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ABSTRACT OF THE DISSERTATION 

 

Developing Native Top-Down Mass Spectrometry 

to Reveal Information on Protein Structures 

 

by 
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Doctor of Philosophy in Chemistry 
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Professor Joseph A. Loo, Chair 

 

The interrogation of protein structure, especially identifying and localizing post-

translational modifications (PTMs) and binding sites of protein and ligand/small molecule 

interactions, is crucial for understanding protein function. Native- and native top-down 

mass spectrometry (nTD-MS) have become prominent analytical tools for protein 

characterization. The work here has addressed several experimental issues to increase the 

applicability of nTD-MS for elucidating protein structures. We have selected supercharging 

agents based on their pKa values, and demonstrated that the addition of supercharging 

agents can help deposit more charges on the protein ions during the ESI process. Increasing 
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the precursor charge state enhances the efficiency of tandem mass spectrometry processes 

used to fragment large biomolecules. Additionally, we have investigated methods to 

generate sequence-specific fragments directly from protein complexes using 

activation/dissociation techniques alternative to traditionally used collision-based 

strategies, e.g., electron capture dissociation (ECD). Lastly, we applied our nTD-MS 

methods to aid in the determination of the higher order structure of a potential human E3 

ligase. My dissertation research can contribute to advancing mass spectrometry workflows 

to achieve more efficient structure characterization of protein complexes, and provide 

complementary information for conventional structure analysis (e.g., electron microscopy, 

crystallography). 
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Chapter 1: Introduction 

Mass spectrometry 

Mass spectrometry (MS) has become a critical technique for revealing molecular 

compositions and measuring the mass of individual compounds and mixtures of small 

molecules1, carbohydrates2, oligonucleotides3, lipids4, and proteins5-7, in the gas phase. 

Figure 1 shows the four major components for a mass spectrometer: the ionization source, 

mass analyzer, ion detector and data system. In an MS experiment, the sample is introduced 

into the mass spectrometer by direct infusion, or through gas- or liquid- chromatography, 

and is subsequently transformed into gas-phase ions in the ionization source. The gas-phase 

ions are separated and measured by the mass analyzer based on their (mass-to-charge ratio) 

m/z values, and are detected by the ion detector (and transformed to electric signals). The 

electric signals are then converted into digital information, and shown as a mass spectrum.  

 

Figure 1. Four major components of a mass spectrometer. 

 

There are several ionization techniques available, and these can be separated into hard 

ionization, for example, electron ionization (EI)8, 9, and chemical ionization10; and soft 

ionization methods such as electrospray ionization (ESI)11, 12, matrix-assisted laser 

desorption ionization (MALDI)13-15, and desorption electrospray ionization (DESI)16 that 

are commonly used for biomolecules, as they can preserve analytes in their intact forms 

during the ionization processes without significant analyte degradation (fragmentation). 

ESI has been widely used because of its high sensitivity and capability to couple on-line 
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with separation methods such as liquid chromatography (LC)17 and capillary zone 

electrophoresis (CZE)18. During the ESI process, the analytes are transferred into the gas-

phase by applying a high voltage to a glass capillary coated with Au or Pt. The high electric 

field creates a Taylor cone of solution that releases droplets containing analytes. These 

droplets become smaller and smaller as they travel towards a counterelectrode due to the 

charge repulsion and solvent evaporation, and are finally desolvated. The gas-phase analyte 

ions can be released with multiple charges for large molecules can retain multiple charge 

sites12. There are several theories explaining the ESI process including the charge residue 

model19, 20, ion evaporation model21, and the chain ejection model22. Each model addresses 

different types of analyte sizes and structures, e.g., small versus large molecules, folded 

versus unfolded proteins, etc. 

In MALDI, the ionization of analytes involves the use of a laser to ablate the analytes 

mixed with a matrix in excess on a metal plate.23 The matrix molecule that has high 

absorptivity at the laser wavelength absorbs the photon’s energy and transfers some this 

energy to the analyte molecules to ionize them into the gas-phase without excessive 

fragmentation.24 ESI and MALDI have been used to ionize peptides14, 25, intact proteins26, 

and protein complexes27, since the late 1980s.  

After being transferred into the gas-phase, the analyte ions are transmitted from low 

vacuum to high vacuum to a mass analyzer through ion funnels28, 29, quadrupoles30, and 

other ion guides to prevent the scattering of ions and focus the analyte beam towards the 

analyte detector. This greatly increases signal-to-noise ratio, and therefore increases the 

sensitivity of mass spectrometers.  
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Mass analyzers such as quadrupole31, 32, Time of Flight (TOF)33-36, Fourier transform ion 

cyclotron resonance (FT-ICR)37-39 and Orbitrap40-42, are playing very important roles in 

separating and detecting ions based on their m/z. Quadrupoles are one of the most 

commonly used mass analyzers. They are made of four rod electrodes aligned in parallel, 

allowing ions to pass through. When an electric field is applied to the electrodes, the ions 

can be separated based on their m/z.32 Quadrupoles are not only used as a mass analyzer, 

but also as mass selectors. As a mass selector, ions with a given range of m/z can be selected 

and transmitted for further activation43, 44, by applying direct current (DC) and radio 

frequency (RF) potentials to the electrodes to filter ions.45 

A TOF mass analyzer detects analyte ions by pushing ions from a trapping region to an 

electron multiplier detector34, and measuring the time for each ion to reach the detector. 

The ion trajectory is depending on the kinetic energy gained from the initial ion 

acceleration, therefore, the time for each ion to reach the detector correlates to the m/z of 

the ion.33, 36 TOF analyzers are among the most commonly used mass analyzers because of 

its fast speed and high sensitivity.44, 46-50  

There are two mass analyzers, Orbitrap and Fourier transform ion cyclotron resonance (FT-

ICR), in the Fourier Transform MS (FTMS) category.51 In FTMS instruments, ions are 

excited into an orbit and the cyclotron frequency in FT-ICR MS39 or the oscillated axial 

frequency in Orbitrap MS40 is recorded. The digitized image current in the time domain is 

converted to the frequency domain to generate a mass spectrum by performing a Fourier 

transform51, 52. (The frequency of an ion is inversely proportional to its mass.) FTMS has 

been widely used to obtain very accurate masses for a wide range of molecular types 

because of its ultra-high resolution and the ability measure frequency accurately.17, 53, 54 
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Native Mass Spectrometry for Protein  

Proteins are highly versatile biomolecules in biological systems, playing essential roles in 

many biochemical processes. Their functionality is intricately tied to their structures. 

Proteins can adopt stable structures, exhibit conformational flexibility, or even display 

intrinsic disorder. Factors such as mutations, post-translational modifications (PTMs), and 

binding with ligands (such as cofactors, drugs, proteins, oligonucleotides) have significant 

impacts on their structures, functions, and dynamics.55, 56 Therefore, understanding protein 

structures and protein-ligand interactions is crucial for unraveling fundamental molecular 

mechanisms in life, as well as for advancing drug design, disease diagnosis, and therapeutic 

interventions. The diverse and dynamic nature of proteins and protein complexes presents 

significant challenges in characterizing their structures.  

Native mass spectrometry (nMS) involves analysis of biomolecules, predominantly intact 

proteins and protein complexes, and provides high resolution information on protein, 

proteins and protein complexes.27 In order to obtain a native mass spectrum, the protein is 

dissolved in a solution that preserves its native structure in solution, and ionized with soft 

ionization sources such as ESI with minimal activation to maintain its native structure. 

Generally, a protein is dissolved in a (50 mM-1 M, pH ~7) ammonium acetate solution that 

is sufficiently volatile so that the protein can be desolvated easily during the ionization 

process.6 Using ammonium acetate for native ESI-MS has been considered to minimize the 

perturbation of the native structure of proteins and protein complexes when ionizing 

proteins from aqueous droplets and its transition to a gas-phase ion.57 In addition, applying 

minimal activation is also critical for maintaining their native structures. This technique 

has become a valuable tool for examining intact proteins in their biologically active states. 
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Previous studies have shown that inter- and intra-molecular noncovalent interactions as 

well as protein-ligand interactions have been preserved during the ESI process and detected 

in various types of mass spectrometers.58-61 Chapter 4 in this dissertation shows an example 

of using nMS to probe binding events between potential E3 ligase and its substrates. 

By deconvoluting native ESI mass spectrum (to a zero-charge spectrum), an accurate mass 

of a protein can be obtained. The deconvolution routine involves consolidation of the 

protein’s multiple charge states to mass values. Several algorithms have been developed 

for this purpose, such as UniDec62 and PMI63. These algorithms have been successfully 

applied to various types of spectra, including spectra of large protein complexes, e.g., 147 

kDa alcohol dehydrogenase (ADH) homotetramer, membrane protein-lipid complexes, and 

intact antibodies,63-65 demonstrating their capability to provide precise molecular weight 

measurements for native proteins. 

Tandem MS and Fragmentation Techniques for Proteins and Peptides 

Tandem MS (i.e., MS/MS) is a powerful method for obtaining additional sequence, PTM 

and structure information for a polypeptide. Tandem MS for protein analysis can be 

separated into two categories: bottom-up mass spectrometry and top-down mass 

spectrometry (TD-MS) (Figure 2). In bottom-up mass spectrometry, before introducing 

proteins into the mass spectrometer, protease digestion (typically using trypsin) and 

reduction of disulfide bonds are required. The resulting peptide fragments are then loaded 

into an on-line high-performance liquid chromatograph for liquid-phase separation, and the 

eluants are measured by MS and tandem MS.66 Alternatively, in TD-MS, digestion is 
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bypassed and the protein is directly introduced into the mass spectrometer for ionization 

and dissociated (via MS/MS) to generate sequence information.67  

 

Figure 2. Workflows for bottom-up mass spectrometry (left) and top-down mass 

spectrometry (right). 

 

Tandem MS has been commonly used for characterizing the primary (i.e., sequence) and 

higher-order structure of peptides17, proteins60, 68, and protein complexes61, 69, 70. To 

perform MS/MS experiments, a specific m/z window (~10 m/z) or a wide m/z range is 

selected an isolated by a quadrupole filter and subjected for protein backbone cleavage to 

generate fragment ions that are measured by the mass analyzer and can be mapped back to 

the protein sequence.71 Fragments released from N-terminus can be a-, b-, or c-fragment 

ions, and fragments released from C-terminus can be x-, y-, or z-fragment ions depending 

on the fragmentation method used.72 Besides terminal fragments containing either 

terminus, internal fragments that contain neither terminus has also been observed. Internal 

fragments are generated by multiple protein backbone cleavages73, and can cover sequence 

and PTM information located in the interior regions of the polypeptide sequence74. During 
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the past few decades, various dissociation methods have been developed including 

collision-, electron-, and photon-based dissociation techniques to elucidate sequence and 

structure information of proteins.  

Collision-Based Dissociation 

Collision induced dissociation (CID) is one of the most commonly used dissociation 

methods. CID is a relatively slow heating process, in which kinetic energy is converted 

into internal energy of a protein by colliding peptides or proteins with numerous non-

chemically reactive gas molecules such as N2, Ar, and Xe, which eventually causes peptide 

backbone cleavages.75 This technique is robust and efficient at fragmenting peptides and 

proteins; it has been widely used for peptide and protein sequencing and PTM 

localization76, although CID tends to cause protein unfolding during the fragmentation 

event due to the longer fragmentation timescale77. CID has also been used to reveal the 

composition78, 79 and stoichiometry80 of protein complexes. Despite its numerous 

applications, CID experiments (and any other dissociation method) suffers from a low mass 

cutoff (LMCO) in ion trap mass spectrometers, resulting in the truncation of the low m/z 

region81, therefore limits the detection of short fragment ions. On the contrary, high energy 

C-trap dissociation (HCD) specific to Orbitrap analyzers, a type of CID, uses a separate 

collision cell for fragmentation, which overcomes the limitation of LMCO. Additionally, 

HCD occurs at a slightly faster timescale with high energy, and shows an ability to generate 

fragments that can reveal high-order structure of the protein complexes, without unfolding 

the proteins.70 However, CID and HCD are considered as harsh dissociation methods due 

to the interruption of some noncovalent interactions. To overcome these problems, 

electron- and photon-based fragmentation can be used alternatively.  
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Electron-Based Dissociation 

Electron capture dissociation (ECD)82, 83 and electron transfer dissociation (ETD)84 are two 

electron-based dissociation methods that are generally considered as soft dissociation 

techniques.85 This feature enables us to easily obtain information from native protein 

complexes69 and protein-ligand complexes60, and to reveal higher-order structure 

information on protein complexes. In ECD, low-energy electrons (< 2 eV) are directly 

captured by the multiply charged protein cations to produce charge-reduced species as well 

as protein backbone cleavages.86 ECD has been traditionally operated on FT-ICR MS as 

the magnetic field can confine the electron beam to interact with proteins. Recently, ECD 

has been developed to perform on TOF87 and Orbitrap MS as well.88 In ETD, negatively 

charged radical anions reacts with the multiply charged protein cations resulting in a charge 

reduced species and an odd-electron cation that further undergoes free-radical-driven 

cleavage.89-93 However, ECD and ETD fragmentation efficiency is generally lower 

compared to CID and HCD, which could limit its sequence coverage. In recent years, 

electron induced dissociation (EID), a newer electron-based fragmentation method 

utilizing higher energy electrons (>20 eV),94-96 has emerged and been applied to overcome 

the limitation. In EID, the reaction between protein cations and high energy electrons 

generates oxidized radical species resulting in protein backbone cleavages.94 Our lab has 

demonstrated the application of EID for fragmentation of protein complexes and the 

generation of internal fragment ions.97, 98 
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Photon-Based Dissociation 

Additionally, photon-based dissociation is achieved by an analyte absorbing the photons 

for energy deposition. A wide range of wavelengths of the photons, from low-energy 

infrared (IR) to high-energy ultraviolet (UV), has been commonly utilized for protein 

fragmentation. Infrared multiple-photon dissociation (IRMPD) is performed by slowly 

heating proteins with low frequency photons to cleave protein backbones, generating 

similar products as CID and HCD.99 Another application of IRMPD is to break hydrogen 

bonds or salt bridges and release fragments generated by other dissociation methods (e.g., 

ECD and ETD) from the protein.69  

Ultraviolet photodissociation (UVPD) is performed by employing photons in UV range 

(e.g., 157 nm100, 213 nm101, and 266 nm102) of the electromagnetic spectrum to cleave 

protein backbones. UVPD, a faster heating process, cleaves C-Cα bonds and N-Cα bonds to 

generate all six types of terminal fragment ions (N-terminal a-, b-, c-fragment ions and C-

terminal x-, y-, z-fragment ions). UVPD has been used effectively to reveal the location of 

covalent and noncovalent modifications on proteins and to characterize peptides and 

proteins.103, 104 

Native Top-Down Mass Spectrometry of Protein Complexes 

Native mass spectrometry has been shown the capabilities in determining the molecular 

weight, stoichiometry, proteoforms, and binding affinity of protein complexes.7, 105 

However, certain structural details such as sequence, PTMs, subunit interfaces, and ligand 

binding sites cannot be directly revealed by nMS alone. Additionally, top-down mass 

spectrometry (TD-MS) under denaturing conditions enables sequencing of intact proteins, 
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localization of PTMs, and differentiating proteoforms. However, TD-MS loses information 

on higher order structural details, including noncovalent interactions that are essential for 

understanding protein functions as they fold into three-dimensional (3D) shapes, and 

assemble into protein complexes through noncovalent interactions. In the early years, nMS 

and TD-MS were performed separately. However, with the development of various 

dissociation approaches, the integration of nMS and TD-MS to nTD-MS has significantly 

enhanced higher-order structure analysis of protein complexes such as membrane 

proteins106-108, and larger assemblies such as the proteasome109 and the ribosome110, 111. 

To obtain higher-order structure information of protein complexes, native protein or protein 

complexes are directly subject for fragmentation. Minimal activation is applied to the 

protein complex (i.e., native MS) prior to MS/MS fragmentation so that the TD-MS 

experiment probes the native state (in the gas-phase). In nTD-MS, protein complexes have 

traditionally been fragmentated by ExD and UVPD, as these techniques has been found to 

produce fragment ions that can reflect high-order structure characteristics. For example, it 

has been found that ExD generates predominant N-terminal fragments and few C-terminal 

fragments from ADH tetramer.89, 112 The ADH fragmentation pattern is consistent with its 

crystal structure that shows its N-termini to be in a solvent exposed region, whereas the C-

termini region is closer to buried subunit-subunit interfaces. In addition, nTD-MS can 

reveal regions of stability of protein complexes, for example, the glutamate dehydrogenase 

homohexamer.69 UVPD has also shown the capability to preferentially generate fragments 

from solvent exposed regions of protein complexes, however, the vibrational excitement 

of the protein causes deeper sequence cleavages.113, 114 The results from nTD-MS can also 

reveal locations of covalent modifications and noncovalent interactions (e.g., protein-
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ligand interactions) along the sequence. ECD has been used to probe the binding site of a 

zinc metal ion on ADH.115 UVPD has also been utilized to localize heme on myoglobin116 

and metal ions on insulin pentamer113 and other metalloproteins104.  

Complex-Down Mass Spectrometry of Protein Complexes 

Complex-down MS (i.e., pseudo-MS3) has been used to elucidate the stoichiometry of 

protein complexes with noncovalent interactions, and provide sequence information at the 

same time. In complex-down MS, a native protein complex is ionized into the gas-phase, 

and dissociated into monomers by applying in-source CID (ISD) or subcomplexes by 

surface induced dissociation (SID). Released monomers are subsequently isolated and 

activated to generate fragment ions. There are several applications of complex-down MS. 

