1T } and all entries of w1 and w2 are binary. In addition, since Π

has support S∗, Π(w1),Π(w2) > 0. Let

cD = min{Π(w1),Π(w2)}‖J(w1 −w2)‖2 > 0.

Then

D ≥
c2
D
n2

n∑
i,j=1

1
π̂i(Wi)π̂j(Wj )

I(Wi = w1,Wj = w2)

≥
c2
D
n2

n∑
i,j=1

I(Wi = w1,Wj = w2)

= c2
D

1
n

n∑
i=1

I(Wi = w1)


1
n

n∑
i=1

I(Wi = w2)

 ,
where the second inequality follows from the fact that π̂i(w) ≤ 1. By (B.1.6),

E

1
n

n∑
i=1

I(Wi = wk)

 =
1
n

n∑
i=1

πi(wk) > cπ, k ∈ {1,2}.

Furthermore, by Lemma B.1.1,∣∣∣∣∣∣Cov

1
n

n∑
i=1

I(Wi = w1),
1
n

n∑
i=1

I(Wi = w2)


∣∣∣∣∣∣

=
1
n2

∣∣∣∣∣ n∑
i,j=1

Cov(I(Wi = w1), I(Wj = w2))
∣∣∣∣∣

≤ 1
n2

n∑
i,j=1

∣∣∣Cov(I(Wi = w1), I(Wj = w2))
∣∣∣

≤ 1
n2

n∑
i,j=1

ρij

√
Var(I(Wi = w1))Var(I(Wj = w2))

≤ 1
n2

n∑
i,j=1

ρij =
1
n2

n∑
i=1

ρi .
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Putting pieces together, we obtain that

E[D] ≥ c2
DE


1
n

n∑
i=1

I(Wi = w1)


1
n

n∑
i=1

I(Wi = w2)




= c2
D

E
1
n

n∑
i=1

I(Wi = w1)

E
1
n

n∑
i=1

I(Wi = w2)


+ Cov

1
n

n∑
i=1

I(Wi = w1),
1
n

n∑
i=1

I(Wi = w2)




≥ c2
Dc

2
π −

1
n2

n∑
i=1

ρi .

On the other hand, by Lemma B.1.1, for k ∈ {1,2},

Var

1
n

n∑
i=1

I(Wi = wk)

 ≤ 1
n2

n∑
i=1

ρi =O(n−q) = o(1).

By Markov’s inequality, for k ∈ {1,2},

1
n

n∑
i=1

I(Wi = wk) =
1
n

n∑
i=1

P(Wi = w1)− o
P

(1) ≥ cπ − oP(1).

Therefore,

D ≥ c2
D(cπ − oP(1))(cπ − oP(1)) ≥ c2

Dc
2
π − oP(1).

�

Based on Lemma B.1.2 and B.1.3, we can derive an asymptotic linear expansion for the RIPW

estimator.

Theorem B.1.2. Under Assumptions B.1.2 and B.1.3,

D(τ̂ − τ∗) =N∗ +
1
n

n∑
i=1

(Vi −E[Vi]) +O
P

(n−q) ,

where

N∗ =
1

2n

n∑
i=1

E[Vi] = E[Γwy]E[Γθ]−E[Γ w]>E[Γ y]− τ∗
(
E[Γww]E[Γθ]−E[Γ w]>E[Γ w]

)
.

Furthermore,

τ̂ − τ∗ =O
P

(|N∗|) +O
P

(n−q).
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Proof. Note that

D(τ̂ − τ∗) =N − τ∗D.

By Lemma B.1.2,

∣∣∣(Γwy −E[Γwy])(Γθ −E[Γθ])
∣∣∣+

∣∣∣(Γ w −E[Γ w])>(Γ y −E[Γ y])
∣∣∣

≤1
2

{
(Γwy −E[Γwy])2 + (Γθ −E[Γθ])2 + ‖Γ w −E[Γ w]‖22 + ‖Γ y −E[Γ y]‖22

}
=O

P

(
Var(Γwy) + Var(Γθ) + Var(Γ w) + Var(Γ y)

)
=O

P
(n−q).

Let

Vi1 = Θi

{
E[Γwy]−E[Γ y]>JWi +E[Γθ]W >

i JỸ
obs
i −E[Γ w]>JỸ obs

i

}
.

Then,

N = E[Γwy]E[Γθ]−E[Γ w]>E[Γ y] +
1
n

n∑
i=1

(Vi1 −E[Vi1]) +O
P

(n−q),

Similarly,

D = E[Γww]E[Γθ]−E[Γ w]>E[Γ w] +
1
n

n∑
i=1

(Vi2 −E[Vi2]) +O
P

(n−q),

where

Vi2 = Θi

{
E[Γww]−E[Γ w]>JWi +E[Γθ]W >

i JWi −E[Γ w]>JWi

}
.

Since Vi = Vi1 − τ∗Vi2,

D(τ̂ − τ∗) =N − τ∗D =N∗ +
1
n

n∑
i=1

(Vi −E[Vi]) +O
P

(n−q).

This proves the first statement.

Next, we prove the second statement on τ̂ −τ∗. By Lemma B.1.3, 1/D =O
P

(1). It is left to show that

1
n

n∑
i=1

(Vi −E[Vi]) = o
P

(1).

Applying the inequality that Var(Z1 +Z2) = 2Var(Z1)+2Var(Z2)−Var(Z1−Z2) ≤ 2(Var(Z1)+Var(Z2)),

we obtain that

1
4

Var(Vi1)
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≤Var
(
ΘiE[Γwy]

)
+ Var

(
ΘiE[Γθ]W >

i JỸ
obs
i

)
+ Var

(
ΘiE[Γ w]>JỸ obs

i

)
+ Var

(
ΘiE[Γ y]>JWi

)
≤E

(
ΘiE[Γwy]

)2
+E

(
ΘiE[Γθ]W >

i JỸ
obs
i

)2
+E

(
ΘiE[Γ w]>JỸ obs

i

)2
+E

(
ΘiE[Γ y]>JWi

)2

(i)
≤ 1

c2
π

{
(E[Γwy])2 + (E[Γθ])2

E(W >
i JỸ

obs
i )2 +E

(
E[Γ w]>JỸ obs

i

)2
+E

(
E[Γ y]>JWi

)2
}

(ii)
≤ 1

c2
π

{
(E[Γwy])2 + (E[Γθ])2

E‖Wi‖22E‖Ỹ
obs
i ‖

2
2 + ‖E[Γ w]‖22E‖Ỹ

obs
i ‖

2
2 + ‖E[Γ y]‖22E‖Wi‖22

}
(iii)
≤ 1

c2
π

{
(E[Γwy])2 + T (E[Γθ])2

E‖Ỹ obs
i ‖

2
2 + ‖E[Γ w]‖22E‖Ỹ

obs
i ‖

2
2 + T ‖E[Γ y]‖22

}
,

where (i) follows from the Assumption B.1.2 that Θi ≤ 1/cπ almost surely, (ii) follows from the

Cauchy-Schwarz inequality and the fact that ‖J‖op = 1, and (iii) follows from the fact that ‖Wi‖22 ≤ T .

By Lemma B.1.2, we obtain that for all i ∈ [n],

(B.1.7) Var(Vi1) ≤ C1

(
1 +E‖Ỹ obs

i ‖
2
2

)
≤ C1

(
1 +E‖Ỹi(0)‖22 +E‖Ỹi(1)‖22

)
,

for some constant C1 that only depends on cπ and T . Similarly, we have that Var(Vi2) ≤ C2 for some

constant C2 that only depends on cπ and T . By Assumption B.1.3,

τ∗ =
1
nT

n∑
i=1

T∑
t=1

(
E[Ỹit(1)]−E[Ỹit(0)]

)
=O(1).

Therefore,

Var(Vi) ≤ 2Var(Vi1) + 2(τ∗)2Var(Vi2) ≤ C
(
1 +E‖Ỹi(0)‖22 +E‖Ỹi(1)‖22

)
.

for some constant C that only depends on cπ and T . Since Vi is a function of Zi , by Lemma B.1.1

and Assumption B.1.3,

Var

1
n

n∑
i=1

Vi

 ≤ 1
n2

n∑
i=1

Var(Vi)ρi = o(1).

By Chebyshev’s inequality,
1
n

n∑
i=1

(Vi −E[Vi]) = o
P

(1).

The proof is then completed. �

B.1.3.2. DATE equation and consistency. Theorem B.1.2 shows that the asymptotic limit of

D(τ̂ − τ∗) is N∗. For consistency, it remains to prove that N∗ = o(1). We start by proving that the

asymptotic bias is zero when either the treatment or the outcome model is perfectly estimated.
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Lemma B.1.4. Under Assumptions B.1.1, B.1.2, and B.1.3, N∗ = 0, if either (1) ∆yi = 0 for all i ∈ [n],

or (2) ∆πi = 0 for all i ∈ [n], and Π satisfies the DATE equation (3.2.13).

Proof. Without loss of generality, we assume that τ∗ = 0; otherwise, we replace Yit(1) by

Yit(1)− τ∗ and the resulting τ̂ becomes τ̂ − τ∗. Then

N∗ = E[Γwy]E[Γθ]−E[Γ w]>E[Γ y].

It remains to prove that N∗ = 0. Note that

Ỹ obs
i = Ỹi(0) + diag(Wi)τi .

Since (π̂i ,m̂i) are deterministic, by Assumption B.1.1,

E[Γwy] =
1
n

n∑
i=1

E[ΘiW
>
i JỸ

obs
i ] =

1
n

n∑
i=1

E[ΘiW
>
i J(Ỹi(0) + diag(Wi)τi)]

=
1
n

n∑
i=1

E[ΘiJWi]
>
E[Ỹi(0)] +

1
n

n∑
i=1

E[ΘiW
>
i J diag(Wi)]τi .

Similarly,

E[Γ y] =
1
n

n∑
i=1

E[Θi]JE[Ỹi(0)] +
1
n

n∑
i=1

E[Θi diag(Wi)]τi .

As a result,

N∗ =
1
n

n∑
i=1

{E[ΘiJWi]E[Γθ]−E[Θi]E[Γ w]}>E[Ỹi(0)]

+
1
n

n∑
i=1

{
E[ΘiW

>
i J diag(Wi)]E[Γθ]−E[Γ w]>E[Θi diag(Wi)]

}
τi .(B.1.8)

If ∆yi = 0, m̂i = mi and τi = 0 (because τ∗ = 0). By (B.1.1), E[Ỹi(0)] = 0. It is then obvious from

(B.1.8) that N∗ = 0.

If ∆πi = 0, π̂i = πi and thus for any function f (·),

E[Θif (Wi)] =
∑

w∈{0,1}T

Π(w)
πi(w)

f (w)πi(w) = EW∼Π[f (W )].
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As a result,

E[ΘiJWi] = EW∼Π[JW ] = E[Γ w], E[Θi] = 1 = E[Γθ],

and

E[ΘiW
>
i J diag(Wi)] = EW∼Π[W J diag(W )], E[Θi diag(Wi)] = EW∼Π[diag(W )].

Then

E[ΘiJWi]E[Γθ]−E[Θi]E[Γ w] = EW∼Π[JW ]−EW∼Π[JW ] = 0,

and by DATE equation,

E[ΘiW
>
i J diag(Wi)]E[Γθ]−E[Γ w]>E[Θi diag(Wi)]

= EW∼Π[(W −EW∼Π[W ])>J diag(W )]

= EW∼Π[(W −EW∼Π[W ])>JW ]ξ>.

By (B.1.8),

N∗ =
1
n

n∑
i=1

EW∼Π[(W −EW∼Π[W ])>JW ]ξ>τi

= EW∼Π[(W −EW∼Π[W ])>JW ]

1
n

n∑
i=1

ξ>τi


= EW∼Π[(W −EW∼Π[W ])>JW ]τ∗ = 0.

�

Next, we prove a general bound for the asymptotic bias N∗ as a function of (∆yi ,∆πi)
n
i=1.

Theorem B.1.3. Let Π be an solution of the DATE equation (3.2.13). Under Assumptions B.1.1,

B.1.2, and B.1.3,

|N∗| =O
(
∆̄π∆̄y

)
.

Proof. As in the proof of Lemma B.1.4, we assume that τ∗ = 0. Let

Θ∗i =
Π(Wi)
πi(Wi)

, Ỹ ∗obs
i = Y obs

i −mi .

Further, let Γ ∗θ and Γ ∗w be the counterpart of Γθ and Γ w with (Θi , Ỹ
obs
i ) replaced by (Θ∗i , Ỹ

∗obs
i ). For

any function f : {0,1}T 7→R such that E[f 2(Wi)] ≤ C1 for some constant C1 > 0, by Cauchy-Schwarz
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inequality,

E[Θif (Wi)−Θ∗i f (Wi)] = E[(Θi −Θ∗i )f (Wi)] ≤
√
C1

√
E

(
Θi −Θ∗i

)2

=
√
C1

√
E

[
Π(Wi)2

π̂i(Wi)2πi(Wi)2 (π̂i(Wi)−πi(Wi))
2
]
≤
√
C1

c2
π

∆πi .(B.1.9)

Thus, there exists a constant C2 that only depends on cπ and T such that

|E[Θi]−E[Θ∗i ]|+ ‖E[ΘiJWi]−E[Θ∗i JWi]‖2 + ‖E[ΘiW
>
i J diag(Wi)]−E[Θ∗iW

>
i J diag(Wi)]‖2

+ ‖E[Θi diag(Wi)]−E[Θ∗i diag(Wi)]‖op ≤ C2∆πi .

By triangle inequality and Cauchy-Schwarz inequality, we also have

|E[Γθ]−E[Γ ∗θ]|+ ‖E[Γ w]−E[Γ ∗w]‖ ≤ C2

n

n∑
i=1

∆πi ≤ C2∆̄π.

