Lawrence Berkeley National Laboratory
Recent Work

Title
THE TRIPLE-RBGGE VERTEX

Permalink
https://escholarship.org/uc/item/97b5w9c5

Author
Misheloff, Michael Norman.

Publication Date
1970-04-28

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/97b5w9c5
https://escholarship.org
http://www.cdlib.org/

e

RECEIVED
LAWRENCE

RADIATION LABORATORY
MAY 2 L 1970

LIBRARY anp

DOCUMEN TS SECTION

THE TRIPLE-REGGE VERTEX

Michael Norman Misheloff
(Ph.D. Thesis)

April 28, 1970

AEC Contract No. W-7405-eng-48

UCRI.-19795

-

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks.

For a personal retention copy, call
Tech. Info. Division, Ext. 5545

LAWRENCE RADIATION LABORATORYSE
o /UNIVERSITY of CALIFORNIA BERKELEY W

c. 2.

~
c
_J 2
c



DISCLAIMER -

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



-iii-

THE TRIPLE-REGGE VERTEX

ADSETACE v v v v o o & o o o o W

I. Introduction . « « + « o &

II. Definition of Variables for the

Contents

%3-to-3 Amplitude . . . . .

III. Expression of the Invariants in Terms of Our Variables . . .

Iv. Asymptotic Behavior of the

the Tfiple—Regge Vertex ..
V. The Asymptotic Form of the
VI. Conélusion « e ele e 6 e e
Acknowledgments . . « o o . . .
Appendix . .+ « ¢ ¢ o o ¢ 6 4 s
Footnotes and References . . . .

Figure Captions . « « &« o & « &

Amplitude

and Definition of

‘e © &€ o o o e e e 0o s

in the Veneziano Model

13

17
29
31
32
33
49
51



- -

THE TRIPLE-REGGE VERTEX

Michael Norman Misheloff
Lawrence Radiation Laboratory

University of California
Berkeley, California

April 28, 1970

ABSTRACT
‘We develop a Reggeized model for the 5-t§-5 amplitude using
group theoretical variables. The triple—Regge vertex is defined by
the aéymptotic form of the amplitude. It is defined entirely in terms
of physical region quantities and thereforevié,'in_principle, directly

_measurable.



I. INTRODUCTION
Since practical scattering experiments generally have only two

partlcles in the initial state, theoretlcal _physicists-have -focused”

most of thelr attentlon on such reactions. From a broad theoretlcal
point of v1ew5 on the other hand, there is no reason to exclude from
our con51deratlon processes. wlth more than two partlcles in the initial
state, Indeed both crossing and unitarity 1mply that an understanding
of processes with two partlcles in the initial state is intimately
related.to more general processes.

»The usefﬁlness of Regée-pole expansions for the description of
the asympfetic behavior of the 2-to-n amplitude is well known.
Express1ons for the amplitude in terms of group theoretlcal variables
have been partlcularly convenient for the formulation of the Regge-

pole hypothesis. Such variables were first introduced by Tollerl for

the 2-to-2 amplitude, and were extended to the general 2-to-n

amplitude by Bali, Chew, and Pignotti.2 The set of variables, the
method of analysis, and the resulting expression for the 2-to-n
amplitudepcan be schematically represented by a tree diagrem'(see
Fig; l); The variables are the magnitudes of the momentppfﬁ;ansfers
and.the corresponding little group elements; there is one momentum
fransfer.and.one little group element for each internal line in the
diagram. If the amplitude’s.dependence upon any little group element
is expressed in terms of the projeetion ef the amplitude onto the
ifredncible representations of the little group, a plausible physical

P

assumption is that the leading singularity of this projection in the



£-plane, ﬁhere £ labels the irreducible represehtation, is a pole
with a faétorizable residue. Defining an asymptotic region of the s
variables by letting the boost parameters in all liﬁfle group elements
corresponding to space-like momentum transfers go to infinity, the
amplitude's asymptotic behavior is described in terms of the positions
of the leading poles and a set of vertex functions. There is one
two~-particle-one-Reggeon vertex function for each vertex with two
external lines and one internal line in the diagram, and one one-
particl?-tﬁp—Reggeon vertex function for each vertex with one external
line and two internal lines.

Fo¥‘the general m-to-n amplitude, more comélicated.tree
diagrams canvbe drawn; in particular, diagrams containing vertices

5

with three'internal lines become possible. Toller” has suggeéted a
particular set of variables for an arbitrary tree diagram, his objective
being an amplitude free of kinematic singularities and constraints.
-_vThe triple—Regge verfex, i.e., a vertex function associated
with é vertex with three internal‘lines in a tree diagram, has been
studied by a number of authors. Misheloffl‘L and Goddard and White5
-extended the Regge-pole hypothesis to the tree diagram with one three-
internal-line-vertex for the 3-to-3 ampliﬁudé; For this reaction, it
was necessary to distinguish between two parts of the physical region. ..
In one part, the plane defined by the momentum transfers contains some ' |
time—like vectors. In the other part, this plane contains only space-

like vectors. Goddard and White6 used the analytic group variables of

Toller5 to discuss the implications of analyticity at the boundary



bétwéen %ﬁesebtwo regions for the triple—Reggevvertgx. Laﬁdshoff and
ZakrzeWéki7_examinéd the triplé-Regge véftex usingVSeveréi dynamical
models.'_'~ | . | |
Théiphyéicél content of this thesis is essentially the same
as thaf of Ref. L, Considerabl&>more:detail is presented here.and some
of ﬁhe'ﬁathematicalvcaléulations afe présented.iﬁ a more logicélly
esthetic manner. 1In Sec.‘II we defihe a éet of group theoretical
variébles for the '5—to—5 amplitude. In Sec.:IIi we relate our
“variébleé.to,the invariants; and‘in Sec. IV we define an asymptotic
regién df the variables énd extend the Regge-pole hypothesis to the
descriﬁtioﬁ.of thé émplitude in this region. The triple-Regge vertex
is defined by the asymptotic behavior. In Sec. V we study the 3-to-3
émplifude-in the Veneziano model and find that it ﬁeggeizes in the
expected manner. In the Appeﬁdix we derive soﬁe.propertiés of the

irreducible representations of the three-dimensioﬁal Lorentz group.
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II. DEFINITION OF VARIABLES FOR THE 3-to-5 AMPLITUDE
Leﬁ'us consider.the process Ai + Bi +‘.Ci %{Af +_Bf + Cf. For
this process there are two possible tree diagrams;‘ﬁhich are shown in
Figs. 2>and 3.
| Thevanalysis associéted with Fig. 2 is véry similar to the multi-
Regge analysis for thev 2-to-U amplitude and is:not expected to yield
any eéséﬁtially new information. The analysis of Fig. 3 is more
compliéated‘and édntains the concept of a triple;Regge’verﬁex. Therefore,
in the_f@ilpwing we coﬁfine our attention to'the tree diagram of Fig. 3.
'iEér.simplicity we assume that all the particles are spinless
and that they all have the same mass, m. We adopt the convention
that incéming particles have positive energies whereas outgoing ﬁarticles
have ﬁggative energies.
| We:define'the momentum transfers, QX’ ‘and their magnitudes,
tX’ by |

QX“= pix.+ pr s by = Qe (X = A,B,C) . (2.1)

Energy-momentum conservation can be written as
Q +Q+Q, = O . . (2.2)

Since QA is a space-like vector, there is a Lorentz frame

in which QA_ points in the positive 2z direction. To specify this

frame further, we require the three-vector R; to point in the g
v A v
direction. Let this frame be called "frame ap." Four-vectors in this

frame have a superscript ap. Equation (2.1) completely determines
a, . a a , ;
p’ Pe p) and Q’A P, s

A A .

