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Abstract

Removal of individual blocks of rock is one of the principal mechanisms by 
which scour can occur, and prediction of block erodibility can be complicated
due to the inherent variability associated with the rock mass as well as flow 
conditions in the vicinity of the block(s) in question. In order address the 
stochastic nature of the problem, we present a methodology for system 
reliability assessment of the probability of scour of 3D rock blocks subject to 
hydraulic loads within a block theory framework. Monte Carlo simulations are
used to determine overall block failure probability, and to identify the most 
likely failure mode. A first-order reliability method (FORM) is then used to 
determine sensitivity to the different variables and hence the relative level of
importance of the physical parameters with respect to the dominant failure 
mode. An example problem is used to illustrate the value of this information 
in focusing site investigations and analyses on the most important variables 
as well as in guiding decisions regarding scour mitigation strategies.
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1. Introduction

Scour of rock is an issue for critical infrastructure such as dams, bridges and 
tunnels, where excessive erosion of the structure's foundation can 
compromise stability, leading to high remediation costs or even loss of life 
should catastrophic failure occur. Accordingly, reliable quantification of rock 
erodibility is necessary to ensure the continued, safe operation of these 
structures. The removal of individual blocks of rock by hydraulic forces is one
of the primary mechanisms by which rock scour can occur. Prediction of 
block erodibility, however, is hindered by the inherent variability associated 
with the rock mass comprising the foundation/spillway as well as with flow 
conditions in the vicinity of the block.

To account for this variability, a system reliability approach for block stability
is implemented. In recent years, risk and reliability methods have seen 
increased use among practitioners and researchers for quantification of 
event failure probability to aid in hazard analysis and the decision-making 
process. However, these studies have had limited use in the current state-of-
the-art rock scour prediction models, e.g., Refs. 1–3. Reliability methods 
have been successfully applied to general rock slope stability in 2D,4 and for 
3D rock wedges defined by two discontinuity planes in Refs. 5– 7. We extend 



the systems reliability approach to 3D rock blocks bound by three 
discontinuity planes and one free face. While the analysis is presented for 
hydraulic loading by channel flow, the method can be readily applied to 
block stability problems of similar geometry with other loading conditions 
(e.g., gravity, seepage, overtopping jet).

2. Model formulation

Material properties and processes in most geologic settings are inherently 
variable and accordingly a probabilistic approach is a natural choice for their 
evaluation. Quantification of the rock scour process requires a joint 
assessment of the erosive capacity of water and the resistive capacity of the 
rock mass. Variability in erosive capacity is predominantly produced by 
unsteadiness and turbulent flow conditions, which can change both spatially 
and temporally; while variability in rock block resistance is dominated by the 
spacing, orientation and shear strength (friction and dilation angle) of the 
discontinuities bounding the block (Fig. 1).



Removal of individual blocks of rock is one of the principal mechanisms by 
which scour occurs in unlined rock channels/ tunnels, bridge foundations, 
dam abutments, and plunge pools. The discontinuities around the block allow
for transmission of hydraulic pressures to the block faces that can result in 
removal (failure) (Fig. 2). For 3D blocks, there are a number of kinematic 
failure modes that lead to a block being removed from its mold.8 These 
consist of pure translational movements (e.g., lifting, oneplane sliding, or 
two-plane sliding), pure rotational movements (e.g., about an edge, about a 
corner, or about an arbitrary point), or some combination of translation and 
rotation (Fig. 3).

Failure of a removable block9 in a particular failure mode is subject to several
kinematic constraints that must be satisfied for a block to be eroded. For 
tetrahedral rock blocks, the number of kinematic failure modes and the 



probability that the block is removable and rotatable is fairly low10 since the 
number of failure planes is limited to 3. Accordingly, for the example analysis
presented below, we only consider the pure translational modes (lifting, 1-
plane sliding, and 2-plane sliding).