On the other hand, by Lemma B.1.2, there exists a constant C3 that only depends on cπ and T ,

|E[Γθ]|+ ‖E[Γ w]‖2 ≤ C3.

Without loss of generality, we assume that

C3 ≥ 1 + ‖EW∼Π[JW ]‖2 = E[Θ∗i ] + ‖E[Θ∗i JWi]‖2.

Putting pieces together,∣∣∣∣∣E[ΘiJWi]E[Γθ]−E[Θi]E[Γ w]−
(
E[Θ∗i JWi]E[Γ ∗θ]−E[Θ∗i ]E[Γ ∗w]

) ∣∣∣∣∣
≤

∣∣∣E[ΘiJWi]−E[Θ∗i JWi]
∣∣∣ ·E[Γθ] +

∣∣∣E[Θi]−E[Θ∗i ]
∣∣∣ · ‖E[Γ w]‖2

+
∣∣∣E[Γθ]−E[Γ ∗θ]

∣∣∣ · ‖E[Θ∗i JWi]‖2 +
∥∥∥E[Γ w]−E[Γ ∗w]

∥∥∥ ·E[Θ∗i ]

≤ 2C3C2(∆πi + ∆̄π).

Similarly, ∣∣∣∣∣E[ΘiW
>
i J diag(Wi)]E[Γθ]−E[Γ w]>E[Θi diag(Wi)]

−
(
E[Θ∗iW

>
i J diag(Wi)]E[Γ ∗θ]−E[Γ ∗w]>E[Θ∗i diag(Wi)]

) ∣∣∣∣∣
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≤ 2C3C2(∆πi + ∆̄π).

Let

N ′∗ =
1
n

n∑
i=1

{
E[Θ∗i JWi]E[Γ ∗θ]−E[Θ∗i ]E[Γ ∗w]

}>
E[Ỹi(0)]

+
1
n

n∑
i=1

{
E[Θ∗iW

>
i J diag(Wi)]E[Γ ∗θ]−E[Γ ∗w]>E[Θ∗i diag(Wi)]

}
τi .

Using the same arguments as in the proof of Lemma B.1.4,

E[Θ∗i JWi]E[Γ ∗θ]−E[Θ∗i ]E[Γ ∗w] = 0,

and

E[Θ∗iW
>
i J diag(Wi)]E[Γ ∗θ]−E[Γ ∗w]>E[Θ∗i diag(Wi)] = EW∼Π[(W −EW∼Π[W ])>JW ]ξ>.

Then

N ′∗ =
1
n

n∑
i=1

EW∼Π[(W −EW∼Π[W ])>JW ]ξ>τi = EW∼Π[(W −EW∼Π[W ])>JW ]τ∗ = 0.

This entails that

|N∗| = |N∗ −N ′∗ | ≤
2C3C2

n

n∑
i=1

(∆πi + ∆̄π)(‖E[Ỹi(0)]‖2 + ‖τi‖2).

By (B.1.1),

‖E[Ỹi(0)]‖2 = E[‖m̂i −mi‖2].

Since (1/n)
∑n
i=1∆yi ≤

√
(1/n)

∑n
i=1∆

2
yi ,

|N∗| ≤
2C3C2

n

n∑
i=1

(∆πi + ∆̄π)∆yi = 4C3C2∆̄π∆̄y .

The proof is then completed. �

B.1.3.3. Doubly robust inference. Theorem B.1.2 and Theorem B.1.3 imply the following proper-

ties of RIPW estimators.
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Theorem B.1.4. Let Π be an solution of the DATE equation (3.2.13). Under Assumptions B.1.1,

B.1.2, and B.1.3,

τ̂ − τ∗ = o
P

(1), if ∆̄π∆̄y = o(1).

If, further, q > 1/2 in Assumption B.1.3 and ∆̄π∆̄y = o(1/
√
n),

D ·
√
n(τ̂ − τ∗) =

1
√
n

n∑
i=1

(Vi −E[Vi]) + o
P

(1).

Recalling (B.1.5) that (∆πi ,∆yi) are deterministic, ∆̄π∆̄y = E[∆̄π∆̄y]. Since Assumptions B.1.2

and B.1.3 generalize Assumptions 3.2.1-3.2.3, Theorem B.1.4 implies Theorem 3.2.1 and 3.2.2. For

doubly robust inference, Theorem 3.2.2 assumes that the unconditional expectation of ∆̄π∆̄y is o(1)

or o(1/
√
n). By Markov’s inequality, it implies that E[∆̄π∆̄y] = o(1) or o(1/

√
n) with high probability

(conditional on {(Xi ,Ui) : i = 1, . . . ,n}). Thus, Theorem 3.3.1 is also implied by Theorem B.1.4 since

Assumptions B.1.2 - B.1.3 generalize Assumptions 3.3.2 - 3.3.4.

Throughout the rest of the subsection, we focus on the special case where {Zi : i ∈ [n]} are

independent. In this case, Assumption B.1.3 holds with q = 1 > 1/2 and thus the asymptotically

linear expansion in Theorem B.1.4 holds. To obtain the asymptotic normality and a consistent

variance estimator, we modify Assumption B.1.3 as follows.

Assumption B.1.4. {Zi : i = 1, . . . ,n} are independent (but not necessarily identically distributed),

and there exists ω > 0 such that

1
n

n∑
i=1

{
E‖Ỹi(1)‖2+ω

2 +E‖Ỹi(0)‖2+ω
2

}
=O(1).

To derive the asymptotic normality of the RIPW estimator, we need the following assumption

that prevents the variance from being too small.

Assumption B.1.5. There exists ν0 > 0 such that

σ2 ,
1
n

n∑
i=1

Var(Vi) ≥ ν0.

The following lemma shows the asymptotic normality of the term 1√
n

∑n
i=1(Vi −E[Vi]).
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Lemma B.1.5. Then under Assumptions B.1.2, B.1.4, and B.1.5,

dK

L
 1
√
nσ

n∑
i=1

(Vi −E[Vi])

 ,N (0,1)

→ 0,

where L(·) denotes the probability law, dK denotes the Kolmogorov-Smirnov distance (i.e., the `∞-norm

of the difference of CDFs)

Proof. Since (π̂i ,m̂i) are deterministic, by Assumption B.1.4, {Vi : i ∈ [n]} are independent.

Recalling the definition of Vi , it is easy to see that Assumption B.1.4 implies

(B.1.10)
1
n

n∑
i=1

E|Vi |2+ω =O(1).

By Assumption B.1.4,
n∑
i=1

E

∣∣∣∣∣∣ Vi√nσ
∣∣∣∣∣∣2+ω

=O
(
n−ω/2

)
= o(1).

The proof is completed by the Berry-Esseen inequality (Proposition B.1.1) with g(x) = xω. �

Let V̂i denote the plug-in estimate of Vi , i.e.,

V̂i = Θi

(
Γwy − τ̂Γww

)
−
(
Γ y − τ̂Γ w

)>
JWi + ΓθW

>
i J

(
Ỹ obs
i − τ̂Wi

)
− Γ >wJ

(
Ỹ obs
i − τ̂Wi

).(B.1.11)

We first prove that V̂i is an accurate approximation of Vi on average, even without the independence

assumption.

Lemma B.1.6. Let Π be a solution of the DATE equation. Under Assumptions B.1.1, B.1.2, and

B.1.3,
1
n

n∑
i=1

(V̂i −Vi)2 = o
P

(1), if ∆̄π∆̄y = o(1).

Proof. Let

V̂ ′i = Θi

(
Γwy − τ∗Γww

)
−
(
Γ y − τ∗Γ w

)>
JWi + ΓθW

>
i J

(
Ỹ obs
i − τ∗Wi

)
− Γ >wJ

(
Ỹ obs
i − τ∗Wi

).
Then

V̂i − V̂ ′i = (τ̂ − τ∗)Θi
{
− Γww + Γ >wJWi − ΓθW >

i JWi + Γ >wJWi

}
.
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Under Assumption B.1.2, there exists a constant C that only depends on cπ and T such that

|V̂i − V̂ ′i | ≤ C|τ̂ − τ
∗|.

By Theorem B.1.4,

(B.1.12)
1
n

n∑
i=1

(V̂i − V̂ ′i )
2 =O((τ̂ − τ∗)2) = o

P
(1)

Next,

V̂ ′i −Vi = Θi

(
(Γwy −E[Γwy])− τ∗(Γww −E[Γww])

)
−
(
(Γ y −E[Γ y])− τ∗(Γ w −E[Γ w])

)>
JWi

+ (Γθ −E[Γθ])W >
i J

(
Ỹ obs
i − τ∗Wi

)
− (Γ w −E[Γ w])>J

(
Ỹ obs
i − τ∗Wi

).
By Jensen’s inequality and Assumption B.1.2,

1
n

n∑
i=1

(V̂ ′i −Vi)
2

≤ 5

nc2
π

n∑
i=1

(Γwy −E[Γwy])2 + (Γww −E[Γww])2 · τ∗2 + ‖(Γ y −E[Γ y])‖22 · ‖JWi‖22

+ ‖(Γ w −E[Γ w])‖22 · ‖J(Ỹ
obs
i − 2τ∗Wi)‖22 + (Γθ −E[Γθ])2

(
W >
i J

(
Ỹ obs
i − τ∗Wi

))2


=
5

c2
π

(Γwy −E[Γwy])2 + (Γww −E[Γww])2 · τ∗2 + ‖(Γ y −E[Γ y])‖22 · T

+ ‖(Γ w −E[Γ w])‖22 ·
1
n

n∑
i=1

‖(Ỹ obs
i − 2τ∗Wi)‖22

+ ‖(Γθ −E[Γθ])‖22 ·
T
n

n∑
i=1

‖Ỹ obs
i − τ∗Wi‖22

.
By Lemma B.1.2,

E

1
n

n∑
i=1

(V̂ ′i −Vi)
2

 = o(1).

By Markov’s inequality,

(B.1.13)
1
n

n∑
i=1

(V̂ ′i −Vi)
2 = o

P
(1).
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Putting (B.1.12) and (B.1.13) together, we obtain that

1
n

n∑
i=1

(V̂i −Vi)2 ≤ 2
n

n∑
i=1

{(V̂i − V̂ ′i )
2 + (V̂ ′i −Vi)

2} = o
P

(1).

�

As in Section 3.2, we estimate the (conservative) variance of the term 1√
n

∑n
i=1(Vi −E[Vi]) as

(B.1.14) σ̂2 =
1

n− 1

n∑
i=1

V̂i − 1
n

n∑
i=1

V̂i

2

=
n

n− 1

1
n

n∑
i=1

V̂2
i −

1
n

n∑
i=1

V̂i

2 .
This yields a Wald-type confidence interval for DATE,

(B.1.15) Ĉ1−α = [τ̂ − z1−α/2σ̂ /
√
nD, τ̂ + z1−α/2σ̂ /

√
nD],

where zη is the η-th quantile of the standard normal distribution.

Theorem B.1.5. Assume that ∆̄π∆̄y = o(1/
√
n). Under Assumptions B.1.1, B.1.2, B.1.4, and B.1.5,

liminf
n→∞

P

(
τ∗ ∈ Ĉ1−α

)
≥ 1−α.

Proof. By Theorem B.1.2, Theorem B.1.3, Lemma B.1.5, and Assumption B.1.5,

D ·
√
n(τ̂ − τ∗)
σ

=
1
√
nσ

n∑
i=1

(Vi −E[Vi]) + o
P

(1)
d→N (0,1) in Kolmogorov-Smirnov distance,

As a result,

(B.1.16)
∣∣∣∣∣P(∣∣∣∣∣D ·√n(τ̂ − τ∗)

σ

∣∣∣∣∣ ≤ z1−α/2 ·
σ̂
σ

)
−
{
2Φ

(
z1−α/2 ·

σ̂
σ

)
− 1

}∣∣∣∣∣ = o(1),

where Φ is the cumulative distribution function of the standard normal distribution. Let

(B.1.17) σ2
+ =

1
n

n∑
i=1

E

Vi − 1
n

n∑
i=1

E[Vi]

2

=
1
n

n∑
i=1

E[V2
i ]−

1
n

n∑
i=1

E[Vi]

2

.

Clearly, σ2
+ is deterministic and

σ2
+ = σ2 +

1
n

n∑
i=1

E[Vi]−
1
n

n∑
i=1

E[Vi]

2

≥ σ2.
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It remains to show that

(B.1.18)
∣∣∣∣∣n− 1
n

σ̂2 − σ2
+

∣∣∣∣∣ = o
P

(1).

In fact, by Assumption B.1.5, (B.1.18) implies that√
n− 1
n

σ̂
σ

p
→ σ+

σ
≥ 1 =⇒ σ̂

σ

p
→ σ+

σ
≥ 1.

By continuous mapping theorem,

2Φ
(
z1−α/2 ·

σ̂
σ

)
− 1

p
→ 2Φ

(
z1−α/2 ·

σ+

σ

)
− 1 ≥ 1−α,

which completes the proof.

Now we prove (B.1.18). By Proposition B.1.2 and Jensen’s inequality,

E

∣∣∣∣∣∣∣1n
n∑
i=1

(V2
i −E[V2

i ])

∣∣∣∣∣∣∣
1+ω/2

≤ 2
n1+ω/2

n∑
i=1

E|V2
i −E[V2

i ]|1+ω/2

≤ 21+ω/2

n1+ω/2

n∑
i=1

(
E[|Vi |2+ω] +E[V2

i ]1+ω/2
)
≤ 22+ω/2

n1+ω/2

n∑
i=1

E

[
|Vi |2+ω

]
.

By (B.1.10),

E

∣∣∣∣∣∣∣1n
n∑
i=1

(V2
i −E[V2

i ])

∣∣∣∣∣∣∣
1+ω/2

= o(1).

