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Abstract 

Does the human mind contain a task-general ‘randomization 
machine’? Stable biases of randomization have been identified 
that span multiple domains and modalities, in both lower-level 
perceptual tasks and in higher-level cognitive tasks. The 
stability of such biases indicates that the mind may rely on a 
stable set of properties to create and perceive randomness. But 
what computational principles support randomization? Here, 
we approach this question by building a computational model 
of human randomization that generalizes across spatial and 
numerical tasks. We show that simple computational heuristics 
capture higher-order properties of human-generated random 
sequences, in both numerical and spatial randomization tasks 
each with many possible options. Furthermore, we show that 
human behavior in both types of tasks can be approximated by 
the same low-dimensional model, implying that a domain-
general set of computational principles may underlie 
randomization behavior in general.   

Keywords: randomness; alternation bias; random number 
generation; spatial randomness; mental number line 

Introduction 

Humans reliably misunderstand or misperceive randomness. 

For example, people tend to think that sequences of coin flips 

that best represent randomness are ones that alternate 

between heads and tails more often than truly random 

sequences (e.g., Kahneman & Tversky, 1972). When people 

are tasked with generating random sequences themselves, 

they also generate sequences with elevated numbers of 

alternations (for review, see Bar-Hillel & Wagenaar, 1991). 

Indeed, there seem to be stable biases of randomness that 

exist across cognitive tasks (for review, see Bar-Hillel & 

Wagenaar, 1991) and perceptual tasks (e.g., Reiner et al., 

2021; Yu et al., 2018), that persist across modality (e.g., in 

vision and in audition; Yu et al., 2018), and that persist across 

domains (e.g., for numbers but also letters, coin-flips, 

arbitrary button presses, etc.; see, e.g., Bar-Hillel & 

Wagenaar, 1991). Here, we formalize a model of random 

behavior that (a) succeeds in capturing key features of human 

randomness, and (b) generalizes across distinct tasks (i.e., a 

‘random number’ task and a ‘random location’ task).  

Why should we care about random behavior? 

The conception and perception of randomness is one of the 

building blocks of human cognition: to perceive the structure 

of the world, the mind must differentiate signal from noise. 

Thus, detecting randomness is vital to learning, whether that 

be simple conditioning (e.g., Rescorla & Wagner, 1972), 

statistical learning (for review, see Sherman et al., 2020), or 

even higher-level language acquisition (e.g., Kelly & Martin, 

1994). Randomness is also an important factor in many 

human behaviors. For instance, fallacies of randomness 

influence not only gambling behavior, but also everyday 

activities like reading stock charts or interpreting weather 

forecasts.  

Human randomness 

Perhaps the single most robust feature of human randomness 

is an ‘over alternation bias’. This bias describes the tendency 

to generate sequences of coin flips with more alternations 

than would be expected in truly random sequences, and to 

perceive such sequences (i.e., ones with slightly more 

alternations than average) as the most random (for review, 

see Bar-Hillel & Wagenaar, 1991). This is true not just for 

coin flips, but also for other kinds of visual stimuli (e.g., grids 

of alternating colors) as well as auditory stimuli (Yu et al., 

2018). Further, this bias is consistent with other known 

fallacies of subjective probability (e.g., the Gambler’s 

fallacy; Kahneman & Tversky, 1972; Reuter et al., 2005; 

Wagenaar, 1988).  

Binary sequences like coin-flips are of course not the only 

way we encounter random information. Even in many 

gambling scenarios, there are more than two possible options 

(e.g., at a blackjack or roulette table). With more options on 

the table, it is not obvious what the ‘over alternation bias’ 

entails. Does it reflect a tendency to avoid repeating identical 

choices back-to-back, or a more general tendency to depart 

from a previous “area” of the possibility space (in which case 

other nearby options should be similarly less likely)? Given 

this uncertainty, understanding randomness in scenarios with 

more than two possible options (see, e.g., Towse & Neil, 

1998) can enrich our understanding of human randomization.  