For pure translation modes, lifting of a block is kinematically feasible when

where s is the direction of block movement (equal to the direction of the 
active resultant, r, for lifting), and vi is the block-side normal vector for the 
ith joint plane. Bold font signifies a vector/matrix quantity. This condition 
ensures the block moves away (lifts) from each of the bounding joint planes. 
The block-side normal may be

where ni is the upward normal for the ith joint plane and δi, θi are the dip and
dip direction, respectively, of the ith joint plane. For block sliding on plane i 
only, the sliding direction is given by:

This is the orthographic projection of the active resultant force vector, r, onto
the sliding plane. Kinematic feasibility of 1-plane sliding is subject to the 
following constraints:

where j represents the remaining two joint planes. The first condition ensures
a component of the resultant is projected onto the plane of sliding, while the 
second guarantees the block is being lifted from the remaining joint planes. 
For block sliding on planes i and j simultaneously, the sliding direction is 
given by:



where sign(·) is a function that returns 1 if “(·)” is positive and –1 if “(·)” is 
negative. The sliding direction is along the line of intersection between the 
two planes. The sign function determines which direction sliding occurs along
this line considering the orientation of the active resultant. Kinematic 
feasibility of two-plane sliding on planes i and j is subject to the following 
constraints:

where k represents the remaining joint plane from which the block is lifted. 
The first condition ensures the block slides away from joint plane k. The 
second condition ensures the direction of block sliding on plane i is towards 
plane j, while the third condition ensures the direction of sliding on plane j is 
towards plane i.

For block stability, the corresponding limit equilibrium expressions for the 
pure translational movements9 are below. For lifting:

for one-plane sliding:

and for two-plane sliding:



where F is the required stabilizing force applied in the direction of movement
to maintain equilibrium, and ϕi, ϕj are the friction angles on joints i and j, 
respectively. When F is negative, the block is considered stable, and when F 
is positive the block is unstable. When F is zero, the block is in equilibrium 
such that any further increase in load will result in removal of the block.

Applied loads are incorporated into the active resultant force vector, r, which
represents a vector sum of all active forces acting on the block For rock 
scour purposes, these are predominantly the hydraulic pressure applied 
normal to the block faces and the selfweight of the block due to gravity. This 
can be expressed as

where ρw is the density of water, ux is the mean channel flow velocity, Cpi is 
the average dynamic pressure coefficient on the ith block face, Ai is the area 
of the ith block face, Wb is the submerged weight of the block, and y is the 
total number of block faces. Calculation of block face area and volume can 
be found in Ref. 9. Information regarding average dynamic pressures around 
3D rock blocks is very limited, but expressions for Cp values applied to 
tetrahedral blocks subject to channel flows have been determined in Ref. 11 
through physical hydraulic model testing.

3. Reliability analysis: general system formulation

We use the general system reliability approach to determine the probability 
that scour of the rock mass will occur by failure (removal) of individual rock 
blocks. The state of the system in a domain, Ω, and defined by a set of n 
random variables, x = [x1…xn], is uniquely determined by the state of Ng 
components comprising the system. Each individual component, i, is 
represented by a limit state function (LSF), gi(x), and has two potential 
states: safe (gi (x)>0) or fail (gi(x)≤0).



The performance of the overall system (i.e., the stability of the block) is 
modeled using a minimum cut-set formulation.12 For this purpose, the system
is represented by a series assemblage of Ncs parallel sub-systems, or cut-
sets, each of which corresponds to one of the potential kinematic modes of 
the block (Fig. 4). Each cut-set, Ck, is represented by a set of parallel 
components corresponding to the minimum criteria necessary to define 
failure of the block in a particular mode (i.e., the limit equilibrium and 
kinematic constraint expressions). A cut-set fails when all of its parallel 
components fail, and hence represents the intersection of component failure 
regions, i.e., Ck=∩gi(x)≤0 (for i ∈ Ck) (Fig. 5). For the block, this means that 
1) the equilibrium expression must indicate the block is unstable, and 2) the 
kinematic conditions must be met to guarantee the block can physically 
move in accordance with the prescribed failure mode. The overall system 
(block) fails when one of the cut-sets fails. Fig. 6 shows the cut-set 
formulation for a block subject to the pure translational modes of failure, 
while Table 1 lists the LSFs and their physical interpretation. For lifting mode,
a limit equilibrium condition is not required, i.e., Eq. (7), as the kinematic 
criteria guarantee block instability when satisfied. We note that other block 
failure modes may be considered, such as rotation about a corner or edge, 
by adding other cut-sets with the appropriate expressions for stability and 
kinematics in series with the existing cut-sets.