Complex-down MS has been used to fragment large protein complexes such as GroEL 

14mer117 and virus-like particles118 to obtain sequence and structure information. Complex-

down MS has also been used to determine different proteoforms such as mutations, 

modifications, and deletions on protein complexes. Complex-down fragmentation of the 

20S proteosome revealed the proteoforms with acetylated N-terminus and the loss of the 

last two amino acids on the C-terminus.109 Lastly, our lab has compared the difference 

between nTD-MS and complex-down fragmentation patterns to infer higher-order structure 

information of protein complexes. Complex-down fragmentation of the ADH 

homotetramer reveals nearly equal number of N- and C-terminal fragments, whereas native 

top-down MS of ADH mainly generates fragments from N-terminus, which is consistent 

with its higher-order structure, e.g., the N-terminus of ADH is more solvent exposed, 

whereas the C-terminus is closer to monomer interfaces.70 Other examples in Chapter 2, 3 
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and 4 in this dissertation also show that nTD-MS and complex-down MS in combination 

can expose higher-order structure information from intact protein MS experiments.  
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Abstract 

Electron capture dissociation (ECD) is an activation/dissociation  technique that utilizes 

electrons to dissociate the backbone bonds of large biomolecules, including proteins and 

protein complexes. It is particularly effective for top-down mass spectrometry (TD-MS) to 

determine the presence of posttranslational modifications and for extending the sequence 

coverage of TD-MS measurements. When combined with native MS, ECD offers 

information on the binding site(s) of ligands and the surface topology of proteins and 

complexes. Conventionally, ECD has been performed on Fourier transform ion cyclotron 

resonance (FT-ICR) mass spectrometers because the magnetic field used to trap ions can 

also be used to focus the electron beam for effective ion dissociation. Recently, ECD 

devices have been adapted to other types of mass spectrometers, including quadrupole 

time-of-flight (QTOF) and Orbitrap systems. As a result, ECD has become available to a 

greater number of labs. The present work demonstrates that native TD-MS with ECD on 

an Orbitrap mass spectrometer provides extensive sequence information for numerous 

protein complexes. For proteins that do not release fragment ions when subjected to 

collision induced dissociation (CID), sequence-bearing product ions are measured when 

subjected to ECD and subsequent CID. In addition, the sites of ECD cleavage appear to 

correlate well with the protein’s solvent accessibility and its native structure. 
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Introduction 

Many proteins assemble into complexes to function in the cell and that structure often 

relates to function, making precise structure characterization (e.g., stoichiometry and 

subunit interactions) important. Conventional methods for high-resolution, three-

dimensional structure analysis, such as X-ray crystallography1, electron microscopy (EM)2 

and nuclear magnetic resonance (NMR)3, can fail due to sample heterogeneity or the 

limited size range of the technique. Native mass spectrometry (nMS) and native top-down 

mass spectrometry (nTD-MS) complement high resolution techniques in a selective and 

sensitive manner4, 5, delivering information on sequence6, sites of post-translational 

modifications (PTMs)7, stoichiometry and spatial layout8. Although nMS and nTD-MS 

provide only low-resolution structural information, their compatibility with sample 

heterogeneity4, wide mass range9, and  high throughput5 often enable mass spectrometry’s 

utility to surpass that of other techniques. Merging information from nMS experiments 

with that from other analyses can deliver a comprehensive characterization for an analyte10. 

The range of experimental approaches and applications of tandem MS (MS/MS) to protein 

complexes continues to expand11, 12. As defined12, nTD-MS entails activating one or more 

charge states of a noncovalent assembly and analyzing the products, e.g., subunits, 

multimers, and/or covalently cleaved polypeptides. In complex-down MS12, a 

noncovalently bound assembly (one or more charge states) is first activated (usually 

through in-source dissociation) to release subunits, some of which are charge-state isolated 

for subsequent activation and dissociation. With either method, isotopically-resolved 

product ions13 are assigned to cleavage sites, confirming primary structure, i.e., sequence. 

Differences between the product ion distributions obtained by nTD-MS and complex-down 
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MS (pseudo-MS3)12 may reveal vestiges of quaternary structure. Popular dissociation 

methods for TD-MS include collisional induced dissociation (CID)14, electron-based 

dissociation (ExD)15-18, and photon-based dissociation19, 20. The product ions formed by 

top-down MS can be terminal, including either the N-terminus (a, b, or c products) or the 

C-terminus (x, y, or z products). Less commonly considered are internal fragments (ax, ay, 

az, bx, by, bz, cx, cy, or cz products) that result from multi-site cleavages of the polypeptide 

backbone6, 21, 22. We have found that higher energy collisional dissociation (HCD), a type 

of CID that is found on orbitrap analyzers, cleaves some polypeptide bonds directly from 

noncovalent assemblies23, in contrast to the sequential process typically envisioned, i.e., 

unfolded monomer ejection followed by activation and covalent bond cleavage. The 

timescale for the former pathway appears faster than that of conventional CID23. 

Nevertheless, HCD’s utility can be constrained by the extent of backbone cleavage 

obtained, limiting sequence coverage and PTM localization24, especially for large 

complexes. 

Electron-based dissociation, such as electron capture dissociation (ECD), electron transfer 

dissociation (ETD), and electron ionization dissociation (EID), are alternatives that 

overcome some of those disadvantages. Traditionally performed on Fourier transform-ion 

cyclotron resonance (FT-ICR)6, 25 and quadrupole time-of-flight (Q-TOF) MS 

instruments26, ECD is now enabled on quadrupole TOF and Orbitrap-based instruments by 

a commercially available ExD cell27, 28. With extended m/z isolation and detection, the 

Orbitrap can perform ECD on a single charge state of a large protein complex. When the 

precursor transits the confined electron-beam, charge reduction occurs, followed by N-Cα 

backbone cleavage18, 26, generating c/z- terminal and, potentially, internal fragments. One 
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of ECD’s important advantages is that it preserves labile, noncovalent bonds, while 

cleaving covalent backbone N-Cα bonds, to yield product ions from solvent-exposed 

regions29-31. Thus, ECD is a powerful tool for localizing noncovalent interactions, e.g., 

ligand binding sites32.  

Here, we report on the coupling of ECD with nTD-MS on an ultra-high mass range Orbitrap 

analyzer. For native protein complexes up to 464 kDa, nTD-MS with ECD returns 

structural information from protein complexes, and the data are comparable to previous 

FT-ICR measurements. 

Experimental 

Sample preparation. Malate dehydrogenase (MDH) from pig (66 kDa), rabbit aldolase 

(158 kDa), β-galactosidase (β-GTD) from E. coli (464 kDa), glutamate dehydrogenase 

(GDH) from bovine liver (334 kDa), yeast alcohol dehydrogenase (yADH) (147 kDa), and 

50 kDa and 100 kDa Millipore Amicon Ultra filters were purchased from Sigma-Aldrich 

(St. Louis, MO, USA). Samples were buffer exchanged with 50 kDa or 100 kDa filters into 

150 mM ammonium acetate (pH ca. 6.8) to a final concentration of 5-15 µM. 

Native Top-Down and Complex-Down ECD MS. All experiments were performed on a 

Thermo Fisher Scientific Q Exactive Ultra-High Mass Range (UHMR) Orbitrap mass 

spectrometer with an ExD cell developed by e-MSion (Corvallis, OR, USA). The ExD cell 

is mounted between the split lens/ion selection quadrupole and the C-trap of the UHMR 

Orbitrap. The ExD cell itself is a cylinder containing two high-temperature magnets and a 

set of electrostatic lenses arranged symmetrically around the central hot electron-emitting 

filament. Thermal electrons are produced by a hot circular rhenium wire filament located 
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in the middle of the ExD cell, encircling the ion beam. The high temperature magnets 

provide a magnetic field that confine the high densities of low energy electrons to the ion 

flight path in the ExD cell. 

Protein solutions were loaded into Pt-coated borosilicate capillaries on a nanospray 

ionization source and electrosprayed at 0.7 – 1.7 kV, 200 ℃. The S-lens RF was set at 100 

eV. In-source CID was set over a range of 40-120 eV for complex-down experiments. A 

single charge state or a few charge states were isolated by the quadrupole for top-down or 

complex-down MS for each protein complex. The ions were transferred into the ECD cell, 

where they were subject to electron capture, then into the HCD cell for post-ECD 

collisional activation, i.e., activated ion ECD or EChcD. The filament current was set at 

2.23 A. The HCD collision energy was optimized to minimize the generation of b/y ions. 

Additional details of ExD cell (Figure S1) tuning parameters are provided in the Supporting 

Information (Table S2). All spectra were acquired at 100,000 resolution (m/z 400) with a 

noise threshold set to 3. Each spectrum is a result of an averaging 500 scans. 

Data Analysis. All spectra were deconvolved using BioPharma Finder 5.0 (ThermoFisher 

Scientific, Waltham, USA). Deconvolved peaks were assigned by ClipsMS 2.0.033 with an 

error tolerance of 3 ppm. Sequence assignments accommodated the major ECD (c, c+H, 

c-H, z, z+H, z-H, cz, cz+H, cz-H) and HCD (b, y) ion types without considering neutral 

losses ions, except when explicitly mentioned. N-terminal acetylation and a V58T mutation 

were included in the fragmentation assignments for yADH. Terminal and internal 

fragments were manually validated by confirming that measured isotope distributions 

matched closely with the theoretical distributions for each fragment ion. An example of 

spectra for a validated internal fragment are shown in Figure S2. 
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Solvent Accessible Surface Area (SASA) Calculation. SASA was calculated by uploading 

the deposited Protein Data Bank (PDB) file for each protein complex to the website 

http://cib.cf.ocha.ac.jp/bitool/ASA/. This site calculated accessible surface area by Shrake 

and Rupley’s method34. Relative accessible surface area was determined by dividing the 

sum of accessible surface areas by the maximum accessible surface area. The latter value 

was obtained by modeling each side chain in its extended form35. 

Results and Discussion 

Previous reports of nTD-MS using ECD suggests that information can be returned for 

protein complexes that is relevant to its three-dimensional structure.12, 24, 31, 36 For example, 

ECD-MS of homotetrameric aldolase reveals primarily z-ions, consistent with a more 

solvent-exposed C-terminus.36 To determine if ECD using an orbitrap instrument can also 

provide not only sequence information but also reveal conformation-sensitive product ions, 

nTD-ECD/MS experiments were performed on a series of protein complexes. This data 

was compared to complex-down MS experiments12, in which a subunit of from the protein 

complex is ejected by in-source CID, and this ejected subunit is subsequently subjected to 

ECD fragmentation. In principle, released protein subunits via complex-down MS should 

be unfolded and/or have more surface area exposed compared to the intact native complex. 

Native Top-Down ECD of Aldolase 

Aldolase is an enzyme that reversibly catalyzes cleavage of fructose-1,6-biphosphate to 

dihydroxyacetone phosphate (DHAP) and glyceraldehydes-3-phosphate in glycolysis37. 

Each subunit has 363 amino acids with an average mass of 39,212 Da, and the measured 

mass of its corresponding tetrameric complex is 156,939 Da. Figure S3 shows the mass 

http://cib.cf.ocha.ac.jp/bitool/ASA/
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spectrum of the aldolase tetramer under native solution conditions. The 26+ charge state 

ion was isolated and subjected to ECD aided by post-ECD collisional activation of 70 V to 

disrupt any intramolecular interactions preventing ECD fragments from being released and 

observed.  

Figure 1 shows the nTD ECD spectrum of the aldolase tetramer. Product ions resulting 

from the cleavage of N-Cα bonds were found in the m/z 500-3200 region and assigned. 

nTD-MS yielded 57 z-ions (bearing the C-terminus) from residues 215-350, but only 2 c-

ions and 10 cz-internal fragments, resulting in a sequence coverage of 21%. (Sequence 

coverage in TD-MS experiments is defined as the number of inter-residue cleavages 

relative to the total number of inter-residue cleavages defined by the protein’s amino acid 

sequence.) The relatively high proportion of z-ions in the aldolase native ECD spectrum is 

similar to previous results obtained by HCD on the same instrument23. The three-

dimensional structure of aldolase tetramer (PDB 1ADO)38 is shown in Figure 1D. Mapping 

fragments onto the crystal structure shows that the C-terminal region is more solvent 

exposed than the interface-forming N-terminal region.   
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Figure 1. (A) nTD ECD mass spectrum of aldolase tetramer 26+ charge state. (B) 

Expanded region from m/z 1000 to 3000. (C) Fragment location map of aldolase tetramer 

with ECD. ECD c/z-fragments are indicated by red dots, HCD b/y fragments are shown by 

blue dots; the size of the dots represents the relative intensity of each fragment.  (D) ECD 

fragments mapped onto the aldolase tetramer crystal structure. N-terminal fragments are 

colored in red, C-terminal fragments in blue, and protected region in green. 

 

To demonstrate that nTD-MS probes the native structures of protein/complexes, complex-

down MS of the aldolase tetramer was performed by using in-source CID to release a 

monomer subunit. The resulting 15+-charged released monomer subunit was subjected to 

ECD; both N- and C-terminal fragments of aldolase were generated: 9 c- ions, 16 z-ions 

and 11 cz internal fragment ions, covering 11% of the sequence (Figure 2).  The lower 

sequence coverage for complex-down MS compared to native top-down MS could reflect 

the lower intensity of the monomer precursors in the former (6.57E3) compared to tetramer 

precursors in the latter workflow (1.12E4), but it more likely reflects the quaternary 

structure of aldolase. Previous activation of this same protein by HCD also delivered higher 

(C) (D)

T26+

(A) (B)
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sequence coverage by nTD relative to complex-down MS on the same instrument23.  

 

Figure 2. (A) Complex-down MS of aldolase 15+ charged monomer with ECD. (B) 

Fragment location map of aldolase monomer with ECD. ECD fragments showed in red 

dots, HCD fragments showed in blue dots. 

 

Surprisingly, even though the complex-down precursor is a charge-enriched 15+ subunit, 

its product ions in common with nTD of 26+ tetramers (i.e., z68 and z130) carry charge 

amounts similar to those in nTD. The z68 product was observed with 3-5 charges by nTD 

and 3 charges by complex-down. Likewise, z130 was observed bearing 6-8 charges by 

complex-down and 7 charges by nTD. These similar charge densities are not consistent 

with the typical rationalizations for monomer ejection based on the dominating effects of 

charge repulsion and proton migration39. Likewise, the higher sequence coverage delivered 

by nTD compared to complex-down might be unexpected, given that the dominant 

paradigm assumes that ejected monomers are unfolded. These results should encourage the 

native mass spectrometry field to revisit long-held assumptions about gas phase structures 

and forces. 

To compare the complex’s surface accessibility to the nTD ECD data, we mapped c-ions 
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onto the crystal structure in red, z-ions in blue and protected regions in green (Figure 1D). 

The nTD ECD product ions are mainly located on the exterior of the tetramer. To further 

understand these results, we calculated relative solvent accessible surface area (SASA) and 

B-factors of each residue. In X-ray crystallography, the B-factor indicates the flexibility 

and dynamics of a polypeptide chain40, 41; a higher B-factor indicates greater side chain 

flexibility. The SASA of proteins is a decisive factor in protein folding and stability, and 

is defined as the surface around a protein created by rolling a solvent sphere over the van 

der Waals surface of the molecule42. Relative SASA of each residue was calculated as 

described35. A higher relative SASA indicates more solvent accessibility. We averaged B-

factor and relative SASA separately for all four chains, plotting the average B-factor 

(Figure S4A) and averaged relative SASA (Figure S4B) as a function of the residue 

location, and found that their correlation to fragmentation was similar, but incomplete. 

Clearly, other factors contribute to ECD fragmentation and its efficiency, e.g., electron 

density distribution on the protein complex surface, N-terminal proline effects43, 44, and 

strength of noncovalent interactions. The calculations confirm that regions of the sequence 

with low solvent accessibility correspond to regions where limited or no cleavage is 

observed. These results also support the idea that nTD ECD cleaves without altering the 

native conformation of protein complexes. Direct ECD fragmentation of some protein 

complexes can reveal regions of solvent accessibility. 

For the aldolase complex, in comparing these Orbitrap-based ECD fragmentation patterns 

to our previously published data that applied ECD on a Bruker 15T FT-ICR mass 

spectrometer25, 36, we note that the FT-ICR products mainly covered the solvent-exposed 

C-terminus, providing 20% sequence coverage25. The largest ECD fragment generated by 



 

40 

 

FT-ICR was z168, while the largest fragment generated by Orbitrap-based ECD is z162. In 

sequence coverage and product ion locations, Orbitrap-based ECD fragmentation 

efficiency is similar to FT-ICR ECD. However, the entire charge state distribution was 

subjected to ECD with the FT-ICR, due to its quadrupole upper isolation limit (m/z 

~6000)25, whereas we were able to isolate a single precursor charge state (26+) on the 

Orbitrap, significantly reducing chemical noise and the impact of potential impurities, 

potentially increasing signal-to-noise ratio.  

Native Top-Down ECD of Glutamate Dehydrogenase (GDH) 

To further examine the potential of Orbitrap-based ECD fragmentation for revealing 

structural information from larger protein complexes, intact (bovine) GDH homohexamer 

(334 kDa) was subjected to ECD. GDH reversibly converts L-glutamate into β-

ketoglutarate using NADP(H) or NAD(H). GDH is a dimer of trimers, and each subunit 

has 501 amino acids with an average mass of 56 kDa, and the measured mass of its 

corresponding complex is 335,143 +/- 707 Da (Figure S5). Perhaps due to its large mass 

and strong inter- and intra-subunit gas-phase interactions, we were unable to decompose 

hexameric GDH by in-source dissociation (ISD) or to generate fragments by HCD, 

colliding with either N2 or Ar. ECD and ISD-ECD were similarly unable to generate 

product ions. Ultimately, c/z-products were obtained by applying 50 V in-source activation, 

isolating and subjecting the hexamer 34+-36+ charge states to ECD succeeded by 270 V 

collisional activation (HCD). nTD-MS of GDH hexamer with this ISD-ECD-HCD strategy 

(Figure 3) yielded only 17 z-fragments from residues 399-483, and 28 cz-internal 

fragments, resulting in 12% sequence coverage. We also found y-fragment ions from the 

post-ECD activation. These results suggest that strong noncovalent interactions around the 
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N-termini region prevent the release of N-terminal products. The fact that only z-ions 

presented in the native ECD spectrum of GDH is similar to results derived from infrared 

multiphoton dissociation (IRMPD) experiments performed on the 15T FT-ICR 

previously25. This result is also consistent with the crystal structure of GDH (PDB 1HWZ); 

Asp6 and Asn8 form hydrogen bonds and salt bridges to Lys32945, which therefore prevent 

fragments from departing from the N-terminal region. We also compared the sequence 

coverage of GDH hexamer between FT-ICR ECD and Orbitrap-based ECD. FT-ICR ECD 

did not yield fragments from the GDH hexamer, whereas IRMPD generated fragments 

mainly from the C-terminus, to give 24% sequence coverage25. 

The GDH hexamer appears to be an example of a gas-phase complex that is highly stable 

to activation/dissociation methods because strong intra-molecular forces that prevent the 

release of product ions. Despite using in-source activation combined with post-ECD ion 

heating, e.g., EChcD, a sequence coverage of only 12% could be achieved. A slightly 

higher sequence coverage was measured previously using infrared heating with FT-ICR 

mass spectrometry. Future work using IRMPD interfaced to the Orbitrap could result in 

higher sequence coverage. Nonetheless, the resulting products remain consistent with nTD-

MS probing the outer surface of protein complexes. 
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Figure 3. (A) nTD-MS with EChcD of GDH hexamer 34+ to 36+ charge state. (B) 

Expanded fragmentation region from m/z 1000 to 4200. (C) Fragment location map of 

GDH hexamer. ECD fragments showed in red dots, HCD fragments showed in blue dots. 

