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1  |  INTRODUC TION

Population models use estimated (or assumed) vital rates at the in-
dividual level to understand many aspects of a population's ecology 
and evolution: its long- term abundance trajectory and age, size, 

or state distribution; its sensitivities and elasticities relevant for 
management; and its optimal life- history strategy, among others. 
Variation in vital rates can have important affects on populations 
(Hamel et al., 2018; Vindenes & Langangen, 2015). This broad con-
cept encompasses variation across individuals, across cohorts, and/
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Abstract
Population dynamics are functions of several demographic processes including sur-
vival, reproduction, somatic growth, and maturation. The rates or probabilities for 
these processes can vary by time, by location, and by individual. These processes can 
co- vary and interact to varying degrees, e.g., an animal can only reproduce when it is 
in a particular maturation state. Population dynamics models that treat the processes 
as independent may yield somewhat biased or imprecise parameter estimates, as well 
as predictions of population abundances or densities. However, commonly used in-
tegral	projection	models	(IPMs)	typically	assume	independence	across	these	demo-
graphic	processes.	We	examine	several	approaches	for	modelling	between	process	
dependence	 in	 IPMs	and	 include	 cases	where	 the	processes	 co-	vary	 as	 a	 function	
of time (temporal variation), co- vary within each individual (individual heterogene-
ity), and combinations of these (temporal variation and individual heterogeneity). 
We	compare	our	methods	 to	 conventional	 IPMs,	which	 treat	 vital	 rates	 independ-
ent,	using	simulations	and	a	case	study	of	Soay	sheep	(Ovis aries). In particular, our 
results indicate that correlation between vital rates can moderately affect variability 
of some population- level statistics. Therefore, including such dependent structures is 
generally	advisable	when	fitting	IPMs	to	ascertain	whether	or	not	such	between	vital	
rate	dependencies	 exist,	which	 in	 turn	 can	have	 subsequent	 impact	on	population	
management or life- history evolution.
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or through time in ways described more below. In many models, po-
tential variation in multiple vital rates is artificially assumed to be 
independent.

Looking beyond independent vital rates, ecologists have also 
long recognized the potential importance of nonindependent— i.e. 
correlated— vital rates on demography and life- history evolution 
(Benton	&	Grant,	1999;	Doak	et	al.,	2005;	Fieberg	&	Ellner,	2001).	
Correlations between growth, survival, reproduction, and/or other 
traits can change demographic conclusions (Coulson et al., 2005). 
For	example,	whereas	independent	temporal	heterogeneity	in	vital	
rates has been generally predicted to decrease population growth 
rate, it can actually increase population growth rate when multiple 
vital	rates	are	correlated	(Doak	et	al.,	2005).	A	completely	different	
example	is	that	persistent	individual	heterogeneity	in	vital	rates	can	
reveal different optimal life- history strategies in different environ-
mental	conditions	(Kentie	et	al.,	2020).

Integral	projection	models	(IPMs)	are	the	framework	for	discrete-	
time population dynamics with continuous individual- state variables 
(e.g., mass, size) (Easterling et al., 2000). Compared to age-  or stage- 
structured	 matrix	 population	 models,	 which	 track	 abundance	 for	
each	discrete	state	category,	IPMs	track	abundance	as	a	distribution	
(density)	for	continuous	state	values.	This	enables	IPMs	to	more	ac-
curately represent populations in which continuous state variables 
are important predictors of individual dynamics such as growth, re-
production,	and	survival	(Ellner	et	al.,	2016;	Merow	et	al.,	2014;	Rees	
et al., 2014). Thus, it may be important to incorporate both variation 
in	vital	rates	and	correlations	among	multiple	vital	rates	into	IPMs.

To	what	extent	have	correlated	vital	rates	been	incorporated	into	
both	estimation	and	analysis	of	IPMs?	At	a	basic	level,	correlation	in	
individual vital rates arising from stochastic life trajectories is almost 
inherent	to	a	nontrivial	IPM.	For	example,	in	a	size-	structured	IPM,	
correlation in growth and survival will arise when both depend on 
size and individual size trajectories vary due to stochastic growth. 
Temporal correlations among vital rates (e.g., a good year is good for 
each of growth, survival and reproduction) are captured naturally 
when year- specific transition kernels are estimated or correlated 
random effects are estimated (Childs et al., 2004; Hindle et al., 2018; 
Metcalf	et	al.,	2015).	Correlations	in	individual	heterogeneity	among	
multiple traits have been considered for life- history tradeoffs and 
eco-	evolutionary	 IPMs	 (Coulson	 et	 al.,	 2021;	 Kentie	 et	 al.,	 2020).	
However, there remains a need for systematic formulation and com-
parison of multiple kinds of correlated vital rates. This will allow for 
identification	of	gaps	in	statistical	estimation	and	IPM	analysis	meth-
ods and comparison of impacts on demographic conclusions for the 
same	data.	 Some	 IPM	 formulations	have	been	 sufficiently	 general	
to encompass these kinds of correlations from a mathematical per-
spective (Childs et al., 2016; Coulson et al., 2017), but case studies 
and estimation tools have not been as highly developed.

In this paper, the general concept of nonindependence among 
vital	 rates	 includes	 three	 quite	 different	 categories:	 (i)	 labile	 indi-
vidual heterogeneity, (ii) temporal heterogeneity, and (iii) persistent 
individual heterogeneity. Labile individual heterogeneity refers 
to differences arising from phenotypic plasticity and the random 

events of a life course (Childs et al., 2016). This is also called dy-
namic	 condition	 (Forsythe	 et	 al.,	 2021)	 or	 transient	 heterogeneity	
(Brooks	et	al.,	2017).	For	example,	an	individual	who	by	luck	expe-
riences high- growth conditions in early years may continue to be 
above average in size throughout its life. Labile heterogeneity can 
also arise from physiological tradeoffs such as costs of reproduc-
tion.	For	example,	 if	an	 individual	gives	birth	during	the	spring,	 its	
growth	rate	over	subsequent	months	may	be	lower	than	if	it	had	not	
given	birth.	 In	this	example,	the	heterogeneity	could	be	viewed	as	
an individual- level trade- off between reproducing or growing more, 
although rigorously proving such causality cannot be done without 
a	controlled	experiment	(Coulson,	2012;	Knops	et	al.,	2007).	In	sta-
tistical models, labile individual heterogeneity can be incorporated 
by making the transition (projection) kernels for multiple vital rates 
interdependent. Below, we consider both a standard regression 
framework and introduce a new copula approach for modelling such 
interdependence.

Temporal heterogeneity is driven by a shared covariate, which 
may be observed or unobserved (latent), that affects multiple traits 
(Compagnoni et al., 2016; Coulson et al., 2011; Hindle et al., 2018; 
Metcalf	et	al.,	2015;	Vindenes	et	al.,	2014).	For	example,	such	a	co-
variate could be annual (or breeding- season) food supply that has 
a positive correlation with both survival probability and fecundity. 
Demographic data spanning multiple years would then show a posi-
tive correlation between population- level survival and fecundity val-
ues. Note that a factor such as food supply could contribute to both 
temporal	heterogeneity—	to	the	extent	individuals	experience	similar	
growth in a year due to the same conditions— and/or labile heteroge-
neity—	to	the	extent	individuals	experience	different	growth	due	to	
heterogenous	food	conditions	in	the	same	year.	We	will	present	two	
different approaches for modelling correlated temporal heterogene-
ity,	 one	 being	 to	 explicitly	 include	 a	 shared	 and	measured	 covari-
ate that affects multiple vital rates and the other being to implicitly 
include shared but unmeasured covariates by including correlated 
temporal random effects.

