
UC Berkeley
UC Berkeley Previously Published Works

Title
Building integral projection models with nonindependent vital rates.

Permalink
https://escholarship.org/uc/item/976752d6

Journal
Ecology and Evolution, 12(3)

ISSN
2045-7758

Authors
Fung, Yik
Newman, Ken
King, Ruth
et al.

Publication Date
2022-03-01

DOI
10.1002/ece3.8682
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/976752d6
https://escholarship.org/uc/item/976752d6#author
https://escholarship.org
http://www.cdlib.org/


Ecology and Evolution. 2022;12:e8682.	 ﻿	   | 1 of 15
https://doi.org/10.1002/ece3.8682

www.ecolevol.org

1  |  INTRODUC TION

Population models use estimated (or assumed) vital rates at the in-
dividual level to understand many aspects of a population's ecology 
and evolution: its long-term abundance trajectory and age, size, 

or state distribution; its sensitivities and elasticities relevant for 
management; and its optimal life-history strategy, among others. 
Variation in vital rates can have important affects on populations 
(Hamel et al., 2018; Vindenes & Langangen, 2015). This broad con-
cept encompasses variation across individuals, across cohorts, and/
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Abstract
Population dynamics are functions of several demographic processes including sur-
vival, reproduction, somatic growth, and maturation. The rates or probabilities for 
these processes can vary by time, by location, and by individual. These processes can 
co-vary and interact to varying degrees, e.g., an animal can only reproduce when it is 
in a particular maturation state. Population dynamics models that treat the processes 
as independent may yield somewhat biased or imprecise parameter estimates, as well 
as predictions of population abundances or densities. However, commonly used in-
tegral projection models (IPMs) typically assume independence across these demo-
graphic processes. We examine several approaches for modelling between process 
dependence in IPMs and include cases where the processes co-vary as a function 
of time (temporal variation), co-vary within each individual (individual heterogene-
ity), and combinations of these (temporal variation and individual heterogeneity). 
We compare our methods to conventional IPMs, which treat vital rates independ-
ent, using simulations and a case study of Soay sheep (Ovis aries). In particular, our 
results indicate that correlation between vital rates can moderately affect variability 
of some population-level statistics. Therefore, including such dependent structures is 
generally advisable when fitting IPMs to ascertain whether or not such between vital 
rate dependencies exist, which in turn can have subsequent impact on population 
management or life-history evolution.
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or through time in ways described more below. In many models, po-
tential variation in multiple vital rates is artificially assumed to be 
independent.

Looking beyond independent vital rates, ecologists have also 
long recognized the potential importance of nonindependent—i.e. 
correlated—vital rates on demography and life-history evolution 
(Benton & Grant, 1999; Doak et al., 2005; Fieberg & Ellner, 2001). 
Correlations between growth, survival, reproduction, and/or other 
traits can change demographic conclusions (Coulson et al., 2005). 
For example, whereas independent temporal heterogeneity in vital 
rates has been generally predicted to decrease population growth 
rate, it can actually increase population growth rate when multiple 
vital rates are correlated (Doak et al., 2005). A completely different 
example is that persistent individual heterogeneity in vital rates can 
reveal different optimal life-history strategies in different environ-
mental conditions (Kentie et al., 2020).

Integral projection models (IPMs) are the framework for discrete-
time population dynamics with continuous individual-state variables 
(e.g., mass, size) (Easterling et al., 2000). Compared to age- or stage-
structured matrix population models, which track abundance for 
each discrete state category, IPMs track abundance as a distribution 
(density) for continuous state values. This enables IPMs to more ac-
curately represent populations in which continuous state variables 
are important predictors of individual dynamics such as growth, re-
production, and survival (Ellner et al., 2016; Merow et al., 2014; Rees 
et al., 2014). Thus, it may be important to incorporate both variation 
in vital rates and correlations among multiple vital rates into IPMs.

To what extent have correlated vital rates been incorporated into 
both estimation and analysis of IPMs? At a basic level, correlation in 
individual vital rates arising from stochastic life trajectories is almost 
inherent to a nontrivial IPM. For example, in a size-structured IPM, 
correlation in growth and survival will arise when both depend on 
size and individual size trajectories vary due to stochastic growth. 
Temporal correlations among vital rates (e.g., a good year is good for 
each of growth, survival and reproduction) are captured naturally 
when year-specific transition kernels are estimated or correlated 
random effects are estimated (Childs et al., 2004; Hindle et al., 2018; 
Metcalf et al., 2015). Correlations in individual heterogeneity among 
multiple traits have been considered for life-history tradeoffs and 
eco-evolutionary IPMs (Coulson et al., 2021; Kentie et al., 2020). 
However, there remains a need for systematic formulation and com-
parison of multiple kinds of correlated vital rates. This will allow for 
identification of gaps in statistical estimation and IPM analysis meth-
ods and comparison of impacts on demographic conclusions for the 
same data. Some IPM formulations have been sufficiently general 
to encompass these kinds of correlations from a mathematical per-
spective (Childs et al., 2016; Coulson et al., 2017), but case studies 
and estimation tools have not been as highly developed.

In this paper, the general concept of nonindependence among 
vital rates includes three quite different categories: (i) labile indi-
vidual heterogeneity, (ii) temporal heterogeneity, and (iii) persistent 
individual heterogeneity. Labile individual heterogeneity refers 
to differences arising from phenotypic plasticity and the random 

events of a life course (Childs et al., 2016). This is also called dy-
namic condition (Forsythe et al., 2021) or transient heterogeneity 
(Brooks et al., 2017). For example, an individual who by luck expe-
riences high-growth conditions in early years may continue to be 
above average in size throughout its life. Labile heterogeneity can 
also arise from physiological tradeoffs such as costs of reproduc-
tion. For example, if an individual gives birth during the spring, its 
growth rate over subsequent months may be lower than if it had not 
given birth. In this example, the heterogeneity could be viewed as 
an individual-level trade-off between reproducing or growing more, 
although rigorously proving such causality cannot be done without 
a controlled experiment (Coulson, 2012; Knops et al., 2007). In sta-
tistical models, labile individual heterogeneity can be incorporated 
by making the transition (projection) kernels for multiple vital rates 
interdependent. Below, we consider both a standard regression 
framework and introduce a new copula approach for modelling such 
interdependence.

Temporal heterogeneity is driven by a shared covariate, which 
may be observed or unobserved (latent), that affects multiple traits 
(Compagnoni et al., 2016; Coulson et al., 2011; Hindle et al., 2018; 
Metcalf et al., 2015; Vindenes et al., 2014). For example, such a co-
variate could be annual (or breeding-season) food supply that has 
a positive correlation with both survival probability and fecundity. 
Demographic data spanning multiple years would then show a posi-
tive correlation between population-level survival and fecundity val-
ues. Note that a factor such as food supply could contribute to both 
temporal heterogeneity—to the extent individuals experience similar 
growth in a year due to the same conditions—and/or labile heteroge-
neity—to the extent individuals experience different growth due to 
heterogenous food conditions in the same year. We will present two 
different approaches for modelling correlated temporal heterogene-
ity, one being to explicitly include a shared and measured covari-
ate that affects multiple vital rates and the other being to implicitly 
include shared but unmeasured covariates by including correlated 
temporal random effects.