By Markov’s inequality,

(B.1.19)
1
n

n∑
i=1

(V2
i −E[V2

i ]) = o
P

(1).

Similarly, we have that

(B.1.20)
1
n

n∑
i=1

(Vi −E[Vi]) = o
P

(1).

In addition, (B.1.10) and Hölder’s inequality imply that

1
n

n∑
i=1

E[V2
i ] =O(1),

1
n

n∑
i=1

E[Vi] =O(1).
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As a result,

(B.1.21)
1
n

n∑
i=1

V2
i =O

P
(1),

1
n

n∑
i=1

Vi =O
P

(1).

By Lemma B.1.6, (B.1.21), and Cauchy-Schwarz inequality,∣∣∣∣∣∣∣1n
n∑
i=1

V̂2
i −

1
n

n∑
i=1

V2
i

∣∣∣∣∣∣∣ ≤ 2
n

n∑
i=1

Vi |V̂i −Vi |+
1
n

n∑
i=1

(V̂i −Vi)2

≤ 2

√√
1
n

n∑
i=1

V2
i

√√
1
n

n∑
i=1

(V̂i −Vi)2 +
1
n

n∑
i=1

(V̂i −Vi)2 = o
P

(1).(B.1.22)

Similarly,

(B.1.23)

∣∣∣∣∣∣∣
1
n

n∑
i=1

V̂i

2

−

1
n

n∑
i=1

Vi

2∣∣∣∣∣∣∣ = o
P

(1).

By (B.1.19), (B.1.20), and (B.1.21),∣∣∣∣∣∣∣1n
n∑
i=1

V2
i −

1
n

n∑
i=1

Vi

2

− σ2
+

∣∣∣∣∣∣∣ = o
P

(1).(B.1.24)

Putting (B.1.22) - (B.1.24) together, we complete the proof of (B.1.18). �

B.1.4. Doubly robust inference with deterministic (π̂i ,m̂i) and dependent assignments.

Recall Theorem B.1.4 that

D ·
√
n(τ̂ − τ∗) =

1
√
n

n∑
i=1

(Vi −E[Vi]) + o
P

(1).

This is true even when Zi ’s are dependent as long as Assumption B.1.3 holds. If Vi ’s are observable,

a valid confidence interval for τ∗ can be derived if the distribution of (1/
√
n)

∑n
i=1(Vi −E[Vi]) can be

approximated. Specifically, assume that

(B.1.25)
(1/
√
n)

∑n
i=1(Vi −E[Vi])√

(1/n)Var[
∑n
i=1Vi]

d→N (0,1),

and there exists a conservative oracle variance estimator σ̂ ∗2 based on (V1, . . . ,Vn) in the sense that

(B.1.26)
(1/n)Var[

∑n
i=1Vi]

σ̂ ∗2
≤ 1 + o

P
(1).
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Then, [τ̂ − z1−α/2σ̂
∗/
√
nD, τ̂ + z1−α/2σ̂

∗/
√
nD] is an asymptotically valid confidence interval for τ∗. Of

course, this interval cannot be computed in practice because Vi is unobserved due to the unknown

quantities including E[Γθ],E[Γ w],E[Γ y],E[Γww], E[Γwy], and τ∗. A natural variance estimator can

be obtained by replacing V , (V1, . . . ,Vn) with V̂ , (V̂1, . . . , V̂n) in σ̂ ∗2. The following theorem makes

this intuition rigorous for generic quadratic oracle variance estimators.

Theorem B.1.6. Suppose there exists an oracle variance estimator σ̂ ∗2 such that

(i) σ̂ ∗2 = V>AnV /n for some positive semidefinite (and potentially random) matrix An with ‖An‖op =

O
P

(1);

(ii) σ̂ ∗2 is conservative in the sense that, for every η in a neighborhood of α,

lim
n→∞

P

(∣∣∣∣∣ (1/√n)
∑n
i=1(Vi −E[Vi])
σ̂ ∗

∣∣∣∣∣ ≥ z1−η/2

)
≤ η;

(iii) 1/σ̂ ∗2 =O
P

(1).

Let σ̂2 = V̂>AnV̂ /n and

Ĉ1−α = [τ̂ − z1−α/2σ̂ /
√
nD, τ̂ + z1−α/2σ̂ /

√
nD].

Under Assumptions B.1.1, B.1.2, and B.1.3 with q > 1/2, if Π be an solution of the DATE equa-

tion (3.2.13) and ∆̄π∆̄y = o(1/
√
n),

liminf
n→∞

P

(
τ∗ ∈ Ĉ1−α

)
≥ 1−α.

Proof. By Lemma B.1.6,

1
n
‖V̂ −V ‖22 =

1
n

n∑
i=1

(V̂i −Vi)2 = o
P

(1).

Since An is positive semidefinite, for any ε ∈ (0,1),

(1− ε)σ̂ ∗2 −
(1
ε
− 1

) 1
n

(V̂ −V )>An(V̂ −V ) ≤ σ̂2 ≤ (1 + ε)σ̂ ∗2 +
(1
ε

+ 1
) 1
n

(V̂ −V )>An(V̂ −V )

Thus, for any ε ∈ (0,1),

P

(
σ̂2 < [(1− ε)σ̂ ∗2, (1 + ε)σ̂ ∗2]

)
= o(1).

127



By condition (iii), the above result implies that

(B.1.27)
∣∣∣∣∣ σ̂σ̂ ∗ − 1

∣∣∣∣∣ = o
P

(1).

By Theorem B.1.4,

D ·
√
n(τ̂ − τ∗) =

1
√
n

n∑
i=1

(Vi −E[Vi]) + o
P

(1).

It remains to show that

lim
n→∞

P

(∣∣∣∣∣ (1/√n)
∑n
i=1(Vi −E[Vi])
σ̂

∣∣∣∣∣ ≥ z1−α/2

)
≤ α.

Let η(ε) be the quantity such that z1−η(ε)/2 = z1−α/2 · (1− ε). For any sufficiently small ε such that

η(ε) lies in the neighborhood of α in condition (ii),

P

(∣∣∣∣∣ (1/√n)
∑n
i=1(Vi −E[Vi])
σ̂

∣∣∣∣∣ ≥ z1−α/2

)
= P

(∣∣∣∣∣ (1/√n)
∑n
i=1(Vi −E[Vi])
σ̂ ∗

∣∣∣∣∣ ≥ z1−α/2 ·
σ̂
σ̂ ∗

)
≤ P

(∣∣∣∣∣ (1/√n)
∑n
i=1(Vi −E[Vi])
σ̂ ∗

∣∣∣∣∣ ≥ z1−η(ε)/2

)
+P

( σ̂
σ̂ ∗
≤ 1− ε

)
.

By (B.1.27), when n tends to infinity,

lim
n→∞

P

(∣∣∣∣∣ (1/√n)
∑n
i=1(Vi −E[Vi])
σ̂

∣∣∣∣∣ ≥ z1−α/2

)
≤ η(ε).

The proof is completed by letting ε→ 0 and noting that limε→0η(ε) = α. �

When Wi ’s are independent,

σ̂ ∗2 =
1

n− 1

n∑
i=1

(Vi − V̄ )2.

Thus, An = (n/(n− 1))(In − 1n1Tn /n). Clearly, the condition (i) is satisfied because ‖An‖op = n/(n− 1).

Under the assumptions in Theorem B.1.5, the condition (ii) is satisfied. Moreover, we have shown

that σ̂ ∗2 converges to σ2
+ ≥ σ2 > 0, and thus the condition (iii) is satisfied. Therefore, Theorem B.1.5

can be implied by Theorem B.1.6.

When Vi ’s are observed, the variance estimators are quadratic under nearly all types of depen-

dent assignment mechanisms. This includes completely randomized experiments [Hoeffding, 1951,

Li and Ding, 2017], blocked and matched experiments [Pashley and Miratrix, 2021], two-stage
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randomized experiments [Ohlsson, 1989], and so on. Below, we prove the results for completely

randomized experiments with fixed potential outcomes to illustrate how to apply Theorem B.1.6.

The notation is chosen to mimic Theorem 5 and Proposition 3 in Li and Ding [2017].

Theorem B.1.7. Assume that (Yit(1),Yit(0)) are fixed, and π̂i = πi as in Section 3.2 (while m̂it is

allowed to be non-zero). Consider a completely randomized experiments where the treatment assignments

are sampled without replacement from Q possible assignments {w[1], . . . ,w[Q]} with nq units assigned

w[q]. Let Π be a solution of the DATE equation (3.2.13) with support {w[1], . . . ,w[Q]}, and Vi(q) be the

“potential outcome” for Vi where (Y obs
it ,Wit) is replaced by (Yit(w[q],t),w[q],t), i.e.,

Vi(q) =
Π(w[q])

π̂i(w[q])

(
E[Γwy]− τ∗E[Γww]

)
−
(
E[Γ y]− τ∗E[Γ w]

)>
Jw[q]

+E[Γθ]w>[q]J
(
Ỹi(q)− τ∗w[q]

)
−E[Γ w]>J

(
Ỹi(q)− τ∗w[q]

),
and Ỹi(q) =

(
Yi1(w[q],1)− m̂i1,Yi2(w[q],2)− m̂i2, . . . ,YiT (w[q],T )− m̂iT

)
. Further, for any q,r = 1, . . . ,Q, let

S2
q =

1
n− 1

n∑
i=1

(Vi(q)− V̄ (q))2, Sqr =
1

n− 1

n∑
i=1

(Vi(q)− V̄ (q))(Vi(r)− V̄ (r)),

where V̄ (q) = (1/n)
∑n
i=1Vi(q). Define the variance estimate σ̂2 as

σ̂2 =
Q∑
q=1

nq
n
s2q , where s2q =

1
nq − 1

∑
i:wi=w[q]

(V̂i − ˆ̄V (q))2, ˆ̄V (q) =
1
nq

∑
i:wi=w[q]

V̂i .

Further, define the confidence interval as

Ĉ1−α = [τ̂ − z1−α/2σ̂ /
√
nD, τ̂ + z1−α/2σ̂ /

√
nD].

Assume that

(a) Q =O(1) and nq/n→ πq for some constant πq > 0;

(b) for any q,r = 1, . . . ,Q, S2
q and Sqr have limiting values S∗2q ,S

∗
qr ;

(c) there exists a constant cτ > 0 such that
∑Q
q=1πqS

∗2
q > cτ ;

(d) there exists a constant M <∞ such that maxi,q{|Ỹi(q)− m̂i‖2} <M.

Then,

liminf
n→∞

P

(
τ∗ ∈ Ĉ1−α

)
≥ 1−α.
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Proof. By definition, for any i , j ∈ [n] and q , r ∈ [Q],

P(Wi = w[q]) =
nq
n
, P(Wi =Wj = w[q]) =

nq(nq − 1)

n(n− 1)
, P(Wi = w[q],Wj = w[r]) =

nqnr
n(n− 1)

.

For any functions f and g on [0,1]T ,

E[f (Wi)] =
Q∑
q=1

nq
n
f (w[q]), E[g(Wj )] =

Q∑
q=1

nq
n
g(w[q]),

E[f 2(Wi)] =
Q∑
q=1

nq
n
f 2(w[q]), E[g2(Wj )] =

Q∑
q=1

nq
n
g2(w[q]),

and

E[f (Wi)g(Wi)] =
Q∑
q=1

nq
n
f (w[q])g(w[q]),

E[f (Wi)g(Wj )] =
Q∑
q=1

nq(nq − 1)

n(n− 1)
f (w[q])g(w[q]) +

∑
q,r

nqnr
n(n− 1)

f (w[q])g(w[r]).

As a result, for any i , j

Cov(f (Wi), g(Wj )) = E[f (Wi)g(Wj )]−E[f (Wi)]E[g(Wj )]

=
Q∑
q=1

nq(nq − 1)

n(n− 1)
−
n2
q

n2

f (w[q])g(w[q]) +
∑
q,r

(
nqnr
n(n− 1)

−
nqnr
n2

)
f (w[q])g(w[r])

=
Q∑
q=1

−
nq(n−nq)
n2(n− 1)

f (w[q])g(w[q]) +
∑
q,r

nqnr
n2(n− 1)

f (w[q])g(w[r])

= − 1
n− 1

Q∑
q=1

nq
n
f (w[q])g(w[q]) +

1
n− 1

 Q∑
q=1

nq
n
f (w[q])


 Q∑
q=1

nq
n
g(w[r])


= − 1

n− 1
(E[f (Wi)g(Wi)]−E[f (Wi)]E[g(Wi)])

= − 1
n− 1

Cov(f (Wi), g(Wi))

By Cauchy-Schwarz inequality,

|Cov(f (Wi), g(Wj ))| ≤
1

n− 1
|Cov(f (Wi), g(Wi))|

≤ 1
n− 1

√
Var[f (Wi)]Var[g(Wi)] =

1
n− 1

√
Var[f (Wi)]Var[g(Wj )].
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This implies that

ρij ≤
1

n− 1
=⇒ ρi ≤ 2.

It is then clear that Assumption B.1.3 holds under the condition (d). Further, since π̂i(w[q]) =

πi(w[q]) = nq/n, the condition (a) implies Assumption B.1.2 and that ∆̄π∆̄y = 0 . On the other hand,

Assumption B.1.1 holds because Wi is completely randomized. Therefore, it remains to check the

condition (i) - (iii) in Theorem B.1.6 with

σ̂ ∗2 =
Q∑
q=1

nq
n
s∗2q , where s∗2q =

1
nq − 1

∑
i:wi=w[q]

(Vi − V̄ (q))2, V̄ (q) =
1
nq

∑
i:wi=w[q]

Vi .

