
UC Irvine
ICS Technical Reports

Title
The SpecSyn design process and human interface

Permalink
https://escholarship.org/uc/item/9759c78s

Authors
Gajski, Daniel
Gong, Jie
Vahid, Frank
et al.

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9759c78s
https://escholarship.org/uc/item/9759c78s#author
https://escholarship.org
http://www.cdlib.org/

The SpecSyn Design Process

and Human Interface

Daniel Gajski
Jie Gong

Frank Vahid

Sanjiv Narayan

C3

Technical Report #93-3 Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Dept. of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

(714) 856-8059

Email : narayan@ics.uci.edu

Abstract

This report describes a presentation on the design methodology and the user's view of the SpecSyn system
design framework. Given an abstract specification of a system, we present specification capture and the
subsequent refinements that will result in synthesizable descriptions. The advantages of the underlying
methodology compared to current approaches are highlighted.

Contents

1 Introduction

1.1 Current Design Methodology 4

1.2 Proposed Design Methodology 6

2 System Design Tasks 8

3 System Design of an Audio-Video Processor 10

3.1 Capturing the Conceptual View

3.2 Main Design Display 12

3.3 Allocating Hardware / Software Modules 14

3.4 Main Display after Allocating HW / SW Modules 16

3.5 Partitioning Behaviors into Hardware & Software 18

3.6 Main Display after Hardware/Software Partitioning 20

3.7 Closeness based Partitioning 22

3.7.1 Variable Partitioning 22

3.7.2 Behavioral Partitioning 22

3.7.3 Channel Partitioning 22

3.8 Closeness-based Variable Partitioning 24

3.9 Iterative-based Variable Partitioning

3.10 System Modules after Partitioning 28

3.11 Binding Generic Memories to Library Components 30

3.12 Main Display after Allocation/Partitioning 32

3.13 Refinement : Hardware/Software Interfacing 34

3.14 Refinement : Arbiter Process Generation

3.15 Refinement : Protocol Selection

3.16 Refinement : Interface Process Generation

3.17 System Design Output 42

4 Conclusions 44

5 References

1 Introduction

As design tools and methodologies become more advanced and reliable, they can be applied to tasks at

progressively higher levels of abstraction in the design process, replacing aA hoc approaches. Previously, the

highest-level tools addressed the task of transforming a behavioral description of a system hardware module

into an equivalent register-transfer level structure, usually assumed to be implemented on a single chip,

through a process called high-level synthesis. Prior to applying such tools, the system functionality must be

divided among a set of system modules, where each module may represent a processor, a microcontroller,

an ASIC, a memory, a predesigned chip or component, a block on a chip, and so on. These modules have

a well-defined set of interconnections. We define system design to be the set of tasks that map system
functionality to system modules [1]. High-level synthesis can be applied to obtain implementations of a
subset of the modules which represent hardware, while other modules require different implementation

techniques such as compilation.

Our motivation for developing a system design methodology and tool is to deal adequately with the rapidly

changing implementation technologies and the growing use of different technologies in a single system.
Such developments require an organized and well-documented approach that includes rapid automated

estimations of the relative quality of alternative mappings of functionality to modules. Also necessary is
the ability to design each module concurrently such that integration of these modules requires only minimal

time.

What is SYSTEM DESIGN?

" Given a conceptual view of the system's functionality,

SYSTEM DESIGN is the set of tasks which will produce

a set of completely specified interconnected MODULES

implementing that functionality. "

Module - hardware, software, chip, blockon a chip, memory

Motivation

Systems are getting increasingly complex

- several chips,
- several technologies,
- HW/SW components, etc.

Copyright (c) 1003
UCli^ ^OLAB

1.1 Current Design Methodology

There are three main stages in the current design methodology.

In the first stage, a conceptual view of the system's desired functionality is developed. This view is

sometimes captured as an English specification.

In the second stage, the system design stage, the functionality is mapped to a set of system modules. A

system designer selects modules and maps functionality through an informal process relyingon past experi
ence and mental or "back-of-the-envelope" estimations of design characteristics such as cost, performance,
size, and power. The resulting modules are usually represented as a block diagram and the functionality
of each module is defined with English or with a behavioral specification language.

In the last stage, an implementation is realized for each of the system modules using various design tools. At
the end of this stage each module is represented as a netlist, a layout, software, or as a library component.

The current approach has several disadvantages:

1. High occurrence of late functionality modifications: System functionality is tested, via simu
lation or prototyping, only after obtaining the various modules. At this stage it is often determined
that the functionality is incorrect or incomplete, but it is more difficult to make major changes or
additions to the system's functionality at this stage than it is at the conceptualization stage. Minor
changes can be made, but sweeping changes require repeating the system design step.

2. Delayed feedback on design decisions; Most of the design decisions are based on previous design
experience and "rules of thumb". It is possible to estimate the design parameters accurately only
after performing system design, thus introducing a significant delay before the effects of any design
decision can be gauged.

3. Incomplete search of design space: Due to the long time required for any qualitative feedback
on design decisions, system design is often performed without examining the many options available
at each design step.

4. Lack of system-design documentation: The only documentation usually consists of the mod
ule descriptions, from which it can be difficult to understand the desired system functionality and
the system design decisions. This lack of documentation makes redesign of the system for another
application difficult, and personnel changes can have disastrous consequences.

Current Methodology

conceptualization Design
Representation

English

Tools Design Evaluation

concept

system
design

system modules

module
Implementation

custom/semi-custom/
programmed

module implementations

Specification
Language or
English +
Block Diagrams

netlists,
layouts,
0 code

Manual

Manual, High-
level Synthesis,
Logic Synthesis,
Physical Design

Disadvantages:

- Too many decisions without complete specification.

- Feedback on system design decisions takes too much time.

- Incomplete search of design space.

- Lack of documentation.

