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THE TRIPLE-REGGE VERTEX 

Michael Norman Misheloff 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

April 28, 1970 

ABSTRACT 

We develop a Reggeized model for the 3-to-3 amplitude using 

group theoretical variables. The triple-Regge vertex is defined by 

the asymptotic form of the amplitude. It is defined entirely in terms 

of physical region quantities and therefore is, in.principle, directly 

measurable. 
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I. INTRODUCTION 

Since practical scattering experiments generally have only two 

particles in the initial state, theoretical physIistshave -focued 

most of their attention on such reactions. From a broad theoretical 

point Of view, on the other hand, there is no reason to exclude from 

our consideration processes with more than two particles in the initial 

state. Indeed, both crossing and unitarity imply that an understanding 

of processes with two particles in the initial state is intimately 

related to more general processes. 

The usefulness of Regge-pole expansions for the description of 

the asymptotic behavior of the 2-to-n amplitude is well known. 

Expressions for the amplitude in terms of group theoretical variables 

have been particularly convenient for the formulation of the Regge-

pole hypothesis. Such variables were first introduced by Toller1  for 

the 2-to-2 amplitude, and were extended to the general 2-to-n 

amplitude by Bali, Chew, and Pignotti. 2  The set of variables, the 

method of analysis, and the resulting expression for the 2-to-n 

amplitude can be schematically represented by a tree diagram (see 

Fig. 1). The variables are the magnitudes of the momentum transfers 

and the corresponding little group elements; there is one momentum 

transfer and one little group element for each internal line in the 

diagram. If the amplitude's dependence upon any little group element 

is expressed in terms of the projection of the amplitude onto the 

irreducible representations of the little group, a plausible physical 

assumption is that the leading singularity of this projection in the 
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2-plane, where 2 labels the irreducible representation, is a pole 

with a factorizable residue. Defining an asymptotic region of the 

variables by letting the boost parameters in all little group elements 

corresponding to space-like momentum transfers go to infinity, the 

amplitude's asymptotic behavior is described in terms of the positions 

of the leading poles and a set of vertex functions. There is one 

two -particle -one -Reggeon vertex function for each vertex with two 

external lines and one internal line in the diagram, and one one-

particle-two-Reggeon vertex function for each vertex with one external 

line and two internal lines. 

For the general rn-to-n amplitude, more complicated tree 

diagrams can be drawn; in particular, diagrams containing vertices 

with three internal lines become possible. Toller has suggested a 

particular set of variables for an arbitrary tree diagram, his objective 

being an amplitude free of kinematic singularities and constraints. 

The triple-Regge vertex, i.e., a vertex function associated 

with a vertex with three internal lines in a tree diagram, has been 

studied by a number of authors. Misheloff and Goddard and White5  

extended the Regge-pole hypothesis to the tree diagram with one three-

internal-line-vertex for the 3-to-3 amplitude. For this reaction, it 

was necessary to distinguish between two parts of the physical region. 

In one part, the plane defined by the momentum transfers contains some 

time-like vectors. In the other part, this plane contains only space- 

6 like vectors. Goddard and White used the analytic group variables of 

Toiler3  to discuss the implications of analyticity at the boundary 



between these two regions for the triple-Regge vertex. Landshoff and 

Zakrzewski7  examined the triple-Regge vertex using several dynamical 

models. 

The physical content of this thesis is essentially the same 

as that of: Ref. 4. Considerably more detail is presented here and some 

of the mathematical calculations are presented in a more logically 

esthetic manner. In Sec. II we define a set of group theoretical 

variables for the 3-to-3 amplitude. In Sec. III we relate our 

variables to the invariants, and in Sec. IV we define an asymptotic 

regionof the variables and extend the Regge-pole hypothesis to the 

description of the amplitude in this region. The triple-Regge vertex 

is defined by the asymptotic behavior. In Sec. V we study the 3-to-3 

amplitude, in the Veneziano model and find that it Reggeizes in the 

expected manner. In the Appendix we derive some properties of the 

irreducible representations of the three-dimensional Lorentz group. 



II. DEFINITION OF VARIABLES FOR THE 3-to-3 AMPLITUDE 

Let us consider the process A. i + B. +C i 	f 	f 	f —A + B + C . For 
i 	 •  

this process there are two possible tree diagramâ, which are shown in 

Figs. 2 and 3. 

The analysis associated with Fig. 2 is very similar to the multi-

Regge analysis for the 2_to_4 amplitude and is not expected to yield 

any essentially new information. The analysis of Fig. 3 is more 

complicated and contains the concept of a triple-Regge vertex. Therefore, 

in the following we confine our attention to the tree diagram of Fig. 3. 

For, simplicity we assume that all the particles are spinless 

and that they all have the same mass, m. We adopt the convention 

that incoming particles have positive energies whereas outgoing particles 

have negative energies. 

We define the momentum transfers, Q, and their magnitudes, 

t, by 

= 	
, 	t = 
	

, 	(x = AB,C) . 	(2.1) 

Energy-momentum conservation can be written as 

QA + 'B + QC = 0  

Since 0, is a space-like vector, there is a Lorentz frame 

in which
'A  points in the positive z direction. To specify this 

frame further, we require the three-vector 	to point in the z 
A 

direction. Let this frame be called "frame a ." Four-vectors in this 
p 

frame have a superscript a . Equation (2.1) completely determines 

a  P A  P, Pf A P, and QA: 



-5 -  

plAaP  = [(m2 - tA/),o,o , 2( tA) ]  

= [-(m2 - tA/),O,O,(_tA)] 	 (2 3a) 

a 	 1 

A 	= [o,o,o,(_tA) ]  

We define frames b and c in an analogous manner. In frame b 
p 	p 	 p 

b 	
= [(in2 - tB/), 0 , 0 ,2(tB)] 

b 	2 
Pr 	= [-(in - tB/1),o,o,2(tB)] 	 (2.3b) 

B 

QB 

b 	 1 
p 	

= [o,o,o,(_tB)] 