Here we aim to assess human randomness in three 

environments that are more complex than typical binary 

sequence tasks: (1) A random number generation task where 

participants iteratively generated single-digit random 

integers [1-9], (2) A random location generation task in 

which participants iteratively generated random locations 

along a line, and (3) A random location task in a two-

dimensional plane. The goal of our study was to identify 

stable computational principles that underlie random 

behavior across disparate tasks in order to begin bridging the 

gap between laboratory studies of human randomization and 

the real world.    
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Current Study 

We propose a computational model of human randomization 

behavior that generalizes across two behavioral domains. In 

the first study, a random number generation task, participants 

were asked to generate sequences of 250 random integers 

between 1 and 9. In two additional studies, random location 

generation tasks, participants were asked to generate 

sequences of 250 random locations (either on a horizontal 

line, or in a two-dimensional square). The model aims to 

capture features of human behavior that generalize across 

these three different tasks.  

Study 1 

In a first study, participants played a random number game. 

In this task, they were instructed to iteratively press numbers 

on the keyboard while trying to be “as random as possible.”  

Method 

Participants Participants recruited via Prolific (N = 200) 

completed the task in exchange for monetary compensation 

(at a rate of approximately $10/hour).  

 

Design and Procedure The task was administered via 

custom JavaScript code. Participants were told to generate 

sequences of random numbers to the best of their ability by 

pressing the number buttons on their keyboard. Each time a 

number was pressed, it would appear in the center of the 

screen for 750ms. Once it disappeared, participants were free 

to select another number. There was no time limit on 

responses. This would continue until 250 numbers had been 

selected. Prior to the task, participants completed four 

practice trials that were identical to task trials.  

 

Exclusions Participants were asked to be as random as 

possible, with minimal explanation. Given the nature of the 

task, it is possible for participants to respond in intentionally 

non-random ways (e.g., with a sequence such as: 1, 1, 1, 3, 3, 

3, 5, 5, 5, etc.). Patterns like this in the human data would 

artificially inflate model predictions; the models could easily 

pick up on such patterns, but these patterns would not reflect 

the construct we are interested in (i.e., human 

randomization). Thus, to be conservative, we applied two 

exclusion criteria. First, we excluded any participant who 

selected any one of the possible numbers fewer than 10 times 

(i.e., less than 4% of the time). This number was chosen 

because ~99.99% of truly random (uniform) distributions of 

choices should include at least 10 of each number given our 

task design. Second, we excluded any participant whose 

“average numerical distance” (the mean numerical distance 

between successive numbers; see Results) was less than 2.4. 

Again, ~99.99% of truly random samples should be above 

this value. From the original sample size of 200 participants, 

this yielded a conservative sample of 171 participants. Note: 

We are intentionally excluding participants who were non-

random because those participants are easier to explain and 

predict. In other words, we are trying to ensure that our model 

captures the behavior of participants who are trying to 

generate sequences of random numbers.  

Results & Discussion 

A matrix depicting the overall pattern of transition 

probabilities can be seen in Figure 1A. As is evident from the 

figure, participants behavior is not truly random. 

 

Model comparisons We compared three separate models to 

explain these data. The first model is a simple “stay/switch” 

model. It captures the tendency to repeat choices back-to-

back. For example, if the participant selected choice Ci on 

trial t (where C represents the space of possible choices, and 

i indexes the specific value chosen from C), the probability 

of choosing Ci for the next trial t+1 is adjusted based on a 

stay/switch ‘bonus’ parameter, ε: 

 

P(Ci)t+1 = P(Ci)t+1 + ε 

 

Where a positive parameter captures a tendency to repeat 

choices and a negative parameter captures a tendency to 

switch choices. The second model is a “side-switch” model. 

It captures the tendency to switch sides of the distribution — 

e.g., the likelihood that someone choosing a number greater 

than 5 (the middle/median of the distribution) would 

subsequently choose a number lower than 5, or vice versa. 