Persistent individual heterogeneity in multiple traits refers to 
between- individual differences that last their entire life (Brooks 
et	al.,	2017).	This	is	also	called	fixed	condition	(Forsythe	et	al.,	2021)	
or	heterogeneity	(Steiner	et	al.,	2010).	For	example,	one	individual's	
average growth and fecundity rates could remain consistently higher 
than	another	individual's	rates	due	to	fixed	heterogeneity.	Persistent	
individual	 heterogeneity	 can	 be	 as	 simple	 as	 an	 univariate	 quality	
affecting a single trait (Ellner & Rees, 2006) or as complicated as a 
multivariate vector affecting the duration of the different life stages 
of an individual (de Valpine et al., 2014). Persistent individual hetero-
geneity is necessary to represent genetic variation in models of eco- 
evolutionary dynamics (Childs et al., 2016; Vindenes & Langangen, 
2015), but it can also represent only phenotypic variation potentially 
shaped	by	good	site	conditions	at	birth,	for	example.	Processes	such	
as	energy	acquisition	allocation	(van	Noordwijk	&	de	Jong,	1986)	or	
reproductive	 strategy	 trade-	offs	 (Benton	&	Grant,	1999)	 could	be	
considered as labile heterogeneity and/or persistent heterogeneity 
in different cases. In this paper, the statistical models of correlated 
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persistent individual heterogeneity use correlated individual random 
effects	(Brooks	et	al.,	2017;	Knape	et	al.,	2011),	although	they	can	
also	use	individual-	level	covariates	(Moyes	et	al.,	2011).	In	summary,	
the three kinds of individual heterogeneity are biologically and sta-
tistically distinct, at least in principle.

Numerous	IPM	studies	have	 incorporated	one	or	more	type	of	
heterogeneity in vital rates, but few have incorporated noninde-
pendent forms of heterogeneity (beyond the correlated vital rates 
arising	from	a	basic	IPM	formulation).	For	example,	Ellner	and	Rees	
(2006) incorporated persistent and labile individual heterogeneity 
without correlation, and Ellner and Rees (2006) incorporated tem-
poral	heterogeneity	without	correlation.	As	described	by	Vindenes	
and Langangen (2015), some studies include heterogeneity in es-
timation but then use only mean traits for analysis and prediction. 
Evolutionarily	 explicit	 IPMs	 have	 included	 both	 quantitative	 ge-
netic traits and phenotypes as state variables, which together can 
be a kind of correlated persistent heterogeneity (Childs et al., 2016; 
Coulson	et	al.,	2017,	2021;	Rees	&	Ellner,	2019).	Although	these	have	
mathematical	similarity	in	IPM	formulation,	they	are	distinct	in	goals	
and statistical parameterisation methods compared with a nonevo-
lutionary	model	with	correlated	individual	traits.	Kentie	et	al.	(2020)	
considered correlated persistent heterogeneity among growth, sur-
vival, and reproduction, although they did not estimate these in a 
hierarchical statistical modeling framework as we do here. It is im-
portant to realize that each kind of correlated heterogeneity intro-
duces different implementation challenges both for estimation and 
for	 IPM	 analysis	 involving	multidimensional	 numerical	 integration,	
discussed more below.

Statistical	estimation	of	different	forms	of	nonindependent	vital	
rates can draw on methods from other kinds of ecological analyses 
that, in some cases, have not typically been used for parameterization 
of	IPMs.	For	labile	individual	heterogeneity,	one	current	phenotypic	
value can be used to predict changes in another, which is basic to the 
formulation	of	IPMs.	Such	dependence	can	in	principle	include	time	
lags,	although	these	are	not	explored	here.	A	potential	limitation	of	
the simple regression approach is that correlation among vital rates 
can be induced only be modifying the marginal distribution of the 
traits.	We	introduce	the	use	of	statistical	copulas	in	this	context	as	
an	alternative	way	to	model	labile	correlations.	For	correlated	tem-
poral heterogeneity, one can include correlated temporal random 
effects	 or	 shared	 explanatory	 variables	 (Evans	&	Holsinger,	 2012;	
Hindle	et	al.,	2018;	Metcalf	et	al.,	2015).	Alternatively,	one	can	es-
timate different kernels for each of many years (Childs et al., 2004). 
Relevant to persistent individual heterogeneity, statistical models 
for individual demographic data routinely include random effects 
for individual heterogeneity, and multivariate random effects can be 
correlated (van Bonnet & Postma, 2016; de Pol & Verhulst, 2006). In 
the case of marked animals with imperfect detection or recapture, 
capture- mark- recapture methods can also incorporate correlated 
individual random effects (Cam et al., 2013; Gimenez et al., 2018).

In this paper, we systematically present statistical methods to 
estimate different kinds of correlations in vital rates and incorpo-
rate	 those	 correlations	 into	 IPMs.	We	give	methods	 for	modelling	

correlations in vital rate arising in each of the three categories of 
heterogeneity, including a new copula method for individual hetero-
geneity.	We	 show	how	 the	methods	 can	be	used	 in	 a	hierarchical	
statistical framework and discuss some of the computational and im-
plementation	challenges	involved.	In	a	case	study	with	Soay	sheep	
data, we illustrate that the same data can imply different demo-
graphic conclusions when different kinds of correlated vital rates are 
considered. In addition, even when including correlations does not 
change point results such as population growth rate or elasticities, it 
can change the width of uncertainty (credible or confidence interval) 
propagated from uncertainties in parameter estimates.

The	structure	of	this	paper	is	the	following.	We	begin	with	a	gen-
eral	description	of	IPMs	(Section	2.1)	and	consider	IPMs	with	inde-
pendent	vital	rates	(Section	2.2).	We	next	discuss	the	area	of	primary	
focus:	 IPMs	 with	 heterogeneous	 and	 nonindependent	 vital	 rates	
(Section	2.3).	We	note	here	that	while	dependency	and	correlation	
are	 not	 exactly	 equivalent,	we	will	 use	 the	 terms	 interchangeably	
because of common practice. This is followed by a description of 
simulation studies and a case study using data from a population of 
Soay	sheep	(Ovis aries)	in	Scotland	(Sections	2.5	and	2.6).	The	results	
of	 these	 studies	 (Section	 3)	 focus	 on	 differences	 arising	 from	 the	
nonindependent vital rate models on (i) the log population growth 
rate	and	(ii)	population	growth	rate	elasticities.	We	conclude	with	a	
discussion	of	the	implications	of	the	proposed	methods	(Section	4).

2  |  METHODS

2.1  |  General integral projection models

We	begin	with	a	description	of	a	family	of	IPMs	that	permit	the	in-
corporation of temporal, persistent and/or labile individual hetero-
geneity, using the notation from Childs et al. (2016). Let x denotes 
the individual state variables, hereafter called “i- states.” The i- states 
comprise labile traits that vary over the life cycle in response to the 
environment such as body mass, length or breeding status (Coulson, 
2012;	Merow	et	al.,	2014;	Rees	et	al.,	2014).	In	addition,	individuals	
are	further	characterised	by	“q-	states,”	denoted	by	z.	The	q-	states	
comprise	unmeasured,	nonlabile	characteristics	 that	are	 fixed	dur-
ing the lifetime of the individual. In this article, we assume that (i) 
individuals	can	be	uniquely	characterized	by	(x, z), which essentially 
assumes that individuals with the same (x, z) are interchangeable, (ii) 
all vital rate models depend on x, and (iii) selected vital rate models 
depend on z. The values of (x, z) at one discrete time step later are 
denoted as (x′,	z′).