In this case, An is a block-diagonal matrix with

An,Iq ,Iq =
nq

nq − 1

Inq − 1nq1
>
nq

nq

 ,
where Iq = {i :Wi = w[q]}. As a result,

‖An‖op = max
q

nq
nq − 1

=O(1).

Thus, the condition (i) holds. The condition (ii) is implied by Proposition 3 in Li and Ding [2017]

and the condition (iii) is implied by the condition (c). The theorem is then imply by Theorem

B.1.6. �

B.1.5. Statistical properties of RIPW estimators with cross-fitted (π̂i ,m̂i). In this section,

we consider the K-fold cross-fitting where K is treated as a constant. Let {Ik : k = 1, . . . ,K} denote

the index sets of each fold, each with size m ∈ {bn/Kc,dn/Ke}. For convenience, we assume that

m = n/K is an integer. All proofs in this subsection can be easily extended to the general case.

For each i ∈ Ik , (π̂i ,m̂i) are estimated using {Zi : i < Ik}. When {Zi : i ∈ [n]} are independent, it

is obvious that

{(π̂i ,m̂i) : i ∈ Ik} ⊥⊥ {Zi : i ∈ Ik}.

We use a superscript (k) to denote the corresponding quantity in fold k, i.e.,

Γ
(k)
θ ,

1
m

∑
i∈Ik

Θi , Γ
(k)
ww ,

1
m

∑
i∈Ik

ΘiW
>
i JWi , Γ

(k)
wy ,

1
m

∑
i∈Ik

ΘiW
>
i JỸ

obs
i ,
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Γ
(k)
w ,

1
m

∑
i∈Ik

ΘiJWi , Γ
(k)
y ,

1
m

∑
i∈Ik

ΘiJỸ
obs
i .

To prove the asymptotic properties of RIPW estimators with cross-fitting, we state an analogy

of Assumption 3.3.5 below.

Assumption B.1.6. There exist deterministic functions {π′i : i ∈ [n]} which satisfy (B.1.3), and vectors

{m′i : i ∈ [n]} such that

1
n

n∑
i=1

{
E[(π̂i(Wi)−π′i(Wi))

2] +E[‖m̂i −m′i‖
2
2]
}

=O(n−r )

for some r > 0. Furthermore,

either π′i = πi for all i, or m′i =mi for all i.

Remark B.1.1. Without loss of generality, we can assume that

(B.1.28) E[∆̄2
π] = Ω(n−r ), E[∆̄2

y] = Ω(n−r ),

where an = Ω(bn) iff bn =O(an). Otherwise, we can replace π′i by πi or m′i by mi to increase r.

Theorem B.1.8. Let {(π̂i ,m̂i) : i = 1, . . . ,n} be estimates obtained from K-fold cross-fitting. Under

Assumption B.1.1, B.1.2, B.1.4, and B.1.6,

(i) τ̂ − τ∗ = o
P

(1) if
√
E[∆̄2

π] ·
√
E[∆̄2

y] = o(1);

(ii) liminfn→∞P

(
τ∗ ∈ Ĉ1−α

)
≥ 1−α if (1)

√
E[∆̄2

π] ·
√
E[∆̄2

y] = o(1/
√
n), (2) Assumption B.1.5 holds

when (π̂i ,m̂i) = (π′i ,m
′
i), and (3) Assumption B.1.6 holds with r > 1/2.

Proof. As in the proof of Theorem B.1.3, we assume τ∗ = 0 without loss of generality. Let(
Γ ′wy ,Γ

′
θ ,Γ
′
w,Γ

′
y

)
and (Θ′i , Ỹ

′obs
i ) be the counterpart of (Γwy ,Γθ ,Γ w,Γ y) and (Θi , Ỹ

obs
i ) with (π̂i ,m̂i)

replaced by (π′i ,m
′
i). We first claim that

(B.1.29) ΓwyΓθ − Γ >wΓ y −
{
Γ ′wyΓ

′
θ − Γ

′>
w Γ ′y

}
=O

P

(
n−min{r,(r ′+1)/2} +

√
E[∆̄2

π] ·
√
E[∆̄2

y]
)
,

where r ′ = rω/(2 +ω). The proof of (B.1.29) is relegated to the end. Here we prove the rest of the

theorem under (B.1.29).
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Note that Γ ′wyΓ
′
θ − Γ

′>
w Γ ′y is the numerator of τ̂ when {(π′i ,m

′
i) : i = 1, . . . ,n} are used as the estimates.

Let

(B.1.30) ∆′πi =
√
E[(π′i(Wi)−πi(Wi))2], ∆′yi =

√
E[‖m′i −mi‖22] + ‖τi‖2,

and

(B.1.31) ∆̄′π =

√√
1
n

n∑
i=1

∆
′2
πi , ∆̄′y =

√√
1
n

n∑
i=1

∆
′2
yi .

By Assumption B.1.6 and (B.1.28) in Remark (B.1.1),

∆̄
′2
π =

1
n

n∑
i=1

∆
′2
πi =

1
n

n∑
i=1

E[∆
′2
πi]

≤ 2
n

n∑
i=1

{
E[∆2

πi] +E[(π̂i(Wi)−π′i(Wi))
2]
}

=O
(
E[∆̄2

π] +n−r
)

=O
(
E[∆̄2

π]
)
.(B.1.32)

Similarly,

(B.1.33) ∆̄
′2
y =

1
n

n∑
i=1

∆
′2
yi =O

(
E[∆̄2

y]
)
.

As a result,

∆̄′π∆̄
′
y =O

(√
E[∆̄2

π] ·
√
E[∆̄2

y]
)
.

Note that Assumption B.1.4 implies Assumption B.1.3 with q = 1. By Theorem B.1.2 and Theorem

B.1.3,

Γ ′wyΓ
′
θ − Γ

′>
w Γ ′y =

1
n

n∑
i=1

(V ′i −E[V ′i ]) +O
P

(√
E[∆̄2

π] ·
√
E[∆̄2

y]
)

+ o
P

(1/
√
n)(B.1.34)

=O
P

(√
E[∆̄2

π] ·
√
E[∆̄2

y]
)

+ o
P

(1),(B.1.35)

where

V ′i = Θ′i

{
E[Γ ′wy]−E[Γ ′y]>JWi +E[Γ ′θ]W >

i JỸ
′obs
i −E[Γ ′w]>JỸ

′obs
i

}
.
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On the other hand, by (B.1.29),

(B.1.36) D(τ̂ − τ∗) = ΓwyΓθ − Γ >wΓ y = Γ ′wyΓ
′
θ − Γ

′>
w Γ ′y +O

P

(
n−min{r,(r ′+1)/2} +

√
E[∆̄2

π] ·
√
E[∆̄2

y]
)
.

When
√
E[∆̄2

π] ·
√
E[∆̄2

y] = o(1), (B.1.35) and (B.1.36) imply that

D(τ̂ − τ∗) = o
P

(1).

The consistency then follows from Lemma B.1.3.

When
√
E[∆̄2

π] ·
√
E[∆̄2

y] = o(1/
√
n) and r > 1/2, (B.1.35) and (B.1.36) imply that

D ·
√
n(τ̂ − τ∗) =

1
√
n

n∑
i=1

(V ′i −E[V ′i ]) + o
P

(1).

Let V̂ ′i denote the plug-in estimate of V ′i assuming that (π′i ,m
′
i) is known, i.e.,

V̂ ′i = Θ′i

{
Γ ′wy − Γ

′>
y JWi + Γ ′θW

>
i JỸ

′obs
i − Γ

′>
w JỸ

′obs
i

}
.(B.1.37)

By Lemma B.1.5, under Assumption B.1.5 (with (π̂i ,m̂i) = (π′i ,m
′
i)),

D ·
√
n(τ̂ − τ∗)
σ ′

d→N (0,1) in Kolmogorov-Smirnov distance,

where

σ
′2 =

1
n

n∑
i=1

Var(V ′i ) ≥ ν0.

Similar to (B.1.17), define

σ
′2
+ =

1
n

n∑
i=1

E

V ′i − 1
n

n∑
i=1

E[V ′i ]

2

=
1
n

n∑
i=1

E[V
′2
i ]−

1
n

n∑
i=1

E[V ′i ]

2

.

Obviously, σ
′2
+ ≥ σ

′2. Furthermore, define an oracle variance estimate σ̂
′2 as

σ̂
′2 =

1
n− 1

n∑
i=1

V̂ ′i − 1
n

n∑
i=1

V̂ ′i

2

=
n

n− 1

1
n

n∑
i=1

V̂
′2
i −

1
n

n∑
i=1

V̂ ′i

2 .
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Recalling (B.1.14) that

σ̂2 =
1

n− 1

n∑
i=1

V̂i − 1
n

n∑
i=1

V̂i

2

=
n

n− 1

1
n

n∑
i=1

V̂2
i −

1
n

n∑
i=1

V̂i

2 .
Similar to (B.1.18) in Theorem B.1.5, it remains to prove that

|σ̂2 − σ
′2
+ | = oP(1).

Using the same arguments as in Theorem B.1.5, we can prove that

|σ̂
′2 − σ

′2
+ | = oP(1).

Therefore, the proof will be completed if

(B.1.38) |σ̂2 − σ̂
′2| = o

P
(1).

We present the proof of (B.1.38) in the end.

Proof of (B.1.29): Let
(
Γ
′(k)
wy ,Γ

′(k)
θ ,Γ

′(k)
w ,Γ

′(k)
y

)
be the counterpart of (Γ (k)

wy ,Γ
(k)
θ ,Γ

(k)
w ,Γ

(k)
y ) with (π̂i ,m̂i)

replaced by (π̃i ,m̃i). Since the proof is lengthy, we decompose it into seven steps.

Step 1 By triangle inequality and Cauchy-Schwarz inequality,

|Γwy − Γ ′wy |

≤ 1
n

n∑
i=1

|ΘiW >
i JỸ

obs
i −Θ′iW

>
i JỸ

′obs
i |

≤ 1
n

n∑
i=1

∣∣∣ΘiW >
i J(m̂i −m′i)

∣∣∣+
1
n

n∑
i=1

∣∣∣(Θi −Θ′i )W >
i JỸ

′obs
i

∣∣∣
≤

√√1
n

n∑
i=1

‖ΘiW >
i J‖

2
2


1
n

n∑
i=1

‖m̂i −m′i‖
2
2


+

√√1
n

n∑
i=1

‖(Θi −Θ′i )W
>
i J‖

2
2


1
n

n∑
i=1

‖Ỹ ′obs
i ‖22

.
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By Assumption B.1.5 and Hölder’s inequality,

1
n

n∑
i=1

E[‖Ỹ
′obs
i ‖22] ≤

1
n

n∑
i=1

E[‖Ỹ
′obs
i ‖2+ω

2 ]

2/(2+ω)

=O(1).

By Markov’s inequality,

(B.1.39)
1
n

n∑
i=1

‖Ỹ
′obs
i ‖22 =O

P
(1).

By Assumption B.1.2 and the boundedness of ‖WiJ‖2,

1
n

n∑
i=1

‖ΘiW >
i J‖

2
2 =O(1),

and, further, by Markov’s inequality,

1
n

n∑
i=1

‖(Θi −Θ′i )W
>
i J‖

2
2 =O

P

1
n

n∑
i=1

E[(π̂i(Wi)−π′i(Wi))
2]

 .
Putting pieces together and using Assumption B.1.6, we arrive at

|Γwy − Γ ′wy | =OP
(n−r/2).

Similarly, we can prove that

(B.1.40) |Γwy − Γ ′wy |+ |Γθ − Γ ′θ |+ ‖Γ w − Γ
′
w‖2 + ‖Γ y − Γ ′y‖2 =O

P
(n−r/2).

As a consequence,

(B.1.41)
∣∣∣(Γwy − Γ ′wy)(Γθ − Γ ′θ)− (Γ w − Γ ′w)>(Γ y − Γ ′y)

∣∣∣ =O
P

(n−r ).

Step 2 Note that Assumption B.1.4 implies Assumption B.1.3 with q = 1. By Lemma B.1.2,

∣∣∣Γ ′θ −E[Γ ′θ]
∣∣∣+

∣∣∣Γ ′wy −E[Γ ′wy]
∣∣∣+

∥∥∥Γ ′w −E[Γ ′w]
∥∥∥

2
+
∥∥∥Γ ′y −E[Γ ′y]

∥∥∥
2

=O
P

(
n−1/2

)
.

By (B.1.40), we have∣∣∣∣∣(Γwy − Γ ′wy)(Γ ′θ −E[Γ ′θ]) + (Γ ′wy −E[Γ ′wy])(Γθ − Γ ′θ)

− (Γ w − Γ ′w)>(Γ ′y −E[Γ ′y])− (Γ ′w −E[Γ ′w])>(Γ y − Γ ′y)
∣∣∣∣∣ =O

P
(n−(r+1)/2).(B.1.42)
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Step 3 Note that

Γwy − Γ ′wy =
1
K

K∑
k=1

(
Γ

(k)
wy − Γ

′(k)
wy

)
.

For each k,

Γ
(k)
wy − Γ

′(k)
wy =

1
m

∑
i∈Ik

(ΘiW
>
i JỸ

obs
i −Θ′iW

>
i JỸ

′obs
i ).

Under Assumption B.1.4, the summands are independent conditional onD−[k] , {Zi : i < Ik}.