Persistent individual heterogeneity in multiple traits refers to 
between-individual differences that last their entire life (Brooks 
et al., 2017). This is also called fixed condition (Forsythe et al., 2021) 
or heterogeneity (Steiner et al., 2010). For example, one individual's 
average growth and fecundity rates could remain consistently higher 
than another individual's rates due to fixed heterogeneity. Persistent 
individual heterogeneity can be as simple as an univariate quality 
affecting a single trait (Ellner & Rees, 2006) or as complicated as a 
multivariate vector affecting the duration of the different life stages 
of an individual (de Valpine et al., 2014). Persistent individual hetero-
geneity is necessary to represent genetic variation in models of eco-
evolutionary dynamics (Childs et al., 2016; Vindenes & Langangen, 
2015), but it can also represent only phenotypic variation potentially 
shaped by good site conditions at birth, for example. Processes such 
as energy acquisition allocation (van Noordwijk & de Jong, 1986) or 
reproductive strategy trade-offs (Benton & Grant, 1999) could be 
considered as labile heterogeneity and/or persistent heterogeneity 
in different cases. In this paper, the statistical models of correlated 
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persistent individual heterogeneity use correlated individual random 
effects (Brooks et al., 2017; Knape et al., 2011), although they can 
also use individual-level covariates (Moyes et al., 2011). In summary, 
the three kinds of individual heterogeneity are biologically and sta-
tistically distinct, at least in principle.

Numerous IPM studies have incorporated one or more type of 
heterogeneity in vital rates, but few have incorporated noninde-
pendent forms of heterogeneity (beyond the correlated vital rates 
arising from a basic IPM formulation). For example, Ellner and Rees 
(2006) incorporated persistent and labile individual heterogeneity 
without correlation, and Ellner and Rees (2006) incorporated tem-
poral heterogeneity without correlation. As described by Vindenes 
and Langangen (2015), some studies include heterogeneity in es-
timation but then use only mean traits for analysis and prediction. 
Evolutionarily explicit IPMs have included both quantitative ge-
netic traits and phenotypes as state variables, which together can 
be a kind of correlated persistent heterogeneity (Childs et al., 2016; 
Coulson et al., 2017, 2021; Rees & Ellner, 2019). Although these have 
mathematical similarity in IPM formulation, they are distinct in goals 
and statistical parameterisation methods compared with a nonevo-
lutionary model with correlated individual traits. Kentie et al. (2020) 
considered correlated persistent heterogeneity among growth, sur-
vival, and reproduction, although they did not estimate these in a 
hierarchical statistical modeling framework as we do here. It is im-
portant to realize that each kind of correlated heterogeneity intro-
duces different implementation challenges both for estimation and 
for IPM analysis involving multidimensional numerical integration, 
discussed more below.

Statistical estimation of different forms of nonindependent vital 
rates can draw on methods from other kinds of ecological analyses 
that, in some cases, have not typically been used for parameterization 
of IPMs. For labile individual heterogeneity, one current phenotypic 
value can be used to predict changes in another, which is basic to the 
formulation of IPMs. Such dependence can in principle include time 
lags, although these are not explored here. A potential limitation of 
the simple regression approach is that correlation among vital rates 
can be induced only be modifying the marginal distribution of the 
traits. We introduce the use of statistical copulas in this context as 
an alternative way to model labile correlations. For correlated tem-
poral heterogeneity, one can include correlated temporal random 
effects or shared explanatory variables (Evans & Holsinger, 2012; 
Hindle et al., 2018; Metcalf et al., 2015). Alternatively, one can es-
timate different kernels for each of many years (Childs et al., 2004). 
Relevant to persistent individual heterogeneity, statistical models 
for individual demographic data routinely include random effects 
for individual heterogeneity, and multivariate random effects can be 
correlated (van Bonnet & Postma, 2016; de Pol & Verhulst, 2006). In 
the case of marked animals with imperfect detection or recapture, 
capture-mark-recapture methods can also incorporate correlated 
individual random effects (Cam et al., 2013; Gimenez et al., 2018).

In this paper, we systematically present statistical methods to 
estimate different kinds of correlations in vital rates and incorpo-
rate those correlations into IPMs. We give methods for modelling 

correlations in vital rate arising in each of the three categories of 
heterogeneity, including a new copula method for individual hetero-
geneity. We show how the methods can be used in a hierarchical 
statistical framework and discuss some of the computational and im-
plementation challenges involved. In a case study with Soay sheep 
data, we illustrate that the same data can imply different demo-
graphic conclusions when different kinds of correlated vital rates are 
considered. In addition, even when including correlations does not 
change point results such as population growth rate or elasticities, it 
can change the width of uncertainty (credible or confidence interval) 
propagated from uncertainties in parameter estimates.

The structure of this paper is the following. We begin with a gen-
eral description of IPMs (Section 2.1) and consider IPMs with inde-
pendent vital rates (Section 2.2). We next discuss the area of primary 
focus: IPMs with heterogeneous and nonindependent vital rates 
(Section 2.3). We note here that while dependency and correlation 
are not exactly equivalent, we will use the terms interchangeably 
because of common practice. This is followed by a description of 
simulation studies and a case study using data from a population of 
Soay sheep (Ovis aries) in Scotland (Sections 2.5 and 2.6). The results 
of these studies (Section 3) focus on differences arising from the 
nonindependent vital rate models on (i) the log population growth 
rate and (ii) population growth rate elasticities. We conclude with a 
discussion of the implications of the proposed methods (Section 4).

2  |  METHODS

2.1  |  General integral projection models

We begin with a description of a family of IPMs that permit the in-
corporation of temporal, persistent and/or labile individual hetero-
geneity, using the notation from Childs et al. (2016). Let x denotes 
the individual state variables, hereafter called “i-states.” The i-states 
comprise labile traits that vary over the life cycle in response to the 
environment such as body mass, length or breeding status (Coulson, 
2012; Merow et al., 2014; Rees et al., 2014). In addition, individuals 
are further characterised by “q-states,” denoted by z. The q-states 
comprise unmeasured, nonlabile characteristics that are fixed dur-
ing the lifetime of the individual. In this article, we assume that (i) 
individuals can be uniquely characterized by (x, z), which essentially 
assumes that individuals with the same (x, z) are interchangeable, (ii) 
all vital rate models depend on x, and (iii) selected vital rate models 
depend on z. The values of (x, z) at one discrete time step later are 
denoted as (x′, z′).