Manual

Estimators,
Simulators,
Lib. components,
Layouts

ILlUfSnTll

1.2 Proposed Design Methodology

In order to address some of the shortcomings inherent in the current methodology, we propose an alternative

approach to system design.

In the proposed methodology [2], the conceptual view of system functionality is first captured using an
executable specification language, such as VHDL [3, 4] or SpecCharts [1,5, 6, 7]. The specification language
should have the capability of capturing the conceptual view with minimal designer effort. By using an
executable language [8,9], the completeness and correctness of the system's functionality can be ascertained

before any design has been performed, so changes are made early and thus are not difficult.

A system-design tool is then used to present an abstract design view that allows the designer to allocate

system modifies and partition functionality among those modules. Each such mapping is evaluated by
automated estimators [10,11], providingrapid feedback on the relative quality of alternative solutions. Once
a satisfactory design is found, the original system specification is refined into a set of module specifications.
Tofurther reduce the workload of the designer, the tasks of module allocation, partitioning, and refinement
can be automated by various tools [12, 13, 14].

Once the system modules have been completely specified as a result of system design tasks, we can use

software generators and hardware design compilers [15, 16] to obtain a software/hardware implementation
of each module.

By capturing desired functionality with an executable specification language and using automated estima
tors, the disadvantages of the current methodology are overcome.

Proposed Methodology
conceptualization

concept

system
design

system modules

module
Implementation

custom/semi-custom/
programmed

module implementations

Design
Representation

Specification
Language

Specification
Language or
English +
Block Diagrams

netlists,
layouts,
C code

Tools

Partitioning,
Allocation,
Refinement

Manual, High-
level Synthesis,
Logic Synthesis,
Physical Design

Advantages :

- Functionality can be verified in Initial stages

- Rapid feedback on design decisions using estimators
- Good documentation. Less RE-design time.

- Possibility of automation.

Design Evaluation

Estimators,
Simulation

Estimators,
Simulators,
Lib. components,
Layouts

CoF
UC frvTrw CADLAB

ST ^

i i

2 System Design Tasks

We now examine several of the tasks which constitute system design. We start with a desired functionality
described with a specification language. There are three classes of abstract functional objects:

1. Variables represent all objects in the specification which represent data. For example, in a VHDL
specification, the variable class of objects includes declared signals and variables, including both
composite (array or record) or scalar types.

2. Behaviors represent chunks of computations in the specification. VHDL processes and procedures are
considered behaviors. A variable is also considered a behavior whose functionality is the maintenance
of data values.

3. Channels represent communications between behaviors. For example, in VHDL, a process accessing
a global array defines an abstract communication channel between the process and the array. Two
behaviors communicating over ports or global signals also defines a communication channel.

The goal of system design is to map these functional objects to a set of system-level structural objects such
as processors, chips, blocks on a chip, memories and buses. There are three tasks required to achieve this:

1. Allocation: This task instantiates a structural object such as a module or a bus. A module may
represent (i.e. it is bound to) an actual library module, such as the Intel 8086 processor or a Xilinx
FPGA with 10,000 gates and 40 pins. Or, it may represent a generic module, such as a processor
with 3-address instructions and a lOMHz clock, or even more general modules such as hardware or
software.

2. Partitioning: This task partitions, i.e. maps, the functional objects among the structural objects.
This mapping is rarely one to one. Instead, multiple functional objects are mapped to a single
structural object to improve some design metric such as area, interconnectivity or performance. For
example, variables can be mapped to a single memory to minimize interconnections in the hardware
implementation. Behaviors can be mapped to software or hardware. Behaviors mapped to hardware
can be further partitioned to represent chips or a blocks on a chip. Software mapped behaviors can
be partitioned among processors. Finally, channels can be mapped to a single bus.

3. Refinement: After a satisfactory mapping of functional to structural objects has been achieved,
a refined specification can be generated to serve as input to the next level of design or to perform
simulations. Refinement tasks ensure that the specification is consistent after the application of
the allocation and partitioning tasks. For example, mapping variables to a single memory requires
memory address translation, where each variable is assigned a specific memory location and each
reference to that variable is replaced by a memory access. Behavioral grouping requires that the
communication be maintained by inserting appropriate communication channels between groups and
selecting protocols to implement the data transfer. Channels which are grouped together to form a
bus may require arbiters to resolve access conflicts.

In the figure, variable VI and behaviors B1 and B2 have been mapped to custom hardware. Variables V2
and V3 have been mapped to a memory, and behaviors B2 and B3 have been mapped for execution on an
Intel 8086 processor. Channels C3 and C4 have been combined into a bus.

System Design Tasks

concept

Allocation Partitioning Refinement

Variables

Behaviors

Storage Variablesto Storage
Memories,
Reg. RIes

Modules u • X I
Hw-sw, Behaviors to Modules
Processors,
Comporwnts,
Chips, Blocks

ChBnnelS Buses Channels to Buses

letely specified
modules

Memory addr.
translation

Interfacing,
Sequentlallzatlon

Arbiter Insertion
Protocol Merging

memory

8086

3 System Design of an Audio-Video Processor

3.1 Capturing the Conceptual View

To see how the various system design tasks can enable us to transform a conceptual view into a set of

well-defined modules, we will take a simple example of an audio-video (AV) processor.

The first step in systemdesign is capturing the conceptual view of the system using a specification language.
The figure shows the specification of the AV processor. The AV processor receives a stream of audio and

video samples over the AVJN bus, stores them temporarily in memories and when instructed by a controller,

performs some computations on the samples and outputs the audio and video sample on the two distinct
buses AUDIQjDUT and VIDEO_OUT.