Py



. "ap | L2 1 1 1 N
f .PiA = [(m” - A/h)2,0,0,§(-tA)2] : 1
. '."ép _=> . 2 . % 0 0.4l %] o { o ,
. PfA (m™ A/ )7,0, :?( A) _ ? . (2.3a)
- . 1 '
.'QA_?' = [O,O,Q?(-tA)z] . » - y

We defihe'frames bp and cp in an analogous manner. In frame bp

T 1P - 5/)7,0,0,3(-ty)7]
piB = n B | A S A S - AN B
S [»(gl't/m%ool(t)% o (2.50)
PfB _.-..m - B ,.,,’é'_-B ] > . B } ._.3
b : .
9 P = 10,0,0,(-t5)7]

_cp ) ’ 1 1
b o L - 5/M%0,05(6%) )
c 1 i : : '
'pr P ='_['(m2 - tc/u)zyo)o)%('tc)zj . } ) (2.3¢)
- cp . %
QC = [O:O)O,('tc) 1 _ /

:_Since Q is.spacelike,}'there is a frame in which Q, and

QB are of the form_

» 3
QA [O:O;O’(’tA)Z]

1l

[u,V,O,W]

. |
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where o - v = tB +we and W= {-HQ_2(QAf QB)f Using (2.2), we
can write
2 2 2
u” - v o= tp - (Qy tQy)7/t,
2 2 2.2
2 2 242

= tp - [(-Q)" - Q" - Q5 17/(bt,)

= bty - [t, - t, - t-]g/(ut )

= ' c” A ' A

= -X(tA’tB,tC)/(htA) 3
where

Mxy,z) = X + y2 . z° - 2xy ~ 2xz - 2yz .- o | (2.4)

Since t, <.O; x(tA,tB,tC) and u® - v© have the same sign.

BTN 0, there is a frame, designated by 2., in
which QAv'points in the positive z directioﬁ énd only the -z and t
cdmponents of QB are nonzero; Ir u2 - v2 < 0, there is a frame,
designated by a}, in which QA points in the positive  z direction,
only -the x- and 2z components of QB are nonzero, and the b4
compéﬁent of QB is positive.

We must considgr the two casés séparately. vThe two cases are

distinguished by the sign of x(tA,tB,tC).

Case I: vx(tA,tB,tC) >0

a_ a ,
We have completely determined QA r, and QB r is determined

by (2.2) up to the sign of the t component. We have



a 1 N
AT ~ A 5
G T = 10,0,0,(-5,)°]
. ar' :
= = 2 2 - : L=
. = ( t,)" [+A2 (tA, 5o ),o,o,tA. 5y s .13 (2.5a)
o8y 1
'i By the application of a z boost of magnitude q'ab,' where
" _ a1 = T
sinh q_, = +§(_tAtB) A (tA,tB,tC) , (2.6a)
to frame »ar, we arrive at a frame, called bI-'_, in which
o Ly Emd -
' QA ,. = E(-tB) [+7\_(tA)tB,tC):o:o:tA.+ th - tC]'
'br: | 1 B
B = [o,o,o(-tB)2J ¢ - (250)
b, | |
_ 5 > -
Qg = 2( -t ) [+27 (ty B,t ),0,0,t, + to -ty J
- Similarly, by an appllca.tlon of a z boost of magnitude Upo? where
. . —_ 2 )
, .s1nh U, = 4-(1-,Btc) Az ( a2 505G ) (2.6b)
to framé 'br, we arrive at a frame which we call frame C.. In this
framé _ .
» Q o }-(-t )-%[-H\%(t t_,t,) ob +t - t.] W
A T2y C - A’ "B’°C’? A - C B
i Cr l -l - l . )
. Q_'B = 5('130) 2[+>\'2<tA’tB’tC)’O‘fo’tB + tC - tA]v > . (2'50_)
- c | .]-;
a r = [Q,o,o(-tc)2]
- ' y




A z boost of magnitude qc#, where

s ozl -5 .32 L
sinh q = -+2(tAtC) A (tA,tB,tC) s v (2.6c)

applied to frame c. takes us back to frame a,.

,' Frame Xr is related to frame Xp by a'Lbrenﬁz transformation
- X
8x which preserves -Qx L QX r, i.e., an element of the three-

dimeneionai Lorentz group, 0(2,1). We may parameterize ey by a

rotationethrough an angle My around the z axis, a boost of magnitude
CX in the' x direetion, and a final rotation around the z axis
through an angle vXE:

gy = By(v) B (L) RGw) ,  (X=abe) . (27)

.'The:set (tA,ga,tB,gb,tC,gc} is our set of variables for the

case in which A(t t.) > 0. Of course, the amplitude can depend

A’ B’
upon only eight 1ndependent variables. We show below how to eliminate
four of the above variables; however, it w1ll be convenient in Sec.‘IV
to express the amplitude as a function of all twelve variables.

F?ame -ap has been speeified only up to an arbitrary rotation
aﬁout.the:z axis. A redefinitibnvof frame ap by an arbitrary angle
¢ is equivalent to replacing. My by Mg + ¢. Therefoie‘the amplitude
must be left iﬁvariant by the‘transfo?mation Mg =Ky * ¢, i.e., it is
independent of “a‘g Similarly, the amélitude can not depend upon
By OT M-

Frame a, is also specified only up to an arbitrary z rotatioh,.

and redefinition of this frame by an arbitrary angle ¢ 1is equivalent



tad

ke

to the following change of variables: Vo TV, +'¢, ‘Vb = vy + ¢,_ and

—avc’+ ¢, This'implies that the amplitude can depend wupon v

v
C a’

and vy only in the combinations w :  ’and W where
Vp? : Vc  ¥ ab’ wbc’ _ ca’

R -  (2.8)

Clearly w + Wo + Wog = 0. Therefore, the amplitude depends upon
- only elght 1ndependent variables.