The state of the population is described by the abundance den-
sity, denoted n(x, z, t). The abundance density is defined such that the 
number of individuals at time t with states in a small interval (x, z) to 
(x + Δx, z + Δz) is approximately n(x, z, t)ΔxΔz. The total abundance at 
t can then be expressed as Nt, such that

(1)Nt = ∫ ∫ n(x, z, t)dxdz.
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The projection of the abundance density over time is described 
by the following equation,

where k(x′, z′|x, z, dt) is the time-varying projection (transition) ker-
nel, i.e. the density of individuals evolving from (x, z) to (x′, z′) (Ellner & 
Rees, 2007). The term dt denotes measured and/or unmeasured time-
specific environmental conditions that account for temporal variation. 
The functional form of the projection kernel depends on the parame-
terization of vital rate models and the life cycle of the study species. In 
this article, the formulation of the projection kernel is motivated by the 
life cycle of Soay sheep (Clutton-Brock & Pemberton, 2004; Coulson, 
2012) such that,

where s( ⋅ ) denotes survival probability; b( ⋅ ) is the number of offspring 
of survived individuals; h( ⋅ ) is the density of offspring with (x′, z′) from 
a reproducing individual with (x, z); and g( ⋅ ) is the density of individuals 
growing from (x, z) to (x′, z′). The IPM kernel is a large-population approx-
imation, so these rates are expected values. Most births of Soay sheep 
are singletons, and for simplicity, we ignore twinning (Coulson, 2012).

In the following sections, we discuss different ways to con-
struct vital rate models when rates are independent or dependent, 
given the i-states, x. Motivated by reproduction cost (Gittleman & 
Thompson, 1988; Tavecchia et al., 2005), we restrict attention to the 
dependence between growth and reproduction.

2.2  |  Independent vital rate models

Before describing different formulations of vital rate models, we intro-
duce some additional notation. To begin, we assume that there is only 
one element in the labile traits, x, and that is the natural logarithm of 
body mass. For individual j at time t, let mj,t denotes the log body mass 
(given survival); aj,t the alive (1) vs dead (0) state; rj,t the reproductive 
(1) vs nonreproductive (0) state (given survival); and cj,t the offspring 
log body mass (given reproduction). The discrete times are t = 1,⋯, T.

In terms of parameters, fixed-effect parameters are referenced 
as � with subscripts defining the vital rate and the variable they 
influence, respectively. For instance, �g,0 is the intercept for the 
growth model and �s,m is the slope for the survival model corre-
sponding to the variable m. Also, residual (nonrandom effect) vari-
ances are denoted by �2 with the subscript defining the vital rate. In 
addition to fixed effects, we consider random effects on year and 
individual for temporal and persistent individual heterogeneity, re-
spectively. These random effects are placed on the growth and re-
production models to capture the potential dependence of interest. 
The unobserved temporal or individual random effects are denoted 
by u and v, respectively. For example, ub,t is the reproduction ran-
dom year effect in year t , while vg,j is the growth random individual 

effect on individual j. Random effect variances are denoted by �2 
and �2, and correlation parameters by � and �, respectively.

Assuming independence between vital rates, parameters for 
each vital rate model can be estimated separately. For that case, we 
summarize three of the most commonly used approaches to formu-
late vital rate models.

2.2.1  |  Vanilla Model (I1)

We initially define the “vanilla model,” denoted as model I1, as the 
widely used approach where the vital rates depend only on the labile 
phenotype, x, corresponding to the log body mass (m) in our Soay 
sheep example (Easterling et al., 2000; Ellner & Rees, 2006). In par-
ticular, parameters are estimated given the individual-level demo-
graphic data such that,

where logit−1(a) = 1∕(1 + e−a) is the inverse of the logistic transforma-
tion. To apply the vanilla model to the projection kernel in Equation (3), 
we rearrange the vital rate models such that,

where ϕ(a;�, �2) denotes the density function of N(�, �2) evaluated at 
a. Here, x = m, and there is no z or dt. The equation for h( ⋅ ) represents 
an inheritance or the “parent-offspring phenotypic similarity” function 
(Coulson et al., 2021), with offspring size depending on parent size. For 
the following models, we assume the same vital rate models as de-
scribed above if they are not mentioned in the model description.

2.2.2  |  Temporal Heterogeneity (I2)

Models with temporal heterogeneity connect vital rates with time-
varying factors, such as resource availability, natural enemies, and abiotic 
conditions. We consider a hierarchical model with independent random 
effects (Bolker et al., 2009; McCulloch & Searle, 2001) such that,

(2)n(x�, z�, t + 1) = ∬ n(x, z, t)k(x�, z�|x, z, dt)dxdz,

(3)

k(x�, z�|x, z, dt) = s
(
x, z, dt

)
[b
(
x, z, dt

)
h(x�, z�|x, z, dt) + g(x�, z�|x, z, dt)],

(4)

aj,t+1|mj,t : Bernoulli(logit−1(�s,0+�s,mmj,t))

rj,t+1|mj,t : Bernoulli(logit−1(�b,0+�b,mmj,t))

mj,t+1|mj,t :N(�g,0+�g,mmj,t , �
2
g
)

cj,t+1|mj,t :N(�h,0+�h,mmj,t , �
2
h
),

(5)

s (m) = logit−1
(
�s,0+�s,mm

)

b (m) = logit−1
(
�b,0+�b,mm

)

g(m�|m) ≡�
(
m�; �g,0+�g,mm, �

2
g

)

h(m�|m) ≡�
(
m�; �h,0+�h,mm, �

2
h

)
,

(6)

rj,t+1|mj,t , ub,t : Bernoulli(logit−1(�b,0+�b,mmj,t+ub,t))

mj,t+1|mj,t , ug,t :N(�g,0+�g,mmj,t+ug,t , �
2
g
)

ub,t :N(0, �2
b
)

ug,t :N(0, �2
g
),
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where the random effects ub,t and ug,t are independent to avoid induc-
ing dependence between different vital rate models.

Similar to Equation (5), the vital rate models are rearranged such 
that,

Here, x = m, dt = (ub,t , ug,t), and there is no z.

2.2.3  |  Persistent Individual Heterogeneity (I3)

The persistent individual heterogeneity model, denoted I3, differs 
from the temporal heterogeneity model (I2) by including random 
effects for each individual instead of each time step. The individ-
ual random effects represent phenotypic variability that persists 
through each individual's life. In particular, we specify,

where the random effect distributions are independent to avoid induc-
ing dependence. In this case, the vital rate models are re-arranged as,

where vo
b
 and vo

g
 denote the random individual effects for the offspring. 

Here, x = m, z = (vb , vg ), and there is no dt. We assume offspring size de-
pends on parent size while offspring random effects are independent 
of parent random effects.

