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Abstract

A DRONE’S VIEW OF PLANT DISEASE ECOLOGY AND
ETHICS

by

Jon R. Detka

As a drone pilot, ecologist, and scientist comfortable with emerging remote sensing
technologies I have designed my dissertation around using drones to understand
landscape processes and the ethical challenges associated with using drones as
they intersect with privacy concerns. This work is organized into two main parts,
with the first part exploring the role of plant pathogens in wildlands and the use
of drones to enhance plant disease research. The second part examines the legal
and ethical implications of commercial use of drone technology.

In the first half, I used drones to map the distribution of host plants in diverse
wildland communities, contributing to a better understanding of plant diseases in
two closely related wildland manzanita plant species. I employed advanced com-
puter modeling techniques to accurately identify dominant plant species, crucial
for conservation efforts in this challenging landscape. Additionally, I used ana-
lytical approaches to examine the relationship between the amount of time that
leaves have wet surfaces and the association with the spatial distribution of plants
along a coastal to inland climate gradient, providing valuable insights into disease
dynamics.

The second part of this work explores the ethical considerations of using drones
and the importance of balancing the benefits of drone technology with minimizing
harm to the environment, respecting privacy expectations, and ensuring trans-
parency and equity. I analyzed the historical, legal, and policy aspects of drone
use, focusing on federal safety regulations and state privacy laws. The tension
between federal and state regulations underscores the need for drone pilots to be
well-versed in both. Then, I examine the existing federal certification framework
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for drone pilots and identify the lack of training on privacy ethics and best prac-
tices for maintaining transparency. I propose expanding professional certification
beyond the federal program to include a focus on privacy concerns. This certifica-
tion, administered through non-profit organizations collaborating with commercial
and higher-education entities, can help establish industry standards and provide
essential training for drone pilots.

Overall, this dissertation demonstrates the significant potential of drones in eco-
logical research, particularly in studying plant diseases and wildland conservation.
And, highlights the importance of ethical considerations, privacy protection, and
transparent practices in the use of drone technology for scientific purposes.
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Chapter 1

Introduction

This dissertation focuses on the current application and ethical uses associated
with a rapidly emerging technology - remotely piloted aircraft - or drones. This
research has now grown to encompass both contemporary applications in ecology
and challenges around the ethics of privacy associated with using drone tech-
nologies for remote sensing. This work is rooted in some of my earliest academic
experiences in higher education. As an undergraduate majoring in Earth Systems
Science & Policy at California State University Monterey Bay in the late-1990’s,
I was keenly aware of the intersections between systems thinking, the natural
and physical sciences, and environmental policy. At the time, I found that my
strengths were in utilizing emerging computing technologies, responding to tech-
nical problem-solving, and in my affinity for supporting others through teaching
in the natural, physical, and computing sciences. I found that I was impatient
with prolonged policy design and decision-making, but thrived in more dynamic,
fast-paced settings that led to direct actionable change. However, I understood the
importance of the policy decision-making processes, deliberately engaged in policy
conversation, and worked to demonstrate my understanding - primarily in an apo-
litical fashion. My affect towards policy shifted dramatically as I began to learn
about remote sensing technologies, especially emerging global positioning systems
(GPS) technologies. At the time, GPS technology began to see more widespread
use outside of strictly military applications, and a number of ethical concerns arose
out of governmental decisions to restrict availability and accuracy. Among these is-
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sues were concerns about privacy and equity. I found myself engaging more deeply
in remote sensing policy conversations with a stronger commitment to thinking
about the broader societal implications associated with mapping technologies.

Coming to UCSC as an environmental studies PhD student rekindled this inter-
est in the applications and ethical challenges associated with privacy rights and
remote sensing technology. Although, the ethical component came much later. I
was at the pinnacle moment in my PhD experience developing my dissertation
research prospectus when the COVID-19 pandemic sent us all home, curtailing
many of our opportunities for communication and collaboration. I was faced with
the likely challenge of implementing a landscape-level wildland plant disease ecol-
ogy project alone in often inaccessible terrain with concerns for my impact on
the sensitive plant community I was studying. I had designed my ecological re-
search using ground-based mapping, conventional transect survey methods and
micrometeorology technology that I was well acquainted with. The social science
component of my work, which was initially designed around citizen science-based
ecology learning experiences with K-12 students, had to be put on hold with no
clear indication of when ‘normal’ learning experiences would resume.

Faced with my ground-based ecological research challenges, I returned to my in-
terests in remote sensing and geographic information systems (GIS) analytical ap-
proaches. Freely available satellite imagery was insufficient to address the species-
level questions that I was interested in, and high-resolution satellite imagery was
financially out of reach. Artificial intelligence and machine learning approaches
in spatial analytics were rapidly developing and drone aircraft were increasingly
available, although largely cost-prohibitive. I responded in my usual improvisa-
tional fashion and designed a drone-on-a-stick solution, rigging an inexpensive
GoPro to a pool-sweep boom with a skateboard bearing swivel, and bluetooth
iPad connection. I had developed an affordable high-resolution remote sensing
system that, in spite of its limitations, got things moving (although very slowly
and at a very limited scale). Then, a turning point happened when researchers
and educators from UCANR and University California Natural Reserve System
and University California Agricultural and Natural Resources who were scouting
flight training locations for a pending DroneCamp experience found me, quite
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literally in the bushes. I was laboriously moving along with my drone-on-a-stick
and heard - “Someone needs to get him a drone”. Soon after, I found myself with
access to professional drone technology courtesy of the UC system and part of a
supportive community of devoted technology educators, drone researchers, artists,
and policy-makers committed to my learning and drone-based research success.

It did not take long to realize the potential of drone remote sensing technology
as a tool for supporting ecological conservation, as well as the potential privacy
issues associated with operating in proximity to spaces where individuals have
reasonable expectations of privacy. I saw this as an opportunity to evaluate my
own positionality and dove deeply into issues of technology access and systemic
racism. I worked to consider scenarios through ethical lenses and began to consider
the impacts of my actions as a pilot and how I might explore these issues with
students in the classroom. The second half of my dissertation is my response to
the identification of a need to balance the beneficial applications of drone tech-
nology with practices and processes for evaluating their safe and responsible use.
And, it outlines an approach to how non-profit organizations and institutions of
higher education can support drone pilots with training on safe operations and
best-practices for respecting privacy, safeguarding security, and maintaining trans-
parency in flight operations.

In the first half of this work, I utilized drones and computer modeling to map
host plants in wildland communities, enhancing our understanding of diseases in
two manzanita species and their relationship with climate conditions and plant
distribution along a coastal-inland gradient.

Wildland plant disease outbreaks are important consequences of global climate
change and present complex challenges for wildland conservationists (Laine, 2023).
Wildlands are vulnerable to various interacting ecological stressors, including dis-
eases, yet their structure and scale offer great challenges to study at large scales.
Several emerging technologies provide exciting new approaches to more readily
monitor and analyze plant health, advancing the study and management of plant
diseases in wildlands (Nelson, 2004; Duarte et al., 2022).

Disease ecology research deepens our understanding of the ecological roles of inter-
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actions among infectious agents, host organisms, and their environment. Wildland
plant diseases can drive natural selection, fostering disease-resistant plant species
that enhances overall resilience, while also contributing to nutrient cycling through
decomposition (Alexander, 2010). However, plant diseases can also harm biodiver-
sity, ecosystem functions, and economic stability, particularly when exacerbated
by climate and land use changes (Patz et al., 2008). Forest diseases can diminish
forest health, cause economic setbacks due to resource decline, disrupt essential
ecosystem services, and enhance susceptibility to future environmental stressors.

Emerging technologies, like remotely piloted aircraft (i.e., drones) and artificial
intelligence (AI), hold significant potential for addressing challenges related to
wildland disease detection, monitoring, and management (de Castro et al., 2021).
Drones equipped with advanced sensors and cameras can survey large forested
areas, capturing high-resolution data that can be analyzed using AI algorithms
to identify host plant species and detect signs of disease even before the appear-
ance of extensive symptoms. These technologies enable rapid monitoring of forest
health (Dash et al., 2017), high-resolution remote sensing capable of detecting sub-
tle changes in plant health (Fraser & Congalton, 2021), predictive modeling for
disease outbreaks (Shivaprakash et al., 2022), and precision application of control
treatments (Fardusi et al., 2017). A drone’s ability to access remote areas, coupled
with AI’s data processing power, can support efficient and cost-effective solutions,
ultimately aiding informed decision-making and proactive disease management
strategies.

I designed my ecological research around the concept of the disease triangle, a con-
ceptual framework used to explain the interactions that lead to the development
of plant diseases (Scholthof, 2007). The disease triangle has three interconnected
components: a susceptible host plant, a virulent pathogen, and an environment
conducive to their interactions. The disease triangle emphasizes the importance
of the interaction between all three components for pathogen spread and dis-
ease development. This concept is crucial for disease management strategies, as
it highlights the potential points of detection and intervention. By modifying the
environment, increasing host resistance, or controlling the pathogen, it’s possi-
ble to disrupt the disease triangle and reduce the incidence and severity of plant
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diseases. The social dimension of disease management adds an additional layer
of complexity by considering how human activities influence disease dynamics.
Human activities, such as logging, urbanization, and agricultural expansion, can
alter wildland ecosystems and facilitate pathogen transmission. Changes in land
use and management practices can alter the distribution and abundance of sus-
ceptible hosts and virulent pathogens, allowing the emergence of novel diseases
or epidemics of otherwise minor pathogens. Additionally, the movement of plant
material via global trade networks can introduce new pathogens to wildland ar-
eas and facilitate the rapid spread of invasive pathogens to previously uninfested
regions.

In Chapter 2, I focus on developing a method for mapping the distribution of host
plants using drones and AI. Wildland conservation efforts require accurate maps of
plant species distribution across large spatial scales. High-resolution species map-
ping is difficult in diverse, dense plant communities, where extensive ground-based
surveys are labor-intensive and risk damaging sensitive flora. High-resolution satel-
lite imagery is available at scales needed for plant community conservation across
large areas but can be costly and lacks adequate resolution to identify plants to
species. Deep learning analysis of drone-based imagery can aid in accurate clas-
sification of plant species in these communities across large regions. I assessed
the effectiveness of drone-based imagery and deep learning modeling approaches
to map woody plant species in complex chaparral, coastal sage scrub, and oak
woodland communities. I tested the effectiveness of three analytical approaches –
random forest, support vector machine, and convolutional neural network (CNN)
coupled with object-based image analysis (OBIA) for mapping in diverse shrub-
lands. The CNN + OBIA approach outperformed random forest and support
vector machine methods to accurately identify tree and shrub species, vegeta-
tion gaps, and communities. It was even able to distinguish two congeneric shrub
species with similar morphological characteristics. Similar plant-identification ac-
curacies were attained when applied to neighboring sites. This work demonstrates
the ability of using drone imagery and deep learning analysis to accurately identify
woody species and vegetation mapping at the large scales needed for conservation
research and monitoring in chaparral and other wildland plant communities.
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After identifying the distribution of host plants, I turned to examining associa-
tions between the spatial distribution of foliar plant disease and an environmental
condition required for disease development – the duration of surface leaf wetness.
Leaf wetness and air temperature play crucial roles in the dispersal, infection, and
development of plant pathogens (Huber & Gillespie, 1992). The monitoring of leaf
wetness and air temperature can support early disease detection and management
(Rowlandson et al., 2015). However, measuring surface leaf wetness in expansive
wilderness plant communities poses several formidable challenges. These challenges
stem from the remote and often unpredictable nature of these environments. They
encompass issues associated with data retrieval from multiple stations, interfer-
ence from wildlife, and the environmental impacts of monitoring activities. To
overcome these hurdles, researchers employ approaches that combine the use of
field sensors, remote sensing technologies, and advanced leaf wetness modeling
strategies to effectively collect, interpret, and apply epidemiological models across
larger landscapes. In Chapter 3, I compared the effectiveness of nine popular ma-
chine learning algorithms and four simple, conventional empirical threshold models
to characterize patterns of leaf wetness duration across a spatially heterogeneous
region of a temperate maritime wildland ecosystem. I identified suitable machine
learning algorithms for estimating leaf wetness and propose that the use of simple
empirical models based on dew point depression or relative humidity thresholds
perform well compared to machine learning techniques. I applied these models
across the landscape during the coastal summer fog season when frequent leaf
surface wetting and seasonably warm temperatures can create a favorable envi-
ronment for the development of fungal diseases. Lastly, I relate interpolated leaf
wetness duration to patterns of disease-related dieback in two species of endemic
manzanita shrubs with differing distributions. I found that canopy dieback symp-
toms were more prevalent and severe in Arctostaphylos tomentosa at coastal sites,
where leaf wetness durations were longer. In contrast, canopy dieback in A. pumila
was consistent throughout its coastal to inland range. Morphological traits and
endemic ranges of the two species may explain differences in disease responses.

In Chapter 4, I explore the historical, legal, policy, and training aspects of drone
use that inform how to achieve civil aviation safety and privacy protection while
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not impeding their beneficial uses. I first summarize the legislative history of civil-
ian drone integration in the U.S. national airspace. Next, I explore the current
regulatory frameworks with a focus on federal safety requirements for commer-
cial pilots and the evolving landscape of state statutes that address drone aerial
trespass and privacy rights issues. I highlight key court cases that have shaped
current legal precedent and subsequent protections for unreasonable drone aerial
invasions of privacy in the U.S. national airspace. Lastly, I explore the potential
strengths and challenges of a federal-state drone regulatory status quo. My work
in Chapter 4 revealed a persistent federal-state tension regarding privacy legisla-
tion that points to the need for drone pilots to demonstrate an understanding of
federal safety regulations and state privacy laws. In Chapter 5, I examine the cur-
rent federal certification framework that evaluates pilots’ knowledge of safe and
legal flying, and identify the lack of training on privacy ethics and drone pilot
best practices for maintaining transparency. Expanding professional certification
beyond the federal program can support standards and training across federal and
state jurisdictions that address issues of privacy and methods of reducing impacts
of commercial drone operations. In this chapter, I examine how non-profit orga-
nizations can provide an accredited certification for a commercial pilot training
solution that assesses safety and privacy concerns. I also explore how such a cer-
tification can be administered through existing commercial and higher-education
collaborations.

This dissertation offers several noteworthy contributions to the fields of plant
disease ecology, machine learning, and conservation applications for drone tech-
nology. Firstly, it introduces an innovative method for the large-scale mapping of
host plant species distribution using drone-based imagery coupled with deep learn-
ing techniques. This approach has the potential to expand our ability to monitor
and understand plant disease dynamics in diverse wildland plant communities.
Secondly, this dissertation examines the relationship between plant diseases and
leaf wetness patterns using machine learning algorithms and empirical models.
It offers compelling evidence that simpler empirical models can be just as effec-
tive as more complex machine learning methods in assessing this association, thus
providing valuable insight and pragmatic computational tools for disease manage-
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ment. Furthermore, the dissertation provides compelling evidence of a correlation
between leaf wetness and disease-related dieback in two endemic shrub species
across varying climatic conditions. This finding contributes to our understanding
of the ecological factors influencing plant health in coastal shrublands. In addi-
tion to its ecological contributions, the dissertation also explores the legal and
regulatory dimensions of drone usage, focusing on federal and state regulations.
It identifies key tensions between federal and state privacy legislation in this con-
text, shedding light on the complex legal landscape surrounding drone technology.
Lastly, the dissertation proposes a forward-thinking enhancement to professional
drone pilot certification programs. It suggests the inclusion of training modules
on privacy ethics and security best practices for drone pilots. This recommenda-
tion reflects a proactive approach to addressing emerging ethical concerns and
ensuring responsible drone operation in an evolving technological landscape. To-
gether, these contributions offer a comprehensive and interdisciplinary exploration
of topics at the intersection of ecology, technology, and legal frameworks.
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Chapter 2

Using Deep Learning and
High-Resolution Drone Imagery to
Accurately Identify Diverse Shrub
Species in California Coastal
Communities

2.1 Introduction

Accurately mapping, assessing, and monitoring terrestrial vegetation is central to
ecological and global change research (Miller & Rogan, 2007). Current methods
are too costly or laborious to cover large areas. Remote sensing constructs images
of the physical characteristics of an area by measuring its reflected and emitted
radiation at a distance using special sensors (Schowengerdt, 2006). Land cover of
vegetation or other physical objects is commonly mapped using those remote sens-
ing data to then construct classification models based on observed spectral and
structural relationships, validating the land cover classifications based on a min-
imum mappable unit, determined by the available resolution of remotely sensed
imagery. Satellites and aircraft provide valuable remote sensing data that are used
in plant ecological research at regional and global scales but these systems are often
limited in their capacity to provide images at the spatial, temporal, and spectral
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resolution needed to support research at finer ecological scales (i.e., species, pop-
ulations) (Sun et al., 2021). Affordability can also be an issue when researchers
need high resolution satellite or aerial imagery across large areas (Turner et al.,
2015). Plant ecological research at finer scales often relies on approaches that use
handheld sensor systems mounted to ground-mounted systems (e.g., poles, cranes,
towers). The logistics of these ground-based measurements is often too time con-
suming and physically challenging to collect more than a limited number of sam-
ples or to apply them to more complex systems or over large geographic ranges.
Additionally, such ground-based surveys are arduous, dangerous, and risk dam-
aging sensitive flora in wildland habitats with diverse, dense plant communities
(Questad et al., 2022). Such challenges mean that ground-based sensing surveys
in shrubland and forest communities are often very labor intensive, limited in
spatiotemporal resolution, and prone to under-sampling.

Lightweight uncrewed aerial vehicles (UAVs), also called drones, are increasingly
used as a remote-sensing platform in plant ecology. Their flexibility, reduced cost,
reliability, autonomous capability, and high-resolution multispectral and struc-
tural data contribute to their usefulness in a variety of wildland systems at finer
scales than spaceborne satellite or crewed aircraft imagery (J. Zhang et al., 2016;
Guimarães et al., 2020). UAV data can also complement data collected using
ground-based observations (Atkins et al., 2020), satellites (Dash et al., 2018), and
crewed aircraft surveys (Mangewa et al., 2019).

Advances in UAV hardware, coupled with developments in three-dimensional (3D)
point cloud modeling of landscape structure using Structure-from-Motion (SfM)
algorithms are providing an alternative to expensive LiDAR platforms for struc-
tural mapping (D’Urban J et al., 2020). Light detection and ranging (LiDAR)
sensor systems are among the most accurate for measuring structural attributes
at the stand and individual canopy levels (Wallace et al., 2016; Dalponte et al.,
2012), but the high equipment costs can make LiDAR sensors difficult to procure.
Structure-from-Motion (SfM) photogrammetry is a computer vision technique that
constructs a 3D model from a set of overlapping two-dimensional (2D) digital
photographs (Westoby et al., 2012). UAV-derived photogrammetric point clouds
(PPCs) generated from drone photographs and structure-from-motion (SfM) al-
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gorithms provide an analogous three-dimensional (3D) structural measurement
and are gaining popularity as a low-cost and accurate alternative to characterize
ecologically relevant landscape structure including the shapes and sizes of trees
and shrubs (Wallace et al., 2016; D’Urban J et al., 2020). SfM approaches coupled
with spectral analysis have been used to identify tree species (Onishi & Ise, 2021),
assess small-scale tree canopy gaps (Getzin et al., 2014) and estimate biomass in
low stature grassland vegetation (Wijesingha et al., 2019).

Shrublands have gained attention because of the ecosystem services they provide
(Brunson, 2014; Liu et al., 2014; Wohlgemuth & Lilley, 2018; Gonzalez M et al.,
2020), their increased vulnerability to global change (i.e., drought, fire, land use
change) (Vicente-Serrano et al., 2012; D. Li et al., 2018; Jacobsen & Pratt, 2018),
and efforts to conserve and actively restore degraded shrublands in Mediterranean-
type ecosystems (Lecina-Diaz et al., 2019; Syphard et al., 2018; Underwood et al.,
2022), subtropical regions (J. Li et al., 2016), and deserts (Wang et al., 2020).
This has spurred interest in applying UAV surveys in shrublands, but advances
have been limited by the set of challenges related to quantifying the spatial distri-
bution of species. Canopies in these ecosystems should be readily accessible given
their low stature, but in many of the more diverse and spatially heterogeneous
shrublands, dense and impenetrably overlapping canopies can limit physical ac-
cess, increase risk to workers, and risk significant damage to sensitive flora. In
more arid, spatially diffuse desert shrublands, mapping species distribution and
quantifying biomass with satellite imagery is possible but with large uncertainties
and logistically challenging field validation (Zandler et al., 2015). UAVs have been
successfully used in sensitive shrubland habitats to map plant community struc-
ture (Gonzalez M et al., 2020; Charton et al., 2021), estimate biomass (Doughty &
Cavanaugh, 2019; Ding et al., 2022), map species distribution in highly dynamic
environments (Zhao et al., 2020), and augment the assessment of restoration suc-
cess (Al-Ali et al., 2020).

Chaparral shrublands are the dominant wildland vegetation type in Southern Cal-
ifornia and one of the most extensive ecosystems in California, with evergreen scle-
rophyllous shrubland cover making up approximately 9% of the state (Underwood
et al., 2018). Satellite remote sensing has been used for vegetation classification in
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California coastal shrublands at the stand and community scale (Roberts et al.,
1998), can distinguish perennial woody from herbaceous annual vegetation within
a shrubland community (Hamada et al., 2011), and can estimate aboveground
biomass of dominant species (Underwood et al., 2022). Recent work utilized aerial
imagery and LiDAR data from airplane flights to classify coastal scrub communi-
ties in terms of vegetation alliances and associated species with limited success due
to interference from variable topography and available light conditions (Warkentin
et al., 2020) No studies have explored the use of UAVs data and machine learning
approaches to classify woody-plant species at the level of individuals or patches
in chaparral and scrub communities, as required to support ecological research.

Conventional land-cover classification maps are constructed from remotely sensed
data using one of two general image analysis approaches: pixel-based classifiers
and geographic Object-Based Image Analysis (OBIA) methods. Pixel-based clas-
sification approaches use spectral information associated with individual pixels,
irrespective of their spatial distribution and land cover context to assign land cover
classes. Pixel-based methods of image classification can further be separated into
two classification approaches - unsupervised or supervised. Unsupervised pixel-
based approaches group pixels into clusters based on their properties and classify
each cluster with a land cover class independent of the researcher. Unsupervised
pixel-based methods can be computationally faster and the automated nature
of the approach does not require the researcher to provide contextual samples
to constrain the classification process. Although faster, unsupervised pixel-based
classification approaches often produce unsatisfactory results especially when re-
mote sensing data has a very high spatial resolution and objects of interest have
high pixel heterogeneity – producing classifications that resemble what researchers
term the “salt and pepper effect” (Weih & Riggan, 2010).

Pixel-based approaches can also be supervised to control the relevance and ac-
curacy of classification. In a supervised pixel-based classification approach the
researcher selects representative samples for each of the land cover classes of in-
terest in an image. Samples are used to generate signature files that store the
samples’ spectral information and this information is used to make classifications
by running a classification algorithm (e.g., support vector machine). With the
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increased availability of high-resolution remote sensing data, software developers
and researchers have moved to the use of semi-automated OBIA classification pro-
cedures that analyze the spectral, spatial, and contextual properties of imagery
pixels and use segmentation processes with iterative machine-learning algorithms
to delineate objects in the landscape that can then be systematically classified.
OBIA classification approaches group pixels into representative geometries based
on a set of parameters designated by the researcher. These parameters are based
on the scale, shape, texture, spectral properties, and geographic context of objects
of interest (Blaschke et al., 2014). The OBIA classification process is supervised,
requiring input of samples that have been previously classified by humans to com-
plete the classification process.

The use of artificial intelligence (AI) approaches for land-cover classification and
mapping has a well-established history, particularly for satellite-based remote sens-
ing (Civco, 1993). Much of the success from AI in remote sensing has been in ad-
vancing the use of image processing and pattern recognition as improvements over
conventional statistically-based procedures for classification of landscape features.
Advances in graphics processors, classification algorithms, and the increased abil-
ity of artificial neural networks to accurately and efficiently classify imagery using
multiple layers of features have driven a surge of interest in AI approaches to land
cover classification. These deep learning approaches examine the intricate pixel-
based structure in very large image datasets using a backpropagation algorithm
that allows the machine to adjust its internal parameters to compute an accurate
representation in each layer of its neural network based on the representation in
the previous layer.

