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Variations of the Earth’s geomagnetic field during the Holocene
are important for understanding centennial to millennial-scale pro-
cesses of the Earth’s deep interior and have enormous potential
implications for chronological correlations (e.g., comparisons be-
tween different sedimentary recording sequences, archaeomag-
netic dating). Here, we present 21 robust archaeointensity data
points from eastern China spanning the past ∼6 kyr. These results
add significantly to the published data both regionally and
globallyQ:12 . Taking together, we establish; 13 an archaeointensity refer-
ence curve for Eastern Asia, which can be used for archaeomag-
netic dating in this region. Virtual axial dipole moments (VADMs)
of the data rangeQ:14 from a Holocene-wide low of ∼27 to “spike”
values of ∼166 ZAm2 (Z: 1021). The results, in conjunctionQ:15 with
our recently published data, confirm the existence of a decrease
in paleointensity (DIP) in China around ∼2200 BCE. These low in-
tensities are the lowest ever found for the Holocene and have not
been reported outside of China. We also report a spike intensity of
165.8 ± 6.0 ZAm2 at ∼1300 BCE (±300 y), which is either a prelude
to or the same event (within age uncertainties) as spikes first
reported in the Levant.

archaeomagnetism | geomagnetic spikes | geomagnetic secular variation

Archaeomagnetism is an effective way to understand the
variation of the geomagnetic field over periods of centuries

to millennia during the Holocene. Large fluctuations of the
geomagnetic field over the past few thousands of years have been
reported, for example, as archaeomagnetic jerks in Europe (1, 2)
and eastern Asia (3, 4), as spikes in the Levant (5–7), Turkey (8),
and North America (9), as large decreases in paleointensity
(DIPs) [DIPs of Kent and Schneider (10)] at ∼3000 BCE and
∼2200 BCE as well as a possible local high around 1300 BCE in
China both reported by Cai et al. (11, 12). Apparent progress has
been made on understanding variations of the geomagnetic field
during the Holocene in the past few years (13). However, de-
tailed pictures of the global field remain indistinct. Therefore,
large numbers of globally distributed data of the highest quality
are necessary to further characterize the features of the geo-
magnetic field. However, the existing paleointensity data from
eastern Asia, especially those considered to be “high quality”
(passing strict criteria), are sparse. In this study, we carried out
detailed rock magnetic and paleointensity studies on samples
collected from eastern China spanning the last 6 kyr; these will
supplement the published dataset of this area significantly and
provide further context for the elusive features of the geo-
magnetic field mentioned above.

Materials and Methods
The artifacts studied in this paper come from four locations in eastern China,
including Shandong, Liaoning, Zhejiang, and Hebei provinces (Fig. 1A). We
investigated various materials varying from pottery and porcelain sherds to
bricks (Fig. 1 B–E) collected from living sites and kilns, whose ages span the
past ∼6 kyr. The detailed sampling background and the list of sample

information are in Supporting Information Q:20, Archaeomagnetic Background
and Sampling, and Table S1. Rock magnetic experiments, including hyster-
esis loops, isothermal remanent magnetization (IRM) acquisition curves, first-
order reversal curves (FORCs), variation of magnetization versus temperature
(M–T), and scanning electron microscope (SEM) images as well as elemental
spectrum analysis, were conducted on representative samples. The “IZZI”
paleointensity protocol (14), as well as partial thermal remanent magnetiza-
tion (pTRM) checks (15), total TRM anisotropy correction (16), and cooling rate
correction (17), was adopted in this study. The detailed experimental proce-
dures can be found in Supporting Information, Experimental Procedures.