In frame c 
p 

= [(m2 - tc/),O,O , (_tc) ]  

1 	 1 

P 	= [-(in2 - tc/4),0,0,(_tc)fl 	• 	(243c) 
C 

C 	 1 
p 	

= [o,o,o,(_tc)] 

Since QA
is .spacelike, there is a frame in which QA

and 

QB 
are of the form 

QA= [O,O,O,(_tA)] 

QIB

,  
= [u,v,O,w] 



where 	- v2 = tE + w2  and w 	-(_tA)(QA 	Using (2.2), we 

can write 

V2 =B - 	• 

= tB - 	
+ 	

- 	- Q]/(4tA) 

= tB - 1(Q)2 - 	- 

= tB - [tc  - tA - tB]/(4tA) 

= _(tA,tB,tC)/( 4tA) 

where 

(x,y,z) = x2 +y2 +z2 -2xy-2xz-2yz .• 	 (2.4) 

Since tA K 0, .(tA,tB,tC)  and u2  - v2  have the same sign. 

If u - v > 0, there is a frame, designated by ar,  in 

which Q4  points in .the positive z direction and only the z and t 

components of Q,, 	
2 are nonzero. If u - v 

2 < 0, there is a frame, 

designated by a, in which 
A 
 points in the positive z direction, 

only the. x and z components of 	are nonzero, and the x 

component of Q is positive. 

We must consider the two cases separately. The two cases are 

distinguished by the sign of 

Case I: x(tA,tB,tc) > 0 
a 	a 

We have completely determined QA r, and QB
r  is determined 

by (2.2) up to the sign of the t component. We have 
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.1 

= iio,o,o,(_tA)] 

a 

	

= 	(_tA)[±(tA,tB , tc) , O , O ,tA + tB 	tJ 	(2.5a) 

a 	 i 	1 

	

r = 
	 t. - t] 

By the application of a z boost of magnitude q, where 

sinh= 	(tAtB) 	(tA,tB,tc) , 	 (2.6a) 
ab 

to frame ar,  we arrive at a frame, called br  in which 

b 	 1 

= 	(_tB)[Tx(tA,tB ,tC ),O,O,tA  + tB - t] 

1 

= [0 , 0 , 0 (_tB)]  

b 	i 1 	1 

+ 	- tA 

Similarly, by an application of a z boost of magnitude q, where 

sinh q 	(tBtc) 	7 (tA,tB , tc) , 	 (2.6b) 
bc 

to frame b r , we arrive at a frame which we call frame c r  In this 

frame 

ri 

1. 

C 	 1 	1 

= 	(_tc) [±x2(tA,tB,tc),O,0,tA + tC - tB] 

11 

= 	(_tc )[T(tA,tB,tc),o,o,tB  + tC - tA] 

= [o,o,o(tc)] 

(2.5c) 
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A z boost of magnitude q 	where ca 

sinh 	= 	(tAtc) 	x2(tA,tB,tc) , 	. 	 (2.6c) 

applied to frame Cr takes us back to frame ar. 

Frame Xr is related to frame X by a Lorentz transformation 
x 	x 

gX 
 which preserves 	p = QX 

 r, i.e., an element of the three- 

dimensional Lorentz group, 0(2,1). We may parameterize g by a 

rotation through an angle p around the z axis, a boost of magnitude 

in the x direction, and a final rotation around the z axis 

through anangle VX 
2 

= R(vx ) B(x) R(tx) , 	(x = a,b,c) . 	 (2.7) 

The, set 	 is our setof variables for the 

case in which x(tA,tB,tc) > 0. Of course, the amplitude can depend 

upon only eight 'independent variables. We show below how to eliminate 

four of the above variables; however, it will be convenient in Sec. IV 

to express the amplitude as a function of all twelve variables. 

Frame ' a has been specified only up to an arbitrary rotation 

about the z axis. A redefinition of frame a by an arbitrary angle 

0 is equivalent to replacing a  by  a + 
Therefore the amplitude 

must be left invariant by the transformation a 	a 
+ 0, i.e., it is 

independent of 	Similarly, the amplitude can not depend upon 

or 

Frame ar  is also specified only up to an arbitrary z rotation, 

and redefinition of this frame by an arbitrary angle 0 is equivalent 



to the following change of variables: Va -4
a 
 + 0, v- V + 0, and 

v -+ v  + 0. This implies that the amplitude can depend upon Va 

v, and v only in the combinations w 	, and w , where b 	c 	 ab' 	c 	ca 

W. = v - vi  . 	 (2.8) 

Clearly •Wab + Wbc + Wa = 0. Therefore, the amplitude depends upon 

only eight independent variables. 

Case II: 	(tA,tB,tC) < 0 
• 	 a 	a' 	• 	a' 

Equation (2.2) completely determines A r ,  QB  r, and Q r• 
 We 

have 	 •• 

at 	 1 r = 
	Q [010 1 0 .9 (_tA)] 

• at 	• r 
= (tA) 	o,[_(tA,tB,tC )J,o,tA  + tB - t) 	(2 9a) 

a' 	1 	1 	 1 r = 
	( tA) (01_[_x(tA,tB ,tC )J,o,tA  + t - t) 

A rotation about the y axis through an angle Gaby  where 

sin ab = 	tAtB)[_(tA,tB,tC)] 

(2.lOa). 

cos Gab = 	tAtB) (tA + tB - t) 

carries us from frame a' to frame b'. A rotation about the y axis r 	 r 

through an angle b'  where 

bc = 	tBtC )[_x(tA,tB,tC )1 

, 

	 (2.lob) 

bc = 	(tBtC)(tB + tC - tA) 
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carries us from frame b to frame c. Finally, a rotation about 

the y axis through an angle G, where 

sin 	
1 	 1 

ca = 	2(tAtC)(tA,tB ,tC) 1  

, 	 (2.lOc) 

cos 0 ca 	(tAtc)(tA + t - t) 

carries us from c t back to frame a T 

r 	 r 

In frame b' r 

bf 
QA 	 1 	 1 r 	

(_tB)f0,_1_(tA ,tB ,tc )] 2 ,0,tA  + tB - 

bl 
r =[o,o,o(-tB)] 	 : (2.9b) 