Recent research has determined that non-parametric decision tree machine learn-
ing algorithms namely, random forest (RF) and support vector machine (SVM),
are well suited to classify vegetation species using high-resolution multispectral
and RGB UAV imagery (Garzon-Lopez & Lasso, 2020). The RF algorithm in
particular is regarded as an effective classification modeling approach for remote
sensing data in complex landscapes given its classification accuracy and high pre-
dictive stability compared to other approaches (De Castro et al., 2018; Franklin
& Ahmed, 2018) given the ability to tune model parameters accurately and ro-
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bustly (T. Zhang et al., 2022), while decreasing the probability of an overfitted
machine learning model (Hastie et al., 2009). Support vector machines (SVMs)
are a machine learning tool that approach a higher rate of accuracy than random
forest (Bell, 2014), but SVM classification accuracies can be reduced when the
identification of target classes requires multiple high resolution imagery bands.

One of the most successful deep learning classification approaches in vegetation
remote sensing is the convolutional neural network (CNN) (Kattenborn et al.,
2021). CNNs utilize computational models that are made up of multiple convolved
layers that learn representations of data using multiple levels of mathematical ab-
straction (LeCun et al., 2015). The neural network is made up of ‘hidden-layers’
composed of two stages. In the first stage, the network completes a convolution of
the previous layer at a particular kernel size and is able to store trainable weights.
The second stage is a max-pooling stage which aims to reduce the number of com-
putational units by keeping only the most responsive kernel units derived from
the first stage convolution. CNNs can consist of multiple convolutional and max
pooling layers that end in a fully connected layer that receives input from all of the
units from the previously hidden layer and has a decision unit for each class that
the network can predict. In remote sensing applications, the most common form
of CNNs uses a supervised learning approach and requires a series of labeled train-
ing input images containing a subject of interest, assigned by the researcher, that
the computer can then use to assign importance to a variety of image attributes.
Ultimately the computer assigns learned weights that can be used to classify fu-
ture imagery that was not part of the original training set. Two key advantages of
CNN techniques are that it requires very little computational engineering and the
approach can easily take advantage of the increased amount of available graphical
processing power to process very high-resolution UAV data. CNNs achieve this
by systematically reducing images into a data form that is easier to computa-
tionally process without losing features that are critical for accurate classification.
Once the CNN is trained it can be applied to classify an entire raster landscape.
Applying the CNN model results in a spatially explicit probabilistic heat map
for each classification. The assignment of a discrete classification to map regions
can be achieved using fuzzy logic classifiers and a geographic object-based im-
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age analysis workflow (OBIA). CNN and OBIA approaches have demonstrated
high classification performance on a variety of plant species classification applica-
tions in agriculture (Dyrmann et al., 2016; Kamilaris & Prenafeta-Boldú, 2018)
and forestry (Hafemann et al., 2014; Schiefer et al., 2020). Additionally, CNN ap-
proaches have been successful in detecting low-stature shrub species in a variety
of plant communities (Guirado et al., 2017; Frost et al., 2021; James & Bradshaw,
2022; Tamiminia et al., 2021). Recently, CNN deep learning modeling has been
combined with the OBIA classification approach, a process now termed CNN fu-
sion (i.e., CNN+OBIA, CNN+GEOBIA, OCNN), with the aim of improving the
overall accuracy of land cover classification by implementing an OBIA segmenta-
tion of CNN classification probability output (Timilsina et al., 2019; Martins et
al., 2020).

A robust methodology for species-level classification in complex shrublands can
greatly increase the possible spatial and temporal extent of species-level moni-
toring for conservation and restoration, species-specific stand-level health assess-
ments, fire risk and fuel load assessment, and biomass and carbon sequestration
modeling. We posit that a CNN machine learning approach coupled with OBIA can
leverage the high-resolution multispectral and structural data from UAV flight sur-
veys to efficiently and accurately classify shrub species canopy across landscapes.
This study demonstrates how shrub and tree species in spatially heterogeneous
stands of chaparral, coastal sage scrub, and oak woodland can be accurately clas-
sified and mapped using drone-based multispectral imagery and a CNN+OBIA
supervised machine learning classification approach.

2.2 Methods

Study Site

All research occurred on the 246-ha University California, Santa Cruz - Fort Ord
Natural Reserve (UCSC-FONR) (Figure 2.1).The UCSC-FONR is located ap-
proximately 129 km south of San Francisco, CA. along the Monterey Bay and
bordered by the city of Marina. This coastal parcel includes an abundance of
low-growing shrublands among accessible rolling terrain (96-ha), ranging in ele-
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Figure 2.1: Map of research sites (yellow border) - UCSC Fort Ord Natu-
ral Reserve (black border). a) Application Site 1 (8.42ha), b) Training Site
(16ha), c) Application Site 2 (8.84ha), d) Application Site 3 (7.44ha). Back-
drop imagery source: World Imagery Esri, Maxar, Earthstar Geographics
(2022). Research site imagery is displayed as RGB orthomosaic from UAV
research flights.

vation between 21 to 58 meters above mean sea level. We focused on a 40.7-ha
area in the northwestern region of the reserve that includes a mosaic of three
woody plant dominated coastal plant communities typical of the semi-arid coastal
Mediterranean-type ecosystems of central California: maritime chaparral, coastal
sage scrub, and coastal live oak woodland (Figure 2.2).

Maritime chaparral is a plant community found along the central California coast-
line and is characterized by sclerophyllous shrub species with hard, waxy-cuticle
leaves. Dominant taxa in this community include manzanita species (Arctostaphy-
los tomentosa and A. pumila), chamise (Adenostoma fasciculatum), and a rare
California lilac (Ceanothus rigidus). Coastal sage scrub is characterized by its
drought-deciduous aromatic shrub species adapted to coastal lowlands in Mediter-
ranean climate regions. Species associated with coastal sage scrub include Califor-
nia sagebrush (Artemisia californica), black sage (Salvia mellifera), coyote bush
(Baccharis pilularis), and mock heather (Ericameria ericoides). Monotypic stands
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of coast oak woodlands (Quercus agrifolia) are surrounded by stands of maritime
chaparral and coastal sage scrub. Some species are found in multiple plant com-
munities (e.g., poison oak, Toxicodendron diversilobum) and several species can
be intermixed at small scale. Four sites were determined based on the dominance
of 10 of the 53 woody plant species known to occur in the region.(Table 2.1)

Table 2.1: Summary of the dominant woody plant species in the study
sites and their associated plant communities. Arctostaphylos tomentosa
ssp. tomentosa is referred to as A. tomentosa throughout this manuscript.
Some species are known to inhabit all communities (e.g., T. diversilobum)
and some coastal sage scrub species are known to encroach into mixed
chaparral and coastal sage scrub.

Species Common name Plant Communities
Adenostoma fasciculatum Chamise Maritime Chaparral
Arctostaphylos pumila Sandmat Manzanita
Arctostaphylos tomentosa Woolyleaf Manzanita
Ceanothus rigidus Monterey Ceanothus
Artemisia californica California Sage Coastal Sage Scrub
Baccharis pilularis Coyote Brush
Ericameria ericoides Mock Heather
Salvia mellifera Black Sage
Toxicodendron diversilobum Poison Oak
Quercus agrifolia Coast Live Oak Oak Woodland

UAV Data Collection

UAV flight data were acquired in Summer 2021 (7/23/2021 - 7/24/2021), under
high cloudy overcast skies, no fog, and light winds (2-5 km/hr). We conducted five
flight surveys ranging in area from 5-9 ha (Figure 2.1) All flights were approxi-
mately 30 minutes in duration and conducted near solar noon (1100 - 1300 PDT).
Overcast conditions were ideal for limiting shadows created by taller neighboring
vegetation that tend to obscure lower growing vegetation. All automated flight op-
erations were planned and executed using DJI Pilot (v2.3.1.5) software as single
pass grid flight patterns with 80% frontlap and at least 80% sidelap at a constant
altitude of 60 m above the terrain to ensure the desired ground sampling dis-
tance (GSD; the distance between the centroids of two adjacent pixels measured
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Figure 2.2: Manzanita dominated maritime chaparral (left) and coastal
sage scrub transitioning to oak woodland (right). UCSC Fort Ord Natural
Reserve, California.

on the ground). All flights were conducted by Section 107 FAA licensed pilots
and in accordance with all federal, state, and local laws and regulations as well
as all UC policies regarding small Uncrewed Aircraft System (sUAS) operation
(UC-RK-18-0377).

A DJI Matrice 210 RTK V2 Pro quadcopter (DJI, Shenzhen, China) with ap-
proximately 30 minutes of flight autonomy was equipped with dual gimbals to ac-
commodate two sensor systems capable of maximizing ground sampling distance
(GSD) while capturing high resolution narrow spectral band reflectance data. A
Zenmuse X7 24mm RGB camera with F2.8 leaf shutter aspheric lens captured
high resolution imagery (GSD: 1cm/pixel, 24MP resolution) and was used in the
generation of topographic rasters. The DJI Zenmuse X7 camera was connected to
the onboard RTK-GNNS positioning system and WiFi connected to a DJI D-RTK
Mobile Station which served as a high-precision GNSS ground receiver, providing
real-time differential corrections of imagery position with centimeter-level position-
ing accuracy. The use of RTK correction negated the need for including ground
control points in the sites. A MicaSense Altum multispectral sensor (MicaSense,
Seattle, WA) collected calibrated narrow spectral band reflectance data at Blue
(455-495 nm), Green (540-580 nm), Red (658-678nm), Red edge (707-727 nm),
and Near infrared (800-880 nm) at GSD 2.5 cm/pixel. The RTK system was not
compatible with logging positioning information to two image sensors so we used
the MicaSense Altum sensor’s integrated GPS to record image positioning and
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later georeferenced Altum multispectral rasters to the reference RTK-collected
Zenmuse X7 RGB data.

UAV Image Processing

UAV imagery was photogrammetrically processed using Pix4DMapper Pro
(v4.6.4) software (Pix4D SA, Lausanne, Switzerland) to generate multispectral
orthomosaic and topographic rasters. An orthomosaic raster is an image generated
from a mosaic of multiple georeferenced overhead images corrected for perspective
and scale. Additional orthorectification of the multispectral raster to the reference
Zenmuse X7 imagery was completed using the Auto Georeferencing function in
ArcGIS Pro (v3.0.0, ESRI 2022). The Auto Georeferencing function in ArcGIS
Pro requires two rasters with similar band structure and automates the selection
of georeferencing control points that can be exported and used to georectify ad-
ditional reflectance rasters. We generated an RGB composite orthomosaic raster
from the Zenmuse X7 and Altum data and georeferenced the Altum RGB raster
dataset to the X7 RGB raster dataset and exported the control points generated
by the auto georeferencing function. These control points were used to georectify
the remaining calibrated near-infrared and near-infrared edge reflectance rasters
generated from the Altum Micasense sensor.

Topographic rasters included digital surface models (DSM) and digital terrain
models (DTM) generated from Zenmuse X7 imagery and rendered point cloud
data. DSM raster generation utilized a point cloud densification workflow with
optimization at ½ image size and an inverse distance weighting algorithm ap-
plication. DTM raster generation was achieved using a point cloud classification
algorithm and gaussian averaging producing a terrain model with lower resolution
(5 cm/pixel). We used QGIS (v3.20.1-Odense) to generate a vegetation canopy
height model from the normalized digital surface model (nDSM) by taking the
arithmetic difference between the DSM and DTM raster values. We also calcu-
lated the slope values as a raster from the resulting nDSM. The percent slope
model showed the maximum rate of elevation change between each cell and its
neighbors calculated as the angle of inclination to the horizontal. Percent slope
can be used to find the borders of overlapping tree canopies and gaps (Onishi &
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Ise, 2021) and may support distinguishing between shrub species that have over-
lapping canopies as well as gaps in canopy. The slope raster was generated using
the GDAL DEM utility in QGIS. All raster products were exported as 32-bit and
8-bit GeoTIFF format with WGS 84 / UTM zone 10N (EGM 96 Geoid) projec-
tion. A 64-bit Windows 10 PC equipped with an Intel® Core™ i9-10900KF CPU
at 3.70GHz, 32GB RAM, and an NVIDIA GeForce RTX 3060 graphics processor
was used for all photogrammetric processing and machine learning modeling.

Flight Imagery

We successfully generated a multispectral orthomosaic (2.5 cm/pixel; Figure 2.3),
nDSM (5 cm/pixel; Figure 2.4), and a slope raster (Figure 2.5) for the entire
research site (40.7 ha).

Field Sampling

Between Summer 2021 and Summer 2022 we completed extensive ground surveys
of woody vegetation across the four study sites. During the yearlong period of
surveys, we did not find any significant changes in the spatial distributions of
the vegetation alliances and shrub species. Given the dense, often impenetrable
canopies we opted for a plotless sampling technique over transect or quadrat sam-
pling methods. Previous surveys of the entire natural reserve have documented
the presence of 53 woody plant species with dominance by 10 species. To acquire
ground positions of woody plant species, we uploaded an 8-bit version of the high-
resolution X7 RGB orthomosaic imagery from UAV flights to an Android tablet
mobile device and accessed imagery in the field using the open-source GIS plugin
QField (OPENGIS.ch, 2020). The QField interface was configured in QGIS Desk-
top to include a data collection form that allowed field technicians to efficiently
collect GPS point data on the position of woody plant species by referencing im-
agery in real time relative to their current ground position. GPS point data was
collected for areas that were distinguishable in the imagery, larger than 0.5m2 and
consisting of a single live species, bareground, or standing deadwood. Technicians
recorded cover type and ensured that survey points were separated by distances
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of at least 3 meters. All geodata was synchronized via the QField plugin in QGIS
desktop and stored in shapefile format.

We had a primary research interest in identifying individual species within the
maritime chaparral plant community. We did not consolidate these species into a
single classification category given management interests aimed at mapping the
species distributions, assessing plant health, and estimating fuel loadings in the
future. Manzanita, Ceanothus, and Chamise have very different fire-related char-
acteristics (Zhou et al., 2005). To facilitate the focus on classification of those
maritime chaparral species we lumped all the species comprising the coastal sage
scrub community into a single broad category; this eliminated the need for ad-
ditional algorithms for deeper species-level classification. Creating this broader
coastal sage scrub category also tested the ability of machine learning approaches
to classify a group with high spectral variability at the same time as species-specific
classifications with lower spectral variability.

Classification Modeling Development

We evaluated three OBIA integrated classifier methods: Random Forest (RF),
Support Vector Machine (SVM), and a deep learning Convolutional Neural Net-
works (CNN) approach. All classifier methods were developed and applied into
an object-based image analysis (OBIA) framework using eCognition Developer
10.2 software (Trimble Geospatial GmbH: Munich, 2021). eCognition Developer
is a development environment designed specifically to combine machine learning
approaches with object-based image analysis through analysis workflows called
rule sets. Two key advantages of this approach are (1) CNN integration based on
Google’s TensorFlow API and (2) the ability to utilize the same OBIA landscape
segmentation algorithms across the three classifier methods.

Image Sampling

In order to generate training and testing sample patches, survey points in the 16ha
training region (Figure 2.1) were randomly assigned to 70% training and 30% test-
ing groups and labeled by membership to one of eight classification groups: A.
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fasciculatum, A. pumila, A. tomentosa, C. rigidus, Q. agrifolia, a Coastal Sage
Scrub group, Deadwood, and Bareground. Survey points with distances to the
raster scene border of less than 12 pixels were not used to generate samples. Sam-
ples were generated by rendering a square polygon buffer around ground survey
points with sides of 0.6m (0.36m2) ground sampling distance (GSD), correspond-
ing to 24x24 pixels image space, where each pixel represents 2.5cm GSD. Samples
were extracted from 8-bit multispectral rasters (i.e., red, green, blue, near-infrared
(NIR), and near-infrared edge (NIRe)). Deep learning methods require thousands
of training samples and this is often achieved by systematically rotating the scene
orientation that sample patches are extracted from. This method can also rectify
problems associated with the influence of shadow orientations. We used eCogni-
tion Developer 10.2 (Trimble Geospatial GmbH: Munich, 2021) to create a fully
automated process that rotates the raster imagery at an interval of 30-degrees,
extracts 1,000 samples, and repeats the process a total of 12 times. The process
generates 12,000 samples per class and a total of 96,000 samples across the 8 cover
classes.

Our convolutional neural network architecture began with random initial weights
and received sample patches from the five multispectral image layers as training
inputs with the goal of generating a probabilistic heat map of cover classes as an
output. The model consists of two batch normalized hidden layers. In the first
hidden layer imagery is convoluted with a kernel size of 3x3 pixels and assigned to
40 feature maps without max pooling. In the second fully connected hidden layer,
results from the first hidden layer are further convoluted using a 3x3 kernel size
and assigned to 20 feature maps. Our CNN model consists of only the two hidden
layers with no max pooling layers included. Max pooling is a method of reducing
the pixel dimensions of the image thereby speeding processing time. CNN training
was initiated by randomly shuffling training data and learning occurred at a rate of
0.0001 with 8,000 training steps, and a sample batch size of 100 images. Learning
rate defines the amount by which weights are adjusted in each iteration of the
statistical gradient descent optimization.
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0 15075 m

A. fasciculatum A. pumila A. tomentosa C. rigidus

Q. agrifolia Coastal Sage Scrub Bareground Standing Deadwood

Figure 2.6: CNN generated probability heat maps for each feature class
in the 16ha training site. Red regions have a high probability (p=1) of
membership to the class and blue represents a null probability (p = 0) of
membership to the feature class.

CNN Application and OBIA Classification

Once the CNN model was trained using training samples, we applied the model
to the entire 16ha training site and to the neighboring application sites. For each
of the cover classes, we generated a separate raster heat map representing the
probability that each pixel has membership within the cover classes (Figure 2.6).

Segmentation

Multi-Resolution Segmentation, or MRS, is a widely-used segmentation approach
for OBIA classification with very-high-resolution (VHR) imagery (Chen et al.,
2021). We used the MRS algorithm in eCognition Developer 10.2 to generate a
segmentation vector layer for objectbased image classification. Multiresolution seg-
mentation implements a method of segmentation known as region growing that
iteratively merges neighboring regions with similar spectral and spatial hetero-
geneity based on thresholds defined by the researchers (Blaschke et al., 2004).
Our segmentation process utilized the multispectral orthomosaic, canopy height
(nDSM), and slope model as inputs with weightings assigned through trial and
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error as multispectral (4), canopy height (2), slope (1). Segmentation parameters
were set to a scale of 80, shape of 0.2, and compactness of 0.6.

Next, image segmentations were classified by generating a class hierarchy based
on fuzzy logic membership using eCognition Developer 10.2. Each feature class in
the classification hierarchy contained a class description consisting of a set of fuzzy
logic membership functions that evaluated the specific probabilistic features of the
individual heat maps generated from the CNN. We defined all of the fuzzy sets
by linear membership functions that identified a soft fuzzy classifier that uses a
degree of membership probability to express an object’s assignment to a class. The
membership values range from 0.0 to 1.0, where 1.0 represents full membership
to a feature class and 0.0 represents absolute non-membership. One advantage
of these soft fuzzy logic methods lies in their ability to quantify uncertainties
about the descriptions of feature classes and assign membership to a class based
on the degree of uncertainty of membership in other classes. For this study, all
membership functions varied between 0 and 1 except for C. rigidus which was
assigned a heat map probability threshold for classification that began at 0.85
instead of zero. This threshold was based on expert knowledge of where rare C.
rigidus is actually located in the landscape and was determined by trial-and-error
to accurately identify the species and reduce false positive classification.

To assess accuracy during model development in the 16ha training site, the 30% of
randomly selected ground survey points were used to assign segmentation polygons
as test classification polygons. If multiple ground survey test points of the same
classification type were together in a test segmentation polygon, then we deleted
test points so that only a single ground survey test point was associated with each
testing segmentation polygon. Prior to testing we also ensured that training ground
survey points were not within polygons that were assigned as test segmentation
polygons. The overall impact of this process reduced the proportion of testing
points by 1-2% per class and reduced the overall number of testing points total
by 11% (Table 2.2)
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Accuracy Assessment

The classification performance of CNN+OBIA, RF, and SVM methods was as-
sessed using visual inspection of classified segmentation polygons and quantitative
accuracy assessment as object-based calculations of overall accuracy (OA) and
Cohen’s Kappa coefficient (κ). In order to evaluate individual cover classes, we
calculated per-class precision, recall, and F-Score (F1) statistics.

Precision (Aronoff, 1982), also called user accuracy, summarizes how often a real
cover type on the ground (i.e., from reference data) correctly appears on the clas-
sified map. Recall, also called producer accuracy, describes how often the classes
designated on the map are actually present on the ground.

A highly accurate classification must balance high recall and high precision. The
F-Score (F1) statistic is a useful metric to evaluate that trade-off calculated as the
harmonic mean of the precision and recall (Sundheim, 1992). A higher F1 statistic
indicates support for predictions made by the model classifier. Another convention
is to calculate Cohen’s kappa coefficient (κ) which compares observed patterns to
a classification based entirely on random assignment. Kappa values range from -1
to 1; a value of 0 indicates that the classification is no better than random, and κ

close to 1 indicates that the classification is better than random.

2.3 Results

Field Survey Results

We collected a total of 11,622 ground survey points across the entire 40.7ha re-
search area (Table 2.2) The majority of data collection (60%) was concentrated
within the 16ha model training site, and the rest in the 24.7ha application sites.

Classification Model Results

The CNN+OBIA method had the highest overall classification accuracy across all
application sites (Mean OACNN+OBIA = 0.85, Mean κCNN+OBIA = 0.81) (Fig-
ure A.1) compared to random forest (Mean OARF = 0.63, Mean κRF = 0.55)
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A.2) and support vector machine (Mean OASV M = 0.67, Mean κSV M = 0.58)
(Figure A.3. Our CNN+OBIA approach accurately classified three species of
chaparral shrub species in the application sites including: A. fasciculatum
(Mean κCNN+OBIA = 0.80), A. pumila (Mean κCNN+OBIA = 0.86), and A.
tomentosa (Mean κCNN+OBIA = 0.72). Random forest and SVM classifica-
tion models were most effective at classifying A. pumila (Mean κRF = 0.79,
Mean κSV M = 0.91), but only moderately accurate at classifying A. tomen-
tosa (Mean κRF = 0.45, Mean κSV M = 0.60), and poor at classifying A.
fasciculatum (Mean κRF = 0.08, Mean κSV M = 0.21). CNN+OBIA was
the most effective model for classifying several other cover classes including:
Q. agrifolia (Mean κCNN+OBIA = 0.97), bareground (Mean κCNN+OBIA =
0.96), standing deadwood (Mean κCNN+OBIA = 0.89), and coastal sage scrub
(Mean κCNN+OBIA = 0.69). Rare Ceanothus rigidus classification accuracy was
poor across all sites (MeanκCNN+OBIA = 0.28, MeanκRF = 0.21, MeanκSV M =
0.21). Complete confusion matrices (Figures A1-A3)and additional land cover clas-
sification maps (Figures A4-A6) are available in the Appendix A supplementary
materials.