The AV processor consists of a hierarchy of behaviors of which only the top three levels are shown in

the figure. At the top most level, we have the behavior SYSTEM. This behavior has four array variables:
AUDI and AUD2 to store audio samples, VID to store video samples and CMD which stores the set of stream

manipulation commands. SYSTEM consists of three concurrent sub-behaviors: AUDIOJJNIT, VIDEO-UNIT

and CONTROLLER. The AUDIOJUNIT and VIDEO-UNIT detect, capture, store and generate audio and video
samples respectively. The CONTROLLER fetches instructions from the CMD memory and issues appropriate
instructions to the AUDIOJUNIT and VIDEO-UNIT. The behavior AUDIOJUNIT further consistsof twosequen
tial sub-behaviors: CAPTURE-AUDIO and GENERATE_AUDIO. Details of the behaviors such as CAPTURE-AUDIO,

CAPTURE-VIDEO, GET-COMMANDS etc. are also specified (not shown in the figure). A behavior at any level

of the hierarchy of these behaviors can further consist of sequential/concurrent sub-behaviors or can be
specified using VHDL sequential statements.

It must be emphasized here that the specification shown in the figure is one of many possible conceptual
views of the AV processor. In this instance, there are three concurrent activities in the AV processor,
and thus the corresponding specification has three concurrent behaviors: AUDIO-UNIT, VIDEO-UNIT and

CONTROLLER. The AUDIO-UNIT consists of two sequential activities and these are represented as two sequen
tial sub-behaviors: CAPTURE-AUDIO and GENERATE-AUDIO. Different system designers could visualize the
same system in different ways.

Specification of the AV Processor

VIDEO UNIT

AV IN

variable AUDI, AUD2 : array(IOk);
variable VID : array(IOk);

variable CMD : array (100);

AUDIO UNIT

CAPTURE VIDEO CAPTURE AUDIO

GENERATE VIDEO GENERATE AUDIO

CONTROLLER

GET CMOS

SEND AUDIO CMDS

SEND VIDEO CMDS

3.2 Main Design Display

In this section, we present the main display of a tool which assists a designer perform system design tasks
using our methodology. The main display consists of two windows: Display Window and Command

Window.

Display Window

The Display Window displays the current state of the design. It lists all the objects in the design, i.e. vari

ables, behaviors, channels derived from the specification, and their hierarchical groupings into modules
and buses. The hierarchy is shown using indenting. In the figure, we see that initially the top object is the
behavior SYSTEM comprised of the three sub-behaviors AUDIO_UNIT, VIDEO-UNIT and CONTROLLER and the

four variables AUDI, AUD2, VID and CMD.

Associated with each object are estimations and constraints on object attributes such as size, cost, and

performance. There is one column for each attribute, with an estimate/constraint entry for each object.

Entrys are updated after each design task. In the example, the dollar cost for the entire SYSTEM is

constrained to be less than $50 and the execution time of the behavior AUDIO-UNIT has a constraint of 40

time units. Since no modules have been allocated yet, no estimates exist.

Using the Modify Display button, the designer can select which portions of the object hierarchy and which

attribute columns to display. The Views option enables the designer to display the objects sorted according
to some combination of the attribute values. The Cost Function option allows the designer to select, view

and edit cost functions which can be used during the various design tasks to compare alternative designs.

Command Window

The Command Window enables the designer to perform system design tasks. Having selected a class of
objects, the designer can allocate modules and partition objects, each of which can be done in a manual or

automated manner. To guide manual decisions, a variety of hints can be examined. A refined specification

can be generated by applying the required refinement tasks. The various commands are examined in more

detail later.

Display Window

Groups/Objects

AUDIO UNIT
CAP AUDIO
GENIAUOK)

VIDEO UNIT
CAP VIDEO
GENIVIDEO

CONTROLLER
GET CMOS
SEND AUD CMD
SEND~VID CMO

Command Window

Main Display

Overall Cost:

Estimates / Constraints

Binding $Cost Pins Size(hw) Size(sw) Perf(hw) Perf(sw

Object class Partitioning Allocation Refinement

Variab es Automated Automated Arbiter Gen

Behaviors Manua Manua Protocols

Channe s Hints Hints nterface

Backtrack Backtrack Backtrack

3.3 Allocating Hardware / Software Modules

Suppose that the first system design tasks we wish to perform is the division of the functionality into

software and hardware portions. A hardware implementation yields fast performance, but software has the

advantages of low cost, shorter development time and ease of change late in the design cycle.

We first allocate two new modules named HW and SW. In order to obtain estimations for evaluating future
partitions, the design tool must be informed as to what each module represents. In other words, each

module possesses a set of attributes whose values are necessary for estimation purposes. An example of an

attribute is the clock cycle time of a microprocessor. A module's attributes can be defined in one of two

ways:

1. Binding to a Library Component: A module which is bound to a library component inherits

all the attributes of that component. For example, the designer may bind the software module to

the Intel 8086 microprocessor, which then associates the attributes of that microprocessor with the

module, such as its clock cycle time.

2. Defining a Generic Module: Often, it may not be possible or desirable to specify exactly which

library component is to be used to implement a module. For example, the designer may just want
to bind the group of software behaviors to be implemented on a microprocessor with a 25 MHz clock

and 16 bit address/data buses. In this case, a generic module is created and the designer assigns
the desired values to the relevant module attributes. The estimators can now use this information to

determine, for example, how many clock cycles a procedure will require to execute on that generic
microprocessor component. Later on the designer may replace the generic module with a standard
component or may actually design a new component possessing the specified attributes.

^et's assume that we wish to manually bind the software module to the 8086 microprocessor. From the

Command Window the designer selects Allocation => Manual^ which brings up the Allocation Display. The

designer enters the name of the module to be allocated, in this case SW). The option BindToLibraryComp
allows selection of the desired microprocessor from a list. The attributes for the currently selected com
ponent in the list are shown in the Allocation Display. For each attribute, the estimated values of that

attribute is displayed in the Estimate column. The Value column lists the attribute values associated

with the selected component. A violation (listed in the Violation column) is said to occur whenever the
estimated required value (based on an existing mapping) of an attribute exceeds the corresponding value
associated with the selected component. In this casesince the module SW is empty, no estimates (and hence
no violations) exist for the module. In case a generic module was beingdefined using DefineGenericModule,
the designer would enter the desired values of the attributes associated with that generic module in the
Value column. Similar to the software module, let's assume that the designer binds the HW module to a
particular ASIC.