 

Orbitrap-Based ECD Fragmentation on Several Other Protein Complexes.  

A range of other homomeric protein complexes were examined (Table S1). Complex-down 

ECD fragmentation of yeast alcohol dehydrogenase (yADH) 147 kDa tetramer (Figure 

S6A) revealed 42 N-terminal c-fragment ions, 7 C-terminal z-fragment ions and 10 cz 

internal fragment ions, resulting in 19% sequence coverage. In contrast, the nTD ECD 

spectrum (Figure S7A) of yADH revealed 50 N-terminal c-fragments from residues 15-
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123, and 30 cz-internal fragments, resulted in 29% sequence coverage, consistent with the 

yADH crystal structure (PDB 4W6Z)46 showing that the N-terminus is more solvent 

exposed than the C-terminus (Figure S7D). Our B-factor and relative SASA calculations 

also showed similar trends in extent of fragmentation (Figure S8). Moreover, the 

fragmentation patterns also revealed N-terminal acetylation, and a V58T proteoform. The 

higher sequence coverage in nTD-MS compared to complex-down could be attributed to 

the higher precursor ion intensity. Comparing to our previous HCD study on yADH23, the 

observation that complex-down by ECD generated fewer C-terminal fragments than 

complex-down by HCD could suggest that the monomers ejected in-source from 

collisionally activated complexes are not fully unfolded, as they need additional 

rearranging to eject C-terminal products. 

For the malate dehydrogenase (MDH) 66 kDa homodimer, 50 c-ion products, 27 z-ion 

products and 20 cz internal fragment ions were generated by complex-down MS (Figure 

S9A), resulting in 35% sequence coverage. nTD-MS revealed 41 z-ions from residues 234-

314, and 8 cz-internal fragments (Figure S10A), resulting in 19% sequence coverage. The 

crystal structure of MDH (PDB 1MLD47, Figure S10D) indicates that the C-terminus is 

solvent exposed and not involved in monomer interactions, consistent with our B-factor 

and relative SASA calculation (Figure S11), and the nTD-MS measurement revealing only 

C-terminal fragments.  

The largest complex examined in this study was β-galactosidase (β-GTD) from E. coli (464 

kDa). The β-GTD homotetramer did not release monomer ions from in-source dissociation 

for complex-down fragmentation; however, ECD of the native complex still returned a few 

product ions for structural information. Native ECD of β-GTD revealed 7 z-ions, and 1 c-
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ion (Figure S12). The few fragments generated from N- and C-termini suggest both termini 

are not solvent-exposed; this suggestion aligns with the crystal structure (PDB 1F4A), 

indicating that both N- and C-termini are involved in interaction interfaces.48, 49 This result 

is also consistent with our previous study on a 15T FT-ICR instrument, finding that ECD 

generated no fragments, whereas CID released N-terminal fragments and IRMPD released 

C-terminal fragments.25 

Conclusions 

Here we demonstrated that Orbitrap-based ECD fragmentation can reveal sequence, 

modification, and structure information on large proteins and protein complexes, including 

particularly refractive ones. Native TD-MS of the complexes with ECD reveals fragments 

that correspond to the solvent exposed regions, which contrasts with fragmentation of the 

ejected monomer (complex-down) by ECD. Orbitrap-based ECD fragmentation increased 

the sequence coverages for many of the protein complexes examined, perhaps due to 

enhanced fragmentation efficiency compared to the one with FT-ICR. It is challenging to 

sort out all of the factors that contribute to ECD effectiveness for a given analyte and for 

specific instrumentation systems. The ExD cell coupled to the Orbitrap is a unique design 

that allows nearly all of the ions to intersect with the electron beam. This geometry is very 

different compared to the one used in the FT-ICR instrument; a beam of negatively charge 

electrons is directed towards the positively charge analyte stream in the focusing 

quadrupole; ECD product ions are subsequently injected into the ion cyclotron resonance 

cell for detection. 

However, our results strongly suggest that nTD-MS using an Orbitrap/ECD system is 
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highly effective for generating information that can be used to confirm protein structural 

features. This method can be broadly integrated with other biomolecule structural analysis 

techniques, for example, cryo-electron microscopy. This potential integration will provide 

an experimental platform for helping to solve important structural and functional details of 

protein complexes, such as ligand and substrate binding, functional dynamics, and protein 

interfacial binding regions.  
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Chapter 2: Supporting Information 

Supplementary Figures 

 

 

Figure S1. Schematic of the electromagnetostatic ExD cell.1 
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Figure S2. Example of the internal fragment, three charge states were observed. 

  

1976 1977

0

10

20

30

40

R
e

la
ti
v
e
 A

b
u

n
d

a
n

c
e

m/z

2633 2634 2635 2636 2637

0

10

20

R
e

la
ti
v
e
 A

b
u

n
d

a
n

c
e

m/z

Internal fragment [cz165-235+H]

1580 1581 1582

0

10

20

30

40

R
e

la
ti
v
e
 A

b
u

n
d

a
n

c
e

m/z

3+ 4+ 5+



 

48 

 

 

Figure S3. Native mass spectrum of the aldolase homotetramer. 
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Figure S4. (A) Averaged B-factor in gray and (B) averaged relative SASA in black of 

aldolase compared to fragmentation intensity in red of each residue from residue 215 to 

322. 
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Figure S5. Native mass spectrum of GDH homohexamer. 
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Figure S6. (A) Complex-down mass spectrum of ADH 12+ charged monomer with ECD; 

(B) zoomed-in fragmentation region from m/z 500 to 3000; (C) fragment location map of 

ADH monomer with ECD. ECD fragments labeled with red dots, HCD fragments labeled 

with blue dots, purple lines indicate V58T mutation, the vertical dotted line represents N-

terminal acetylation. 
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Figure S7. (A) nTD-MS with ECD of ADH tetramer 25+ charge state; (B) zoomed-in 

fragmentation region from m/z 1000 to 3000; (C) fragment location map of ADH tetramer 

with ECD. ECD fragments labeled with red dots, HCD fragments labeled with blue dots, 

purple lines indicate V58T mutation, the vertical dotted line represents N-terminal 

acetylation. (D) ECD fragments mapped onto ADH tetramer crystal structure. N-terminal 

fragments colored in red, and protected region colored in green. 
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Figure S8. (A) Averaged B-factor in gray and (B) averaged relative SASA in black of 

yADH compared to fragmentation intensity in red of each residue from residue 14 to 97. 
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Figure S9. (A) Complex-down mass spectrum of MDH 10+ charged monomer with ECD; 

(B) fragment location map of MDH monomer with ECD. ECD fragments labeled with red 

dots, HCD fragments labeled with blue dots. 
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Figure S10. (A) nTD ECD MS of MDH dimer 17+ charge state; (B) zoomed-in 

fragmentation region from m/z 1000 to 2500; (C) fragment location map of MDH dimer 

with ECD. ECD fragments are labeled with red dots, HCD fragments are labeled with blue 

dots. (D) ECD fragments mapped on MDH dimer crystal structure. C terminal fragments 

in blue, and protected region in green. 
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Figure S11. (A) Averaged B-factor in gray and (B) averaged relative SASA in black of 

MDH compared to fragmentation intensity in red of each residue from residue 234 to 296. 
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Figure S12. (A) nTD ECD MS of β-GTD tetramer 50+ to 52+ charge states; (B) zoomed-

in fragmentation region from m/z 1000 to 5350; (C) fragment location map of β-GTD 

tetramer with ECD. ECD fragments are labeled with red dots, HCD fragments are labeled 

with blue dots. 
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Supplementary Tables 

 

Table S1. Information on the protein complexes analyzed in this study. 

 

  

General Information 
Native TD-MS 

Fragmentation 
Complex-Down Fragmentation 

Complex Complex Type 
Complex 

Mass (Da) 

Monomer 

Mass (Da) 
# c-frags # z-frags 

Sequence 

Coverage 

Monomer 

Released w/ 

ISD 

# c-

frags 
# z-frags 

Sequence 

Coverage 

Aldolase Homotetramer 156,939 39,212 2 57 21% Yes 9 16 11% 

GDH Homohexamer 335,143 55,726 0 17 12% No N/A N/A N/A 

ADH Homotetramer 147,472 36,738 50 0 29% Yes 42 7 19% 

MDH Homodimer 66,165 33,081 0 41 19% Yes 50 27 35% 

β-GTD Homotetramer 467,232 116,351 1 7 1% No N/A N/A N/A 
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Table S2. ExD cell parameters for the protein complexes analyzed in the study. 

 

  

Protein 

Complex 
L1 L2 LM3 L4 FB LM5 L6 

Aldolase -0.82 -40.0 1.0 4.11 -8.0 1.0 -40.0 

GDH -1.27 -52.0 4.7 12.2 0.8 4.7 -52.0 

ADH -0.82 -40.0 1.0 4.11 -8.0 1.0 -40.0 

MDH -2.0 -50.0 10.5 11.0 2.5 10.5 -50.0 

β-GTD -1.0 -55.0 4.1 22.0 0.5 4.1 -55.0 
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Abstract 

Native top-down mass spectrometry (nTD-MS), i.e., dissociation of gas phase proteins and 

protein complexes that yields sequence-bearing product ions, has been conventionally used 

to obtain mass, binding stoichiometry, sites of post-translational modifications (PTMs), 

primary and higher-order structure information. nTD-MS has also been utilized to locate 

ligand binding sites. However, the dissociation method used can greatly affect the resultant 

information related to protein higher-order structure. Fragmentation methods used on 

Orbitrap-based mass spectrometers, for example, electron-based dissociation (ExD), 

including electron capture dissociation (ECD), and higher energy C-trap dissociation 

(HCD), have been demonstrated to produce product ions that can inform on the higher-

order structure of protein complexes. However, revealing higher-order structure 

characteristics of a protein complex with weak noncovalent interactions among its subunits 

in the gas phase, such as the streptavidin homotetramer, is challenging because release of 

the subunits can preclude generation of product ions from the intact complex. Here we 

show that sequence information and also higher-order structure information can be 
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obtained for streptavidin complex by electron transfer dissociation (ETD) and coupled with 

proton transfer charge reduction (PTCR) on an Orbitrap tribrid mass spectrometer.  
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Introduction 

In biological systems, most proteins assemble into complexes for proper function. 

Therefore, characterizing their structures is critical for understanding how they function in 

the biological systems. Conventional structure analysis methods, such as cryo-electron 

microscopy (cryo-EM), NMR or X-ray crystallography are used for probing the structures 

and dynamics of proteins, protein complexes and other biomolecules.1-4 Native mass 

spectrometry (nMS) and native top-down mass spectrometry (nTD-MS) have emerged and 

has been widely used to provide complementary information on stoichiometry5, 

conformation6 and structure6-9. To confidently obtain the structure characteristics of protein 

complexes, electrospray ionization (ESI)-MS has been used prominently because of its 

isotopic resolving power6, high mass accuracy6 and capabilities for maintaining native-like 

structures of protein complexes during the transfer from solution to the gas phase1, 2. 

Compared to other more traditionally used structure analysis methods, although nMS and 

nTD-MS provide only indirect and low-resolution structure information, the compatibility 

with sample heterogeneity10, wide mass range11, and high throughput12 make mass 

spectrometry one of the most widely used structure analysis techniques today. 

Structural information for protein complexes can be obtained by comparing the 

fragmentation patterns of nTD-MS (native folded structure) with complex-down MS 

(pseudo-MS3 that generates data more consistent with unfolded protein structures)13. 

Several dissociation methods has been used for top-down mass spectrometry, including 

collisional induced dissociation (CID)14, electron-based dissociation (ExD)15-18, and 

photon-based dissociation19, 20. The product ions formed by top-down MS can be either 

terminal fragments, which are generated from the N-terminus (a, b, or c fragments) or C-
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terminus (x, y, or z fragments), or internal fragments (ax, ay, az, bx, by, bz, cx, cy, or cz 

fragments) resulting from multi-cleavage events of the peptide backbone.21-23 The Loo 

group has previously found that high energy C-trap dissociation (HCD), a type of CID, 

fragments most protein complexes directly, potentially revealing higher order structural 

information of those assemblies in a faster timescale than conventional CID7. However, 

HCD fragmentation becomes limited in the extent of revealing higher-order structure 

information for protein complexes with weak gas-phase inter-molecular interactions 

between subunits, such as the streptavidin homotetrameric complex. Electron-based 

dissociation, for example electron capture dissociation (ECD) and electron transfer 

dissociation (ETD), are alternative methods to overcome this HCD fragmentation 

disadvantage. One of the advantages of ECD/ETD is the preservation of labile bonds, 

including noncovalent interactions, while cleaving peptide backbone N-Cα bonds at the 

solvent exposed regions.9, 24, 25 

For an isotopically resolved MS/MS spectrum, generating deconvoluted mass lists and 

assigning fragments can be challenging due to the increased complexity of fragmentation 

spectra caused by the increase of a combination of charge states and isotopes26, especially 

for the proteins larger than 30 kDa. To reduce the complexity of fragmentation spectra, 

proton transfer charge reduction (PTCR) has been developed and utilized.27 PTCR reduces 

spectra complexity by charge reducing the fragment ions and distributing them to a higher 

m/z range, where peak overlap is limited.28-31 

Here, we demonstrated that nMS and nTD-MS with HCD and activated ion ECD (ECD 

coupled with HCD, or EChcD) analysis confirm the sequence, and stoichiometry of the 
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streptavidin tetramer. In addition, native top-down ETD and ETD-PTCR MS analysis of 

the tetramer reveals the dimer of dimer composition and higher-order structure information.  

Experimental 

Sample preparation. Streptavidin from Streptomyces avidinii (52 kDa), and 30 kDa 

Millipore Amicon Ultra filters were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Samples were buffer exchanged with 30 kDa filters into 150 mM ammonium acetate 

without or with (a) 10 mM L-proline, (b) 60 μM biotin, and (c) both 10 mM L-proline and 

60 μM biotin to a final concentration of 10 µM.  

Native Top-Down and Complex-Down HCD and EChcD MS. Both HCD and electron 

capture dissociation with supplement HCD (EChcD) experiments were performed on a 

ThermoFisher Scientific Q Exactive Ultra-High Mass Range (UHMR) Orbitrap mass 

spectrometer with an ExD cell developed by e-MSion (Corvallis, OR, USA). Protein 

solutions were loaded into Pt-coated borosilicate capillaries on a nanospray ionization 

source and sprayed at 0.8-1.2 kV, 200 ℃. The S-lens RF was set at 100 V. In-source CID 

was set over a range of 55-92 eV for complex-down experiments. A single charge state was 

isolated by the quadrupole for the protein complex. In EChcD experiments, the precursor 

ions were transferred into the ECD cell, where they were subject to electron capture, then 

into the HCD cell for post-ECD collisional activation. The ExD filament current was set at 

2.23 A. The HCD collision energy was optimized to minimize the generation of b/y ions. 

Additional details of ExD cell tuning parameters are provided in the Supporting 

Information. In HCD experiments, the precursor ions were subjected into the HCD cell for 
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fragmentation. All top-down mass spectra were acquired at 100,000 resolution (m/z 400) 

with a noise threshold set to 3. Each spectrum was the result of 300 averaged scans. 

Denatured MS. Protein was denatured in denaturing solution (0.1% formic acid, 99.9% 

ammonium acetate solution). The denatured protein solution was analyzed on the UHMR 

Orbitrap mass spectrometer with a nanospray ionization source and sprayed at 1.1 kV, 

200 ℃. The S-lens RF was set at 100 V. 

Native Top-Down ETD MS. All ETD and ETD-PTCR experiments were performed on a 

ThermoFisher Scientific Orbitrap Ascend Structural Biology Tribrid MS (Figure S1). 

Protein solutions were loaded into Pt-coated borosilicate capillaries on a nanospray 

ionization source and sprayed at 1.4-1.6 kV, 200 ℃. The S-lens RF was set at 100 V. A 

single charge state was isolated by the front ion-routing multipole for the protein complex. 

For ETD experiments, the precursor ions were transferred into the linear ion trap, where 

they reacted with fluoranthene anions generated at the EASY-ETD ion source to produce 

fragment ions. The ETD module contains a chemical ionization (CI) source, a fluoranthene 

vial, and a carrier gas (nitrogen). The nitrogen collides with 70 eV electrons from the CI 

filament, resulting in secondary electrons knocked off from the nitrogen molecules. The 

fluoranthene molecules captures these secondary electrons to form the ETD reagent radical 

anions. For ETD-PTCR experiments, fragment ions generated by ETD were isolated by 

the linear ion trap. The isolated fragment ions subsequently reacted with the PTCR reagent, 

perfluoroperhydrophenanthrene (PFPP) ions generated at the PTCR ion source by 

capturing the secondary electrons released from nitrogen molecules. This gas-phase ion-

ion reaction produced charge reduced fragment ions. ETD reaction time was set to 7 ms, 

and PTCR reaction time was set to 20 ms. The product ions from ETD and ETD-PTCR 
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were transferred to Orbitrap for mass analysis. All ETD and ETD-PTCR mass spectra were 

acquired at 100,000 resolution (m/z 400) with a noise threshold set to 3. Each spectrum 

was the result of 300 averaged scans. 

Data Analysis. All spectra were deconvoluted with BioPharma Finder 5.0 (ThermoFisher 

Scientific, Waltham, USA). Deconvoluted peaks were assigned by ClipsMS 2.0.035 with 

an error tolerance of 3 ppm. Sequence assignments accommodated the major ECD/ETD (c, 

c+H, c-H, z, z+H, z-H) and HCD (b, y) ion types without annotating neutral losses ions, 

except when explicitly mentioned. Terminal fragments were manually validated by 

confirming the isotopic distributions. 

Results and Dissociation 

Accurate Mass Measurement of Streptavidin Tetramer 

Streptavidin is composed of a dimer of dimers, with four identical monomers. The 

streptavidin complex subunit from Streptomyces avidinii is composed of 123 amino acids 

and an average mass of 12,971 Da, and its corresponding homotetramer complex has a 

calculated mass of 51,884 Da.  