Let E(k) and Var(k) denote the expectation and variance conditional on D−k (and {(Xi ,Ui) :

i ∈ [n]}). By Chebyshev’s inequality,(
Γ

(k)
wy − Γ

′(k)
wy −E(k)[Γ (k)

wy − Γ
′(k)
wy ]

)2

=O
P

 1
m2

∑
i∈Ik

Var(k)
(
ΘiW

>
i JỸ

obs
i −Θ′iW

>
i JỸ

′obs
i

)
(i)
= O

P

 1
n2

n∑
i=1

E
(k)

(
ΘiW

>
i JỸ

obs
i −Θ′iW

>
i JỸ

′obs
i

)2


(ii)
= O

P

 1
n2

n∑
i=1

E

(
ΘiW

>
i JỸ

obs
i −Θ′iW

>
i JỸ

′obs
i

)2
 ,(B.1.43)

where (i) follows from K =O(1) and (ii) applies Markov’s inequality. By Jensen’s inequality

and Cauchy-Schwarz inequality,

E

(
ΘiW

>
i JỸ

obs
i −Θ′iW

>
i JỸ

′obs
i

)2

≤ 2
{
E

(
ΘiW

>
i J(m̂i −m′i)

)2
+E

(
(Θi −Θ′i )W

>
i JỸ

′obs
i

)2
}

≤ 2
{
E

[
‖ΘiW >

i J‖
2
2(m̂i −m′i)

2
]
+E

[
(Θi −Θ′i )

2(W >
i JỸ

′obs
i )2

]}
≤ C

{
E

[
(m̂i −m′i)

2
]
+E

[
(π̂i(Wi)−π′i(Wi))

2(Ỹ
′obs
i )2

]}
,(B.1.44)

where C is a constant that only depends on cπ and T . The second term can be bounded by

1
n

n∑
i=1

E

[
(π̂i(Wi)−π′i(Wi))

2(Ỹ
′obs
i )2

]
= E

1
n

n∑
i=1

(π̂i(Wi)−π′i(Wi))
2(Ỹ

′obs
i )2


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(i)
≤ E


1
n

n∑
i=1

(π̂i(Wi)−π′i(Wi))
2(1+2/ω)

ω/(2+ω) 1
n

n∑
i=1

(Ỹ
′obs
i )2+ω

2/(2+ω)
(ii)
≤

1
n

n∑
i=1

E

[
(π̂i(Wi)−π′i(Wi))

2(1+2/ω)
]ω/(2+ω) 1

n

n∑
i=1

E

[
(Ỹ
′obs
i )2+ω

]2/(2+ω)

(iii)
≤

1
n

n∑
i=1

E(π̂i(Wi)−π′i(Wi))
2

ω/(2+ω) 1
n

n∑
i=1

E

[
(Ỹ
′obs
i )2+ω

]2/(2+ω)

,

where (i) applies the Hölder’s inequality for sums, (ii) applies the Hölder’s inequality that

E[XY ] ≤ E[X(2+ω)/ω]ω/(2+ω)
E[Y (2+ω)/2]2/(2+ω), and (iii) uses the fact that |π̂i(Wi)−π′i(Wi)| ≤ 1.

By Assumptions B.1.5 and B.1.6,

(B.1.45)
1
n

n∑
i=1

E

[
(π̂i(Wi)−π′i(Wi))

2(Ỹ
′obs
i )2

]
=O

(
n−rω/(2+ω)

)
=O

(
n−r

′)
(B.1.44) and (B.1.45) together imply that

(B.1.46)
1
n

n∑
i=1

E

(
ΘiW

>
i JỸ

obs
i −Θ′iW

>
i JỸ

′obs
i

)2
=O

(
n−r

′)
.

By (B.1.43), for each k,

Γ
(k)
wy − Γ

′(k)
wy −E(k)[Γ (k)

wy − Γ
′(k)
wy ] =O

P

(
n−(r ′+1)/2

)
.

Since K =O(1), it implies that∣∣∣∣∣∣∣Γwy − Γ ′wy − 1
K

K∑
k=1

E
(k)[Γ (k)

wy − Γ
′(k)
wy ]

∣∣∣∣∣∣∣ =O
P

(
n−(r ′+1)/2

)
.

Similarly, we have∣∣∣∣∣∣∣Γθ − Γ ′θ − 1
K

K∑
k=1

E
(k)[Γ (k)

θ − Γ
′(k)
θ ]

∣∣∣∣∣∣∣+

∥∥∥∥∥∥∥Γ w − Γ ′w − 1
K

K∑
k=1

E
(k)[Γ (k)

w − Γ
′(k)
w ]

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥Γ y − Γ ′y − 1
K

K∑
k=1

E
(k)[Γ (k)

y − Γ
′(k)
y ]

∥∥∥∥∥∥∥
2

=O
P

(
n−(r ′+1)/2

)
.

By Lemma B.1.2,

|E[Γ ′θ]|+ |E[Γ ′wy]|+ ‖E[Γ ′w]‖2 + ‖E[Γ ′y]‖2 =O(1).
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Therefore, ∣∣∣∣∣
Γwy − Γ ′wy − 1

K

K∑
k=1

E
(k)[Γ (k)

wy − Γ
′(k)
wy ]

E[Γ ′θ]

+E[Γ ′wy]

Γθ − Γ ′θ − 1
K

K∑
k=1

E
(k)[Γ (k)

θ − Γ
′(k)
θ ]


−

Γ w − Γ ′w − 1
K

K∑
k=1

E
(k)[Γ (k)

w − Γ
′(k)
w ]


>

E[Γ ′y]

−E[Γ ′w]>
Γ y − Γ ′y − 1

K

K∑
k=1

E
(k)[Γ (k)

y − Γ
′(k)
y ]

 ∣∣∣∣∣
=O

P
(n−(r ′+1)/2).(B.1.47)

Step 4 Note that E[Γ ′wy]E[Γ ′θ]−E[Γ ′w]>E[Γ ′y] is the limit of D ·
√
n(τ̂ −τ∗) when {(π′i ,m

′
i) : i = 1, . . . ,n}

are plugged in as the estimates. Under Assumption B.1.6, either π′i = πi for all i ∈ [n] or

m′i =mi for all i ∈ [n]. Then, by Lemma B.1.4,

(B.1.48) E[Γ ′wy]E[Γ ′θ]−E[Γ ′w]>E[Γ ′y] = 0.

Step 5 We shall prove that

1
K

K∑
k=1

∣∣∣∣E(k)[Γ (k)
wy ]E[Γ ′θ]−E[Γ ′w]>E(k)[Γ (k)

y ]
∣∣∣∣ =O

(√
E[∆̄2

π] ·
√
E[∆̄2

y]
)
.(B.1.49)

By definition, we can write

∆πi =
√
E

(k)[(π̂i(Wi)−πi(Wi))2], ∆yi =
√
E

(k)[‖m̂i −mi‖22] + ‖τi − τ∗1T ‖2, ∀i ∈ Ik .

By Assumption B.1.1 and B.1.4,

E
(k)[Γ (k)

wy ] =
1
m

∑
i∈Ik

E
(k)[ΘiW

>
i JỸ

obs
i ]

=
1
m

∑
i∈Ik

E
(k)[ΘiW

>
i JỸi(0)] +

1
m

∑
i∈Ik

E
(k)[ΘiW

>
i J diag(Wi)τi]

=
1
m

∑
i∈Ik

E
(k)[ΘiW

>
i J]E

(k)[Ỹi(0)] +
1
m

∑
i∈Ik

E
(k)[ΘiW

>
i J diag(Wi)]τi .
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Similarly,

E
(k)[Γ (k)

y ] =
1
m

∑
i∈Ik

E
(k)[ΘiJ]E

(k)[Ỹi(0)] +
1
m

∑
i∈Ik

E
(k)[ΘiJ diag(Wi)]τi .

Putting the pieces together and using the fact that E[Γ ′w]>J = E[Γ ′w]>,E(k)[Γ w]>J = E
(k)[Γ w]>,

E
(k)[Γ (k)

wy ]E[Γ ′θ]−E[Γ
′

w]>E(k)[Γ (k)
y ]

=
1
m

∑
i∈Ik

{
E

(k)[ΘiW
>
i J diag(Wi)]E[Γ ′θ]−E[Γ ′w]>E(k)[ΘiJ diag(Wi)]

}
τi .

+
1
m

∑
i∈Ik

{
E

(k)[ΘiW
>
i J]E[Γ ′θ]−E[Γ ′w]>E(k)[Θi]

}
E

(k)[Ỹi(0)]

,
1
m

∑
i∈Ik

a>i1τi +
1
m

∑
i∈Ik

a>i2E
(k)[Ỹi(0)](B.1.50)

As in the proof of Theorem B.1.3. Let

Θ∗i =
Π(Wi)
πi(Wi)

, Ỹ ∗obs
i = Y obs

i −mi ,

and (Γ ∗θ ,Γ
∗
w) be the counterpart of (Γθ ,Γ w) with (Θi , Ỹ

obs
i ) replaced by (Θ∗i , Ỹ

∗obs
i ). Recalling

(B.1.9) on page 119, there exists a constant C1 that only depends on cπ and T such that

∣∣∣E(k)[(Θi −Θ∗i )W
>
i J diag(Wi)]

∣∣∣+
∥∥∥E(k)[(Θi −Θ∗i )JWi]

∥∥∥
2

+
∣∣∣E(k)[Θi −Θ∗i ]

∣∣∣
+
∥∥∥E(k)[(Θi −Θ∗i )J diag(Wi)]

∥∥∥
op
≤ C1∆πi .(B.1.51)

where ∆′πi and ∆̄′π are defined in (B.1.30) and (B.1.31), respectively. Then,∣∣∣∣∣E(k)[ΘiW
>
i J diag(Wi)]E[Γ ′θ]−

(
E[Θ∗iW

>
i J diag(Wi)]E[Γ ∗θ]

) ∣∣∣∣∣
≤

∣∣∣E(k)[ΘiW
>
i J diag(Wi)]−E[Θ∗iW

>
i J diag(Wi)]

∣∣∣ ·E[Γ ′θ]

+E[Θ∗iW
>
i J diag(Wi)] · |(E[Γ ′θ]−E[Γ ∗θ])|

≤ C1(E[Γ ′θ] ·∆πi +E[Θ∗iW
>
i J diag(Wi)] · ∆̄′π).
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Note that E[Θ∗iW
>
i J diag(Wi)] = EW∼Π[W >J diag(W )] ≤ T is a constant. By Assumption

B.1.2, E[Γθ] ≤ 1/cπ. Thus,∥∥∥∥ai1 − (E[Θ∗iW
>
i J diag(Wi)]E[Γ ∗θ]−E[Γ ∗w]>E[Θ∗i J diag(Wi)]

)∥∥∥∥
2

≤ C2(∆πi + ∆̄′π),(B.1.52)

for some constant C2 that only depends on cπ and T . Let

a∗i1 = E[Θ∗iW
>
i J diag(Wi)]E[Γ ∗θ]−E[Γ ∗w]>E[Θ∗i J diag(Wi)].

Since ‖τi‖2 ≤ ∆yi ,∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ik

a>i1τi −
1
m

∑
i∈Ik

a∗>i1 τi

∣∣∣∣∣∣∣∣ ≤ C3

m

∑
i∈Ik

(∆πi + ∆̄′π)∆yi .(B.1.53)

On the other hand, by definition of Θ∗i ,

E[Θ∗iW
>
i J diag(Wi)] = EW∼Π[W >J diag(W )], E[Θ∗i J diag(Wi)] = EW∼Π[J diag(W )],

and

E[Γ ∗θ] =
1
n

n∑
i=1

E[Θ∗i ] = 1, E[Γ ∗w] =
1
n

n∑
i=1

E[Θ∗i JWi] = EW∼Π[JW ].

Thus,

a∗>i1 = EW∼Π[W >J diag(W )]−EW∼Π[JW ]>EW∼Π[J diag(Wi)]

= EW∼Π[(W −EW∼Π[W ])>J diag(W )].

By the DATE equation,

a∗>i1 = EW∼Π[(W −EW∼Π[W ])>JW ]ξ>.

As a consequence,

(B.1.54)
1
m

∑
i∈Ik

a∗>i1 τi = EW∼Π[(W −EW∼Π[W ])>JW ] ·

 1
m

∑
i∈Ik

ξ>τi

 .
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Now we turn to the second and third terms of (B.1.50). Similar to (B.1.52), we can show

that

‖ai2‖2 = ‖ai2 − (E[Γ ∗w]>E[Γ ∗θ]−E[Γ ∗w]>E[Γ ∗θ])‖2 ≤ C3(∆πi + ∆̄′π),

for some constant C3 that only depends on cπ and T . By (B.1.1), ‖Ỹi(0)‖2 ≤ ∆yi . Therefore,

(B.1.55)

∣∣∣∣∣∣∣∣ 1
m

∑
i∈Ik

a>i2E
(k)[Ỹi(0)]

∣∣∣∣∣∣∣∣ ≤ C3

m

∑
i∈Ik

(∆πi + ∆̄′π)∆yi .

Putting (B.1.50), (B.1.53), (B.1.54), and (B.1.55) together, we arrive at∣∣∣∣∣∣∣∣E(k)[Γ (k)
wy ]E[Γ ′θ]−E[Γ

′

w]>E[Γ (k)
y ]−EW∼Π[(W −EW∼Π[W ])>JW ] ·

 1
m

∑
i∈Ik

ξ>τi


∣∣∣∣∣∣∣∣

≤ C4

m

∑
i∈Ik

(∆πi + ∆̄′π)∆yi ,

for some constant C4 that only depends on cπ and T . Since τ∗ = 0,

1
K

K∑
k=1

 1
m

∑
i∈Ik

ξ>τi

 =
1
n

n∑
i=1

ξ>τi = τ∗ = 0

Therefore, averaging over k and marginalizing over D−k yields that

1
K

K∑
k=1

∣∣∣∣E(k)[Γwy]E[Γ ′θ]−E[Γ ′w]>E(k)[Γ (k)
y ]

∣∣∣∣ =O

1
n

n∑
i=1

E

[
(∆πi + ∆̄′π)∆yi

] .
By Cauchy-Schwarz inequality,

1
K

K∑
k=1

∣∣∣∣E(k)[Γwy]E[Γ ′θ]−E[Γ ′w]>E(k)[Γ (k)
y ]

∣∣∣∣
=O

1
n

n∑
i=1

√
E

[
(∆πi + ∆̄′π)2

]√
E

[
∆2
yi

]
=O


√√

1
n

n∑
i=1

E

[
(∆πi + ∆̄′π)2

]√√1
n

n∑
i=1

E

[
∆2
yi

]
=O


√√

1
n

n∑
i=1

(
E[∆2

πi] +E[∆̄
′2
π ]

)√√1
n

n∑
i=1

E[∆2
yi]


=O

(√
E[∆̄2

π] +E[∆̄
′2
π ] ·

√
E[∆̄2

y]
)
.