For example, if the choice Ci at trial t was greater than 5, the 

probability of choosing all numbers greater than 5 would be 

increased/decreased based on the side-switch parameter, η:   

 

P(Ci
<5)t+1 = P(Ci

<5)t+1 + η 

 

And the probability of any choice greater than 5 would be 

adjusted in an equal but opposite way:  

 

P(Ci
>5)t+1 = P(Ci

>5)t+1 - η 

 

After both adjustments, the probabilities for the nine options 

would be normalized to sum to 1 using the softmax function. 

The third model is a combined model that incorporates the 

parameters of both previous models. 

Each model was fit to each participant’s observed choices 

using maximum likelihood estimation. After fitting each 

single-parameter model, the single free parameter in the 

stay/switch model (ε) was found to be significantly negative 

(signrank test, p<.001), meaning that participants avoided 

repeating choices back-to-back. The single free parameter in 

the side-switch model (η) was found to be significantly 

positive (signrank test, p<.001), reflecting a side alternation 

bias. After fitting the combined model, the stay/switch 

parameter similarly came out significantly negative (signrank 

test, p<.001), and the side-switch parameter was again 

significantly positive (signrank test, p<.001).  

The combined model had the lowest (best) total AIC score 

(183390), followed by the stay/switch model (184360), then 

the side-switch model (186207). This suggests participants 

used both heuristics to generate random numbers.  
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Figure 1: Results from Study 1. (A) Transition probability from each value to each other value. (B) Correlation between the 

average numerical distance and (D) the direction switches in the human data and model-generated data. (C) Correlations from 

1000 simulations between human data and shuffled human data (x-axis) as well as correlations from 1000 simulations between 

human data and model-generated data (y-axis), for the average numerical distance metric and (E) the direction switches metric. 

Points above the identity line indicate better model performance. 

  

Model validation Participants in this task were asked to 

generate random sequences of numbers to the best of their 

ability. Given the nature of this task, participants completing 

it optimally are impossible to predict. To validate whether our 

models capture meaningful aspects of the observed behavior, 

we can ask whether the model successfully captures higher-

order properties of the human data that are not explicit in the 

model itself. Here, we selected two such higher-order 

properties: (1) average numerical distance (i.e., the average 

difference between each chosen number and the next), and 

(2) direction switches (i.e., the number of times that the 

‘direction’ of responses changes between increasing and 

decreasing; e.g., the sequence [1, 3, 7, 4, 2, 9] contains two 

direction switches [7-4, and 2-9]; repeated values would not 

constitute a direction switch).  

To validate the models, we asked whether data generated 

using the model parameters resembles human-generated 

sequences. We did this 1000 times for each modeled subject 

and asked whether the average correlation between a given 

property (i.e., average numerical distance or direction 

switches) between the model-generated and human-

generated data was greater than the average correlation that 

would be expected in the “null” distribution generated by 

shuffling human data and correlating properties of that data 

with properties of the true human data. Thus, our critical 

comparisons were between two different correlations: The 

first between the model-generated data and the human data, 

and the other between the human data and that same shuffled 

human data. If the former is higher, that would indicate 

successful prediction. For example, we wanted to know 

whether the model is capturing the typical ‘average numerical 

distance’ of human data, and so we asked whether the 

correlation between the ‘average numerical distance value’ 

for each participants’ model-generated data and the true data 

was higher than the correlation between the true data and the 

shuffled data. The logic of this comparison is that it ensures 

any success of the model cannot be attributed to the base-

rates with which people select certain numbers; in other 

words, we were testing whether the model was picking up on 

features that were specific not just to which numbers people 

selected, but the order in which they selected those numbers.  

The average correlation for the average numerical distance 

measure between the human data and randomly shuffled 

human data was r=.50. For the combined model, the average 

correlation between model-generated and human data was 

r=.81 (see Figure 1B for a representative example of the 

model fits; see Figure 1C for the correlation comparisons 

across the 1000 simulations). In other words, the model is 

sufficient to capture most of the variation in the average 

numerical distance metric.  

The average correlation for the direction switches measure 

between the model data and randomly shuffled human data 

was r=.04. For the combined model, the average correlation 

between model-generated and human data was r=.73 (see 

Figure 1D for a representative example of the model fits; see 

Figure 1E for the correlation comparisons across the 1000 

simulations). Again, the model captures most of the variation 

in the direction switches metric. 