Allocation: Hardware/Software Modules

Oliplay Whdow

Binding SCaal Sif{hw) Si2a(aw)

AUaO UMT
VIDEO~UNrT
CONnRXLEII
AUDI
AUDI

Command Window

Obiact rtiaa PanHioimg Moemlion Hatinamant

Allocation Display

current module : SW

current comp class: Microprocessor

current comp : S0S6

Attribute

clock cycle

data bitwidth

Estimate

Hardware - Faster Performance

Software - Cheaper to Implement
- Faster Development
- Late Specification Changes

BindToLibraryComp

Variables

SRAM
DRAM

Behaviors

Hardware
Custom
Gate Arrays
FPGA
Standard Cell

Software

3.4 Main Display after Allocating HW / SW Modules

We have now allocated two empty modules, HW and SW. These are reflected in the Main Display as two new

objects in the list of objects. Estimates are displayed for the performance of each behavior in HW and in

SW, and for the size in HW (area) and in SW (instructions and memory).

Display Window

Groups/Objects

AUDIO UNTT
CAP AUDIO
GEfTAUDIO

VIDEO UNIT
CAP VIDEO
GENlViOEO

COrrTROLLER
GET CMDS
SENO AUD CMD
SEND'VlD OMD

Updated Main Display
(after allocating two modules, SW & HW)

Overall Cost:

Estimates / Constraints

Binding $Cost Pins Size(hw) Size(sw) Perf(hw) Perf(sw)

Ask: XX

Command Window Object class Partitioning Allocation Refinement

3.5 Partitioning Behaviors into Hardware & Software

We now consider one of three ways to partition functional objects into implementation modules.

Suppose we wish to implement all behaviors in software except those which require hardware to meet

performance constraints. The simplest way to achieve this is to list the objects for which the SW performance

estimate exceeds the constraint. From the Display Window the designer can select Views option to list

all objects ordered by a weighted function of their attribute values. The performance constraint violation

is the difference between the estimated software performance and the constraint specified for each of the

behaviors. This is achieved by assigning a weight of 1 and -1 to the attributes SW Performance and

Performance Constraint in the View Objects Display. The behaviors are listed in the View Objects

Display in descending order of the values computed for the selected attributes.

We can see that the behaviors VIDEO.UNIT, CAP>VIDEO. GEN-VIDEO, AUDIOJUNIT, CAP_AUDIQ & GEN_AUDIO

will violate their performance constraints if they are implemented as software. These behaviors are

thus implemented as hardware by mapping to the module HW created earlier. The remaining behav
iors CONTROLLER, SEND_AUD_CMDS, SEND_VID_CHDS and GET_CHDS will meet the performance constraints if

implemented as software and are thus mapped to the module SW. Mapping is done in a straightforward
manner by using the Partitioning => Manual command.

Partitioning : Behaviors into HW, SW

Dtiplay Wfcdow

Groupm/Ob/ac^

SYSTEM
AUOO UWT
V10E0~UNrT

cotmf&LLEn
AU01
AU03

EacvnaM*

Bindrto SCbtt Sa^fhw) Sizmfww)

Commvid WSidow

Ot/»ct cJam PwtibenirtQ AMoemtion HbUntrntm

View Objects Display

Attribute Select

Attribute

Size
SW Pert
Pert Constraint

Weight

Grouping Method 1

Grouping based on attributes

1. Select Attributes.

2. List objects based on attributes

3. Move objects to modules.

Objects Ust

Objects Value

VIDEO UNIT 25
GEN VIDEO 15

CAP VIDEO 10
AUDIO UNIT 10

CAP AUDIO 8
GEN_AUDIO 2

SEND VID CMOS 0

GET_CMDS -1

SEND AUD CMDS -1

CONTROLLER -2

Copyright (c) 1993
UC Irvins CAOLAE

3.6 Main Display after Hardware/Software Partitioning

The updated Main Display is shown in the figure. AUDIOJJNIT and VIDEOJJNIT have been moved into HW.

The behavior CONTROLLER and its sub-behaviors have been moved into SW. The corresponding estimates

for the modules HW and SW are also updated. Thus, the area estimate of the module HW is 7000 units which

is the sum of the areas of AUDIO-UNIT and VIDEO-UNIT assigned to the module.

Updated Main Display
(after moving behaviors into Software and Hardware modules)

Display Window

Groups/Objects

AUDIO UNIT
CAP_AUDI0
GEN_AUDIO

VIDEO UNIT
CAP VIDEO
GEN VIDEO

CONTROLLER
GET CMDS
SEND AUD CMD
SEND~VlD CND

Command Window

Overall Cost:

Estimates /Constraints

Binding Cot Pins Size(hw) Size(sw) Perl(hw) Perf(sw)

AslcXX

Object class Partitioning Refinement

3.7 Closeness based Partitioning

Another way to partition functional objects into implementation modules is through closeness computa

tions. An object is said to be close to another object or group of objects if grouping them would result

in a better design. Closeness measures usually rely on some indirect criteria that attempts to maximize
the performance, satisfy capacity constraints or minimize interconnect. We discuss some of these criteria

below.

3.7.1 Variable Partitioning

A variable is considered to be close to a group of variables, if it:

1. is sequentially accessed with respect to the variables already assigned to the group. This avoids
performance degradation results from contention between concurrent accesses made to the variables
in a memory.

2. fits into the available space in the module, thus satisfying any specified module capacity constraints.

3. is accessed by the same behaviors which access the other variables in the module. This allows sharing
of interconnections between the behaviors and the variables they access.

3.7.2 Behavioral Partitioning

A behavior is considered to be close to a group of behaviors, if it:

1. fits into the available capacity in the module, thus satisfying any capacity constraints (such as chip
area for hardware behaviors or program memory size for software behaviors).