142



Therefore, (B.1.49) is proved by (B.1.32) and (B.1.33) on page 133.

Step 6 Next, we shall prove that

1
K

K∑
k=1

∣∣∣∣E[Γ ′wy]E(k)[Γ (k)
θ − Γ

′(k)
θ ]−E(k)[Γ (k)

w − Γ
′(k)
w ]>E[Γ ′y]

∣∣∣∣ =O
(√

E[∆̄2
π] ·

√
E[∆̄2

y]
)
.(B.1.56)

Using the same argument as (B.1.51), we can show that

∥∥∥E[(Θ′i −Θi)JWi]
∥∥∥

2
+
∣∣∣E[Θ′i −Θi]

∣∣∣ ≤ C1(∆′πi +∆πi).

Averaging over i ∈ Ik , we obtain that

(B.1.57) |E(k)[Γ (k)
θ ]−E(k)[Γ

′(k)
θ ]|+ ‖E(k)[Γ (k)

w ]−E(k)[Γ
′(k)
w ]‖2 ≤ C1(∆̄′π + ∆̄π) =O

(
∆̄π

)
,

where the last step uses Remark B.1.1. On the other hand,

E[Γ ′wy] =
1
n

n∑
i=1

E[Θ′iW
>
i JỸ

′obs
i ]

=
1
n

n∑
i=1

E[Θ′iW
>
i JỸ

′
i (0)] +

1
n

n∑
i=1

E[Θ′iW
>
i J diag(Wi)τi]

=
1
n

n∑
i=1

E[Θ′iW
>
i J]E[Ỹ ′i (0)] +

1
n

n∑
i=1

E[Θ′iW
>
i J diag(Wi)]τi .

Note that

‖E[Θ′iW
>
i J]‖2 ≤

√
T
cπ
, ‖E[Θ′iW

>
i J diag(Wi)]‖2 ≤

T
cπ
, ‖E[Ỹ ′i (0)]‖2 + ‖τi‖2 ≤ ∆yi .

As a result, there exists a constant C5 that only depends on cπ and T such that

|E[Γ ′wy]| ≤ C5

n

n∑
i=1

∆yi ≤ C5∆̄y .

Similarly,

‖E[Γ ′y]‖2 ≤ C5∆̄y .

Together with (B.1.57), we prove (B.1.56).

Step 7 Consider the following decompositions:

ΓwyΓθ − Γ ′wyΓ ′θ
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= (Γwy − Γ ′wy)(Γθ − Γ ′θ)

+ (Γwy − Γ ′wy)(Γ ′θ −E[Γ ′θ]) + (Γ ′wy −E[Γ ′wy])(Γθ − Γ ′θ)

+

Γwy − Γ ′wy − 1
K

K∑
k=1

E
(k)[Γ (k)

wy − Γ
′(k)
wy ]

E[Γ ′θ] +E[Γ ′wy]

Γθ − Γ ′θ − 1
K

K∑
k=1

E
(k)[Γ (k)

θ − Γ
′(k)
θ ]


− 1
K

 K∑
k=1

E
(k)[Γ

′(k)
wy ]

 ·E[Γ ′θ]

+
1
K

 K∑
k=1

E
(k)[Γ (k)

wy ]

 ·E[Γ ′θ]

+E[Γ ′wy] · 1
K

 K∑
k=1

E
(k)[Γ (k)

θ − Γ
′(k)
θ ]

 ,
and

Γ >wΓ y − Γ
′>
w Γ ′y

= (Γ w − Γ ′w)>(Γ y − Γ ′y)

+ (Γ w − Γ ′w)>(Γ ′y −E[Γ ′y]) + (Γ ′w −E[Γ ′w])>(Γ y − Γ ′y)

+

Γ w − Γ ′w − 1
K

K∑
k=1

E
(k)[Γ (k)

w − Γ
′(k)
w ]


>

E[Γ ′y] +E[Γ ′w]>
Γ y − Γ ′y − 1

K

K∑
k=1

E
(k)[Γ (k)

y − Γ
′(k)
y ]


−E[Γ ′w]>

1
K

 K∑
k=1

E
(k)[Γ

′(k)
y ]


+E[Γ ′w]>

1
K

 K∑
k=1

E
(k)[Γ (k)

y ]


+

1
K

 K∑
k=1

E
(k)[Γ (k)

w − Γ
′(k)
w ]


>

E[Γ ′y].

Since (π′i ,m
′
i)’s are deterministic,

1
K

 K∑
k=1

E
(k)[Γ

′(k)
wy ]

 ·E[Γ ′θ] =
1
K

 K∑
k=1

E[Γ
′(k)
wy ]

 ·E[Γ ′θ] = E[Γ ′wy]E[Γ ′θ],
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and

E[Γ ′w]>
1
K

 K∑
k=1

E
(k)[Γ

′(k)
y ]

 = E[Γ ′w]>
1
K

 K∑
k=1

E[Γ
′(k)
y ]

 = E[Γ ′w]>E[Γ ′y].

By (B.1.41), (B.1.42), (B.1.47), (B.1.48), (B.1.49), (B.1.56), and triangle inequality,

ΓwyΓθ − Γ >wΓ y −
{
Γ ′wyΓ

′
θ − Γ

′>
w Γ ′y

}
=O

P

(
n−r +n−(r+1)/2 +n−(r ′+1)/2 +

√
E[∆̄2

π] ·
√
E[∆̄2

y]
)
.

The proof of (B.1.29) is then completed.

Proof of (B.1.38): let

V̂ ′′i = Θ′i

{
Γwy − Γ >y JWi + ΓθW

>
i JỸ

′obs
i − Γ >wJỸ

′obs
i

}
.(B.1.58)

Recalling the definition of V̂ ′i in (B.1.37) on page 134,

|V̂ ′i − V̂
′′
i | ≤ |Γwy − Γ

′
wy | ·Θ′i + ‖Γ y − Γ ′y‖2 · ‖Θ′iJWi‖2

+ |Γθ − Γ ′θ | · |Θ
′
iW
>
i JỸ

′obs
i |+ ‖Γ w − Γ ′w‖2 · ‖Θ′iJỸ

′obs
i ‖2

≤
{
|Γwy − Γ ′wy |+ ‖Γ y − Γ ′y‖2 + |Γθ − Γ ′θ |+ ‖Γ w − Γ

′
w‖2

}
·
{
Θ′i + ‖Θ′iJWi‖2 + |Θ′iW

>
i JỸ

′obs
i |+ ‖Θ′iJỸ

′obs
i ‖2

}
By Jensen’s inequality and Cauchy-Schwarz inequality,

1
n

n∑
i=1

(V̂ ′i − V̂
′′
i )2

≤ 4
{
|Γwy − Γ ′wy |+ ‖Γ y − Γ ′y‖2 + |Γθ − Γ ′θ |+ ‖Γ w − Γ

′
w‖2

}2
· 1
n

n∑
i=1

{
Θ
′2
i + ‖Θ′iJWi‖22 + |Θ′iW

>
i JỸ

′obs
i |2 + ‖Θ′iJỸ

′obs
i ‖22

}
≤ 8T

c2
π

{
|Γwy − Γ ′wy |2 + ‖Γ y − Γ ′y‖22 + |Γθ − Γ ′θ |

2 + ‖Γ w − Γ ′w‖22
}
· 1
n

n∑
i=1

{
1 + ‖Ỹ

′obs
i ‖22

}
,

where the last inequality uses Assumption B.1.2. By (B.1.39) and (B.1.40) on page 136,

(B.1.59)
1
n

n∑
i=1

(V̂ ′i − V̂
′′
i )2 =O

P
(n−r ) = o

P
(1).
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On the other hand, recalling the definition of V̂i in (B.1.11) on page 122,

|V̂ ′′i − V̂i | ≤ |Γwy | · |Θ
′
i −Θi |+ ‖Γ y‖2 · ‖(Θ

′
i −Θi)JWi‖2

+ |Γθ | · |Θ′iW
>
i JỸ

′obs
i −ΘiW >

i JỸ
obs
i |+ ‖Γ w‖2 · ‖Θ

′
iJỸ

′obs
i −ΘiJỸ obs

i ‖2

+Θi τ̂
{
|Γww|+ |Γ >wJWi |+ |ΓθW >

i JWi |+ |Γ >wJWi |
}

≤
{
|Γwy |+ ‖Γ y‖2 + |Γθ |+ ‖Γ w‖2

}
·
{
|Θ′i −Θi |+ ‖(Θ

′
i −Θi)JWi‖2

+ |Θ′iW
>
i JỸ

′obs
i −ΘiW >

i JỸ
obs
i |+ ‖Θ

′
iJỸ

′obs
i −ΘiJỸ obs

i ‖2
}

+Θi |τ̂ |
{
|Γww|+ |Γ >wJWi |+ |ΓθW >

i JWi |+ |Γ >wJWi |
}
.

Since ‖JWi‖2 ≤
√
T ,

‖(Θ′i −Θi)JWi‖2 ≤
√
T |Θ′i −Θi |.

By triangle inequality,

|Θ′iW
>
i JỸ

′obs
i −ΘiW >

i JỸ
obs
i |

≤ |ΘiW >
i JỸ

′obs
i −ΘiW >

i JỸ
obs
i |+ |Θ

′
iW
>
i JỸ

′obs
i −ΘiW >

i JỸ
′obs
i |

≤
√
T
cπ
‖Ỹ

′obs
i − Ỹ

′obs
i ‖2 +

√
T ‖Ỹ obs

i ‖2 · |Θ
′
i −Θi |

=

√
T
cπ
‖m̂i −m′i‖2 +

√
T ‖Ỹ

′obs
i ‖2 · |Θ′i −Θi |.

Similarly,

‖Θ′iJỸ
′obs
i −ΘiJỸ obs

i ‖2

≤ ‖ΘiJỸ
′obs
i −ΘiJỸ obs

i ‖2 + ‖Θ′iJỸ
′obs
i −ΘiJỸ

′obs
i ‖2

≤ 1
cπ
‖Ỹ

′obs
i − Ỹ obs

i ‖2 + ‖Ỹ
′obs
i ‖2 · |Θ′i −Θi |

=
1
cπ
‖m̂i −m′i‖2 + ‖Ỹ

′obs
i ‖2 · |Θ′i −Θi |

Putting pieces together, we have that

(V̂ ′′i − V̂i)
2
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≤ C
{
|Γwy |+ ‖Γ y‖2 + |Γθ |+ ‖Γ w‖2

}2 {
|Θ′i −Θi |

2 · (1 + ‖Ỹ
′obs
i ‖22) + ‖m̂i −m′i‖

2
2

}
+C|τ̂ |

{
|Γww|+ |Γ >wJWi |+ |ΓθW >

i JWi |+ |Γ >wJWi |
}
,

for some constant C that only depends on cπ and T . By Lemma B.1.2 and Markov’s inequality,

|Γwy |+ ‖Γ y‖2 + |Γθ |+ ‖Γ w‖2 =O
P

(1), |Γww|+ |Γ >wJWi |+ |ΓθW >
i JWi |+ |Γ >wJWi | =O(1).

By the first part of the theorem,

|τ̂ | = o
P

(1).

Therefore,

(B.1.60)
1
n

n∑
i=1

(V̂ ′′i − V̂i)
2 =O

P

1
n

n∑
i=1

{
|Θ′i −Θi |

2 · (1 + ‖Ỹ
′obs
i ‖22) + ‖m̂i −m′i‖

2
2

}+ o
P

(1).

By Assumption B.1.2 and B.1.6,

1
n

n∑
i=1

E[|Θ′i −Θi |
2] =

1
n

n∑
i=1

E

[
Π(Wi)2

π̂i(Wi)2π′i(Wi)2 |π̂i(Wi)−π′i(Wi)|2
]

≤ 1

c2
π

n∑
i=1

E[(π̂i(Wi)−π′i(Wi))
2] =O(n−r ) = o(1).

By Assumption B.1.6,
1
n

n∑
i=1

E

[
‖m̂i −m′i‖

2
2

]
=O(n−r ) = o(1).

By Markov’s inequality, we obtain that

(B.1.61)
1
n

n∑
i=1

|Θ′i −Θi |
2 +

1
n

n∑
i=1

‖m̂i −m′i‖
2
2 = o

P
(1).

By Hölder’s inequality,

1
n

n∑
i=1

|Θ′i −Θi |
2 · ‖Ỹ

′obs
i ‖22 ≤

1
n

n∑
i=1

|Θ′i −Θi |
2(1+2/ω)

ω/(2+ω) 1
n

n∑
i=1

‖Ỹ
′obs
i ‖2+ω

2

2/(2+ω)

.