2.3  |  Nonindependent vital rate models

We now discuss different ways to induce the dependence structure 
between vital rate models. Corresponding to the three types of het-
erogeneity are three categories of models, with a category repre-
senting labile individual heterogeneity having two models (D1a and 
D1b), the temporal heterogeneity category having two models (D2a 
and D2b), and the persistent individual heterogeneity category hav-
ing one model (D3).

2.3.1  |  Labile Individual Heterogeneity (D1a and 
D1b)

Models in this category extend the vanilla model I1 to create depend-
ence between reproduction and growth. We construct two types of 

dependent vital rate models: (i) the reproduction conditional model 
and (ii) the copula model. The former model treats breeding status as 
a covariate within the growth model, while the latter model utilizes 
the copula structure to jointly model growth and reproduction. The 
latter necessitates estimating multiple kernel functions together, 
while the former does not.

D1a. Reproduction conditional model
This approach models the growth rate of an individual as a function 
of the breeding status. In particular, the binary variable, rt+1,j, is a 
covariate in the growth model such that,

Integrating out rj,t+1 to obtain the marginal growth model for the 
projection kernel, we note that,

where the marginal growth distribution is now a mixture of two 
Gaussian distributions and hence potentially bimodal. Here, x = (m, r), 
and there is no z and dt.

This model induces a dependency between growth 
and reproduction that is reflected in the covariance, 
cov

(
m�, r�

)
= �g|rvar

(
r�
)
= �g|rb (m)

[
1 − b (m)

]
. This covariance is 

maximized when b(m) = 0.5 and minimized as b(m) approaches 0 or 1.

D1b. Copula model
Copula methods are a popular approach to construct a joint distribu-
tion for correlated random variables given assumed marginal distri-
butions [see, e.g., Chapter 6 of Song, 2007). These models extend 
univariate linear models to general multivariate models with vector 
responses and provide a flexible approach to the regression analysis 
of correlated discrete, continuous, or mixed responses (Anderson 
et al., 2019; de Valpine et al., 2014).

The copula method relies on Sklar's theorem (Sklar, 1959) which 
states that any multivariate distribution can be constructed by com-
bining the marginal distributions with a suitable copula function de-
scribing the association between the variables. Mathematically, given 
the marginal cumulative distribution function (CDF) F1( ⋅ ),⋯, Fn( ⋅ ) 
of variables Y1,⋯,Yn, and a copula function C, the joint CDF can be 
expressed as,

where Fi(y) = P(Yi ≤ y), i = 1⋯n.
There are a variety of copula functions available that permit dif-

ferent behaviours of multidimensional distributions and typically 
lead to different dependence structures. However, the marginal dis-
tributions of the random variables remain the same irrespective of 
the choice of copula function. We use the Gaussian copula function 
to handle the dependence structure for simplicity (Nelsen, 2006; 
Song et al., 2009). The Gaussian copula function is defined such that,

(7)
b
(
m, ub,t

)
= logit−1

(
�b,0+�b,mm+ub,t

)

g(m�|m, ug,t) ≡�
(
m�; �g,0+�g,mm+ug,t , �

2
g

)
.

(8)

rj,t+1|mj,t , vb,j : Bernoulli(logit−1(�b,0+�b,mmj,t+vb,j))

mj,t+1|mj,t , vg,j :N(�g,0+�g,mmj,t+vg,j , �
2
g
)

vb,j :N(0, �2
b
)

vg,j :N(0, �2
g
),

(9)

b
(
m, vb

)
= logit−1

(
�b,0+�b,mm+vb

)

g(m�, vg� |m, vg ) ≡�
(
m�; �g,0+�g,mm+vg , �

2
g

)
I
(
vg� =vg

)

h(m�, vo
b
, vo

g
|m) ≡�

(
m�; �h,0+�h,mm, �

2
h

)
�
(
vo
b
; 0, �2

b

)
�
(
vo
g
; 0, �2

g

)
,

(10)mj,t+1|mj,t , rj,t+1:N(�g,0 + �g,mmj,t + �g|r rj,t+1, �2g ).

(11)

g(m�|m) =b (m)�
(
m�; �g,0+�g,mm+�g|r , �2g

)
+
[
1−b (m)

]
�
(
m�; �g,0+�g,mm, �

2
g

)
,

(12)
F1,⋯,n(y1,⋯, yn) = P(Y1 ≤ y1,⋯,Yn ≤ yn) = C(P(Y1 ≤ y1),⋯,P(Yn ≤ yn)),
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where Φ−1( ⋅ ) denotes the inverse CDF of a standard Gaussian distri-
bution; ΦD( ⋅ ) and ϕD( ⋅ ) are the CDF and density, respectively, of a 
n-dimensional Gaussian distribution with a zero vector as mean and 
covariance matrix D. The diagonal elements of D are all scaled to unity 
without the loss of generality.

As an example, we briefly describe the copula model used in 
the Soay sheep case study for correlated growth and reproduction, 
involving the combination of a continuous and discrete random 
variable. In particular, we use the Gaussian copula function with a 
normally distributed random variable for growth, Y1, and a Bernoulli-
distributed random variable for reproduction, denoted Y2. Note that 
the density function and CDF of Y1 are expressed as,

where � is the expected value of Y1, and �2 is the variance of Y1. For the 
reproduction (Bernoulli) variable, as the raw scale is discrete, we intro-
duce an auxiliary variable X, which is distributed as an uniform distri-
bution (i.e., X:U[0, 1]) and define the new random variable Y3 = Y2 + X . 
The probability mass function for Y2, the probability density function 
for Y3, and the CDFs for both are then expressed as,

where q = Pr
(
Y2 = 0

)
. Combining Equations (13) and (15), we derive 

the joint density of 
(
Y1,Y3

)
 such that,

We can then substitute the growth and reproduction model for 
Y1 and Y2 to obtain their corresponding joint density for parameter 
estimation. The notation becomes x = (m, r), and there is no z and dt.

Despite the appealing features of copula models, IPMs with cop-
ula models give the same projection kernel as the vanilla model, which 
leads to the identical projection of the population dynamics. This is true 
because (i) correlations in the copula model do not modify the mar-
ginal distributions and (ii) the involved vital rate models (reproduction 
and growth) are an additive structure. Further details are presented in 

Appendix S1. Demographically, population change is the same whether 
individuals who grow less are the ones who reproduced more or not. 
However, as discussed more below, the copula remains interesting be-
cause it may give different answers for life-history questions involving 
trade-offs, or estimated parameters may be different, or it may give dif-
ferent kernels when used with time lags or other extensions.