1 	1 	 1 r 	
(_tB)[0,[_(tA,tB,tc )] 2 , 0 ,tB 	- t) 

Inframe c' 

1 1 

= 	(_tc )(o,[_x(tA, tB , tc) 1,0,tA ± t -. t) 

1 	 1 

= 	(_tc )C0 1 _[_(tA,tB,tc )] 2 , 0 ,tB  + 	- 	.(2.9c) 

1 

r = [0 1 0 ,o , (_tc) 2 ] 

Frame X is related to frame X by an element of 0(2,1), 

denoted by 

= R(v:;) B() R(), 	(x = a,b,c) . 	 ( 2.10) 
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As in Case. I, the aniplitude can not depend upon .i', 	or i. 

C 	 The removal of the fourth dependent variable is more complicated, 

however. It arises from the fact that frame a, is defined up to an 

arbitrary .y boost. A redefinition of frame a by a boost of magnitude 

X is equivalent to the following transformation of variables: 

g 	= B(X) g 	, 	(x 	a,b,c) . 	 (2.11) 

Eressed in terms of vi,.' 	and 	, Eq. (.2.11) takes the form 

cosh 	- cosh 	= cosh 	cosh X + sinh 	sinh X sin v 

cos -  cos 	= sinh 	cos v/sinh 

51fl V)'( - 51fl 

= (cosh 	sinh X + sinh 	cosh X sin v)/sinh 

	

(x = a,b,c) 	. 	 (2.12) 

Therefore, the amplitude must be left invariant by the transformation 

(2.12). 	 . 

Alternatively, we may parameterize g in the following way: 

	

= By ( rx) B(rx) R(øx) , 	(x = a,b,c) 	 (2 13) 

As before, the amplitude can not depend upon 
0a 0b' or 

However, the covariance condition (2.12) is replaced by the simpler 

statement that the amplitude depends upon a' 
	' and 	only in 

the combinations 6 	 and 8 	where ab
, 	

bc' 	ca 
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Ij 
= 	

- 	. 
(2.1) 

Clearly 6 + 6+ 6 	= 0. 
ab bc 	ca 

The relationship between (2.10) and (2.13) is given by 

sinh = 	sinh 	cos v)'(  

sinh inh 	sin v/cosh I 

cos OX = 	(cosh 	cos pi cos 	- sin 	sin v)/cosh Tx 
.(2.15) 

sin OX = 	(cosh 	sin p4 cos v 	+ cos 	sin v)/cosh I 

We note that as 	- co 

sinh YX 	sinh 	cos v 

sinh sgn(cos v) tan v 

(2.16) 

cosØ sgn(cos v) cos 

sin Ox sgn(cos v)sin 

except at the isolated points v = 

S 
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III, EXPRESSION OFTHE INVARIANTS IN TE1S OF OUR VARIABLES 

We define the following invariants: 

1AB 

Sb 	
B 
	 (3.1) 

The.calculation of these invariants in terms of our variables is 

straightforward but tedious. We indicate below.'how the calculation 

proceeds and quote the results. 

Case I: x(tA)tB,tC) > 0 
a 	 a 

In frame a, B  is given by B = L(g') 	
r Using 

(2.3a), .(2.5a), and (2.7), we can calculate sa.  The result is 

=m2 + (tB + tC - tA) ± ( - m2/tA) 	(tA,tB,tc) cosh 

(3.3) 

We can express Sb  and  Sc  by cyclic permutations of (A,B,C) in 

Eq. 
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a 	 b 
.-1 	-1 	p In .frame 	'B is given 	B = L(g 	

B
ab 

Using (2.3a), (2.3b), (2.6a), and (2.7), we can calculate Sab•  The 

result is 

S 	= 2m2 - (tA + tB - t)/ 4  

- 	2 	1 - 
+.-- cosh a(_tA) 2 (m - tA/ )+) 2  x2 (tA ,tB,tc ) 

± 	cash b(tB) 	(m2 - tB!4 ). x(t , tB , tC) 

- (tAtB) 	cosh a  cash 	- tA!4) (m2 - tB/4 ) 

X (tA + tB - tc) 

...+•2slnh a 
 sinh 	cos ab(m - tA/4) (m2 - tB/4) 	(3.4) 

2 	 2 	1 

We can:. express (p. + p. ) 	by changing the sign of (m - tB/4) 	in 
A 	B 

2 	 2 (3 4), (Pf  + 	) 	by changing the sign of (m - tA!4), and 

(Pf + p. ) , by changing the signs of both (m - tA,!4) 	and 
A. 	B 	 . 	 . 

(m2 tB/4).  Expressions for the other two particle invariants can 

be obtained by cyclic permutations of (A,B,c). All the other invariants 

can easily be expressed in terms of the two-particle invariants. 

We note that the invariants depend upon Va vb, and Vc  only 

in the combinations w ab , 	oc , and w ca , and that no invariant 

depends upon a' 	or 	
c 	 . 
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Case II: x(tA)tB,tc) < 0 

t 
The calculation of the invariants proceeds in the same manner 

as ih Case 1. The results expressed in terms of the parameterization 

(2.10) are 

1 s 	= m 2 + - (tB + tC - tA) 

	

- sinh ' cos 	-m2/tA) [(tA,tB,tC)] 	' 

and 

Sab 	2m2 - (tA + tB - 

2(m2 - tA/ 1 ) (m2 - tB/It) (cosh  ç cosh 

- sinh a  sinh 	[sin v sin v-0  

+ cos v cos v 	(tt) 	(tA + tB - tcfl) 

- [(tA , tB,tC)] [(tB) 	(m2 - tB/It) sinh 	cos 

+ (-tAY (m2 - tA/It) sinh ' cos v'J . 	 (3.6) 

Other invariants can be expressed by appropriate sign changes and 

permutations of (A,B,C) in 	and (3.6). 