2. communicates frequently with the behaviors assigned to the module. This leads to a better perfor
mance since access times for behaviors within the same module are faster than if an siccess is made

to a behavior in another module.

3. is accessed by the behaviors already assigned to the module, thus minimizing interconnect between
behavioral modules.

3.7.3 Channel Partitioning

A channel is considered to be close to a group of channels (a bus), if it:

1. is sequentially accessed owei time with respect to the channels already assigned to the bus. This avoids
performance degradation which would result if bus access conflicts were to occur.

2. fits into the available channel bandwidth in the bus, thus satisfying any constraints specified for the
channel in terms of data transfer rates.

3. has similar bitwidths to the other channels assigned to the bus. This reduces the number of unused
interconnection wires during communication.

Partitioning : Variables, Behaviors, Channels
Grouping Method 2

Closeness based Grouping

Closeness : Measure of benefit of merging an object with another object(s)

Why?

Minimize Interconnect

Minimize Cost
Maximize Performance
Minimize Interconnect

Minimize Interconnect

Closeness Criteria

Fewer concurrent accesses
Fits into no. of words available
Accessed by same behaviors

Fits into available capacity
Higher communication frequency
Connected to same behaviors

Used exclusively
Fits into available channel bandwidth
Similar bitwidths

UC Irvin

3.8 Closeness-based Variable Partitioning

Let's assume we want to map variables into memories using the closeness-based partitioning technique.

Similar to the software/hardware partitioning example, we allocate memory modules. We shall start by
using generic memories, so we specify the attributes of each such as size and access times. Suppose we

create three empty memories Ml, M2, MS. We need to first seed the memories. We assume that the audio

variable AUDI is assigned to Ml. We wish to determine the variable that is the closest to the group Ml. We

select Partitioning => Hints => Closeness which brings up the Closeness Display.

The designer can select and weigh the various criteria to compute a closeness of each of the unassigned
variables to the group Ml. In the figure, the criteria selected are number of concurrent accesses and the

number of common behaviors with respect to the variables in Ml. The Closeness Display lists all the

variables ordered by their closeness to Ml. Based on the criteria selected, we see that AUD2 is the closest

to Ml, followed by CMD and VID.

The designer can specify certain match patterns to restrict the objects that are listed. In the figure, the
designer has specified that all variables that have a closeness measure less than 250 are to be listed.

Based on the closeness list, the designer can move variables to module Ml using the manual partitioner.

Let's say the designer selects CMD as the variable that will be assigned Ml. Thus Ml now has the variables

AUDI and CMD in it. The process can be repeated to find which variables, if any, can be assigned to Ml.
The designer can also select variables to be moved to the other modules in a similar manner.

Partitioning : Variables to Memories

SVSTEH
AUDIO UNIT

VlDWUMfT
COifneLLEII
AUDI
AUOl

Binding SCoat Siz»(hw) Sdafaw)

Command Window

Obi»ctelmm PvHHoning ABocmbon

Closeness Display

Select Closeness Criteria

Criteria Weight
Cone. Access 3

Size Fit 0

Common Behavior 2

Grouping Method 2

Closeness based Grouping

1. Allocate memories

2. Seed a memory

3. Select Closeness Criteria

4. Move variables to the memory based on closeness

Closeness to Group :

Object

AUD2

CMOS

Closeness

Seiect

Match Pattern

UC Irvine

3.9 Iterative-based Variable Partitioning

A third way to partition functional objects into implementation modules is to iteratively improve an
existing partitioning by moving objects between modules, guided by a global cost function.

Let's assume that as a result of variable partitioning based on closeness, the following groups were created:

Ml : (AUDI, CMD)

M2 : (AUD2. VID)

M3 : ()

The designer first selects the cost function which will be used to determine whether moving an object
between groups results in any improvement. The improvement, or gain^ is measured as a reduction in the

cost function as a result of performing the set of moves. Selecting CostFN from the Main Display brings
up the Cost Function Display. The designer can select the metrics that contribute to the overall design
cost and can specify relative weights and constraints for them. For example, in the Cost Function Display
in the figure, the designer has selected the size of variable group M2, specified a relative weight of 2 for the
metric and constrained it to be 15K words. The current values of the metric are computed by the built-in
estimators and displayed in the fourth column. The difference between the estimated value and constraints

is listed in the fifth column as a bar graph, which gives the designer a good idea of which constraints are
being violated and by how much. Thus in the figure, we can see that the constraints for pin(HW) and
size(M2) are being violated.

Having selected the cost function, selecting Partitioning => Hints => Iterative brings up the Object Move
Display. The designer can specify the number of objects he wishes to reassign among the groups. In the
figure, the designer has selected the number of moves to be examined as 2. The tool will examine all sets

of 2 moves between groups and list them in decreasing order of achievable gain. Thus, moving AUD2 to
Ml and CMD to M3 results in the maximum gain of 100 in the cost function. These two moves are made

resulting in AUDI and AUD2 being grouped together in Ml and VID and CMD are assigned to the groups M2
and M3 respectively.

The designer can use match patterns to restrict the moves that are examined and displayed. For example,
to find the best group to move AUD2 into, the designer can set the match pattern for Object to AUD2 and set
the number of moves to 1. To find out which three objects can be moved into the group M3, the designer
set the match pattern for Destination to M3 and set the number of moves to 3.

Partitioning : Variables into Memories ^

Displm Window

Group»'ObJ»cta Binding $Co»t SUtfhw) Si2»(tw)

AUDIO UMT
viDEO~UNrr

COMTNDLLBI
AU01
AUDI

Conwn«nd Window

Obi»cl cMsa Petitioning AUocmdon MrmnonI

Object Move Display

No. of Moves S IE
Object I Destination I Gain

Match
Pattern

AUD2
CMD

AU02
VIO

Grouping Method 3

Iterative Grouping

1, Allocate memories, create initial partitioning

2. Select Cost Function

3. Move variables between memories
based on cost improvement

Cost Function Dispiay
metric weight constr. estvalue violation

pins (HW)
size (M2)
size(M1)| 1

40 53
15k 20k
20k 10.1k

Total: 310

3.10 System Modules after Partitioning

Allocation and partitioning can be performed for Behaviors and Channels as done for variables above. The

final result is a set of modules and buses as shown in the figure.