2.3.2  |  Temporal heterogeneity (D2a and D2b)

These models induce dependence on vital rates by the time-varying 
factors, extending the independent temporal heteroegeneity model, 
I2. In particular, when the conditions of a given year are “good” for both 
growth and reproduction, temporal heterogeneity will create positive 
temporal correlation among these vital rates, which may generally be 
the case (Hindle et al., 2018). We consider two models: (i) the shared 
drivers model and (ii) the correlated random year effect model. The 
former model accounts for the temporal effect explicitly with addi-
tional covariate(s), while the latter model utilizes random year effects 
to implicitly model the impacts of unknown temporal factors.

D2a. Shared drivers model
This approach includes observed time-varying covariates in the re-
gression functions for vital rate models (van Benthem et al., 2017; 
Dalgleish et al., 2011; Simmonds & Coulson, 2015). Common choices 
include environmental indices, e.g., North Atlantic Oscillation, pre-
cipitation, temperature, etc. To quantify the additional influence of 
the drivers on the vital rates, let qt denotes the vector of covariates 
with an associated vector of regression coefficients �

⋅,q, namely

The vital rate models are re-arranged for the projection kernel 
such that,

Here, x = m, dt = qt, and there is no z.

D2b. Correlated random year effect model
The second model extends the independent temporal random effects 
model (model I2). Generalizing these hierarchical models by allowing for 
dependencies in the random effect distributions induces dependencies 
between vital rates (Hindle et al., 2018; Metcalf et al., 2015) such that,

(13)
F1,⋯,n(y1,⋯, yn) =ΦD{Φ

−1[F1(y1)],⋯,Φ−1[Fn(yn)]}

f1,⋯,n(y1,⋯, yn) =ϕD{Φ
−1[F1(y1)],⋯,Φ−1[Fn(yn)]}

n∏
i=1

fi(yi)

ϕ(Φ−1(Fi(yi)))
,

(14)
f1(y1) =ϕ(y1;�, �

2)

F1(y1) =Φ
( y1−�

�

)
,

(15)

f2
�
y2
�
=

⎧
⎪⎪⎨⎪⎪⎩

q if y2=0

1−q if y2=1

0 otherwise

f3
�
y3
�
=

⎧
⎪⎪⎨⎪⎪⎩

q if 0≤y3<1

1−q if 1≤y3≤2

0 otherwise

⇒

F2
�
y2
�
=

⎧⎪⎪⎨⎪⎪⎩

0 if y2<0

q if 0≤y2<1

1 if y2≥1

F3
�
y3
�
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if y3<0

qy3 if 0≤y3<1

q+(1−q)
�
y3−1

�
if 1≤y3≤2

1 if y3≥2

(16)f
(
y1, y3

) ≡�D

{ y1−�

�
,Φ−1

[
F3

(
y3
)]} 1

�

f3
(
y3
)

�
(
Φ−1

(
F3

(
y3
))) .

(17)
rj,t+1|mj,t , qt : Bernoulli

(
logit−1

(
�b,0+�b,mmj,t+�b,qqt

))

mj,t+1|mj,t , qt :N
(
�g,0+�g,mmj,t+�g,qqt , �

2
g

)
.

(18)
b
(
m, qt

)
= logit−1

(
�b,0+�b,mm+�b,qqt

)

g(m�|m, qt) ≡�
(
m�; �g,0+�g,mm+�g,qqt , �

2
g

)
.

(19)

rj,t+1�mj,t , ub,t : Bernoulli
�
logit−1

�
�b,0+�b,mmj,t+ub,t

��

mj,t+1�mj,t , ug,t :N
�
�g,0+�g,mmj,t+ug,t , �

2
g

�

⎛⎜⎜⎝
ub,t

ug,t

⎞⎟⎟⎠
:N

⎡⎢⎢⎣

⎛⎜⎜⎝
0

0

⎞⎟⎟⎠
,

⎛⎜⎜⎝
�2
b

��b�g

��b�g �2
g

⎞⎟⎟⎠

⎤⎥⎥⎦
.

.
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The vital rate models are re-arranged for the projection kernel 
such that,

Here, x = m, dt =
(
ub,t , ug,t

)
, and there is no z.

2.3.3  |  Persistent individual heterogeneity (D3)

Similar to the temporal heterogeneity, the model in this category 
extends model I3 to induce dependence between vital rates for the 
persistent individual heterogeneity case.

D3. Correlated random individual effect model
We consider a hierarchical model with dependent random effects 
distribution, similar to model D2b. In particular, we specify,

The vital rate models are re-arranged for the projection kernel 
such that,

where �ind ( ⋅ ) is the density function of the random individual effects 
distribution and specified in the last part of Equation (21). Here, x = m, 
z =

(
vb , vg

)
, and there is no dt.

2.3.4  |  Comparison of the models

In Figure 1, we present a graphical representation of the differences 
between the proposed heterogeneity models. In each of the four 
scenarios, the individual growth model, g ( ⋅ ), depends on exactly one 
factor.

2.3.5  |  Hybrid models

The proposed models can occur individually or be combined within 
and/or between the categories (labile individual, temporal, and 

(20)
b
(
m, ub,t

)
= logit−1

(
�b,0+�b,mm+ub,t

)

g(m�|m, ug,t) ≡�
(
m�; �g,0+�g,mm+ug,t , �

2
g

)
.

(21)

rj,t+1�mj,t , vb,j : Bernoulli
�
logit−1

�
�b,0+�b,mmj,t+vb,j

��

mj,t+1�mj,t , vg,j :N
�
�g,0+�g,mmj,t+vg,j , �

2
g

�

⎛⎜⎜⎝
vb,j

vg,j

⎞⎟⎟⎠
:N

⎡⎢⎢⎣

⎛⎜⎜⎝
0

0

⎞⎟⎟⎠
,

⎛⎜⎜⎝
�2
b

��b�g

��b�g �2
g

⎞⎟⎟⎠

⎤⎥⎥⎦
.

(22)

b
(
m, vb

)
= logit−1

(
�b,0+�b,mm+vb

)

g(m�, vg� |m, vg ) ≡�
(
m�; �g,0+�g,mm+vg , �

2
g

)
I
(
vg� =vg

)

h(m�, vo
b
, vo

g
|m) ≡�

(
m�; �h,0+�h,mm, �

2
h

)
�ind

(
vo
b
, vo

g

)
,

F I G U R E  1 Growth rate, g ( ⋅ ), of 
individuals: (a) g ( ⋅ ) depends on the 
i-states only, hence is constant within 
a group of individuals sharing the same 
i-states (model I1); (b) g ( ⋅ ) depends on the 
breeding status only, hence is constant 
within the breeding group and the 
nonbreeding group (model D1a,D1b); (c) 
g ( ⋅ ) depends on the temporal factor only, 
hence is constant across individual but 
varying across time (model I2,D2a,D2b); 
(d) g ( ⋅ ) depends on the q-states only, 
hence is varying across individual but 
constant across time (model I3,D3)
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persistent individual). For instance, combining models within the 
temporal category uses the correlated random year effects to explain 
the unaccounted correlation by the observed drivers. Alternatively, 
combining models between the labile individual and persistent in-
dividual heterogeneity accounts for two axes of correlations in one 
model. These different forms of combination of models expand the 
possibility of IPMs with nonindependent vital rates.