2.4 Discussion

Here we presented a CNN+OBIA classification modeling approach based on very
high resolution multispectral and structural UAV data capable of accurately iden-
tifying species, broader plant communities, and structural cover features in com-
plex, wild vegetation. We attribute the success in our CNN+OBIA classification
process to three factors: consideration of target species abundances and distri-
bution across the training and application sites, collection of extensive ground
survey training data, and integration of a CNN workflow that uses high resolu-
tion multispectral data with object-based segmentation based on multispectral
and structural data. One distinct advantage of the CNN approach over RF and
SVM is the ability to simultaneously classify a broad group consisting of several
co-occurring species along with more focused, less variable, target species. Our
CNN+OBIA approach outperformed RF and SVM methods for classifying the
heterogeneous coastal sage scrub group and several individual species.
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We focused on creating an effective classification model for the four most dominant
shrub and tree species in a dense and heterogeneous shrubland community; a rea-
sonable next step would be to include additional species in the model. Generating
a model is simple for locally dominant species because it is easiest to collect the
needed training and testing data. Once a robust model is trained, it can be applied
to other sites and evaluated with fewer survey points required for validation. In-
cluding less common species would require a larger suitable training area reflective
of the composition of nearby application sites. The process of target species and
training site selection are dependent on expert knowledge of regional plant com-
munities. For example, the variable classification performance in A. fasciculatum
in Site 2 (Figure A.1 can be explained by the low abundance of A. fasciculatum.
We were only able to locate nine distinct patches of A. fasiciculatum in Site 2
that met our ground survey criteria and six patches with neighboring coastal sage
scrub, A. pumila, or C. rigidus causing a distinct drop in map reliability (recall)
for this region. This means that care and creativity are needed when interpreting
classification performance for locally rare species.

For example, the poor classification accuracy of Ceanothus rigidus provides a
good example of what can happen when there are not an adequate number of
specimens to adequately train the model and an inadequate number of validation
points in application sites. In the case of C. rigidus the low number of available
training subjects resulted in high recall rates indicating that ground survey points
were correctly identified in the map but the low precision and accuracy statistics
(F1, Kappa) indicating that the model misclassified other non-target points as
C. rigidus. We were able to apply expert knowledge, and trial-and-error, to our
classification fuzzy logic schema, setting a high probability threshold for classifica-
tion of C. rigidus (p=0.85) to reduce the prevalence of misclassification, although
some misclassification persisted. This misclassification may be rectified by con-
ducting lower elevation flights to gain higher resolution data, conducting surveys
across much larger regions to increase the species sample abundance or by timing
flights to coincide with the colorful seasonal bloom of C. rigidus.

Integrating structural features of the vegetation (i.e., canopy height and slope)
with multispectral data into the multiresolution segmentation process was a pow-
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erful component in the identification of several species and structural features.
For example, Quercus agrifolia was usually the tallest species in the landscape
and had a consistently hemispherical crown shape that segmented well and helped
produce a very high classification accuracy.

Grouping standing deadwood from multiple species into a single category may
reduce the deadwood classification accuracy, as different species exhibit variations
in dieback patterns and decay processes, which can be overlooked when combined.
However, this aggregate approach can be effective at supporting the delineation
of bareground, which often has similar spectral properties. In our study, man-
zanitas (A. pumila and A. tomentosa), chamise (A. fasciculatum), and oak (Q.
agrifolia) were the predominant species exhibiting deadwood characteristics. In
the future, creating separate classifications for each species could enhance classifi-
cation accuracy and ecological relevance, providing a comprehensive understand-
ing of dieback dynamics in the ecosystem. We attribute the high performance in
deadwood detection to the abrupt variation in canopy heights and slope dynamics
within manzanita and chamise dieback patches coupled with high NIR and NIR-
edge absorption and low red absorption. Although our study does not delineate
species-specific deadwood detection, it does offer a suitable alternative to rectify-
ing a challenge with correctly classifying bareground from standing deadwood in
forest systems (Zielewska-Büttner et al., 2020).

We explored the use of a CNN+OBIA deep-learning approach to classify vegeta-
tion cover at the species level using very high-resolution imagery collected using
UAVs. Cover classification at these levels is essential for investigating the distri-
bution and health of ecologically and economically important species in a variety
of wildland, urban, and agricultural landscapes. This method holds great promise
for supporting conservation management practices in wildland communities where
target species may be located in inaccessible areas or distributed over large ex-
panses, especially in heterogeneous wildland communities. The ability to accu-
rately classify standing deadwood and areas of bareground is equally important as
it could be used to study patterns of dieback and growth in these communities. A
continuing challenge is the difficulty of collecting adequate data to train models for
identification of locally rare species. Multi-seasonal flights may capture phenolog-
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ical differences (i.e., flowering) useful for developing robust classification schema.
The ease of flight planning and high-resolution sensor capabilities of drones make
them well-suited to do this work in the future.

Data Availability

The data that support the findings of this study are openly available in Dryad at
https://doi.org/10.7291/D1KH4K
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Chapter 3

Machine Learning vs. Empirical
Models: Estimating Leaf Wetness
Patterns in a Wildland Landscape for
Plant Disease Management

3.1 Introduction

Integrated Pest Management (IPM) can reduce risk of plant disease, but requires
detailed monitoring of the weather conditions that affect pathogen performance. A
critical factor is the duration of liquid water on the surface of plant leaves, which
is often a limiting factor in infection by foliar plant pathogens and in production
and dispersal of fungal spores (Rowlandson et al., 2015). Leaf wetness data are
integrated into models of disease development and into decision support systems
that guide growers and land managers in optimized application of chemical treat-
ments or biological management practices (Pitblado, 1992; Narouei-Khandan et
al., 2020).

The relationship between leaf wetness conditions and plant disease has been
demonstrated across a range of disease-causing fungal and bacterial pathogens
in agricultural crops and forest trees (Arauz & Sutton, 1989; Huber & Gillespie,
1992; Lan et al., 2019). Most pathogens require that liquid water persists for sev-
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eral hours on the plant surfaces before they can infect the plant. Free water on
leaves from fog, dew, rain, guttation, and sprinklers can promote fungal and bac-
terial infections and spread (Rowlandson et al., 2015). Higher air temperatures
that coincide with extended periods of leaf wetness increase rates of fungal spore
germination, infection, and sporulation in several foliar pathogens (Magarey et
al., 2005).

In both agricultural and wildland ecosystems, leaf moisture conditions can vary
strongly across the landscape, leading to strong spatial patterns in disease pressure
(Bradley et al., 2003). Leaf wetness is measured using field-based sensors capable
of detecting and recording the duration of leaf wetness. Conventional electronic
leaf wetness sensors most often utilize a circuit plate sensor and datalogger capable
of recording changes in electrical resistance or capacitance of the sensor surface
as water decreases resistance and increases the dielectric constant relative to air
(Rowlandson et al., 2015). Leaf wetness sensors are seldom part of standard mete-
orological monitoring, making access to leaf wetness data difficult for researchers
and growers to access (Rowlandson et al., 2015). As a consequence, a variety of
empirical and physical models have been developed to predict leaf wetness dura-
tion from readily accessible conventional weather station measurements. Empirical
models range in complexity from simple threshold models based solely on relative
humidity (e.g., Sentelhas et al., 2008; Wichink Kruit et al., 2008) to more com-
plex empirical models that use multiple abiotic factors including air temperature,
relative humidity, dew point, wind speed, and solar radiation (Pedro & Gillespie,
1981; Gleason et al., 1994; Kim et al., 2002).

Continued advances in machine learning techniques and high-performance com-
puting have created new opportunities to harness large amounts of available envi-
ronmental data to better meet critical needs in plant disease management (Liakos
et al., 2018). Machine learning (ML) methods are algorithms that are not explicitly
programmed for how to solve a specific problem; instead, they become more accu-
rate through iterative training on examples and adjustments to tuning algorithms
(Alpaydin, 2020). In this way, computers develop pattern recognition by continu-
ously learning from data through a process of prediction and adjustment, without
the need for a pre-programmed solution (Liakos et al., 2018). Several researchers
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have proposed that machine learning classification methods can provide better
predictions of leaf wetness compared to conventional empirical threshold methods
(Lee et al., 2016; Shruthi et al., 2019; Asadi & Tian, 2021; Gillespie et al., 2021).
However, machine learning approaches have some of the same vulnerabilities as
empirical approaches because they depend heavily on the quality, objectivity, and
size of training data used to develop models. Most notably, machine learning ap-
proaches require large amounts of data that then require energy demanding and
expensive computational resources and processing time.

Here we compare the effectiveness of nine popular machine learning algorithms
and four simple, conventional empirical threshold models to characterize patterns
of leaf wetness across a spatially heterogeneous region of a temperate maritime
wildland ecosystem. We identify suitable machine learning algorithms for esti-
mating leaf wetness and propose that the use of simple empirical models based
on dew point depression or relative humidity thresholds perform well compared to
machine learning techniques. We applied these models across the landscape during
the coastal summer fog season when frequent leaf surface wetting and seasonably
warm temperatures can create a favorable environment for the development of
fungal diseases. Lastly, we relate interpolated leaf wetness duration to patterns of
disease-related dieback in two species of endemic manzanita shrubs with differing
distributions.

3.2 Methods

Empirical threshold models

Threshold models of leaf wetness are empirical models that define a time period as
wet if a meteorological variable (e.g., relative humidity) is greater than a specified
value. Several such models are well tested, and we explored the performance of four
of these models in our system. Three of the most widely accepted threshold models
predicted leaves are wet during periods when relative humidity (RH) > 87%
(Wichink Kruit et al., 2008), > 90% (Gleason et al., 1994) or RH > 92% (Gillespie
et al., 2021).
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We implemented three empirical threshold models based on these constant relative
humidity threshold (87%, 90%, 92%).

Dew point depression has also been suggested as an estimator of leaf wetness dura-
tion (Huber & Gillespie, 1992) as it is known to be a predictor of dew formation on
surfaces (Monteith, 1957). Dew point depression (DPD) is the difference between
an observed air temperature and the temperature at dew point. Dew point was
estimated using the Magnus formula (Sonntag, 1990) and observed air tempera-
ture (T) and relative humidity (RH) (Equation 2.1). For the range from –45°C to
60°C, Magnus parameters are β = 17.62 and λ = 243.12°C. Gillespie et al. (1993)
proposed that the duration of leaf wetness can be estimated as the length of time
that DPD remains between two specific limits of 2°C for dew onset and 3.8°C for
drying.

Dp(T, RH) =
λ ·

(
ln

(
RH
100

)
+ β·T

λ+T

)
β −

(
ln

(
RH
100

)
+ β·T

λ+T

) (3.1)

Machine Learning Classification

Machine learning methods were selected based on the prevalence of their use in
models of leaf wetness and a recent evaluation of the efficacy of these methods
reported in Gillespie et al. (2021). The goal of all of the classification modeling
approaches was to assess the models’ ability to use meteorological data to recog-
nize two classes of leaf wetness: ‘Wet’ and ‘Dry’. Like Gillespie et al. (2021), we
evaluated several algorithms used in the modeling of leaf wetness and leaf wetness
duration with a mixture of linear (logistic regression (LR) and linear discriminant
(LDA)), nonlinear (Gaussian Naïve Bayes (GNB), Classification and Regression
Trees (CART), and k-nearest neighbor (kNN)), and more complex methods (Lin-
ear Support Vector Machine Classifier (SVM), Random Forest (RF), eXtreme
Gradient Boosting (XGB), and Multilevel Perceptron (MLP)). Below is a brief
description of each machine learning algorithm.
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Logistic Regression (LR)

Logistic regression is a statistical analysis method used to predict a binary out-
come based on explanatory features (Sperandei, 2014). Logistic regression is an
important reference model in the discipline of machine learning that is capable
of performing similarly to more complex machine learning classification models
(Christodoulou et al., 2019). The logistic model fits a sigmoid function to obser-
vations and returns a probability that can be used to distinguish between binary
categories by using the odds ratio obtained in the presence of explanatory features.

Linear Discriminant Analysis (LDA)

Linear discriminant analysis uses linear combinations of explanatory features to
divide the data space into pre-defined groups. The resulting linear functions can
then be used to classify observations into the most likely class. However, the
derived linear decision boundaries may not effectively separate classes that are
not arranged along linear gradients (A. Sharma & Paliwal, 2015).

Gaussian Naïve Bayes (GNB)

Naïve Bayes classifiers are a group of supervised learning algorithms based on the
application of Bayes’ theorem. These approaches find the most probable classifi-
cation from the available classes, given the features that describe the observation.
A central assumption of naïve Bayes methods requires conditional independence
between every pair of features given the value of a classification variable. However,
for models predicting categorical values, the conditional independence assumption
is less restrictive and the resulting predications can have low error rates, even when
there are strong attribute dependencies (Domingos & Pazzani, 1997). Additionally,
Bayesian optimizers can be used to fine-tune hyperparameters for more complex
modeling approaches such as random forest models (Wang et al., 2019; Asadi &
Tian, 2021). Hyperparameters are values that control the learning process that
the machine learning algorithm uses to determine the values of model parameters.
Hyperparameters are set by the researcher and used by the learning algorithm but
they are not part of the resulting model.
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Classification and Regression Trees (CART)

Classification and Regression Trees (CART), also known as Decision Trees (DT),
are a well-established algorithm for predictive classification modeling of leaf wet-
ness (Gleason et al., 1994; Wang et al., 2019). The process of training a CART
model from data involves selecting which input features and thresholds for those
features lead to a suitable decision tree model, while minimizing the cost function
(complexity) used to choose the split points. A CART model predicts the classifi-
cation label by evaluating a tree of if-then-else true/false feature questions. This
leads to an estimate of the minimum number of questions needed to determine
the probability of making a correct decision. The choice of stopping criteria can
produce CART models that are highly tuned to the training data, and thus not
generally applicable. Pruning methods can be used to produce simplier trees with
fewer splits that reduce this problem of overfitting.

K-nearest neighbor (kNN)

K-nearest neighbor (kNN) classifiers are a statistical approach to machine learning
where prediction classifications are made based on majority vote from k neigh-
boring values from an initial cluster of training data with known classifications
(Cunningham & Delany, 2021). They are easy to implement and have highly trans-
parent inner workings, and it is easy to understand the output predictions. They
are robust to noisy training data, but they can be computationally intensive with
lengthy run-times for large datasets; more readily available powerful computa-
tional hardware makes run-time performance less of an issue. A persistent issue
for kNN model implementation is poor performance in accurately classifying rare
events, especially with large-dimensional datasets where less relevant features can
amplify inaccurate predictions.

Support Vector Machine (SVM)

Support Vector Machine classifier algorithms find a hyperplane that creates a
classification boundary between data based on explanatory features. These hyper-
planes take on a dimensional space equivalent to the number of features used to

48



develop the model. SVM finds the optimal hyperplanes that are relatively close
to opposing classes (i.e., wet and dry leaves) and utilizes the neighboring training
data to refine the decision boundaries for model classification (Kecman, 2005).
SVM classifers perform well when explanatory features create a distinct margin
of separation between predicted classes. SVM classifiers are less suitable for large
datasets and complex non-linear classfication kernels because of computational
time and memory requirements.

Random Forest (RF)

Random Forest is a machine learning algorithm that utilizes several individual
decision trees in an ensemble of decision trees, to create a final classification based
on a majority vote for the most probable class. The parameters of a random forest
are the variables and thresholds used to split each node learned during training.
Each decision tree is constructed based on a random subset of the training dataset
to avoid model overfitting. This modeling approach is comparatively slower than
a single decision tree approaches (i.e., CART) but the application of hyperparam-
eters in random forests can result in faster and more accurate model response. In
the case of a random forest, hyperparameters include the number of decision trees
in the forest and the number of features considered by each tree.

eXtreme Gradient Boosting (XGB)

Extreme Gradient Boosting (XGB) is a decision tree approach built on ensemble
learning, combined with gradient boosting, a technique with excellent predictive
performance and rapid processing time (Chen & Guestrin, 2016; Solís & Rojas-
Herrera, 2021). The ensemble approach of XGB is similar to random forests but
differs in how the trees are constructed and combined. Instead of using a bagging
approach, XGB models use boosting, which is a method that combines weaker
learning decision trees into stronger learning groups by creating sequential mod-
els such that the final model has the highest accuracy. These models are built
sequentially by minimizing the developing gradient of error from previous models
by promoting (i.e., boosting) the influence of higher performing models for each
successive prediction.
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Multilayer Perceptron (MLP)

A Multilayer Perceptron (MLP) classifier is a classification modeling approach
based on a feedforward artificial neural network that utilizes a supervised training
technique called backpropagation. A MLP network is made up of multiple layers of
nodes initially designed as a simple algorithm for performing binary classification
in the study of biological cognitive systems (Rosenblatt, 1958) and later adapted
into fully connected multiple layer perceptron networks that allow the modeling
of a feature hierarchy (Baum, 1988). The MLP network starts with an input layer
consisting of nodes for each input feature type followed by a fully connected set of
one or more hidden layers with no feedback connections that loop model outputs
back into prior layers (Taud & Mas, 2018). Each hidden layer is made up of nodes
consisting of an identical nonlinear activation function (i.e., logistic) capable of
assigning model parameters (i.e., weights and biases) to node connections based
on their successful mapping of inputs to outputs (Francl & Panigrahi, 1997). The
model training process utilizes backpropagation to assess the magnitude of the
difference between the actual output and the estimated output, and the network
weights are adjusted to reduce the error (S. Sharma et al., 2017). Nodes in a hidden
layer each contain an identical activation function that is used to train the net-
work. Like other machine learning approaches, the fully connected nature of MLP
models can result in a considerable total number of parameters (i.e., weights and
biases) that can increase computation time. However, MLP’s processing speed and
accuracy can be improved by tuning a number of hyperparameters (i.e., number
of hidden layers, nodes, and learning iterations) and providing adequate training
data.

Research Site

All research occurred on the 246-ha University California Santa Cruz - Fort Ord
Natural Reserve (UCSC-FONR) Monterey Bay, CA (Figure 3.1). The UCSC-
FONR is located approximately 129 km south of San Francisco, CA and bordered
by the city of Marina. The reserve is fragmented by development into a more
coastal parcel to the north and a more inland parcel to the south. This reserve
serves as an ideal setting for this research given the abundance of low growing
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shrublands and rolling terrain (96-ha) ranging in elevation between 21m to 58m
above mean sea level. Daily ambient air temperatures typically range from 4°C to
21°C, annual average 15°C. Fog occurs often during mornings throughout the year
and is more frequent and persistent from summer to early fall (June-September).
Average annual rainfall (460 mm / year) occurs almost entirely between October
and May.

Figure 3.1: Locations of meteorological stations measuring relative humid-
ity, air temperature, and leaf wetness. Stations named from 2020-2021 are
named by their distance (km) from the coast. The meteorological station
collecting solar radiation and windspeed data is named ‘Reserve Weather
Station’. The square in the inset map denotes the approximate location of
the UCSC Fort Ord Natural Reserve. Backdrop imagery source: World Im-
agery Esri, Maxar, Earthstar Geographics (2022).
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Meteorological Sensors

In order to measure leaf wetness in relation to air temperature and relative humid-
ity, we installed four Onset Hobo USB Micro Station dataloggers (Model: H21-
USB) equipped with Leaf Wetness (Model: S-LWA-M003S-LWA-M003), and Tem-
perature/Relative Humidity (Model: S-THB-M002) sensors set at 1.25m height in
similar vegetation clearings along a coastal to inland gradient (Figure 3.1; 2020-21
stations). The sensor stations were positioned away from vegetation obstructions
no closer than a distance equal to four times their height. All stations were installed
with the leaf wetness sensors positioned on the same north-facing orientation and
inclined at 45°. Stations were installed in early February 2020.

The deployed sensors measured surface wetness as a used change in capacitance in
response to water accumulation on the sensor surface. The leaf wetness sensor
produced an output between 0% and 100% (repeatability ± 5%); the output
was converted to a binary variable where values from 0-20% were coded as dry
and readings above 20% were coded as wet. The 20% threshold was determined
through field calibration during time periods when the wet/dry transition typically
occurred. For this field calibration the sensors we temporarily installed all four
wetness sensors in the same study area and, while logging data, visually observed
the plant species of interest to record the time of day and rate at which the
foliage transitions from wet to dry. Wetness readings of 20% or less on the sensor
corresponded to leaves that were visibly dry.

Each station underwent routine monthly monitoring and maintenance to reduce
prolonged influence of biofouling on measurements. Stations recorded temperature
(from 0°C to 50°C, accuracy ± 0.21°C), relative humidity (10% to 90%, accuracy
± 2.5%; below 10% or above 90%, accuracy ± 5%), and leaf wetness in 10-min
intervals between February 2020 until March 2022 (Table 2.1). Recurring damage
from animal chewing, biofouling, power loss, and vandalism resulted in several
incomplete records from two of the stations (Table 2.1, Stations 2.5 and 3.5). Only
complete records containing measurements of air temperature, relative humidity,
and leaf wetness were used in our analysis.

Solar radiation and windspeed data were acquired from a nearby long-term me-
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teorological station maintained by the UC Natural Reserve System (Figure 2.1;
Reserve Met Station). Total solar radiation data was collected with the Li-Cor
LI200X Silicon Pyranometer which measures sun plus sky radiation at the 400 -
1100 nm wavelengths using a silicon photovoltaic detector with an absolute er-
ror in natural daylight is ± 5% maximum and sensitivity of 0.2 kW m−2 mV −1.
The sensor is calibrated annually against an Eppley precision spectral pyranome-
ter. Windspeed data was acquired using the propeller-type anemometer from RM
Young Wind Monitor 05103-L (Campbell Scientific) with an accuracy of 0.3 ms−1

and starting threshold at 1.0 ms−1. Solar radiation data was only available until
November 25, 2021 so records of air temperature, relative humidity, leaf wet-
ness, and wind speed were trimmed to this date. Additionally, start times of the
dataloggers varied so all data was trimmed to a start date of February 9, 2020.
All incomplete records with missing information between February 9, 2020 and
November 25, 2021 were deleted. We preferred deletion instead of imputation to
avoid the creation of artificial data for several records at stations that experienced
intermittent damage (Table 3.1). Total number of observations at sites (e.g., 2.5
km and 3.5 km) are associated with gaps in data collection (Table 3.1).

Table 3.1: Complete 10-min records from the four Onset® meteorological
stations (2/9/2020 – 11/25/2021). The ‘Original’ column are counts of all
complete 10-min records and the ‘Trimmed’ column are counts of complete
records common to all four sites

Coastal Distance (km) Original Trimmed
2.5 78,286 77,932
3.5 92,957 78,288
4.5 93,095 78,426
5.0 93,095 78,426

Meteorological Data for Leaf Wetness Model Application

In order to apply the leaf wetness models across the entire research site in 2022, we
designed and deployed a low-cost solar-recharging Arduino-based meteorological
dataloggers. Arduino Uno (ATmega328P microcontroller) dataloggers equipped
with a waterproof-housed SHT20 I2C sensor, capable of measuring temperature
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(from -40°C to 125°C, accuracy ± 0.3°C) and capacitive humidity sensor (0% to
100%, accuracy ± 3%) (SENSIRION, Model: DFROBOT SEN0227) were de-
ployed in the same fashion as the four 2020-21 Onset stations (Figure 3.1; 2022
Stations). Arduino-based stations were programmed using the Arduino 2.0 - In-
tegrated Development Environment (IDE) to record data at 10-min intervals and
store data to an SD card module. Originally, ten Arduino stations were installed
in June 2021 but wildlife damage and vandalism resulted in intermittent data loss
across several stations and the complete destruction of three stations. Ultimately,
we were successful in collecting data from seven stations for the 2022 water year
(October 1, 2021, to September 30, 2022). Model-estimated leaf wetness was de-
termined using hourly interval air temperature, relative humidity, and dew point
depression. All data processing and leaf wetness model application was completed
using the R Programming language (R Core Team, 2021) and the tidyverse (Wick-
ham et al., 2019) and caret (Kuhn, 2008) packages.

We focused leaf wetness model application on the 2022 summer season (June -
September) characterized by the occurrence of dense fog, low clouds, and overcast
conditions that often persist during the morning and early afternoon hours. Fog-
induced leaf wetness can have a positive effect on plants by providing moisture
during the dry summer season; many coastal species are adapted to rely on fog as
a moisture source (Dawson & Goldsmith, 2018). However, prolonged surface leaf
wetness can harm plant health, especially by creating a favorable environment for
the development fungal diseases. Seasonally fog-induced leaf wetness can increase
the risk of foliar disease and related dieback in susceptible plant species.

