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Abstract

It is shown that a material whose thermodynamical state is described
by internal variables oy which are governed by equations of evolution of
the form &i = fi(uj’ak) , where the uj represent the "external" variables
(deformation, temperature, temperature gradient) possesses the property of
fading memory (as postulated by ColeTan) if the fi are differentiable
and if the matrix of their partial derivatives with respect to the o is

negative definite.



1. Introduction

The concepts of irreversible thermodynemics, in particular those of internal
veriables and equations of evolution, were applied to study of linear materisals
with memory by Biot [1-3] and Ziegler [L-6]. Recently these applications have
been extended to include nonlinear materials undergoing large deformations by
Valanis [7-9] and Coleman and Gurtin [10]. The last-named authors point out
that this approach to continuum thermodynamics is but one of several, other
approaches including those based on constitutive equations of differential type
(as assumed by Coleman and Mizel [11], Schapery [12], Perzyna and Olszak [13],
Mandel and Brun [1L4], and others) and on the axiom of fading memory (as formu-

_ lated by Coleman [15] and elsborated by Coleman and Mizel [16], Mizel and Wang
{17] and others).

These approaches are generally acknowledged to be independent of one
another. However, some important bridges have been built: (1) Coleman and
Noll [18] have proved that constitutive equations of differential type are valid
approximations for materials with fading memory undergoing slow deformations;
(2) linear viscoelastic materials of evolutionary type (excluding those with
instentaneous irreversibility) have relaxation functions of negative exponential
form and hence fading memory.

In the present paper it will be proved that, under specific but fairly broad
conditions, the principle of fading memory is obeyed by nonlinear evolutionary
materisls. It thus follows that the generalized stress relations derived by
Valanis [9] and by Coleman and Gurtin [10] are implicit in the work of Coleman
[15], and that the stronger results of the last named (e.g., the independence
of the internal-dissipation and heat-conduction inequalities) are valid under

equivalent constitutive hypotheses.

2. Assumptions



It is assumed that the thermodyna.mie state at time t at & point of a body
is determined by n internal or hidden variables Qys coes o s forming & vector
@ , in addition to the external or observed veriables (deformation or strain,
temperature, temperature gradient) vhich will be denoted by a vector u . The

internal varisbles are assumed to be governed by equations of evolution

¢ = £lu,g) (1)
vhere - = %— . Functions u(t)(t > - ) permitting unique, continuous solu-
tions g(t) of eq. (1) which satisfy g(- ®) = 0 will be considered admissi-

ble. The function g£(u,a) 1is assumed to be differentiable in all n+7r
arguments (r is the dimension of ).

In view of the existence theorem of Carathéodory (see, e.g., Coddington and
Levinson [19]) and the uniqueness theorem of Diaz and Walter [20]%, ;(E(t),g_)
and hence u(t) need not be continuous in t for @(t) to be continuous. Con-
sequently the "present value" a(t) is determined only by the "past history"
u(1) , T <t , and not the present value u(t) . Denoting (as in [15]) by w u (1)
the restriction of u(t1) to T <t , the solution of (1) mey be written in the

form of a functional,

a(t) = glu” (1)} (2)

Furthermore, the Fréchet derivative of @ with respect to a variation w -+ u + YV

Lol

(uw+ v essumed admissible),
t

s a{y_ (0l (0}

T==®

~

is equal to the solution 6g of the variational equation of (1),

These theorems are valid for finite intervals t < t < tl the existence of
1imits of the solutions as t'o + - o ., uniform in Tt ’ “is assumed.



6g = f,8¢ + LV (3)

e

satisfying 6g(- ®) =0 . 1In eq. (3) £, end denote the respective

f
S 4
matrices [afilaajl and [Bfilauk] evaluated at u(t) , a(t) .

If the Helmholtz free energy VY is assumed to be a function of (the present

values of) u and g , then eq. (2) also defines it as a functional of u(T) ,

T < t ~ )
ot
Wlu,e) = ¥lg,ala" (1))
T2 =®
“p (1)
= Y (1)5u)
T8 -« ®
Furthermore,
c_ 3
XA (5)
and, by the chain rule,
6 U= v/ - og . (6)
u

L

To establish the fading-memory property for ¢ it clearly suffices to do
so for g . Once this is done, eq. (5) shows the aforementioned equivalence of
the generalized stress relations.

3. Fading Memory

A

A sufficient condition for the possession of fading memory by & is,
according to Mizel and Wang [17], the existence of & decreasing non-negative

function h(s) (the influence function), 0 < s <« , such that

n2(s)ds < ® (1)

Ok"‘-ﬁs



and
a{uf (1) + YT (1)} - a{u (1)}
(8)
=6 I‘g{t«z’r('r)I}‘r_r('t)} + o(]]xi])
u
where ®
lIv]1? = f ly(t - 8|2 n°(s)as < =, (9)
. :
Izlz =v-:x,and ol ) is interpreted in the sense "as the argument goes to

zero". The following theorem will now be proved:

If £ is bounded and £, is negative definite for any admissible u(t)

-

and the corresponding g(t) then the functional o has the fading-memory prop-

erty with an influence function h(s) given by

o e , 0<s <1l/k
h(s) = - T (10)

kse 1/k <s

where k is a positive number such that y ° < - ky°y for any n-vector y .
L g’ - ~ e -~

L. Proof of the Theorem

The negative definiteness of f_  implies the existence of k . The

o

L d

boundedness of implies the existence of a positive number m such that

f
3
£zl ¢ mlzl (1)

for any r-vector 3 .