Case II: A(t t,) <0

A’ B’

. ay ay . 'a'
Equation'(2.2) completely determines Q, r Qg T and Q Y We

have o
‘ a, ” 1 )
Q'A = [O)O)o)(;tA)2] .
%" = 3 —( % ) 2(0, - Mty tgsts)] ,o.,tA by - t) a (2.92)
A
QC = :5( t‘ ) 2{0 '[ >\-(tA) B’t )] O’tA + tc - tB} J

A roﬁation about the y axis through an'ahgle Oab’ where

. 1, 1

. 1 D= 2

+sin % EKtAtB) [ X(tA’ B’ e )] .
, © (2.10a)

o 1. -2 -

cos 8y = F(tyty) 2ty + by - tp)

carries us from frame aé‘ to frame bé. A rotation about the y axis

through an angle 6, , where

be
]_ . l 9
sin e = = f§(tBtC) [ x(tA, g o )]2 |
_ . >, (2.10b)
: 1 -1 SR ‘ ' _
cos O = §(tBtC) 2(tB + ty - tA) _ '
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carries us from frame bé to frame c}. Finally, a rotation about

the y axis through an angle 'Oca, where

4

1 -1 1
. = 27 2
sin ©_ g(pAtc) [ x(tA,tB,tC)]

1 T |
- 2 Co
5(tpte) 2(ty + g - tg)

v )

carries us from cé back to frame aé.

cos @
c

in frame b

r
by 1, 1 L
1 Lo .
- Qy = 5(-tg) 2{0,-] Mty oty t0) 12,058, + tp t.)
b, : N
Q= [0,0,0(~t5)7]
b!
r . 1 ,% ) ,
Qe = 3(-tg) {O,[-x(tA, bt 112,0,t o+t - t,]
In frame c'
T
o . 1 |
r _ L/ 1 }
QA, = 5( tc) {o [-A(ty, 55t )], 0 tA + tC tB}
C:L‘ l _._é_ . % ’
Qg 7= 5t E0, [l by 1) 17,0,y ¥ g - )
- Cé 1
_QC = [O’O’O:('tc)a]

)

X

/

, B

(2.100)‘

; (2.95)

-(2.9¢)

Frame X' 1is related to frame Xp by an element of 0(2,1),

denoted by gk:

.gk = RZ(Vk) BX(Ck) RZ(Uk)) '(x = a;b:c)

'( é.lo)'



As invcese;l,.the amplitude can not depend uﬁop;lué, pé, or pé.

The reﬁd&él ofvthe fourth dependent variable ie ﬁofe complicated,
however;‘fIt arises from the fact that frame 'é£1 is defined up to an -
arbitrafy:y boost. A redefinition of frame aé- by a boost of magnitude

X is equiValent to the following transformation of variables:

*gk —>g§ = By(X) gk ) (X = a,b,c) . - (2.11)

Expreesed in terms of vy, (y, and w, Eq. (. 2.11) takes the form

‘cosh_Ck'—acosh §§

' s ' 4 3 ' 3
cosh CX cosh X f.31nh_gx sinh X sin vy

.cos;yX.v—>eos vy sinh €4 cos vx/s1nh by

~sin Vi~»—asin V§ } A , ; : - ' P e

- . 1 . . ' s ' ~[. PRI
f_‘(cosh. {x sinh X + sinh (. cosh X s1pvvx)/e1nh ;X<

(X = a,b,c) | . _ ) (2.12)
Therefore, the amplitude must be left_invariént by the transformation
(2.12).

Alternatively, we may parameterize gk in the following way:
gk = By(nx) BX(YX) RZ(¢X)_) | (X = a,b,c) . o - (2.13)

As before, the amplitude can not depend upon ¢a’- ¢B, or ¢c'
However, the covariance condition (2.12) is replaced by the simpler
statement that the amplitude depends upon Nas Thys and M, only in_‘

o . 5 .
the eomblnatlons ab’ Bbc’ and '60a where
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B, = M. - M. . » : (2.14)

Clearly Sab + Sbc + Sca = 0.

The relationship between (2.10) and (2.13) is given by

t 9

X .

s - . '
s1nh Yx., sinh CX cos v

sinh ¢ sin vy/cosh Ty

sinh_qx,_

>
(cosh 6y €08 Wy oS vy - sin pyosin vk)/cosh Ty .(2.15) 

cos '¢X = M

et o ' ' 1 o
31n_¢x.”. (cosh { sin py cos vy + cos “X,51Q_VX)/COSh-YX 

We note that as ,gk - o
s?nh L sinh CX cos
1 - ) ‘ ’l‘ 1]
~sinh nx | ggn(cos vx) tan v -
' ~ ' ' o o L
cos ¢X sgn(cos v.) cos T .

sin ¢X‘ ~ sgn(cos vk),sin My

except at the isolated points vk = jﬂ/Z.
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III.- EXPRESSION OF THE INVARIANTS IN TERMS OF OUR VARIABLES

- We define the following invariants:

_ ' 2 )
s, = (piA + QB)
2
s, = (p; +Q)" 3 (3.1)
B ‘ -
_ N
s, = (pi + QA)
. C /
and
. 2 .
s, = (p, +0p,o) ]
‘ ab -1A fB
R P i
s = (o +p.)° (3.2)
be lB fC
s, = (p, +7v.)
ca 1C 'fA )

The calculation of these invariants in terms of our variables is
straightforward but tedious. ‘We indicate below how the calculation
proceeds and quote the results.

Case I: a(t tC) >0

A’tB’

e L L
. ' ' . - P _ -1 r .

‘ In frame ap’.'QB is given by Qp °~ = L(ga ) Qg - Using

(2.3a), .(2.5a), and (2.7), we can calculate s,+ The result is

o2 o L2k |
Sa = m + 'é‘(tB + tC - tA) + (H - m /tA) A (tAJtB)tC) cosh C,a,- ¢

- (3.3)

We can express s

p and s, by cyclic permutations of (A,B,C) in

Eq. (3.3).
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a ' b
=1 -1
P o L(e

p
a  9ap  8p) pr .

In frame a,» Py 1is given by D
Using (2.3a), (2.%b), (2.6a), and (2.7), we cancalculate s, . The
result is

2 '
j~$ab = 2m" - (tA oty - #C)/h

, Y '. 1
cosh ga(-tA) 2 (m2 - tA/u)%'xz(tA,tB,tC)

+
v -

+
. N

- 1 P
cosh & (~t;)"2 (m° - t/)2 AZ(,5 8t

o[-

A | o .

 1“'(ﬁA§B)_% cosh ¢ cosh Cb(mg - t,/4)2 (m? -ty /h)
X (tA oty - -t.c)

G : 2 1,02 A E
..+ 2 sinh ca sinh Cb cos wab(m - tA/u)? (m” - tB/h)g . (5.1)

1

We can express. (pi + P, )2 by changing the sign of (m2 - tB/h)2 in
' , A "B ' _ ST

BV

(5.&); ’(p + P )2 by changing the sign of '(ma - t,/4)?; and
| P T Pe _ Tt

X
2

:(pf fiﬁi )2, by changing the signs of both (m2~¥ tA/h) and

A B
kmz.—Hﬁﬁ/ﬁ)%.- Expressions for the other two particle iﬁvariants éan
be obtéined by cyciic pefmutatioﬁs of (A,B,C). All.the other invariants
can eaSily.be expressed in terms of the two;particle invariants. |
i'>Wenotethat the invariants depend upoﬁ:.ya,' y5; and v onLy
in thé éombinations Wy 'ch, and w;a, and that no inVafiant

depends upon Mgs Hp» OF W



s

_15'_

A’tB’tC) < O

Case iI:b_x(t

The calculation of the invariants proceeds in the same manner

as in Casevi. The results expressed in terms df'the parameterization

(2.10) are
”s-"= me 4 (t, +t, - t,)
a 2\"B C A
- sinh ¢' cos v{(l - mg/t )% [-n(t,,t_,t )J% (3.5)
a Ya'\ly A CA’7B’C ’ -
and
s = Pmf - (b 4+t -t/
ab = At %

—2(m2.; tA/h)% (m2 - tB/h)% (cosh'CA cosh ¢y
- sinh 6, sinh ¢ [sin v) sin vy
. | v -
+7cos v] cos vy %(tAtB)-E (tA +'tB - tC)J}_
© 3ty ty,t) T [(-t) 7% (07 - ty/4)7 sinn b cos vy
i -1 | ) i . . . |
+-(—tA) 2 (m~ - tA/h)2 sinh ¢’ cos v ] . - (3.6)