Results
The rock magnetic results (Figs. S1–S3; Supporting Information,
Rock Magnetic Results) indicate thermally stable fine-grained
magnetite and titanium (Ti)- and/or aluminum (Al)-substituted
magnetite as the dominant magnetic carriers for most samples,
which suggest the suitability of these samples for paleointensity
experiments. To obtain the most robust paleointensity data, we
need to select the results based on a series of criteria [Paterson
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et al. (18)], for example, those suggested by Shaar and Tauxe
(19). The selection statistics used in this study are listed in Table
S2. Based on these, 97 specimens from 21 samples out of 407

specimens from 72 samples are considered to yield robust
paleointensity estimates. The accepted results at the sample level
are listed in Table S3, whereas those at the specimen level are

Fig. 1. (A) Site map of this study and the published data from China. Red/magenta/cyan/green stars are the locations of Shandong/Liaoning/Zhejiang/Hebei
in this study. Light blue diamonds and downward-pointing triangles represent data locations published by Cai et al. (11, 12). Black solid circles repre-
sent locations of the archaeointensity data in China from the MagIC database after data selection. For data selection criteria, please see the text. (B–E )
Various archaeomagnetic artifacts analyzed in this study, including brick from Yinjia site, Dezhou, Shandong (B); pottery fragments from Daxinzhuang and
Zhaojiazhuang sites in Shandong (C and D); and slag from Laoshushan site, Huzhou, Zhejiang (E).

Fig. 2. Arai plots and the associated equal area projections (A1–D1), orthogonal projections (A2–D2), and natural remanent magnetization (NRMQ:44 ) lost-TRM
gained curves (A3–D3) of representative accepted specimens. Numbers on the Arai plot and orthogonal projections are temperature steps in centigrade
(degrees Celsius). The plots are made with the software of Thellier_GUI (19). For detailed description of these plots, please see the reference.
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Fig. 3. (A) Paleointensity resultsQ:45 at the sample level obtained in this study. The red/magenta/cyan/green stars represent data points from Shandong/Liaoning/
Zhejiang/Hebei. (B) Comparison of the VADMs in this study with the published data in eastern Asia and predictions from the global models. Light blue di-
amonds and downward-pointing triangles are published data in Cai et al. (11, 12). Black circles/squares are the selected published data in China/Japan from
the MagIC database. Peach rightward-pointing triangles and brown triangles are recently published data from Japan/Korea (4, 20). The gray/orange/pink/
yellow lines are the predictions from global models of CALS10k.1b (25)/CALS3k.4 (24)/ARCH3k.1 (22)/pfm9k.1a (23), respectively, evaluated at the center of
China (35°N, 105°E). The green line is the running average curve of Eastern Asia (calculated with our dataQ:46 and recently published data (4, 11, 12, 20)], whereas
the shading represents 1 SD in the bootstrapped results.
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listed in Table S4. Fig. 2 A–D shows representative plots of ac-
cepted specimens; these generally show good linearity on the
Arai plots and have a single directional component going straight
to the origin except for a limited secondary component removed
by 100–150 °C in the orthogonal projection plots (Fig. 2 A2–D2).
The anisotropy and cooling rate corrections are shown in Fig. S4.
Alterations of the samples during the anisotropy correction ex-
periments are all less than 8% except one over 10% (Fig. S4A),
whereas those during cooling rate correction are all limited, with
the percentage values of less than 3% (Fig. S4C). The ratios of
maximum and minimum eigenvalues of the ATRM tensors (τ1/τ3)
vary between 1.02 and ∼2.25 (∼82% of them are less than 1.5). The
extent of anisotropy correction is generally between 0.9 and 1.1 (Fig.
S4B) with some exceptions of ∼0.65 and 1.3, whereas the cooling
rate correction is generally less than 8% (Fig. S4D).
The paleointensity values determined for four locations range

from 14.8 to 85.7 μT (Fig. 3A). The data transformed to virtual
axial dipole moments (VADMs) (Fig. 3B) range from ∼27 to
∼166 ZAm2.