Figure 1A shows the MS spectrum of streptavidin under native nanoESI conditions using 

a Thermo Q-Exactive UHMR with the ExD cell installed. A relative narrow charge state 

distribution from 15+ to 13+ was observed between m/z 3400 and 4100. Figure 1B shows 

the expanded mass spectrum for the 14+ charge state ions. We identified 3 proteoforms for 

the monomers, including wild type (WT), monomers with one serine (Ser123) removed 

from the C-terminus, and monomers with one alanine (Ala124) addition on the C-terminus; 

the presence of all 3 proteoforms were verified from denatured MS experiments (Figure 
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S2). These 3 proteoforms assemble into the tetramer complex such that 5 total proteoforms 

of the assembled tetramers were observed. Complex-down HCD experiment (Figure S3A 

and B) was further performed to confirm the sequence of the WT monomer (UniProtKB: 

P22629). The observation of a series of fragment ions from both termini, particularly the 

complementary ion pairs, b9/y114, b31/y92, and b67/y56 confirms the sequence and no 

presence of any PTMs. Native top-down HCD MS experiments were performed for the 

streptavidin tetramer. At low HCD energy (CE 5 V), only monomers and trimers were 

observed (Figure 2A). At a resolution 100,000 (at m/z 400), the 6+ charged WT streptavidin 

monomer peak was isotopically resolved (Figure 2B). The calculated isotopic mass for 

streptavidin monomer is 12,963.2956 Da with a 1.2 ppm mass accuracy. As the molecular 

mass increases, the isotopic distribution becomes wider and obtaining isotopically resolved 

peaks becomes challenging32. Therefore, for the ~52 kDa streptavidin tetramer, and ~39 

kDa streptavidin trimer, the monoisotopic peaks are no longer observable. As a result, the 

average mass of the streptavidin tetramer is reported by calculating with the highest 

intensity peak for each WT tetramer charge state, which is 51,887.03 +/- 0.72 Da. 

 

Figure 1. Native ESI-mass spectrum of streptavidin tetramer with (A) the Q-Exactive 

UHMR MS. (B) An expanded MS spectrum of the 14+ charge state of streptavidin tetramer 
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is shown, with the wild type monomer labels in blue, the monomer without S123 labeled 

in yellow, and the monomer with A124 labeled in purple. 

 

Native Top-Down HCD of Streptavidin Complex 

Our previous research suggested that native top-down HCD can reveal higher-order 

structure information for protein complexes to generate product ions originating near the 

complex surface, or solvent exposed regions7. Therefore, the WT streptavidin 14+ charge 

state was isolated and subjected to HCD. However, native top-down HCD of the 

streptavidin tetramer yields monomers at low HCD (CE 50 V) and no sequence information 

was obtained (Figure 2A and 2B). Further increasing HCD energy to 160 V yields product 

ions (Figure 2C). By increasing HCD energy, although more fragments are generated, most 

of the fragments originate from C-terminus, which is at the monomer binding interface 

(Figure 2D) and not in the solvent exposed region. Our result suggests that monomer 

subunits are ejected before generating sequence-bearing fragments, and the fragments are 

all generated from the monomer, not directly from the tetramer. To confirm this claim, 

complex-down HCD was performed, and compared to native top-down HCD 

fragmentation pattern. Complex-down MS was performed by using in-source CID (ISD) 

to eject a monomer from the tetramer and to subsequently subject the released 6+ WT 

streptavidin monomer for fragmentation7. The resultant complex-down HCD spectrum also 

revealed both N-terminal b-ions and C-terminal y-ions of WT streptavidin (Figure S3A and 

B). The presence of near equal numbers of both b- and y-fragments from the complex-

down HCD spectrum suggests that both N- and C-termini of the WT streptavidin monomer 

are accessible by HCD fragmentation. Complex-down MS typically reveals no 3D 

structure information of the native intact complex. For the streptavidin case, the similarity 
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between both complex-down and nTD fragmentation patterns supports the notion that the 

monomers were ejected from the tetramers prior to the backbone cleavages in the HCD 

cell, i.e., the measured nTD fragments originate from the ejected monomers. Therefore, 

native top-down HCD did not reveal higher-order structure information for streptavidin 

complex. 

 

Figure 2. (A) Native top-down spectrum of the streptavidin tetramer at low HCD energy 

(CE 50 V); (B) the expanded MS spectrum of the 6+ charge state of streptavidin monomer; 

(C) native top-down HCD spectrum of the streptavidin tetramer at high HCD energy (CE 

160 V); (D) fragmentation location map of top-down MS/MS by HCD of the 14+ charge 

state of native streptavidin tetramer. The b/y ions from the native top-down HCD of the 

14+ charge state of native streptavidin tetramer are indicated by each horizontal line and 

the blue dots. The size of dots indicates the intensity of each fragmentation. 
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Native Top-Down EChcD of Streptavidin Complex 

One of the features of electron-based dissociation (ECD or ETD) is preserving labile bonds, 

including noncovalent interactions, while cleaving peptide backbone N-Cα bonds on the 

solvent exposed regions.9, 24, 25 Thus, ECD is a powerful tool for locating noncovalent 

interactions, for example, protein-protein/ligand binding sites.25, 33-35 Previously, Gross 

group have examined that the fragment region of a protein complex from native top-down 

ECD correlates with the B-factor of that protein.9 In X-ray crystallography, the B-factor is 

used to describe the relative vibrational motion of atoms in a structure.36, 37 An amino acid 

with a larger B-factor value indicates that the amino acid is in a more flexible region (more 

solvent exposed).38 In another word, ECD fragments at the solvent accessible region of a 

native protein. 

To examine whether EChcD can reveal structure information from WT streptavidin 

tetramer, the 14+ charge state was subjected to EChcD for fragmentation. The 

supplemental HCD energy was optimized to minimize generating b/y ions. Figure 3A 

shows the top-down EChcD mass spectrum of the streptavidin tetramer with HCD energy 

50 V. However, with the optimized ECD and HCD energy, released monomer charge states 

are still dominating, and the fragments are generated from both termini (Figure 3B). 

Although it might be possible that generating fragments from both termini may be due to 

the excess ECD or HCD energy during the EChcD experiment, EChcD experiments with 

reduced HCD and ECD energy were performed and resulted in reducing the number of 

fragments from both termini, while still observing monomer ejection as the major process. 

Although EChcD fragmentation of native streptavidin does not reveal higher-order 
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structure information, it does suggest that the interaction between monomer subunits in the 

gas phase is relative weak. 

 

Figure 3. (A) Native top-down EChcD spectrum of the streptavidin tetramer, and (B) 

fragmentation location map from the top-down MS/MS experiment. The c/z ions from the 

native top-down EChcD of the 14+ charge state of native streptavidin tetramer are indicated 

by each horizontal line and the red dots. 

 

The Venter group has previously proposed that the addition of L-proline can (somehow) 

reduce the extent of protein unfolding during the transition from the protein in the solution 

phase to the gas phase, and therefore preserves the noncovalent interactions within the 

monomeric protein.39 Inspired by that, we performed top-down EChcD of streptavidin 

complex with L-proline and biotin, respectively. The interaction between streptavidin and 

biotin is one of the strongest noncovalent interactions in the solution phase in nature.40, 41 

Each streptavidin tetramer can bind up to 4 biotin molecules. Taking advantage of this 

feature, this strong noncovalent interaction has been widely used in biochemical sensing 

applications.42 Therefore, we would like to investigate whether the addition of biotin shows 

a stabilization effect on streptavidin tetramers in the gas phase. With the presence of L-

proline, we observed all 5 proteoforms for streptavidin tetramer with no L-proline bound 
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(Figure S4A), similar to streptavidin tetramer 19+ charge state without the addition of L-

proline. With the addition of excess biotin in molar ratio, we observed tetramer with 4 to 6 

biotins bounded (Figure S4B), although an additional step of buffer exchange with 150 

mM ammonium acetate was performed to remove the excess nonspecifically bounded 

biotins, i.e., 5 and 6 biotins bounded form. To investigate whether the addition of L-proline 

or biotin can stabilize the WT streptavidin gas-phase tetramer during EChcD, the 

streptavidin tetramer 14+ charge state with L-proline or biotin was subjected to EChcD for 

fragmentation. With the addition of L-proline, we observed high intensity peaks assigned 

to monomer 6+ and 7+ charge states (Figure 4A) and fragments from both N- and C- 

termini (Figure 4B). The resultant spectrum and fragmentation pattern suggest that with 

the presence of L-proline, the streptavidin was not stabilized, therefore; the EChcD product 

ions did not reveal higher-order structure information. With the addition of biotin, we 

observed high intensity peaks assigned to the apo streptavidin monomer 5+ to 6+ charge 

states, apo charge reduced tetramers 11+ to 13+ charge states, apo trimer 7+ charge state 

(Figure 4C), and fragments from both N- and C-termini (Figure 4D). This result indicates 

that biotin molecules might be released during the electron capture process, as no biotin 

bounded tetramer, trimer and monomers were observed in the spectrum. Thus, the 

streptavidin gas-phase tetramer was not stabilized with the addition of biotins, and the 

EChcD product ions did not reveal higher-order structure information. Our result is 

consistent with a previous report that the streptavidin/biotin complex showed a relatively 

low affinity in the gas phase43 due to the absence of the surrounded water molecules. In 

addition, the streptavidin tetramer 14+ charge state with the addition of both L-proline and 

biotin was subjected to EChcD for fragmentation. However, the monomers were released 
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prior to fragmentation (Figure 4E). Additionally, the corresponding fragmentation pattern 

did not reveal higher-order structure information for the streptavidin tetramer. 

 

Figure 4. (A) Native top-down EChcD spectrum of streptavidin tetramer with 10 mM L-

proline, and (B) fragmentation location map of streptavidin by top-down MS/MS (c/z ions 
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from the native top-down EChcD of the 14+ charge state of native streptavidin tetramer 

with L-proline); (C) native top-down EChcD spectrum of the streptavidin tetramer with 

biotin, and (D) fragmentation location map of streptavidin by top-down MS/MS (c/z ions 

from the native top-down EChcD of the 14+ charge state of native streptavidin tetramer 

with biotin); (E) native top-down EChcD spectrum of the streptavidin tetramer with L-

proline and biotin, and (F) fragmentation location map of streptavidin by top-down MS/MS 

(c/z ions from the native top-down EChD of the 14+ charge state of native streptavidin 

tetramer with L-proline and biotin). 

 

Native Top-Down ETD of Streptavidin Complex 

Native top-down ETD and ETD-PTCR experiments were also performed for the 

streptavidin tetramer using the Orbitrap Tribrid Ascend instrument; dissociation of the 

tetramer to yield dimers and low abundant monomers (0.5% for monomers) were observed 

in both approaches and remarkably only N-terminal fragments were observed (Figure 5). 

This result differs from the complex-down HCD mass spectrum of streptavidin, which 

shows a nearly equal proportion of N-terminal b-fragments and C-terminal y-fragments 

(Figure S3C and D). Due to the ejection of dimers, obtaining the higher-order structure 

information for the streptavidin tetramer directly is still challenging; however, the ETD 

fragmentation patterns suggests that the tetramer is a dimer of dimers. ETD and ETD-

PTCR fragmentation patterns (Figure 5D) are consistent with the published crystal 

structure (PDB: 1SWA, Figure 5B)44 that the N-termini are at the solvent exposed regions. 

Even though the C-terminal regions are not directly involved in the interfaces between 

subunits, they are located in the regions that are partially buried, which can limit ETD 

backbone cleavages. 
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Figure 5. (A) Native top-down ETD spectrum of the streptavidin tetramer; (B) structure of 

tetrameric streptavidin (PDB: 1SWA), with the native ETD fragments labeled in red, and 

the last 10 amino acids (AA 114-123) on each C-terminus in blue. (C) Native top-down 

ETD-PTCR spectrum of the streptavidin tetramer; (D) fragmentation location map of 

streptavidin by top-down MS/MS (c/z ions from the native top-down EChcD of the 14+ 

charge state of native streptavidin tetramer.) 

 

Conclusion 

In summary, unit mass resolution analysis for a 52 kDa protein complex as well as its 

proteoforms under native MS with high mass accuracy are demonstrated. The results 

demonstrate that higher-order structure information of a protein complex with weak 

noncovalent interactions among monomers can be revealed by ETD and ETD-PTCR on an 

Ascend Orbitrap mass spectrometer.  
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It is not clear why performing ECD on a quadrupole-Orbitrap instrument should yield 

different results on an Orbitrap tribrid (quadrupole-linear ion trap-Orbitrap) system with 

ETD. In general, ECD and ETD are thought to generate similar fragmentation patterns for 

peptides and proteins because of their similar dissociation mechanisms and energetics. 

However, a definitive and thorough study comparing ECD and ETD on the same 

instrument has yet to be performed. There might be differences in how the analyte ions are 

activated prior to ECD/ETD on the UHMR and Ascend Orbitrap platforms. Future work 

will address this question. But it remains clear that the ETD/Ascend Orbitrap generates 

fragmentation patterns for a fragile protein complex (streptavidin) that are consistent with 

its higher order structure. 
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Chapter 3: Supporting Information 

Supplementary Figures 

 

 

Figure S1. The schematic of an Orbitrap Ascend Structural Biology Tribrid mass 

spectrometer. 
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Figure S2. Denatured mass spectrum of streptavidin monomer obtained on UHMR 

Orbitrap MS. All three proteoforms were observed for each charge state. An expanded MS 

spectrum of the 10+ charge state of streptavidin monomer is shown, with the wild type 

monomer labels in blue, the monomer without S123 labels in yellow, and the monomer 

with A124 labels in purple. 
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Figure S3. (A) Complex-down HCD spectrum of the streptavidin (monomer, 6+ charge 

state), and (B) the corresponding fragmentation location map. (C) Complex-down HCD 

spectrum of the streptavidin (monomer, 6+ charge state) collected on Ascend MS; and (D) 

the corresponding fragmentation location map. 
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Figure S4. (A) Native mass spectrum of streptavidin tetramer with 10 mM L-proline, no 

L-proline bonded form was observed, and (B) native mass spectrum of streptavidin 

tetramer with biotin (1:6). 
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Figure S5. Native mass spectrum of streptavidin tetramer obtained on Orbitrap Ascend 

Structural Biology Tribrid MS. 
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Abstract 

Native top-down mass spectrometry (nTD-MS) provides critical information on sequence, 

post-translational modifications, ligand-binding stoichiometry, and potentially higher-

order structure for protein complexes. Single particle cryo-electron microscopy (cryo-EM) 

is a powerful tool for solving the three-dimensional (3D) structures of protein complexes; 

however, it is still challenging to yield atomic level resolution for all proteins. In this study, 

we describe the complementarity of an integrated nTD-MS and cryo-EM strategy to 

analyze a protein complex that has yet been characterized. Native MS was used to identify 

protein-ligand binding events. From the cryo-EM derived structure, the quaternary 

structures determined by the gas-phase MS measurements are retained from the solution-

phase origin. The information provided by nTD-MS can be used to aid solving high-

resolution structures from cryo-EM data and highlights the potential of native MS to be 

integrated with cryo-EM for structural biology studies. 
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Introduction 

Protein carboxyl methyltransferase domain-containing protein 1 (PCMTD1) may be the 

substrate adaptor protein of a potential E3 ubiquitin ligase that ubiquitylates proteins 

harboring isoaspartyl damage for proteasomal degradation. The potential role of PCMTD1 

in isoaspartyl maintenance was predicted from its sequence similarity to protein-L-

isoaspartyl (D-aspartyl) O-methyltransferase (PCMT1), as both enzymes share binding 

motifs for L-isoaspartate substrates and the methyl donor cofactor, S-adenosylmethionine 

(SAM). However, despite PCMTD1’s ability to site-specifically engage SAM1, PCMTD1 

lacks methylation activity against known damaged substrates to PCMT1. But PCMTD1 

was shown to multimerize with cullin-RING ligase (CRL) components to form the putative 

CRL: CRL5-PCMTD1 complex in vitro and in cultured cells1. This implies some 

functional role for the assembly of PCMTD1 into a CRL in the regulation of isoaspartyl 

damages through targeted proteolysis. 

Currently, it is unknown how PCMTD1 may have lost its methylation activity despite its 

high sequence homology with PCMT1. If PCMTD1 indeed lacks methylation activity, the 

functional role of SAM as a cofactor remains a mystery. Other features found in the 

PCMTD1 sequence are also unexplored, such as a novel extended linker region found 

flanked between its suppressors of cytokine signaling (SOCS)-box domains. While SOCS-

box domains are conserved among CRL substrate adaptor proteins, which facilitate 

multimerization into a CRL, the PCMTD proteins are the only SOCS-box proteins that 

harbor an extended low-complexity domain between the SOCS-box domains whose 

current function is unknown2. We aim to structurally characterize PCMTD1 as a CRL, 
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CRL5-PCMTD1, to answer such questions and to elucidate its structure-activity 

relationship as a multimeric protein. 

Our chosen methodology for structurally characterizing CRL5-PCMTD1 takes into 

consideration that structural dynamics of CRLs are important for ubiquitylation activity. 

Cullin scaffold proteins and E2~Ub recruiting Rbx proteins are flexible bodies that 

promote ubiquitin transfer from E2 to substrates3. Experimental structures of CRLs, 

obtained by x-ray crystallography and cryo-electron microscopy (cryo-EM), are typically 

limited to static structures and fail to capture the dynamics involved in substrate tagging. 

To address these issues in our characterization efforts of CRL5-PCMTD1, we have 

established a platform for characterizing the structural dynamics of CRL5-PCMTD1 

complexes using single particle cryo-EM and nano electrospray ionization (nESI)-native 

top-down mass spectrometry (nTD-MS). This platform offers full biochemical control as 

we work with a fully recombinantly assembled CRL, CRL5-PCMTD1, and any 

subcomplex of that CRL. Dynamics will be uncovered by using heterogenous refinement 

strategies to capture differential conformations that may exist in this system, and pairing 

this information with predictive AI models AlphaFold4 and nTD-MS to determine the 

stoichiometric makeup and facilitate the identification of direct protein-protein interfaces 

and solvent accessible surfaces in this putative CRL. 

Native top-down mass spectrometry has been a useful technique for characterizing native 

protein complexes with noncovalent interactions5, 6, obtaining sequence, modification and 

higher-order structure information5, 7-9, probing substrate/ligand binding events10, 11, and 

providing complementary information to data supplied by conventional structural analysis 

methods, such as, NMR12, x-ray crystallography13, and cryo-EM14. To confidently obtain 
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the higher-order structure information of protein complexes, nESI-MS is optimized to 

gently ionize and transfer protein complexes from solution into the gas-phase15, while 

preserving the native-like structures of protein complexes and protein-ligand complexes16, 

17, and measuring their masses with high accuracy6.  