Meteorological Data Preparation and Leaf Wetness Modeling

In order to include all four stations (2020-2021) in model development, records
that were not present in Site 2.5 km data were deleted from the other three stations
(Table 3.1). To ensure that deletion of observations did not alter the coastal to
inland climate pattern observed between stations, we evaluated the cumulative
number of days when daily mean relative humidity levels were at or above 90%
for the four stations with, and without, data deletion (Figure 3.2). We estimated
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the area under the curve for each time series as the summation of the cumulative
number of days when daily mean relative humidity levels were at or above 90%.
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Figure 3.2: Cumulative days with mean RH ≥ 90% for sites 2.5, 3.5, 4.5,
5.0 without a) data trimming and b) with data trimming of sites 3.5, 4.5,
and 5.0 based on complete records from Site 2.5.

Data trimming to available records from Site 2.5 reduced AUC values for all
three sites but AUC values remained consistent in ranking and retained coastal-
to-inland patterns (Table 3.2). We used 2020-2021 data from all four sites in model
development with data trimming.

Table 3.2: Area under curve (AUC) calculated as the sum of cumulative days
with mean RH ≥ 90%. AUCs were calculated only for days with recorded
RH values. AUC Original summarizes the three sites (3.5, 4.5, 5.0) without
data deletion relative to site 2.5 observations. AUC Trimmed summarizes
all sites with data trimmed to periods observed at site 2.5.

AUC Proportion
Coastal Distance (km) Original Trimmed Original Trimmed
2.5 - 31,207 - -
3.5 62,497 42,971 - -
4.5 24,274 15,934 0.39 0.37
5.0 32,874 21,677 0.53 0.50

All meteorological data was aggregated into 30-min and hourly interval datasets
for model development. Air temperature, relative humidity, dew point depression,
wind speed, and total solar radiation data were aggregated as means of 10-min
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observations. For the 30-min interval, leaf wetness was noted as wet if more than
one 10-min record was noted as wet. For the hourly dataset, leaf wetness was noted
as wet if 30 minutes or more of the hour were recorded as wet. The empirical 87%
relative humidity threshold model outlined in Wichink Kruit et al. (2008) was the
only model that utilized 30-min aggregated data. All other models were developed
based on hourly aggregated data.

All empirical threshold and machine learning leaf wetness classification models
were developed and tested using a script written in the R Programming language
(R Core Team, 2021), utilizing machine learning algorithms available in the caret
package (Kuhn, 2008). For machine learning classification models, meteorological
data was normalized using the preProcess() function with application of the cen-
tering and scaling arguments available in the R caret package (Kuhn, 2008; Patro
& Sahu, 2015). We used the 2020 data for initial machine learning model devel-
opment and utilized a repeated k-fold cross validation for training and testing all
machine learning models. This process involves splitting the dataset into k = 3
parts, training in two parts and testing on the remaining part for all combina-
tions of the train-test splits. This k-folding process was repeated three times for
each algorithm with different splits of the data into 3 groups, in an effort to get
a more accurate estimate. Models developed from 2020 data were then tested on
the 2021 data and a binomial logistic regression was used to 3-fold cross-validate
the 2021 model predictions compared to the actual 2021 leaf wetness sensor mea-
surements. For empirical models, predicted leaf wetness values were derived using
each threshold model and the 2020 and 2021 data was 3-fold cross-validated to
produce multiple replicates of model performance metrics that could be averaged
and compared to machine learning model performance.

Model Metrics

To evaluate empirical and machine learning model performance, we generated a
confusion matrix of each model and calculated its accuracy, precision, recall, speci-
ficity, sensitivity, F-score, log-loss, and ROC-AUC (Table 3.3). We also computed
F-Score (F1) statistics, which provide a metric for evaluating the trade-off between
precision and recall as a harmonic mean of the two values (Sundheim, 1992) and
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can provide a measure of model robustness; a higher F-Score indicates support for
predictions made by the model classifier (Fawcett, 2006).

Table 3.3: Model Metrics used to evaluate empirical and machine learning
model performance.

Metric Equation* Definition

Accuracy
(TP + TN)

(TP + TN + FP + FN)

Correct ‘Wet’ (TP ) and
‘Dry’ (TN) classifications
relative to the total number
of event classifications.

Precision
TP

(TP + FP )

Correctly classified ‘Wet’
(TP ) events relative to the
total number of correct and
incorrect ‘Wet’ classifications.

Recall (Sensitivity)
TP

(TP + FN)

Correctly classified ‘Wet’
(TP ) events relative to the
total number of ‘Wet’ events
that were correctly classified
as ‘Wet’ and incorrectly
classified as ‘Dry’.

Specificity
TN

(TN + FP )

Correctly classified ‘Dry’
events (TN) relative to the
total number of ‘Dry’ events
that were correctly classified
as ‘Dry’ and incorrectly
classified as ‘Wet’.

F-Score (F1) 2 ×
(

precision · recall

precision + recall

) Represents the trade-off
between precision and recall
as a harmonic mean.

* True Positive (T P ) = ‘Wet’ events, correctly classified
True Negative (T N) = ‘Dry’ events, correctly classified
False Positive (F P ) = ‘Dry’ events, incorrectly classified as ‘Wet’,
False Negative (F N) = ‘Wet’ events, incorrectly classified as ‘Dry’.

Receiver Operator Characteristic (ROC) curves, and the area under the curve
(AUC), describe how consistently a model predicts the positive class (‘Wet’) when
the actual outcome is positive (TP). They provide a metric that summarizes how
well a model can distinguish between two target classes (‘Wet’ or ‘Dry’) across
a variety of thresholds with a focus on describing a model’s ability to predict
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the positive class (‘Wet’) (Zou et al., 2007). ROC curves illustrate the trade-offs
between observed true positive rate (recall) and false positive rate (1-specificity).
A 45-degree diagonal across the ROC space defines the baseline (i.e., random
classifier) and delineates the least accurate classification predictions possible.

A classifier model that produces a curve closer to the top-left corner in an ROC
space indicates perfect classification predictions. All ROC curves presented for
machine learning models are represented by a smoothed curve illustrating the
predicted probabilities of achieving the correct classification for each year’s data.
The empirical models in this research are not presented probabilistically and in-
stead represent the observed outcome from the data for each year. The log-loss
metric represents the uncertainty of probabilities of a binary outcome for a model
by comparing them to actual classifications. This metric is useful for penalizing a
classification model that has high confidence about an incorrect classification by
providing a summary of how likely the model classified the actual observed set of
outcomes was. If a model produces lower prediction probabilities for observations
when the actual observation classifications are true (i.e., 1 = ‘Wet’) the result is
a higher log-loss value. A low log-loss represents a low uncertainty of a model but
it will tend to favor models that distinguish classes more strongly.

Model Application

Estimating Leaf Wetness Across Reserve

Machine learning and empirical models were used to predict summer 2022 hourly
categorical leaf wetness using observed air temperature, relative humidity col-
lected by the seven Arduino-based meteorological stations. Data was aggregated
by month; cumulative leaf wetness duration, mean air temperature, mean relative
humidity, and mean dewpoint depression for each station using the R Program-
ming language (R Core Team, 2021).

We used ordinary kriging to interpolate monthly cumulative leaf wetness dura-
tion across the entire research site. In order to evaluate spatial autocorrelation of
the data, we fit variogram models to estimate the spatial dependence structure
and selected the one that best represents the leaf wetness spatial relationship. The
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variogram models were used to krig predictions for unobserved locations by consid-
ering the values of spatially neighboring observed locations. The weights assigned
to these neighboring points depend on their spatial distance and the spatial depen-
dence modeled by the variogram. Kriging interpolation results were evaulated us-
ing root mean squared error. We utilized QGIS (version 3.30.1 ’s-Hertogenbosch)
(QGIS Development Team, 2021) and the Smart Map plugin (version 1.3.2) to
complete kriging analysis (Pereira et al., 2022).

Host Species Distribution

To ask whether there was a landscape-level association between leaf wetness dura-
tion and plant disease in a wildland community, we used image analysis of drone-
based multispectral imagery to measure disease related dieback in two maritime
chaparral shrubs. We applied the CNN+OBIA machine learning model developed
in Detka et al. (2023) to identify two manazanita shrub species dominating the
maritime chaparral regions of the reserve, Arctostaphylos tomentosa ssp. tomen-
tosa (referred to as A. tomentosa throughout this manuscript) and Arctostaphylos
pumila.

Manzanitas (Arctostaphylos spp.) are long-lived evergreen woody shrubs with high
species richness and restricted distributions across western North America based
on climate, plant communities, and soil types (Vasey and Parker, 2014). Multiple
species co-occur in coastal maritime conditions (Parker et al. 2020). In our study
system, Arctostaphylos tomentosa ssp.tomentosa and Arctostaphylos pumila are
two co-occurring species (Parker et al. 2020) with distinct morphological canopy
features that allow them to be distinguished using CNN+OBIA image classifica-
tion (Detka et al., 2023). Both of these species are locally endemic to the maritime
climate regions but vary in their distributions, with A. pumila more abundant at
the coast and increasing abundance of A. tomentosa moving inland. While the
ploidy difference between these two taxa does prevent some genetic mixing, field
observations suggest that the two species are capable of hybridizing resulting in
intermediate leaf characteristics (T. Parker, personal communication, August 11,
2023).
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Assessing Manzanita Canopy Health

In summer 2019, we observed extensive branch canker symptoms in A. tomentosa
and A. pumila species consistent with the fungal pathogen Neofusicoccum australe
as described by Drake-Schultheis et al (2018) in A. glauca. Laboratory experi-
ments have confirmed that disease-related dieback symptoms were caused by N.
australe (Detka, unpublished).

Manzanita canopy health was classified using a Normalized Difference Vegetation
Index (NDVI) generated from multispectral drone imagery (Detka et al., 2023)
and compared to ground-based transect surveys. NDVI is a widely used measure
for assessing overall plant canopy health remote sensing imagery (Burgan, 1993).
The NDVI measurement is based on the principle that the cell structure of healthy
leaf tissue has (1) decreased reflectance of red light wavelengths and (2) increased
near-infrared reflectance from chlorophyll pigments. Plants that are ‘healthy’ with
high chlorophyll content absorb more incoming red wavelength light and reflect a
higher proportion of NIR than ‘less healthy’ plants. NDVI values are normalized to
range from -1 to 1, with positive values indicating more NIR than red reflectance
(Equation 2.2). For healthy vegetation, there will be a greater relative absorption
of red by chlorophyll compared to NIR, and NDVI values will approach 1. As
chlorophyll activity decreases, due to stress or senescence, NDVI approaches 0
due to less absorption of visible red light. NDVI values less than zero typically
represent dead vegetation, baregroud, or water bodies.

NDV I = (NIR − RED)
(NIR + RED) (3.2)

We selected NDVI cutoff values for manzanita canopy gaps and bareground
(NDV I < 0), unhealthy manzanita canopy (0 − 0.2), and healthy live man-
zanita canopy (> 0.2) based on obvious visual condition of vegetation in the
field and cross-comparison with RGB and NDVI rasters. These ranges correspond
with widely reported values for assessing vegetation cover (DeFries & Townshend,
1994; Al-Doski et al., 2013; de la Iglesia Martinez & Labib, 2023).

To estimate manzanita canopy health from drone imagery, we created a 5-m x 5-m
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grid overlay for each manzanita species and generated NDVI classification raster
zonal statistics for each grid cell. For each grid cell, we calculated the total area of
a cell occupied by a species and the percentage of healthy and dieback canopy from
NDVI classification rasters. To assess plant health on the ground, we conducted
three 30-m line intercept transects at four locations through the reserve, for a
total of twelve transects (Figure 3.3). Transects were placed haphazardly in areas
dominated by manzanita cover in orientations that included cover of both species.
Start points and headings were randomized as much as possible while also avoiding
hazards (i.e., large areas of poison oak) or sensitive woodrat middens. Woody
plant canopy cover was recorded as the length (m) intercepted by each species
along 30-m ground transects. For the two target manzanita species, we noted the
general condition (Live/Dead), presence of disease and pest symptoms, and the
dominant coloration of live (green) and diseased dieback (grey, brown) symptoms
for transect segments longer than 10cm. Canopy gaps and open patches larger
than 10cm were recorded as bareground, standing deadwood, and leaf litter (duff).
Ground estimates of percent canopy dieback were calculated for each manzanita
species by dividing the intercepted lengths (m) of dieback by the total species
cover. Linear regression was used to evaluate association between canopy dieback,
coastal distance, and leaf wetness duration.
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Figure 3.3: Ground survey sites (a-d) and 30m transect locations (yellow
lines). Black border outlines UCSC Fort Ord Natural Reserve. Backdrop
imagery source: World Imagery Esri, Maxar, Earthstar Geographics (2022).
Research site imagery is displayed as RGB orthomosaic from UAV research
flights.

3.3 Results

Input feature associations with leaf wetness

Correlations among observed input features and leaf wetness events for the entire
dataset confirms several associations expected based on prior knowledge of mi-
crometerological principles (Figure 3.4). Air temperature, dew point depression,
wind speed, and solar radiation were all negatively correlated with leaf wetness
events. Dewpoint depression had the strongest negative correlation with leaf wet-
ness events (Pearson’s R = -0.63) followed by solar radiation (Pearson’s R = -0.59),
air temperature (Pearson’s R = -0.55), and wind speed (Pearson’s R = -0.51). Rel-
ative humidity had a strong positive association with leaf wetness events (Pear-
son’s R = 0.72) and was negatively correlated with other input features indicating
multicollinearity. Dew point depression is defined by the relationship between air
temperature and relative humidity, which explains observed collinearity patterns
between dew point depression and these variables. Correlation associations sup-
port that cloudy skies, cool moist air, and light winds are associated with leaf

62



wetting.
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Figure 3.4: Pearson Correlation heatmap between input features (horizontal
axis) and leaf wetness (blue box). Correlation is based 2020 and 2021 data.

Input Feature Importance

We utilized variable importance evaluation functions to estimate the contribu-
tion of each input feature to the machine learning models. ROC curve analysis
was conducted on each of the normalized input features and a series of cutoffs
were applied to the feature data to predict the classification. The sensitivity and
specificity were computed for each cutoff and the ROC curve was computed for
individual features. The trapezoidal rule was used to compute the area under the
variable importance ROC curve (ROC-AUC) with values closer to 1 representing
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a greater influence on model classification predictions (Table 2.4). ROC-AUC re-
sults support Pearson correlation patterns and confirm that relative humidity and
dew point depression are the most influential variables in the machine learning
models (Table 2.4).

Table 3.4: Individual input feature variable importance ROC-AUC
statistics

Input Feature ROC-AUC
Dew Point Depression 0.95
Relative Humidity 0.95
Air Temperature 0.83
Solar Radiation 0.82
Wind Speed 0.79

Empirical Model Performance

For 2021, the RH > 87% model tended to overestimate ‘Wet’ events. The RH >

87% model had the highest true positive rate (0.95) (Table 2.5, Recall; Figure 2.5a,
y-axis) - the probability that an actual ‘Wet’ observation will correctly classify as
‘Wet’. However, the RH > 87% model also had the highest false positive rate, with
the highest probability of mis-classifying ‘Dry’ observations as ‘Wet’ (0.26) (Table
2.5, 1-Specificity; Figure 2.5a, x-axis). In contrast, the RH > 92% model provided
the most conservative model ‘Wet’ classification predictions with the lowest true
positive rate (0.81) and lowest false positive rates (0.07).

Dew point depression (DPD) and RH > 90% model predictions of leaf wetness
outperformed RH > 87% and RH > 92% models in 2021 (Table 2.5, Figure
2.4a). The RH > 90% and DPD models had less than a 1% difference in accuracy.
However, the RH > 90% models had a 5% lower true positive rate (recall) for
2021. The RH > 90% models tend to underestimate wetness, classifying 5% fewer
observations as ‘Wet’ (TP) relative to the number of all observations that should
have been identified as ‘Wet’. What the RH > 90% models lack in recall was not
made up for in precision. The RH > 90% models’ precision was only 3% better
than the DPD models at correctly classified ‘Wet’ (TP) predictions relative to the
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total number of ‘Wet’ predictions – including incorrect wet predictions (FP). The
DPD model also has a similar F-Score metric, log loss metric, and AUC score
compared to the RH > 90% model, indicating that the 2021 DPD model is a
robust, yet only marginally better empirical models to the RH > 90% models
for predicting leaf wetness. We selected the DPD model as the best performing
empirical model and designated it as a reference for the evaluation of machine
learning model performance.

Machine Learning Model Performance

We evaluated the performance of machine learning models on 2021 test data and
compared them to the highest performing empirical model (i.e., DPD) (Figures
2.5b-2.5f and Table 2.5). The full-featured model based on relative humidity, air
temperature, dew point depression, wind speed, and total solar radiation resulted
in at most a 2% increase in accuracy over the empirical dew point depression
model. The performance of the machine learning dew point depression models
was not significantly different than that of the empirical dew point depression
model. ML models based on further reductions in the number of input features
performed similarly to empirical threshold models based on relative humidity or
dew point depression.
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We used a model-based approach to reassess variable importance since it is more
closely tied to the actual model performance and it is able to incorporate the
correlation structure between the predictors into the importance calculation re-
gardless of how the importance is calculated. For most of the machine learning
classification models, each input feature generates a separate variable importance
value for the positive class (i.e., ‘Wet’). These methods are not readily available for
naïve Bayes, or kNN modeling approaches (Olden & Jackson, 2002). Results sup-
port that RH and DPD were the most important variable to leaf wetness models
(Table 2.6).
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We selected the MLP machine learning model based on relative humidity and
dew point depression for application to 2022 data (Figure 2.5(E) and Table 2.5
(RH + DPD)). The MLP approach produced the highest AUC scores and a good
balance between precision and recall (Table 2.5). Evaluation of variable importance
for the MLP model suggests that relative humidity and dew point depression both
contribute to model performance, with relative humidity having more influence on
leaf wetness prediction (Table 2.6). Additionally, MLP computational processing
time was much shorter ( 10 min) compared to some modeling approaches using
the same variables (e.g., kNN, SVM; > 1.5 hrs).

Landscape-level Leaf Wetness Model Application

Kriging analysis was conducted on monthly mean air temperature and relative
humidity data across the reserve. Results indicate a summer seasonal pattern
with lower mean air temperature (1-2°C) and higher mean relative humidity (5-
6%) observed at the coast (Figure 3.6). Additionally, krig interpolation estimates
were used to determine the monthly cumulative duration of leaf wetness (Figure
3.7) and confirm that the longest cumulative leaf wetness duration occur during
July and August. Both the DPD and MLP models indicate that the coastal regions
experience longer duration leaf wetness. This disparity is particularly pronounced
in September, where the monthly cumulative leaf wetness duration can differ by
as much as 100 hours (Figure 3.7).
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Manzanita Canopy Health

Overall, analysis of drone-imagery supports that disease-related dieback is more
extensive in A. tomentosa. Imagery analysis estimated a total of 11.5 ha of iden-
tified A. pumila, with an estimated 9.0 ha live canopy cover and 2.5 ha dieback
cover (21.7% dieback). A total of 13.4 hectares A. tomentosa was identified, with
an estimated 7.8 ha live canopy cover and 5.6 ha dieback (41.8%).

Canopy dieback estimates obtained from ground transects are consistent with the
estimates obtained from drone aerial surveys for both manzanita species. For A.
pumila, no discernible pattern in canopy dieback was observed in ground or aerial
surveys (Figure 3.8 a and c; Figure 3.9 a and c). However, for A. tomentosa, the
percent canopy dieback was found to be highest at coastal sites and decreased as
the distance from the coast increased (Figure 3.8 b and d; Figure 3.8 b and d).

Figure 3.8: Normalized Difference Vegetation Indice (NDVI) values for A.
pumila (a and c) and A. tomentosa (b and d) in North Reserve (top) and
South Reserve (bottom). Backdrop imagery source: World Imagery Esri,
Maxar, Earthstar Geographics (2022). Research site imagery is displayed as
RGB orthomosaic from UAV research flights.

Analysis of all 5-m x 5-m grid cells in the reserve containing A. tomentosa

76



(n = 14, 690) and A. tomentosa (n = 15, 098) supports that the is a stronger
association between leaf wetness duration and the extent of canopy dieback for
A. tomentosa compared to A. pumila. Increasing leaf wetness is associated with
increased percentages of disease-related canopy dieback in A. tomentosa (Figure
3.10).

Figure 3.9: Percent area canopy dieback by manzanita species and distance
from coast. Ground transect results for a) A. pumila and b) A. tomentosa.
Drone imagery results for c) A. pumila and d) A. tomentosa.
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Figure 3.10: Percentage canopy dieback and leaf wetness duration for A.
pumila (left) and A. tomentosa (right). Each dot represents canopy dieback
estimated from percentage dieback in each 5-m x 5-m grid and krig cumula-
tive leaf wetness duration at each location. Backdrop imagery source: World
Imagery Esri, Maxar, Earthstar Geographics (2022). Research site imagery
is displayed as RGB orthomosaic from UAV research flights.

3.4 Discussion

Our study provides empirical evidence of the effectiveness of simple threshold
models for estimating leaf wetness compared to more complex machine learning
models. Specifically, we found that leaf wetness models based on a relative hu-
midity threshold (RH > 90%) and dew point depression (DPD < 2°C difference)
performed equally well as the machine learning models. These findings align with
previous proposals by Huber and Gillespie (1992) and Sentelhas et al. (2008) sug-
gesting that empirical threshold models utilizing relative humidity and dew point
depression can serve as reliable predictors of leaf wetness in field applications.

We applied both empirical and machine learning models to estimate leaf wetness
across a coastal landscape during the summer fog season, which is characterized by
excessive leaf surface wetting and warm temperatures that create a conducive en-
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vironment for aboveground fungal diseases. Our analysis supports the hypothesis
that a coastal-to-inland climate gradient influences the duration of leaf wetness.

Moreover, our investigation of canopy dieback in the manzanita species A. tomen-
tosa revealed decreasing dieback farther from the coast. This trend was consistent
between ground surveys and drone aerial imagery. In contrast, canopy dieback in
A. pumila exhibited consistent patterns throughout its range. Dieback symptoms
were more prevalent at coastal sites for A. tomentosa where it is less abundant
and became less pronounced inland where it is dominant.

Preliminary greenhouse experiments supported this observation; inoculation
caused greater N. australe disease severity in A. pumila than in A. tomentosa
under drought stress soil water conditions (Detka, unpublished). These results
suggest that A. tomentosa may exhibit greater tolerance to infection even under
drought conditions, while A. tomentosa may be more susceptible to infection at
the coast, where it experiences prolonged leaf wetting. The greater tolerance of A.
tomentosa to dieback under drier, conditions may be a factor in the different nat-
ural distribution patterns of the two manzanitas, with A. pumila more common
near the coast and A. tomentosa more common inland (Figure 3.8).

Differences in morphological traits and endemic ranges may explain the synergistic
response of drought and disease in A. pumila and the tolerance of A. tomentosa
to N. australe canker disease. A. pumila has a narrow endemic range, restricted to
low-elevation coastal regions in the Monterey Bay region, while A. tomentosa is
endemic to higher elevation, drier, windswept hillsides along the California coast.
These drier, windswept regions are often engulfed in fog during summer, and light
wind conditions during fog events may contribute to increased leaf wetting on A.
tomentosa.

The observed differences in disease prevalence between the two manzanita species
can also be attributed to their leaf hair morphological traits. The abaxial side
of A. tomentosa leaves exhibited a denser coverage of matted woolly hairs (i.e.
tomentose) compared to A. pumila. These trichome hairs can serve as a defense
against herbivory (Levin, 1973), inhibit plant pathogen infection (Calo et al.,
2006), and offer protection against plant stress factors such as UV radiation and
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water loss (Kaur & Kariyat, 2020). However, they may also contribute to prolonged
leaf wetness, thereby increasing the likelihood of pathogen infection. Young woolly
leaves of A. tomentosa emerge in late spring or early summer and are vertically
oriented, providing protection against sun damage and water loss. Nevertheless,
this characteristic may come at an ecological trade-off as young leaves could be
more susceptible to fungal infection resulting from micro-scale leaf wetting and
seasonal spore dispersal during periods of light winds and fog. Further research is
necessary to understand the functional interaction between abaxial leaf trichomes
and leaf wettability, as these structures may act to reduce leaf wetting as well
(Brewer et al., 1991).