3.1. System failure probability

The probability of failure of a system, Pf,s, consisting of Ncs cutsets can be 
expressed as

which is interpreted as the probability of failure of the union of all system 
cut-sets. Although a number of options exist for calculating the system 
failure probability (including approximate methods using first order reliability
method (FORM) (see, e.g., Ref. 12) and bound methods based on low-order 
probabilities),13–17 we utilize the traditional Monte Carlo simulation method. 
Monte Carlo sampling provides an “exact” solution for the failure probability 
of the block system and is relatively simplistic to implement. Furthermore, 
discontinuous LSFs can be used which can be problematic for approximate 
methods like FORM. The tradeoff using Monte Carlo is increased 
computational effort when system failure probability is low as large numbers 
of samples are required to achieve a tolerable level of confidence in the 
failure probability value.

For Monte Carlo analysis, a set of random numbers for each of the variables, 
x, is generated and the system is solved deterministically N times. For each 
trial run an indicator function, I(x), is given a Boolean value depending on 



whether failure of the block occurs (0¼safe/stable, 1¼fail/unstable). Failure 
probability of the system is computed by dividing the number failure 
occurrences by the total number of simulations:



The total number of trails, N, is determined when the coefficient of variation 
of the failure probability, δPf, is below a specified tolerance, δ0, or when a 
specified maximum number of trials, N0, is achieved. The coefficient of 
variation is expressed as 



The individual cut-set with the highest failure probability represents the most
probable block failure mode.

3.2. Parameter importance

Information regarding the relative importance of the random variables on 
specific system components can conveniently be obtained through FORM 
analysis. A key criterion for FORM requires LSFs to be continuous and 
differentiable to facilitate solution of a minimization algorithm to find the 
most probable failure point (design point) for a particular LSF (discussed in 
further detail below). This criterion can be relaxed for discontinuous 
functions, such as some of those considered in the block system formulation,
as long they are continuous and differentiable in the vicinity of the design 
point.12 To this end, we implement FORM to compute relative parameter 
importance for specific LSFs corresponding to the most probable block failure
mode determined from MC analysis.

FORM utilizes a transformation of the variables, x, and LSF, g(x), from their 
original defined domain Ω(x) to the standard normal domain ϕ(u) where 
u=[u1…un] is the vector of transformed variables, and g(u) is the 
transformed LSF in the standard normal space (Fig. 7). This transformation 
requires knowledge of joint probability distributions between variables in the 
original domain, which can be difficult or impractical to obtain. As such, we 
assume variables are related through a Nataf distribution such that we may 
perform the transformation with only the information regarding their 
prescribed marginal distributions and correlation coefficients.18 This is 
expressed as:

where Φ(·) is the univariate standard normal cumulative density function 
(CDF), Fxi(xi) is the marginal CDF of xi, and L0 is the Choleski decomposition 
of the correlation matrix R0. R0=[ρij] for i, j=1…n, where ρij is the correlation 
coefficient between xi and xj.