Taken together, both the model fitting and model 

validation results suggest that both the stay/switch and side-

switch heuristics are important for capturing human 

randomization behavior during number generation. Not only 

does the combined model best predict behavior, but it 

captures a large amount of variance in higher-order properties 

of human data.  

2629



Study 2 

In a second study, participants played a random location 

game. In this task, they were instructed to iteratively click 

locations on a line while trying to be as random as possible. 

Even though this task involved continuous rather than 

discrete responses, the task is analogous to the random 

number task in that participants generated random 

information along a single dimension. Because of this, we can 

conduct the same analyses across the two tasks to explore 

consistent patterns of behavior; in other words, we can ask 

whether a similar model may explain behavior in both cases.  

Method 

200 additional participants completed this task. The task was 

identical to Study 1 except that, instead of selecting random 

numbers, participants clicked locations on a one-dimensional 

line. The line was positioned in the center of the screen. It 

extended 800 pixels horizontally. When participants clicked 

near the line, a vertical blue line appeared, centered on the 

line, at the horizontal position of the mouse (the vertical 

position of the mouse did not affect the vertical line position). 

The line itself was 20 pixels thick. However, the functional 

region in which participants could click extended 200 pixels 

vertically. This was done to minimize errant clicks. Similar 

to Study 1, a prompt indicated that participants should click 

randomly anytime the vertical blue line was not visible. Once 

a click was made, the blue line would remain visible at the 

clicked location for 750ms before disappearing.  

Of the original sample of 200 participants, only 82 survived 

both of our exclusion criteria. This conservative sample is 

substantially smaller than that of Study 1 (see General 

Discussion). We again emphasize that excluding data points 

like these makes the model performance more conservative.  

Results & Discussion 

To make the results of this study comparable to those of 

Study 1, we converted all locations into nine discrete values 

based on evenly spaced bins. For example, a response on the 

far left of the line would be coded as a 1, a response on the 

far right would be coded as a 9, and a response in the middle 

would be coded as a 5. The exclusions mentioned above (see 

Method) were calculated with respect to these discretized 

values, as are all subsequent analyses. A matrix depicting the 

overall pattern of results can be seen in Figure 2A.  

 

Model comparisons We analyzed these data using the same 

three models we had used in the previous study. Each model 

was fit to each participant’s observed choices using 

maximum likelihood estimation. After fitting each single-

parameter model, the single free parameter in the stay/switch 

model (ε) was found to be significantly negative (signrank 

test, p<.001), meaning that participants avoided repeating 

choices back-to-back. The single free parameter in the side-

switch model (η) was not significantly different from zero 

(signrank test, p=.29). After fitting the combined model, the 

stay/switch parameter similarly came out significantly 

negative (signrank test, p<.001), and, in contrast to Study 1, 

the side-switch parameter was significantly negative 

(signrank test, p<.001).  

The combined model had the lowest (best) total AIC score 

(89299), followed by the stay/switch model (89510) then 

followed by the side-switch model (89879). This suggests 

that, like the random number task, both parameters play a role 

in people’s randomization. 

 

Model validation The average correlation for the average 

numerical distance measure between the human data and 

randomly shuffled human data was r=.34. For the combined 

model, the average correlation between model-generated and 

human data was r=.70 (see Figure 2B for an example of the 

model fits; see Figure 2C for the correlation comparisons 

across the 1000 simulations). The average correlation for the 

direction switches measure between the model data and 

randomly shuffled human data was r=-.01. For the combined 

model, the average correlation between model-generated and 

human data was r=.49 (see Figures 2D and 2E).  

Study 3 

In a final study, participants played a random, two-

dimensional location game. In this task, they were instructed 

to iteratively click locations within a square region while 

trying to be as random as possible. Here, we ask whether the 

same model of randomness based on one-dimensional 

judgments can usefully predicts judgments in two 

dimensions.   