• Variables: The final memory allocation and variable partitions were:

(AUDI, AUD2)

(VID)

(CMD)

• Behaviors: We have partitioned the behaviors into two modules HW and SW. To satisfy area con
straints, the set of behaviors in HW are further grouped into two sub-modules, CHIPl and CHIP2. The

final allocation and behavior partitioning achieved was:

CHIPl : (AUDIO.UNIT, CAP.AUDIO, GEN_AUDIO)

CHIP2 : (VIDEO.UNIT, CAP.VIDEO, GEN_VIDEO)

SH : (CONTROLLER, GET.CMDS, SEND.VID.CMDS, SEND.AUD.CMDS)

• Channel Groups The channels C1 and C2 are mutually exclusive over time and have been merged
to form the channel group CAUD. Similarly, channels 03 and 04 are merged to form the channel group
OVID. The final channel grouping obtained was:

(01, 02)

(03, 04)

System Modules

CONTROLLER

GET CMOS

SEND VID CMOS
VIDEO OUT

SEND AUD CMOS
GEN VIDEO

VIDEO UNIT

CAP VIDEO

CAP AUDIO

AUDIO UNIT

GEN AUDIO

AUDIO OUT

UC Irvin*

3.11 Binding Generic Memories to Library Components

Recall that we initially allocated generic memories and partitioned variables among them. Now we wish to
bind those memories to actual library memories. Clearly, binding to such an existing component eliminates
the need to design the memory. After binding, estimates are updated and will reflect more closely the
eventual final design.

Prom the Main display, we select Allocation => Manual to bring up the Allocation Display. The designer
enters the memory to be bound, say Ml. Estimates for Ml Jtre computed and appear in the Estimate
column, indicating the requirements of the memory. For example, we see that a memory of at least 20k
words is required, with 16-bit words and an address width of 15 bits.

By selecting BindToLibraryComp the designer obtains a list of librziry memory components. Selecting
a component updates the Values column with the attributes of the selected component. If an estimated

requirement of the memory such as size is not met, a value wiU appear in the Violation column. We can see

that binding Ml to the library component M102 results in a data bitwidth violation: 16 bits are required,
but the component only has 12.

The designer can similarly bind modules containing behaviors to library components such as ASICs and
microprocessors and bind buses to standard bus protocols.

Component Binding

Dliplay Window

Group»/Cbi»ct» Bimwtg SCo0t Sa»(hw)

8V8TEH
Auao UWT
viDcolMrr

CONTIf&UU
AUDI
AUDI

Comrwtd W>>dow

Ob)»acl»m Ptftmonwtg AKoettion fiafinmmmnl

Allocation Display

current object :

current comp class: DRAM

current comp M102

Characteristic Estimate

addr width

data width

num_words

word width

Why? - Reduce design time

- Provide better estimates

BindToLlbraryComp

Violatior) ?

Varlabtos

DRAM

Bahaviors

HW
Custom
Gate Arrays
FPGA
Standard Cell

SW
Microprocessor
Microcontroller

UC Irvln*

Copyrtght (c) 1993
UC Irvine CADLAB

3.12 Main Display after Allocation/Partitioning

After allocating system structural objects, some of whicb are bound to library components, and partitioning

variables, behaviors and channels among those objects, the updated Main Display appears as shown in the

figure.

The groupings were discussed earlier. It is of interest to note that the binding the memory modules Ml

and M2 to the library component M102 is reflected in the Binding column of the Display Window.

Updated Main Display
{ after partitioning variables, behaviors and channels among system structural objects)

Display Window

Groups/Objects

SYSTEM

HW

Chiol
AUDIO UNfT

CAP AUDIO
GEtrAUDIO

IDEO UNFT
CAP"VIDEO
GEtTVIDEO

AUDI
AUD2

VID

CAUD

CV^D

COKTROLLER
GET CMDS
SEND AUD CMD
SEND~VID CMD

M3
CMD

Command Window

Overall Cost: _22^
Estimates / Constraints

Binding $Cost Pins Size(hw) Size(sw) Perl(hw) Perf(sw)

AsicXX

custom

custom

40/S0

30

63

42/50

32

12000

7000

3000

Object class Partitioning Allocation Refinement

3.13 Refinement : Hardware/Software Interfacing

After a satisfactory allocation and partitioning is found, the designer caji begin creating a refined specifi

cation. We shall first consider adding details to represent the interface between the hardware and software

modules.

Communication between behaviors can be specified using the shared memory or message passing model.

In the shared memory model, the behaviors communicate with each other by assigning and reading values

to/from a global store such as a variable. The message passing model abstracts out the communication by

viewing the communicating behaviors as being connected with channels over which the data or message

is sent. An example of message passing is the behavior SEND_VIDEO.CMDS sending the video processing

commands to the behavior GEN-VIDEO over channel C6.

Having partitioned the set of behaviors to be implemented as hardware or software we need to implement

the data transfers between them.

To implement the common variables shared between the behaviors, we have to determine whether the

variable will be mapped to software (implemented as a location in the memory associated with the micro

processor on which the software behaviors will execute) or hardware. In either case, we have to determine

the memory or I/O axldresses for the common variables.

For message passing, the protocol associated with the communicating channel needs to be implemented.

The data and control signals of the channel have to be mapped to the pins of the microprocessor or I/O

addresses have to be allocated for them. In addition, we may need to add address detection capabilities to

the hardware behaviors to enable them to detect microprocessor communication requests.