Notably, our observations of N. australe canopy dieback in A. tomentosa often
coincided with extensive infestations of the microlepidoptera moth species Tri-
dentaforma fuscoleuca. These moths lay their eggs in A. tomentosa leaves, result-
ing in the development of extensive leaf blister galls caused by the larvae (Detka
et al., 2019). Leaf-mining insects, including flies (Variya & Bhut, 2014) and mi-
crolepidoptera (Afzal et al., 2023), are known to be associated with meteorological
moisture conditions such as relative humidity and dew point. However, the direct
association between fungal disease symptoms, T. fuscoleuca infestations, and leaf
wetness remains unclear and requires further investigation to determine if T. fus-
coleuca facilitates N. australe dispersal or infection.

The methodological choices for developing leaf wetness models were constrained
by the availability of only one weather station collecting wind speed, wind direc-
tion, and solar radiation data. While machine learning models showed temporal
correlations, the lack of replicate stations limited our ability to capture variation
in these factors across a coastal-to-inland gradient. Moreover, additional stations
at the coast are necessary to determine the role of microclimate conditions de-
pendent on topography. The most coastal station in our study was also located in
a terrain depression, which may explain the higher relative humidity values and
lower mean air temperatures observed at that location. All nearby meteorolog-
ical stations deployed on ridgelines were vandalized and destroyed, resulting in
insufficient data to investigate the role of topography.
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For future research, we recommend further investigation into the utility of em-
pirical threshold models and machine learning models for leaf wetness estimation
in different California coastal environments including higher altitudes and across
latitudinal gradients. California is home to 62 species of manzanitas, with 49 being
endemic to the Pacific coastal region and may make it an excellent model genera
to study the influence of micrometeorological conditions on plant disease. Addi-
tionally, incorporating reliable leaf wetness sensors into low-cost weather station
units would enable greater replication across a larger coastal to inland gradient.
Standardized commercial sensors may not accurately represent the variation in
leaf traits among species that directly influence leaf wetness duration (e.g., waxy
adaxial cuticle, tomentose abaxial). Exploring the integration of more lightweight
and inexpensive sensors, such as the one developed by Nguyen and others (2023)
that mimic leaf characteristics could be beneficial.

The results of our study imply that the wet conditions of coastal sites may nega-
tively impact the canopy health of A. tomentosa through increasing disease-related
dieback, restricting its distribution to more inland sites while allowing A. pumila to
thrive in more coastal areas. Future research avenues need to address the confound-
ing influence of herbivory from mammals and insects through herbivory exclusion
experiments with inoculations in the field, together with greenhouse experiments.

In conclusion, our study of the association between leaf wetness and aboveground
fungal diseases in California coastal shrublands, and the effectiveness of simple
estimates of leaf wetness duration from readily available air temperature, relative
humidity, and dew point depression. By comprehending the dynamics of plant
pathogens in these ecosystems during non-disturbance periods, we can enhance
management and conservation strategies, particularly considering the varying sus-
ceptibility of closely related species to plant pathogens.
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Chapter 4

U.S. Civil Drone Regulations:
Promoting Safety, Protecting Privacy,
and Fostering Beneficial Uses

If the mind of man can invent and operate a flying machine, it ought to be able to
devise a rule of law which is adequate to deal with the problems flowing from such an
inventiveness.

- Supreme Court of Oregon (1960). Atkinson v. Bernard, Inc., 223 Or. 624, 355 P.2d
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4.1 Introduction

Few surveillance technologies have entered widespread use in society without rais-
ing significant concerns about safety, security, and privacy. (Lyon, 2001; Widmer &
Albrechtslund, 2021). Remotely piloted drone aircraft are an increasingly routine
part of civilian life, used regularly by land managers, emergency responders, con-
tractors, businesses, artists, and hobbyists. This rise in familiarity and usefulness
is paralleled by increased concerns about the potential threats that untrained or
irresponsible drone pilots pose for safety and privacy (Stoica, 2018). Historically,
the tensions over legal and policy jurisdiction have prevented the integration of
ethical frameworks and best practices to protect privacy from being incorporated
into training and assessment for drone pilot certifications. Such gaps create social
conflicts and legal uncertainties in current use of drones.

Drones are widely used in a variety of applications including playing an impor-
tant role in wildfire management, allowing land managers and first responders
to efficiently and safely monitor large remote regions (Mbaye et al., 2023). How-
ever, the careless operation of drones by curious public recreationalists, seeking
to catch a glimpse of active wildfire, creates safety hazards for firefighting aircraft
and ground crews and disrupts fire suppression operations. During U.S. disaster
responses, the Federal Aviation Administration often implements a Temporary
Flight Restriction order that bans use of recreational drones in the active wildfire
region to protect aircraft involved in wildfire operations (14 C.F.R. § 91.137, 1989).
Despite these restrictions, between 2016-2020, the U.S. Forest Service reported 93
incidents of civilian drone incursions within active wildfire areas in the western
states. Two-thirds of those incursions interrupted aviation wildfire suppression op-
erations above federal land and the remaining incidents directly jeopardized the
safety of crewed aircraft and ground support (Kolarich, 2017). Public utilities,
safety agencies, and insurance companies use drones to survey property damage
and situational risks as part of the disaster relief process after wildfires (Daud et
al., 2022). But this same disaster recovery technology has the potential to be used
by unscrupulous looters casing evacuated properties for opportunities to trespass,
rob, or burglarize (Nelson & Gorichanaz, 2019; Adnan & Khamis, 2022).
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Drone surveillance systems offer support for law enforcement officers tasked with
maintaining public order and rendering public assistance by documenting acci-
dent and crime scenes, apprehending suspects, monitoring public safety during
events, and providing first responder care. Law enforcement agencies have applied
surveillance systems to investigate crimes and track potential criminal activity us-
ing stored imagery and geographic information systems to associate people with
places and events, raising a host of ethical issues related to: privacy, trust, auton-
omy, cause, and authority (Feeney, 2020). While the potential for these systems
to increase public safety and add security is welcomed, they also come with a
large cost to privacy from pervasive location tracking and stockpiling of sensitive
personal information. The pervasiveness of drone overflight can also have a chill-
ing effect that inhibits participation in constitutionally protected activities such
as political rallies, protests, and religious ceremonies. This is especially true in
communities of color, where there is over-policing in terms of surveillance and
under-policed when it comes to emergency services (Heh & Wainwright, 2022;
Gordon, 2022).

Advances in computer vision and drone autonomous flight has also raised privacy
concerns. Drones use autonomous obstacle avoidance technology, computer vision,
and artificial intelligence algorithms to prevent drones from colliding with objects
in their flight path. While this technology enhances drone safety, it raises privacy
concerns. For example, a drone that uses obstacle avoidance technology to avoid
colliding with structures when operating in a populated area may inadvertently
collect sensitive data about individuals and their location, behaviors, and associ-
ations. This raises concerns about invasion of privacy, especially if the drone is
being used for commercial purposes or surveillance by law enforcement agencies.
Drone manufacturers are developing obstacle-avoidance technologies designed to
respect privacy by not collecting detailed images or data about the surrounding
environment, or by automatically blurring images collected in sensitive areas to
avoid using information beyond its originally intended purpose. Despite these pri-
vacy protection advances, the use of drone obstacle avoidance technology can still
raise privacy concerns, and it is critical that drone operators remain transparent
about the purpose of flight operations and respect the privacy rights of individuals
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and property owners.

Technological advances in drones are fueling expansion of their domestic appli-
cation. Although many applications can contribute to social good, the rapidly
expanding civilian use and their sensing capabilities raise complex technical and
policy issues related to safety and privacy that have not yet been resolved (Wicker
et al., 2020). Drones can benefit society as tools for enhancing public access to
goods and services (Scott & Scott, 2019; Guillen-Perez et al., 2016; Haider et
al., 2022), assessing safety (Roldán-Gómez et al., 2021; Van Tilburg, 2017), in-
creasing efficiency (Rejeb et al., 2022; Park et al., 2020), supporting environ-
mentally friendly practices (Chiang et al., 2019), and providing recreational en-
joyment (Hildebrand, 2021). But the growing application of drones comes with
increased aerial traffic and heightened concern for safety risks caused by reckless
or negligent pilot behavior that may cause collisions with manned aircraft, other
objects, and bystanders. Additionally, the rapidly expanding use for surveillance
by private actors, organizations, and governments have raised concern about the
impacts on privacy, civil rights, and civil liberties (Obama, 2015; Sabino et al.,
2022; Scharf, 2018; Brobst, 2019). Inexpensive drones with compact designs and
advanced information-gathering capability have heightened the potential for in-
dividuals, organizations, and governments to acquire, store, and use pervasive
information about individuals or groups (West & Bowman, 2016; S.631 - 115th
Congress, 2017; ACLU V United States Customs and Border Protection, et al.,
2021). In addition, nefarious actors can use drones, and the data gathered from
them, to breach public safety measures at sensitive sites and act with criminal
intent (Swales, 2019).

Here I explore historical, legal, policy, and training aspects of drone use that in-
form how to achieve civil aviation safety and privacy protection while not imped-
ing beneficial uses of uncrewed aircraft. I first summarize the legislative history of
civilian drone integration in the U.S. national airspace. Next, I explore the current
regulatory frameworks with a focus on federal safety requirements for commercial
pilots and the evolving landscape of state statutes that address drone aerial tres-
pass and privacy rights issues. I highlight key court cases that have shaped current
legal precedent and subsequent protections for unreasonable drone aerial invasions
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of privacy in the U.S. national airspace. Lastly, I explore the potential strengths
and challenges of a federal-state drone regulatory status quo.

4.2 A Brief Legislative History of Drones in U.S.

Airspace

Drones are uncrewed aircraft systems (UAS) that include an uncrewed aerial aerial
vehicle that can be controlled remotely by a human pilot or can operate au-
tonomously using advanced onboard processors and sensors, control software, and
global positioning systems (GPS). Drones are distinquished from other model air-
craft, which are entirely human-operated by remote control and are not equipped
with the advanced sensors, software, and autonomous capabilities found in UAS.
Most domestic drones used in the national airspace fit the definition of, “small un-
manned aircraft system (sUAS) weighing less than 55 pounds on takeoff, including
everything that is on board or otherwise attached to the aircraft” (14 C.F.R. § 107,
2016). sUAS regulations cover all the associated components (i.e., communication
links, navigation systems, sensors, controllers) required for the safe and efficient
operation of the aircraft in the national airspace system (49 U.S.C. § 44801, 2018;
14 C.F.R. § 107.3, 2016).

We use the colloquial term ‘drone’ or gender-neutral technical terms “uncrewed
aerial vehicle” and “uncrewed aircraft system” throughout to describe remotely
piloted “unmanned” aircraft permitted by the Federal Aviation Administration
(FAA) to operate in U.S. national airspace. We acknowledge that the term ‘drone’
is not gender-neutral, with references to males in insect colonies (e.g., ants, bees)
and its origin in highly male-gendered remote-pilot warfare (Clark, 2019; Joyce et
al., 2021). Gendered terminology is a systemic problem in aviation, and we adopt
these terms as academics to support the continued development of a diverse and
inclusive aviation culture.

In the U.S., drones meeting the sUAS definition need to be registered with the
FAA, with the exception of those that weigh 0.55 pounds or less (less than 250
grams) that are flown exclusively for enjoyment and not for work, business, com-
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pensation, or hire (84 FR § 22552, 2019). Drones used for commercial operations
need to be registered regardless of their weight (14 C.F.R. § 107, 2016). There
are an estimated 872,248 federally registered drones currently operating in the
U.S. with 39% registered as commercial drones and 61% registered as recreational
aircraft (FAA, 2023). Fewer than 0.1% (3,880) registered aircraft are classified
as experimental aircraft for research purposes and have exemptions (49 U.S.C. §
44807, 2018). These values likely underestimate the true number of drones oper-
ating in the U.S. since many recreationalists operate aircraft that are below the
250g requirement for registration. The FAA estimated that by the end of the fiscal
year 2023 there would be approximately 1.75 million drones registered to recre-
ational pilots and 801,000 drones registered as commercial aircraft (FAA, 2022). To
place the estimated number of registered drones in perspective, consider that the
2021 U.S. Department of Transportation estimated there were about 210,000 U.S.
registered conventional (i.e., crewed) aircraft currently in operation in national
airspace; that the number has remained relatively stable since 2016 (median =
218.7, IQR = 6.61) (U.S. Bureau of Transportation Statistics, 2023).

In the U.S., UAS remote pilots are federally certified by the Federal Aviation
Administration through two assessment pathways that depend on the nature of
flight operations. As of 2016, commercial UAS pilots operate under the FAA’s
rules in Title 14 of the Code of Federal Regulations (14 CFR) part 107, section
107.73(a), codified in 14 C.F.R. § 107 (also termed the “Section 107” or “Part
107”) and as part of these rules must obtain a Remote Pilot Certificate with a
“Small Unmanned Aircraft Systems Rating” from the FAA by passing a written
Aeronautical Knowledge test. In other words, to become a commercial drone pilot,
one needs to pass the required written examination administered by a recognized
Airman Certificate Testing Service (ACTS) (https://faa.psiexams.com). The
assessment is focused on safety and evaluates knowledge of FAA sUAS flight rules
and registration regulations, requirements for operation over people and moving
vehicles, night operation, effects of drugs and alcohol, general national airspace
system regulations, interpreting aeronautical sectional charts, airport communica-
tions and operational protocols, impacts of weather and micrometeorology, flight
operation limits, and aeronautical decision making. Notably, certification requires
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no additional assessment of UAS operational flight proficiency or knowledge of
best practices for protecting privacy, maintaining transparency, and ensuring ac-
countability.

The “Remote Pilot sUAS Study Guide” materials currently approved by the FAA
for the Part 107 exam (FAA-G-8082-22, 2016) contain no guidance regarding com-
pliance with state and local laws pertaining to trespass, privacy, or negligence. Ex-
isting Part 107 certified remote pilots are required to complete a recurrent training
every 24 calendar months; the current recertification training contains a notice re-
lated to privacy issues stating that “state and local privacy laws may apply to
sUAS operations.” The training module also reminds remote pilots that they are
“responsible for reviewing and complying with such laws prior to operation.” Re-
mote pilots are further encouraged to review the “Voluntary Best Practices for
UAS Privacy, Transparency, and Accountability” developed as part of a multi-
stakeholder meeting convened by the National Telecommunications and Informa-
tion Administration (NTIA) but the FAA provides no training in the application
of these practices (NTIA, 2016).

Recreational drone operators must pass a less extensive examination that assesses
minimal aeronautical knowledge, federal regulations, and recommended safety best
practices through “The Recreational UAS Safety Test (TRUST)” exam (49 U.S.C.
§ 44809, 2018). The TRUST certification process is free of charge and has no
expiration date. The TRUST exam and preparatory materials provide no guidance
about state or local privacy laws. All recreational drone operators must provide
proof of TRUST certification if requested by law enforcement or FAA personnel.
As of 2023, there were an estimated 757,131 active remote pilots, including 41%
commercial operators (Part 107 certified) and 59% with recreational certificates
(TRUST) (FAA, 2023). Model aircraft operators must satisfy all the exemption
criteria specified in 49 USC §44809 or they must meet Part 107 compliance.

The final class of remote pilots are public operators. Public operators are Part
107 certified pilots associated with public agencies that conduct flight missions for
governmental purposes. Public operator organizations must obtain a Certificate
of Waiver or Authorization (COA) from the FAA that specifies how the drone will
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be used. The purpose of the FAA COA is to allow certain UAS operations that
FAA regulations would otherwise prohibit. The COA grants specific permission
and limitations for UAS operation in specific types of locations for a defined
period. COAs are typically issued for operations that will be conducted for public
benefit or interests of national security including: research and development, law
enforcement, or emergency response. The FAA evaluates each COA application on
a case-by-case basis, and may require additional safety measures or modifications
to the operation before granting the COA.

The number of commercial (Part 107 certified) remote pilots has continued to
increase annually since 2016 when the FAA started issuing remote pilot certifi-
cates (Figure 4.1). In contrast, the number of active U.S. conventional (crewed)
aircraft pilots has remained relatively constant (Figure 4.1). The growth in the
number of certified remote pilots is mainly associated with a rapidly expanding
UAS market expected to be worth $92 billion by 2030 (Allied Market Research,
2020) and the need for skilled UAS professionals to fill an estimated 100,000 new
U.S. jobs by 2025 (D. Jenkins & Vasigh, 2013). Part 107 remote pilot certifica-
tions represent a variety of UAS sectors and commercial activities with the most
growth within government agencies, telecommunications, drone service operations,
infrastructure, and assembly integration.

The federalist system of the U.S. government assigns specific powers to the federal
government and others to state governments, with restrictions on federal preemp-
tion. The current political period in this system is one of increased federal laws,
regulations, and rules that have imposed demands on states without providing the
funding necessary to meet compliance. This escalates state-side concerns about
federal regulations and legal disputes related to the role of the federal system,
with court rulings tending to favor the states (Boyd & Fauntroy, 2020). Current
policy challenges associated with drone regulation stem largely from states’ con-
cern about federal regulations that focus on public safety without consideration
for property rights and personal privacy. Such policy challenges are especially
complicated because drones operate at an altitude that places them in a divided
jurisdiction between federal regulation of airspace safety and states’ regulatory re-
sponsibilities to protect people’s property rights and privacy. This tension requires
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Figure 4.1: Estimated number of active U.S. certified conventional air-
craft pilots and certified (Part 107) commercial remote sUAS pilots 2016-
2022. Number of active U.S. certified conventional aircraft pilots does not
include the student pilot category. Data source: U.S. Federal Aviation
Administration Civil Airmen Statistics annual reports (2016 - 2022). Re-
ported estimates based on official airmen certification records maintained
at FAA’s Aeronautical Center, Oklahoma City, Oklahoma. Reports avail-
able at: https://www.faa.gov/dataresearch.Accessed : April20, 2023.
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a look at the historical and legal basis for this conflicted airspace jurisdiction, and
consider drone impacts on the usefulness of private property as well as reasonable
expectations of privacy.

Trespass (Torts § 158) is the unlawful intrusion of an individual into someone
else’s property without their permission, irrespective of harm caused (American
Law Institute, 1965). Drones pose a challenge for trespass analysis since the drone
itself encroaches into the airspace above the land but never physically touches
land property. The common law principle of property rights emerges from the
thirteenth-century Latin maxim; “cuius est solum eius est usque ad coelum et
usque ad infernos” (Latin for "whoever owns the soil it is theirs up to the heavens
and down to hell", usually abbreviated as the ad coelum doctrine) (Fellmeth &
Horwitz, 2011). This might suggest that the drone has trespassed once it has en-
tered the airspace above the property. However, in the age of modern aeronautics
what constitutes an aerial trespass is more complex. The current U.S. concept of
aerial trespass is based largely on a seminal Supreme Court case United States
v. Causby (1946), which upheld the Taking Clause of the Fifth Amendment to
the U.S. Constitution associated with the use of airspace above private land (U.S.
Const. amend. V). In Causby, Thomas Lee Causby owned a chicken farm near an
airport used regularly by the United States military for low-altitude bomber flight
training operations during WWII. Causby claimed that noise from low-flying air-
craft exercises resulted in the extensive deaths of his chickens and forced him to
abandon his poultry business. Causby filed suit under the ad coelum doctrine argu-
ing that he owned the airspace above his farm and that the military activities were
a form of confiscation of property without compensation under the Taking Clause
of the Fifth Amendment of the U.S. Constitution. The Court accepted Causby’s
claim on the grounds of a Fifth Amendment violation and ordered the govern-
ment to compensate him. However, the Court, in judicial dictum, rejected the ad
coelum doctrine stating that it, “has no place in the modern world” (United States
v. Causby, 1946). It further noted that if the Court were to accept the doctrine
as valid, "every transcontinental flight would subject the operator to countless
trespass suits. Common sense revolts at the idea" (United States v. Causby, 1946).
The Court further acknowledged that a property owner has rights of ownership
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extended to the “superadjacent airspace” defined as, “at least as much of the space
above the ground as they can occupy or use in connection with the land.” (United
States v. Causby, 1946). This superadjacent airspace principle considers aircraft
overflight to be lawful unless the altitude is so low that the flight path interferes
with the existing use of land or poses an imminent danger to persons or prop-
erty on the land. In the Restatement (Second) Tort (§ 159) “flight by aircraft in
the air space above the land of another is a trespass if, but only if: (a) it enters
into the immediate reaches of the air space next to the land, and (b) it interferes
substantially with the other’s use and enjoyment of his land”. Drone traffic in the
superadjacent airspace could be a disruption of the quiet use and enjoyment of
solitude that private property provides. A property owner could pursue a cause
of action for private nuisance (§ 159) based on annoyance from drone noise (i.e.,
propeller noise). To the best of our knowledge no litigation in response to drone-
related noise has occurred yet. Future lawsuits may emerge with increased drone
traffic but technological advances and higher flight altitudes have been shown to
greatly reduce drone noise and noise annoyance levels (Torija & Nicholls, 2022).

The legal definition of a “superadjacent airspace” provided the persuasive author-
ity for additional litigation and led to the development of the Federal Aviation
Regulations (FARs) which are rules prescribed by the Federal Aviation Admin-
istration (FAA) governing all aviation activities in the United States. The FARs
currently make up Title 14 of the Code of Federal Regulations (CFR) and include
aviation safety rules related to design, maintenance, flight operations, training
activities, lighter-than-air aircraft, kites, structural heights, lighting obstructions
and markings, model rocket and model aircraft operations, and commercial space
operations. Title 14 CFR rules set the floor for navigable airspace by crewed air-
craft at 500 feet above the surface unless the aircraft is maneuvering for takeoff
or landing (14 C.F.R. § 91.119, 1989). There are some aircraft exceptions to this
regulation (e.g., kites, hang gliders, helicopters, and flight in unpopulated areas)
and they have additional restrictions that limit their physical distance to people,
objects, and structures (14 C.F.R. § 91.119, 1989). The Restatement (Second) of
Torts (§§ 158, 159(1)) addresses issues of aerial trespass whereas the intention of
the federal regulation is focused on partitioning airspace for safety and reducing
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the potential for collisions between crewed and uncrewed aircraft.

In 2016, the Federal Aviation Administration (FAA) released the final rule for
Small Unmanned Aircraft Systems (sUAS) Regulations setting the maximum al-
lowable altitude for drone operations at 400 feet above the ground, or higher if the
drone remains within 400 feet of a structure and does not enter controlled airspace
(14 C.F.R. § 107, 2016). This regulation was intentionally designed to provide a
safety buffer (100 feet) between uncrewed drone operations and crewed aircraft
operations, which start at 500 feet. Prior to the Part 107 final rule, the space be-
low 500 feet could be considered within the jurisdiction of the state, and protected
by the 10th Amendment to the U.S. Constitution, and in accordance with federal
minimum safe altitudes for crewed aircraft (14 C.F.R. § 91.119, 1989). But since
2016 and the implementation of the Part 107 rule, Federal standards legally re-
strict drones to travel only in the superadjacent airspace; in the strict definition of
civil tort law this means that drones, which are classified as aircraft by the FAA,
are committing aerial trespass when operating outside of navigable airspace. This
created significant challenge to existing tort law, and states responded by pursu-
ing the Drone Federalism Act of 2017 (S. 1272) (S.1272 - 115th Congress, 2017).
This act proposed reducing the FAA’s preemption for drone regulations and giving
states regulatory authority over drones in the “immediate reaches of the airspace
above property” as a means for preserving property rights, protecting privacy,
ensuring public safety, and restricting nuisances and noise pollution.