We note that the invariants do not depend upon, 	, and 

and that they are left unchanged by transformation (2.12). 

Expressed in terms of the parameterization (2.13), Eqs. (.5) 

and (3.6) assume the form 



S 	 m + 2(tB + 	- tA) 

- 	- m/t) 2  [_(tA,tB ,tc )] 2  sinh 1a ' 

and 

Sb = 2m2 - (tA + tB t C)/ 

- [_(tA,tB,tc)] [( - m2/tB ) sinh Tb 

+ ( - m2/tA ) sinh a1. 

+ (tA + tB tc)( - m2/tA)( - m2/tB) sinh Ta sinh 1b 

- (m2 - tA/L) (m2 	tB/n) cosh Yacash Tb cash bb 	(3.8) 
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IV. ASYMPTOTIC BEHAVIOR OF THE ANPLITIJDE 

AND DEFINITION OF THE TRIPLE-REGGE VERTEX 

In this section we use the method of Toller 1  to extend the 

Regge-polehrpothesis to the 5-to-3 amplitude. The concept of the 

triple-Regge vertex will arise naturally in this section. 

Case I:.(.tA,tB,tC) > 0 

Let the amplitude be written as 

The index T refers to the sign of the t component of Q B • We can 

expand the amplitude's dependence on g in terms of its projection 

onto the unitary irreducible representations of 0(2,1) 
10

. 
	We write 

this projection as 1' 

-imv 	 -inl_t 

	

= f dg e 	a d2(a) e 	a f(g)  

where dg is the invariant measure on the group, 

dg= 	sinh 	di dv d a 	2 	aa a a 

and d 2 (.) is defined in the Appendix. Since •the external particles 
.mn

are assumed to be spinless, f 	vanishes unless n 0: mn 

£ 	 (1.2) 
mn 	m nO 

In particular, this implies that the projections of the amplitude onto 

representations of the discrete class vanish. From Eq. (A.19) of the 

Appendix, we have 

-2-1 	-2-1 	£ 	£ = 
16 	'm 110 	' 	 .3 
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whereis defined by Eq. (A.20). The inverse formula for the 

amplitude is given by 

00 
irnv 

f(g). = 	e 	
a 
	 (4.4) 

where 

r - +i00  

1 	 22+1 	£ 	* £ 
fmQa)= - I 	d2 

tan Tr2 [do 	m 

Using Eqs. (A.15) and(A.17), we can write (4.5) as 

f ( ) = - 	I T 	d2 22+ 1 d 2 ( ) f' . 	(4.6) 

	

rn a 	2 	 tan 2 mO 	a 	rn 
1.---ioo 

Equation (A 21) enables us to write (4.6) in the form 

,-4+ico 

1.1 	 22+1 -2-1 	2 f. ( ) = - - i i 	d2 	a 	( ) f ma 	2 i 	 tan,2 mO 	a m 

	

1 . 	 22 + 1 -2-1 	£ 	2 	2 

	

- - 1 	 d2 	 a 	( ) 	f 2 	 tanl2 	mO a 0 m f-f -jco 

Using Eq. (4.3), we obtain 

f ( 	- - 	i I 	d2 22 + 1 a21' 	2 

	

2 	 tan )-(2 mO "a' m 

i 
1 	

d2 I 	22+1 	£ 	f 
-2-1 a 

	

- - j 	 () 2 	 tant2 mO a m 
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Letting £ = -2' - 1 in the second integral, we obtain 

-+ioo 

f ( ) = - i T
1-iCO 

22+1 a2(r 
	2 	 () ina ann2mO - am 

 

Because of the asymptotic behavior of a'(a) [see Eq. (A.23)], 

in order to obtain an asymptotic expansion for f Q 	we shift the 

contour of integration to the line Re 2 = L where L < 	. The 

• 	contours at infinity give no contribution. 1  If we assume that 

is meromorphic in the 2 plane, we pick up the contributions of all 

poles:with L K Re a K 	 where a. is the position of the ith 

• 

	

	pole. There is no contribution from the vanishing of tan n2 at 

£ = -N •(N = 1,2,".) since, from (A.22), 

N-i a 0 	= 0 

for Jm < N, and from (-i- i) and (A i6), 

f-N = 0 
in 

for JmJ > N. We then have 

= 	fL
L+i 	

2a. + 1 	.-1 
a() 	22+1 d2 + 	

2n m tan n a mo mo 

where 	is the residue of the pole at £ = U. From Eq. (4.3), we 

note that if there is a pole at £ = a, there is also a pole at £  
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The leading term in the asymptotic expansion of fm  as 

- is given by the term arising from the pole farthest to the 

right. If we assume that the residues are .factorizable, we obtain 

from (A.23) 

a(t) 
p(tA)[cosh a1 	

A 

(•) 

The expression for the full amplitude is 

a(t) 
T) 	 p(tA)[cosh 	

A
a. 

X  

where 	., 	. 	 . 	 .. 

T) 

00 
lmv 

= 	e 	
a 	

) . 	 (4.11) 

We repeat the above analysis for the dependence of 

r) on gb  and g. The final result is 

4 



EI' p(tA) p(tB) p(tc) 

a(tA) 	a(tB) 	a(t) 

a )( [cosh 	1 	[cosh b1 	
[cosh 

X p(tA,v,tB,vb,tC,v, 'r) 	 (4.12) 

The triple-Regge vertex, p(tA,va,tB,vb,tc,vc; T), for the case 

> 0 is defined by Eq. (4.12). It is defined entirely in 

terms of physical region quantities; therefore it is, in principle, 

dIrectly measurable. Remembering the dependence of the amplitude on 

V 
ay

V b y
V, we can write 

p(tA,va,tB,vb,tc,v; T) 	= v(tA,tB,tc,wab,Wc; T) . ( 4.13) 

By using the results of Sec. III, we can express Eq. (4.12) in 

terms of the invariants. The result 

f(tA,tB,tC,s,sb,s,sb , sb ,5 ) 

,. o ,ic ab c ca fixed  

g(t) g(t) g(t0)I 	
a(t ) 

sI 	'sb' a(t ) 

	a(t ) 

 

)( v(tA,tB,tc,Kab,Kbc,Kca; T) 
	

(4.14) 

where 

K. 	= s. 313 s 
1 

./s..  
13  

In terms of invariants, T = sgn(s) = sgn(s) = sgn(s). The quantities 

and Kca  are, of course, not all independent. There 
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is a complicated nonlinear relationship among them. This relationship 

can be derived from the fact that w ab + w,tc + w ca = 0 and from the 

results of Sec. III. 