Discussion and Conclusions
Compilation of the Regional Model of Eastern Asia.Here, we present
21 archaeointensity data points from eastern China spanning theQ:21

past ∼6 kyr. We compare our resultsQ:22 with those published from
eastern Asia that met minimal acceptance criteria (only those
obtained through a double-heating protocol, based on averages
of at least three specimens and with an SD of mean intensity less
than 10% or 5 μT), allowing us to detect the regional variation of
the geomagnetic field (Fig. 3B). Our data are generally in good
agreementQ:23 with published data from eastern Asia at similar time
periods, especially with those data published recently (4, 11, 12,
20). However, we document larger field variations including
extremely low (∼27 ZAm2) and high (∼166 ZAm2) values.
Combining our dataQ:24 with those recently published (4, 11, 12, 20),
we calculated the paleointensity variation curves (green line in
Fig. 3B) using a parametric bootstrap technique similar to that
used by Gallet et al. (21). We resampled 1,000 times at each data
point considering uncertainties of both age and VADM, and
then applied a running average with a time window of 200 y
shifted by 10 y onQ:25 the dataset (only time intervals including more
than three data points were calculated). The established curve is
a composite archaeointensity reference curveQ:26 for eastern Asia,
which has applications for archaeomagnetic dating in this area.
The data for this curve can be found in Table S5.
Our revised eastern Asian curve agrees well with the ARCH3k.1

(22) and pfm9k.1a (23) models over the past 3 kyr, but deviates
from the older CALS3k.4 (24) and CALS10k.1b (25) models at
certain time periods, perhaps because of the effect of including
sedimentary data in the CALS type models, which are not ab-
solute and are difficult to calibrate (26) and may be overly
smoothed. At ages older than ∼3 ka, both CALS10k.1b and
pfm9k.1a models are in poor agreement with our data, especially
when the field reaches the minima at ∼3000 BCE and ∼2200
BCE and the local maxima around 1300 BCE (Fig. 3B). Our data
thereforeQ:27 have the potential for greatly improving future global
field models.

Extreme Behaviors of the Geomagnetic Field. Cai et al. (11) reported
two extreme low intensities with VADMs equal to or less than
30 ZAm2 at ∼2200 BCE from Liangchengzhen (LCZ) and
Zhaojiangzhuang (ZJZ) site in Shandong. Our results record
another lowQ:28 -intensity value (∼26.7 ZAm2) from the ZJZ site. In-
cluding the data from Sichuan reported by Cai et al. (12), we now
have recorded four low-intensity values from three different
sampling sites in total. Taken together, these data strongly sup-
port the existence of periods of very low paleointensity or “DIPs”
in China at ∼3000 BCE and ∼2200 BCE, especially at the latter
period. These low intensities are the lowest yet determined from

any study anywhere for the Holocene (Fig. 4A), which can be
either a local geomagnetic anomaly or not captured in other
areas. This calls for additional widely distributed data at similar
time periods to further characterize their global features and
geodynamic mechanisms.
In addition to periods of extremely low field intensities, Cai

et al. (11) reported a period of possible high field intensity dated
around 1300 BCE (±300 y). Here, we obtained additional samples
from the same sites and find an even higher value of ∼165.8 ZAm2

(Figs. 3B and 5A), which meets the definition of a “spike Q:29” sug-
gested by Cai et al. (11) of fields in excess of 160 ZAm2 and is
nearly as high as those reported in the Levant around 980 BCE
(5–7) and in Turkey at ∼1050 BCE (8) (Fig. 5B), but the median
age is some 300 y earlier (although there is a large uncertainty in
the age of ∼300 y). The high value recorded by our data could
represent Q:30a spike around 1300 BCE in China, which might be a
precursor to those recorded in the Levant and Turkey. A high
intensity of ∼160 ZAm2 was reported by de Groot et al. (27) in
Canary Islands, whose age is 1058 CE based on radiocar-
bon dating (28) and could alternatively be ∼400–300 BCE con-
strained by the variation curve of the geomagnetic direction.
Under the latter scenario, they suggested a westward motion of
the Levantine spikes. In addition, Kissel et al. (29) reported high
intensities with VADMs over 160 ZAm2 in Gran Canaria and
locations nearby (e.g., Portugal, Spain, and the Azores) between
670 BCE and 400 BCE (Fig. 5C). It seems our data support Q:31this
speculation that the spike first appeared in China at ∼1300 BCE
and then migrated westward to the Levant at ∼1000 BCE and
finally to Europe at ∼670–400 BCE (Fig. 5E). However, the age
errors of the Chinese spike overlap with the Levantine spike and
could instead represent the same event. Under this interpreta-
tion, the spike intensity recorded by our data Q:32extends the spatial
distribution of the spike reported in Levantine area and Turkey
to Eastern Asia. It is interesting to note that Bourne et al. (9)
reported a possible spike in sediments at ∼3 ka in Texas, im-
plying that the spike could be a global feature or that there are at
least two large flux lobes simultaneously (Fig. 5E). We note,
however, that the spike at ∼1000 BCE has so far not been not
seen in European [e.g., Bulgaria and Greece (Fig. 5D)], or even