Central to the bill was a proposed bright-line restriction of civil (i.e., non-military)
UAS as excluding “(1) any area within 200 feet above the ground level of the prop-
erty or any structure on the property; and (2) any area where operation of the
aircraft system could interfere with the enjoyment or use of the property.” The
motivation for this bill came from a ruling by a federal court of appeals finding
that the FAA lacked the authority to regulate drone use by hobbyists (H.R.658
- 112th Congress, 2012), raising concern that the lack of regulation would fail to
rectify issues of privacy and trespass by drone recreationalists. The bipartisan bill
(S. 1272) was introduced but it did not become law out of concern that the mini-
mum altitude limits would impede commercial uses of drones that operate at lower
altitudes for legitimate business reasons (e.g., structural inspections, drone deliv-
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ery, search and rescue). In response to state concerns, the National Conference
of Commissioners on Uniform State Laws drafted the Uniform Tort Law Relat-
ing to Drones Act (NCCUSL, 2019) that did not include a minimum operating
altitude. Established in 1891, The Uniform Law Commission (ULC), also known
as the National Conference of Commissioners on Uniform State Laws (NCCUSL)
is a non-profit group comprised of appointed state commissioners from each state
that provide states with non-partisan legislation in order to establish stability and
uniformity in areas of state statutory law. The Draft Model Act (2019) outlined
ten criteria for consideration in analysis of drone aerial trespass:

1. The amount of time the unmanned aircraft was operated over the
landowner’s property;

2. The altitude at which the unmanned aircraft was operating;

3. The number of times unmanned aircraft have been operated over
the property;

4. Whether the unmanned aircraft recorded or captured audio,
video or photographs while in operation over the property;

5. Whether the landowner has regularly allowed operation of
unmanned aircraft over the property;

6. Whether the operation of the unmanned aircraft caused physical
damage to persons or property;

7. Whether the operation of the unmanned aircraft caused economic damage;

8. The time of day the unmanned aircraft was operated over
the landowner’s property;

9. Whether an individual on the land saw or heard the unmanned aircraft
while it was over the property; and,

10. The operator’s purpose in operating the unmanned aircraft over the property.
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The Draft Model Act criteria are aimed largely at evaluating if the aircraft inter-
fered with the use of the land (i.e., criteria 1-3, 5-7,9), rather than if an intrusion
of airspace and invasion of privacy has occurred (i.e., criteria 4, 8, 10). This is
problematic under the Restatement (Second) Tort (§329) for trespass because a
landowner has the right to claim trespass for intrusion – regardless of if harm has
been committed. States have not accepted the Draft Model Act approach to defin-
ing aerial trespass since the responsibility of protecting property owner trespass
rights would require determining if trespass (§329) and nuisance (Tort Restate-
ment §822, §826-829, §831) has been committed based on an evaluation of the
degree of interference that the drone flight activity has had on the usefulness of
the land. Instead, states have adopted trespass doctrines to drone aerial intru-
sion utilizing existing civil trespass law (e.g. Tort § 158). States have successfully
defined trespass as entering private land or airspace without permission, and spec-
ifying consideration of compensable trespass injury in circumstances that violate
a reasonable expectation of privacy (§ 652). I explore the efforts of states to enact
privacy invasion regulations in the next section.

4.2.1 Regulation of Privacy Invasion by Drones

Many current efforts to protect property rights from drones (i.e., trespass) are
actually motivated by concerns about risks to privacy. Privacy tort law and con-
stitutional law often serve as critical lenses for assessing the design and use of
emerging surveillance and security technologies. The general law of privacy from
civil tort law addresses unlawful invasion of privacy by private (civil) actors, and
the constitutional right of privacy protects personal privacy against unlawful gov-
ernmental invasion.

In this work, I define privacy as an individual or group’s ability to maintain a state
of seclusion and selectively choose what information and forms of self-expression
are shared with others. This definition is inspired by concepts presented by Judith
W. DeCew (1997), “In pursuit of privacy: Law, ethics, and the rise of technol-
ogy” and Daniel J. Solove (2002), “Conceptualizing Privacy”. A seminal definition
of privacy comes from Aristotle’s - Book One of Politics where he describes the
value of separate spheres of public (political, polis) and domestic life (home cul-
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ture, oikos) that allow an individual to delineate a protective boundary between
personal life and public scrutiny (Swanson, 1994). In the U.S., two historic defi-
nitions of privacy used today are “the right to be let alone” and “an individual’s
right to seclusion, or right to be free from public interference”. These definitions of
privacy were originally defined in the December 15, 1890 issue of the Harvard Law
Review in an article entitled "The Right to Privacy," written by attorney Samuel
D. Warren II and then future U.S. Supreme Court Justice Louis Brandeis in re-
sponse to the invention and increased accessibility of celluloid photographic film
(R. Jenkins, 1975). Warren and Brandeis raised concern that the ability to capture
“instantaneous photographs” and widely distribute images via the “newspaper en-
terprise” have “invaded the sacred precincts of private and domestic life” (p.195)
(Warren & Brandeis, 1890). The simplicity of the Warren and Brandeis privacy
definition has appeal but scholars posit that privacy is more complex than the
right to be free of public interference or maintain seclusion (Westin, 1968; DeCew,
1997). In “Privacy and Freedom” (1968), Alan Westin further defined privacy
in terms of informational privacy, largely in response to increased concern and
conflict between privacy and emerging surveillance technology (i.e., closed-circuit
television and video camera surveillance), and increased information storage ca-
pabilities (i.e., computer memory). Westin provides a definition for informational
privacy as “the ability to determine for ourselves when, how, and to what extent
information about us is communicated to others” (p. 5). Most recently Finn et
al. (2013) described seven distinct types of privacy based on the predominantly
Western view of a right to privacy. The Western concept of a right to privacy is
based on the 18th-century Enlightenment view of the individual as the focus of
society with each individual possessing the right to live and act without interfer-
ence from others so long as society is protected from what is deemed unreasonable
acts. According to Finn et al. (2013, p. 7-10) these privacy rights include:

• the person (e.g., bodily, medical, reproduction, self-determination)

• behavior and action (e.g., movement, habits)

• communication (e.g., spoken word, phone, mail, email)

• data and image
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• thoughts and feelings

• location and space (e.g., home, rooms, safe/lockbox)

• association (e.g., friends, family, group membership/affiliation).

The U.S. Constitution, U.S. Bill of Rights, and civil tort laws offer some privacy
protections. Although the U.S. Constitution contains no express right to privacy,
the U.S. Bill of Rights does protect specific aspects of privacy from government
surveillance including the privacy of beliefs (1st Amendment) and privacy of the
person and possessions against unreasonable searches (4th Amendment). Privacy
tort laws also provide individuals with an actionable right to be free from the inva-
sion of privacy and have provided the foundation for local and state governments
to enact ordinances and laws placing restrictions on drones in order to protect
citizens from an invasion of privacy (§ 652 B-D). Violations of privacy include:

1. § 652B Intrusion Upon Seclusion: "One who intentionally intrudes,
physically or otherwise, upon the solitude or seclusion of another or his
private affairs or concerns, is subject to liability to the other for invasion
of his privacy, if the intrusion would be highly offensive to a reasonable
person."

2. § 652C Appropriation of Name or Likeness: "One who appropriates to his
own use or benefit the name or likeness of another is subject to liability to
the other for invasion of his privacy."

3. § 652D Publicity Given to Private Life: "One who gives publicity to a
matter concerning the private life of another is subject to liability to the
other for invasion of his privacy, if the matter publicized is of a kind that
(a) would be highly offensive to a reasonable person, and
(b) is not of legitimate concern to the public."

The laws regarding aspects of drone use and privacy are still in the early stages
of development as the FAA and other federal agencies (i.e., DOT, DHS) develop
key aspects of its UAS safety and security requirements and as the number of
state civil court decisions related to drones and privacy tort occur. As early as
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2013, approximately 45 U.S. states considered enacting restrictions on drones and
formally expressed concern about the potential impacts of UAS on public safety
and privacy (National Conference of State Legislatures, 2023). In response to this
concern, the FAA released a fact sheet outlining examples of UAS laws that would
likely fall within state and local government authority, such as requirements for
police warrants before using UAS for surveillance; amending state statutes on
voyeurism to include the use of UAS; exclusions on using UAS for hunting or
fishing, or harassing individuals engaged in those activities; and restrictions on
weaponizing a UAS (FAA, 2015).

This FAA response was prompted partly by growing state-level concerns and an
increasing number of crewed aircraft pilot-reported incidents involving unautho-
rized and unsafe use of UAS (238 aircraft pilot sightings were reported in 2014,
increasing to 780 in 2015 with several in regions of wildfires across the western
U.S.) (FAA, 2015). This response was also aimed at clearly delineating what is and
is not in the expressed authority of the FAA as a federal agency. In the fact sheet,
the FAA reiterated its commitment to the congressionally vested scope of safety
and security of national airspace and its continued enforcement of safety-related
requirements for the operation of UAS in U.S. airspace. The FAA cautioned that
“substantial air safety issues are raised when state or local governments attempt
to regulate the operation or flight of aircraft” (p. 2). This action also served as a
reminder to state legislatures and local governments that they cannot enact laws
and ordinances that preempt federal laws (U.S. Const. art. IV, § 2.), and in turn,
federal agencies cannot intervene in matters of the state (e.g., policing, civil inva-
sion of privacy, land use zoning). The FAA closes by outlining specific examples of
operational UAS restrictions that would require consultation with the FAA. The
FAA is able to place temporary and permanent airspace restrictions over cities
and specific distances from national landmarks but these restrictions are heavily
scrutinized by the FAA for their effect on national security, public safety, and
airspace efficiency. Issues of trespass and privacy concerns are not considered in
these airspace restriction requests.
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4.2.2 The Current Drone Legal Privacy Landscape

Since 2015, civil litigations and criminal prosecutions continue to emerge in federal
and state courts as citizens object to drone operations that are viewed as aerial
trespass and violating a reasonable expectation of privacy. Since 2013, 39 of the 50
U.S. states have passed legislation that directly addresses privacy rights and drone
use for all areas outlined in the FAA’s factsheet (FAA, 2015; National Conference
of State Legislatures, 2023). The following court cases have provided precedent
for the developing U.S. civil drone legal landscape governing privacy concerns.

The earliest court case addressing drone invasion of privacy followed shortly af-
ter the authorization for integration of civil unmanned aircraft systems into the
national airspace system (H.R.658 - 112th Congress, 2012). Beesmer v. Ulster,
N.Y., was the first court case that specifically addressed drone invasion of pri-
vacy. David Beesmer, a professional videographer, was flying his drone outside
a medical facility in Lake Katrine, N.Y. while waiting for his mother during her
appointment at the Mid-Hudson Medical Group building. Beesmer was arrested
by Ulster City police and charged with misdemeanor attempted unlawful surveil-
lance. Prosecutors stated that the drone was near the fourth floor, which had
exam rooms occupied by hundreds of patients that had a reasonable expectation
of privacy. The defense (Beesmer) successfully argued that a reasonable expecta-
tion of privacy was maintained as: (1) windows were tinted and (2) he checked
with employees about flying his drone to capture footage, and (3) shared footage
with employees for review with the intention of securing the medical group as a
client for his business. Beesmer was acquitted of all misdemeanor unlawful surveil-
lance and invasion of privacy charges on the grounds of “no legitimate purpose”,
meaning that he was in no way acting in a malicious or threatening fashion, and
made his intentions clear to facility management that he was seeking to secure the
organization as a possible client for his growing drone-based videography freelance
business – prior to conducting his flight operations. This lawsuit set precedent for
other states to design their drone regulatory laws with clearly defining intent as
grounds and the need for legitimate attempts at communication with those parties
whose reasonable expectation of privacy may be jeopardized.

In Boggs v. Merideth (January, 2016), John D. Boggs pursued federal criminal
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charges against William H. Merideth after he shot down Boggs’ drone. Boggs
(plaintiff) sought a declaratory judgment for damages to his drone on the grounds
that his actions did not infringe on Merideth’s reasonable expectation of privacy,
and that property owners cannot shoot at aircraft (crewed or uncrewed) flying in
approved federal airspace. Ultimately the case was dismissed based on a “lack of
subject matter jurisdiction”, meaning that the case was deemed inappropriate for
federal court, and was a matter for the state court to decide given the need for a
legal decision regarding civil privacy rights and property rights. It is unclear if the
courts would have found that Merideth’s privacy was invaded or property tres-
passed because while Kentucky law defines curtilage trespass as “an intended or
negligent encroachment onto another’s property that is not privileged”, the state
also has an Adverse Possession law (Ky. Rev. Stat. § 411.120, 1942) which allows
people who trespass or encroach on the private property of another a minimum
period of time to develop an ownership claim to the property. A successful adverse
possession claim in Kentucky must satisfy five elements: the trespasser’s possession
must be (1) actual, (2) hostile, (3) exclusive, (4) open and notorious, and (5) con-
tinuous. Boggs provided the drone’s recorded flight log GPS locations as evidence
to the contrary for trespass and invasion of privacy by showing that the flight path
was not over, or encroaching on Merideth’s property. However, it remains unclear
if in states like Kentucky that continue to have Adverse Possession law (Ky. Rev.
Stat. § 411.120, 1942) whether Boggs’ actions could be viewed as an open and
notorious attempt to survey property for future possession claims. Boggs’ pursued
the case in federal court as a likely attempt to have the court create a clear rule for
drone operation in approved superadjacent airspace, but without the FAA’s direct
involvement in the case it was unsuccessful. Meridith was cleared of first-degree
endangerment and criminal mischief, setting a potentially dangerous precedent
that risked inadvertently justifying the willful destruction of personal property
(i.e., chattel trespass) when a property owner deems that the user’s actions are
violating either property rights (trespass) or privacy rights. In April 2016, the
FAA responded publicly confirming that shooting down any aircraft is a federal
crime under the 18 U.S.C. § 32; that makes it a felony to damage or destroy an
aircraft regardless of the situation because the act poses significant safety hazards
(Goglia, 2016). This case also demonstrated the level to which the federal courts
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and the FAA could get involved in state matters where a landowner’s privacy and
a UAS property rights are at odds. A landowner has a legal right to privacy and to
enjoy their property free from nuisance or trespass and owners of personal prop-
erty have the right to not have their property damaged or taken. The intentional
downing of a drone over private land sets these two rights against one another
and brought additional attention to states for the need to contextualize privacy
invasion concerns in future law. Notably, if had Boggs brought federal charges
against Merideth specifically for the willful damage or destruction of an aircraft
the case may have had a very different outcome in a federal court (18 U.S.C. § 32,
1984).

Only one federal court has ruled on the merits of preemption for a city’s local
ordinance banning drones within city limits (Singer v. City of Newton, 2017), but
this case has set clear precedent for the design of state laws and local ordinances.
In January 2017, physician-inventor Dr. Michael Singer filed a lawsuit in the fed-
eral district court of Massachusetts against the City of Newton after they banned
his drone-based emergency medical services system. The City of Newton enacted
an ordinance that required landowner’s consent to fly a ‘pilotless aircraft’ in an
attempt to protect privacy (i.e., voyeurism) but the law as designed was in Singer’s
view preemptive to federal regulations. The law required: (1) that all owners reg-
ister their pilotless aircraft with the city clerk’s office; (2) banned flight below 400’
over private property without the landowner’s consent or over any city or school
property without the city’s permission; and (3) aircraft in flight needed to remain
within the operator’s line of sight. Singer successfully argued that the ordinance
was conflict preemptive in three instances. First, Singer could not comply with
both the city ordinance limiting drone traffic to fly above 400’ and the federal rule
limiting drone traffic to fly no higher than 400’ above the ground or above a struc-
ture. Second, the city provision prevented drones from flying over public property
with no expressed altitude ceiling, meaning that the regulation would conflict with
federal airspace regulations by restricting all types of air traffic over designated
public spaces. Lastly, the provision requiring drone registration with the City of
Newton was conflict preemptive on the grounds that the FAA already requires
drone pilots to comply with federal registration standards for drone aircraft and
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the state cannot restrict flight based on a citywide aircraft registration statute.
The courts recommended that the city redraft the ordinance to avoid conflict pre-
emption and implement it in the future. The court also suggested using the terms
‘uncrewed’ or ‘remotely piloted’ over ‘pilotless’ in order to hold the remote pilot
in command (PIC) as the responsible party and address the fact that UAS are
not actually ‘pilotless’. The City of Newton complied with the recommendations
and revised the ordinance by defining ‘pilotless aircraft’ as “unmanned aircraft
systems, or drones”, and set prohibitions that “no UAS shall be operated: 1) over
any property in a manner that causes direct and immediate interference with the
use or enjoyment of that property”. The revised ordinance also addresses unwar-
ranted surveillance, voyeurism, harassment, assault, public nuisance, and trespass
(Newton 20 § 20-64, 2022). There are still existing municipal laws that attempt to
enforce citywide bans on drone traffic (e.g., St. Bonifacius, Minnesota —Municipal
Law // 2013 § 91) but it is likely that precedent from preemptive lawsuits (e.g.,
Singer v. City of Newton) will lend to their failure in future litigations.

Court cases have also challenged the use of drones by government entities, where
persons have a reasonable expectation of privacy in their property and protections
from unwarranted search and seizure under U.S. Constitutional Fourth Amend-
ment rights. In the Michigan court, Long Lake Township v. Maxon upheld that
“persons have a reasonable expectation of privacy in their property against drone
surveillance, and therefore a governmental entity seeking to conduct drone surveil-
lance must obtain a warrant or satisfy a traditional exception to the warrant
requirement.” The Long Lake Township hired a commercial drone pilot to cap-
ture aerial imagery of the Maxon’s property to establish that the property was
serving as an illegal salvage yard – violating a municipal zoning ordinance and
creating a nuisance by breaching a previous settlement agreement. The Long Lake
Township filed a civil action against the Maxon’s, submitting drone photographs
as evidence. The Maxon’s successfully suppressed the drone photographs as a
4th Amendment violation. The courts made the distinction between the case of
crewed aircraft surveillance in Florida v. Riley and the “low-altitude, unmanned,
specifically-targeted drone surveillance of a private individual’s property” as “qual-
itatively different from the kinds of human-operated law enforcement agency air-
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craft surveillance overflights permitted by Florida v. Riley”. Currently, 18 states
have laws requiring state and local law enforcement agencies to acquire warrants
before using drone technologies for evidence-gathering surveillance, and this case
establishes precedent that drone surveillance constitutes a search under the 4th
Amendment and requires a warrant (National Conference of State Legislatures,
2023).

California successfully amended its Civil Code section 1708.8 law as of January
1, 2016 as part of State Assembly Bill 2306. The law (1708.8) is colloquially
referred to as California’s “paparazzi law”. The amendments address issues of aerial
trespass by defining conditions for associated invasion of privacy by declaring that,
“a person can be held liable for invasion of privacy by knowingly entering into the
airspace of another person to capture a visual image of an individual engaging
in a private, personal, or familiar activity.” The law effectively expands the reach
of current state law by removing the condition requiring the use of a “visual or
auditory enhancing device” and imposes liability if the operator uses any device,
including a drone, in ways that a person with a reasonable expectation of privacy
would find offensive. The law does not ban drone flight over private property,
but it does set conditions for a plaintiff to pursue legal actions against a drone
pilot based on the aircraft’s physical proximity and access to capture physical
impressions of private spaces and personal associations.

Glaser v. Mitchel (2019) demonstrates the successful application of the 1708.8
statute. Two residential neighbors got into a disagreement after one neighbor
(Glaser) hired a certified commercial drone pilot to capture images of trees on
the other neighbor’s property (Mitchel) that they thought posed safety risks, ob-
structed the property’s scenic view, and reduced available light. Glaser filed a suit
under a local tree ordinance designed to resolve disputes between private prop-
erty owners relating to the resolution of sunlight or views lost due to tree growth
(CA Civil § 1708.8, 2019), but only after hiring a drone pilot to take repeated
drone images of trees inside Mitchel’s property and its adjacent curtilage. Glaser
was warned by Mitchel that his home was also a place of business where he saw
clients that had a reasonable expectation of privacy. Mitchel appealed to the view
ordinance and claimed trespass and invasion of privacy for “investigative activities
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undertaken by the Glasers’ drone experts occurred without permission and prior
to seeking mediation required by the view ordinance”. Glaser and the drone pilot
were charged with invasion of privacy under the recent Assembly Bill No. 856 CH.
521, Amendment to Cal. Civ. Code § 1708.8(b) which holds a “person is liable for
physical invasion of privacy when the person knowingly enters, or a person hires
someone to enter, onto the land or into the airspace above the land of another
person without permission in order to capture recordings of the plaintiff engaging
in a private, personal or familial activity and the invasion occurs in a manner that
is offensive to a reasonable person”.

The California Civil Code § 1708.8(b) specifically addresses the need to commu-
nicate the intention of the drone, gain consent from property owners, and not
operate the drone in a manner that is “offensive to a reasonable person”. The
state law does not preempt federal law, as it does not attempt to ban drone traf-
fic over the navigable superadjacent airspace over private property. In California,
drone operations can legally fly over private property, but pilots need to work to
assess privacy concerns and take actions to ensure transparency of their actions
and mitigate risks to privacy.

4.2.3 Regional Drone Legislation Trends

The current regulatory landscape for drones is continuing to develop with an
emphasis on drafting state laws and local ordinances that protect communities,
avoid federal preemption, and promote innovative drone application. Existing and
emerging state laws and local ordinances are focused on three key areas that
promote accountability while continuing to foster innovation. These include:

1. Exercising land use and zoning powers to regulate public areas where
drones can take-off and land in ways that protect the interests of safety,
public health, aesthetics, and the general welfare of its communities.
States and municipalities are also using their authority to condition the
steps that need to be taken to perform take-offs and landings
through case-by-case permitting processes, zone-specific laws (e.g.,
curfews), and agency-wide legislation.
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2. Amending existing laws on aerial trespass and invasions of privacy to
include drone operation and the intention of its pilot (e.g., surveillance,
voyeurism, harassment, negligence, recklessness) and a property owner’s
reasonable expectation of privacy.

3. Defining requirements for emergency services and law enforcement use of
drones including air space priority for emergency response drones and
warrant requirements for law enforcement actions.

These approaches enable state and local governments to make decisions about
drone operations in their region that can promote commercial use while respect-
ing the airspace rights of recreational pilots. Additionally, these foci serve as a
foundation for making future decisions aimed at protecting individuals and prop-
erty rights. A current challenge for state and local governments is readily com-
municating laws and ordinances to remote pilots and residents. The FAA encour-
ages drone pilots to utilize the FAA B4UFLY app (https://www.faa.gov/uas/

getting_started/b4ufly) which promotes accessible drone flight restrictions in
national airspace, but this environment does not include all local rules and regu-
lations that may impact a planned drone operation – like the ability to land and
take-off from an area. The FAA has also created a “No Drone Zone” sign cam-
paign to help state, local, territorial, or tribal government agencies communicate
where pilots cannot operate UAS. The program’s signage clearly delineates areas
where take-off and landings are not permitted and references the relevant local
ordinances (https://www.faa.gov/uas/resources/community_engagement/no

_drone_zone).

4.2.4 Implications of a Status Quo Regulatory Future for Drones

Under the current regulatory framework, the FAA remains the agency responsi-
ble for regulating airspace safety and certifying commercial and recreational UAS
pilots, while states and municipalities continue to enact laws that enforce drone
trespass, invasion of privacy, and pilot negligence. The FAA will continue to pro-
vide testing for commercial and recreational remote pilot knowledge of rules and
regulations protecting aviation safety. And, the agency will continue to develop
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outreach materials containing safety regulatory information and the new remote
identification security requirements for drone and model aircraft operations ac-
countability.

The scope of ‘responsible operation’ under the FAA only includes materials and
outreach that warn UAS pilots to (1) comply with all state laws and local ordi-
nances before flying over private property and (2) not use their UAS to conduct
surveillance or capture images of persons in areas where there is an expectation
of privacy without permission of the individuals. No additional training regarding
best practices for mitigating risks to privacy will likely be included. The FAA
continues to support its “No Drone Zone” physical signage program aimed at in-
forming drone pilots about specific statutes and land use approval regulations.
These ‘No Drone Zone’ signs do not restrict airspace authorization over an area,
but they do limit authorization to take off or land from the property designated
as a local No Drone Zone.

There are some benefits to the current approach from the state and federal per-
spectives. Under this scenario, the federal government would continue to be the
primary regulator of UAS operations. The FAA brings a wealth of federal avia-
tion safety standards that are well-developed, and freely available for study by
prospective UAS pilots. And, the knowledge of these standards can be readily
assessed through established federally approved aviation knowledge testing path-
ways. Additionally, the existing low financial cost of meeting federal remote pilot
requirements would continue to attract workers to join the aviation workforce who
might otherwise not have access to resources to engage in more extensive sUAS
pilot training or pursue coursework to become a conventional airplane pilot.