Case II: 	.(tA,tB,tC) < 0 

There are two mathematically equivalent methods in which we 

can proceed. In the first method, g is parameterized by (2.10). 

The second method employs the parameterization (2.13). 

The details of the mathematics in the first method are exactly 

the same as in Case I. The final result for the asymptotic behavior 

of the amplitude is 

' T .;_ 	p(tA) p(tB) P(tC) 

a(tB) 	a(tC) 
X •[cosh '] 	[cosh 	] 	[cosh 	] 

)( . 	 (4.16) 

Equation (4.16) defines the triple-Regge vertex, 

for Case II. As in Case I, the triple-Regge 

vertex is, in principle, direct Ly measurable. 

Equation 4.16) must be left invariant by the transformation 

(2.12). Asymptotically, (2.12) becomes 

I 



cosh 	- cosh 	". cash 	(cosh X + sinh X sin v) 

CoSv f  

COS V-4COS 	
X 

• 	 cash X + sinh X sin V y  

sinh X + cosh Xsjn v' x 
SlflV 	- SiflV 

cash X + sinh X sin v 

This implies that the triple-Regge vertex must satisfy the conditian 

a(tA) 
pr(t,v!,t,v,t,vt) = (cash X + sinh X sin v) 

a(t ) 
X' (cash X + sinh X sin v) 	B (cash X + sinh X sin v) 	

C 

X• pt(tA,v,tB,v,tC,v) 	• 	 (1.18) 

for arbitrary X. 

The complexity of the covariance condition (1.18)  satisfied by 

the triple-Regge vertex is a reflection of the complexity of the 

covariance condition (2.12) satisfied by the complete amplitude. An 

inspection of Eqs. (2.13) and (2.14) indicates that the triple-Regge 

vertex arising in the second method will satisfy a simpler covariance 

condition. 

In the second method, we again expand the amplitudeTs dependence 

on g' in terms of its projections onto the unitary irreducible 

representations of 0(2,1). Since the parameterization (2.13) is used, 

it is convenient to use the representations expressed in the mixed basis. 

12  We write this projection as 



-214.- 

-LI 

	

cr,m = f dg,,,e 	
a 	 e 	

a r(ç) , 	 ( 1.19) 

where dam(a)  is defined in the Appendix. As in Case I, the 

projections of the amplitude onto the representations of the discrete 

class vanish, and f £ 
	vanishes unless m = 0: 

f2 	= f £. 	 (4.20) 
1O,Ifl 	 mO 

The inverse formula for the amplitude is given by 

+jco 

= 	 dt e a  f a(Ta ) , 
a f-iOO 

where 

= - 

	

[d2)j* f g 	+1 d2 

4—ico 

Using Eq. (A.47) of the Appendix, we can write (24..21)  in the form 

(14..21) 

f —+joo 

4-ito 

£ 2 + 1 CU 
1jcY tan ii2 

(14..22) 

Because of the asymptotic behavior of d(Ta)  as 

—, -CO 	[see Eq. (A.47)], for Ta < 0 and Cl = + we shift the 

contour of integration to the line Re £ = L, where L < - . If we 

assume that f t  is meromorphic in the £ plane, we pick up the PG 

contributions of the poles at £ = aj  where L < Re aj  < - . We 

obtain 



-25- 

L+i 

f• (r ) = - 

	f 	
d(y 	

£ 2 + 1 d2
a 	2 	 i+,O a 	i+tan r2

-ico 

.a.+i 	-a.-1 
+ 	

tai 	a. d0 
	• 	

(Li-.23) 

If we assume that the residues are factorizable, we obtain from (A.7) 

a(t) 
ç*J p(tA)Isinh at 	

A 

	

x , 	 ( I.2t) 

where a(tA)  is the position of the leading pole. 

For I < 0 and a = -, we use (A.50) to write (4.22)  in the 

form 

i f--;tF -ioo 

f (r ) 	- - cos i 	d
-2-i 	222+1 

f 	 d2 
i—a 	2 	 1+,O a 	i— sin JT2 

+  ' I
-.-+i 

	

+ 1) 	 d2 
2 I 	r(-2) r(t + 1 + 	+ 1 - 	i+,0' 1a 

)——joo 

V f £ 2 +ld2 . 	 (.2) " 	F 	Sifl Tt2 

For the first integral, we shift the contour of integration to the 

left picking up the contributions of the poles at £ = a. For the 

second integral, we shift the contour to the right picking up the 

contributions of the poles at £ = .-a - 1. The pole contribution 

is given by 
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2a.+1 	-a.-1 

-apoies = 	sin jT a. 	+,O ra 

r(-a.) 	 •1 

X [cos 	 r(a +1) r(-a. 	 - 	
, ( 14.26) 

where 13 	and 13 	are the residues of the poles at I= a j  

and £ =_aj  - l respectively. If we assume that the residues are 

factorizable in such a way that the factors coming from the external 

particle vertex in 	and 	are the same, we can write for 

the asymptotic behavior 

a(t) 
p(tA)Isinh TaI 	

A 

.. 	 (14.27) 

The asymptotic behavior for the full amplitude is given by 

a(tA ) 
f(t,ç,t3,g,t,g') 	