Fig. 4. Histograms of published paleointensity data (blue bars) during the
past 10 kyr from GEOMAGIA50.v3 database (39) (A) and during the past
200 Ma (not including data from the recent 10 kyr) from the MagIC database
(B). Red and yellow stars are the extremely low and high values reported
from China. The dashed magenta line in B represents median value of the
data during the past 200 Ma.
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Syrian data (Fig. 5B) at similar period. These imply that the spike
is likely not global but probably large scale, which fulfills one of
the conditions for generating such a spike in numerical modeling
(30). However, the composite curves in Fig. 5 show that the field
intensity is overall high around 1000–500 BCE at different areas,
indicating a dipolar behavior of the field. Taken together, the
different records of the spike suggest that it is probably a non-
dipolar event superimposed on an already strong dipolar field.
This speculation is similar to the deduction by de Groot et al.
(31) that strong, short-term intensity perturbations are super-
imposed on a global trend of dipolar decay over the past 1 kyr.
This indicates that the variation of the pattern of the geo-
magnetic field, at least during the past 3 kyr, is possibly driven by
the dipole component on which nondipole components super-
pose occasionally (13). In any case, further data with large spatial
distributions and precise age constraints are necessary for
achieving an improved understanding of this extreme behavior of
the geomagnetic field.
The DIP and spike confirmed by our results suggestQ:33 a large

[eightfold increase if calculating with the low intensity of

∼20 ZAm2 reported by Cai et al. (11) and our high value of
∼166 ZAm2] and rapid (within ∼1,000 y) fluctuations of the
geomagnetic field during the Holocene. Our extreme intensity
values Q:34are still striking, even when placed in a context of the past
200 Ma. The low values of our data (red stars in Fig. 4B) fall into
low end of intensities in the published data and are lower than
the median intensity (∼54 ZAm2) of the past 200 Ma (not in-
cluding data from the recent 10 kyr). Our low intensities are
comparable to the strength of the field during some particular
geomagnetic intervals, for example, the Laschamp geomagnetic
excursion (32) and the Miocene dipole low (33, 34). Our spike
(yellow star in Fig. 4B) is among Q:35the highest paleointensities
recorded over the past 200 Ma. In summary, the extreme be-
haviors recorded by our data are extraordinary, especially Q:36when
considering the short span of the record, and thus bring chal-
lenges to geodynamical modeling (30, 35–38).

ACKNOWLEDGMENTS. We thank Q:37Xuexiang Chen, Xinmin Xu, Jianming
Zheng, Fei Xie, Zhenli Jiang, Jiqiao Guo, and Shihu Li for assistance in sample
collection. We are grateful for the careful review of Lennart Vincent de

Fig. 5. (A–D) Composite curves from representative areas: A includes only the eastern Asian data published recently (4, 11, 12, 20); B includes all of the
Levantine data compiled by Shaar et al. (7), the data in Turkey published by Ertepinar et al. (8), and data in Syria from the Geomagia50.v3 database; C includes data
within a 2,000-km-radius circle around Canary Island from the Geomagia50.v3 database compiled by Kissel et al. (29) and data published recently by Kissel et al. (29)
and de Groot et al. (27);D includes data in Bulgaria and Greece from the Geomagia50.v3 database. The selection criteria of including at least three specimens and with
a SD of mean intensity less than 10% or 5 μT were applied on these data. (E) Projections of the locations related to geomagnetic spikes.
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Archaeomagnetic Background and SamplingQ:1