From the states’ perspective, drone privacy legislation is gaining momentum and
establishing precedent in case law. States continue to enact laws defining actions
that constitute an invasion of privacy, and civil and criminal lawsuits will shape
future definitions of a reasonable expectation of privacy with respect to drones.
Because the federal government is taking full responsibility for certifying remote
pilots through its Part 107 knowledge-based exam, states will not bear the re-
sponsibility and costs for administering training programs and assessing sUAS
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pilot flight competencies.

However, this status quo approach presents some challenges for state and fed-
eral entities. First, the approach offers no opportunities for UAS pilots to re-
ceive training related to actual state or local regulations. Additionally, there are
no opportunities to exercise the recommended best practices for protecting pri-
vacy, communicating with transparency, and acting responsibly in superadjacent
airspace. It is plausible that increased commercial and recreational UAS traffic
would also result in increased confrontations with concerned members of the pub-
lic as the current approaches neglect to effectively communicate to landowners
their property rights under contemporary aviation law. For example, a landowner
who encounters a drone flying overhead may confront a remote pilot based en-
tirely by the ad coelum maxim, but may be unaware of current state or local
statutes protecting property owners from drone invasion of privacy, or may have
little knowledge of what recourse they have to report a civil claim or file a crimi-
nal grievance. In these situations, it becomes the responsibility of a remote pilot
to professionally communicate their intentions, qualifications, granted authority,
while respecting the public’s reasonable expectation of privacy.

4.2.5 Law Enforcement & Remote ID

It is also unclear how law enforcement will receive additional training to deter,
detect, and investigate unsafe or unauthorized drone operations. Law enforcement
officers called to investigate a civil complaint regarding drone activities will need
to assess the underlying activity associated with a drone operation as there may
also be additional violation (e.g., reckless endangerment, negligence, voyeurism,
harassment, burglary, drug trafficking). While investigating a claim it may be un-
clear whether state and local law enforcement will be effective at enforcing drone
regulations. Local law enforcement agencies cannot directly enforce federal regu-
lations (i.e., Part 107 rules) but they can gather evidence (e.g., proof of aircraft
registration and remote pilot certification, flight path and altitude, time of day,
flying over people) and bring it to the attention of the appropriate federal regu-
latory agency (i.e., FAA, DHS, DOT) for enforcement action. In fact, the FAA
has already developed an assistance and resource program called the Law Enforce-
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ment Assistance Program (LEAP) which provides training materials and points of
contact for federal, state, local, tribal, and international law enforcement agencies
working to address matters of organized crime, drug trafficking, criminal activ-
ity, and threats to national security using U.S. registered UAS aircraft and FAA
certified remote pilots. The FAA will take the necessary regulatory enforcement
actions when deemed appropriate and will provide the necessary aviation-related
support to law enforcement agencies pursuing airborne smuggling interdiction and
criminal prosecution.

Increased drone air traffic, coupled with current regulatory and certification frame-
works, could result in escalating public confrontations, increased law enforcement
engagement, and additional drone-related civil lawsuits. The resulting climate
could lead to reduced public acceptance for drones and fewer applications for
social good.

On January 15, 2021, the FAA established requirements for uncrewed aircraft to
be equipped with remote identification (also called “Remote ID” or RID) to ad-
dress safety, national security, and law enforcement concerns as UAS operations
expand (14 CFR 89 § 44809, 2021). The remote ID regulations were developed
to address public safety issues by increasing the transparency and accountabil-
ity of UAS operations by providing a digital license plate for all uncrewed air-
craft. In the U.S., crewed vehicles already have some form of remote identifica-
tion. Crewed aircraft have onboard tracking systems called Automatic Dependent
Surveillance-Broadcast (ADS-B). Maritime vessels have Automatic Identification
Systems (AIS), and automobiles have license plates clearly displayed. Remote
identification transmitters on uncrewed aircraft can support law enforcement and
federal agency investigation of drones operating unsafely or in restricted areas.
The RID security measure may not directly protect privacy rights but it could
discourage irresponsible and illicit activities.

The RID rule was originally made effective on March 16, 2021 but was delayed
until April 21, 2021, after concerns were raised during the Notice of Proposed
Rulemaking (NPRM) about potential security risks associated with a network-
based remote identification requirement (https://www.federalregister.gov/
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d/2020-28948/p-180). The rule was revised to require a local broadcasting
method and was delayed two more times in order for (1) RID and UAS man-
ufacturers to design, develop, and test RID systems that met FAA and FCC
regulatory requirement (September 16, 2022) and (2) allow uncrewed pilots the
opportunity to meet the operating requirements (September 16, 2023). During
the public comment period for the NPRM it was pointed out that the remote
identification methods will “make pilot and aircraft identification easier for law
enforcement, increase airspace safety, further protecting citizens’ privacy”. The
FAA responded to public comments regarding the potential for remote ID to
safeguard privacy agreeing with the “greater ability of law enforcement to locate
the pilot” (https://www.federalregister.gov/d/2020-28948/p-226), but cau-
tioned that the rule was “not promulgated for the purpose of addressing concerns
about unmanned aircraft that violate privacy laws.” (p. 226) (14 CFR 89 § 44809,
2021).

The Remote Identification of Unmanned Aircraft Systems (89 U.S.C. §44809) final
rule offers three options for remote pilots to meet compliance including operating:
with a standard remote ID (SID) built-in to newly produced UAS, retrofitting
existing UAS and remote-controlled model aircraft with a broadcast remote ID
(BMID), or operating without a remote ID in FAA-recognized identification ar-
eas (FRIA). FRIAs will be the only locations where recreational UAS and other
remote-controlled aircraft exceeding 250 grams (0.55 lbs.) can operate without a
remote ID solution. All uncrewed aircraft weighing under 250 grams and flown
for recreational purposes are exempt from remote ID requirements. The sub-250
gram UAV limit is based entirely on safety guidelines, after determining that
these aircraft are less likely to cause damage or injury than drones weighing more
(49 U.S.C. § 44809). All commercially operated UAS will need to comply with
broadcast remote ID solutions regardless of aircraft weight (49 U.S.C. §44809).
Remote ID systems will broadcast a unique identifier for the drone aircraft, track
drone position (i.e., timestamp, latitude, longitude, altitude, and velocity), iden-
tify the control station location (SID) or take-off location (BMID), and broadcast
the aircraft’s emergency response status (e.g., disaster relief, search and rescue
missions, law enforcement investigations). Remote ID can increase remote pilot
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accountability as aircraft registration information and pilot location will be readily
available to local law enforcement and concerned members of the public through
open-source applications providing pathways for evidence gathering and interven-
tion for UAS activities that violate state statutes (e.g., trespassing, invasion of
privacy, stalking, harassment, private nuisance, assault). Ultimately, remote ID
will likely do little to curtail invasions of privacy by recreational pilots operating
UAV that are under the 250g weight requirement and exempt from for remote ID
compliance.

Commercial UAS operations will need to comply with remote ID regulations on all
drones regardless of their weight and it is likely that remote ID will have a small
financial impact on this sector, because regulations will require that all drones
over a weight of 250g designed and manufactured after the remote ID final rule to
have SID technology already integrated into aircraft. The remote ID final rule (49
U.S.C. §44809) also requires that existing commercial UAS aircraft manufactured
prior to regulation be retrofitted with dedicated BMID transmitters assigned to
each aircraft. The inability to transfer BMID transmitters between commercially
registered aircraft increases the material cost, maintenance labor, or replacement
cost of non-compliant aircraft for commercial operations with multiple aircraft.
Recreationalists will be able to transfer BMID transmitters between aircraft. Es-
timated cost for BMID transmitters vary between $120 - $300.

Recreationalists and educators have raised concern about the availability of
FRIA sites to meet the growing interest in UAS flight. Only FAA-recognized
Community-Based Organizations (CBOs) and educational institutions are eligi-
ble to request the establishment of a FRIA. As of April 1, 2023, there are only
233 registered Recreational Flyer Fixed Sites in the U.S. sponsored by 501c(3)
Community-Based Organizations (CBOs) that will automatically qualify as FRIA
sites (https://udds-faa.opendata.arcgis.com/) and the FAA announced that
it could not provide an estimated timeline for FRIA application approvals. The
AMA has begun the process of requesting FAA-Recognized Identification Areas
(FRIA) on behalf of its chartered aviation clubs but many of these clubs tradition-
ally support fixed-wing (airplane) type flight. The unique maneuvering capability
of single-rotor (remote-controlled helicopter) and multirotor quadcopters (UAS)
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poses challenges for air traffic at many of these exclusively fixed-wing (airplane,
glider) sites. In response, new recreational aviation CBOs have emerged with the
goal of securing FRIA sites with a special focus on supporting multi-rotor (UAS)
aircraft and the growing number of sponsored first-person view (FPV) drone rac-
ing and drone education events (See https://www.multigp.com, Collegiate Drone
Racing Association https://cdra.net/, FPV freedom coalition (FPVFC), Flite
Test Community Association (FTCA)).

Some UAS recreationalists, predominantly from the FPV UAS community, have
opposed the new remote ID regulations and even pursued legal actions challenging
the constitutionality and legality of the FAA’s final rule. In 2021, Tyler Brennan
(CEO, Race Day Quads) filed a petition for review in the United States Court of
Appeals for the District of Columbia Circuit (RaceDayQuads, LLC v. FAA, 2021)
on the grounds that the Remote ID requirement (1) amounts to constant, war-
rantless governmental surveillance of a property owners curtilage in violation of
the Fourth Amendment, (2) infringes on the privacy interests of sUAS operators,
(3) violates First Amendment protections by requiring individuals to associate
with a private dues-collecting organization (CBO) in order to exercise privilege
in the public airspace. His request for vacatur of the FAA rule failed with the
court’s judgment that nearly all UAS operate in public airspace and the require-
ment to broadcast a drone’s location and the location of its operator while aloft in
the national airspace does not violate a reasonable expectation of privacy. Bren-
nan’s petition was unsuccessful but it did act as catalyst to organize the FPV
UAS recreational community. The recreational drone community has formed its
own representative 501(c)(3) organization, the FPV Freedom Coalition (FPVFC))
that actively participates in the FAA Drone Advisory Committee (DAC) (now Ad-
vanced Aviation Advisory Committee (AAAC)) Tasking Group, the Beyond Visual
Line of Sight Aviation Rulemaking Committee (BVLOS ARC) (FAA, 2021).

4.3 Discussion

The current U.S. regulatory frameworks for the integration of drones into the
national airspace are an evolving landscape of federal regulations ensuring flight

117

https://www.multigp.com
https://cdra.net/


safety, coupled with emerging state and local legislation restricting drone use in
order to protect property and privacy rights. The federal standards set clear opera-
tional rules and regulations for drone flight operation and an attainable assessment
pathway for certifying that pilots meet the minimum knowledge standards to op-
erate a drone safely in the national airspace. The federal written examination
approaches to knowledge assessment are sufficient for assessing commercial (Part
107) and recreational (TRUST) drone pilots’ knowledge and provide an enforce-
ment mechanism for revoking the privileges of pilots violating accepted safety stan-
dards. Although enforcement of safety and security violations has been challenging,
new regulations requiring remote identification can increase the transparency of
drone operations and support law enforcement and other federal agencies as they
work to investigate unsafe or unauthorized actions. Remote identification also
provides an affordable and accessible foundation for increasing the safety and se-
curity needed for more complex drone operations. States have successfully worked
in consultation with the FAA to design clear legislation that is not preemptive
of federal statutes and reflects the reasonable expectations of privacy for its res-
idents. In many cases, states have successfully amended existing laws related to
recklessness, negligence, voyeurism, harassment, and set attainable operational re-
quirements for continued use of drone technology by public safety agencies. States
have also agreed to set preemptive clauses that prevent local jurisdictions from
setting operational UAS restrictions regulating navigable airspace without first
consulting with state and federal entities.

Federal, state, and local entities have successfully enacted legislation regulating
drones within their respective jurisdictions, but each has its own unique chal-
lenges. In the federal arena continued efforts are needed to resolve technological
and logistical challenges with the design, distribution, and compliance of remote
identification technology. Additionally, outreach efforts have informed drone pilots
of pending requirements but little has been done to inform the public at large about
remote identification technology and how one can gather information and report
unsafe or unauthorized activities to the appropriate authorities. It also remains
unclear how law enforcement agencies will be equipped to handle civil complaints
and investigations of drone pilots endangering the safety, security, or privacy of
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people within the vicinity. Additionally, the federal written exam adequately as-
sesses pilots’ aviation knowledge but a key component of flight safety training and
assessment for other forms of crewed flight involve a standardized evaluation of
operational flight proficiency. Crewed aircraft pilots are certified based on their
ability to demonstrate aeronautical knowledge and complete flight operational
tasks required for the specific type of pilot rating (e.g., recreational/sport, private,
commercial). Accepted standards for assessing the safe operation of drone aircraft
have been developed by agencies (i.e, NIST) and organizations (i.e, ASTM) but
no assessment requirements have been developed by the FAA to evaluate drone
pilots’ aircraft maneuvering proficiency.

State and local jurisdictions have successfully enacted laws restricting drone oper-
ation based on zoning and land use standards and defined drone pilot actions that
can be considered an invasion of privacy. But this requires that drone pilots be in-
creasingly knowledgeable of changes in their privileges, respectful of the rights and
concerns of others, and compliant with ground-based operational restrictions. The
most readily available resources for current state and local regulations are available
on a variety of commercial training websites (e.g. https://www.thedroneu.com/,
https://uavcoach.com/drone-laws/) and a volunteer-based group “Drone Laws
for a Safer Airspace” (https://drone-laws.com/usa-drone-laws-in-usa/) but
the quality of information available at each vary substantially. A centralized
searchable resource for reliable information on local and state drone regulations
would be a powerful flight planning tool for drone pilots. The FAA has recently
partnered with Aloft© to host a revised version of its free-of-charge B4UFLY map
app. The B4UFLY app offers a simple and easy way for U.S. drone operators, both
recreational and commercial, to check airspace and ground-based restrictions be-
fore taking flight and post their flight status for others to see on the map. The
app has already successfully integrated several local, state, and federal restrictions
as mapped spatial boundaries with links to additional information from federal,
state, and local websites. The application could also add links to relevant state
laws or ordinances in the supporting information window to help inform drone
pilots of current statutes. And, B4UFLY is already part of a larger education cam-
paign (https://knowbeforeyoufly.org/) organized by the Academy of Model
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Aeronautics (AMA), the Association for Uncrewed Vehicle Systems International
(AUVSI), and the Consumer Technology Association (CTA) in partnership with
the Federal Aviation Administration (FAA) to provide “prospective users with the
information and guidance they need to fly safely and responsibly.”

The landscape of U.S. federal and state civil drone laws, regulations, and policies
remains dynamic, with federal-state tension regarding the development of privacy
legislation. There is a significant need for civil drone pilots to demonstrate an
understanding of federal safety regulations and state privacy laws.

Although the current federal certification framework assesses the remote pilot’s
knowledge of what is needed to fly safely and legally, there are no training curricula
that equip drone pilots with an accepted pilot code of ethics or assesses knowledge
of the application of community best practices.

Expanding professional certification beyond the federal UAS Part 107 remote pi-
lot certification program to support professional standards and training across the
jurisdictions of federal and state governments, could be achieved through exist-
ing commercial and collegiate education affiliations. In the next chapter I examine
the usefulness of a commercial pilot training and certification solution for address-
ing growing safety and privacy concerns, and identify the potential benefits and
challenges of the approach.
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Chapter 5

Towards a Code of Ethics and Best
Practices for Teaching About Privacy
Concerns in Drone Pilot
Certifications

Our ability to film nearly anything has outpaced our ability to think clearly about
what we can and should do with the footage.

- Alex Wild (2015). Scientific American
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5.1 Introduction

Persistent federal-state tension regarding privacy legislation points to the need
for drone pilots to demonstrate an understanding of federal safety regulations
and state privacy laws (Chapter 3). The current federal certification framework
evaluates pilots’ knowledge of safe and legal flying, but lacks training on ethics and
drone pilot best practices. Expanding professional certification beyond the federal
program can support standards and training across federal and state jurisdictions.
In this chapter, Here, I examine how non-profit organizations can provide an
accredited certification for commercial pilot training solution that assesses safety
and privacy concerns. I also explore how such a certification can be administered
through existing commercial and higher-education collaborations.

There is currently no federal requirement to complete a certified training program
to become a commercial drone pilot. An individual only needs to acquire the Part
107 study materials, study, and pass the FAA’s Part 107 knowledge exam with a
score of 70% or more correct (14 C.F.R. § 107). Once Part 107 certified, a remote
pilot can operate commercially in the U.S. as long as they do not violate federal
safety regulations. For example, if a recreational or commercial drone pilot violates
state or local statutes related to privacy invasion, they can be sued in civil court by
parties filing claims under tort law – a process that can be burdensome for private
citizens but that can be relieved equitability through civil fines and restraining
orders. However, there would be no recourse for a plaintiff to pursue actions against
a remote pilot’s federal certification based on violations of state statutes unless
the pilot has specifically violated federal rules and regulations related to safety.
In contrast, if local law enforcement or concerned members of the public report
a drone operator to the FAA for unsafe or unauthorized operation within the
national airspace, the FAA’s Compliance and Enforcement Program will then
investigate via its Flight Standards District Office (FSDO), possibly resulting in
civil penalties, criminal prosecution, and actions against an operator’s FAA-issued
certificate (Order 2150.3C, 2018).

Technical professions typically require certifications that offer baseline training,
certification, and continuing education to remain up-to-date on technological ad-
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vances, regulatory developments, and professional best practices. These profes-
sional certifications can be granted based on work portfolios, competency exams,
or coursework achievement and typically adhere to standards designed by certifi-
cate accreditation programs. These certificate accreditation programs are typically
granted by organizations that publish production and testing standards for var-
ious industries. Examples of internationally recognized standards organizations
and their associated certificate accrediting bodies include:

• American National Standards Institute (ANSI):

– National Accreditation Board (ANAB)

• National Institute of Standards and Technology (NIST):

– National Voluntary Laboratory Accreditation Program (NVLAP)

• International Organization for Standardization (ISO):

– International Laboratory Accreditation Cooperation (ILAC)

ASTM International is a leading developer of voluntary standards in the U.S. sys-
tem. ASTM International is also accredited by the International Accreditors for
Continuing Education and Training (IACET) and complies with the ANSI/IACET
internationally recognized standards of excellence in instructional practices. ANSI
administratively serves as a neutral-facilitator and coordinator of the United
States private-sector voluntary standardization system for defining standardiza-
tion needs for emerging technologies at national and global scales. In September
2017, ANSI launched the Unmanned Aircraft Systems Standardization Collabo-
rative (UASSC) with the goal of fostering collaboration between UAS regulatory
authorities, industry entities, research and development, and standards developing
organizations (SDOs). The UASSC was not established to coordinate the devel-
opment of standards and compliance assessment programs necessary for the safe
and responsible integration of UAS into U.S. national airspace but it did suc-
cessfully facilitate the accelerated development of a “Standardization Roadmap
for Unmanned Aircraft Systems” (ANSI Version 2.0, June 2020) which outlines
future UAS standardization approaches for civil, commercial, and public safety
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applications. ANSI also administers a Certificate Program (ANSI-CAP) which as-
sesses and accredits certificate granting organizations that conform to standards
of ANSI/ASTM E-2659 and the ASTM UAS training standards for public safety
remote pilots (ASTM F3379, ASTM F2908, ASTM F2910, ASTM F3266, ASTM
F3330). These standards developed by ASTM International’s Unmanned Aircraft
Systems (UAS) Committee F38 are ideal for public safety offices and law enforce-
ment agencies and outline knowledge and skills that are transferable to a variety
of other professions that are utilizing drones.

An accreditation audit process of the organization’s certificate program is used to
evaluate compliance with accepted standards for instructional design, valid and
reliable assessment of learning outcomes, and a system for monitoring and man-
aging the application of the certificate. Additionally, the accreditation standard
also evaluates the certifying organizations’ structure, administration, policies and
procedures, and records systems.

As demand for proficient and responsible UAS pilots continues to grow, the As-
sociation for Uncrewed Vehicle Systems International (AUVSI) has been working
with regulators, industry, and educational institutions as part of the ANSI-UASSC
collective to establish a industry accepted certification for commercial UAS pilots
and UAS service provider organizations. The AUVSI is the largest international
non-profit trade association dedicated to the advancement of uncrewed systems
and robotics (AUVSI.org). The organization represents corporations and profes-
sionals from over 60 countries with its members actively working with uncrewed
systems across civil, commercial, and defense sectors. The AUVSI currently has
a NIST/ASTM-compliant training and certification program called the Trusted
Operator ProgramTM (TOP) developed in collaboration with Embry-Riddle Aero-
nautical University and ANSI’s UASSC Standardization Roadmap for Unmanned
Aircraft Systems initiative. AUVSI TOP is a professional UAS community ini-
tiative designed to communicate industry best practices and to set an expected
professional code of conduct for commercial drone pilots. The TOP approach cre-
ates standardized policies, training procedures, and certification requirements for
individuals and organizations operating as commercial remote pilots and UAS
service providers. The program also evaluates competencies of individual remote
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pilots and the UAS service provider organizations using the current NIST/ASTM
testing standards. TOP individuals and organizations are assessed and audited
routinely guided by ANSI standards and implemented by TOP certifying bod-
ies that specialize in a particular field of UAS application. TOP protocols can
be amended based on the applications and emerging regulations for UAS oper-
ations by commercial entities, state and government agencies in the U.S. and
internationally. For example, the AUVSI TOP “Protocol Certification Manual”
contains a “Functional Area Performance Measures for Public Safety Operators”
(p.44) with training and auditing that addresses several components aligning with
the NTIA’s “Voluntary Best Practices for UAS Privacy, Transparency, and Ac-
countability” (NTIA, 2016) and the University Aviation Association’s “UAS Pilot
Code”. In 2018, the University Aviation Association (UAA) worked collaboratively
with crewed aviation and UAS professionals as part of its Aviators Code Initiative
(ACI) to develop a UAS Pilots Code (UASPC). The UASPC was written as a
voluntary aspirational code of conduct that sets agreed values-based guidelines
and recommended practices for UAS pilots and UAS organizations. The UAA’s
UASPC has the potential to serve as a guiding document for curricular design
that addresses safety, security, privacy, professionalism (Baum et al., 2018). The
University Aviation Association has also been working collaboratively as part of
the ANSI UASSC collective to standards for assessing compliance with the guiding
UASPC.

Most notable in the UASPC is the recommended privacy practices that can serve
as a guide for UAS pilots as they work in the superadjacent public airspace. Section
IV. Security and Privacy, Part e of the UASPC outlines practices to “recognize
and respect the public’s reasonable expectation of privacy” and integrates compo-
nents of the NTIA voluntary best practices with the addition of clear articulations
for motivation for these practices. For example, the UAA’s UASPC provides clear
suggested practices for protecting PII by (1) “limiting data capture to mission-
related objectives.”, (2) “retain personal data only when legally and purposefully
collected, and only for the duration necessary.”, (3) avoid the collection of personal
data without the subject’s consent”, and (4) “delete such data immediately upon
discovery, and maintain a de-identified log of the deletion.” In addition to the rec-
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ommendation to adhere to informational privacy best practices the UASPC also
makes recommendations for reducing the chilling effect of drone operations. These
include working to: (1) “understand and respect the public’s reasonable expecta-
tion of privacy rights of others by conducting your UAS operations with prudence
and restraint”, (2) “seek to avoid even the appearance of impropriety regarding
potential violations of privacy with your operations”, (3) “recognize that limited
societal experience may cause some people to consider unmanned aircraft harass-
ing, invasive, or threatening”, (4) “respond with courtesy and professionalism”,
and (5) “implement a written privacy policy that is appropriate and responsive to
your UAS operations”.