2.4  |  Numerical implementation

2.4.1  |  Parameter estimation of vital rate models

In this paper, the vital rate models are fitted using the Markov chain 
Monte Carlo (MCMC) algorithms (Brooks et al., 2011) in NIMBLE 
(de Valpine et al., 2017, 2020a, 2020b) given individual-level demo-
graphic data. Different from the usual approach in IPMs that each 
vital rate model is fitted separately, the proposed dependent models 
may require a joint estimation with multiple vital rate models. This 
may hence increase the computational cost and change the mixing 
behaviour of the MCMC algorithm.

Random effects in the models (I2, I3,D2b, I3) are treated as unob-
served parameters, or auxiliary variables, and sampled within each 
iteration of the MCMC algorithm. Similarly, the auxiliary variables in 
the copula model (D2a) are sampled as unobserved parameters in the 
MCMC algorithm. We note that the random effects for the temporal 
and individual random effects induce very different mixing properties.

Prior distributions for all parameters are set to be noninforma-
tive and are presented in Appendix S2. We use the trace plot and 
Brooks-Gelman-Rubin statistic to assess convergence (Gelman & 
Shirley, 2011). Chains with a value of Brooks-Gelman-Rubin statistic 
being less than 1.05 are treated as converged.

2.4.2  |  Approximation of log�s

We use the asymptotic log population growth rate, log�, as one metric 
to compare models. Mathematically, � is defined as limt→∞

(
Nt+1∕Nt

)
 , 

where Nt is the population abundance and can be approximated by 
solving the integral in Equation (2). It has been shown that log� con-
verges asymptotically, even in the temporally stochastic case (Ellner 
& Rees, 2007).

The log population growth rate of IPMs without temporal hetero-
geneity can be approximated via the midpoint rule (Easterling et al., 
2000). To briefly illustrate the mid-point rule, the projection kernel 
is discretized into a projection matrix by a sufficient number of mesh 
points that are of uniform length to discretize (x, z) (Ellner & Rees, 
2006). The population growth rate is then obtained as the leading 
eigenvalue of the projection matrix (Caswell, 2001). Alternatively, 
we can consider using mesh points that are uniform quantiles of z as 
the distribution of z is known.

However, when the IPMs include temporal heterogeneity, 
the midpoint rule becomes inapplicable. In this case, we use the 

simulation technique of “element-selection” to approximate the log 
population growth rate (Ellner & Rees, 2007; Rees & Ellner, 2009). 
This approach creates a series of projection matrices, Kt with the 
population abundance Nt obtained by repeatedly multiplying the 
projection matrices with a discrete approximation of n (x, z, t). The 
(stochastic) log population growth rate is approximated using the 
empirical mean given by,

where data in the first L0 < L years are excluded as transient dynamic 
to reduce the influence of random initialization. We note that this es-
timator carries an extra variability caused by finite simulation. Ellner 
and Rees (2007) showed that the estimator converges to a normal dis-
tribution such that,

In addition to the log�s itself, we are also interested in the vari-
ability on log�s caused by parameter uncertainty. This parameter 
uncertainty can be easily propagated within the Bayesian frame-
work since we are able to obtain samples from the posterior distri-
bution of the parameters, which in turn can be used to calculate the 
value of log� and hence obtain summary statistics of the posterior 
distribution.

2.4.3  |  Sensitivity and elasticity analysis

We also estimate the sensitivity and elasticity of the asymptotic log 
growth rate, log�s, with respect to selected vital rate parameters 
(Rees & Ellner, 2009; Tuljapurkar, 1990; Vindenes et al., 2014). In 
particular, we note that Coulson et al. (2005) suggests that models 
incorporating between-process correlations may alter the sensitivity 
estimate, which in turn has implication for management decisions. 
Here, we apply a central-differencing approach to approximate the 
sensitivity such that,

where �s (� + �) is the estimate of �s when the target parameter equals 
to � + �. By running preliminary tests, we found that � = 0.005� is small 
enough to give precise estimate for all sensitivities of interest. Given 
the estimate of sensitivity, elasticity of � is obtained as,

We note that the sensitivities/elasticities of the copula model 
(D1b) are the same as for the vanilla model (I1), similar to �. To see 

(23)l̂og�s
(
L, L0

)
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1(
L−L0

)
L−1∑
t=L0

log

(
Nt+1

Nt

)
=

1(
L−L0

) log
(

NL

NL0

)
,

(24)l̂og�s
(
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[
log�s ,
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this, we derive the analytical equations of sensitivity (see chapter 4 
of Ellner et al., 2016) such that,

where both terms in the integral remain unchanged because the copula 
model does not distort the marginal vital rate models.

2.5  |  Simulation study

We conducted a simulation study to investigate how sensitive the 
summary statistics (log� and elasticities) are to the different kinds of 
vital rate heterogeneity for parameters relevant to the Soay sheep 
example below. For target parameters of interest that toggle among 
models, we considered 2–3 values of interest, including a 0 value to 
compare with a simpler model. For example, model I2 (independent 
temporal heterogeneity) can be compared with model D2b (cor-
related temporal heterogeneity) by setting � to 0 (I2) or nonzero 
(D2b ). Other parameters were either randomly generated from cho-
sen distributions with 100 replications (Table 1) or fixed (Table 2). 
Randomly generated parameters allowed us to look at how summary 
statistics change over small ranges of variation in a coarse way, with-
out looking at changes in relation to each parameter one by one. 
The distributions and values are motivated from the data in the case 
study, but slightly adjusted to show the difference between models 
with and without correlations.

The simulation study looks at theoretical behavior of the IPM 
models, not at statistical properties of parameter estimation. It re-
veals how model summary statistics shift with particular parame-
ters, but not how parameter estimation performs if the wrong model 
is fitted to the data. Within the simulation study, we compare the 
independent models (I1 − I3) and three of the dependent models 
(D2a,D2b,D3). We do not include the models with labile individual 
heterogeneity as: (i) the impacts on log� by the reproduction condi-
tional models (D1a) are always negative when 𝛽′ < 0, and (ii) the cop-
ula model (D1b) and vanilla model (I1) are theoretically equivalent 
due to the unchanged marginal property (given the same parameter 

values). For models with temporal heterogeneity, we set L0 = 1000 
and L = 10, 000.

2.6  |  Soay sheep case study

We apply the different models to data on Soay sheep. The individual-
level demographic data consist of information from marked female 
sheep in the Village Bay area on the island of Hirta in the St. Kilda 
archipelago, Scotland, from 1986 to 1996. Details of the Soay sheep 
and data collection protocol can be found in Clutton-Brock and 
Pemberton (2004), and the data are available from Coulson (2012).