The samples from Shandong province were collected from 10
different sites covering the prehistoric cultures of early Dawenkou
(4300–3500 BCE), Longshan (2500–2000 BCE), and Yueshi
(2000–1600 BCE), as well as the historical dynasties of middle-
late Shang (1300–1000 BCE), Western Han (206 BCE–8 CE),
and Ming (1368–1644 CE). To confirm the unusually low
paleointensities discovered by Cai et al. (11), we collected potteryQ:2

shards from the Liangchengzhen (LCZ) and Zhaojiazhuang (ZJZ)
sites. The remaining artifacts from Shandong province were col-
lected from eight sitesQ:3 . The samples from Liaoning province are all
from Wenjiacun (WJC) site located in the Lvshun area, Dalian
City, which is dated to the middle Dawenkou (∼3500 BCE). All of
the samples from Shandong and Liaoning were provided by the
archaeologists from the School of History and Culture, Shandong
University, Jinan, China. The ages of our sites from prehistoric
periods and the DXZ site (middle-late Shang) are based on ra-
diocarbon dating (40, 41) as well as archaeological contexts. The
ages of other sites were determined mainly based on archaeolog-
ical background.
The samples from Zhejiang province were collected from part

of the published sites in Cai et al. (11), which cover the dynasties
of early Tang (618–764 CE), Zhanguo (475–221 BCE), Late
Chunqiu (550–476 BCE), and Shang (1600–1000 BCE). Ages of
samples from this site are based on typology of the potteries
during archaeological survey.
One site from Hebei province is included, which is the Bao-

jiaying (BJY) site located at Longhua county, Chengde City. This
site used to be a big kiln factory started during the Liao-Jin
dynasty (907–1125 CE) and terminated in Yuan dynasty (1271–
1368 CE). A total of 10 cultural layers were excavated on this
site. The materials we collected were from the fourth–fifth layer,
where some ancient coins from the Yuan dynasty were unearthed.
Combing with the typology of the potteries, our samples collected
from this site are dated to the Yuan dynasty.
Besides radiocarbon dating (40, 41) and archaeological dating

based on archaeological context (e.g., the workmanship and
decoration of the potteries, important information preserved on
the artifacts such as the ancient Chinese characters, representative
artifacts such as ancient corns correspond to special dynasties), we
attempted to use the optically stimulated luminescence (OSL) dating
method on nine pottery samples (three from Shandong and six from
Zhejiang), but none of them gave acceptable results unfortunately.
The detailed sampling information is listed in Table S1.

Experimental Procedures
Rock Magnetism. To determine the magnetic mineralogy of the
studied samples, we carried out detailed rock magnetic experi-
ments including hysteresis loops, isothermal remanent magneti-
zation (IRM) acquisition, first-order reversal curves (FORCs),
and variation of magnetization versus temperature (M–T).
Powder samples (0.1–0.2 g) were prepared and fixed in non-
magnetic capsules for the hysteresis loops, IRM acquisition, and
FORCs experiment, which were measured with the MicroMag
3900 VSM in the Paleomagnetism and Geochronology Labora-
tory (PGL) at Institute of Geology and Geophysics, Chinese
Academy of Sciences (IGGCASQ:4 ). M–T curves were measured
with the magnetic-measurements variable-field translation bal-
ance fixed with an oven in PGL for the purpose of determining
Curie temperatures (Tc values) and detecting possible alteration
during heating. Microprobe slices (thickness of 30–50 μm) of
selected samples were prepared and observed under scanning

electron microscope (SEM). The slices were coated with a car-
bon layer to prevent surface charging of the sample during SEM
operation. The SEM experiments were performed with FEI
Nova nano450 at 15-kV acceleration voltages in IGGCAS. The
imaging and energy dispersive X-ray spectroscopy (EDS) analyses
were conducted under the backscattered electron (BSE) mode.