By Markov’s inequality and Assumption B.1.4,

1
n

n∑
i=1

‖Ỹ
′obs
i ‖2+ω

2 =O
P

1
n

n∑
i=1

E[‖Ỹ
′obs
i ‖2+ω

2 ]

 =O
P

(1).
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By Assumption B.1.2,

1
n

n∑
i=1

E

[
|Θ′i −Θi |

2(1+2/ω)
]

=
1
n

n∑
i=1

E

[
Π(Wi)2(1+2/ω)

π̂i(Wi)2(1+2/ω)π′i(Wi)2(1+2/ω)
|π̂i(Wi)−π′i(Wi)|2(1+2/ω)

]

≤ 1

c
4(1+2/ω)
π

1
n

n∑
i=1

E

[
(π̂i(Wi)−π′i(Wi))

2(1+2/ω)
]

(i)
≤ 1

c
4(1+2/ω)
π

1
n

n∑
i=1

E

[
(π̂i(Wi)−π′i(Wi))

2
]

=O (n−r ) = o(1),

where (i) uses the fact that |π̂i(Wi)−π′i(Wi)| ≤ 1. Thus, by Markov’s inequality,

(B.1.62)
1
n

n∑
i=1

|Θ′i −Θi |
2 · ‖Ỹ

′obs
i ‖22 = o

P
(1).

Putting (B.1.60), (B.1.61), and (B.1.62) together, we conclude that

(B.1.63)
1
n

n∑
i=1

(V̂ ′′i − V̂i)
2 = o

P
(1).

By Jensen’s inequality, (B.1.59), and (B.1.63),

(B.1.64)
1
n

n∑
i=1

(V̂ ′i − V̂i)
2 ≤ 2

n

n∑
i=1

(V̂ ′i − V̂
′′
i )2 +

2
n

n∑
i=1

(V̂ ′′i − V̂i)
2 = o

P
(1).

By Lemma B.1.2, it is easy to see that

(B.1.65)

∣∣∣∣∣∣∣1n
n∑
i=1

V̂i

∣∣∣∣∣∣∣
2

≤ 1
n

n∑
i=1

V̂2
i =O

P
(1).

As a result, ∣∣∣∣∣∣∣1n
n∑
i=1

V̂ ′i −
1
n

n∑
i=1

V̂i

∣∣∣∣∣∣∣ ≤ 1
n

n∑
i=1

|V̂ ′i − V̂i | ≤

√√
1
n

n∑
i=1

(V̂ ′i − V̂i)2 = o
P

(1).

Together with (B.1.65), it implies that∣∣∣∣∣∣∣
1
n

n∑
i=1

V̂ ′i

2

−

1
n

n∑
i=1

V̂i

2∣∣∣∣∣∣∣ = o
P

(1).
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On the other hand, by triangle inequality, Cauchy-Schwarz inequality, and (B.1.65),∣∣∣∣∣∣∣1n
n∑
i=1

V̂
′2
i −

1
n

n∑
i=1

V̂2
i

∣∣∣∣∣∣∣ ≤ 2
n

n∑
i=1

V̂i(V̂ ′i − V̂i) +
1
n

n∑
i=1

(V̂ ′i − V̂i)
2

≤ 2

√√
1
n

n∑
i=1

V̂2
i

√√
1
n

n∑
i=1

(V̂ ′i − V̂i)2 +
1
n

n∑
i=1

(V̂ ′i − V̂i)
2 = o

P
(1).

Therefore,

|σ̂2 − σ̂
′2| ≤

∣∣∣∣∣∣∣1n
n∑
i=1

V̂2
i −

1
n

n∑
i=1

V̂
′2
i

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
1
n

n∑
i=1

V̂i

2

−

1
n

n∑
i=1

V̂ ′i

2∣∣∣∣∣∣∣ = o
P

(1).

�

B.1.6. Miscellaneous.

Proposition B.1.1. [Petrov [1975], p. 112, Theorem 5] Let X1,X2, . . . ,Xn be independent random

variables such that E[Xj] = 0, for all j. Assume also E[X2
j g(Xj)] <∞ for some function g that is non-

negative, even, and non-decreasing in the interval x > 0, with x/g(x) being non-decreasing for x > 0.

Write Bn =
∑
j Var[Xj ]. Then,

dK

L
 1
√
Bn

n∑
j=1

Xj

 ,N (0,1)

 ≤ A

Bng(
√
Bn)

n∑
j=1

E

[
X2
j g(Xj )

]
,

where A is a universal constant, L(·) denotes the probability law, dK denotes the Kolmogorov-Smirnov

distance (i.e., the `∞-norm of the difference of CDFs)

Proposition B.1.2 (Theorem 2 of von Bahr and Esseen [1965]). Let {Zi}i=1,...,n be independent

mean-zero random variables. Then for any a ∈ [0,1),

E

∣∣∣∣∣ n∑
i=1

Zi

∣∣∣∣∣1+a

≤ 2
n∑
i=1

E|Zi |1+a.

B.2. Solving the DATE equation

For notational convenience, denote by h(Π) = (h1(Π), . . . ,hT (Π)) the LHS of the DATE equation.

We start by a simple but useful observation that, for any Π,

1>T h(Π) = EW∼Π
[
(1>T diag(W )− 1>T ξW

>)J(W −EW∼Π[W ])
]

= EW∼Π
[
(W > −W >)J(W −EW∼Π[W ])

]
= 0.(B.2.1)
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Thus, there is at least one redundant equation and for any matrix V ∈RT×(T−1) with V >1T = 0,

(B.2.2) h(Π) = 0⇐⇒ V >h(Π) = 0.

B.2.1. Proof of equation (3.4.1). Set V = (1,−1)> in (B.2.2). Then

V >h(Π) = 0⇐⇒ h1(Π)− h2(Π) = 0.

As a result,

0 = EW∼Π

((W1,−W2)− (ξ1 − ξ2)(W1,W2))

 1 −1

−1 1


W1 −EW∼Π[W1]

W2 −EW∼Π[W2]




= EW∼Π[(W1 +W2 − (ξ1 − ξ2)(W1 −W2))(W1 −W2 −EW∼Π(W1 −W2))]

= EW∼Π[W 2
1 −W

2
2 − (ξ1 − ξ2)(W1 −W2)2]−EW∼Π[W1 +W2 − (ξ1 − ξ2)(W1 −W2)]EW∼Π(W1 −W2)

= EW∼Π[W1 −W2 − (ξ1 − ξ2)(W1 −W2)2]−EW∼Π[W1 +W2 − (ξ1 − ξ2)(W1 −W2)]EW∼Π(W1 −W2)

= (Π(1,0)−Π(0,1))− (ξ1 − ξ2)(Π(1,0) +Π(0,1))

− {Π(1,0) +Π(0,1) + 2Π(1,1)− (ξ1 − ξ2)(Π(1,0)−Π(0,1))} {Π(1,0)−Π(0,1)}

= (Π(1,0)−Π(0,1))− (ξ1 − ξ2)(Π(1,0) +Π(0,1))

− {1 +Π(1,1)−Π(0,0)− (ξ1 − ξ2)(Π(1,0)−Π(0,1))} {Π(1,0)−Π(0,1)} .

Rearranging the terms yields

(B.2.3) {Π(1,1)−Π(0,0)}{Π(1,0)−Π(0,1)} = (ξ1 − ξ2)
{
(Π(1,0)−Π(0,1))2 − (Π(1,0) +Π(0,1))

}
.

B.2.2. Proof of Theorem 3.4.1. Let ej denote the j-th canonical basis in R
T . Then

hj(Π) = e>j EW∼Π
[
(diag(W )− ξW >)J(W −EW∼Π[W ])

]
.

We can decompose hj(Π) into hj1(Π)− ξjh2(Π) where

hj1(Π) = e>j EW∼Π [diag(W )J(W −EW∼Π[W ])] , h2(Π) = EW∼Π
[
W >J(W −EW∼Π[W ])

]
.
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Then

hj1(Π) = EW∼Π
[
Wje

>
j J(W −EW∼Π[W ])

]
= EW∼Π

[
Wje

>
j JW

]
−EW∼Π

[
Wje

>
j J

]
EW∼Π[W ]

= EW∼Π

[
Wj

(
Wj −

1>TW
T

)]
−EW∼Π

[
Wj

]
e>j JEW∼Π[W ]

= EW∼Π

[
Wj

(
Wj −

1>TW
T

)]
−EW∼Π

[
Wj

]
EW∼Π

[
Wj −

1>TW
T

]
= EW∼Π[Wj ]− (EW∼Π[Wj ])

2 +
EW∼Π[Wj ]EW∼Π[1>TW ]

T
−
EW∼Π[Wj(1

>
TW )]

T
,

where the last equality follows from the fact that W 2
j = Wj . By (B.2.2), it is equivalent to find Π

satisfying

∆hj(Π) = hj+1(Π)− hj(Π) = 0, j = 1,2, . . . ,T − 1.

In this case, ξj+1 = ξj for any j, and thus,

(B.2.4) h(j+1)1(Π)− hj1(Π) = 0, j = 1,2, . . . ,T − 1.

By definition,

(B.2.5) Wj+1 −Wj = I(W = w(T−j)).

As a consequence, we have

EW∼Π[Wj+1]−EW∼Π[Wj ] = Π(w(T−j)),

(EW∼Π[Wj+1])2 − (EW∼Π[Wj ])
2 = Π(w(T−j))

2 + 2Π(w(T−j))EW∼Π[Wj ],

and

EW∼Π[Wj+1(1>TW )]−EW∼Π[Wj(1
>
TW )]

= EW∼Π[I(W = w(T−j))(1
>
Tw(T−j))] = (T − j)Π(w(T−j)).

As a result,

h(j+1)1(Π)− hj1(Π)
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= Π(w(T−j))
{

1−Π(w(T−j))− 2EW∼Π[Wj ] +
EW∼Π[1>TW ]

T
−
T − j
T

}
= Π(w(T−j))

{
j

T
−Π(w(T−j))− 2EW∼Π[Wj ] +

EW∼Π[1>TW ]
T

}
.(B.2.6)

Let

(B.2.7) gj(Π) =
T − j
T
−Π(w(j))− 2EW∼Π[WT−j ] +

EW∼Π[1>TW ]
T

.

Thus, (B.2.4) can be reformulated as

(B.2.8) Π(w(j)) = 0 or gj(Π) = 0, j = 1,2, . . . ,T − 1.

Since S
∗ = {w(0),w(j1), . . . ,w(jr ),w(T )}, Π(w(jk)) > 0 for each k = 1, . . . , r. As a result, (B.2.8) is equivalent

to

(B.2.9) gjr (Π) = 0, gjk (Π)− gjk+1
(Π) = 0, k = 1, . . . , r − 1.

Note that

WT−jk = 1⇐⇒W ∈ {w(jk+1), . . . ,w(T )}.

The first equation is equivalent to

T − jr
T
−Π(w(jr ))− 2Π(w(T )) +

1
T

 r∑
k=1

jkΠ(w(jk)) + TΠ(w(T ))

 = 0

⇐⇒Π(w(T )) =
T − jr
T
−Π(w(jr )) +

1
T

r∑
k=1

jkΠ(w(jk)).(B.2.10)

By (B.2.5),

EW∼Π[WT−jk ]−EW∼Π[WT−jk+1
] = PW∼Π

(
W ∈ {w(jk+1),w(jk+2), . . . ,w(jk+1)}

)
= PW∼Π

(
W = w(jk+1)

)
= Π(w(jk+1)).

Therefore, the second equation of (B.2.8) can be simplified to

(B.2.11) Π(w(jk+1)) +Π(w(jk)) =
jk+1 − jk
T

, k = 1, . . . , r − 1.
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Finally the simplex constraint determines Π(w̃(0)) as

(B.2.12) Π(w(0)) = 1−Π(w(T ))−
r∑
k=1

Π(w(jk)).

Clearly, Π(w(j1)) determines all other Π(W(jk))’s. Therefore, the solution set of (B.2.10) - (B.2.12) is

a one-dimensional linear subspace. The solution set of the DATE equation is empty if it has no

intersection with the set {Π : Π(w(jk)) > 0, r = 1, . . . , r}; otherwise, it must be a segment which can be

characterized as {λΠ(1) + (1−λ)Π(2) : λ ∈ (0,1)}.

B.2.3. Proof of Theorem 3.4.2. Let η = (Π(w̃(1)), . . . ,Π(w̃(T ))) ∈ R
T . Then the DATE equa-

tion can be equivalently formulated as

T∑
j=1

(
diag(w̃(j))− ξw̃>(j)

)
J(w̃(j) −η)ηj = 0.

Since w̃(j) = ej , diag(w̃(j)) = eje
>
j and we can reformulate the above equation as

T∑
j=1

(
ej − ξ

)
e>j J(ej −η)ηj = 0⇐⇒

T∑
j=1

fj(η)ej =


T∑
j=1

fj(η)

ξ.
where fj(η) = e>j J(ej −η)ηj . It can be equivalently formulated as an equation on η and a scalar b:

(B.2.13)
T∑
j=1

fj(η)ej = bξ.

This is because for any η that satisfies (B.2.13), multiplying 1>T on both sides implies that

b = b(ξ>1T ) =
T∑
j=1

fj(η).

Taking the j-th entry of both sides, (B.2.13) yields that

(B.2.14) fj(η) = ξjb.

By definition,

fj(η) = ηj
(
e>j Jej − e

>
j Jη

)
= ηj

1− 1
T
− ηj +

1
T

T∑
j=1

ηj

 .
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Since Π should be supported on {w̃(0), w̃(1), . . . , w̃(T )},

T∑
j=1

ηj =
T∑
j=1

Π(w̃(j)) = 1−Π(w̃(0)).

Therefore, (B.2.14) is equivalent to

Π(w̃(j))
(
1−Π(w̃(j))−

Π(w̃(0))

T

)
= ξjb.

B.2.4. Proof of Theorem 3.4.3. Let ‖w‖1 be the L1 norm of w, i.e., ‖w‖1 =
∑n
i=1wi . For given Π

such that

Π (· | ‖w‖1 = k′) ∼Unif(W tra
T ,k′ \W

tra
T ,k′−1), k′ = 1, . . . , k,

By symmetry,

E[W | ‖W ‖1] =
‖W ‖1
T

1T .