Other invariants can be expressed by appropriate sign changes and

'permutations of (&,B,C) in (3.5) and (3.6). s

" We note that the invariants do not depend upon “é’ _ué, and

Ho and that they are left unchanged by transformation (2.12).
‘Expressed in terms of the parameterization (2.13), Eas. (3.5)

and (3.6) assume the form



© =216~

2

S, = W+ -]21(tB by - tA-)
1 2, 1 - '
- (- w7 /607 [-A(ty,t5,8,) 17 sinh v -, (3.7)
~and
s = omt - (ty + by = t)/%

o ab

1 P OO
, “._'é'[‘X(tA,tB;tC)] [z - m/tB)' sinh v,

nf=

2 .
+ (Iji - m,/tA)‘ sinh 1, ]
o (t, + t »- t.)(l - me/tb)%(l - m2/£ )% sinh v_ sinh ¥ |
NA T B T e/ A K B a " o

T N N o
- (m2 - tA/u)? (m2 < tB/h)?- cosh v, cosh 1 cosh 8, . (58)
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Iv. ,ASYMPTOTIC BEHAVIOR OF THE AMfLITUDE'»
AND DEFINITION OF THE TRIPLE-REGGE VERTEX |
| In this section we uée the method of Toilerl to exteﬁd the
Regge-p@lelhypothesis to the 3-to-3 amplitude. Tﬁe concept of the
tripleéRggge vertex.will arise naturally in fhis Section.

Case I: a(t

A,tB,tC) >0

- Lét the amplitude be written as £ty ;8,508 b0r8,5 T)-
: 9

The'index T refers to the sign of the t component of QB‘r. We can

expand'the’amplitude's dependence on g, in terms of its projection
L o 10

onto thé_unitary irreducible representations of 0(2,1). We write -
thisvprojebtioh astt

g . -imva 2 -inua : - o '

L - fagae Pa M) e Crley) s (5.1)

where dgév is the invariant measure on the grdup,

dg.. = sinh ¢, du. dv, df,

1
a 2

! 325
and dmhz(ta) is defined in the Appendix. Since'the external particles
are asSumed to be spinless, fmnz vanishes unless n = O:

) e . | S
u.fmn £ ® o . : ’ (4.2)

i

In particular, this implies fhat the projections of the amplitude onto
representations of.the discrete class vanish. From Eq. (A.19) of the

Appendix, we have

~=f-1 ‘ -4-1 _ ¢ £ ' (M-B)
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where nmg‘ is defined by Eq (A.20).  The inverse formula for the

amplltude is glven byl

imy

1(g,) - Z e te(t) O
M==co ) )
wheré
_ ' -%+iw :
' *
L) = -zt TR (DRI S )
~Leie o

Using Egs. (A.15) and (A.17), we can write (L4.5) as

R -It+ioo S
g | 1 20 +1 . o
f(E) = -54 asz EEH"EE mO (g ) £ . (4.6)
. 21 . . . .
-E— Joo -

Equation (A.21) enables us to write (4.6) in the form

v'_‘ '—%+im
1. : 246 + 1
fm(ga) N ¥ Zam oy mO (C ) f
-%-iw
-—é—+ioo ,
1, 04+ 1 -g-1 . 4 L4
"3t A tonnZ M amO‘(Ca) o T
B

Using Eq. (4.3), we obtain

‘-—é--i-ioo- -
1 ' 24 + 1
() = -5t Rk o (6 1]
_%_i@
-%+iw
1 2L + 1
- s tan x4 mO (C ) f

1
-5 oo
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Letting £ = -£'- 1 in the second integral, we obtain
- . 24 + 1 ~£-1,, | £
' fm(ca) = 7t ¥ Tam g %m0 '(Ca)-fm : (&.7)
-%-ioo

Because of the asymptotic behav1or of a l(g ) [see Eq. (A 23)],
in order to obtaln an asymptotlc expan31on for f (§ ), we shift the

1

contour of integration to the line Re £ = L where L < 5 . The

contours atvlnflnlty give no contrlbution.l If we=aSsume that fmz

is meromorphic in the £ plane, we pick up the contributions of all
poles w1th L < Re Q. < -% where a is the position of the ith

pole. -There is no contribution from‘the vanishing of tan nﬂ' at

£ =-N (N =1,2,-++) since, from (A.22),
N-1 '
a‘mo‘ (C) = 0

for [m|(<.N, and from (k.1) and (A.16),

for Iml > N. We then have
£.(t)

‘ = o L2, +1  -o,-1 '
o I (AR = PR S e S
. m tan xf m tan x o mO_ - v2gt?
- JL-ie . _ g ) J o
. : - S (k.8)

where B‘J is the residue of the pole at L = anv From Eq. (k. 3), we

note that if there is a pole at £ = o, there is also a pole at £ = -a~1.
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The leading term in the asymptotic'expansidﬁ of fm__as
Ca —;m:_is'given by the term arising from the pole.farthest to the
right. ‘If we assume that the residues are factorizable, we obtain

- from (A.23)

5 aft,)
fm(tA,Ca’tB,gb,tC’gC; T) E;:;; D(tA)[COSh Ca]
X pm(tA’tﬁ’gb’tC’gc; T) . | (h.9)

The expressionvar the full amplitude is-

e v o o L g a(t,)
. f(#A,ga,tB,gb,tc,gc, T) E;:;g p(tA)[cosh ga]_
X o(tA,ya,‘fB,gb,tC,gC;_'T) PR | (k.10).
where
?P(tA’Va’tB’gb’tC’gc; T)
= € pm(tA’tB’gb’tC’gc; T) . . B (u.ll)
» _m:-w . o .

1”f1We'répeat’thé above analysis for the dependence of

p(tA,va,tB,gb,tC,gc; T) on g and g, The final result is
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T et oltg) elte)

bf(tA’g:a.-.’_t-B’gb’tC’gc; ) ga

Yy . a(ty) a(ty) a(t,)
X [qos@ Ca] [cosh Cb] [cosh Cc]

; x p(tA".Va’tB}VthC;VC;‘ T) L : , : .(h"l2)

»,Thé triple?Regge vertex, p(tA,va,tB,vb,tc,vc; 1), for the case

At tb) >0 is defined by Eg. (bk.12). It is defined entirely in

At
terms of physical region quantities; therefore it is, in principle,
directly measurable. Remembering the dependence of the amplitude on

Vgs Vi yc{' We can write
el v tpvysterves T) = Vet tesugues ) e (Be13)

By using the results of Sec. III, we can express Eq. (4.12) in
o 5 v

terms of the invariants. The result is

f(FA’tB’tC’Sa’Sb’sc’sab’sbc’scé) ”/‘“-N-—*‘-"/

S S S = +oo
a’"p’%e " -
K K fixed -
ab’ e’ Feca

(b))  alty)  alty)
sy |

, a
8(ty) etp) elty)ls,| s,

X V(tA’tB’tC’Kab’Kb.c’Kca; T) , ' ‘, | (L.14%)

where

Eij = 5585/844 (k.15)

In terms of invariants, T = sgn(s,) = sgn(sy) = sgn(sc). The quantities

tA’tB’tC?Kab’Kbc’ and Kog 8T€) of course, ngt all independent. There.
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is a complicated nonlimear relationship among them. This relationship
can be derived from the fact that w + wb + W = 0 and from the

7 _ ab c ca
results of Sec. III.