Refinement: HW / SW Interfacing

Message Passing

|SEND_VID_CMD
port outVCMD
port In ACK

VCMD <- ...
wait until ACK;

SW bohavlor

VCMD

GEN_VIDEO
port In VCMD
port out ACK

REG <- VCMD
ACK <-'V;

HW behavior

• Mapping data/control signals to
processor pins

• Mapping common variables to
memory & I/O address space

• Adding address detection logic to
HW behaviors

PROC 5222_
Control

Shared Memory

variable M

B_hw B_sw

M:=2; A := M+ 2;

SW behavior HW behavior

MEM

Software
Behaviors

ASICs
Hardware
Behaviors

Copyngrv (c) 1993
UC Irvine CADLAB

3.14 Refinement : Arbiter Process Generation

Mapping multiple channels to a single bus to reduce interconnect can result in bus access conflicts, i.e. two

data transfers that take place over the bus at the same time. To resolve such conflicts, we must insert

an arbiter process. Behaviors which wish to send data over the bus will assert a request signal, and the

arbiter process will grant access rights (based on some priority scheme) using an acknowledge signal.

The channels in the group have to be assigned priorities which can based on several criteria:

1. Channel Access Frequency: Channels accessed very frequently should be assigned a higher priority.

2. Communication Delay : If the time required for each data transfer over a channel is very long, then
that channel should be assigned a lower priority so as to minimize the average time that the channels
have to wait to be granted access to the bus.

3. Behaviors with performance constraint violations: If a channel connects behaviors which have their
performance constraints violated, the channel should be assigned a higher priority.

Let's assume that for some reason, the channels CAUD ajid CVID have been grouped together to form AV_BUS.

Since the channels CAUD and CVID are used by the concurrent behaviors AUDIOJJNIT and VIDEOJDNIT, there

may be access conflicts in sending data over AV_BUS.

Selecting Refinement => Arbiter Generation from the Main Display will bring up the Arbiter Display.

The designer can list ail the channel groups which have the possibility of access conflicts occurring. The

Arbiter Display lists the channel group AV_BUS consisting of CAUD and CVID as having the potential for

access conflicts. The designer selects the criteria and the associated weight that will be used to determine

the priority of the channel. Based on these, the tool lists the constituent channels in decreasing order of

the cost. Thus, the cost associated with the channel CAUD is 130.

Based on the cost, the designer can decide on the arbitration scheme that will be implemented. For

example, if the costs of the channels in the group are approximately the same, then a rotating priority

scheme may be selected. If however, the channels have different costs associated with them, then perhaps

a fixed priority may be more suitable. In either case the designer orders the channels in the group by

labeling them.

In the example, the designer has given the channel CAUD a higher priority (Label = 1) over the channel CVID

(Label = 2). The designer may select the priority scheme. Let's say the designer selects the fixed priority

schemes. The refinement tool wiU automatically does the following: (1) Updates the behaviors which send

data over the channel by inserting request/acknowledge signals to communicate with the arbiter and (2)

generate an arbiter process implementing the selected arbitration scheme which accepts requests and sends

acknowledge signals to/from behaviors wishing to send data over the channels.

In case the designer wishes to implement his/her own arbitration scheme, the Custom option can be

selected. In this case the appropriate request/acknowledge signals are generated, and an empty arbiter

process is generated which will be edited by the designer to enter the desired arbitration scheme.

Refinement: Arbiter Process Generation

Gmupa/Obj^cta Binding SCost Pins

Object dass ParOOoning AJtocatlon ReHn»mant

Access frequency => higher priority

Communication delay => lower priority

Connects behaviors
with pert, violation «> higher priority

Arbiter Display

Select Arbiter Cost
Criteria Weight

Accoss Freq 1
Comm. Delay 2
Behaviors with

pert violations 0

Display Cost
Group SubGroups

AV BUS GAUD

Cost

I List Access Conflicts I Label SubGroups

Arbitration Algorithm

Fixed Priority I Rotating Priority

Label

Apply

UC Ifvirve CADLAB

3.15 Refinement : Protocol Selection

Another refinement task that can be performed is selecting a protocol to implement communication over

a communication channel. During grouping and binding, default protocols are zissigned to channels. The

designer may wish to modify the protocols associated with the channels to improve costs.

Selecting Refinement => Protocol from the Main Display brings up the Protocol Selection Display. The

designer can select certain criteria based on which the various protocols that can implement a channel are

to be evaluated. Examples of such criteria are the bitwidth and the data-transfer rate associated with the

protocol and performsince constraint violations of the behaviors connected by the channel.

For each channel, the Protocol Selection Display lists the set of protocols which can be used to implement

the data transfer based on the cost computed from the selected criteria and their associated weights.

For the channel CVID, four possible protocols are listed: p_hsk32(32 bit wide data with handshake),

p_hskl6(16 bit wide data with handshake), pJhsk8(8 bit wide data with handshake) and p-serial(serial).

The current protocol associated with the channel is highlighted. The designer can change the protocol by

selecting any of the protocols listed for that channel.

Refinement: Protocol Selection

Display Window

Group&Otf^cts

SYSTEM

AV CAP QEN

Binding SCost Pins
Select Protocol to Improve cost.

52«0

10 32

Object class Partitioning Allocation Re finentent

Protocol Selection Display
Select Cost

Criteria

Channel Width
Channel Bit Rate
Pert. Constraint

Violation

Weight

Match Pattam

Display Cost
I Channel I Protocols

CAUD

p_hsk32
p_hsk16
p hsita
p serial

3.16 Refinement : Interface Process Generation

During Component Binding, the designer may decide to bind both the behaviors communicating over a
channel to standard components. In this case, the corresponding protocols in both behaviors may be

different and incompatible with each other. Thus, an interface process has to be generated and inserted
between the two communicating behaviors to ensure compatibility. The two behaviors now commxmicate

with the interface process which effectively masks the two incompatible protocols from each other.