Top-down mass spectrometry can be coupled with native MS to obtain structural 

information. Various fragmentation methods can be used with TD-MS, such as collision-, 

electron-, or photon-based dissociation for protein sequencing18, modification 

localization19, and structure information characterization5, 7-9. It has been found that an 

Orbitrap-based MS equipped with high energy C-trap dissociation (HCD)7, a type of 

collision induced dissociation (CID), which happens on a shorter timescale than 

conventional CID, and EChcD (as described in Chapter 2 and 3), electron capture 

dissociation with supplement HCD, which has the capacity cleaving peptide backbones 

while preserving labile bonds and noncovalent interactions11, 20, 21, can generate fragments 

directly from protein complexes. Therefore, native top-down mass spectrometry with HCD 

and EChcD enables us to obtain structure information by fragmenting the intact gas-phase 

protein complexes and subcomplexes. Complex-down MS (pseudo-MS3)22, where a 

subunit is ejected from the native protein complex using in-source CID (ISD) and 

subsequently subjected to fragmentation, can reflect the stoichiometry of the protein 

complex, and provide sequence information for each subunit. Structure information, such 

as helping to define solvent accessible regions, can be obtained by a combination of  nTD-

MS and complex-down MS.  

In this study, we show that nMS and complex-down MS with HCD and EChcD analysis 

of CRL5-PCMTD1 heteropentamer and its subcomplexes confirm the sequence, 
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stoichiometry, and substrate binding events. Moreover, nTD-MS with HCD and EChcD 

analysis of the heteropentamer elucidate its higher-order structure, and confirms the 3D 

structure derived by cryo-EM measurements. 

Experimental 

Sample preparation. PCMTD1-eloBC heterotrimer (65 kDa), Cul5-Rbx2 heterodimer (104 

kDa), and CRL5-PCMTD1 heteropentamer (169 kDa) were purified from E. coli 

expression systems described previously1. Either β-mercaptoethanol (βME) or 

dithiothreitol (DTT) was added in the lysis buffer. The His-TEV-tag on the Cul5 subunit 

and TEV-tag on the PCMTD1 subunit were cleaved, except when explicitly mentioned. 

Proteins were buffer exchanged using 50 kDa or 100 kDa Millipore Amicon Ultra filters 

(Sigma-Aldrich, St. Louis, MO, USA) into 200 mM ammonium acetate and diluted to a 

final concentration of 20 μM. Peptides were ordered from GenScript Biotech (Piscataway, 

NJ, USA). The peptides were dissolved in MS-grade water to a final concentration of 50 

μM. S-Adenosyl methionine (SAM) were dissolved in MS-grade water to a final 

concentration of 50 μM. 

Native Top-Down and Complex-Down HCD and EChcD MS. Both HCD and electron 

capture dissociation with supplement HCD (EChcD) experiments were performed on a 

Thermo Fisher Scientific Q Exactive Ultra-High Mass Range (UHMR) Orbitrap mass 

spectrometer with an ExD cell developed by e-MSion (Corvallis, OR, USA). Protein 

solutions were loaded into Pt-coated borosilicate capillaries on a nanospray ionization 

source and sprayed at 0.8-1.5 kV, 175 ℃. The S-lens RF was set at 100 V. In-source CID 

was set over a range of 30-150 eV for monomer ejection experiments. A single charge state 
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was isolated by the quadrupole for protein complex and subcomplexes. In EChcD 

experiments, the precursor ions were transferred into the ECD cell, where they were subject 

to electron capture, then into the HCD cell for post-ECD collisional activation. The ECD 

filament current was set at 2.23 A. The HCD collision energy was optimized to minimize 

the generation of b/y fragment ions. Additional details of ExD cell (Figure S1) and tuning 

parameters are provided in the Supporting Information (Table S1). All top-down mass 

spectra were acquired at 100,000 resolution (m/z 400) with a noise threshold set to 3. Each 

spectrum was a result of 500 averaged scans. 

Denatured Protein MS. Protein were denatured with formic acid (final concentration 0.5%). 

Denatured protein sample was injected to an Agilent 1260 Infinity LC equipped with a 50 

mm x 2.1 mm analytical column (PLRP-S 100Å, 5 μm, Agilent Technologies). The LC 

gradient was 1% solvent B (A= H2O with 0.1% formic acid; B =  acetonitrile with 0.1% 

formic acid) in 2 min and from 1 – 95% in 10 min at flow rate 0.8 mL/min. All denatured 

spectra were collected on an Agilent Q-TOF 6530 MS. The ESI voltage was set at 1.5 kV, 

and the capillary temperature was set at 300℃.  Full spectra (m/z 100 - 3000) were acquired 

in profile mode. 

Bottom-up Proteomics for Sequence Verification. Proteins was exchanged into 8 M urea 

buffer using a 10 kDa Microcon ultrafiltration unit (Millipore). Proteins were alkylated 

with 17 mM iodoacetamide and digested overnight at 37°C with a 1:100 ratio of 

trypsin:protein. Peptides were dried, resuspended in 0.1% formic acid, desalted with 

STAGE tips, as described earlier23. Desalted peptide-containing samples were resuspended 

in LC–MS injection buffer (buffer A, 0.1% formic acid) and analyzed on a quadrupole 
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Orbitrap mass spectrometer (Q-Exactive Plus, ThermoFisher Scientific, Waltham, USA) 

using liquid chromatography–tandem mass spectrometry (LC–MS/MS).  

Protein (1.0 μg) was injected to an Ultimate 3000 nano LC, which was equipped with a 

75µm x 2 cm trap column packed with C18 3µm bulk resins (Acclaim PepMap 100, 

ThermoFisher Scientific) and a 75µm x 15 cm analytical column with C18 2µm resins 

(Acclaim PepMap RSLC, ThermoFisher Scientifc). The nanoLC gradient was 3 - 35% 

solvent B (A = H2O with 0.1% formic acid; B =  acetonitrile with 0.1% formic acid) over 

40 min and from 35% - 85% solvent B in 5 min at flow rate 300 nL/min. The nanoLC was 

coupled with a Q Exactive Plus orbitrap mass spectrometer (Thermo Fisher Scientific, San 

Jose, CA). The ESI voltage was set at 1.9 kV, and the capillary temperature was set at 

275℃.  Full spectra (m/z 350 - 2000) were acquired in profile mode with resolution 70,000 

at m/z 200 with an automated gain control (AGC) target of 3E6. The most abundance 15 

ions were subjected to fragmentation by high energy C-trap dissociation (HCD) with a 

normalized collisional energy of 25%. Dynamic exclusion was applied for 45 s over 

±10 ppm. MS/MS scans were collected with a first fixed mass of m/z 100, 2 m/z isolation 

window, 17,500 orbitrap resolution, and normalized AGC target of 100%.  

Data Analysis. Native and denatured spectra were deconvoluted by UniDec24. All MS/MS 

spectra were deconvoluted with BioPharma Finder 5.0 (ThermoFisher Scientific, Waltham, 

USA). Deconvolved peaks were assigned by ClipsMS 2.0.035 with an error tolerance of 5 

ppm. Sequence assignment accommodated the major ECD (c, c+H, c-H, z, z+H, z-H) and 

HCD (b, y) ion types without annotating neutral losses ions, except when explicitly 

mentioned. Terminal fragments were manually validated by confirming the isotopic 

distributions. 
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Raw data from bottom-up proteomics was searched again UniProt human database by 

Proteome Discovered version 2.5. Following parameters were set: precursor mass tolerance 

±10 ppm, fragment mass tolerance ±0.02 Th for HCD, up to two miscleavages by semi 

trypsin, methionine oxidation as variable modification, and cysteine carbamidomethylation 

as static modification. False discovery rate was at 1.0% and minimum of 1 peptide was 

required for protein identification. 

Results and Dissociation 

Determining Molecular Mass and Stoichiometry for CRL5-PCMTD1 Complex 

Native and denatured MS analyses of the putative CRL5-PCMTD1 heteropentamer 

complex, subcomplexes and individual subunits provide a comprehensive overview of the 

composition and stoichiometry of the overall assembly. A relative narrow charge state 

distribution from 30+ to 23+ corresponding to the heteropentamer was observed (Figure 

1A). The same sample was measured after a month of storage at -80 ℃. The resultant 

spectrum revealed subcomplexes and subunits, thus confirming the stoichiometry of 

CRL5-PCMTD1 complex. Moreover, at a mass resolution of 100,000 (at m/z 400), the 6+ 

eloB monomer peak and 4+ eloC monomer peak were isotopically resolved (Figure S2B 

and C). The calculated isotopic masses for eloB and eloC are 13125.599 Da, and 10957.488 

Da, respectively and within 6 ppm mass accuracy from the theoretical mass. The mass of 

the Rbx2 subunit was measured by performing denatured MS, and the resultant spectrum 

(Figure S2A) indicates the accurate mass of Rbx2 subunit and the presence of 1 and 2 βME 

bound forms. Therefore, the proteins were purified with a different reducing agent, DTT, 

to eliminate the heterogeneity caused by the addition of βME for following experiments. 
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The sequences of Cul5 and PCMTD1 subunits were confirmed by bottom-up proteomics 

(Figure S3). 

 

Figure 1. (A) Native deconvolved mass spectrum of CRL5-PCMTD1 heteropentamer, (B) 

and deconvolved spectrum of CRL5-PCMTD1 heteropentamer after one month storage at 

-80 ℃; the observation of monomers, heterodimers and heterotrimers confirm the 

stoichiometry of CRL5-PCMTD1 complex. 

 

Native Top-Down HCD and EChcD of CRL5-PCMTD1 Complex and Subcomplexes 

We first performed nTD-MS HCD on the 23+ charge state of Cul5-Rbx2 heterodimer. This 

generated N-terminal b-fragments from the Cul5 subunit, and C-terminal y-fragments from 

the Rbx2 subunit. From previous nTD-MS HCD studies from our lab7, this suggests that 

the Cul5 N-terminus and the Rbx2 C-terminus are solvent exposed. The data also suggests 

that C-terminus of Cul5 subunit and N-terminus of Rbx2 subunit should be close to the 

Cul5-Rbx2 monomer interfaces. Due to the ISD energy upper limit, we were not able to 

detach the Cul5-Rbx2 monomers from each other.  
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Figure 2. (A) Native top-down HCD MS of the 23+ charge state of His-TEV-Cul5-Rbx2 

heterodimer, with fragments ions from the Cul5 subunit labeled in green, and fragment ions 

from the Rbx2 subunit labeled in dark blue; fragmentation location map of (B) His-TEV-

Cul5 subunit, and (C) Rbx2 subunit. 

 

In addition, we performed nTD-MS using both HCD and EChcD on the eloB-eloC-

PCMTD1 heterotrimer. Dissociation of the heterotrimer into its monomer components was 

observed at low HCD energy without generating sequence-bearing product ions. Instead, 

nTD-MS with EChcD was performed to prevent monomer ejection prior to direct 

fragmentation of the heterotrimer. Although ejected eloB and eloC monomers were 

observed with EChcD (Figure 3A), fragment ions that appear to provide higher-order 

structure information from each monomer were observed. The fragment location maps of 
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eloB and eloC subunits (Figures 3B and C) show mainly N-terminal c-fragments generated 

from each subunit, suggesting that the N-termini of eloB and eloC are more solvent 

exposed in the heterotrimer, whereas the C-termini of both subunits may be involved in 

biding to PCMTD1. There were only 3 C-terminal z-fragments assigned to the PCMTD1 

subunit. Thus, due to the limited number of fragments, we are not able to conclude the 

monomer interface on PCMTD1 subunit.  

To gain more information on the monomer binding interfaces, we performed complex-

down HCD experiments on the eloB (Figure S4A and B) and eloC (Figure S4C and D) 

subunits separately. The resultant MS/MS spectra reveal both N-terminal b-fragments and 

C-terminal y-fragments of both subunits. The presence of near equal proportions of  b- and 

y- fragments from complex-down MS indicates that both termini of both subunits are 

accessible by HCD. Therefore, each subunit released by ISD retain little higher-order 

structure information about the native heterotrimer. However, by comparing the 

fragmentation patterns between nTD-MS and complex-down for each subunit, we were 

able to confidently confirm the monomer binding interfaces for the eloB-eloC-PCMTD1 

heterotrimer. 
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Figure 3. (A) Native top-down EChcD MS of (A) the 14+ charge state of eloB-eloC-

PCMTD1 trimer, with eloB subunit ions labeled in cyan, eloC subunit and its fragments 

labeled in purple, and fragments from PCMTD1 labeled in yellow, and (B) the 

corresponding fragment location maps for eloB and eloC subunits. 

 

ECD and EChcD have the capability for preserving labile bonding and noncovalent 

interactions during the protein backbone cleavage process11, 20, 21. Moreover, our previous 

study (shown in Chapter 2) has shown that EChcD has enhanced fragmentation efficiency, 

compared to HCD alone. EChcD of the native fully intact CRL5-PCMTD1 heteropentamer 

revealed numerous peaks at fragmentation region (m/z 1000-4000) as well as charge 

reduced intact species. However, only c-fragments from the Cul5 subunit can be mapped 

back to the sequence (Figure 4B), which indicates that N-terminus of Cul5 subunit may be 

at the solvent exposed region, and not directly in contact with other the subunits. The 

limited number of fragments assigned might be due to the complexity of spectrum at the 

fragment-rich region. As the number of fragments increases, more overlapped peaks can 

be observed, which makes the deconvolution of a fragmentation spectrum challenging. 

Therefore, the deconvoluted masses may not be accurate, resulting in less matched 
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fragments for a given mass accuracy. To address this issue, we also performed native top-

down HCD MS of the native CRL5-PCMTD1 heteropentamer. Although HCD of the 

pentamer resulted in the release of eloB, HCD generated N-terminal b-fragments from Cul5, 

N-terminal b-fragments from eloB, C-terminal y-fragments from Rbx2, and C-terminal y-

fragments from PCMTD1. This result is consistent with fragmentation patterns revealed 

by top-down of the Cul5-Rbx2 heterodimer, eloBC-PCMTD1 heterotrimer, and CRL5-

PCMTD1 heteropentamer, and confirms the subunit-subunit interfaces suggested from the 

nTD-MS of the subcomplexes. (It should be noted that CRL5-PCMTD1 heteropentamer in 

the HCD experiment has a His-TEV tag on Cul5 N-terminus, and a TEV tag on PCMTD1 

N-terminus.) 

Moreover, the results from native TD-MS are consistent with the 3D structure obtained 

from cryo-EM at 4.38 Å resolution at the Fourier shell correlation (FSC) threshold of 0.143 

(Figure S5). The cryo-EM structure shows that a region of the the N-terminus of Cul5 is 

solvent exposed, which are easily accessed by HCD and EChcD MS experiments. 
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Figure 4. Native top-down (A) EChcD MS of the 26+ charge state of CRL5-PCMTD1 

without tags on both Cul5 and PCMTD1 subunits, with fragments from the Cul5 subunit 

labeled in green, and (B) corresponding fragmentation map for Cul5 subunit. (C) HCD MS 

of the 26+ charge state of CRL5-PCMTD1 heteropentamer with His-TEV-tag on Cul5 and 

TEV-tag on PCMTD1 subunit, with fragments from the Cul5 subunit labeled in green, 

fragments from Rbx2 subunit labeled in dark blue, fragments from the PCMTD1 subunit 

labeled in yellow, and the eloB monomer and fragment from eloB subunit labeled in cyan. 

(D) Proposed CRL5-PCMTD1 heteropentamer higher-order structure. 

  

Native MS Probes Subcomplex-Ligand Binding Event 

Structural characterization via single particle cryo-EM on PCMTD1 multimerized in a 

pentameric assembly, CRL5-PCMTD1, yielded resolution sufficient for investigating its 

domain-level architecture but not atomic features. Sub-optimal structural resolution may 

be due to known dynamics in CRLs, which help facilitate their enzymatic functions. To 
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obtain higher resolution information for PCMTD1 by cryo-EM, we reconstituted a variant 

of CRL5-PCMTD1 where PCMTD1 is multimerized into a tetramer with eloBC and a N-

terminal domine of Cul5 to further stabilize PCMTD1. We envision this new preparation 

will provide greater structural details for PCMTD1 to elucidate its structure-function 

relationship. We also aimed to characterize potential iso-aspartic acid (isoD) peptide 

binding for this new heterotetramer preparation with cryo-EM and nTD-MS where high 

resolution information on where PCMTD1 engages isoD residues could be achieved. 

Native MS experiments were performed on eloB-eloC-PCMTD1-Cul5 N-terminal domain 

(NTD) heterotetramer, and the heterotetramer with excess SAM, excess GGGVYPisoDLA 

(isoP1), and excess GGGKASAisoDLAKY (isoP2). Figure 5A shows two charge state 

distributions corresponding to apo-tetramer and tetramer with SAM (holo-tetramer), 

suggesting that that presence of SAM is not critical for forming the tetramer. With the 

addition of excess SAM, only holo-tetramer was observed (Figure 5B). With the addition 

of isoD peptide 1 (no SAM added), three charge state distributions were observed in the 

spectrum corresponding to apo-tetramer, holo-tetramer (with SAM), and tetramer bound 

to both SAM and the isoD peptide (Figure 5C). No tetramer bound to the isoD peptide but 

without SAM-bound was observed. This result suggests that the presence of SAM is critical 

for tetramer-isoD peptide binding. Similar result was observed with the addition of isoD 

peptide 2 (Figure 5D). 

To confirm that isoD is also a key factor for tetramer-peptide binding, we performed nMS 

experiments with the addition of normal peptides (i.e., non-isoAsp) with the same sequence 

as the isoD peptides. Only the apo- and holo-tetramer (with SAM) were observed (Figure 
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S6). This result supports our hypothesis that only peptides with isoD are the substrates of 

the tetramer. 

To investigate the isoD peptide binding site(s) on PCMTD1 subunit, we performed nTD-

MS with HCD and EChcD; however, isoD peptides were released at low energy before 

generating any fragments that retains peptide binding.  

 

Figure 5. Native mass spectrum of (A) eloB-eloC-PCMTD1-Cul5_NTD heterotetramer, 

(B) eloB-eloC-PCMTD1-Cul5_NTD heterotetramer with 50 μM SAM, (C) eloB-eloC-

PCMTD1-Cul5_NTD heterotetramer with peptide GGGVYPisoDLA (isoP1) (with a 1:5 

ratio of tetramer:peptide), and (D) eloBC-PCMTD1-Cul5_NTD heterotetramer with 

peptide GGGKASAisoDLAKY (isoP2) (with a 1:5 ratio of tetramer:peptide). 
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Conclusion 

Here we report the combination of cryo-EM and nTD-MS for the characterization of a 

potential human E3 ligase with an unknown structure. The results demonstrate that near-

native structures can be retained in the gas phase (by MS), therefore, enabling the MS 

experiments to reveal higher order structure information for protein complexes and to 

obtain 3D structure information that can be coupled with cryo-EM results. Moreover, the 

native MS probing of protein-substrate binding events reveal important functional 

information of the PCMTD1 complex, and this can be followed-up with subsequent cryo-

EM studies. It also underscores the utility of native MS to identify experimental conditions 

for subsequent structural studies. 
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Chapter 4: Supporting Information 

Supplementary Figures 

 

 

Figure S1. Schematic of the electromagnetostatic ExD cell.1 
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Figure S2. (A) Deconvoluted spectrum of Rbx2 subunit and Rbx2 with βME bound forms. 