Case II: x(tA,tB,tC) < Q

Thére are two mathematically equivalent methods in which we

can proceed. In the first method, is parameterized by (2.10).

&
The second method employs the parameterization (2.13).
The details of the mathematics in the first method are exactly

the same as in Case I. The final result for the asymptotic behayior

of the amplitude is
T ' 1 N -y |

(t,) a(t.) a(t

. 04 )
X f[cosh gé] A [cosh Cg] B [cosh Cé] ¢

X\ D'(tA,Vé,tB,V{),tC,Vé) . _ . ' (1#16)

' ﬁquatiqn (4.16) defines the triple-Regge vertex,
p'(tA’Vé’tB’vé’tC’vé)’ for Case II. As in Case I, the triple-Regge
vertex is, in principle, direétly measurable.

--Equation (L.16) must be left in&ariant by the transformation

(2.12). Asymptotically, (2.12) becomes
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.ddsh Ck — cosh §§ cosh Qk(cosh X + sinh X sin vk)

‘ cos Vk .
- cos vy = cos v£ ~ y . (k.17)
o cosh X + sinh X sin vk

sinh X + cdosh X sin Vi

cosh X + sinh X sin'vk v'}

sin Vk - sin v§ ~

This implies that the triple-Regge vertex must satisfy the condition

PRI ' . ol
: p'(tA?VéftB’vﬁ’tC’vé) = «(cosh X + sinh X sin v!)

N _ a(tB) ' a(tC)
X (cosh X + sinh X sin Vﬂ) - (cosh X + sinh X sin Vé)

X’ pv'(tA-’V;’tB’V"b"tC’vg) : - . | ()4-18)

for arbitrary X.

| The coﬁplexity of the covariance condition (4.18) satisfied.by
~ the tfiple-Regge vertex is a reflection of the éomplexity of the
covariance condition (2.12) satisfied by the complete amplitﬁde. "An
inSpeétion of Egs. (2.13) and (2.14) indicates that the triple-Regge -
vertex’éfising in the second method will satisfy a simpler covariancé
conditién._.

‘ iIn the second method, we again e#pand‘the amplitude's dependence
on gé in terms of its:projectioné onto the unitary irreducibie
representations of 0(2,1). Since the parameterization (2.13) is used,
it is cbnv;hient to use thé repfeseﬁtations»expressed inithe mixed ﬁasis.'

We write this projection a5t o
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o ~un : ~img :
£t ‘l-dgé e *a (y)e | a £(g}) (4.19)

puo,m puo,m""a

where dﬁo'm(ga) is defined in the Appendix. As in Case I, the
b ) ‘
projections of the amplitude onto the representations of the discrete

. £ .
class vanish, and fuo m vanishes unless m = O:
. M

y) ' s 5 - . -
fom = fuo Cmo - (4.20)

The inverse formula for the amplitude is given by

‘ . +ico ’ wn .
; . ' a
£(g)) = -i Z[ awe *f (1),

where
7 ) —%+iw . S _
i £ * 2 28 + 1
fuo(Yé) = -3 [duQ,O(Yé)] fug: EEH~;Z dazs . ) (h.gl)
—%—iw i .

Using Eq. (A.45) of the Appendix, we can write (4.21) in the form

‘ -%+iw
1 -4-1 £ 24 +1
fuc(Yé) = -5t 1 duo,o(Yé) fuo tan g Y- (u.ee)
~1-ico

Because of the asymptotic behavior of ,d_z-l(r ) as
- p+,0" 'a’
T, —-= [see Eq. (A.k7)], for T, <O and 0=+ we shift the
contour of integration tc the line Re £ = L, where L < - %. If we
assume that fuoﬂ is meromorphic in the £ piane, we pick up the
contributions of the poles at £ = aj, where L < Re aj < - %; ‘We

obtain
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. L+ie
' 1y -£-1 22 41
fu+(Ya.) = 7 § 1 u+,o( a) _U+ ‘tan.ﬁﬂ
B L-ico .
S j 2. + 1 -aj—l | ‘ " - |
B vﬂ Z Bp.+. tan xn OCJ. dp+’0 (Ya) . - . ()-#.23)
J : ,

If we assume that the residues are factorizable, we obtain from (A.%7)

) | alt,)
d ' . A
. fp.+(tA) Ya,tB,gb,tC,gC) g}:{ p(tA) IS‘lnh Ya|
X e (tpotpgliteel) oo I

where a(tA) is the position of the leading pole.

For Yy, <0 and 0= -, we use (A.50) to write (4.22) in the

form
. —%+ioo . v
_ i -4-1 b2+ 1
'fu_(yé) = T p cos M u+,0( a) pu-  sin nf
-1-ie
-%—i—ioo
i r(sz + 1) ot
3 M) T+l +) T 71 - 1) L +,0(%)
3-ie
. 224 +1 ;
. X fu— 31n b d_,@ * ()4"25)

For th% first integral, wé shift the contour of integration to the
left picking up the cOntributionsvof the pbles.atk f = aj. For the
second iﬁtegral, we shift the cohtbur to the right picking up the
contributions of the poles at L = 4j. - 1. The pole coﬁtribhtionj

J
is given by
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2a, +1 -a,-1 L
Afp-(yé)poles = }: sin x aj dp+,0 (Ya)‘

J
3 F(‘a) . st
9 J 4,26
X [cos B, F(Ot + 1) ri-oy +u) l"(-Ot =) Pu- ] > (4.26)
where VBH-J and B“_J are the residues of the poles at £ = aj
and £ #.—aj - 1, respectively. If we assume that the residues are

factorizable in such a way that.the factors coming from the external
. 3 i1!
particle vertex in 5“_3 and BM'J are the same, we can write for

the asymptotic behavior

' : a(tA)
fu_(t $Yarbps APy C,g L) {:_;-;{ o(t,)|sinh 1|

x pu-(tA’ﬁﬁ’gE’tC’gé) ot : ' v . (14-.27)

The asymptotic behavior for the full amplitude is given by

' : oc(tA)
f(tA’gé’tB’g{)’tC’gé) Y/._)\{ p(t )’Slnh T '
X p(tA,na,tB,gé,tC’gé) b L (’4.28)

where

O(tA:n P B’g{)"tC’gc':)

S} ' ' . '
— - a 1 1 ’
- 1 E v du e pp.O(tA’tB"gb’tC’g'c) . (ll-.29)
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Fo’f 'Ya > 0, we use Egs. (A.48) and (A.50) 'w_hieh relate the
represenfation fﬁnctions for Y > 0 to those for Y < 0, The details
of the eaiculation'are similar to the detalls for Y < 0, the only
dlfference belng a dlfferent res1due function. JThe‘final result for

elther s1gn of Y can be written as

- alt,)
; 1 | I 1 . A
f(tA’ga’tB’gb’tC’gc) W p(tA),Slnh Yal
where
1 = -sgn T, - ' (4.31)

a

We repeat the above analys1s for the dependence of
p(tA,n B B,gb,tc,g H Ta) on gb and gC; The flnal result for the
13 '

: amplitude‘is

1 1 t

1

a(s.) os)  aley)