The state of the population is described by the abundance den-
sity, denoted n(x, z, t). The abundance density is defined such that the 
number of individuals at time t with states in a small interval (x, z) to 
(x + Δx, z + Δz)	is	approximately	n(x, z, t)ΔxΔz. The total abundance at 
t	can	then	be	expressed	as	Nt, such that

(1)Nt = ∫ ∫ n(x, z, t)dxdz.
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The projection of the abundance density over time is described 
by	the	following	equation,

where k(x′, z′|x, z, dt) is the time- varying projection (transition) ker-
nel, i.e. the density of individuals evolving from (x, z) to (x′,	z′)	(Ellner	&	
Rees, 2007). The term dt denotes measured and/or unmeasured time- 
specific environmental conditions that account for temporal variation. 
The functional form of the projection kernel depends on the parame-
terization of vital rate models and the life cycle of the study species. In 
this article, the formulation of the projection kernel is motivated by the 
life	cycle	of	Soay	sheep	(Clutton-	Brock	&	Pemberton,	2004;	Coulson,	
2012) such that,

where s( ⋅ ) denotes survival probability; b( ⋅ ) is the number of offspring 
of survived individuals; h( ⋅ ) is the density of offspring with (x′,	z′)	from	
a reproducing individual with (x, z); and g( ⋅ ) is the density of individuals 
growing from (x, z) to (x′,	z′).	The	IPM	kernel	is	a	large-	population	approx-
imation,	so	these	rates	are	expected	values.	Most	births	of	Soay	sheep	
are singletons, and for simplicity, we ignore twinning (Coulson, 2012).

In the following sections, we discuss different ways to con-
struct vital rate models when rates are independent or dependent, 
given the i- states, x.	Motivated	by	reproduction	cost	 (Gittleman	&	
Thompson,	1988;	Tavecchia	et	al.,	2005),	we	restrict	attention	to	the	
dependence between growth and reproduction.

2.2  |  Independent vital rate models

Before describing different formulations of vital rate models, we intro-
duce some additional notation. To begin, we assume that there is only 
one element in the labile traits, x, and that is the natural logarithm of 
body	mass.	For	individual	 j at time t, let mj,t denotes the log body mass 
(given survival); aj,t the alive (1) vs dead (0) state; rj,t the reproductive 
(1) vs nonreproductive (0) state (given survival); and cj,t the offspring 
log body mass (given reproduction). The discrete times are t = 1,⋯, T.

In	terms	of	parameters,	fixed-	effect	parameters	are	referenced	
as � with subscripts defining the vital rate and the variable they 
influence,	 respectively.	 For	 instance,	 �g,0 is the intercept for the 
growth model and �s,m is the slope for the survival model corre-
sponding to the variable m.	Also,	residual	(nonrandom	effect)	vari-
ances are denoted by �2 with the subscript defining the vital rate. In 
addition	to	fixed	effects,	we	consider	random	effects	on	year	and	
individual for temporal and persistent individual heterogeneity, re-
spectively. These random effects are placed on the growth and re-
production models to capture the potential dependence of interest. 
The unobserved temporal or individual random effects are denoted 
by u and v,	 respectively.	For	example,	ub,t is the reproduction ran-
dom year effect in year t , while vg,j is the growth random individual 

effect on individual j. Random effect variances are denoted by �2 
and �2, and correlation parameters by � and �, respectively.

Assuming	 independence	 between	 vital	 rates,	 parameters	 for	
each	vital	rate	model	can	be	estimated	separately.	For	that	case,	we	
summarize three of the most commonly used approaches to formu-
late vital rate models.

2.2.1  |  Vanilla	Model	(I1)

We	initially	define	the	“vanilla	model,”	denoted	as	model	I1, as the 
widely used approach where the vital rates depend only on the labile 
phenotype, x, corresponding to the log body mass (m)	 in	our	Soay	
sheep	example	(Easterling	et	al.,	2000;	Ellner	&	Rees,	2006).	In	par-
ticular, parameters are estimated given the individual- level demo-
graphic data such that,

where logit−1(a) = 1∕(1 + e−a) is the inverse of the logistic transforma-
tion.	To	apply	the	vanilla	model	to	the	projection	kernel	in	Equation	(3),	
we rearrange the vital rate models such that,

where ϕ(a;�, �2) denotes the density function of N(�, �2) evaluated at 
a. Here, x = m, and there is no z or dt.	The	equation	for	h( ⋅ ) represents 
an inheritance or the “parent- offspring phenotypic similarity” function 
(Coulson	et	al.,	2021),	with	offspring	size	depending	on	parent	size.	For	
the following models, we assume the same vital rate models as de-
scribed above if they are not mentioned in the model description.

2.2.2  |  Temporal	Heterogeneity	(I2)

Models	 with	 temporal	 heterogeneity	 connect	 vital	 rates	 with	 time-	
varying factors, such as resource availability, natural enemies, and abiotic 
conditions.	We	consider	a	hierarchical	model	with	independent	random	
effects	(Bolker	et	al.,	2009;	McCulloch	&	Searle,	2001)	such	that,

(2)n(x�, z�, t + 1) = ∬ n(x, z, t)k(x�, z�|x, z, dt)dxdz,

(3)

k(x�, z�|x, z, dt) = s
(
x, z, dt

)
[b
(
x, z, dt

)
h(x�, z�|x, z, dt) + g(x�, z�|x, z, dt)],

(4)

aj,t+1|mj,t : Bernoulli(logit−1(�s,0+�s,mmj,t))

rj,t+1|mj,t : Bernoulli(logit−1(�b,0+�b,mmj,t))

mj,t+1|mj,t :N(�g,0+�g,mmj,t , �
2
g
)

cj,t+1|mj,t :N(�h,0+�h,mmj,t , �
2
h
),

(5)

s (m) = logit−1
(
�s,0+�s,mm

)

b (m) = logit−1
(
�b,0+�b,mm

)

g(m�|m) ≡�
(
m�; �g,0+�g,mm, �

2
g

)

h(m�|m) ≡�
(
m�; �h,0+�h,mm, �

2
h

)
,

(6)

rj,t+1|mj,t , ub,t : Bernoulli(logit−1(�b,0+�b,mmj,t+ub,t))

mj,t+1|mj,t , ug,t :N(�g,0+�g,mmj,t+ug,t , �
2
g
)

ub,t :N(0, �2
b
)

ug,t :N(0, �2
g
),
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where the random effects ub,t and ug,t are independent to avoid induc-
ing dependence between different vital rate models.

Similar	to	Equation	(5),	the	vital	rate	models	are	rearranged	such	
that,

Here, x = m, dt = (ub,t , ug,t), and there is no z.

2.2.3  |  Persistent	Individual	Heterogeneity	(I3)

The persistent individual heterogeneity model, denoted I3, differs 
from the temporal heterogeneity model (I2) by including random 
effects for each individual instead of each time step. The individ-
ual random effects represent phenotypic variability that persists 
through each individual's life. In particular, we specify,

where the random effect distributions are independent to avoid induc-
ing dependence. In this case, the vital rate models are re- arranged as,

where vo
b
 and vo

g
 denote the random individual effects for the offspring. 

Here, x = m, z = (vb , vg ), and there is no dt.	We	assume	offspring	size	de-
pends on parent size while offspring random effects are independent 
of parent random effects.

2.3  |  Nonindependent vital rate models

We	now	discuss	different	ways	to	induce	the	dependence	structure	
between vital rate models. Corresponding to the three types of het-
erogeneity are three categories of models, with a category repre-
senting labile individual heterogeneity having two models (D1a and 
D1b), the temporal heterogeneity category having two models (D2a 
and D2b), and the persistent individual heterogeneity category hav-
ing one model (D3).