Using preliminary runs for the estimation of parameters of the 
vital rate models, we set the burn-in and total iteration numbers 
for the MCMC algorithm to be 20, 000 and 100, 000 for the ma-
jority of the models; for the random individual effects models, we 
used 40,000 and 200,000 (uncorrelated case, I3) and 200,000 and 
1,000,000 (correlated case, D3). For the shared driver model (D2a) , 
we consider the winter North Atlantic Oscillation index (NAO) as the 
additional covariate (Clutton-Brock & Pemberton, 2004). We fol-
low Simmonds and Coulson (2015) and apply the average NAO for 
December, January, February, and March as the covariate, which are 
obtained from the Climate Research Unit at the University of East 
Anglia. For the distributions of NAO, we apply a normal distribu-
tion with mean − 0.019 and standard deviation 1.09. For the copula 
model (D1b), parameter � denotes the off-diagonal element of the 
covariance matrix D in the multivariate Gaussian distribution. For 
the reproduction conditional model (D1a), exploratory data analysis 
using a grid-search approach suggested that newborns are likely to 
suffer from reduced growth in relation to reproduction. Thus, we re-
fine the reproduction conditional model such that �g|r only accounts 
for the reduced growth of newborns in the growth model.

In addition, individual-level demographic data of the case study 
contain missing data. For instance, we lack reproduction records of 
some marked individuals in the survey. This poses challenge on the 
proposed models that intend to capture the correlation between re-
production and growth. In this article, we analytically marginalise 
out the missing data to estimate parameters of interest.

3  |  RESULTS

3.1  |  Simulation study

In Figure 2, we present the pairwise results of the vanilla model 
(I1) and the proposed (in)dependent models (I2, I3,D2a,D2b,D3 ). The 
models are compared with respect to log�s (top row) and elasticities 
of growth intercept (bottom row) with known vital rate parameters.

Our simulations show that the variability of the given estimated 
quantities generally increases with increasing correlation in almost 
all scenarios; the exception is Figure 2(f) where the correlation ap-
pears to have little impact on the variability. The increase in vari-
ability is more substantial for models with temporal heterogeneity, 

(27)
��s
��

= ∬
��s

�k(x�|x)
�k(x�|x)

��
dx�dx,
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especially the shared driver model (D2a). Further, we observe 
that correlation in both forms of heterogeneity can lead to both 
increased or decreased values log�s (Figure 2a–c). This is in line 
with the result that although uncorrelated temporal heterogeneity 
is generally predicted to decrease log�s, correlated temporal het-
erogeneity can increase log�s (Doak et al., 2005; Fieberg & Ellner, 
2001). Also, the temporal heterogeneity models and persistent in-
dividual heterogeneity model cause different impacts on log�s. For 
example, temporal heterogeneity appears to lead to reduced log�s
; similarly, increasing the correlation in temporal heterogeneity 

models leads to a decrease in log�s (Figure 2a,b). However, per-
sistent individual heterogeneity models have the reverse effects 
(Figure 2c). Finally, we note that the trend on log�s against cor-
relation does not translate into that of elasticities. The decreasing 
trend of the temporal heterogeneity disappears (Figure 2a,b,d,e), 
while the trend of the persistent individual heterogeneity is re-
versed (Figure 2c,f).

3.2  |  Case study on Soay sheep

In Appendix S3, we present the posterior summary estimates of the 
model parameters for different models. Three dependent models 
(D1a,D2b,D3) indicate a significant correlation between growth and 
reproduction (the symmetric 95\% credible intervals of �, �b,q in model 
D1b,D2a contain 0). The reproduction conditional model (D1a) and 
the correlated random individual effects model (D3) indicate a nega-
tive association between growth and reproduction (�𝛽g|r < 0, �𝜓 < 0), 
while the correlated random year effects model (D2b) estimates a 
positive correlation (�𝜌 > 0). Note that these results in different sign 
of correlation do not contradict with each other because these mod-
els are driven by different biological mechanisms.

TA B L E  2 Fixed parameters

Values

�g,q 0.01
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2

�2
h
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�2
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�2
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g 0. 03

2

�2
b 0. 45

2

F I G U R E  2 Comparison across models in simulation with 100 replications: (a) log�s(D2a) −log�s(I1); (b) log�s(I2,D2b) −log�s(I1); (c) log�s(I3,D3) 
−log�s(I1); (d) % change of elasticity of �g,0 of model D2a over model I1; (e) % change of elasticity of �g,0 of model I2,D2b over model I1; and (f) % 
change of elasticity of �g,0 of model I3,D3 over model I1. The dashed line is the reference line for I1
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3.2.1  |  Comparison of log�s

We use 500 parameter values sampled from the posterior distribu-
tion to approximate the (stochastic) log population growth rate. The 
uncertainty from parameter estimation are hence propagated into the 
posterior distribution of log�s. In the temporally stochastic models, we 
set L0 = 1, 000 and L = 10, 000 to approximate log�s . Table 3 provides 
the corresponding summary statistics of log�s for each model.

We first observe that the mean of log�s ranges approximately 
from 0.03 to 0.04, which translates into a 3 to 4% annual population 
growth rate. There is considerably more variability, however, in the 
uncertainty about log�s. In particular, the width of the credible inter-
vals of log�s by models with random year effects (I2, D2b) are around 
35\% larger than that of the rest of the models. Second, we observe 
that the uncertainty on log�s caused by parameter uncertainty is 
larger than the bias caused by ignoring the correlation structure. 
This is similar to the empirical result of Compagnoni et al. (2016) 
that parameter uncertainty outweighs the bias caused by ignoring 

the correlation structure. Further, we note that log� of the vanilla 
model (I1) and the copula models (D1b) are slightly different despite 
the theoretical equivalence between the IPMs. This is because the 
parameter estimates between the models are different.

Finally, we note that the predictions of the shared drivers IPM 
(D2a) depend on the distribution of the winter NAO. Adjusting the 
distribution of the winter NAO may lead to different distributions of 
log�s hence interpretation. In Appendix S4, we consider three other 
distributions obtained by using a nonparametric bootstrapping ap-
proach of the NAO in different years.

3.2.2  |  Comparison of elasticity

We approximate the elasticities of four parameters, again using the 
sampled parameter values from the posterior distribution, presented 
in Table 4. We observe that models with random temporal effects 
lead to a larger variability in the elasticities, which is similar to the ob-
servation in log�s. Additionally, we note that the correlated random in-
dividual effects model (D3) consistently gives different results across 
all four elasticities of interest. This leads to the interesting result that 
different models of nonindependence among demographic rates may 
yield different elasticities even when the log�s is quite similar (Table 3).