, 	p(tA)jsinh Ia I 
a 

x 	 , 	 ( 14.28) 

where 

I di e a 	 . 	 ( 14.29) 

(JJ_ioo 
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F6 	> 0, we use Eqs. (48) and (A.50) which relate the 

representation functions for Ta > 0 to those for Ya  < 0. The details 

of the calculation are similar to the details for y' < 0, the only 

differenc.e being a different residue function. The final result for 

either sign of Ta 
 can be written as 

a(t) 

'iI-A 
 

gTa) 	, 	 ( 1 .30) 

where 

-sgn Ta 

We repeat the above analysis for the dependence of 

Ta) on g and gt. The final result for the 

amplitude is13  

p(tA) p(tB) p(t0) 

• 	•• 	
a(tA) 	a(tB) 	a(t0) 

X Isinh a' 	Ith b' 	
I5th Tj  

)( p(tA,1,tB,%,tC,n ,  TTbTc) 	 (L 32) 

I. 

Remembering the dependence ofthe amplitude on a' %' 11c' we 

can write the following covariance condition on the tripie-Regge 

vertex: 
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p(tA, iia ,tB,%,tc, T1c ; TatbT) = v(t 

Using the results of Sec. III, we 

[or (432)] in terms of the invariants. 

f(tA,tB,tC,S,Sb,S,Sb,Sb,S) 1 

tBtC: 5ab'bc' T,Tb,T) 

( 1 ) 

can express Eq. ( 4.16) 

The result is 

I saT' I SbII S c 

i ab oc' ca fixed  

a(tA) 	a(t3) 	cx(t) 
Is g(t) g(t) g(t) 	a 	 c 

	

X v(tA,tB ,tc ,Kab ,Kbc ,Itca ; T,'Lb,t) , 	 (44) 

where now 

T. 	= sgn s 	. 	 (.. 35) 

Equation (1.31) is valid at all points excluding the isolated pbints 

Cos v =0, cos v, = 0, or cos v = Oo 
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V. TKE ASYMPTOTIC FORM OF THE PJvPLITUDE IN THE VE11EZIANO MODEL 

An explicit expression for the Veneziano six-point function has 

14  
been given by Chan. 	In our notation, this expression is 

A) l_a(tB)  

	

du1  du2  du U1 	u2 	u 

b) 	_1_a(sb) 	_l- 	) a(sb 
U) 	 (1 - u2) 	(1 - u3) 	

C 

a(s )+a(t )-a(s ) 
u1 (l - u2) 	

ab 	B 	a 

cx(sb c  )+a(tB 	C )_a(s ) 
u3 (l- u2 )]  

a(s )(s )-a(s )-cx(t) 
- u1u(l - u2)J 	

a 	c 	ca 	B  

where a(s) = a + bs. 

After making the following change of variables in the integral: 

U1  = 1 - exp  

	

u2  = 1 - e[v2/a(s)] 	 , 	 (5.2) 

u 	= 1 - exp{v3/a(s)] 

the asymptotic form of the amplitude as Sa 
- 	5b - 	

and 

- -oo can easily be obtained. The result is 

a(tA ) 	a(tB ) 	a(t) 
f 	s 	s 	s 

a 	b 	c 

X 	 , 
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where 

a(t )c(t )+o(t ) 
= b 

_l(tA) 	 B) 	 ) 

X  j 	
dv1  dv2  d.v3  V1 	 V2 	 V3  

	

e4vi - V2 - V3 + 112 +2 v  3 + 
	

(5.4) 

Comparing (5.3) with (.14) or (4.34),  we see that the 

asymptotic behavior of the Veneziano amplitude is correctly predicted 

by the group theoretical arguments of the preceding sections. 



VI, CONCLUSION 

We have extended the Regge-pole hypothesis to the 3-to-3 

amplitude. The assuniptions that we made are the same as those made 

in previous Regge-pole hypotheses; therefore from the point, of view 

discussed here, our hypothesis is as plausible as previous Regge-pole 

hypotheses. The concept of a triple-Regge vertex arises naturally in 

our considerations. The triple-Regge vertex is defined entirely in 

terms Of physical region quantities; therefore it can, in principle, 

be directly measured. The considerations discussed here can evidently 

be extended to an arbitrary process. 
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APPENDIX: THE UNITARY IRREDUCIBLE REPRESENTATIONS OF 0(2,1) 

This appendix contains a derivation of the properties of the 

irreducible representations of 0(2,1) needed in the main text. The 

material presented here is essentially the same as that which appears 

in Toller, Mukunda, 17  and Ciafaloni; DeTar, and Misheloff;16 however, 

our conventions differ from those used by any of the above references. 17  

1. The Group su(i,i) 

The spinor group corresponding to 0(2,1) is su(i,i). 

Although only the single-valued unitary irreducible representatiOns 

of 0(2,1) are needed in the main text, it is easier to deal with the 

matrices of su(1,1) than those of 0(2,1) 

The group Su(l,i) is isomorphic to the group of matrices of 

the form 

a 

g = 	 , 	 (Al) 

13 

with 

- 	12 	 (A.2) 

The Lie algebra of SU(1,l) contains three linearly indepen-

dent elements, K1 , K 2J1 and J3 , with the following commutation 

relations 

[,K2 J = - 1J 7  , 	 (A 3a) 

[J3 ,K1 J = iK2  , 	 (A 3b) 

[13 ,K2 ] = -iK1 	 (A 3c) 
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The Casimir operator of the Lie algebra is the operator Q defined by 

+K22 	(A.) 

For the defining nonunitary representation given by. (A.l) 

	

and (A.2), we may choose 	. 	. 

K1  = 	= 	 , 	 (A.5a) 

K2 	
= _: : 

	

( A5 b) 

= 	

= (,0 	

(A 5c) 

Let the elements of the one-parameter subgroups generated by J, K 1  

and K2  be denoted by R(4, B(y), and B(T1), respectively. In 

the representation given by (A.l) and (A.2), these elements assume the 

form 

R () 	ex(-iiJ ) = ( 	., 	. 	 , 	(A.6a) 
z 	

e 4 7' ,#' 	. 