Selecting Refinement => Interface Process Generation from the Main Display brings up the Interface
Process Display. The designer can list the channels whose end-behaviors have incompatible protocols. In
the figure, channel C1 connects behaviors B1 and B4 which have the incompatible protocols pJisklB and
pJiskS respectively associated with them.

The designer can choose to have the interface process generated automatically by the synthesis tools or

manually specify a custom interface process to implement the transfer of data between the behaviors.

Refinement: Interface Process Generation

Gfoi4>m/&3i9ca BrtcbnQ SCo«t Pirm Behaviors may have differing and fixed protocols

Protocols made compatible by inserting interface process

Obfct cimt Panioining ASocMien fleJlnemen#.

Interface Process Display
Channels Display

Channels Compatible ? End Behaviors (Protocol)

C1 N B1 [P_hsk16], B4 [p.hskS]

G1
C2 N Birp hsk161, B2 [p half hskS]
03 N VI Ip3t8k16l, B2[plha08k_8]

Match
Pattern

UC Irvin*

Copwtgit (c)1993
UC (Mm CADLAB

3.17 System Design Output

As a resxUt of performing the system design tasks on the AV Processor specihcation, we obtain a set of

completely specified modules representing the design.

There are two identical library components, M102^ which implement the variable groups Ml and M2.
Hardware for the AUDIO-UNIT and VIDEO-UNIT is designed manually or by applying hardware synthesis
tools on the audio and video chip specifications. The CONTROLLER behavior is now represented by the
software specification. This is compiled by a software compiler to execute on the desired microprocessor.
Finally, the two M102 memories, the twohardwarechips, and the microprocessor and its associated memory
are all connected together and assembled on a board.

System Design Output

Controller Software SPEC.

Audio
Chip
SPEC.

Mioa

AUDIO OUT

Copyright (c) 1993
UC Irvine CADLAB

4 Conclusions

In this report we have presented a system design methodology which forms the basis of the system design
framework, SpecSyn, being developed at UC Irvine. The framework offers the designer a set of system
design tools to perform tasks such as allocation, binding, partitioning, and specification refinement. By
applying these tools, the designer can transform his conceptual view specification to a set of completely

specified modules which satisfy the system design constraints.

The proposed methodology has three main advantages over current approaches:

1. Less Design Time: The methodology requires the entire system to be captured using a specifica
tion language before system design is performed. Partitioning, estimation, binding and refinement
tools can be developed which operate on the specification and automate the system design process,

significeintly reducing the overall design time.

2. Better Designs: Built in estimators provide the designer with rapid feedback after each system
design task. The designer has the capability of exploring a larger design space rapidly which may
lead to faster, cheaper and smaller designs.

3. Less RE-design time: Requiring the designer to capture the conceptual view using a specification
language and then subsequently refining the specification by applying system design tools, creates
very comprehensive documentation. The various design decisions made during system design can be
easily comprehended in any subsequent redesign effort. Personnel changes have a greatly reduced
effect.

Conclusion

Tool to help users develop systems

Rapid Estimates

Automated
Design Tasks

Excellent Design
Documentation

Explore larger design space
Faster/cheaper/smaller designs ^

Less design time

Less RE-desIgn time

Copyright (c) 1993
UC Irvine CAolAE

5 References

[1] S. Naxayan, F. Vahid, and D. Gajski, "System Specification and Synthesis with the SpecCharts Lan

guage," in Proceedings of the International Conference on Computer-Aided Design, 1991.

[2] D. Gajski, S. Narayan, and P. Vahid, "A System-Level Specification and Design Methodology." UC

Irvine, Dept. of ICS, Technical Report 92-102,1992.

[3] IEEE Standard VBDL Language Reference Manual, 1988.

[4] R. Lipsett, C. Schaefer, and C. Ussery, VHDL : Hardware Description and Design. Kluwer Academic

Publishers, 1989.

[5] F. Vahid, S. Narayan, and D. Gajski, "SpecCharts: A Language for System Level Synthesis," in
Proceedings of the International Symposium on Computer Hardware Description Languages and their

Applications, 1991.

[6] S. Narayan, "A Survey of System-Level Specification Languages." UC Irvine, Dept. of ICS, Technical
Report 92-100,1992.

[7] S. Narayan, F. Vahid, and D. Gajski, "Modeling with SpecCharts." UC Irvine, Dept. of ICS, Technical

Report 90-20,1990.

[8] S. Narayan, F. Vahid, and D. Gajski, "Translating System Specifications to VHDL," in Proceedings
of the European Conference on Design Automation, 1991.

[9] F. Vahid and D. Gajski, "Obtaining Functionally Equivalent Simulations Using VHDL and a Time-
shift Transformation," in Proceedings of the International Conference on Computer-Aided Design,

1991.

[10] S. Narayan and D. Gajski, "System Clock Estimation based on Clock Slack Minimization," in Pro

ceedings of the European Design Automation Conference, 1992.

[11] S. Narayan and D. Gajski, "Area and Performance Estimation from System-Level Specifications." UC
Irvine, Dept. of ICS, Technical Report 92-16,1992.

[12] F. Vahid and D. Gajski, "Specification Partitioning for System Design," in Proceedings of the Design

Automation Conference, 1992.

[13] F. Vahid, S. Narayan, and D. Gajski, "Constant-Time Cost Evaluation for Behavioral Partitioning."
UC Irvine, Dept. of ICS, Technical Report 92-29,1992.

[14] F. Vahid, "A Survey of Behavioral-Level Partitioning Systems." UC Irvine, Dept. of ICS, Technical

Report 91-71,1991.

[15] J. Lis and D. Gajski, "Synthesis from VHDL," in Proceedings of the International Conference on
Computer Design, 1988.

[16] J. Lis, Behavioral Synthesis from VHDL Using Structured Modeling. PhD thesis. University of Cali
fornia, Irvine, January 1992.

MAY 2 7 1993
oc mviNC ushahy

3 1970 01005 6106