4  |  DISCUSSION

4.1  |  Model summary

In this paper, we have presented a general framework and several 
specific approaches to modelling between-process dependencies 

TA B L E  3 Summary statistics of the (stochastic) log population 
growth rate with parameter uncertainty on Soay sheep

Mean 95% credible interval

I1 0.0301 (0.0005, 0.0565)

I2 0.0380 (−0.0062, 0.0846)

I3 0.0312 (0.0022, 0.0562)

D1a 0.0330 (0.0048, 0.0598)

D1b 0.0394 (−0.0003, 0.0706)

D2a 0.0368 (0.0074, 0.0648)

D2b 0.0358 (−0.0054, 0.0790)

D3 0.0292 (0.0017, 0.0554)

�g,0 �g,m �b,0 �b,m

I1 1.6312 1.7602 −0.5519 0.5083

(1.451, 1.787) (1.516, 1.990) (−0.675, −0.451) (0.402, 0.630)

I2 1.5941 1.7253 −0.5213 0.4856

(1.384, 1.823) (1.454, 1.989) (−0.691, −0.359) (0.300, 0.642)

I3 1.5888 1.5793 −0.5506 0.5058

(1.410, 1.752) (1.325, 1.863) (−0.673, −0.443) (0.391, 0.632)

D1a 1.6381 1.7020 −0.5520 0.5097

(1.463, 1.801) (1.487, 1.916) (−0.675, −0.458) (0.413, 0.629)

D1b 1.6142 1.7561 −0.5527 0.5121

(1.417, 1.774) (1.504, 2.021) (−0.658, −0.452) (0.410, 0.608)

D2a 1.6606 1.7721 −0.5548 0.5175

(1.479, 1.831) (1.553, 2.008) (−0.673, −0.455) (0.417, 0.631)

D2b 1.6212 1.7725 −0.5424 0.5047

(1.376, 1.865) (1.483, 2.067) (−0.754, −0.322) (0.290, 0.698)

D3 1.6878 1.6604 −0.6238 0.5819

(1.523, 1.856) (1.436, 1.907) (−0.757, −0.507) (0.461, 0.714)

Note:  Present are posterior mean and 95% credible interval. Note that models with random year effects 
(I2,D2b) usually have larger variability (in bold), and model D3 yields different elasticities (in italics).

TA B L E  4 Summary statistics of 
elasticities of four selected parameters 
with parameter uncertainty on Soay sheep
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in IPMs. In particular, motivated by reproduction cost, we pro-
pose three categories of models (labile individual, temporal, and 
persistent individual heterogeneity) that reflect different biologi-
cal mechanisms for the correlation structure between growth and 
reproduction.

Unlike independent IPMs, these modelling approaches explic-
itly characterise the dependency between vital rates, permitting 
the quantification of between-process correlation. As a data-driven 
method, this is better than assuming either no correlation, or perfect 
correlation across vital rates, i.e., assuming the correlation coeffi-
cient to be 1 or − 1 (Benton & Grant, 1999; Coulson et al., 2011).

Amongst the proposed methods, application of the copula 
method for modelling vital rates is novel to IPMs. However, given 
the same estimates for the common parameters, the dependence 
structure of an IPM using copula models may lead to theoretically 
equivalent projections as the independent (vanilla) IPM. This is be-
cause (i) correlations in the copula model do not modify the marginal 
distributions and (ii) the involved vital rate models (reproduction and 
growth in our analysis) have an additive structure. In practice, how-
ever, copula IPMs will still differ from the vanilla IPMs due to differ-
ences in parameter estimates. Further, such theoretical equivalence 
will not remain with alternative copula structures, for example, when 
we consider the previous breeding status 

(
rj,t

)
 as opposed to the cur-

rent breeding status 
(
rj,t+1

)
 in the copula structure with the growth 

vital rate. It may be appropriate to condition on reproduction at time 
t for some species, particularly when multiple reproduction-related 
activities can cause energy loss in the parents including mating, 
gestation, parturition, lactation, etc (Gittleman & Thompson, 1988). 
Also, copula models can be applied to other aspects of IPMs. For 
instance, the multidimensional random effect distribution can be 
constructed by copula models, which bring extra flexibility to the 
models. The use of copula models within this general context is an 
area of current research.

4.2  |  Simulation and case study

In the case study of Soay sheep, the different IPM structures yielded 
relatively similar population estimates. This is most likely because 
the parameter uncertainty (which was ignored in the simulation 
studies) outweighed the impact of between-process correlation 
(Compagnoni et al., 2016). In contrast, the results for both the simu-
lation and the case study show that (i) different models for depend-
ence between vital rates can yield similar (nearly identical) log�s, but 
different elasticities and (ii) variability of the population statistics are 
moderately affected by the correlation between vital rates.

Random effect models are commonly used to model dependence 
structures (Dingemanse & Dochtermann, 2013; Vindenes et al., 
2014). Based on the simulation study, it appears that temporal and 
persistent heterogeneity can lead to differences in the estimated 
target statistics and their associated variability. Results suggest that 
the variability increases as the correlation increases. This aligns with 
the general understanding that extreme values are more likely to 

be generated, and hence, the variability of the target statistics in-
creases when the correlation is large and positive (Doak et al., 2005; 
Fieberg & Ellner, 2001). Empirical results about the correlation in 
temporal variation have been discussed previously (Hindle et al., 
2018; Metcalf et al., 2015). Additional random effects models can 
also be investigated, given available data, for example, allowing for 
nested spatial heterogeneity (Olsen et al., 2016), or independent/
crossed structure of spatial and temporal heterogeneity (Jacquemyn 
et al., 2010). Such heterogeneity structures can provide additional 
flexibility and more complicated correlations in vital rates and hence 
IPMs.

4.3  |  Recommendation

In practice, model selection procedures are often carried out to de-
termine whether one model is preferable to all others. However, we 
note that some of the proposed methods (D1a,D1b) do not allow un-
balanced data, whereas other proposed methods (D2a,D2b,D3) are 
flexible for unbalanced/balanced data (Verbeke et al., 2014). Such 
differences complicate model selection, which usually assumes the 
competing models use the exactly same data. This is an area for fu-
ture research.

In general, incorporating these five (biologically/statistically) 
distinct methods (in hybrid/separately) in IPMs may be beneficial. 
Although the correlations have little impacts on some statistics of 
interest (e.g., log�s), our empirical results show that elasticities of 
the unknown parameters and the associated variability are mod-
erately affected by these correlations. These results may provide 
insights into the relationship between the possible dependen-
cies on individual-level vital rates and target population statistics. 
Therefore, we conclude that including such dependent structures 
is generally advisable when fitting IPMs to ascertain whether or 
not such between vital rate dependencies exist, which in turn can 
have subsequent impact on population management or life-history 
evolution.
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