UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Evaluating systematicity in neural networks with natural language inference

Permalink

https://escholarship.org/uc/item/9776m8n3

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors

Goodwin, Emily Sinha, Koustuv Odonnell, Timothy

Publication Date

2019

Peer reviewed

Evaluating systematicity in neural networks with natural language inference

Emily Goodwin

McGill University, Montreal, Quebec, Canada

Koustuv Sinha

McGill University, Montreal, Quebec, Canada

Timothy ODonnell

McGill University, Montreal, Quebec, Canada

Abstract

Compositionality makes linguistic creativity possible. By combining words, we can express uncountably many thoughts; by learning new words, we can extend the system and express a vast number of new thoughts. Recently, a number of studies have questioned the ability of neural networks to generalize compositionally (Dasgupta, Guo, Gershman & Goodman, 2018). We extend this line of work by systematically investigating the way in which these systems generalize novel words.

In the setting of a simple system for natural language inference, natural logic (McCartney & Manning, 2007), we systematically explore the generalization capabilities of various neural network architectures. We identify several key properties of a compositional system, and develop metrics to test them. We show that these architectures do not generalize in human-like ways, lacking inductive leaps characteristic of human learning.