In the standard normal space, probability density contours form concentric 
circles around the origin (Fig. 7). The location on the LSF closest to the 
origin, u*, represents the location of maximum probability density, i.e., the 
point of most probable occurrence.This location is referred to as the design 
point and is found by solving a minimization problem using the improved 
Hasofer/ Lind-Rackwitz/Fiessler (iHL-RF) algorithm.19 At u*, a first order 
(linear) approximation of the limit state function is made:

where ∇g(u*) = [∂g/∂u1…∂g/∂un] is the gradient row vector evaluated at the 
design point, α = ∇g(u*)/| ∇g(u*)| is a unit vector normal to the limit state 
surface at the design point and β=α·u* is the reliability index. The reliability 
index can be viewed as an alternative measure of safety (e.g., analogous to 
a factor of safety in a purely deterministic problem). For statistically 
independent random variables, the individual terms of vector α=[α1…αn] 
represent the relative importance (or contribution) of each variable, xi, on 
the total variance of the linearized LSF. A larger magnitude of αi indicates a 
stronger influence from xi. A positive value of αi signifies xi is a demand 
variable and works to destabilize the system while a negative value of αi 
signifies xi is a capacity variable and works to stabilize the system. For 
dependent random variables, the importance vector with similar implications
is represented by γ12

where Jx,u is the Jacobian matrix for the transformation from x to u space 
evaluated at the design point, and D′ is the diagonal standard deviation 
matrix of equivalent normal random variables x′ = x*+ Jx,u·(u–u*) evaluated 
at the design point. Note that at the design point, x′=x* where x* is the 
design point in the original space.



3.3. Numerical implementation

In this work, we use the reliability code FERUM20 developed in Matlab for 
Monte Carlo simulation of the failure probability of the block system, and for 
FORM analysis of individual system components to determine parameter 
importance. We modified the original Monte Carlo sampling module to 
include simulation for a multiple component block system.

4. Example analysis

For illustrative purposes, we present a simplified example of rock block 
stability under hydraulic loading using a general system reliability approach. 
Specifically, we examine a removable tetrahedral block in an unlined 
spillway bottom subject to unidirectional channel flow at a dam site in 
Northern California. A schematic of the spillway and block geometry is shown
in Fig. 8. The authors have previously performed block theory analysis of 
similar blocks in a pseudo-static, deterministic sense, relating block removal 
to flow velocity.11,21

4.1. Deterministic parameters, variable distributions and correlation

Joint orientations defining the block geometry (dip, δ, and dip direction, θ) 
were considered variable as were the friction, ϕ, and dilation, iϕ, angles 
representing the discontinuity shear strength on the block faces. The 
protrusion height of the block above the channel bottom, h, and the 
magnitude of the mean stream-wise velocity, ux, were also considered 
variable. The latter two, combined with the orientation of block 
discontinuities, define the relative magnitude of the hydraulic pressure 
applied to the block faces as determined by physical testing of rock blocks 
subject to channel flows.11 Flow is assumed parallel to the dip vector of the 
spillway surface. The orientation of the spillway channel was considered to 
be constant for this analysis and, therefore, was evaluated deterministically 
(Table 2). Other deterministic parameters are also listed in Table 2. These 
include the gravitational constant, g, block density, ρb, water density, ρw, 
parameters for pressure coefficients on block faces based on laboratory 
testing,11 and the orientation of the spillway channel as defined by the dip 



angle, δf, and dip direction, θf. Pressure coefficient parameters are provided 
for both high and low turbulence flow conditions (represented by the 
turbulence intensity, Tu).

Marginal distributions for all variables are presented in Table 3. For joint 
orientations defining the block geometry, as well as joint dilation angles, a 
Beta distribution was used. A Beta distribution is advantageous as variable 
bounds can be specified. It is also versatile in the sense that many 
distribution shapes can be achieved through modification of distribution 
parameters. For this example, distribution parameters were determined 
based on statistical analysis of rock mass LiDAR data collected at the dam 
site using SplitFX rock mass characterization software. Correlation values, ρ, 
between the dip and dip direction for joint sets J1, J2 and J3 (also determined 
from LiDAR analysis) are –0.123, 0.164 and 0.135, respectively (Table 4). 