/cosh y/2 	i sinh r/2\ 

B(y) 	exp(-i) = ( 
	 ) 	

, (A.6b) 

\% i sinh 1/2 cosh r/2 

7oosh 11/2 . -sinh 1/2"\ . 

By (11) 	ex1( -iiiK2 ) = 	( 	. 	 ) 	
. 	(A.6c) 

•\%-sinh 11/2 . cosh 1/2J 	 . 



2. Irreducible Representations of su(i,i) 

19 

	

	 Bargmann18 was the first person to determine the unitaiy 

irreducible representations of su(i,i). They fall into several 

distinct classes. Each unitary irreducible representation can be 

characterized by the value of the Casimir operatpr Q, and the spectrum 

of eigenvalues of the generators J. If the elgenvalues of Q, are 

denoted by q, and those of J by m, the different classes of 

unitary irreducible representations are the following: 

Continuous class, integral case, nonexceptional interval: 

l/<q<; 

Continuous class, exceptional interval: 

0 < q < l/; 	m = 0,±l,+2,•.•; 

Continuous class, half-integral case: 

1/1 <q <ca; 	m = 

Discrete class, positive m: 

k = 	 q = k(l - k); 	m = k,k+l,k+2,"; 

Discrete diass, negative m: 

A. 
	 k = q 	k(l - k); 	m = -k,-k-1,-k-2,...; 
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• 3. Representations of the Continuous Class of 0(2,1) 

The single-valued unitary irreducible representations of 0(2,1) 

are those of su(i,i) with integral m. For unitary irreducible 

representations of the continuous class(nonexceptional interval), we 

may %Tite. 

q = -2( + 1) , 	£ = - + is 
	

(A.7) 

These unitary irreducible representations may be realized 

by unitary transformations in the Hilbert space of square-integrable 

functions on the unit circle. In this realization, the inner product 

of an element f with an element h is given by 

2 

(f,h) •= 	do 
f*() 

 h() 
	

(A.8) 

Let g be an element of su(i,i) specified by the parameters 

a and . Let U(g) be the unitary operator corresponding to g. In 

the realization the vector U(g)f is given in terms of f. by 

[u(g)f]() = 	a* 	eI2t2 f(') ,.. 	 (A.9) 

where 

e1t = :*; 
e 	. 	

(A.lo) 

ij •  Representations of the Continuous Class 

in the 0(2) Basis 

The "Euler angle" parameterization of g is given by 

g = exp(-itJ3 ) exp(-iK1 ) exp(-ivJ3 ) . • 	 (A.11) 
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The range of paiameters is 

O<<oo, 	O<t<n, 	 , 

but the paiameters t, 	v, and 1i ± 2 -r 1 	, v * 2r correspond to 

the same group element. 

For this parameterization, it is convenientto express the 

representation in terms of the orthonormal basis states 	12,m) given 

by 

= eim1'2) . 	 (A.12) 

Inthis basis the representation for exp(4J 3 ) is diagonal: 

D[exp( -iLJ3 )J 	(,mIU[exp(-iiJ3 )]I,n 

To
2 do e 1m/2) [e 1 J fl  

= 	5 
mn 	

(A.13) 

The representation for g is given by 

D 2 (g) = 	d t () e 	, 	 (A.l)
mn  

2 	i where the function d () s given by mn 
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d2() 	(,mIu{exp(-iK)]I,n) 

= 	

do e_1m(cosh_  sinh e1)_t_l 

IcosheiO- sinh - J 	Icosh - e1 - sinh 

L e 	 j 	[cosh- sinhe 

= - 	dz z_m(co:h- z sinh )__l 

cosh --  - sinh 	 Iz cosh 	- sinh2 	 2
I z 	 I 	 I 
L 	 J 	Lcosh -  z sinh 

where the •contour of integration follows the unit circle in a counter- 	 H 

clockwise sense. In the integrand, the factor 

f(z) =(cosh -  - z sinh 	is defined with the cütbetween 

z = coth 	and z = + co such that 2. 

f(x + 1€) =exp[ - (2 + 1)logcosh - x sinh 	for x > cothj 

The factor g(z) = [(z cosh -  - sinh -.)/z] 2 	is defined with the 

cut between z = 0 and z = tanh - with 

g(x + i€) = exp[-(2 + 1)logj(x cosh --  - sinh --)/xl + it( + I)] for 

0 K x < tanh-. Since tanh 	1 < coth 	the contour of integration 

never passes through any cut. Equation (A.15) can be written as 
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= - —dz Z2 (Z cosh I - sinh 

)( (cosh 	- z sinh 
 

= (sinh )2_l+n  (cash ) _2_l_n 1 	dz 

X (z coth - 1)2_l+n (1 - z tanh 

We let z = t tanh 	in the integral and obtain 

	

= (sinh )€_l+fl  (cosh 	ln (tanh  

tt2_m( - 1)_21+fl (1 -  t tanh2 )_l_fl 2jTi

For n > rn,. the integral is an integral representation of the hyper-

geometric function: 19  

£n-rn 	-22-2-i-m-n r £ + 1 - m d 	() = (sinh 2 
	(cash2) 	 2 + 1 - nj 

	

Mn  

X (n - m)' F(2 + 1 + n, £ + 1 - m, n - m + 1, tanh2  ) 	(A 15a) 

Using a standard relation between hypergeometric functions, 2°  we can 

transform (A.15a) into the form 

£ 	 1 	F(2-m+J-) 	-m-n 
d 	() 	

)' 	n 	(cash 2 	(sinh 2 

X F(-2 - 	£ - m + 1, n - m + 1, -sinh2  ..) 	 (A 16) 
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By letting 	= -' in Eq. (A.15), we obtain for m > n 