2.3.1  |  Labile	Individual	Heterogeneity	(D1a and 
D1b)

Models	in	this	category	extend	the	vanilla	model	I1 to create depend-
ence	between	reproduction	and	growth.	We	construct	two	types	of	

dependent vital rate models: (i) the reproduction conditional model 
and (ii) the copula model. The former model treats breeding status as 
a covariate within the growth model, while the latter model utilizes 
the copula structure to jointly model growth and reproduction. The 
latter necessitates estimating multiple kernel functions together, 
while the former does not.

D1a. Reproduction conditional model
This approach models the growth rate of an individual as a function 
of the breeding status. In particular, the binary variable, rt+1,j, is a 
covariate in the growth model such that,

Integrating out rj,t+1 to obtain the marginal growth model for the 
projection kernel, we note that,

where	 the	 marginal	 growth	 distribution	 is	 now	 a	 mixture	 of	 two	
Gaussian distributions and hence potentially bimodal. Here, x = (m, r), 
and there is no z and dt.

This model induces a dependency between growth 
and reproduction that is reflected in the covariance, 
cov

(
m�, r�

)
= �g|rvar

(
r�
)
= �g|rb (m)

[
1 − b (m)

]
. This covariance is 

maximized	when	b(m) = 0.5 and minimized as b(m) approaches 0 or 1.

D1b. Copula model
Copula methods are a popular approach to construct a joint distribu-
tion for correlated random variables given assumed marginal distri-
butions	 [see,	e.g.,	Chapter	6	of	Song,	2007).	These	models	extend	
univariate linear models to general multivariate models with vector 
responses	and	provide	a	flexible	approach	to	the	regression	analysis	
of	 correlated	 discrete,	 continuous,	 or	mixed	 responses	 (Anderson	
et	al.,	2019;	de	Valpine	et	al.,	2014).

The	copula	method	relies	on	Sklar's	theorem	(Sklar,	1959)	which	
states that any multivariate distribution can be constructed by com-
bining the marginal distributions with a suitable copula function de-
scribing	the	association	between	the	variables.	Mathematically,	given	
the	marginal	 cumulative	distribution	 function	 (CDF)	F1( ⋅ ),⋯, Fn( ⋅ ) 
of variables Y1,⋯,Yn, and a copula function C,	the	joint	CDF	can	be	
expressed	as,

where Fi(y) = P(Yi ≤ y), i = 1⋯n.
There are a variety of copula functions available that permit dif-

ferent behaviours of multidimensional distributions and typically 
lead to different dependence structures. However, the marginal dis-
tributions of the random variables remain the same irrespective of 
the	choice	of	copula	function.	We	use	the	Gaussian	copula	function	
to handle the dependence structure for simplicity (Nelsen, 2006; 
Song	et	al.,	2009).	The	Gaussian	copula	function	is	defined	such	that,

(7)
b
(
m, ub,t

)
= logit−1

(
�b,0+�b,mm+ub,t

)

g(m�|m, ug,t) ≡�
(
m�; �g,0+�g,mm+ug,t , �

2
g

)
.

(8)

rj,t+1|mj,t , vb,j : Bernoulli(logit−1(�b,0+�b,mmj,t+vb,j))

mj,t+1|mj,t , vg,j :N(�g,0+�g,mmj,t+vg,j , �
2
g
)

vb,j :N(0, �2
b
)

vg,j :N(0, �2
g
),

(9)

b
(
m, vb

)
= logit−1

(
�b,0+�b,mm+vb

)

g(m�, vg� |m, vg ) ≡�
(
m�; �g,0+�g,mm+vg , �

2
g

)
I
(
vg� =vg

)

h(m�, vo
b
, vo

g
|m) ≡�

(
m�; �h,0+�h,mm, �

2
h

)
�
(
vo
b
; 0, �2

b

)
�
(
vo
g
; 0, �2

g

)
,

(10)mj,t+1|mj,t , rj,t+1:N(�g,0 + �g,mmj,t + �g|r rj,t+1, �2g ).

(11)

g(m�|m) =b (m)�
(
m�; �g,0+�g,mm+�g|r , �2g

)
+
[
1−b (m)

]
�
(
m�; �g,0+�g,mm, �

2
g

)
,

(12)
F1,⋯,n(y1,⋯, yn) = P(Y1 ≤ y1,⋯,Yn ≤ yn) = C(P(Y1 ≤ y1),⋯,P(Yn ≤ yn)),
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where Φ−1( ⋅ )	denotes	the	inverse	CDF	of	a	standard	Gaussian	distri-
bution; ΦD( ⋅ ) and ϕD( ⋅ )	 are	 the	CDF	and	density,	 respectively,	of	a	
n- dimensional Gaussian distribution with a zero vector as mean and 
covariance	matrix	D. The diagonal elements of D are all scaled to unity 
without the loss of generality.

As	 an	 example,	 we	 briefly	 describe	 the	 copula	 model	 used	 in	
the	Soay	sheep	case	study	for	correlated	growth	and	reproduction,	
involving the combination of a continuous and discrete random 
variable. In particular, we use the Gaussian copula function with a 
normally distributed random variable for growth, Y1, and a Bernoulli- 
distributed random variable for reproduction, denoted Y2. Note that 
the	density	function	and	CDF	of	Y1	are	expressed	as,

where �	is	the	expected	value	of	Y1, and �2 is the variance of Y1.	For	the	
reproduction (Bernoulli) variable, as the raw scale is discrete, we intro-
duce	an	auxiliary	variable	X, which is distributed as an uniform distri-
bution (i.e., X:U[0, 1]) and define the new random variable Y3 = Y2 + X .	
The probability mass function for Y2, the probability density function 
for Y3,	and	the	CDFs	for	both	are	then	expressed	as,

where q = Pr
(
Y2 = 0

)
.	Combining	Equations	 (13)	and	 (15),	we	derive	

the joint density of 
(
Y1,Y3

)
 such that,

We	can	then	substitute	the	growth	and	reproduction	model	for	
Y1 and Y2 to obtain their corresponding joint density for parameter 
estimation. The notation becomes x = (m, r), and there is no z and dt.

Despite	the	appealing	features	of	copula	models,	 IPMs	with	cop-
ula models give the same projection kernel as the vanilla model, which 
leads to the identical projection of the population dynamics. This is true 
because (i) correlations in the copula model do not modify the mar-
ginal distributions and (ii) the involved vital rate models (reproduction 
and	growth)	are	an	additive	structure.	Further	details	are	presented	in	

Appendix	S1.	Demographically,	population	change	is	the	same	whether	
individuals who grow less are the ones who reproduced more or not. 
However, as discussed more below, the copula remains interesting be-
cause	it	may	give	different	answers	for	life-	history	questions	involving	
trade- offs, or estimated parameters may be different, or it may give dif-
ferent	kernels	when	used	with	time	lags	or	other	extensions.

2.3.2  |  Temporal	heterogeneity	(D2a and D2b)

These models induce dependence on vital rates by the time- varying 
factors,	extending	the	independent	temporal	heteroegeneity	model,	
I2. In particular, when the conditions of a given year are “good” for both 
growth and reproduction, temporal heterogeneity will create positive 
temporal correlation among these vital rates, which may generally be 
the	case	(Hindle	et	al.,	2018).	We	consider	two	models:	(i)	the	shared	
drivers model and (ii) the correlated random year effect model. The 
former	model	accounts	 for	 the	 temporal	effect	explicitly	with	addi-
tional covariate(s), while the latter model utilizes random year effects 
to implicitly model the impacts of unknown temporal factors.

D2a. Shared drivers model
This approach includes observed time- varying covariates in the re-
gression functions for vital rate models (van Benthem et al., 2017; 
Dalgleish	et	al.,	2011;	Simmonds	&	Coulson,	2015).	Common	choices	
include	environmental	 indices,	e.g.,	North	Atlantic	Oscillation,	pre-
cipitation,	temperature,	etc.	To	quantify	the	additional	influence	of	
the drivers on the vital rates, let qt denotes the vector of covariates 
with an associated vector of regression coefficients �

⋅,q, namely

The vital rate models are re- arranged for the projection kernel 
such that,

Here, x = m, dt = qt, and there is no z.