Let us denote the left-hand side of eq. (8), viewed as a function of t ,

. by B(t) . Then
B=tlu+yg+p)-flua . (12)

Furthermore, let Y denote B - 8g , and let us subtract (2) from (10), writing

the result as



(13)

=
L]
S
.
+
e

where
Lo d

w=glo+x,a+8) -t -Ly-LL.

The differentiability of f dimplies

w = o(/IzI2+ Igla).

The Schwartz and triangle inequalities yield

2
Avl® + 1812 < |xl + 18] < Izl + lsgl + Iy

Hence, using the distributive property of the o symbol (for this and other

properties, see Erdelyi [21]) we have
W= o(lxl) + o(|6a]) + o(lxl) . (1%)
Let ®(t3t) be the n xn matrix solution of

®6=f£0 (15)

satisfying ®(7;T) = I , the unit matrix. Then the solution of (13) may be

written as

t
y(e) = [ eltsou(var . (26)
~ J

=€

A result due to Wazewski [22] states¥

*

In [22] continuity of all functions is assumed. The proof in Zadeh and Desoer
[23] dispenses with this assumption. See also & similar result attributed to
Wintner by Cesari [24]. '



t
Js(X)dx
|o(t;T)w(t)| < e lw(T)| (17)

vhere s(t) is the largest eigenvalue of 1/2 (f_ + 1’2) . Since, by hypothesis,

] Q
s(t) < -k
we have .
t
]ﬁt)l < e'k(t'T)IQ('r)]dT . (18)

Combining the inequality (18) with the asymptotic expression (1L) and using the

commutativity of the o symbol with integration [21], we obtain

t
il(t)l =0 f e-k(t-T)Ix(T)IdT
- (19)
t \ 1‘.
+ 0 f e'k(t"r)ldsg(‘r)ldr); + 0 ] e'k(t'T)Iy(T)Id‘r .
/ Zoo

Considering, first, the last term of (19), we see that its contribution to
l ll will vanish faster than the approximation which neglects this term. Hence
we need only investigate the contributions of the other two temms.

For the argument of the first term we readily see

t
J! e'k(t-r)lx(‘r)ld'r=f e-kslx(t-s)ldsff hz(s)ly_(t-s)lds . (20)
) 0 o

if h2(s) is given by (10). Furthermore, by the Cauchy-Schwartz

inequality,




y: 2 7 P 2 -1 2
f h2(s)|z(t-s)|ds" ff n2(s)ds _[ n2(s) [y(e-s)] as = 22 1% | o
0 ] o 0

with ||v|| given by (9). Hence the first term is of||v|]) .

To evaluate the second term we first solve eq. (3):

t
6g=f ¢(t;1)B(1)y(T)ar

(22)
where B(t) = .1"“(5(1) » (1)) . Using, again, WaZewski's inequality, as well
as the boundedness of ;‘u » We obtain
-]
=ks
l6a(t)] < m f 2|y (s-s) [as (23)
P
0
Noting that
t . , ®
f e-k(t-‘t)f %8|y (1 - &)]as ar
=00 0

se-kslx(t - 8)|as

0‘"1*\8

< %— j’ h2(s)lx(t - 8)lds ,
(o]

with h2(s) given by (10), we find, through (21), that the second term of (19)
is also of||v|]|) . The theorem is thus proved.

5. Remarks

a. The functionals (2) have been proved to possess fading memory in .the



sense of Coleman [15]. The materials which they characterize are, however,
somevhat more general than those considered by Coleman, who explicitly limited
himself to the simplest hypothesis campatible with equipresence. In part;cular,
Coleman assumed the constitutive functionals to be independent of the past his-
tory of the temperature gradient and depend only on its present value. It is
this latter dependence of the free-energy functional and hence the stress and
entropy which is then eliminated by the Clausius-Duhem inequality. In view of _
eq. (4), an equivalent assumption for evolutionary materials would be that for
each i (i=1, ..., n) either 3¢/3ai =0 ,or f, is independent of temper-
ature gradient.

b. Let T be a generalized stress vector conjugate to u such that
1= *2 . (24)

Differentiation of (24) with respect to time, together with elimination of 'é

by means of (1), yields

2 2
. Y . Y
t, = u, + f (2 g) (25)
in auiauJ 3 8uiaak ) S
and, more generally,
2, a%u s-1
- N i . Ty
at® Ty auiauJ at® + ¢is (2»2’2’ cece dts'l) ' (26)

s =1,2, ... . It is possible, in principle, to take n independent equations

of the form (26) and solve then for g in terms of time derivatives of T and

u , the result being substituted in (24) which then becomes a constitutive
equation of rate type. Evolutionary materialé are therefore both of fading-memory

and of rate type,
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