Isotopically resolved mass spectra of (B) eloB subunit, and (C) eloC subunit. 
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Figure S3. Protein sequence identification maps for Cul5 subunit (left panel) and PCMTD1 

subunit (right panel) by bottom-up proteomics. 

  

(A) Cul5 (B) PCMTD1
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Figure S4. (A) Native top-down HCD mass spectrum of the 4+ charge state of eloB subunit, 

and (B) corresponding fragmentation location. (C) Native top-down HCD spectrum of the 

3+ charge state of eloC subunit, and (D) corresponding fragmentation location map. 
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Figure S5. (A) CRL5-PCMTD1 complex structure fitted into Cryo-EM density; N-

terminal fragments generated by EChcD labeled in red, the rest of Cul5 subunit labeled in 

green, Rbx2 subunit labeled in blue, eloB subunit labeled in cyan, and PCMTD1 subunit 

labeled in yellow. (B) Expanded structure for Cul5 N-terminus shows that Cul5 N-terminus 

is at the solvent exposed region. Cryo-EM images were collected by Eric Pang. 
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Figure S6. Native mass spectra of (A) eloB-eloC-PCMTD1-Cul5_NTD heterotetramer 

with peptide GGGVYPDLA (P1), and (B) eloB-eloC-PCMTD1-Cul5_NTD 

heterotetramer with peptide GGGKASADLAKY (P2). No peptide bound form were 

detectred. 
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Supplementary Tables 

 

Table S1. ExD cell parameters for the protein complexes analyzed in the study. 

 

  

Protein 

Complex 
L1 L2 LM3 L4 FB LM5 L6 

eloB-eloC-

PCMTD1 

heterotrimer 

-0.82 -40.0 1.0 4.11 -8.0 1.0 -40.0 

CRL5-

PCMTD1 

heteropentamer 

-1.27 -52.0 4.7 12.2 0.8 4.7 -52.0 
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Table S2. Theoretical and measured masses for monomers, subcomplexes, and the full 

complex. Average masses are shown in the table, unless stated otherwise. 

 

  

Proteins Theoretical  mass (Da) Measured mass (Da) 

eloC monomer 10,963.54 (monoisotopic) 
10,957.488 

(monoisotopic) 

eloB monomer 
13,125.548 

(monoisotopic) 

13,125.599 

(monoisotopic) 

PCMTD1 monomer (w/o tag) 40,761.03 40,761.21 

Rbx2 monomer 12,576.29 12,573.57 

Cul5 monomer (w/o tags) 91,306.95 N/A 

eloB-eloC heterodimer 24,096.21 24,097.37 

eloB-PCMTD1 heterodimer 53,893.70 53,891.129 

eloC-PCMTD1 heterometer 51,724.57 51,721.921 

eloB-eloC-PCMTD1 heterotrimer 64,857.24 64,857.461 

Cul5-Rbx2 heterodimer 104,014.36 104,070.875 

CRL5-PCMTD1 heteropentamer 168,871.6 168,960.234 
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Chapter 5: Conclusion 

Identifying and characterizing the structure of protein complexes are important for 

understanding how they function in biological processes at the molecular level. This work 

addresses several experimental issues to increase the applicability of native top-down mass 

spectrometry (nTD-MS) for elucidating information on the primary (i.e., sequence) and 

higher-order structures of protein complexes and their individual subunit components.  

TD-MS fragmentation efficiency is largely dependent on the abundance and charge of the 

precursor ion. Increasing the precursor charge state enhances the efficiency of collision- 

and electron-based fragmentation. The new supercharging agents tested in this work 

(Appendix), 3-nitrophenylacetonitrile, 4-nitrophenylacetonitrile and 3-nitribenzontrile, 

showed the capabilities of a 19% to 38% increase of the average charge state for denatured 

lysozyme.  The discovery of supercharging agents can provide the ability to extract more 

information out of a protein in top-down MS experiments. Because the increase of charges 

on a protein promises an increase in efficiency of fragmentation, a higher sequence 

coverage (i.e., more unique protein backbone cleavage sites) can be returned to provide 

more information on the sequence, locations of modifications, and even reveal  information 

for the native protein structure. However, due to the insolubility of the three new 

supercharging agents in aqueous solutions, they were not tested in nTD-MS experiments. 

The gas phase stability affects the fragmentation pattern of nTD-MS. In this work, we used 

the streptavidin tetramer (52 kDa) as an example to show that complex-down MS and nTD-

MS with HCD of the intact complex returned the same fragmentation pattern, consistent 

with its weak noncovalent interactions between monomers in the gas-phase. The addition 
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of both L-proline, an adduct previously reported to stabilize intra-molecular noncovalent 

interactions, and biotin, which has a high binding affinity to streptavidin in the solution 

phase, shows no stabilization effect on noncovalent interactions among subunits. Therefore, 

fragments generated by electron capture-high collision energy dissociation (EChcD) did 

not return any higher-order structure information for the tetramer. However, electron 

transfer dissociation (ETD) showed the ability to release fragments mainly from the 

tetramer and therefore, provided the higher-order structure information of streptavidin 

tetramer. This aspect of ETD should be explored in the future. 

A recently developed ExD cell have provided us an option to perform electron-based 

fragmentation on an Orbitrap system, which has traditionally been coupled to Q-TOF and 

FT-ICR MS. In this work, we described how the electron capture dissociation coupled with 

HCD (EChcD) can reveal quaternary structure information on most of the protein 

complexes by directly fragmenting the complexes. Additionally, Orbitrap-based ECD 

fragmentation efficiency is comparable or higher than FT-ICR ECD fragmentation 

efficiency in terms of the sequence coverage of large protein complexes, such as aldolase 

homotetramer and glutamate dehydrogenase homohexamer.  

PCMTD1 was shown to multimerize with cullin-RING ligase components. Predicted from 

a previously characterized E3 ligase structure, the complex CRL5-PCMTD1 might be a 

potential E3 ubiquitin ligase, and is thought to play a role in isoaspartyl maintenance. 

Structure characterization of CRL5-PCMTD1 is critical to understand its biological 

activities, but the dynamics involved in substrate tagging makes it challenging to analyze 

by X-ray crystallography and cryo-EM. This work shows that mass spectrometry can 

provide relevant information on CRL5-PCMTD1 complex including its quaternary 
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structure information and iso-aspartic acid peptide binding activity. This data can be used 

to provide information on the substrate binding sites. Although the mass spectrometry 

result did not provide high resolution 3D structure, the combination of cryo-EM and nTD-

MS results elucidates the 3D structure of this CRL5-PCMTD1 complex. It is possible that 

the combination of cryo-EM and nTD-MS results can also probe its substrate binding sites 

and uncover its biological function. 
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Appendix A: Native Top-Down Mass Spectrometry with Collisionally Activated 

Dissociation Yields Higher-Order Structure Information for Protein Complexes  

 

Reprinted with permission from 

Lantz, C.; Wei, B.; Zhao, B.; Jung, W.; Goring, A. K.; Le, J.; Miller, J.; Loo, R. R. O.; 

Loo, J. A., Native Top-Down Mass Spectrometry with Collisionally Activated 

Dissociation Yields Higher-Order Structure Information for Protein Complexes. Journal 

of the American Chemical Society 2022, 144 (48), 21826-21830. DOI: 

https://doi.org/10.1021/jacs.2c06726. 
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Abstract 

Native mass spectrometry (MS) of proteins and protein assemblies reveals size and binding 

stoichiometry, but elucidating structures to understand their function is more challenging. 

Native top-down MS (nTDMS), i.e., fragmentation of the gas-phase protein, is 

conventionally used to derive sequence information, locate post-translational 

modifications (PTMs), and pinpoint ligand binding sites. nTDMS also endeavors to 

dissociate covalent bonds in a conformation-sensitive manner, such that information about 

higher-order structure can be inferred from the fragmentation pattern. However, the 

activation/dissociation method used can greatly affect the resulting information on protein 

higher-order structure. Methods such as electron capture/transfer dissociation (ECD and 

ETD, or ExD) and ultraviolet photodissociation (UVPD) can produce product ions that are 

sensitive to structural features of protein complexes. For multi-subunit complexes, a long-

held belief is that collisionally activated dissociation (CAD) induces unfolding and release 

of a subunit, and thus is not useful for higher-order structure characterization. Here we 

show not only that sequence information can be obtained directly from CAD of native 

protein complexes but that the fragmentation pattern can deliver higher-order structural 

information about their gas- and solution-phase structures. Moreover, CAD-generated 

internal fragments (i.e., fragments containing neither N-/C-termini) reveal structural 

aspects of protein complexes.  
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Main Text 

Native top-down mass spectrometry (nTDMS) of gas-phase proteins yields product ions 

that can provide information on amino acid sequence,1, 2 sites of modifications,3-5 and even 

higher-order structure.6 Performing nTDMS with electron-based techniques such as 

electron capture dissociation (ECD) and electron transfer dissociation (ETD)7-11 and 

photon-based techniques such as infrared multiphoton dissociation (IRMPD) and 

ultraviolet photodissociation (UVPD)8, 12-14 is generally favored, as it fragments the 

complex directly without disrupting the overall complex structure. In contrast, it has been 

generally assumed that collision-based fragmentation does not reveal higher-order 

structural information, as unfolding and ejection of monomer subunits (and ligands) occurs. 

However, we have found that direct fragmentation of native protein complexes with 

Orbitrap-based high-energy C-trap dissociation (HCD),15 a collision-based fragmentation 

technique performed with higher energy on a faster time scale than conventional 

collisionally activated dissociation (CAD), can uncover aspects of protein higher-order 

structure. For a variety of protein complexes, we show here that HCD can generate b-/y-

type product ions that provide information on solvent-exposed regions and subunit 

interfaces. 

To investigate HCD fragmentation of protein complexes,16 complex-down MS (pseudo-

MS3)17, 18 and nTDMS (Scheme 1) of yeast alcohol dehydrogenase (ADH) homotetramer 

(147 kDa) were compared. Complex-down MS was performed by using in-source CAD to 

detach a monomer from the tetramer and to subsequently activate the 12+ charged 

monomer with HCD. The resultant MS/MS spectrum revealed both N-terminal b-

fragments and C-terminal y-fragments of ADH (Figure S1A); 24 b-fragments and 18 y-
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fragments resulted in 11.8% total sequence coverage (Figure 1A). The fragmentation 

pattern also revealed the presence of N-terminal acetylation, a V58T proteoform, and Zn2+ 

binding. The presence of near equal numbers of abundant b- and y-fragments from the 

complex-down MS workflow suggests that both termini of the ADH monomer subunit are 

easily accessed by HCD fragmentation, i.e., the in-source CAD process releases a low-

structured monomer such that subsequent HCD products yield little information about the 

3D structure of the native tetramer. 

 

Scheme 1. Complex-Down MS and nTDMS Workflows Used in This Study. 

 

For comparison, nTDMS results from HCD of the 25+ charged ADH tetramer were 

examined. Primarily b-products and surprisingly few peaks corresponding to released 

ADH monomers (Figure 1B, Figure S1B) were detected. We speculate that monomers were 

not ejected from the tetramer complex prior to covalent bond cleavage, i.e., the tetramer 

fragmented directly. To further support this claim, broadband fragmentation (of all ADH 

tetramer charge states) with a range of HCD energies did not yield significant levels of 
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released monomer signals (Figure S2). nTDMS of ADH yielded 60 N-terminal b-fragments, 

but only three C-terminal y-fragments (17.6% sequence coverage) (Figure 1B). Numerous 

abundant N-terminal fragments produced by HCD resemble nTDMS products from 

electron-based7, 8 and photodissociation techniques.8, 12 Mapping the fragments onto the 

crystal structure of ADH shows that the N-terminal region is more solvent exposed than 

the C-terminal region, with the latter forming subunit–subunit interfaces of the complex 

(Figure S3). Our analysis indicates that fragments that cut at the interface of the tetramer 

(residues 240–310) accounted for only 8% of the fragment ion current. 

To further examine how collision-based fragmentation can reveal structural information 

from protein complexes, intact (rabbit) aldolase homotetramer (157 kDa) was fragmented 

with HCD. Much like ADH, aldolase did not release monomers upon HCD, but rather y-

fragments including an especially abundant y74 ion (2+ to 5+ charged) (Figure S4). At low 

HCD energies, a large complementary fragment corresponding to the mass of the intact 

tetramer losing a y74-fragment, i.e., (4M – y74), was observed (Figure S5 and Table S1), 

indicating direct fragmentation of the tetramer. nTDMS yielded 35 C-terminal y-fragments 

but only eight N-terminal b-fragments (11.0% sequence coverage) (Figure 2). This result 

differs from the complex-down mass spectrum of aldolase, which shows a nearly equal 

proportion of N-terminal b-fragments19 and C-terminal y-fragments16 (Figure S6). 
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Figure 1. Fragment location maps for ADH representing b-/y-product ions measured by 

(top) complex-down MS and (bottom) nTDMS with HCD. Red lines indicate V58T 

mutation, green lines indicate Zn2+ binding, the vertical dotted line indicates N-terminal 

acetylation, and the size of the blue dots indicates the relative intensity of each fragment. 

Numbers in parentheses indicate the number of product ions detected. 

 

The HCD fragments from the aldolase tetramer mainly cover the solvent-exposed C-

terminus and are absent from the interface forming N-terminus (Figure 2). Our analysis 

indicates that fragments that cut at the interface of the tetramer (residues 110–224) 

accounted for only 1% of the fragment ion current. The relatively high proportion of C-

terminal fragments present in the native HCD spectrum of aldolase is similar to that 
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measured by ECD previously19 and further suggests that direct HCD fragmentation of some 

protein complexes can reveal regions of solvent accessibility. 

 

Figure 2. Fragment location map for nTDMS products of the 25+ charged precursor of 

aldolase homotetramer, with the size of the blue dots corresponding to the relative intensity 

of the fragments The crystal structure shows that most cleavage sites lie on the solvent-

exposed C-terminus (blue), rather than the interface forming N-terminus (red). The purple 

region is covered by both N-terminal and C-terminal fragments. 

 

nTDMS with HCD was performed on several other protein complexes. Complex-down 

fragmentation of the glutathione S-transferase A1 (GSTA1) dimer revealed 25 N-terminal 

b-fragments and 20 C-terminal y-fragments (Figure S7A). In contrast, the native 

fragmentation spectrum of GSTA1 reveals five N-terminal b-fragments and 19 C-terminal 

y-fragments (Figure S7B), consistent with the GSTA1 crystal structure showing that the 

C-terminus is more solvent exposed than the N-terminus (Figure S7B). For the yeast 

enolase dimer, 27 b-fragments along with 18 y-fragments were measured by complex-

down MS (Figure S8A). nTDMS revealed 48 N-terminal b-fragments along with 51 C-

terminal y-fragments without the appearance of abundant monomer ions (Figure S8B). The 

crystal structure of enolase (Figure S8B) indicates that both N-/C-termini are solvent 
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exposed and are not involved in forming the dimer interface, consistent with the near equal 

proportion of b-/y-products measured by nTDMS. 

Some complexes did not release monomers from in-source CAD for complex-down 

fragmentation; however, HCD of the native complexes still returned structural information. 

Native HCD of the creatine kinase dimer revealed nine b- and 38 y-fragments, which 

suggests that the C-terminus is solvent exposed and the N-terminus forms the interface of 

the dimer; this aligns well with the crystal structure of creatine kinase (Figure S9). 

Similarly, HCD of 6-phosphogluconate dehydrogenase (GND1) dimer generated 23 b-

fragments but only six y-fragments, consistent with the GND1 crystal structure showing 

the N-termini to be solvent exposed and the C-termini forming the dimer interface (Figure 

S10). 

There are some exceptions to this pattern of b-/y-product formation directly from intact 

native complexes under HCD. For example, HCD of the native membrane protein, 

aquaporin Z (AqpZ) homotetramer,20-22 yielded abundant monomer, dimer, and trimer 

products released from the intact complex (Figure S11A). This observation can be 

attributed to the weak hydrophobic binding interface between the monomer subunits of the 

AqpZ tetramer. Complexes such as aldolase and ADH are stabilized somewhat by salt 

bridges that strengthen greatly in the gas phase,23, 24 potentially preventing monomer 

ejection during HCD (Figure S12). That monomer products are released when HCD is 

applied to native AqpZ complexes suggests that structural information (such as the 

locations of solvent-exposed regions and the tetramer interface) cannot be inferred from 

the resulting b-/y-fragments, at least assuming that the monomers likely eject before 

covalent bonds cleave. This suggestion is supported by the fact that the nTDMS 
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fragmentation pattern of AqpZ tetramers (65 b-fragments, 62 y-fragments, 38.4% sequence 

coverage; Figure S11A) does not differ significantly from the complex-down 

fragmentation pattern of isolated monomers (63 b-fragments, 60 C-terminal y-fragments, 

34.6% sequence coverage; Figure S11B). Although HCD fragmentation of native AqpZ 

does not reveal significant higher-order structural information, it does suggest that the 

interaction between complex monomers in the gas phase is relatively weak. 

Monomer releases during HCD are not limited to membrane protein complexes. HCD 

fragmentation of the hemoglobin (Hb) tetramer revealed monomer and trimer peaks in 

addition to 10 b-fragments and eight y-fragments from the α-subunit and seven b-fragments 

and seven y-fragments from the β-subunit (Figure S13A). Fragmentation of the Hb dimer 

also revealed released monomer peaks in addition to 11 b-fragments and 16 y-fragments 

from the α-subunit and 10 b-fragments and four y-fragments from the β-subunit (Figure 

S13B). A similar HCD fragmentation pattern can be observed from complex-down MS of 

individual subunits (nine b- and 10 y-fragments and six b- and five y-fragments from the 

α- and β-subunits, respectively) (Figure S13C). Similarly, nTDMS of human transthyretin 

(TTR) tetramers by HCD releases monomer products in addition to two b- and 38 y-

fragments (Figure S14A). The relative proportion of b-/y-product ions between the 

tetramer and monomer TTR is similar, with complex-down of the TTR monomer yielding 

three b-fragments and 41 y-fragments (Figure S14B). The HCD results for all of the 

complexes included in the study are listed in Table S2. 