D2b. Correlated random year effect model
The	second	model	extends	the	independent	temporal	random	effects	
model (model I2). Generalizing these hierarchical models by allowing for 
dependencies in the random effect distributions induces dependencies 
between	vital	rates	(Hindle	et	al.,	2018;	Metcalf	et	al.,	2015)	such	that,

(13)
F1,⋯,n(y1,⋯, yn) =ΦD{Φ

−1[F1(y1)],⋯,Φ−1[Fn(yn)]}

f1,⋯,n(y1,⋯, yn) =ϕD{Φ
−1[F1(y1)],⋯,Φ−1[Fn(yn)]}

n∏
i=1

fi(yi)

ϕ(Φ−1(Fi(yi)))
,

(14)
f1(y1) =ϕ(y1;�, �

2)

F1(y1) =Φ
( y1−�

�

)
,

(15)

f2
�
y2
�
=

⎧
⎪⎪⎨⎪⎪⎩

q if y2=0

1−q if y2=1

0 otherwise

f3
�
y3
�
=

⎧
⎪⎪⎨⎪⎪⎩

q if 0≤y3<1

1−q if 1≤y3≤2

0 otherwise

⇒

F2
�
y2
�
=

⎧⎪⎪⎨⎪⎪⎩

0 if y2<0

q if 0≤y2<1

1 if y2≥1

F3
�
y3
�
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if y3<0

qy3 if 0≤y3<1

q+(1−q)
�
y3−1

�
if 1≤y3≤2

1 if y3≥2

(16)f
(
y1, y3

) ≡�D

{ y1−�

�
,Φ−1

[
F3

(
y3
)]} 1

�

f3
(
y3
)

�
(
Φ−1

(
F3

(
y3
))) .

(17)
rj,t+1|mj,t , qt : Bernoulli

(
logit−1

(
�b,0+�b,mmj,t+�b,qqt

))

mj,t+1|mj,t , qt :N
(
�g,0+�g,mmj,t+�g,qqt , �

2
g

)
.

(18)
b
(
m, qt

)
= logit−1

(
�b,0+�b,mm+�b,qqt

)

g(m�|m, qt) ≡�
(
m�; �g,0+�g,mm+�g,qqt , �

2
g

)
.

(19)

rj,t+1�mj,t , ub,t : Bernoulli
�
logit−1

�
�b,0+�b,mmj,t+ub,t

��

mj,t+1�mj,t , ug,t :N
�
�g,0+�g,mmj,t+ug,t , �

2
g

�

⎛⎜⎜⎝
ub,t

ug,t

⎞⎟⎟⎠
:N

⎡⎢⎢⎣

⎛⎜⎜⎝
0

0

⎞⎟⎟⎠
,

⎛⎜⎜⎝
�2
b

��b�g

��b�g �2
g

⎞⎟⎟⎠

⎤⎥⎥⎦
.

.
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The vital rate models are re- arranged for the projection kernel 
such that,

Here, x = m, dt =
(
ub,t , ug,t

)
, and there is no z.

2.3.3  |  Persistent	individual	heterogeneity	(D3)

Similar	 to	 the	 temporal	 heterogeneity,	 the	model	 in	 this	 category	
extends	model	I3 to induce dependence between vital rates for the 
persistent individual heterogeneity case.

D3. Correlated random individual effect model
We	consider	a	hierarchical	model	with	dependent	 random	effects	
distribution, similar to model D2b. In particular, we specify,

The vital rate models are re- arranged for the projection kernel 
such that,

where �ind ( ⋅ ) is the density function of the random individual effects 
distribution	and	specified	in	the	last	part	of	Equation	(21).	Here,	x = m, 
z =

(
vb , vg

)
, and there is no dt.

2.3.4  |  Comparison	of	the	models

In	Figure	1,	we	present	a	graphical	representation	of	the	differences	
between the proposed heterogeneity models. In each of the four 
scenarios, the individual growth model, g ( ⋅ ),	depends	on	exactly	one	
factor.

2.3.5  |  Hybrid	models

The proposed models can occur individually or be combined within 
and/or between the categories (labile individual, temporal, and 

(20)
b
(
m, ub,t

)
= logit−1

(
�b,0+�b,mm+ub,t

)

g(m�|m, ug,t) ≡�
(
m�; �g,0+�g,mm+ug,t , �

2
g

)
.

(21)

rj,t+1�mj,t , vb,j : Bernoulli
�
logit−1

�
�b,0+�b,mmj,t+vb,j

��

mj,t+1�mj,t , vg,j :N
�
�g,0+�g,mmj,t+vg,j , �

2
g

�

⎛⎜⎜⎝
vb,j

vg,j

⎞⎟⎟⎠
:N

⎡⎢⎢⎣

⎛⎜⎜⎝
0

0

⎞⎟⎟⎠
,

⎛⎜⎜⎝
�2
b

��b�g

��b�g �2
g

⎞⎟⎟⎠

⎤⎥⎥⎦
.

(22)

b
(
m, vb

)
= logit−1

(
�b,0+�b,mm+vb

)

g(m�, vg� |m, vg ) ≡�
(
m�; �g,0+�g,mm+vg , �

2
g

)
I
(
vg� =vg

)

h(m�, vo
b
, vo

g
|m) ≡�

(
m�; �h,0+�h,mm, �

2
h

)
�ind

(
vo
b
, vo

g

)
,

F I G U R E  1 Growth	rate,	g ( ⋅ ), of 
individuals: (a) g ( ⋅ ) depends on the 
i- states only, hence is constant within 
a group of individuals sharing the same 
i- states (model I1); (b) g ( ⋅ ) depends on the 
breeding status only, hence is constant 
within the breeding group and the 
nonbreeding group (model D1a,D1b); (c) 
g ( ⋅ ) depends on the temporal factor only, 
hence is constant across individual but 
varying across time (model I2,D2a,D2b); 
(d) g ( ⋅ )	depends	on	the	q-	states	only,	
hence is varying across individual but 
constant across time (model I3,D3)
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persistent	 individual).	 For	 instance,	 combining	 models	 within	 the	
temporal	category	uses	the	correlated	random	year	effects	to	explain	
the	unaccounted	correlation	by	the	observed	drivers.	Alternatively,	
combining models between the labile individual and persistent in-
dividual	heterogeneity	accounts	for	two	axes	of	correlations	in	one	
model.	These	different	forms	of	combination	of	models	expand	the	
possibility	of	IPMs	with	nonindependent	vital	rates.

2.4  |  Numerical implementation

2.4.1  |  Parameter	estimation	of	vital	rate	models

In	this	paper,	the	vital	rate	models	are	fitted	using	the	Markov	chain	
Monte	 Carlo	 (MCMC)	 algorithms	 (Brooks	 et	 al.,	 2011)	 in	NIMBLE	
(de Valpine et al., 2017, 2020a, 2020b) given individual- level demo-
graphic	data.	Different	from	the	usual	approach	 in	 IPMs	that	each	
vital rate model is fitted separately, the proposed dependent models 
may	require	a	joint	estimation	with	multiple	vital	rate	models.	This	
may	hence	increase	the	computational	cost	and	change	the	mixing	
behaviour	of	the	MCMC	algorithm.