Paleointensity.A total of 407 specimens from 72 samples (55, 6, 6,
and 5 from Shandong, Liaoning, Zhejing, and Hebei, respec-
tively) were processed for paleointensity experiments with a
minimum of five specimens per sample. Among all of the spec-
imens, 376 were processed in the PGL, whereas the other 31 were
measured in the paleomagnetism laboratory of the Scripps In-
stitution of Oceanography (SIO), University of California, San
Diego. For experimental procedure in the PGL, samples were
first broken into irregular chips. Then fresh specimens were se-
lected and fixed in cubic ceramic boxes (1.2 cm × 1.2 cm × 1.2 cm),
which have comparable magnetic moments to the background of
the magnetometer used for the measurements, with fire-resistant
cotton matting. The specimens were heated in a French paleo-
intensity furnace in an argon atmosphere and cooled naturally after
heating (∼12 h). Heating steps were carried out from 100 to 580 °C
with temperature intervals varying from 20 to 100 °C. The residual
field of the oven is less than 10 nT for the “zero-field” cooling steps
and a laboratory field of 30 μT was applied along –z of the speci-
mens with a precision of 0.1 μT for the “in-field” cooling steps. The
remanence was measured with the 2G 760 SQUID magnetometer
after each step. The whole procedure of the experiment was con-
ducted in a shielded room with residual field less than 300 nT.
In the SIO laboratory, fresh specimens were fixed in 12-mm-

diameter glass tubes with glass microfiber paper and potassium-
silicate glue (KASIL). Specimens were heated in the laboratory-
built paleointensity oven equipped with a fan for cooling. The
cooling times to room temperature are about 30–45 min
depending on the peak temperature. The residual field of the
ovens is less than 10 nT during zero-field steps. Measurements
were made on a 2G cryogenic magnetometer. The same heating
steps as those in PGL were followed. A laboratory field is ap-
plied along –z axis of the specimens, and field value of 30 or
50 μT was chosen depending on the expected ancient field of
samples. All of the experiments were conducted in the paleo-
magnetic shielded room at SIO.
The “IZZI” protocol was followed for all of the specimens

during the paleointensity experiment (14). Checks for alteration
[partial thermal remanent magnetization (pTRM) checks] were
inserted at every other step (15). The bias caused by the an-
isotropy of TRM (ATRM) in paleointensity for archaeological
materials can reach ∼10% or more, whereas that caused by
cooling rate effect is around 5% with a few exceptions of 15%
(11, 12). Therefore, both ATRM and cooling rate effects should
be considered when determining the paleointensity values
recorded by archaeological artifacts. In this study, the ATRM
correction was conducted on each successful specimen in the
intensity experiment. An eight-step (baseline, +x, −x, +y, −y, +z,
−z, +x) experiment was conducted following the method of
Veitch et al. (16), whereby the last step is an alteration check. A
total TRM was used for calculation of the anisotropy tensors.
Cooling rate corrections were conducted on those specimens
heated in the paleointensity ovens in SIO but not on those
processed in the French furnace in PGL because the natural
cooling system of the latter mimics the original cooling of the
pottery when first fired. The cooling rate correction experiment
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follows the procedure suggested by Genevey and Gallet (17),
including three steps: fast cooling, slow cooling, and a second
fast cooling as an alteration check. The slow cooling step takes
∼12 h in the SIO ovens. Detailed experimental steps can be
found in Cai et al. (11).