Lastly, we investigated the utility of internal fragments (i.e., product ions containing 

neither N-/C-termini that result from at least two bond cleavage events)1, 25-30 for structure 

determination of protein complexes. Preliminary data show that HCD fragmentation of 
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ADH tetramers reveals numerous internal fragments spanning residues 178–236 (Figure 

S15A), which correspond to a solvent-exposed region (Figure S15B). More work will 

extend this concept further, but it demonstrates that HCD-derived internal fragments can 

deliver structural information on protein assemblies. 

Although other studies have noted the detection of b-/y-products with concurrent subunit 

release from CAD31 and HCD16 of protein complexes, we have found that collision-based 

fragmentation with HCD can reveal higher-order structure information for several multi-

subunit protein complexes that appear to be stabilized through the presence of salt 

bridges.23 These complexes fragment directly by HCD without significant monomer 

release. The resulting products map to solvent-exposed areas, while regions delivering 

fewer fragments likely comprise subunit interfaces. Other weak gas-phase complexes eject 

monomers upon HCD. Nonetheless, it is currently unclear what differences between HCD 

and other beam-type CAD experiments are responsible for the unique fragmentation 

behavior. 

An assumption carried over from small-molecule dissociation studies to macroion 

decompositions is that, on the experimental time scale, activation from collisions always 

randomizes fully to steer collision-induced decompositions along the lowest energy 

pathways. However, those assumptions fail to consider that entropically demanding, slow 

rearrangements might be essential to releasing a subunit, e.g., to reposition salt bridges 

tethering one subunit to others.23 In cases where the number of collisions and/or energy per 

collision are insufficient to stumble on the rare configuration ejecting a subunit within the 

experimental time frame, alternative rearrangements to eject smaller polypeptide fragments 

(with fewer tethers) may be competitive. Nevertheless, we show that HCD can be a 
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powerful biophysical tool to probe the structure of proteins without the need for other 

electron- and photon-based activation/dissociation methods. 

Associate Content 

The Supporting Information is available free of charge at: 

https://doi.org/10.1021/jacs.2c06726. 

Materials and methods; supplementary figures (Figures S1−S15) showing nTDMS and 

complex-down MS spectra, data, and protein structures of those studied; Table S1, listing 

information for all proteins studied (PDF). 
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Appendix A: Supporting Information 

Materials and Methods 

Commerically available protein samples were obtained from Sigma Aldrich (St. Louis, MO, 

USA), and dissolved in 200mM ammonium acetate, and desalted with 10K Amicon filters 

from Sigma Aldrich. Aquaporin Z (AqpZ; from Pascal Egea, UCLA)1 and human 

hemoglobin (Hb; from Robert Clubb, UCLA)2 were isolated and prepared as described 

previously. The samples were then diluted to 10µM and sprayed on a Thermo UHMR 

(Thermo Fisher Scientific, San Jose, CA) with voltages of 1-2kV. To fragment native 

complexes, HCD energies of 125-280V were applied. Lower voltages were applied for 

select applications. Complex-down MS experiments were performed by applying 5-150V 

of in-source CAD or -60V of desolvation voltage to eject monomers and then applying 

100V-177V of HCD energy to subsequently activate those monomers. For internal 

fragment analysis, the ADH the tetramer was fragmented with 215V of collision energy 

with argon as the collision gas. 

Deconvolution was performed with BioPharma Finder 3.2 and the resulting deconvoluted 

peak list was run through ClipsMS.3 b- and y-fragments were matched to protein sequences 

with an error tolerance of 5ppm and unlocalized modifications included the addition of a 

hydrogen atom and the abstraction of a water molecule were added to the theoretical masses. 

For ADH, additional modifications including an N-terminal acetylation, a V58T mutation, 

and a Zn2+ ion were added to theoretical fragments. by internal fragments of ADH were 

searched with ClipsMS with an error tolerance of 5ppm. To deconvolute large 

complementary fragments, UniDec was used.4 Fragments were mapped onto crystal 
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structures of protein complexes using Pymol 2.5.4. The ADH pymol code used was 4W6Z, 

the aldolase pymol code used was 1ADO, the enolase pymol code used was 1EGB, the 

GSTA1 pymol code used was 1GSD, and the creatine kinase pymol code used was 1U6R, 

and the aquaporin Z pymol code used was 1RC2. 
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Supplementary Figures 

 

 

Figure S1. (A) A complex-down fragmentation spectrum and (B) a native TD-MS 

spectrum of ADH. 

 

 

Figure S2. Broadband nTD-MS spectra of ADH at various voltages. Notice how intense 

monomer peaks do not appear at any voltage that was applied. 
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Figure S3. The structure of ADH with the region covered by the N-terminal fragments 

labeled in red and the region covered by the C-terminal fragments labeled in blue. Notice 

how fragments do not stem from the interface forming region of the tetramer (green). 

 

 

Figure S4. A native top-down mass spectrum of the aldolase homotetramer. 
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Figure S5. A native top-down mass spectrum of the 25+ charge state of the aldolase 

homotetramer showing multiple charge states of an abundant y74 fragment and high m/z 

peaks corresponding to charge states of the tetramer-y74. 

 

 

Figure S6. A complex-down spectrum and the corresponding fragment location map for 

the aldolase homotetramer. 
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Figure S7. (A) A complex-down spectrum with the corresponding fragment location map 

and (B) a native top-down mass spectrum with the corresponding fragmentation location 

map for the human GST A1 dimer. The inset shows the structure of GST A1 with the region 

covered by N-terminal fragments labeled in red, the region covered by C-terminal 

fragments labeled in blue, and the region covered by N- and C-terminal fragments labeled 

in purple. Notice that most fragments contain the solvent exposed C-terminus and fewer 

fragments contain the interface forming N-terminus. 
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Figure S8. (A) A complex-down spectrum with the corresponding fragment location map 

and (B) a native top-down mass spectrum with the corresponding fragmentation location 

map for the enolase dimer. The inset shows the structure of enolase with the region covered 

by N-terminal fragments labeled in red and the region covered by C-terminal fragments 

labeled in blue. Extensive coverage of the N- and C-terminus are present because both 

termini are solvent exposed. 
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Figure S9. A native top-down mass spectrum with the corresponding fragmentation 

location map for creatine kinase. The inset shows the structure of creatine kinase with the 

region covered by N-terminal fragments labeled in red and the region covered by C-

terminal fragments labeled in blue. Notice how more fragments contain the solvent exposed 

C-terminus and fewer fragments contain the interface forming N-terminus. 

 

 

Figure S10. A native top-down mass spectrum with the corresponding fragmentation 

location map for the GND1 dimer with the vertical dotted line representing N-terminal 

acetylation. The inset shows the structure of GND1 with the region covered by N-terminal 

fragments labeled in red and the region covered by C-terminal fragments labeled in blue. 

Notice how more fragments contain the solvent exposed N-terminus and fewer fragments 

contain the interface forming C-terminus. 
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Figure S11. (A) A native top-down mass spectrum with the corresponding fragment 

location map and (B) a complex-down spectrum with the corresponding fragmentation 

location map for the AqpZ tetramer. 
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Figure S12. (A) The crystal structure of rabbit aldolase and (B) the crystal structure of 

aquaporin Z with positively charged amino acids (Lys and Arg) labeled in blue and 

negatively charged amino acids (Glu and Asp) labeled in red. The black lines indicate the 

complex interface. Aldolase contains many charged residues at the interface of the protein 

complex and aquaporin Z does not which may explain why aquaporin Z releases monomers 

and aldolase does not when HCD is applied to the intact complex. 

A. B.
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Figure S13. (A) A native top-down mass spectrum of the hemoglobin tetramer with the 

corresponding fragment location maps for the α-subunit and β-subunit, (B) a native top-

down mass spectrum of the hemoglobin dimer with the corresponding fragmentation 

location maps for the α-subunit and β-subunit, and (C) complex-down fragmentation 

spectra and the corresponding fragment location maps for the α-subunit and β-subunit. 
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Figure S14. (A) A native top-down mass spectrum with the corresponding fragment 

location map and (B) a complex-down spectrum with the corresponding fragmentation 

location map for the TTR tetramer. 
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Figure S15. (A) A heatmap representing terminal and internal fragment analysis of ADH 

and (B) the structure of the ADH tetramer with an internal fragment hotspot (residues 178-

236) highlighted in blue. Notice how this region of the ADH tetramer is solvent exposed. 

A. B.
Terminal Fragments

Internal Fragments
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Supplementary Tables 

 

Table S1. Molecular weights of species present in a low HCD energy spectrum of aldolase. 

The high m/z ions in the spectrum correspond to the aldolase tetramer-y74. 

 

  

Species MW (Da) 

Measured Molecular Weight of Aldolase 156,982 

Measured Molecular Weight Higher m/z Peaks 149,088 

Measured Molecular Difference 7,894 

Theoretical Mass of Y74 7,896 
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Table S2. Information on the complexes analyzed in this study. (* CK refers to creatine kinase) 

General Information Native TDMS Fragmentation Complex-Down Fragmentation 

Name of 

Complex 

Type of 

Complex 

MW 

Complex 

(Da) 

MW 

Monomer 

(Da) 

Monomer 

Release with 

HCD 

#N-

Term 

Frags 

#C-

Term 

Frags 

Sequence 

Coverage 

Monomer 

Release 

with CAD 

#N-Term 

Frags 

#C-

Term 

Frags 

Sequence 

Coverage 

ADH Tetramer 147,472 36,738 No 60 3 18% Yes 24 18 12% 

Aldolase Tetramer 156,748 39,187 No 8 35 11% Yes 19 16 8% 

GSTA1 Dimer 51,000 25,500 No 5 19 11% Yes 25 20 21% 

Enolase Dimer 93,312 46,656 No 48 51 18% Yes 27 18 8% 

CK* Dimer 86,224 43,112 No 9 38 13% No N/A N/A N/A 

GND1 Dimer 106,003 52,597 No 23 6 6% No N/A N/A N/A 

AqpZ Tetramer 24,269 97,076 Yes 65 62 38% Yes 63 60 35% 

Hemoglobin 

Tetramer 61,986 
α=15,126 

β=15,867 

Yes α=10 

β=7 

α=8 

β=7 

α=13% 

β=10% 
Yes 

α=9 

β=6 

α=10 

β=6 

α=13% 

β=8% 

Dimer 
30,993 α=15,126 

β=15,867 

Yes α=11 

β=10 

α=16 

β=4 

α=19% 

β=10% 
Yes 

α=9 

β=6 

α=10 

β=6 

α=13% 

β=8% 

Transthyretin Tetramer 55,044 13,761 Yes 2 38 33% Yes 3 41 36% 
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Abstract 

The gas phase stability of a protein analyte affects its fragmentation pattern measured by 

native top-down mass spectrometry (nTD-MS). A previous study by our laboratory 

suggested that Orbitrap-based high energy C-trap dissociation (HCD) fragments protein 

complexes directly, potentially revealing higher-order structure information for those 

assemblies. However, for the transthyretin tetramer (55 kDa), complex-down (tandem MS, 

or MS/MS of the dissociated subunit) and nTD-MS of the intact complex showed the same 

fragmentation pattern, consistent with relatively weak non-covalent interactions between 

monomer subunits. At low HCD energies, transthyretin tetramers decompose by ejecting a 

monomer subunit, while at higher HCD energies, they release a monomer and b-/y- 

fragment ions from the monomer. Here we report that by the addition of L-proline to the 
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transthyretin sample, we can stabilize the transthyretin complex and fragment protein 

complexes directly using HCD to reveal information on its higher-order structures.  

  



 

167 

 

Introduction 

Identifying and characterizing the structures of protein complexes is important for 

understanding how they function in biology. Native top-down mass spectrometry (nTD-

MS) enables us to analyze intact protein complexes and their individual protein 

components. We have found that Orbitrap-based high energy C-trap dissociation (HCD) 

fragments protein complexes directly, potentially revealing higher order structural 

information.1 However, there are some exceptions, for example, for the streptavidin 

homotetramer (52 kDa) described in Chapter 3, complex-down (MS/MS of the dissociated 

subunit) and nTD-MS of the intact complex showed the same HCD fragmentation pattern, 

consistent with its weak noncovalent interactions between the monomer subunits. 

Therefore, the topology of the structure of the streptavidin complex cannot be revealed 

using nTD-MS. Another example in which nTD-MS fails to reveal higher-order structure 

information is the transthyretin homotetramer (55 kDa). For native HCD of protein 

complexes, products differ depending on the non-covalent interactions within the complex 

(i.e., stability) and its 3D structure. Therefore, questions regarding the relatively stability 

of proteins in solution and how it relates to gas phase stability remain. 

Previous research from the Venter group suggests that the addition of L-proline can 

stabilize intra-molecular noncovalent interactions by preventing thermal unfolding.2 

Similar questions are explored here by applying native MS, nTD-MS, and complex-down 

MS (in-source dissociation to eject a subunit of which a charge state is isolated for 

subsequent HCD) to the transthyretin tetramer with and without the addition of L-proline.  
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Experimental 

Sample preparation. Transthyretin from human plasma (Sigma-Aldrich, St. Louis, MO, 

USA) with/without 10 mM L-proline (Sigma-Aldrich, St. Louis, MO, USA) dissolved in 

200 mM ammonium acetate were buffer exchanged using 10 kDa Amicon filters (Sigma-

Aldrich, St. Louis, MO, USA). 

Native Top-Down and Complex-Down HCD MS. Protein solutions were sprayed from 

custom Pt-coated nanospray capillaries at voltages ranging from 1.2-1.5 kV. Fragmentation 

was performed in the HCD cell of a Q-Exactive UHMR orbitrap instrument (ThermoFisher 

Scientific) with voltages from 100-275 V. Native top-down MS experiments were 

performed by isolating the most abundant precursor ion charge state. Nitrogen was applied 

as the collision gas. 100 scans were averaged for each spectrum, and all spectra were 

externally calibrated with cesium iodide. No in-source CID voltages were applied. The 

complex-down experiments were performed on the UHMR with in-source CID voltages 

from 60 V.  

Data Analysis. All MS/MS spectra were deconvoluted with BioPharma Finder 5.0 

(ThermoFisher Scientific, Waltham, USA). Deconvolved peaks were assigned by ClipsMS 

2.0.035 with an error tolerance of 3 ppm. Sequence assignment accommodated the major 

HCD (b, y) ion types without annotating neutral losses ions, except when explicitly 

mentioned. Terminal fragments were manually validated by confirming the isotopic 

distributions. 
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Results and Dissociation 

Transthyretin is a 55 kDa homotetramer organized as a dimer of dimers in the native state.3 

However, the transthyretin gas-phase tetramer is not stable, and can dissociate into 

monomers and misassemble into amyloid fibrils.4-6 In addition, previous studies have 

found that there are over 80 mutation sites including V30M and L55P.7 It has been reported 

that these mutations affect transthyretin tetramer stabilities and increase the rate of 

transthyretin aggregation in the heart and kidneys.8 Native MS analyses of the transthyretin 

homotetramer complex and the individual subunit provide a comprehensive overview of 

the composition and stoichiometry of the overall assembly. Two charge state distributions 

corresponding to transthyretin monomers (low m/z region) and transthyretin tetramers 

(high m/z region) were observed (Figure 1, top panel). Without the addition of L-proline, 

the monomer distribution is more abundant than the tetramer distribution. With the addition 

of 10 mM L-proline, two charge state distributions were still observed (Figure 1, bottom 

panel). However, the abundance of the monomer distribution has significantly reduced. 

This result may suggest that the addition of L-proline stabilized the noncovalent 

interactions between monomers, therefore, reducing the population of the monomers in the 

sample, i.e., increasing the proportion of intact tetramers. Moreover, in both spectra, the 

peaks corresponding to the monomer and the tetramer are wider than expected. These wider 

peaks might be due to the high heterogeneity with the presence of all the mutations.  
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Figure 1. Native mass spectra of transthyretin (top) without the addition of L-proline and 

(bottom) with the addition of 10 mM L-proline. 

 

We first performed nTD-MS HCD on the 15+ charge state of transthyretin tetramer. 

Dissociation of the homotetramer into its monomer components was observed at low HCD 

energy. This suggests that HCD ejects monomers from the complex at energies that are 

lower than those required to break covalent bonds. At a higher HCD energy, a few N-

terminal b-fragments and mostly C-terminal y-fragments were generated (Figure 2A and 

B). We also observed the monomer charge state distribution. The data suggests that 

monomer subunits are ejected before generating sequence-bearing fragments, and the 

fragments are all generated from the monomer, not directly from the tetramer. To confirm 

this claim, complex-down HCD was performed, and compared to the native top-down 

HCD fragmentation pattern. Complex-down MS was performed by using in-source CID 

Transthyretin 

With L-proline

T14+

M7+
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(ISD) to eject a monomer from the tetramer and to subsequently subject the released 6+ 

transthyretin monomer for fragmentation1. The resultant complex-down HCD spectrum 

also revealed the similar fragmentation pattern (Figure 2C and D). The similarity between 

nTD and complex-down fragmentation patterns supports that the monomers were ejected 

from the tetramers prior to the backbone cleavages in the HCD cell. Therefore, native top-

down HCD did not reveal higher-order structure information for transthyretin complex. 

 

Figure 2. (A) Native top-down HCD MS of the 15+ charge state of transthyretin tetramer; 

(B) the corresponding fragmentation location map. (C) Complex-down HCD MS of the 6+ 

charge state of transthyretin monomer; (D) the corresponding fragmentation location map. 
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To examine the relationship between the stability of protein complexes and their HCD 

fragmentation patterns, native HCD fragmentation of transthyretin with/without L-proline, 

an additive that appears to stabilize protein ions2, was performed. The MS/MS spectrum of 

stabilized transthyretin complexes revealed lower intensity and lower number of N-

terminal fragments (Figure 3C and D). This differing fragmentation patterns in the two 

experiments indicates that HCD products are highly dependent on the gas-phase stability 

of the complexes.  

 

Figure 3. (A) Native top-down HCD MS of the 14+ charge state of transthyretin tetramer 

without the addition of L-proline; (B) the corresponding fragmentation location map. (C) 
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Native top-down HCD MS of the 14+ charge state of transthyretin tetramer with the 

addition of L-proline; (D) the corresponding fragmentation location map. 