Random effects in the models (I2, I3,D2b, I3) are treated as unob-
served	 parameters,	 or	 auxiliary	 variables,	 and	 sampled	within	 each	
iteration	of	the	MCMC	algorithm.	Similarly,	the	auxiliary	variables	in	
the copula model (D2a) are sampled as unobserved parameters in the 
MCMC	algorithm.	We	note	that	the	random	effects	for	the	temporal	
and	individual	random	effects	induce	very	different	mixing	properties.

Prior distributions for all parameters are set to be noninforma-
tive	and	are	presented	 in	Appendix	S2.	We	use	the	trace	plot	and	
Brooks- Gelman- Rubin statistic to assess convergence (Gelman & 
Shirley,	2011).	Chains	with	a	value	of	Brooks-	Gelman-	Rubin	statistic	
being less than 1.05 are treated as converged.

2.4.2  |  Approximation	of	log�s

We	use	the	asymptotic	log	population	growth	rate,	log�, as one metric 
to	compare	models.	Mathematically,	� is defined as limt→∞

(
Nt+1∕Nt

)
 ,	

where Nt	is	the	population	abundance	and	can	be	approximated	by	
solving	the	integral	in	Equation	(2).	It	has	been	shown	that	log� con-
verges asymptotically, even in the temporally stochastic case (Ellner 
& Rees, 2007).

The	log	population	growth	rate	of	IPMs	without	temporal	hetero-
geneity	can	be	approximated	via	the	midpoint	rule	(Easterling	et	al.,	
2000). To briefly illustrate the mid- point rule, the projection kernel 
is	discretized	into	a	projection	matrix	by	a	sufficient	number	of	mesh	
points that are of uniform length to discretize (x, z) (Ellner & Rees, 
2006). The population growth rate is then obtained as the leading 
eigenvalue	 of	 the	 projection	matrix	 (Caswell,	 2001).	 Alternatively,	
we	can	consider	using	mesh	points	that	are	uniform	quantiles	of	z as 
the distribution of z is known.

However,	 when	 the	 IPMs	 include	 temporal	 heterogeneity,	
the midpoint rule becomes inapplicable. In this case, we use the 

simulation	technique	of	“element-	selection”	to	approximate	the	log	
population	growth	rate	(Ellner	&	Rees,	2007;	Rees	&	Ellner,	2009).	
This approach creates a series of projection matrices, Kt with the 
population abundance Nt obtained by repeatedly multiplying the 
projection	matrices	with	 a	 discrete	 approximation	 of	n (x, z, t). The 
(stochastic)	 log	 population	 growth	 rate	 is	 approximated	 using	 the	
empirical mean given by,

where data in the first L0 < L	years	are	excluded	as	transient	dynamic	
to	reduce	the	influence	of	random	initialization.	We	note	that	this	es-
timator	carries	an	extra	variability	caused	by	finite	simulation.	Ellner	
and Rees (2007) showed that the estimator converges to a normal dis-
tribution such that,

In addition to the log�s itself, we are also interested in the vari-
ability on log�s caused by parameter uncertainty. This parameter 
uncertainty can be easily propagated within the Bayesian frame-
work since we are able to obtain samples from the posterior distri-
bution of the parameters, which in turn can be used to calculate the 
value of log� and hence obtain summary statistics of the posterior 
distribution.

2.4.3  |  Sensitivity	and	elasticity	analysis

We	also	estimate	the	sensitivity	and	elasticity	of	the	asymptotic	log	
growth rate, log�s, with respect to selected vital rate parameters 
(Rees	&	Ellner,	 2009;	 Tuljapurkar,	 1990;	Vindenes	 et	 al.,	 2014).	 In	
particular, we note that Coulson et al. (2005) suggests that models 
incorporating between- process correlations may alter the sensitivity 
estimate, which in turn has implication for management decisions. 
Here,	we	apply	a	central-	differencing	approach	to	approximate	the	
sensitivity such that,

where �s (� + �) is the estimate of �s	when	the	target	parameter	equals	
to � + �. By running preliminary tests, we found that � = 0.005� is small 
enough to give precise estimate for all sensitivities of interest. Given 
the estimate of sensitivity, elasticity of � is obtained as,

We	note	 that	 the	 sensitivities/elasticities	 of	 the	 copula	model	
(D1b) are the same as for the vanilla model (I1), similar to �. To see 

(23)l̂og�s
(
L, L0

)
=

1(
L−L0

)
L−1∑
t=L0

log

(
Nt+1

Nt

)
=

1(
L−L0

) log
(

NL

NL0

)
,

(24)l̂og�s
(
L, L0

)
:N

[
log�s ,

1(
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)Var
{
log
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.

(25)
��s
��

=
�s (�+�) −�s (�−�)

2�
,

(26)
��s
��

�

�s
.



    |  9 of 15FUNG et al.

this,	we	derive	the	analytical	equations	of	sensitivity	(see	chapter	4	
of Ellner et al., 2016) such that,

where both terms in the integral remain unchanged because the copula 
model does not distort the marginal vital rate models.

2.5  |  Simulation study

We	conducted	a	simulation	study	to	 investigate	how	sensitive	the	
summary statistics (log� and elasticities) are to the different kinds of 
vital	rate	heterogeneity	for	parameters	relevant	to	the	Soay	sheep	
example	below.	For	target	parameters	of	interest	that	toggle	among	
models, we considered 2– 3 values of interest, including a 0 value to 
compare	with	a	simpler	model.	For	example,	model	I2 (independent 
temporal heterogeneity) can be compared with model D2b (cor-
related temporal heterogeneity) by setting � to 0 (I2) or nonzero 
(D2b ).	Other	parameters	were	either	randomly	generated	from	cho-
sen	distributions	with	100	replications	 (Table	1)	or	 fixed	 (Table	2).	
Randomly generated parameters allowed us to look at how summary 
statistics change over small ranges of variation in a coarse way, with-
out looking at changes in relation to each parameter one by one. 
The distributions and values are motivated from the data in the case 
study, but slightly adjusted to show the difference between models 
with and without correlations.

The	 simulation	 study	 looks	 at	 theoretical	 behavior	 of	 the	 IPM	
models, not at statistical properties of parameter estimation. It re-
veals how model summary statistics shift with particular parame-
ters, but not how parameter estimation performs if the wrong model 
is	 fitted	to	 the	data.	Within	 the	simulation	study,	we	compare	the	
independent models (I1 − I3) and three of the dependent models 
(D2a,D2b,D3).	We	do	not	 include	the	models	with	labile	 individual	
heterogeneity as: (i) the impacts on log� by the reproduction condi-
tional models (D1a) are always negative when 𝛽′ < 0, and (ii) the cop-
ula model (D1b) and vanilla model (I1)	 are	 theoretically	equivalent	
due to the unchanged marginal property (given the same parameter 

values).	For	models	with	temporal	heterogeneity,	we	set	L0 = 1000 
and L = 10, 000.

2.6  |  Soay sheep case study

We	apply	the	different	models	to	data	on	Soay	sheep.	The	individual-	
level demographic data consist of information from marked female 
sheep	in	the	Village	Bay	area	on	the	island	of	Hirta	in	the	St.	Kilda	
archipelago,	Scotland,	from	1986	to	1996.	Details	of	the	Soay	sheep	
and data collection protocol can be found in Clutton- Brock and 
Pemberton (2004), and the data are available from Coulson (2012).