,sinh Yél A |sinh Ybl |s1nh Te I

X» D(tA)n B’nb’ C’n 5 Ta,’Tb"Tc) v : (M-BE)

Remembering the dependence ofjthe amplitude on N9 Ty Mg W
can wfite,the following covariance condition on the triple-Regge

vertex:
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o(tys Myt Msbos s Toomys7 ) = VB, t5,800 B50 3 To Ty Te) -
- (4.33)
 Using the results of Sec. III, we can express Eq. ( 4.16)

[or (4.32)] in terms of the invariants. The result is

, f(tA’tB’tC’sa’sb’Sc’sab’sbc’sca) lsal;fsb[,lsc
Ka.b’K“bc"_cca fixed
, _ alt,) alty)  alt,)
" A B C
g(t,) a(ty) g(t,) Is, | syl 7 Isg
, X .V(tA’tB’tC’Kab’Kbc’Kca; Ta’Tb’Tc) - ' (’4-3)4')
where now

¢, = sens, - )

Equation (4.34) is valid at all points excluding the isolated points

cos v' =0, cos v, =0, or cos y =0
'Va s » Vb ’ Vc °
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V.o THE ASYMPTOTIC FORM OF THE AMPLITUDE IN THE VENEZIANO MODEL
° : An explicit expression for the Veneziano six-point function has

been given by Chan.;u In our notatidn,'this expression is.

1

- -l-o(t,) -1-a(t. 1-a(t ) |
t = duy duy duy vy ) A)Fe —q( 2 us e -
0 |
._ d-ofs,) o -lwa(s,) o -l<a(sy))
XAy SR CIE B CEE T B
S a(s_, )+a(t,)-a(s_)
X Fl -.ul(l _ ug) ab B a
- | a(s, )+t )-a(s,)
_:}(.tl _ u3(l _ u2)] bc B c
3 - ofs,)ia(s )als )-alty)
)(Il - uyug(l - u,)] | , (5.1)
where vd(é) = a + bs.

“After making the following change of variables in the integral:

u, = 1 - exp[vl/d(sa)] ]
4y = 1-emlvfa(s)] b | (5.2)
U$ = 1 - exp[vB/a(sc)]' ‘

the asymptotic form of the amplitude as 8, ™0 Sy =%, and

s, = - can easily be obtained. The result is

ot)  alt)  olt)
£~ s, : Spl - Se -

X G(tA’ts’tC’Kab’mbc’Kca) ) ' (5-3)‘ ;

s
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where

- a(t, )+a(ty)+alt,)
A’tB’tC’Kab’Kbc’Kca = b

v:d(t

-l«a(tA) -l-a(tB) -i-a(tc)

x’ ’ dvl dvg dv3 vy Vo vv3
0

v,V V.V, VvV
1/ V1V Vo¥s  V3Na
exp{-v, - Vo - V, + = + + _ . (5.4)

)( = 1 2 3 b Kab Kbc. Ko

~Comparing (5.3) with (4:14) or (4.3L4), we see that the
asymptbtic behavior of thé Veneziano amplitude is correctly predicted

by the group .theoretical arguments of the preceding sections.
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VI. CONCLUSION
We have extended the Regge-pole hypothesis to the 3-to-3

amplitudé.‘ The assumptions,that.we made are the same as those made

in previous Regge-pole hypotheses; therefore from. the point of view

discussed here, our'hypothesis is as plausible as previous Regge-pole
hypothéses; The concept of a triple-Regge vertex grises naturally in

our considerations. The triple-Regge vertex is defined entirely in

'terms.Offphysical region quantities; therefore it can, in principle,

be diréctly measured. The considerations discussed here can evidently

be extended to an arbitrary process.
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APPENDIX§ THE UNITARY IRREDUCIBLE REPFESENIATiONS OF 16(2,1)

| Tbis_appendix contains a derivation of thelprOpertiesAof the
irreduciﬁie representations of-’O(E,l) neededninnfhe main te#t. The
material'pfesenﬁed here is essentially‘the same as that which appeafs»
in Toller,l Mukund,a.,'l5 and Ciafaloni, DeTar, and Misheloff;l§ however,
L7

our conventions differ from those used by any of the'above_references.

1. The Group SU(1,1)

The.spinor group corresponding to 0(2,1) is SU(1,1).
‘Althouéh only the single-valued unitary 1rredu01ble representatlons
.of 0(2 l) .are needed in the main text, it is easier to deal with the
matrlces of SU(l 1) than those of 0(2 1).

The group SU(1, l) is isomorphic to the group of matrices of

the form
. a B v _
g - v , . . (A.l)
‘ B* a* '
with
2 2 - ' ' PN
lal® - 8] = 1. | (4.2)

' The Lie algebra of SU(L,1) contains three linearly indepen-

dent elements, Kl, Kg, and JE’ with the following commutation
relatiens: |
[K,K,) = -id, : o (aza)
‘[JB,Kl] = -iKé- , (A,5b)_
IJ5,32] = - - (A.3c)
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"The Casimir operator of the Lievalgebra‘is the operator @Q defined by‘ ' !
R A Rk AT (A1)

For the defining nonunitary representation given by (A.1) f

and (A{2),_we may choose

Kl = § 1 0'2 = ) .‘ (A'5a‘)
/0 1
1 1 , ' L y
K2 = - Erl O'l S 1 ‘ Sy B : ’ ' (A'5b) ,
: 1 0 ;
|
0’ , ‘
1 - .
J — -_ = A. c .
95 = 3% (a-3¢)
: -1

Let the elements of the one-parameter sﬁbgroups'generated by JB’ Kl
and K, be denoted by Rz(p), BX(Y), ‘and B&(n), respectiVely. In
the representation given by (A.1l) and (A.2), these elements assume the

.e_iu/g "O . ‘ :
)y, (A.62)
o  en/2/ |

form

' Rz(u) = exp(-indy) =
. cosh /2 i sinh r/2 | o é
B (1) = exp(-i1K)) = | | , (A.6b) *
‘ ; ' i sinh v/2 cosh v/2
o _ /CGosh n/2 .=sinh 7/2 . K
By(n) = expl-ing,) = | S . (A.6c)

-sihh:n/E " cosh /2
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2. TIrreducible Representations of SU(1,1)

Bargmannl8 was the first peréoﬁ_to determine the unita?y
irreduciple representations of SU(1,1). They fall into several
distinct ‘classes. Each unitéry irreducible repreSeﬁtation can be
characterized by the value of the Casimir operafbi kQ, and the spectrum

of eigenvalues'of the generators J If the eigenvalues of Q are

5

denoted by q, and those of J, by m, the different classes of

3

unitary irreducible representations are the following:

a. 'Continuousvclass,,integral case, noﬁexceptional interval:
1M <g<wy m=0,+l,+2,:00;

“b. Continuous class, exceptional interval: .