Joint friction angles were also modeled using a Beta distribution. The bounds 
for each friction angle were assumed to range between 35° and 45° for all 
discontinuities. The general distribution shape was presumed to be 
symmetric as defined by parameters p1=3, and p2=3. A positive correlation 
ρ=0.3 (Table 4) was assumed between friction angles on opposing 
discontinuities, suggesting if a high value friction angle is observed on one 
joint plane, the friction angle on the other joint planes would also likely be 
high. Similarly, if a low value is observed on one joint plane, the values on 
the other joint planes would also likely be low. Note that in highly foliated or 
layered rock, no correlation or a negative correlation of joint friction angles 
may be more appropriate. 

For the block protrusion height, a lognormal distribution with parameters 
p1=2 cm and p2=0.5 cm was arbitrarily selected. The protrusion height was 
assumed uncorrelated with the other block parameters (i.e., ρ=0), but 
inversely correlated with the flow velocity (ρ=–0.1). The latter implies that as
the protrusion height increases the flow velocity decreases and vice versa. 
This is intuitive as a higher block protrusion relates to a more hydraulically 
rough channel which results in slower flow velocity (assuming other surface 
roughness asperities in the channel are of the same relative magnitude).

Normal distribution was assumed for flow velocity. The mean velocity was 
increased from ux=5 to 10 m/s to encompass a range of conditions likely 
encountered at the field site. The standard deviation was determined based 
on hydraulic model experiments.11 No correlation of flow velocity with other 
variables was assumed (except the block protrusion height as discussed 
above).





4.2. Analysis results

Calculated failure probabilities for the block (system) and individual 
kinematic failure modes (sub-systems) are provided in Fig. 9 for increasing 
values of mean channel flow velocity for both high and low turbulence 
conditions. Monte Carlo simulation was performed until the coefficient of 
variation for the block system failure probability (calculated from Eq. (13)) 
was below a threshold of δPf=δ0=0.05 or until 10,000 trials had been 
performed. Note, the approximate time to perform 10,000 simulations was 
two hours and therefore represented a reasonable ceiling for this example 
study. In most cases the δPf=0.05 criterion was achieved, except when ux=5 
and 6 m/s. In these scenarios the analysis stopped when δPf⁓0.15 to 0.2 
because of the low failure probability of the system for these two cases 



(Pf,s<0.005). Systems with such low failure probability would require nearly 
100,000 simulations (⁓1 day run time) in order to reliability characterize Pf,s 
to a threshold of δPf=0.05. This highlights one of the limitations of the Monte 
Carlo method. The other modeled scenarios required significantly fewer 
simulations to achieve the threshold coefficient of variation (Table 5). Fig. 10 
shows the evolution of Pf,s and δPf for low turbulence conditions and ux=7 m/s.

Overall a trend of increasing block failure probability versus increasing mean 
channel flow velocity is witnessed, as anticipated. The failure probability 
begins to increase rapidly when ux>6 m/s (high Tu) and ux > 7 m/s (low Tu). 
Three failure modes are identified as the most probable to occur which 
include 1-plane sliding on J3 (S3), 2-plane sliding on J1 and J3 (S13) and lifting 
(0). These are modes corresponding to the individual cut-sets with the 
highest failure probability. For lower mean ux values the dominant mode is 
S13, while for higher ux values S3 and 0 are more prevalent. Block removal 
by the other kinematic modes (S1, S2, S12, S23) yielded Pf values at or near 
zero indicating their unlikely occurrence.

A comparison between high and low Tu flow conditions is provided in Fig. 11. 
The high turbulence case shows increased block failure probability at lower 
flow velocities. This is attributed to greater variability in the active resultant 
force orientation, r, due to greater variability in the flow velocity, thus 
creating a higher probability for block instability.

Table 6 presents values of the importance vector, γ, for LSF g17 
corresponding to the limit equilibrium expression for 2-plane sliding on J1 and
J3, one of the most probable kinematic failure modes. As anticipated, 
individual γ values for ϕ and iϕ are negative indicating that friction on the 
joint bounding the block acts in a capacitive (stabilizing) manner. Importance
values for the block joint orientations are both positive and negative. This is 
solely a function of block face orientation as hydraulic pressure acts normal 
to the block face. Depending on how the face is oriented and the failure 
mode under consideration, the hydraulic force on that face may work to 
stabilize or destabilize the block. In this example, values are predominantly 
positive indicating a destabilizing tendency.