Using	preliminary	runs	for	the	estimation	of	parameters	of	the	
vital rate models, we set the burn- in and total iteration numbers 
for	 the	MCMC	 algorithm	 to	 be	20, 000 and 100, 000 for the ma-
jority of the models; for the random individual effects models, we 
used 40,000 and 200,000 (uncorrelated case, I3) and 200,000 and 
1,000,000 (correlated case, D3).	For	the	shared	driver	model	(D2a) ,	
we	consider	the	winter	North	Atlantic	Oscillation	index	(NAO)	as	the	
additional	 covariate	 (Clutton-	Brock	 &	 Pemberton,	 2004).	We	 fol-
low	Simmonds	and	Coulson	(2015)	and	apply	the	average	NAO	for	
December,	January,	February,	and	March	as	the	covariate,	which	are	
obtained	from	the	Climate	Research	Unit	at	the	University	of	East	
Anglia.	 For	 the	 distributions	 of	NAO,	we	 apply	 a	 normal	 distribu-
tion with mean − 0.019 and standard deviation 1.09.	For	the	copula	
model (D1b), parameter � denotes the off- diagonal element of the 
covariance	matrix	D	 in	 the	multivariate	 Gaussian	 distribution.	 For	
the reproduction conditional model (D1a),	exploratory	data	analysis	
using a grid- search approach suggested that newborns are likely to 
suffer from reduced growth in relation to reproduction. Thus, we re-
fine the reproduction conditional model such that �g|r only accounts 
for the reduced growth of newborns in the growth model.

In addition, individual- level demographic data of the case study 
contain	missing	data.	For	instance,	we	lack	reproduction	records	of	
some marked individuals in the survey. This poses challenge on the 
proposed models that intend to capture the correlation between re-
production and growth. In this article, we analytically marginalise 
out the missing data to estimate parameters of interest.

3  |  RESULTS

3.1  |  Simulation study

In	 Figure	 2,	 we	 present	 the	 pairwise	 results	 of	 the	 vanilla	 model	
(I1) and the proposed (in)dependent models (I2, I3,D2a,D2b,D3 ).	The	
models are compared with respect to log�s (top row) and elasticities 
of growth intercept (bottom row) with known vital rate parameters.

Our simulations show that the variability of the given estimated 
quantities	generally	increases	with	increasing	correlation	in	almost	
all	scenarios;	the	exception	is	Figure	2(f)	where	the	correlation	ap-
pears to have little impact on the variability. The increase in vari-
ability is more substantial for models with temporal heterogeneity, 

(27)
��s
��

= ∬
��s

�k(x�|x)
�k(x�|x)

��
dx�dx,

TA B L E  1 Random	parameters

Distributions

�s,0 N

(
− 4.25, 0. 05

2
)

�s,m N
(
1.92, 0. 01

2
)

�b,0 N

(
− 1.47, 0. 05

2
)

�b,m N
(
0.50, 0. 01

2
)

�g,0 N
(
1.20, 0. 05

2
)

�g,m N
(
0.63, 0. 01

2
)

�h,0 N
(
0.46, 0. 05

2
)

�h,m N
(
0.57, 0. 01

2
)
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especially the shared driver model (D2a).	 Further,	 we	 observe	
that correlation in both forms of heterogeneity can lead to both 
increased or decreased values log�s	 (Figure	 2a–	c).	 This	 is	 in	 line	
with the result that although uncorrelated temporal heterogeneity 
is generally predicted to decrease log�s, correlated temporal het-
erogeneity can increase log�s	(Doak	et	al.,	2005;	Fieberg	&	Ellner,	
2001).	Also,	the	temporal	heterogeneity	models	and	persistent	in-
dividual heterogeneity model cause different impacts on log�s.	For	
example,	temporal	heterogeneity	appears	to	lead	to	reduced	log�s
; similarly, increasing the correlation in temporal heterogeneity 

models leads to a decrease in log�s	 (Figure	 2a,b).	 However,	 per-
sistent individual heterogeneity models have the reverse effects 
(Figure	 2c).	 Finally,	 we	 note	 that	 the	 trend	 on	 log�s against cor-
relation does not translate into that of elasticities. The decreasing 
trend	of	 the	temporal	heterogeneity	disappears	 (Figure	2a,b,d,e),	
while the trend of the persistent individual heterogeneity is re-
versed	(Figure	2c,f).

3.2  |  Case study on Soay sheep

In	Appendix	S3,	we	present	the	posterior	summary	estimates	of	the	
model parameters for different models. Three dependent models 
(D1a,D2b,D3) indicate a significant correlation between growth and 
reproduction (the symmetric 95\% credible intervals of �, �b,q in model 
D1b,D2a contain 0). The reproduction conditional model (D1a) and 
the correlated random individual effects model (D3) indicate a nega-
tive association between growth and reproduction (�𝛽g|r < 0, �𝜓 < 0), 
while the correlated random year effects model (D2b) estimates a 
positive correlation (�𝜌 > 0). Note that these results in different sign 
of correlation do not contradict with each other because these mod-
els are driven by different biological mechanisms.

TA B L E  2 Fixed	parameters

Values

�g,q 0.01

�2
g 0. 09

2

�2
h

0. 22

�2
g 0. 03

2

�2
b 0. 45

2

�2
g 0. 03

2

�2
b 0. 45

2

F I G U R E  2 Comparison	across	models	in	simulation	with	100	replications:	(a)	log�s(D2a) −log�s(I1); (b) log�s(I2,D2b) −log�s(I1); (c) log�s(I3,D3) 
−log�s(I1); (d) % change of elasticity of �g,0 of model D2a over model I1; (e) % change of elasticity of �g,0 of model I2,D2b over model I1; and (f) % 
change of elasticity of �g,0 of model I3,D3 over model I1. The dashed line is the reference line for I1
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3.2.1  |  Comparison	of	log�s

We	use	500	parameter	values	sampled	from	the	posterior	distribu-
tion	to	approximate	the	(stochastic)	log	population	growth	rate.	The	
uncertainty from parameter estimation are hence propagated into the 
posterior distribution of log�s. In the temporally stochastic models, we 
set L0 = 1, 000 and L = 10, 000	to	approximate	log�s .	Table	3	provides	
the corresponding summary statistics of log�s for each model.

We	 first	 observe	 that	 the	mean	 of	log�s	 ranges	 approximately	
from 0.03 to 0.04, which translates into a 3 to 4% annual population 
growth rate. There is considerably more variability, however, in the 
uncertainty about log�s. In particular, the width of the credible inter-
vals of log�s by models with random year effects (I2, D2b) are around 
35\%	larger	than	that	of	the	rest	of	the	models.	Second,	we	observe	
that the uncertainty on log�s caused by parameter uncertainty is 
larger than the bias caused by ignoring the correlation structure. 
This is similar to the empirical result of Compagnoni et al. (2016) 
that parameter uncertainty outweighs the bias caused by ignoring 

the	 correlation	 structure.	Further,	we	note	 that	log� of the vanilla 
model (I1) and the copula models (D1b) are slightly different despite 
the	theoretical	equivalence	between	the	IPMs.	This	is	because	the	
parameter estimates between the models are different.

Finally,	we	note	that	the	predictions	of	 the	shared	drivers	 IPM	
(D2a)	depend	on	the	distribution	of	the	winter	NAO.	Adjusting	the	
distribution	of	the	winter	NAO	may	lead	to	different	distributions	of	
log�s	hence	interpretation.	In	Appendix	S4,	we	consider	three	other	
distributions obtained by using a nonparametric bootstrapping ap-
proach	of	the	NAO	in	different	years.

3.2.2  |  Comparison	of	elasticity

We	approximate	the	elasticities	of	four	parameters,	again	using	the	
sampled parameter values from the posterior distribution, presented 
in	 Table	4.	We	observe	 that	models	with	 random	 temporal	 effects	
lead to a larger variability in the elasticities, which is similar to the ob-
servation in log�s.	Additionally,	we	note	that	the	correlated	random	in-
dividual effects model (D3) consistently gives different results across 
all four elasticities of interest. This leads to the interesting result that 
different models of nonindependence among demographic rates may 
yield different elasticities even when the log�s	is	quite	similar	(Table	3).