Method 

200 additional participants completed this task. The task was 

identical to Study 2 except that, instead of selecting random 

locations in a one-dimensional space, participants clicked 

locations within a two-dimensional bounding square. The 

line was positioned in the center of the screen. It extended 

600 pixels horizontally and vertically. When participants 

clicked anywhere in that 600 x 600 region, a dot appeared at 

the location of the cursor. The dot was 10 pixels in diameter. 

Similar to Studies 1 and 2, a prompt indicated that 

participants should click randomly anytime the dot was not 

visible. Once a click was made, the dot would remain visible 

at the clicked location for 750ms before disappearing.  

Of the original sample of 200 participants, 105 survived 

exclusion in the x-dimension, 69 survived exclusion in the y-

dimension, and 65 survived exclusion in both dimensions. 

We analyze data separately in each dimension with all 

participants who survived exclusion in that dimension. These 

conservative samples are substantially smaller than that of 

Study 1, but comparable to that of Study 2. We again 

emphasize that had we not excluded participants, the model 

would have performed even better (but without necessarily 

capturing anything meaningful about human randomness).  

Results & Discussion 

We analyzed participants responses separately for each 

dimension (i.e., x vs. y). As in Study 2, we converted all  
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Figure 2: Results from Study 2. Here, continuous responses along a line were discretized into the values 1-9, evenly distributed 

across the line. (A) Transition probability from each value to each other value. (B) Correlation between the average numerical 

distance and (D) the direction switches in the human data and model-generated data. (C) Correlations from 1000 simulations 

between human data and shuffled human data (x-axis) as well as correlations from 1000 simulations between human data and 

model-generated data (y-axis), for the average numerical distance metric and (E) the direction switches metric. Points above 

the identity line indicate better model performance. 

 

locations into nine discrete values in each dimension based 

on evenly spaced bins. For example, a response in the most 

top-left corner of the square would be coded as a 1 in both the 

x and y dimensions, whereas a response in the bottom-right 

corner would be coded as a 9 in both dimensions. The 

exclusions mentioned above (see Method) were calculated 

with respect to these discretized values, as are all subsequent 

analyses. 

 

Model comparisons We separately analyzed behavior in 

each dimension using the same analyses as the previous two 

experiments. For the x-dimension, in the combined model, 

both the stay/switch parameter (signrank test, p<.001) and the 

side-switch parameter came out significantly positive 

(signrank test, p<.001). In other words, participants were 

more likely to stay near their previous response, but also more 

likely to switch sides of the distribution. The tendency to stick 

with the previous response is mostly driven by responses on 

the far-left side and far-right side of the distribution. For the 

y-dimension, in the combined model, the stay/switch 

parameter was significantly positive (signrank test, p=.002) 

and the side-switch parameter was positive, but not 

significant (signrank test, p=.15). 

For the x-dimension, the combined model had the lowest 

(best) total AIC score (114600), followed by the stay/switch 

model (114880) then the side-switch model (115140). For the 

y-dimension, the combined model had the lowest (best) total 

AIC score (75380), followed by the side-switch model 

(75503) then the stay/switch model (75652). 

 

 

 

Model validation We again compared how well model-

generated data captured higher order properties (e.g., average 

numerical distance and direction switches) of human data.   

First, we looked at x-dimension. The average correlation 

for the average numerical distance measure between the 

human data and randomly shuffled human data was r=.39. 

For the combined model, in comparison, the average 

correlation between model-generated and human data was 

r=.70. The average correlation for the direct switches 

measure between the human data and randomly shuffled 

human data was r=-.03. For the combined model, the average 

correlation between model-generated and human data was 

r=.66. 

Then we did the same analysis for the y-dimension. The 

average correlation for the average numerical distance 

measure between the human data and randomly shuffled 

human data was r=.35. For the combined model, in 

comparison, the average correlation between model-

generated and human data was r=.67. The average correlation 

for the direct switches measure between the human data and 

randomly shuffled human data was r=-.02. For the combined 

model, the average correlation between model-generated and 

human data was r=.57. For both the x- and y-dimensions, the 

model is a significantly better predictor of human behavior 

than even the same, shuffled human data.  