- 0<gX< l/hi Como= 0,+1,+2;- 3

c. Continuous class, half-integral case:

1

l/h <q <'w; m = igri%,ig)'f'i

d. Discrete class, positive m:

1 L
k = 5:112,"'5 q

k(1 - k); m=Kk,k+tl,k+2,-2-;

e. Discrete class, negative m:

I

k = )l)%"°°; o4 k(1 - k>; m =_'k:+k’l:‘k'2""5

VS
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,x3; Representations of thevContinuous Claés of 0(2,1)

The single—vaiued unitary irreducible representations of 0(2,1)
are those of SU(1,1) with integral m. For unitary irreduciblé
représenfations of the continuous class(nonegcéptional'iﬁterval), we
may wfitea- |

qa = -£(£ +1), £ = -% % is . _ (A.7)

©- These unitary  irreducible representations may be realized
by unitary transformations in the Hilbert space of square-integrable
functions on the unit circle. In this fealization, the inner prodict

of an element f with an element h is givenAby

o 2 | P
(£,8) = 3 @@ n@ . (4.8)
o : o

Let g be an element of SU(1,1) specified by the parameters
o and B. Let U(g) be the unitary operator corresponding to g. In

the ¢ realization the vector U(g)f is given in terms of f by

0()£1(P) = lo*-p PR ey, (a9)

where

. oy ig * | A '
ig a e - , :
= ——-—————Ea . . A.10
) o* -pe | (h20)

4. Representations of the Continuous Class

~in the 0(2) Basis

The "Euler angle" parameterization of g 1is given by

g = exp(—iuJB)'exp(-iCKl) exp(-ivJB) . | (A.11)
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The range of parameters is
0<t<w, O<p<by, O0<y<he ,

but fhevparameters u, &, v, and p + 2x, ¢, y't 2x correspond to
the samé group element. | |

| ' For this parameterizatiph, it is convenient‘toreXpress the
repfeséntation in terms of the orthonormal basis Stdtes ] e,m) gi&en
by |

lom) = Jm(g-n/2) - (A.12)

© In this basis the representation for exp(%iuJB) is diagonal:

m

- ]_)m'nz[exP('i”%)J | <tf,m|U[exp(-iuJ5)]|1z,n>

2xn o :
L[ e i0E
- JO
= o 1mH CTE o | | | | (A.13)

The representation for g is given by

b Me) = e Ly,

»

where the function dmnz(g) is given by

i
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,d_mn?(c) = (e,m|vlexp(-itK) ) ]| £,m)

27( . : - :
~ 1| -im . ig\-£-1 !
= 5n ag e ¢(cosh g - sinh % e ¢) - : -

BRSPS - v o ‘ |
o -2-1 W , |
: £ 1% _ i & ¢ g Lt :
cosh 3 e .s_1nh.2 1 cosh 3 e sinh 3 .
ﬂel¢7 ' | cosh L. sinh £ eTa
. - 2 2
PR dz z;l-m(cosh £ z sinh Q) £-1
© 2n ‘ T2 2
; . A
' -2-1 n

& siom &
z cosh 3 slnh‘2

I E inh 3 - 5y
” z [0 ¢ ’ : o
S » _ cosh 5 - 2 sinh 3 .
where the contour of integration follows the unit circle in a counter- ‘ ‘ E

clockwisé sense. In the integrand, thevfactor

| _f(z)“=:(c6sh % - z sinh %)-2_1 is defined with:thé cut- between

z = coth 5 'and z = +o such that ; . | .

fx + ie) ;‘exp[—(g + 1)log|cosh g - X sinh g{j for x > coth,g .
The factor g(z) = [(z cosh % - sinh %)/z]—z_l is defined with the
cut between z>= 0 <and z = tanh % with

g(x.+ ie) = exp[-(£ + 1)log|(x cosh % - sinh %)/x|{+ in(£ +1)] for

0 < x < tanh g; Since tanh % < l‘<;coth'%, the contour of integration

never passes through'any cut. Equation (A.15) can be written as - - y
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-4-1+n

IR 410, o & - simm &
. dn (;) = 5 dz z° " (z cosh 2 51nh_2)
. .
b X (cosh §_ - z sinh £~) ~4-1-n
s Ly=£-l4n Ey-4-1-n i Ay . 2em
c
o e £y-4-1-n
,Xf (z coth 3 (1 - z tanh 2) .
We let bz = t tanh g in the 1ntegral and obtain
R _ feivn Ly-£-14n t\-4-1-n t\£+Ll-m
d (¢) = (sinh 2) | (cosh.g) (tanh 2)
-———gii yat t270(t - 1)7ATI (1 - g tanhgé)'z‘l'n'

For n > m, the integral is an integral representatioh of the hyper-

19

geometric function:"

; 4 . n-m -2Z—2+m—ﬁv £ +1 - m ;
cd (¢) = (sinh g-) (coshé—) ggﬂ T n%

1 | | 2 |
‘X'.-G;jszT F(p +1+n, £+1 -myn-m+ 1; tanh %) . (A.l5a)

Using a standard relation between hypergeometric functions,go we can

transform (A.15a) into the form

dmnﬂ(c) = _@ ]- m)' ggﬁ : ﬁ :%) (c sh -g-) (sinh g.)‘mﬂl

X F(-2 -m £ -m+1;n-m+1; _ginh® g) L (A.16)
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By letting ¢ = -¢4 in Eq. (A.15), we obtain for m >n

N (3 S @

Ly
& (€)= a8

For m > n;"we obtain from (A.1l5a), (A.lé), and (A.17)

o ey = & (o)

mn -m,-n

; einy Gymen ty\-24-2+n-m (4 +1 +m)
= (sinh 2) ‘(cosh 2). Oy

! o ' 2
XW F(¢ +1 -n, £ +1 +m; m~-n + 1; tanh -g-)

1rié +1+m) O(e+1-m) . 20e)
r(2+1+n) (4 +1- n) nm 'C

£ +1 - | L.y
%%- ?gﬁ i 1 -‘%%fdnm (C)

“sin 7(£ +1 +n) T(-£
“sin (£ + 1 + m) TI(-£

- j’_(-l)m__n (@ :_L 2T gé:ﬁ : g% (cosh %)--n_m (sinh é)'vl_lfm-v

YX7VF(-Z'- n, £ -n+1;m-n+1; -sinh? %)

= (-1)"™" d_z-l(é): - | | (A.lé)

nm
From Eq. (A.16) we obtain the equivalence relation

Sty = qtta By et - - (A.19)

where

g r(z +m+1) -4-1_ £

Tk S Yo T W o= (Afgo)
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It is convenient ferxpress'the matrix eiéments dmnz(g) in
i terms of functions which have a simple asymptotic behavior as ¢ — c.
This expression can be obtained by using Eq. (2.1.4.17) of Ref. 20,

and can be written as follows:

4t = et et et T, (a.21)
whefe
: m-n . b ong o
(8 = R ey (st B (e P

X Fl£ +1+n, £ +1 +m; 24 + 2; ;(sinh'é)‘g] . (a.22)

The asymptotic behavior of amnﬂ(g) is givén by

fan (8 37 S G (o )7 (a.23)

5. The 0(1,1) Basis

 'It is useful for some purposes to express the representation
functions using a basis in which exp(-ian) is diagonal. For this
purpose,'it is convenient to map the unit circle onto two'real lines.

We define a real variable q .as a function of ¢ as follows:

ed = tan g/2 for 0<@<x , - o (A.2kha)

"

. ed tan %(¢ - x) - for « §v¢ < 2y . - _ (A.2hp)

If a vector f is specified by the function f(¢) in the @ realiza-
tion, it is given in the q realization by two functions fi(q) and -

fe(q) defined in terms of f(@) by



oo

(A;ESa)

O
IA
AN
LA

=Y

]

£, (a) [cosh q17%71 £(g) - for

[cosh q]_z_l £(@) for 2n (A.25b)

?