By the iterated law of expectation,

EW∼Π[W ] = E‖W ‖1EW∼Π[W | ‖W ‖1] =
EW∼Π[‖W ‖1]

T
1T .

Since J1T = 0, the DATE equation with ξ = 1T /T reduces to

EW∼Π

[(
diag(W )− 1T

T
W >

)
JW

]
= 0.

We will prove the following stronger claim:

EW∼Π

[(
diag(W )− 1T

T
W >

)
JW | ‖W ‖1 = k′

]
= 0, ∀k′ = 1, . . . , k.

Conditional on ‖W ‖1 = k′,

JW =W − k
′

T
1T , diag(W )W =W , W >W =W >1T = k′

Thus,

EW∼Π

[(
diag(W )− 1T

T
W >

)
JW | ‖W ‖1 = k′

]
= EW∼Π

[(
diag(W )− 1T

T
W >

)(
W − k

′

T
1T

)
| ‖W ‖1 = k′

]
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= EW∼Π

[
W − k

′

T
W − k

′1T
T

+
k
′21T
T 2 | ‖W ‖1 = k′

]
= 0.

B.2.5. A general solver via nonlinear programming. When Sdesign = {w̌(1), . . . , w̌(K)}, the DATE

equation can be formulated as a quadratic system. The j-th equation of DATE equation is

(B.2.15) EW∼Π
[
(ejWj −W ξj )

T J(W −EW∼Π[W ])
]

= 0,

Let p = (Π(w̌(1)), . . . ,Π(w̌(K))) ∈ R
T ,A = (w̌(1), . . . , w̌(K)) ∈ R

T×K , B(j) = (B(j)
1 , . . . ,B

(j)
K ) ∈ R

T×K , and

b(j) = (b(j)
1 , . . . , b

(j)
K )> ∈RK , where

B
(j)
k = J(ejw̌(k),j − w̌(k)ξj ) ∈RT , b

(j)
k = w̌>(k)B

(j)
k ∈R.

It is easy to see that B(j) = J(eje
>
j − ξjI)A and b(j) = diag(A>B(j)). Then (B.2.15) can be reformulated

as

p>b(j) −p>(A>B(j))p = 0.

As a result, the DATE equation has a solution iff the minimal value of the following optimization

problem is 0:

(B.2.16) min
T∑
j=1

{p>b(j) −p>(A>B(j))p}2, s.t., p>1 = 1,p ≥ 0.

We can optimize (B.2.16) via the standard BFGS algorithm, with the uniform distribution being

the initial value. When the minimal value with a given initial value is bounded away from zero,

we will try other randomly generated initial values to ensure a thorough search. If none of the

initial values yields a zero objective, we claim that the DATE equation has no solution. Note that

(B.2.16) is a nonconvex problem, the BFGS algorithm is not guaranteed to find the global minimum.

Therefore, it should be viewed as an attempt to find a solution of the DATE equation instead of a

trustable solver.

On the other hand, when the DATE equation has multiple solutions, it is unclear which solution

can be found. In principle, we can add different constraints or regularizers to (B.2.16) in order

to obtain a ”well-behaved” solution. For instance, it is reasonable to find the most dispersed

reshaped function to maximize the sample efficiency. For this purpose, we can find the solution
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that maximizes minkΠ(w̌(k)). This can be achieved by replacing the constraint p ≥ 0 in (B.2.16) by

p ≥ c1 and find the largest c for which the minimal value is zero.

B.3. Aggregated AIPW estimator is not doubly robust in the presence of fixed effects

We are not aware of other doubly robust estimators for DATE when the treatment and outcome

models are defined as in our paper. In absence of dynamic treatment effects, it is tempting to treat

each period as a cross-sectional data, estimate the time-specific ATE τt by an aggregated AIPW

estimator, and aggregate these estimates. To the best of our knowledge, this estimator has not

been proposed in the literature. However, perhaps surprisingly, we show in this section that the

aggregated AIPW estimator is not doubly robust because of the fixed effect terms in the outcome

model (3.3.6).

Specifically, for time period t, the AIPW estimator for τt is defined as

τ̂t =
1
n

n∑
i=1

(
(Yit − Ê[Yit(1) | Xi])Wit

P̂(Wit = 1 | Xi)
− (Yit − Ê[Yit(0) | Xi])(1−Wit)

P̂(Wit = 0 | Xi)
+ Ê[Yit(1) | Xi]− Ê[Yit(0) | Xi]

)
.

Then the aggregated AIPW estimator is defined as

τ̂AIPW =
1
T

T∑
t=1

τ̂t .

It is known that τ̂t is doubly robust in the sense that τ̂t is consistent if either P̂(Wit = 1) or

(Ê[Yit(1) | Xi], Ê[Yit(0) | Xi]) is consistent for all i and t. Importantly, the requirement on the

outcome model for the AIPW estimator is strictly stronger than that for the RIPW estimator; the

former requires both mit and the fixed effects to be consistently estimated while the latter only

requires mit to be consistent. It turns out that the extra requirement leads to tricky problems of the

AIPW estimator.

To demonstrate the failure of the AIPW estimator, we only consider the case with a large sample

size n = 10000 and a constant treatment effect to highlight that the failure is not driven by small

samples or effect heterogeneity. In particular, we consider a standard TWFE model

Yit(0) = αi +γt +mit + εit , mit = Xiβt , τit = τ,

where
∑n
i=1αi =

∑T
t=1γt = 0. The other details are the same as Section 3.5.1.

156



Both the RIPW and the aggregated AIPW estimators require estimates of the treatment and

outcome models. First, we consider a wrong and a correct treatment model:

• (Wrong treatment model): set π̂i(w) = |{j : Wj = w}|/n, i.e., the empirical distribution of

Wi ’s that ignores the covariate;

• (Correct treatment model): set π̂i(w) = |{j :Wj = w,Xj = Xi}|/ |{j : Xj = Xi}|, i.e., the empiri-

cal distribution of Wi ’s stratified by the covariate.

With a large sample, π̂i in the second setting is a consistent estimator of πi . For the aggregated

AIPW estimator, we use the marginal distributions of π̂i as the estimates of marginal propensity

scores. Similarly, we consider a wrong and a correct outcome model:

• (Wrong outcome model): m̂it = 0 for every i and t;

• (Correct outcome model): run unweighted TWFE regression adjusting for interaction

between Xi and time fixed effects, i.e., XiI(t = t′) for each t′ = 1, . . . , t, and set m̂it = Xi β̂t.

With a large sample, the standard theory implies the consistency of β̂t, and hence m̂it ≈mit. Unlike

the RIPW estimator, the aggregated AIPW estimator requires the estimate of full conditional

expectations of potential outcomes, instead of merely m̂it. In this case, a reasonble estimate of the

outcome model can be formulated as

Ê[Yit(0) | Xi] = α̂i + γ̂t +Xi β̂t , Ê[Yit(1) | Xi] = Ê[Yit(0) | Xi] + τ̂ .

For short panels with T =O(1), the time fixed effects γt’s can be estimated via the standard TWFE

regression, which are known to be consistent. However, there is no way to consistently estimate the

unit fixed effect αi since only T samples Yi1, . . . ,YiT can be used for estimation. The central question

is how to estimate αi for the aggregated AIPW estimator. Here we consider three strategies:

(1) using the plug-in estimate of αi ’s, even if they are inconsistent;

(2) pretending that αi does not exist and setting α̂i = 0;

(3) using the Mundlak-type regression estimates proposed by Arkhangelsky and Imbens [2018].

Note that the first strategy cannot be used with cross-fitting because it is impossible to estimate αi

without using the i-th sample.
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Figure B.1. Boxplots of τ̂ − τ for the RIPW, unweighted TWFE, and three versions
of AIPW estimators

”AIPW (w/ FE)” for the one with estimated fixed effects, ”AIPW (w/o FE)” for the one that zeros out the
fixed effects, and ”AIPW (A.I.)” for the one that uses Arkhangelsky and Imbens [2018]’s estimator.

We then consider all four combinations of outcome and treatment modelling. Figure B.1

presents the boxplots of τ̂ − τ for the three versions of AIPW, RIPW, and unweighted TWFE

estimator.

First, we can see that all estimators are unbiased when both models are correct and biased

when both models are wrong. As expected, the RIPW estimator is also unbiased when one of the

model is correct, and the unweighted estimator is unbiased when the outcome model is correct.

However, none of AIPW estimators are doubly robust: the AIPW estimator with estimated fixed

effects is biased when the treatment model is correct, and the AIPW estimator that zeros out fixed

effects or applies Mundlak-type estimator are biased when the outcome model is correct.

The bias of AIPW that zeros out the fixed effects can be attributed to biased estimates of the

outcome model despite including the covariates. The other two AIPW estimators can be attributed

to the dependence between the outcome model estimates on the treatment assignment. In fact,

when T is small, this dependence is nonvanishing no matter how fixed effects are estimated. On

the other hand, the AIPW estimator is valid under a correct treatment model but a wrong outcome

model only when the outcome model estimate is asymptotically independent of the assignments.
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In sum, there is no simple way to estimate fixed effects to make the resulting aggregated AIPW

estimator doubly robust.
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Alfréd Rényi. On measures of dependence. Acta Mathematica Academiae Scientiarum Hungarica, 10

(3-4):441–451, 1959.

James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients when

some regressors are not always observed. Journal of the American statistical Association, 89(427):

846–866, 1994.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational

studies for causal effects. Biometrika, 70(1):41–55, 1983.

168

https://CRAN.R-project.org/package=knockoff


Jonathan Roth and Pedro HC Sant’Anna. Efficient estimation for staggered rollout designs. arXiv

preprint arXiv:2102.01291, 2021.

Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.

Journal of educational Psychology, 66(5):688, 1974.

Pedro HC Sant’Anna and Jun Zhao. Doubly robust difference-in-differences estimators. Journal of

Econometrics, 2020.

David Schoenfeld. Chi-squared goodness-of-fit tests for the proportional hazards regression model.

Biometrika, 67(1):145–153, 1980.

Azeem Shaikh and Panagiotis Toulis. Randomization tests in observational studies with staggered

adoption of treatment. University of Chicago, Becker Friedman Institute for Economics Working

Paper, (2019-144), 2019.

Chelsea L Shover, Corey S Davis, Sanford C Gordon, and Keith Humphreys. Association between

medical cannabis laws and opioid overdose mortality has reversed over time. Proceedings of the

National Academy of Sciences, 116(26):12624–12626, 2019.

James H Stock, Mark W Watson, et al. Introduction to econometrics, volume 3. Pearson New York,

2012.

Xiaojun Sun, Yuan Tian, Yongxin Zhang, Xiaochun Xie, Melissa A Heath, and Zongkui Zhou.

Psychological development and educational problems of left-behind children in rural china.

School Psychology International, 36(3):227–252, 2015.

Paul C Sutton and Robert Costanza. Global estimates of market and non-market values derived from

nighttime satellite imagery, land cover, and ecosystem service valuation. Ecological Economics, 41

(3):509–527, 2002.

Paul C Sutton, Christopher D Elvidge, Tilottama Ghosh, et al. Estimation of gross domestic product

at sub-national scales using nighttime satellite imagery. International Journal of Ecological

Economics & Statistics, 8(S07):5–21, 2007.

Bengt von Bahr and Carl-Gustav Esseen. Inequalities for the r-th absolute moment of a sum of

random variables, 1 ≤ r ≤ 2. The Annals of Mathematical Statistics, 36:299–303, 1965.

Clare Waddington. Livelihood outcomes of migration for poor people. 2003.

Jeffrey M Wooldridge. Econometric analysis of cross section and panel data. MIT press, 2010.

Jeffrey M Wooldridge. Introductory econometrics: A modern approach. Cengage learning, 2015.

169



AO Xiang, Dawei Jiang, and ZHAO Zhong. The impact of rural–urban migration on the health of

the left-behind parents. China Economic Review, 37:126–139, 2016.

Alwyn Young. The african growth miracle. Journal of Political Economy, 120(4):696–739, 2012.

Achim Zeileis. pwt10: Penn World Table (Version 10.x), 2021. URL https://CRAN.R-project.org/

package=pwt10. R package version 10.0-0.

Qiran Zhao, Xiaohua Yu, Xiaobing Wang, and Thomas Glauben. The impact of parental migration

on children’s school performance in rural china. China Economic Review, 31:43–54, 2014.

170

https://CRAN.R-project.org/package=pwt10
https://CRAN.R-project.org/package=pwt10

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Chapter 1. How Does Parental Out-migration Affect Left-behind Children's Schooling Outcomes?
	1.1. Introduction
	1.2. Theoretical Modeling Framework
	1.3. Data
	1.4. Empirical Framework
	1.5. Empirical Results
	1.6. Conclusion and Discussions

	Chapter 2. What Do We See in the Lights? Lights at Night and Measures of National Growth
	2.1. Introduction
	2.2. Model
	2.3. Estimating Average Correlation Coefficients
	2.4. Estimating Individual Correlation Coefficients
	2.5. Conclusion

	Chapter 3. Double Robust Two-Way-Fixed-Effects Regression For Panel Data
	3.1. Introduction
	3.2. Reshaped IPW Estimator and Design-based Inference
	3.3. Doubly Robust Inference
	3.4. Solutions of the DATE equation 
	3.5. Numerical Studies
	3.6. Conclusion

	Appendix A. Long Title of Appendix A 
	A.1. Mathematical Details of The Two-agent Model
	A.2. Complementary empirical results

	Appendix B. Long Title of Appendix B 
	B.1. Statistical Properties of RIPW Estimators
	B.2. Solving the DATE equation
	B.3. Aggregated AIPW estimator is not doubly robust in the presence of fixed effects

	Bibliography