As expected, γ values for block protrusion height, h, and ux are positive 
indicating these variables work to destabilize the block. Interestingly, at 
higher flow speeds (ux ≥ 9 m/s) these values become negative and act in a 
stabilizing capacity. This corresponds with the change in dominant kinematic
failure mode observed Fig. 9. At higher flow velocities, two-plane sliding on J1
and J3 is less relevant, while 1-plane sliding on J3 and lifting become more 
probable. The increased load associated with the higher flow velocity 
changes the orientation of the active resultant force vector such that sliding 
on J1 and J3 becomes kinematically more difficult. This highlights the 
importance of kinematics in the evaluation of block stability/erodibility

Finally, examination of the relative magnitude of the importance values for 
each variable (i.e., |γ|) in Table 6 shows that the block protrusion height has, 



by far, the most influence on block stability in this analysis (|γ|⁓0.75 to 
0.95). Also of significant importance is the flow velocity (|γ|⁓0.15 to 0.20) 
and the orientation of the downstream block face (defined by δ1 and θ1) (|γ|
⁓0.2 to 0.45). The magnitude of importance values for ϕ and iϕ representing 
the sliding friction are much lower than those for h, ux, and δ1 and θ1. This 
indicates the influence of the friction angle on the stability of the block is not 
very significant.







5. Conclusions

A general system reliability approach for evaluation of 3D rock block stability
within a block theory framework was developed to assess the relative 
influence of the key variables on the probability of block removal by 
hydraulic forces. We implemented a minimum cut-set formulation to assess 
reliability of a block “system” subject to multiple kinematic modes. This 
formulation was cast within the original block theory framework developed in
Ref. 9 for pure translational block failure modes (i.e., lifting, one-plane 
sliding, and two-plane sliding). Other kinematic block modes can be readily 
be considered by inclusion of additional cut-sets (Figs. 4 and 6).

The reliability approach provides a convenient methodology to incorporate 
uncertainty associated with variables considered in 3D block stability 
analysis (e.g., discontinuity orientation, friction angle, hydraulic loads, etc.). 
Variables are described by their marginal probability density distributions 
and related to other variables using correlation coefficients, both of which 
can be determined through field and laboratory investigations. Two key 
outcomes of the reliability-based block stability approach include 1) block 
failure probability, calculated using traditional Monte Carlo simulation, and 2)
parameter importance, determined using FORM. Block failure probability 



information can help guide designers in decision making and risk 
management for key infrastructure projects, while parameter importance 
provides insight into the most influential variables affecting 3D block 
stability. The latter can be particularly useful to optimize future field or 
laboratory investigations to focus on variables that have the most impact on 
the overall system.

An example analysis using the reliability approach to evaluate 3D block 
erodibility is presented to incorporate variability in the analysis of the 
scouring process at a dam site in Northern California. The failure probability 
of an individual block was calculated as a function of increasing mean 
channel flow velocity (Fig. 9). The computed parameter importance factors 
show that the block protrusion height, h, is by far the most influential 
variable on block stability/erodibility in this example, followed by the 
discontinuity orientations, δ and θ, and the flow velocity, ux (Table 6). Sliding 
friction, represented by the friction, ϕ, and dilation, iϕ, angles, is the least 
influential. Accordingly, from a design standpoint, future erodibility 
investigations would be best focused on determination of h, ux, δ, and θ, 
particularly if given budgetary constraints. This highlights the usefulness of 
the reliability approach to systematically (and optimally) identify variables 
that most impact a system.

Although the focus of the present research is hydraulic loading of rock blocks
in channel flow scenarios, the method can be readily applied to block 
stability problems of similar geometry for other loading conditions (e.g., 
gravity, seepage, overtopping jet) through modification of the active 
resultant force vector, r.
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