Rock Magnetic Results
The representative hysteresis loops show slightly “wasp-waisted”
shapes (Fig. S1 B and C), suggesting a mixing of either SD and
SP grain sizes (42) or varied magnetic minerals (e.g., magnetite
and hematite). However, the hysteresis loops of the latter are
usually supposed to show “goose-necked” shapes (42, 43), which
are absent in our results. This allows us to infer that, even if
some of our samples contain hematite, the amount must be
limited, which is supported by the following rock magnetic re-
sults (Figs. S1E and S2) and NRM demagnetization during
paleointensity experiments (Fig. 2). The bulk coercivities (Bc
values) of the specimens are generally low, with a range of ∼10
to ∼20 mT, which demonstrates that soft magnetic minerals are
the dominant magnetic carriers. The IRM acquisition curves
(Fig. S1E) either saturate before 200 mT (DXZa and ZJZg) or
increase significantly before 200 mT and keep slightly increasing

until 800 mT (BJY8b and DQ10v), which supports the inference
of soft magnetic carriers to be dominant. The shapes of FORCs
(Fig. S1 F and G) indicate the existence of SD fraction, probably
mixed with SP grains (44, 45).
The representative M–T curves show good reversibility (Fig.

S2), which indicate that the magnetic carriers are thermally
stable. Tc values calculated by the second derivative method
described by Tauxe et al. (43) are ∼580 °C (ZJZg) or lower
(BJY8b, ∼540 °C; DXZa, ∼570 °C; DQ10v, ∼515 °C). The
former demonstrates the existence of magnetite, whereas
the latter is usually explained as titanomagnetite in most of the
previous studies (11, 12, 46, 47). However, we put forward an-
other possibility for those with Tc values less than 580 °C in this
study. It was demonstrated that not only titanium (Ti) but also
aluminum (Al) substitution can reduce the Tc values of magnetic
minerals (48). The SEM images and elemental spectra show the
presence of both Ti and Al elements (Fig. S3), indicating both
Ti- and Al-substituted magnetic minerals are possible in ar-
chaeological materials made of clay minerals. This, combined
with the M–T results, suggests that magnetite, Ti-magnetite, and/
or Al-magnetite are the dominant magnetic carriers.
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Fig. S1. (A–D) Hysteresis loops of representative samples. Red (blue) loop is before (after) paramagnetic correction. Bc, coercivity; Bcr, remanent coercivity; Mr,
remanent magnetization; Ms, saturation magnetization. Data are analyzed with the software of Pmagpy-2.184. (E) IRM acquisition curves of representative
samples. (F and G) FORC plots analyzed with the software of FORCinel_1.17 (49).
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Fig. S2. Representative variations of normalized magnetization versus temperature. Samples are processed in air in an applied field of ∼1 T with heating/
cooling rates of 30 °C/min. Red solid (blue dashed) line represents heating (cooling) procedureQ:5 .

Fig. S3. Scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy (EDS) analysis in backscattered electron (BSE) modeQ:6 .
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Fig. S4. Histograms of (A) alteration percentage during the TRM anisotropy correction experiment, which is the maximum difference (expressed as per-
centage) of the four pairs (+x/−x, +y/−y, +z/−z, and the two +x steps) of TRM; (B) extent of TRM anisotropy correction described by the ratio of intensity value
after anisotropy correction (Bac) to the raw intensity (Braw); (C) alteration percentage during cooling rate correction experiment, which is the difference between two
fast cooling steps; and (D) cooling rate correction factors expressed as the ratio of intensity after both anisotropy and cooling rate correction (Bacc) to Bac.
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Table S3 (DOCX)
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Q: 1_Per journal style, section headings may not be numbered (except in Mathematics and Applied
Mathematics papers). Consequently, the numbers have been removed from the section headings in
Supporting Information.

Q: 2_In sentence beginning “To confirm the unusually low paleointensities....”: PNAS does not allow
claims of priority or primacy, hence the term “new” has been deleted.

Q: 3_In sentence beginning “The remaining artifacts....”: PNAS does not allow claims of priority or
primacy, hence the term “new” has been deleted.

Q: 4_“IGGCAS” has been defined as “Institute of Geology and Geophysics, Chinese Academy of
Sciences.” Please confirm the definition.

Q: 5_For Fig. S2 legend: Please cite panels A–D.

Q: 6_For Fig. S3 legend: Please cite panels A, A1–A3, B, and B1–B3.
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