4  |  DISCUSSION

4.1  |  Model summary

In this paper, we have presented a general framework and several 
specific approaches to modelling between- process dependencies 

TA B L E  3 Summary	statistics	of	the	(stochastic)	log	population	
growth	rate	with	parameter	uncertainty	on	Soay	sheep

Mean 95% credible interval

I1 0.0301 (0.0005, 0.0565)

I2 0.0380 (−0.0062,	0.0846)

I3 0.0312 (0.0022, 0.0562)

D1a 0.0330 (0.0048,	0.0598)

D1b 0.0394 (−0.0003,	0.0706)

D2a 0.0368 (0.0074, 0.0648)

D2b 0.0358 (−0.0054,	0.0790)

D3 0.0292 (0.0017, 0.0554)

�g,0 �g,m �b,0 �b,m

I1 1.6312 1.7602 −0.5519 0.5083

(1.451, 1.787) (1.516,	1.990) (−0.675,	−0.451) (0.402, 0.630)

I2 1.5941 1.7253 −0.5213 0.4856

(1.384, 1.823) (1.454, 1.989) (−0.691, −0.359) (0.300, 0.642)

I3 1.5888 1.5793 −0.5506 0.5058

(1.410, 1.752) (1.325, 1.863) (−0.673,	−0.443) (0.391,	0.632)

D1a 1.6381 1.7020 −0.5520 0.5097

(1.463, 1.801) (1.487,	1.916) (−0.675,	−0.458) (0.413,	0.629)

D1b 1.6142 1.7561 −0.5527 0.5121

(1.417, 1.774) (1.504, 2.021) (−0.658,	−0.452) (0.410, 0.608)

D2a 1.6606 1.7721 −0.5548 0.5175

(1.479,	1.831) (1.553, 2.008) (−0.673,	−0.455) (0.417, 0.631)

D2b 1.6212 1.7725 −0.5424 0.5047

(1.376, 1.865) (1.483, 2.067) (−0.754, −0.322) (0.290, 0.698)

D3 1.6878 1.6604 −0.6238 0.5819

(1.523, 1.856) (1.436,	1.907) (−0.757,	−0.507) (0.461, 0.714)

Note:  Present are posterior mean and 95% credible interval. Note that models with random year effects 
(I2,D2b) usually have larger variability (in bold), and model D3 yields different elasticities (in italics).

TA B L E  4 Summary	statistics	of	
elasticities of four selected parameters 
with	parameter	uncertainty	on	Soay	sheep
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in	 IPMs.	 In	 particular,	 motivated	 by	 reproduction	 cost,	 we	 pro-
pose three categories of models (labile individual, temporal, and 
persistent individual heterogeneity) that reflect different biologi-
cal mechanisms for the correlation structure between growth and 
reproduction.

Unlike	 independent	 IPMs,	 these	 modelling	 approaches	 explic-
itly characterise the dependency between vital rates, permitting 
the	quantification	of	between-	process	correlation.	As	a	data-	driven	
method, this is better than assuming either no correlation, or perfect 
correlation across vital rates, i.e., assuming the correlation coeffi-
cient to be 1 or − 1	(Benton	&	Grant,	1999;	Coulson	et	al.,	2011).

Amongst	 the	 proposed	 methods,	 application	 of	 the	 copula	
method	 for	modelling	vital	 rates	 is	novel	 to	 IPMs.	However,	given	
the same estimates for the common parameters, the dependence 
structure	of	an	 IPM	using	copula	models	may	 lead	to	theoretically	
equivalent	projections	as	the	independent	(vanilla)	IPM.	This	is	be-
cause (i) correlations in the copula model do not modify the marginal 
distributions and (ii) the involved vital rate models (reproduction and 
growth in our analysis) have an additive structure. In practice, how-
ever,	copula	IPMs	will	still	differ	from	the	vanilla	IPMs	due	to	differ-
ences	in	parameter	estimates.	Further,	such	theoretical	equivalence	
will	not	remain	with	alternative	copula	structures,	for	example,	when	
we consider the previous breeding status 

(
rj,t

)
 as opposed to the cur-

rent breeding status 
(
rj,t+1

)
 in the copula structure with the growth 

vital rate. It may be appropriate to condition on reproduction at time 
t for some species, particularly when multiple reproduction- related 
activities can cause energy loss in the parents including mating, 
gestation,	parturition,	lactation,	etc	(Gittleman	&	Thompson,	1988).	
Also,	 copula	models	 can	be	 applied	 to	other	 aspects	of	 IPMs.	For	
instance, the multidimensional random effect distribution can be 
constructed	by	 copula	models,	which	bring	 extra	 flexibility	 to	 the	
models.	The	use	of	copula	models	within	this	general	context	is	an	
area of current research.

4.2  |  Simulation and case study

In	the	case	study	of	Soay	sheep,	the	different	IPM	structures	yielded	
relatively similar population estimates. This is most likely because 
the parameter uncertainty (which was ignored in the simulation 
studies) outweighed the impact of between- process correlation 
(Compagnoni et al., 2016). In contrast, the results for both the simu-
lation and the case study show that (i) different models for depend-
ence between vital rates can yield similar (nearly identical) log�s, but 
different elasticities and (ii) variability of the population statistics are 
moderately affected by the correlation between vital rates.

Random effect models are commonly used to model dependence 
structures (Dingemanse & Dochtermann, 2013; Vindenes et al., 
2014). Based on the simulation study, it appears that temporal and 
persistent heterogeneity can lead to differences in the estimated 
target statistics and their associated variability. Results suggest that 
the variability increases as the correlation increases. This aligns with 
the	 general	 understanding	 that	 extreme	 values	 are	more	 likely	 to	

be generated, and hence, the variability of the target statistics in-
creases when the correlation is large and positive (Doak et al., 2005; 
Fieberg	&	 Ellner,	 2001).	 Empirical	 results	 about	 the	 correlation	 in	
temporal variation have been discussed previously (Hindle et al., 
2018;	Metcalf	et	al.,	2015).	Additional	 random	effects	models	can	
also	be	investigated,	given	available	data,	for	example,	allowing	for	
nested spatial heterogeneity (Olsen et al., 2016), or independent/
crossed	structure	of	spatial	and	temporal	heterogeneity	(Jacquemyn	
et	al.,	2010).	Such	heterogeneity	structures	can	provide	additional	
flexibility	and	more	complicated	correlations	in	vital	rates	and	hence	
IPMs.

4.3  |  Recommendation

In practice, model selection procedures are often carried out to de-
termine whether one model is preferable to all others. However, we 
note that some of the proposed methods (D1a,D1b) do not allow un-
balanced data, whereas other proposed methods (D2a,D2b,D3) are 
flexible	 for	unbalanced/balanced	data	 (Verbeke	et	al.,	2014).	Such	
differences complicate model selection, which usually assumes the 
competing	models	use	the	exactly	same	data.	This	is	an	area	for	fu-
ture research.

In general, incorporating these five (biologically/statistically) 
distinct	methods	 (in	 hybrid/separately)	 in	 IPMs	may	be	beneficial.	
Although	the	correlations	have	 little	 impacts	on	some	statistics	of	
interest (e.g., log�s), our empirical results show that elasticities of 
the unknown parameters and the associated variability are mod-
erately affected by these correlations. These results may provide 
insights into the relationship between the possible dependen-
cies on individual- level vital rates and target population statistics. 
Therefore, we conclude that including such dependent structures 
is	 generally	 advisable	 when	 fitting	 IPMs	 to	 ascertain	 whether	 or	
not	such	between	vital	 rate	dependencies	exist,	which	 in	turn	can	
have	subsequent	impact	on	population	management	or	life-	history	
evolution.
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