In the TOP protocols developed by AUVSI there is an emphasis on having de-
veloped policies that address constitutional provisions and applicable laws and
regulations safeguarding individuals’ rights to privacy, civil rights, and civil lib-
erties. These AUVSI – TOP privacy protocols require that organizations conduct
a documented assessment of UAS technology impacts and develop a usage pol-
icy that addresses community privacy concerns. The goal of this assessment is to
identify practices that will minimize the collection and storage of personally iden-
tifiable information (PII), and create clear pathways for engaging transparently
with the public regarding privacy concerns or complaints. Additionally, all AUVSI
TOP certified remote pilots are invited to voluntarily pledge to abide by a profes-
sional code of conduct that specifically includes: “(1) complying with all federal,
state, and local laws, ordinances, covenants, and restrictions, including privacy,
nuisance and trespassing and (2) be respectful and responsive to the needs of the
public and environment.”

5.2 Commercial Certification Pathways

There are numerous commercial programs aimed at preparing prospective remote
pilots for the Part 107 exam, but the curricular focus tends to be entirely on
written test preparation and only assessing knowledge of federal safety regula-
tions. The majority of these test preparation organizations are not accredited by
a governing organization that ensure learning objectives align with accepted stan-
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dards for the profession. Professionals participating in many of these commercial
programs receive no hands-on experience with the safe and responsible operation
of UAS or introductions to a UAS pilot code of conduct. However, there are a
number of emerging commercial education programs that have integrated hands-
on pilot proficiency training and testing, and instruction on ethical best practices
for protecting privacy into their programs through collaboration with professional
certifying organizations (Table 5.1).
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In 2020, the U.S. Department of Commerce’s - National Institute of Standards and
Technology (NIST) developed a sUAS Standard Test as a reproducible method to
objectively evaluate and measure proficiency and control of UAS aircraft (NIST,
2023). The NIST Standard Test was developed in collaboration with the ASTM
International Standards Committee on Homeland Security Applications and was
originally designed to evaluate the proficiency of public safety agency pilots’
(e.g., fire, law enforcement, paramedics, search and rescue) use of aerial robots.
NIST/ASTM sUAS evaluation standard includes ten aerial test methods that
quantitatively measures the system capabilities of the drone and the proficiency
of the pilot in carrying out five basic maneuvers including: accurate landing, ver-
tical climbing, straight flight path, and level aircraft flight. The evaluation also
assesses five functionality test methods, including maneuvering in circular orbits
to visually identify objects from a distance and spiral maneuvers to conduct close-
range inspections. Although the NIST/ASTM testing standards for pilot profi-
ciency are originally tailored towards emergency responder and law enforcement
training, UAS educators are adopting the NIST/ASTM protocols as an affordable
and standardized method of assessing pilot proficiency. The widening adoption
of NIST sUAS standards for operational proficiency has motivated commercial
training organizations to offer hands-on drone maneuver training, proficiency as-
sessment and certification (e.g., Consortiq™, Pilot Institute™, DARTDrones ©,
LLC, Drone U ™, Influential DRONES®, Praxis Aerospace Concepts Interna-
tional, Inc.).

The Pilot Institute™ commercial online drone education program, is unique in
being the only online drone aviation education program to be accredited by the
International Accreditors for Continuing Education and Training (IACET) and the
U.S. Department of Education offering Continuing Education Credits (CEUs) that
comply with American National Standards Institute (ANSI) standards (IACET,
2021). The Pilot Institute™ has also partnered with DRONERESPONDERS to
provide Public-Safety specific Part 107 knowledge training and CEUs for public
safety, law enforcement, fire rescue, emergency management, critical infrastruc-
ture, and security personnel. DRONERESPONDERS is one of the fasted growing
nonprofit 501(c)(3) organizations providing drone capabilities that help people
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prepare for, respond to, and recover from complex emergencies and major disas-
ters. Together these two organizations are currently working to develop hands-on
workshops and assessments for UAS operational proficiency that are affordable
to public safety agencies, meet NIST/ASTM drone flight proficiency assessment
standards and align with the Airborne Public Safety Association (APSA) stan-
dards for test proctoring (C. Werner – Director DRONERESPONDERS Public
Safety Alliance, personal communication, 4/29/2023).

Consortiq™ has successfully utilized AUVSI TOP privacy and security protocols
to train commercial drone pilots in the United Kingdom and European Union.
Consortiq™ has AUVSI TOP certified educators that train EU drone pilots and
service providers in accordance with the voluntary guidelines outlined in Article
40 of the General Data Protection Regulation (GDPR) – Code of Conduct which
encourages a privacy impact assessment as part of drone operator and drone pilot
professional commercial activities. The amenability of AUVSI TOP protocols has
allowed Consortiq™ to adapt training approaches that address requirements from
the EU’s GDPR privacy guidelines.

In the U.S., commercial education organizations with AUVSI TOP-certified in-
structors have successfully provided training and certifications that collectively
meet an agreed set of standards for remote pilot knowledge, operational skills
proficiency, and professional conduct. This process moves pilot training beyond
the minimal prescriptive requirements assessing knowledge of federal operating
regulations to a training paradigm that assesses a level of knowledge, flight pro-
ficiency, safety and risk management, and professionalism required by employers
and clients of commercial UAS operators. For example, DARTDrones ©, LLC is
a U.S. based AUVSI TOP certified training provider that introduces the AUVSI
TOP proficiency assessments and pilot code of conduct as part of its training
protocols. Additionally, DARTDrones offers a U.S. Public Safety Grant providing
funding towards drone training for police and fire departments seeking to integrate
drones into their organization that may not have the resources needed to pursue
TOP training for their organization. The DARTDrones Public Safety Grant pro-
vides full or partial funding to accepted departments nationwide and to date the
organization has awarded over $500,000 in drone training grant funds to over 237
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police and fire departments (DARTdrones LLC©, 2023).

Another viable option would also be for commercial drone education organizations
to adopt the same standards used by AUVSI in the design of its Trusted Opera-
tor Program (TOP) by creating hands-on opportunities for training and assessing
NIST/ASTM UAS flight proficiency standards, design modules introducing a pilot
code of conduct (e.g. UAA UASPC, NTIA Voluntary Best-Practices), and pursue
accreditation to support continuing education units for professionals, like the Pi-
lot Institute™. Although the adopted standards would be similar to the AUVSI
TOP certification, such an approach would lack the auditing process of a certifying
organization and could lead to compliance drift over time. Certifications offered
through a centralized accrediting organization have value for demonstrating foun-
dational knowledge, operational proficiency, and a willingness for operations and
individuals to commit to training and standards in their profession. Demonstrat-
ing a level of competency by participating in certification processes not only adds
credibility to individuals but sets a standard among professionals in a field (Adams
et al., 2004).

However, the intangible qualities of a competent and responsible drone pilot or
drone training organization cannot entirely be captured by completing a certifica-
tion program. Although certifications demonstrate a willingness to invest in pro-
fessional development and the advancement of the profession through continuing
education and participation, client trust is typically gained over time from service
providers that are associated with a centralized certifying body (e.g., ANSI) that
can substantiate professional qualifications, endorse training quality, and ensure
adherence to standards of practice that increase the credibility of a profession.

Drone pilots are a unique class of aviator, operating aircraft from the ground and
controlling them exclusively within the superadjacent airspace. Operating in close
proximity to public and and private spaces requires a distinct set of social and tech-
nical skills. These include the ability to make sound decisions while under social
pressures, maintain heightened situational awareness of aerial and ground activity,
possess effective leadership and communication skills, exhibit humility, resilience,
and uphold a professional code of practice. Sound decision-making is crucial for
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all types of aviators. A drone pilot must be able to swiftly and effectively make
judgments in response to rapidly changing social and environmental conditions.
They must evaluate factors such as weather conditions, aircraft performance, and
safety hazards, while addressing inquiries or concerns from bystanders. To facil-
itate sound decision-making, drone pilots must maintain a clear and heightened
sense of situational awareness, proactively monitoring their surroundings for po-
tential aerial and ground hazards. Additionally, drone pilots need to demonstrate
leadership capacity by communicating clearly and assertively with crew members,
the public, and clients in ways that inspires confidence and trust. These leadership
capacities are best practiced when pilots are able to maintain resilience, humility,
and an unwavering commitment to ongoing learning, regardless of their level of
expertise. Resilience entails being open to feedback, acknowledging mistakes, and
continuously strive to improve skills and knowledge, and recovering from setbacks
and challenging experiences. Resilience is crucial when adjusting to different air-
craft, unfamiliar environments, and navigating complex social interactions. Lastly,
a drone pilot must maintain a commitment to a professional code of practice that
ensures safety, safeguards security, and respects the privacy concerns of others.
By upholding professional standards, drone pilots contribute to the well-being of
others and the continued advancement of drone-based applications.

5.3 Components of Curricular Framework

A drone operations training curriculum should aim to provide students with the
necessary knowledge and skills to become proficient and responsible drone pilots.
The curriculum needs to focus on developing technical flight proficiency skills,
risk assessment abilities, and ethical considerations. The training program should
integrate both theoretical knowledge and practical application through project-
based flight missions and collaborative team exercises. This can be achieved with
a curricular framework that includes the following four components.

1. Knowledge Preparation - Part 107 Training
Students receive comprehensive training in accordance with the Federal
Aviation Administration (FAA) rules and regulations for commercial drone
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pilots. Students are introduced to the rules and regulations, airspace
classification types, influential weather factors, emergency procedures,
and best-practices for operating drones safely and legally. Throughout
the training students have the opportunity to check their understanding
and prepare to successfully complete the Part 107 exam and obtain their
commercial remote pilot certificate.

2. Project-Based Flight Missions
Students engage in a series of project-based flight missions to apply their
skills in various real-world scenarios. These missions include mapping,
cinematic filming, and 3D scanning, allowing students to gain hands-on
experience with a variety of drone technology applications. These
project-based missions enhance students’ ability to flight plan, operate
aircraft, and develop data collection and processing skills. Students work
collaboratively in teams to plan flight missions and assess potential risks
to safety, security, and privacy. They learn to identify and analyze potential
hazards and develop risk mitigation strategies. This component emphasizes
effective teamwork, communication, and decision-making skills in drone
operations.

3. Transparency and Impact Reduction
In conjunction with project-based flight missions students explore the
ethical and legal considerations associated with drone operations. They
develop actionable practices to increase transparency and reduce the
impacts of their drone operations on safety, security, and privacy. This
component encourages students to consider the public perception of
drones and develop strategies to address concerns and build trust
within the community.

4. Drone Pilot Ethical Code Development
After engaging in project flight missions, students work in teams to
develop their own set of best practices for reducing safety risks,
maintaining security, and respecting privacy in drone operations. They
compare their practices with established guidelines such as the UAA’s
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UAS Pilots Code and the National Telecommunications and Information
Administration (NTIA) recommended best practices. Students can modify
their own code or suggest additions to the existing guidelines based on
their analysis and insights. To evaluate the students’ understanding and
application of the UAS pilot’s code and best practices, they are presented
with a variety of hypothetical flight mission scenarios. Students apply
their newly formed code and demonstrate their ability to make informed
decisions, prioritize safety, and address security and privacy concerns
effectively. These scenarios could also be adapted into role-playing
activities that simulate challenging situations encouraging students to
practice effective communication, problem-solving, and decision-making
skills.

Integrating intangibles such as ethics, teamwork, and decision-making skills into
training programs is a crucial part of developing well-rounded and responsible
drone operators. These intangible qualities can be incorporated into training cur-
riculum through actual flight missions and scenario-based exercises that require
students to work collaboratively to consider the potential impacts of their missions
and make ethical decisions about their actions. By incorporating these elements,
the training program ensures that students not only gain technical expertise but
also develop a strong foundation in ethics, teamwork, and critical thinking, en-
abling them to navigate the complex landscape of drone operations responsibly
and professionally.

5.4 Higher Education Certification Pathways

Higher education institutions have successfully formed partnerships and agree-
ments with accredited non-profit organizations to provide recreational and profes-
sional certifications, at their campuses or affiliated commercial training centers.
The National Association of Underwater Instructors (NAUI) is well known for
its scuba diving education and certification programs (https://www.naui.org/).
These collaborations can allow students to complete their scuba diving training
and certification through NAUI-accredited centers while still earning academic
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credit toward their degree programs. NAUI recreational and professional certifica-
tions are integrated into existing college programs and coursework reducing tuition
costs for students. The certifications are often recognized for academic credit or
as part of specific programs and professional development.

A professional competency-based and curriculum-based certification pathway for
training UAS remote pilots is being fostered by AUVSI from existing partnerships
between the federal regulatory agency (FAA) and post-secondary institutions ac-
credited by agencies recognized by the U.S. Secretary of Education. AUVSI has
begun to leverage the FAA’s extensive growing membership in the UAS College
Training Initiative (UAS-CTI) to support continued adoption of the Trusted Op-
erator Program certification into institutions of higher-education.

The UAS-CTI recognizes accredited post-secondary institutions (i.e., technical
schools, colleges, universities) that prepare students for careers in UAS operations
(115th Congress, 2018). As of April 2020, the FAA has recognized 105 accred-
ited post-secondary institutions in 42 states that offer UAS-related certificates or
degrees (associate’s or bachelor’s) with a minor or concentration in UAS design,
operations, and maintenance. Schools can be not-for-profit public or private, two-
or four-year post-secondary accredited institutions. Candidate schools voluntarily
apply to be recognized with the federal UAS-CTI distinction by offering courses
that introduce students to the “use, maintenance, applications, privacy concerns,
safety, and federal policies concerning UAS” (FAA, 2020). The goal of this work
is to build collaborations between educational institutions, industry professionals,
and governments to address the growing demand for qualified UAS professionals
and sharing training best-practices and accepted standards for preparing skilled
and capable UAS pilots.

Currently, there are only four higher education institutions that serve as AUVSI
TOP certified training providers, all are FAA CTI-UAS members. Each institu-
tion has integrated the TOP certification process into their programs in unique
ways that result in student certification in conjunction with their academic course-
work. This approach is unique compared to available certifications for geospatial
professionals seeking UAS training experience (e.g., land surveyor, Geographic In-
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formation System analysts, photogrammetrist, cartographers). For example, the
American Society for Photogrammetry and Remote Sensing (ASPRS) requires at
least three years of experience in a UAS related profession or completion of a
higher education degree with relevant coursework to become a Certified Mapping
Scientist, UAS (https://www.asprs.org/). The following four examples high-
light how a professional UAS certification can be integrated into higher education
institutions.

1. Embry-Riddle Aeronautical University – Worldwide was instrumental in
helping to develop AUVSI TOP protocols and was the first university to
become an AUVSI TOP certified provider through its coursework-based
“sUAS Operations Certificate” program. By integrating the TOP
certification into existing coursework, Embry-Riddle students have the
option to earn all three levels of the TOP professional UAS pilot
certification at a reduced cost and complete fundamental proficiency in
crew resource management, effective communication, aeronautical
decision-making, and airmanship principles as part of their TOP
participation and concurrent course enrollment.

2. Virginia Tech University integrated the AUVSI TOP certification
program into its African Drone and Data Academy (ADDA). The TOP
certification is part of a UNICEF-sponsored African educational
partnership with Malawi University of Science and Technology, offering
opportunities for students at both institutions to train and be
certified, on the design, operation, and maintenance of UAS in support
of the Humanitarian Drones Testing Corridor (Mkuwu et al., 2022).
Malawi students gain hands-on experience in aerial image surveys for
humanitarian crises, natural disaster monitoring and response, UAS
mobile Wi-Fi connectivity, and transport of emergency medical supplies,
vaccines, and laboratory samples.

3. North Carolina State University (NCSU) offers TOP certifications
free-of-charge to enrolled NCSU students and at reduced costs for faculty,
staff, and active-duty military and military veterans. NCSU offers all
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TOP certification levels through its Institute for Transportation Research
and Education (ITRE) which offers a range of transportation education
programs.

4. Warren County Community College is the first 2-year institution to offer
all levels of AUVSI TOP certification – including instructor training.
Warren is only one of six entities globally that can certify all levels of the
AUVSI TOP certification, including Remote Pilot Instructor. Warren has
built the Part 107 knowledge preparation, AUVSI TOP certifications, and
industry-recognized software certifications in Pix4D photogrammetric and
Esri ArcGIS geographic information systems software.

Integrating professional certifications, like AUVSI-TOP, into accredited higher
education programs has advantages for students, institution programs, and the
certifying organization. Students receive an industry-recognized mark of accom-
plishment during their academic coursework that validates their knowledge, skills,
and commitment to a career pathway, many times at a reduced cost financially.
Certifications can incentivize student persistence in a major and provide a compet-
itive edge in future job pursuits (Stuart et al., 2014). Institutionally, certifications
can lead to an improved competency-based curricular design, increased teaching
quality and educator self-confidence, and ensure that faculty and staff maintain
current industry standards and continued professional development (Mbise, 2021).
Institutions also gain industry-recognized credibility that can complement existing
accreditation and promote future enrollment and programmatic growth. Certifying
organizations also benefit from their affiliation with higher education institutions,
gaining credibility as a recognized training standard endorsed by institutions that
already engage in a rigorous accreditation process.

There are some challenges with this approach as well. Integrating professional
certifications, like AUVSI-TOP, into accredited higher education programs re-
quires faculty and department resources to design curricula, align learning objec-
tives and activities with certification protocols, and prepare for the audit process.
For programs with well-developed UAS-based aviation programs and degree offer-
ings, this process can be expedited more easily. Competency-based certifications
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demonstrating flight proficiency also require a greater commitment of resources
to maintaining a UAS training fleet and secure space for acceptable training field
sites, storage, and laboratory facilities. Several challenges can also emerge with
the implementation of agency and academic partnerships. First, it is not clear how
broadly the AUVSI TOP program will be instituted and how widely it would be
accepted among new and existing commercial UAS remote pilots and prospective
employers. Although ANSI and AUVSI are working collaboratively to define stan-
dards for UAS safety and professional conduct, AUVSI TOP has not completed an
accreditation from the American National Standards Institute Certificate Accred-
itation Program (ANSI-CAP) since accepted standards are still in the drafting
process. Completing this accreditation process could provide the necessary en-
dorsement needed to require such a certification program. Currently, it is up to
individuals and organizations to voluntarily pursue training certification opportu-
nities.

The U.S. Department of Education (DoE) could partner with the globally recog-
nized American National Standards Institute (ANSI) to establish a higher educa-
tion initiative that partners ANSI-CAP, the FAA CTI-UAS intiative, and AUVSI
TOP to support 2- and 4-year institutions seeking to integrate drone technolo-
gies and drone programs into their institutions. Grant funding could cover the
costs associated with training and certification of faculty as TOP providers and
accelerate professional certification as a standard across the industry.

Both of the professional certification solutions outlined, commercially available
and higher-education integrated, could build public trust in commercial pilot op-
erations if widely adopted. However, these approaches do not offer a solution
for the remaining 448,868 recreationalist pilots that currently make up almost
60% of the U.S. drone community. Recreationalists are operating entirely on
the minimal federal requirements for safety compliance by completing the on-
line TRUST certificate and it is unclear how many recreationalists are knowl-
edgeable and compliant with the growing number of state and local laws, and
respectful of public concerns and the superadjacent airspace environment. The
recreational aviation community does have well-established representation nation-
ally through the Academy of Model Aeronautics (AMA) that could provide a
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pathway for additional education and outreach related to state and local regula-
tions for recreational users. The AMA, founded in 1936 has over 200,000 active
members and 2,400 clubs in the U.S. and Puerto Rico. Recently, the FAA, in part-
nership with the AMA, AUVSI, and Consumer Technology Association (CTA),
has organized an education campaign called, the Know before you Fly campaign
(https://knowbeforeyoufly.org/) to provide new drone users with information
and guidance they need to fly safely and responsibly. Like much of the outreach
material designed by the FAA, the information available on the “Know before you
fly” website is largely aimed at safety and provides little information or access
to resources to stay knowledgeable of state and local regulations. The program’s
website does provide summary information from its NTIA voluntary best prac-
tices but offers little guidance on compliance (https://knowbeforeyoufly.org/

get-started/uas-best-practices). The AMA, AUVSI, and CTA could part-
ner with states to host a searchable listing of the most up-to-date state laws
and local regulations on the knowbeforeyoufly.org website. To the best of our
knowledge there is not an accessible and up-to-date resource for UAS pilots and
operators to access relevant state and local statues. Drone-laws.com does host an
open-source volunteer-based posting of drone laws and regulations but the page
lacks consistent formatting, is difficult to navigate, does not meet accessibility
standards, and provides inconsistent resource links to validate source credibility.
(https://drone-laws.com/drone-laws-by-states/).

5.5 Discussion

Advancing innovation and the beneficial uses of uncrewed aircraft while protect-
ing privacy and promoting aviation safety will require advances in training and
certification approaches that can address actual flight proficiency and professional
best practices critical to drone operations.

Part 107 approved testing facilities for commercial and public safety pilots are
already accessible through the FAA’s Integrated Airman Certification and Rating
Application (IACRA) (https://iacra.faa.gov/) and most are located at flight
training centers with staff that are already certified flight instructors (CFI) for
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crewed aircraft. CFI-qualified staff could be trained to administer a physical or
simulator version of a NIST/ASTM standardized drone flight proficiency examina-
tion. A simulator version of the NIST/ASTM proficiency course has recently been
designed by Zephyr Simulations (https://zephyr-sim.com/) and could be uti-
lized for outreach, training, and proficiency assessment to certify recreationalists,
commercial pilots, and public safety pilots.

Drones operate in superadjacent airspace which raises privacy concerns and drone
pilots need training opportunities and a certification process that equips them
with the knowledge and skills needed to identify and mitigate risks to privacy
posed by drone operations. In 2016, the FAA issued a final rule on the “Operation
and Certification of Small Uncrewed Aircraft Systems” and avoided addressing
privacy concerns, stating that “privacy concerns have been raised regarding the
integration of drones into the NAS” but privacy issues “are beyond the scope of
this rulemaking” (14 CFR 89 § 44809, 2021). A non-governmental certifying orga-
nization could provide training and certifications that assess knowledge of federal
safety standards, proficiency of flight operations, and best practices for meeting
state privacy regulations. There are existing federally approved NIST standards
for privacy and security awareness training that could be integrated into a certifi-
cation that meets federal and state standards for safety, privacy, and security. The
NIST “Special Publication 800-53 (Revision 4) Appendix J — Privacy Awareness
Training” specifies standards for privacy controls and contains training modules
regarding privacy and security awareness training. The NIST 800-53 standards
are one of the most relied-upon privacy and security standards used by federal
agencies, state governments, and organizations. The standards could be used as a
framework for designing training and assessment of drone pilots for certification.
Additionally, the UAA’s UAS Pilot Code and NTIA’s Voluntary Best Practices
for UAS Privacy, Transparency, and Accountability could provide themes for de-
veloping training and testing scenarios that evaluate a commercial pilots’ ability
to identify the possible impacts of drone operations on privacy and methods for
mitigating risks to privacy.

Setting clear expectations for responsible conduct and creating clear standards
are critical first steps in better defining a social contract between commercial

158

https://zephyr-sim.com/


drone technology and society. As the civil uses for UAS continue to expand in
the U.S., providing a drone-specific training and certification framework that ad-
dresses airspace safety and privacy protections will be an essential part of estab-
lishing public trust and advancing the beneficial uses of the technology. A federal
certification framework has been established for commercial and recreational pi-
lots to address knowledge of safety rules and regulations. UAS professionals need
a unified training and certification framework, accredited by non-governmental
certifying organization, that assesses professional remote pilots’ knowledge of fed-
eral airspace safety rules and regulations, actual flight maneuvering proficiency,
and awareness of best practices for reducing risks to privacy. Pursuing professional
certifications demonstrate a commitment to professionalism, upholding industry
standards, and an openness to continued learning. The FAA has cautioned that
its regulatory authority only pertains to matters of aviation safety and states are
exercising their land use and policing powers to enact privacy laws. Ultimately, it
is the responsibility of drone pilots to demonstrate their commitment to safe and
responsible use of the technology. This means demonstrating their knowledge of
safety regulations, and operating requirements while acting with the highest level
of professionalism and respect for others’ reasonable expectations of privacy.
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