1l

£5(a)

) =Y
IA
AN

Writing f as a two-component column vector, the Hilbert spaée in the

q realization is given by all vectors of the form -

£, () - |
f = , -0 < q <e |, (A.26)

£,(a)

where fl _aﬂd f2 are indépendently chosen stare-integrable
functions. The scalar product of two elements, f and h, can be
expressed in the q realization by combining (A.8),“(A.2h),_and (A.25).
The result is | |

o

(£,8) = 3 aalf, () by (a) + £,7(a) ny(a)] . (A.27)

By combining Egs. (A.6), (A.9), and (A.10), (A.2L4), and (A.25),

we can determine the result of letting U(g) act on f in the gq

basis. We find for g = exp(iuJB) and 0 <u <,
[U(g)f]; (a)
- . . e y=4-1 - . .
= (cos p - sinh q sin p) fl(ql) o(cos p - sinh q sin u)

L f2(q2).9(sinh q sin u - cos u) ,

(A.28)-

+ (sinh g sin u - cos u)-ﬁ-



_'1;3-

where
4 + tan %
€ = ) P
1-- e% tan %
and o
qg e” + tan 5 .
e.'” = - H
eq tan L. 1
and
u(e)rly(a)
=._(cds u + sinh q sin u)fg-l
L N
~+ (-cos p - sinh q sin p)
where
q eq - ‘tan =
e > . 2
2
' 1 + e tan &
2
and
B _ .Q
veqh ) tan 5 e
8 1+ eq tan %

- fl(qh) 6(-cos p-- sinh q sin p) ,

- (A.29a)

(A.29b)

fg(q5) o(cos Q + sinh q sin p)

(A.30)

(A.31a)

(A.5lb)’

For é ﬁ,exp(iYKi) and f >0, we havé

‘th(g)f]l(Q) = (cosh.Y + cosh q sinh Y)'?—; fl(q') s

(A.32)



Ll

where -
g e? + tanh % | | . - y
e = 3 T (A.33)
- 1 + e tanh 1 | o S
. _ o -
and
(0(e)21,(2)
- . -£=-1 L . '
= (cosh q sinh v - cosh Y) fl(ql) o(cosh g sinh v - cosh 1)
‘ -1 , | .
+ (cosh ¥ - cosh q sinh 7) fg(qg) ©(cosh ¥ - cosh g sinh Y1),
(A.34)
where
9 e? - tanh g ' ‘ -
e = q ,Y, ] . ) (A‘55a‘)
S e” tanh 5 - 1
and
q2 e? - tann g,
e = ) T (A.35b)
' 1 - e tanh =
, 2
For g % exp(inKz), we have
(A.36)

W)l (a) = f.(a+n) , r=1,2.

Using these equations, one can obtain equations'that are valid for the

other ranges of p and 7.
'We choose for a basis the states. |£,p%) defined by

1 , .
£,04) = L, | (a.572)

0



-L"5.—

and
C2y0-) = L o S (A.37b)
. | o 1 |

In thisubaSis, the representation. for exp(-ian) is diagonal:
. . 1 -i e
(2,00 |Ulexp(-imKy) 1| 2,007 ) = eTPVB B - ') . (A.38)
We note thé relation

Cvlem(i )[40t = 140m) o - (a39)

6. Representationé of the Continuous Class

in the Mixed Basis

The mixed -parameterization of g 1is giveh by
g. = exP('iTlKe) eXp(“iYKl) exp(-i@JB) . . (A‘h’o)

The whole groﬁp is covered if the parameters are allowed ﬁo vary over

the range
»>O'_'_<__Q<2;r, o =0 <7 < o, -oo<T]'<;:o'.

For this parameterization, it is convenient to express the representation

ﬁ in terms of a mixed basis. Letting p = ip, we défine
LN o~ s _ -ipn 8 -im@ |
¢ Dyo,m(@) = (Loofule)le,m) = e™Fha () ™, (ada)
where
) ‘ , . o N
a (v) = (2,p0[Ulexp(-17K ) ]1[£,m) . - (A.b2)

Ho,m
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~ To determine the functions dﬁg m-(Y), we must express the states
R ’ '

[¢,m) in the q realization. Using (A.24) and (A.25), we find

[£,m) = ¢t /2 (:; o, o | (A.43)
.  ‘; .2 f-m(q . :.‘  .. -
(cosh a)” -£-1. (:; t le ::) | (A.4L)
1 - 1e _ .

From Eqs. (A.32), (A.33), (A.34), and (A.35), we obtain for r>o0

where -

 f;fq).

- » AR ‘ _
, : | img (q)
- . -2-1
u+ m( ) %; ~ dg e™¥(cosh q cosh ¥ % sinhY) e *
- o R - (A.bs)
where -
1 v e + tanh % ' _ _
tan = ¢ (q) = . o . (A.46)
BT Ay

4 X,
tanh 5 l

In Eq. (A.45), the principal value of the function
(cdshfq cdsh Y + sinh Y)’g-l is to be taken. Sinée p=1ip is
purely 1mag1nary, the 1ntegral on the rlght-hand 51de of (A 4s)

converges. For m = O and o = +, Eq (A.45) can be written as



-b7-

£ | _ 1 -uq o\ -2-1
dp+,0( Yy = 5 dg e "*(cosh q cosh y + sinh 7)
-0
0 .
= %; elﬂ(z+l) dq e M cosh q(i cosh y) + i sinh Y]-z-l
‘w ' ' » ’
= —;—;{- f e M3 cosh q(i cosh Y) +1i sinh y]~ £-1
+ %; J/p e M [cosh q(i cosh 1) + i sinh Y] -1
1 | -1
= =1 dq cosh(pq)[cosh q(i cosh T) + i sinh T]
1 i -4-1
= ; dg cosh(uq)[z + (z - 1)2 cosh q] (A.L4sa)

where 2z =i sinh y and the phase of (z2

1 .
- 1)? is the same as that

of z. The right-hand side of (A.45a) is a standard integral represen-

tation of a- Q, function:21

y) 1r(e +1 - L+l
4 ('Y) = gi, H) i

u+,0 T wx Tr(£+1).

Using Eq. (A.39) and the fact that a’
. = : u+,0

Q" (i sinh v) . (A.47)

is even in p, we obtain

(4.48)
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For m=0 and o = -, the right-hand éidé»bf (A.45) is
. proportioﬁal to the analytic continuation of Qzu(iysinh ¥) from
vy >0 tb: Y < 0 onto the Riemann sheet reached thfough the cut

-1 < Re(z) < 1. Therefore, by making use of the discontinuity formula22
qu(x + ie) = e P Qé“(x - ie) -ix qu(x - ie) , (A.19)
we obtain

o h ) __cos ;44 .
du_,o( Y) - du_*_,o(Y) - cos T[z du+,0( Y)

xr(-£) ' d;ﬁ:é('T)
T T+ 1) cosnf Tw- B) T(m - 4) ° o (as0)
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FIGURE CAPTIONS

Tree diagramvfor the multi-Regge amplitude;

Tree diagram with no three-internal-line vertex for the

3-to-3 amplitude.

Tree diagram with one three-internal-line vertex for the

3-to-3 amplitude.
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Fig. 2
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”’
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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