This study demonstrates that human random behavior in a 

two-dimensional task can be at least partially explained by 

their behavior in each separate dimension. This conclusion is 

far from obvious: It could have been that performance in one 

dimension was captured by the model but not the other, or 

that neither dimension was well-captured by the model. That 

the model was able to predict behavior in both dimensions  
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Figure 3: Results from Study 3. As in Study 2, continuous 

responses in each dimension of a square were discretized into 

the values 1-9, evenly distributed in space. (A) Correlation 

between the average numerical distance in the human data 

and (a representative simulation of) model-generated data. 

(B) Correlation between the direction switches in the human 

data and (a representative simulation of) model-generated 

data. The plots here depict both the x- and y-dimensions. 

 

indicates that (a) the generative model that people use to 

generate random locations in two-dimensional space may act 

on each dimension (at least partially) independently, and (b) 

that generative model may strongly resemble the generative 

model used to generate not only random locations in a 

separate one-dimensional space, but also random numbers. 

More generally, it may be surprising that this model works at 

all when applied to the spatial domain given that we 

arbitrarily use the same number of bins (9) in both the spatial 

and number tasks to allow comparison to the numerical task. 

For some participants, using fewer bins might provide a more 

parsimonious description of behavior. 

General Discussion 

Here we have proposed a model of human randomization that 

generalizes across numerical and spatial randomization tasks, 

as well as across one-dimensional and two-dimensional tasks. 

The ability of the model to capture behavior in all of these 

cases suggests that there are indeed stable aspects of human 

randomization behavior that generalize across tasks. 

Although some previous work has shown that some biases 

are stable across contexts (see, e.g., Yu et al., 2018), the 

present work goes one step further: it establishes a set of 

concrete, computational principles that can be used to 

generate sequences that reflect individual biases and that may 

generalize across a broader range of tasks — including those 

that involve fundamentally continuous (rather than discrete) 

input.  

A domain-general randomness generator?  

Here, we have tested three cases of human randomization 

behavior: random number generation (on a limited, discrete 

set of values, 1-9), random one-dimensional location 

generation, and two-dimensional location generation. We 

have shown that there are computational heuristics that 

generalize across all three tasks. However, this is only the tip 

of the iceberg. There are of course many other ways that 

random information can manifest in the world. For example, 

randomization need not be limited to options along one or 

two dimensions. Certain forms of abstract art, for instance, 

may play on regularities along numerous spatial dimensions 

as well as other visual dimensions (e.g., color). The spatial 

distribution of crowds may tell us something about where that 

crowd is headed, or what its goals are. The spatial distribution 

of leaves on the forest floor may tell us whether they had been 

tampered with and whether some other entity may be nearby.  

In each of these cases, there are multiple kinds of visual 

information that come together to form a cohesive percept of 

randomness. If the goal is to understand human 

randomization in general, then we must ask how well these 

computational principles generalize to more complex cases 

(i.e., those involving multiple dimensions of one type, or a 

combination of dimensions of different types).  

A mental number line account 

We have thus far emphasized how the proposed model(s) 

generalize across two very different tasks. However, one 

possibility is that the similarity observed across Study 1 and 

Study 2 is due to a deep similarity between the two tasks. In 

other words: Even though one task involved discrete choices 

(Study 1) and the other involved continuous choices (Study 

2), there is considerable evidence that humans represent 

numerical magnitudes along a sort of ‘mental number line’ 

(see, e.g., Aulet et al., 2021; Dehaene et al., 1993; Zorzi et 

al., 2002). If true, this could mean that participants were ‘co-

opting’ spatial cognition in order to produce random behavior 

in the number task, even though the task is not intrinsically 

spatial.  

Conclusion 

Does the mind contain a domain-general ‘randomization 

machine’? Answering this question would require 

generalizing the present results to a variety of other tasks. 

However, the model proposed here promises one way 

forward. We have shown that a simple model can capture 

higher-order properties of human randomization behavior 

even after conservatively excluding highly non-random 

individuals. We believe that this approach is ‘scalable’ in the 

sense that it can be applied to a range of tasks and stimuli, 

thus providing a way to understand the general computational 

principles underlying human randomization.  
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