 

Conclusion 

Here we show that transthyretin homotetramer decomposed by monomer ejection at low 

energies, but released fragments with excess collision energies. The addition of L-proline 

reduced the transthyretin monomer-to-tetramer ratio and reduced the number of terminal 

fragments observed for transthyretin, suggesting that the tetramer was stabilized in the 

presence of L-proline. At this point, it is not clear what is the mechanism of gas-phase 

stabilization imparted by the presence of L-proline. Binding of small molecule ligands are 

known to increase the melting temperature of proteins by stabilizing the protein. However, 

the native mass spectra do not show definitive binding of L-proline to transthyretin. This 

does not preclude a noncovalent interaction between the two molecules, as the interaction 

could be very weak or transient in the gas-phase. But clearly, the presence of L-proline 

changes the profile of the transthyretin mass spectra (Figure 1), suggesting a stabilizing 

effect. This should be a research topic for future consideration. 
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Abstract 

Supplementing standard ESI solvents with certain low volatility organic compounds (e.g., 

sulfolane or any positional isomer of nitrobenzyl alcohol), increases analyte charge in the 

phenomenon known as supercharging. The mechanism(s) responsible for increasing charge 

are considered and found to correlate highly to solvent leveling, as revealed by shifts in the 

average charge state of lysozyme electrosprayed from denaturing solutions 

unsupplemented or supplemented by 0.2% (w/v) of one of nine amides or of 9 nitriles of 

known basicity (pKBH+). Consistently, amides or nitriles more basic than water reduced the 

average charge of lysozyme, while less basic amides increased the average charge, 

establishing the veracity of our supercharging model.  
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Introduction 

“Supercharging” was introduced as a term in electrospray ionization-mass spectrometry 

(ESI-MS) to describe increases in the maximum and most abundant charge states observed 

when glycerol, ethylene glycol, 2-methoxyethanol, and m-nitrobenzyl alcohol were added 

to acidified spray solutions.1 Since then, the term has been bestowed to numerous, distinct 

approaches that increase charge on macromolecules, ranging from electrothermal 

supercharging from native-like solution compositions,2-4 electrothermal supercharging 

with Hofmeister series ions or with small inner diameter capillaries,5, 6 polarity reversal 

with salts,7 spraying at super-atmospheric pressures,8-10 protein denaturation, solvent 

supplementation with organic compounds (liquid or solid),11-28 trivalent lanthanum 

addition,29 trivalent chromium addition,30, 31 and other phenomena.  

The mechanisms proposed to elevate charge are contentious and confusing, becoming more 

so as an increasing number of distinct phenomena are labeled “supercharging.” Here, we 

shall limit our consideration of supercharging to approaches that increase analyte charge 

by supplementing ESI solvents with modest amounts of certain low volatility organic 

compounds; i.e., the phenomenon originally described. We also consider analogous 

approaches that decrease charge (subcharge) by supplementation with low volatility 

additives. 

Iavarone and Williams32, 33 promoted the hypothesis that increasing surface tension with 

m-nitrobenzyl alcohol (m-NBA) addition to evaporating water/methanol/acetic acid 

solvent elevated the maximum quantity of charge that mature ESI droplets accommodated 

before succumbing to Rayleigh decomposition. Hence, for any size (surface area) droplet, 
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comparatively more charge would be stored in a high surface tension liquid. Given the 

water, m-NBA, acetic acid, and methanol surface tensions, (γ), of 72, 50±5,32 27, and 22 

mN/m,34 respectively, the key assumption enabling those arguments was that evaporating 

acetic acid/water droplets concentrate acetic acid, such that m-NBA could feasibly be 

argued to increase the surface tension of droplets initiating with that composition. Low 

acetic acid volatility was similarly assumed to argue that, at the point of ion emission, 

surface tensions of evaporating droplets composed initially of 43% glycerol/3% acetic 

acid/54% H2O would exceed those composed of 3% acetic acid/97% H2O, despite 

glycerol’s surface tension (γ = 63 mN/m) being lower than that of water.32, 33 Later, the 

notion that equilibrium vapor pressures determine relative volatility32 was shown to be 

incorrect; the key parameter for ranking volatility properly is a compound’s evaporation 

rate.35 Thus, the published data,32, 33 initially presumed as supporting, actually fail to show 

a significant role for surface tension in supercharging. Furthermore, many results 

incompatible with the model have been reported.11, 12, 17, 20, 35-38 Moreover, octyl glucoside, 

a surfactant reducing surface tension clearly increases protein charging,38 most notably for 

membrane protein complexes, as compared to polyoxyethylene detergents 39, 40 and shifts 

in the average charge state induced by 14 supercharging agents showed no correlation to 

surface tension.22 

It is also worth noting that the relationship between droplet surface tension and the 

maximum charge deposited on an analyte arises from Fernández de la Mora’s formulation 

of the charge residue model (CRM).41 Should analyte ions be released prior to complete 

solvent evaporation and, e.g., from droplets sized considerably larger than the analyte, the 

extent of charging should be unrelated to surface tension. Interestingly, the initial 
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supercharging observations32 were made from denaturing solutions, a condition for which 

the CRM is expected not to apply,41, 42  removing much of the perceived support for surface 

tension’s role in supercharging.  

Our laboratory proposed that low volatility, soluble, neutral compounds that are 

significantly weaker Brønsted bases than H2O elevate positive ion charge, while involatile, 

soluble, neutral Brønsted acids that are weaker than H2O, increase analyte deprotonation, 

elevating charge in negative ion mode.23 We argued that, in electrospray ionization, analyte 

competes with solvent for charge. In positive ion mode charging is usually achieved by 

protonation; hence, the solvent/analyte charge competition will be modulated by respective 

Brønsted basicities. As supercharging additives concentrate in evaporating electrospray 

droplets, they alter the solvent composition and basicity. Ultra-weak base additives reduce 

solvent basicity, driving more charge (protons) to the analyte. Additives that are stronger 

bases than water, increase solvent basicity, steering more charge to solvent and reducing 

analyte charging. A second effect of adding very weak bases to the solvent is that they make 

neutral acids less likely to ionize (increase pKa), as the solvent’s ability to accept protons 

decreases. For the same reason, pKa values of cationic acids (e.g., protonated amines) 

increase. By the same logic, adding a very weak acid to water makes it harder to protonate 

neutral bases (reduces pKa of cationic acids) while enhancing ionization of neutral acid 

analytes (decrease pKa). Hence, adding an ultra-weak acid should increase analyte negative 

charging. Many neutral supercharging agents have both weak base and weak acid character, 

properties that reduce analyte ionization in the bulk solution. Fortunately, the ion emission 

event dumps charge, so the main consequence of very weak acid/very weak base 
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supercharging agents is to reduce opposite charge sites; i.e., reduce the zwitterionic 

character of gas phase analyte ions, at least initially. 23, 43  

While the initial supercharging debate centered on the source of increased analyte charge 

from denaturing solutions, a secondary controversy revolved around charge increases 

observed with many of the same supercharging additives in native-like solutions. Because 

water has an extraordinarily high surface tension, the surface tension model predicts that 

adding nitrobenzyl alcohol or other supercharging agents to 100% aqueous solutions would 

reduce protein charge. That protein charge increases, instead,11, 12 provides strong evidence 

countering that model. However, its proponents44-47 argued that any charge increase 

observed from a native-like solution must reflect denaturation, instead, and so shouldn’t be 

employed to discount a surface tension model. 

Nevertheless, generous charge increases were observed in proteins sprayed from native-

like solutions supplemented with m-NBA, sulfolane, and other supercharging agents11, 12 

and it is clear that modestly “supercharged” protein39, 48-55 and oligonucleotide56, 57 

complexes remained associated.  

That sulfolane destabilized myoglobin in aqueous guanidinium hydrochloride (GuHCl) 

solution by ~1.5 kcal/mol sulfolane/mole GuHCl was promoted as evidence that the 

mechanism for sulfolane’s charge-elevating capacity was chemical denaturation. 44 

However, an increased sensitivity to GuHCl unfolding is not equivalent to sulfolane driving 

denaturations from any solvent composition. Subsequent isothermal calorimetry, circular 

dichroism, and nuclear magnetic resonance spectroscopy measurements demonstrated that 

lysozyme’s higher order structure and intermolecular interactions were not changed 
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significantly by sulfolane, leading to the conclusion that lysozyme supercharging with 

sulfolane was unrelated to protein unfolding during ESI. 53 

Some groups labeled dimethylsulfoxide (DMSO) a supercharging agent, 14, 19, 33, 46, 58-

60while others noted that, under conditions preserving higher order structure, it actually 

subcharged. 18, 23, 46, 61-66 The opposing labels led to confusion and an accidental 'straw man' 

argument that, because DMSO increased charging by disrupting higher order protein 

structure, the general mechanism of aqueous supercharging must be unfolding. 46 

Certainly, adding sufficient acid and/or organic solvent to most native protein or 

oligonucleotide solutions unfolds macromolecular conformations, shifting charge state 

distributions (CSDs) to lower m/z. 67, 68 We agree that altered conformations may have 

contributed in part to some observations initially called supercharging. 1, 32, 33 Numerous 

other supercharging observations, however, support a mechanism that increases charge 

independent of protein or oligonucleotide unfolding.  

We contend that low volatility, soluble, neutral compounds that are significantly weaker 

Brønsted bases than H2O (pKBH+ << -1.7) will elevate positive ion charge, while involatile, 

soluble, neutral Brønsted acids that are weaker than H2O (pKa >> 15.7), will increase 

analyte deprotonation, elevating charge in negative ion mode. 23 However, we noted 

previously that positive ion supercharging candidates fulfilling the pKBH+ << -1.7 criterion 

might still elevate charge weakly or not at all, should they also have sufficient acidity to 

dissociate in the employed solvent, thus generating anions to ion pair with analyte. 

Here we test our proposed supercharging mechanism by supplementing protein solutions 

with related compounds of known basicity.  
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Experimental 

Positive ion ESI mass spectra were acquired on a Synapt G2si hybrid quadrupole time-of-

flight (QTOF) mass spectrometer with a Triwave ion mobility (IM) separator (Waters, 

Manchester, UK). Instrumental parameters were cone 40V, trap collision 20-50V, transfer 

collision 20-30V, and 4 mL/min trap gas flow. Nano-electrospray ionization of lysozyme 

(20 μM in 50% water/49.9% acetonitrile/0.1% formic acid) was performed with platinum-

coated borosilicate capillaries (ThermoFisher Scientific, ES387) and sprayed at 1.0-1.2kV 

with a flow rate of 10-40 nL/min. The ion source was maintained at 100oC. All 

measurements were performed in triplicate and the average chare states were calculated 

from the intensity-weighted average of all peaks with a signal-to-noise ratio greater than 5.  

Compounds 3-nitrobenzyl alcohol (m-NBA, CAS 619-25-0), sulfolane (CAS 126-33-0), 

formamide (CAS 75-12-7), N,N-dimethylformamide (DMF, CAS 68-12-2), 3-

nitrobenzonitrile (CAS 619-24-9), and chloroacetonitrile (CAS 107-14-2) were obtained 

from Sigma-Aldrich. 1,2-butylene carbonate (CAS 4437-85-8), acetamide (60-35-5), 

chloroacetamide (CAS 79-07-2), 4-methoxybenzamide (CAS 3424-93-9), 4-

nitrophenylacetonitrile (4NPACN, CAS 555-21-5), propionitrile (CAS 107-12-0), 4-

pyridinecarbonitrile (CAS 100-48-1), and 2-pyridine carbonitrile (CAS 100-70-9) were 

purchased from TCI. Acros provided N,N-dimethylacetamide (DMA, CAS 127-19-5).  

Propionamide (CAS 79-05-0), 4-Nitrobenzamide (CAS 619-80-7), and malononitrile 

(CAS 109-77-3) were sourced from Alfa Aesar. Benzamide (CAS 55-21-0), succinonitrile 

(CAS 110-61-2), and 3-nitrophenylacetonitrile (3NPACN, CAS 621-50-1) were supplied 

by Ark Pharm, Combiblocks, and Matrix Scientific, respectively. 



 

184 

 

The candidate supercharging agents above were added to lysozyme solutions at a 

concentration of 0.2% (w/v). 

Results and Discussion 

Solution basicities of the neutral bases (B) employed in this study are described by 

equilibrium dissociations of their protonated forms (equation 1), while the protonation 

constant (KBH+) and pKBH+ are defined by equations 2 and 3, respectively.  

BH+ + H2O ⇌ B + H3O
+                                                                                                                                   (1) 

KBH+  =  [B][H3O
+]/[BH+]                                                                                                                  (2) 

pKBH+ = -log10(KBH+)                                                                                                                           (3) 

We primarily relied on literature pKBH+ values that had been measured in various solvents 

and extrapolated values in water. When experimental values were not available, we used 

chemical intuition to rank basicities relative to the other compounds employed. In 

particular, electron withdrawing groups (e.g., nitro- and chloro-) tend to reduce basicity, 

whereas electron donating groups (e.g., methyl, methoxy) increase basicity. Table 1 

displays pKBH+ values for the compounds examined, although values were not available for 

all compounds tested. The spread in the measured values reflects the challenges measuring 

and extrapolating basicities. It is important to note that basicities are not entirely 

independent of solvent and other parameters and that theoretical calculations of basicity 

and acidity have limited accuracy.69-71 Consequently, comparisons should not rely on fine 

distinctions in basicity. limitations and they, too, should not be used to make fine 

distinctions in basicity. in accuracy. 
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Figure 1 compares data for the average charge state of lysozyme in denaturing solvent (50% 

H2O/49.9% CH3CN/0.1% HCOOH) with added amide or nitrile compounds (0.2% (w/v)) 

to data for unsupplemented solvent. For comparison, established supercharging agents 3-

nitrobenzyl alcohol (NBA), sulfolane, and 1,2-butylene carbonate were also added at 0.2% 

(w/v).  

 

Figure 1. ACS of intact lysozyme in denaturing condition after treatment with 

conventional supercharging agents (black), amides (red), and nitriles (blue). 

Lysozyme was solubilized in 50% water, 49.9% acetonitrile, 0.1% formic acid. Every 

reagent was treated at 0.2% w/v. ACSs are the average charge state values from triplicate 

measurements and the error bar indicates standard deviation from the triplicate 

measurements. Along with the three conventional supercharging agents (m-NBA, 1,2-

butylene carbonate, and sulfolane), 4-nitrobenzamide, succinonitrile, 3-NPACN, 4-

NPACN, and 3-nitrobenzonitrile show supercharging behavior. Acetamide, DMA, DMF, 

propionamide, and 4-pyridinecarbonitrile show subcharging behavior. (m-NBA: 3-

nitrobenzylalcohol, DMA: N, N-dimethylacetamide, DMF: N, N-dimethylformamide, 3-

NPACN: 3-nitrophenylacetonitrile, 4-NPACN: 4-nitrophenylacetonitrile) 

 

Considering the 9 amides first, it is apparent that only 4-nitrobenzamide and benzamide 

show any propensity for increasing lysozyme protonation, behavior that is consistent with 
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measured basicities implying that both are weaker bases than water. Formamide, 

chloroacetamide, and 4-methoxybenzamide very slightly decrease lysozyme’s average 

charge, while DMF, propionamide, acetamide, and DMA reduce it further. These 

observations, too, are consistent with the measured pKBH+ values. In general, we would 

expect acetamide to be more basic (charge-reducing) than chloroacetamide, due to the 

latter’s electron withdrawing group. Similarly, electron donating groups in DMF, DMA, 

acetamide, and propionamide would lead us to expect them to lower lysozyme charge more 

than formamide. Clearly, supercharging and subcharging behaviors observed with nitriles 

support our supercharging model. Additives less basic than water increase charge; additives 

more basic than water decrease charge. 

Considering the 9 nitriles is more challenging, given the dearth of experimental basicity 

measurements. However, given that acetonitrile is much less basic than water (and 

unsuitable as a supercharging agent only due to its volatility), we predict that 4-NPACN, 

3-NPACN, and 3-nitrobenzonitrile, as ultra-weak bases, will increase charge. We expect 

succinonitrile, and malononitrile to increase charge, as well, albeit less than the nitro 

compounds. pKBH+ measurements (Table 1) for chloroacetonitrile predict that it should 

increase charge strongly, whereas 2-pyridinecarbonitrile may reduce charge, but 4-

pyridinecarbonitrile should reduce it more. We expect propionitrile to be more basic 

(charge reducing) than 6 of the other nitriles, but find it hard to predict its relationship to 

the pyridine carbonitriles. 

Almost all the predictions above are borne out by Figure 1. The only surprises are the 

weakly charge-reducing behaviors of malononitrile, chloroacetonitrile, and propionitrile. 

Why dicyano compound malononitrile failed to increase charge is unclear at present. It has 
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sufficient water solubility and a low evaporation rate, implying that it should have been 

present throughout the ESI droplet lifetime. In principle, it’s acidity (pKa = 11.2)72 may 

have reduced charge by ion pairing to protonated sites. In retrospect, that propionitrile 

failed to increase charge is attributed to its volatility; its evaporation rate is 1.91 (butyl 

acetate=1), more than 6 times higher than water.73 Chloroacetonitrile likely failed to 

increase charge due to insolubility in water.74  
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Table 1. Selected compounds and corresponding experimental pKBH+. 

 

  

Compound pKBH Reference pKBH Reference pKBH Reference 

N,N-

Dimethylacetamide 
-0.29 75 2.44 76 0.62 77 

Acetamide -0.57 75 -0.66 76 -0.25 77 

Propionamide N/A  N/A  -0.9 78 

N,N-

Dimethylformamide 
-1.15 75 -1.2 79 0.18 77 

Formamide -1.15 75 -1.2 79 0.18 77 

Chloroacetamide N/A  N/A  -0.26 77 

4-

Methoxybenzamide 
N/A  N/A  -1.8 80 

Benzamide N/A  N/A  -2.16 80 

4-Nitrobenzamide N/A  N/A  -3.23 80 

4-

Pyridinecarbonitrile 
1.9 81     

2-

Pyridinecarbonitrile 
-0.26 82     

Chloroacetonitrile -12.8 76     

Malononitrile N/A 

Succinonitrile N/A 

Propionitrile N/A 

3-Nitrobenzonitrile N/A 

4-NPACN N/A 

3-NPACN N/A 
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Conclusion 

Consistently, amides or nitriles more basic than water reduced the average charge of 

lysozyme, while less basic amides increased the average charge, establishing the veracity 

of our supercharging model. Low volatility, soluble, neutral compounds that are 

significantly weaker Brønsted bases than H2O (pKBH+ << -1.7) will elevate positive ion 

charge, while involatile, soluble, neutral Brønsted acids that are weaker than H2O (pKa >> 

15.7), will increase analyte deprotonation, elevating charge in negative ion mode.23 
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