	

d 
2(c) 

= a2 	(t) 
mn 	-rn,-n 

For m > n, we obtain from (A.17a), (A.16), and (A.17) 

d 	) .= d 	() mn 	 -rn, -n 

rn-n -22-2+n-rn r(2 + 1 + rn 
(sinh 2 	(cosh 2 	 r2 + 1 + n 

(m - n) 	F(2 
+ 1 - n, £ + 1 + rn; rn - n + 1; tanh2  ) 

- r(2 + i+m) r(2 + 1 - m) d £ 
+ 1 + n) r(2 + 1 - n) nm 

sin t(2 + 1 +n) r( - 2 - n) r(2 + 1 - rn) d  2 
sin ,t(2 + 1 + m) r( - 2 - m7. r(2 + 1 - n) 	nrn 

• 	rn-n • 1 	• 	 - 	 -n-rn 	-n+m 

	

r -  - rn 	
(cosh 2 	(sinh 2 

X F(-2 - n, £ - n + 1; m - n + 1; -sinh2  ) 

= ()mfl 
a() nm 

From Eq. (A.16) we obtain the equivalence relation 

- 

= 	2-1 d()
mn 

where 

	

£ - r(2--rn ~ 1) 	-2 -1 2 
rn 	F(m - t) 	' 	rim 	rim  

(A. 17) 

(A.l8) 

(A.19) 

(A.2o) 



It is convenient to express the matrix elements d 	in mn 

terms of functions which have a simple asymptotic behavior as 

This expression can be obtained by using Eq. (2.1.4.17) of Ref. 20, 

and can be written as follows: 

a 2() +a() 	
, 	

(A21) 

where 

a) = £)mr(21) (sinh 	2t2 (tanh)m 

F[ + 1 + n, £ + 1 + m; 21 + 2; -(sihY2j . 	(A.22) 

The asymptotic behavior of a() is given by 

a2() 	 (cosh 	 (A 23) 

7. The 0(1,1) Basis 

It is useful for some purposes to express the representation 

functions using a basis in which exp(-irK 2 ) is diagonal. For this 

purpose, it is convenient to map the unit circle onto two real lines. 

We define a real variable q as a function of 0 as follows: 

tan 0/2 	for 0 < 0 K 	, 	 (A.24a) 

e 	= tan (Ø - 	for 	0 . 2 . 	 (A.2)-b) 

If a vector f is specified by the function r(Ø) in the 0 realiza-

tion, it is given in the q realization by two functions f1 (q) and 

defined in terms of f(Ø) by 



-1i2 - 

= 	[cosh q] f(Ø) 	for 	0 < 0 < 	, (A.25a) 

= 	[cosh q] f(Ø) 	for 	< 0 < 2 	, (A.25b) 
21 

Writing 	f 	as a two-component column vector, the Hubert space in the 

q 	realization is given by all vectors of the form 

f1  (q) 

f = 	 , 	 —oo < q K w 	 (A.26) 

where f1  and f2  are independently chosen square-integrable 

functions.. The scalar product of two elements, f and h, can be 

expressed in the q realization by combining (A.8), (A.24), and (A.25). 

The result is 	 . 

(f,h) 	f_. dq[f1 (q) h1(q) + f2*(q,) h2 (q)3 . 	(A.27) 
21t

By combining Eqs. (A.6), (A.9),  and (A.10.), (A.2), and .  (A.25), 

we can determine the result of letting U(g) act on f in the q 

basis. . We find for g exp(i1iJ 3 ) and 0 < i K 

[U(g)f]1(q) 	. 	 . 

= (cos p. - sinh q sin 
p.)e 	f1(q1 ) Q(cos p. - sinh q sin p.) 

+ (sinh q sin p. - cos p.) 2 	f2(q2 ) (sinh q sin p. - cos p.) , 

(A.28) 
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where 

= , (A.29a) 
• 

1-- e 	tan 
C- 

and • 

2 = (A.29b) 

and 

[(g)f]2 (q) 

= 	(cos 	t + sinh q sin f2 (q3 ) Q(cos 	t + sinh q sin 

+ 	(-cos 	- sinh q sin 	) 21 f1 (q) @(-cos 	t - sinh q sin 	) 

(A.3o) 

where 

• q 
2 e3 	= , • 	

• (A.31a) 

and 

• • 	tan 2 -e q • 

e 	= . (A.31b) 

For 	g exp(iylcj) and 	y'> 0, we have •• 

[U(g)f]1 (q) (cosh y + cosh q sinh 
y)_2_1 

 f1 (q') , (A 32) 



where 

= 	 ; 	 (A.33) 

and 

[u(g)f] 2 (q) 

= (cosh q sinh y - cosh 
y)_1  f1 (q1 ) Q(cosh q sinh y - cosh r) 

+ (cosh r -  cosh q sinh 1)_e_1  f2 (q2 ) Q(cosh y - cosh q sinh y), 

(A.3L) 

where 

q 
e 	 (A.35a) 

e'1  tanh 	- 1 

and 

q 
e 2 = 	 2 	 (A.35b) 

letaflh f 

For g = exp(iIlK2 )

1 

 we have 

[u(g)f](q) = f(q + ii) , 	r = 1,2. 	 (A.36 ) 

Using these equations, one can obtain equations that are valid for the 

other ranges of t and 1. 	 - 

We choose for a basis the states 	€,p±) defined by 

I2.+ 	( 	
ipq 	 (A.37a) 
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and. 

Ie,p-) 	

= () 	

1P  (A 37b) 

In this . baSis, the representation.for 	exp(-irIK2 ) 	is diagonal: 

(1pIU[exp(-iT1K2)]I21p'a') 	=e 	 (j 	
- 	p?) 	•  

We note the relation 

= 	2,-p- 	.  

6. 	Representations of the Continuous Class 

in the Mixed Basis 

The mixed 	parameterization of 	g 	is given by 

g 	= 	exp(-i'K2 ) exp(-iyK1 ) exp(-iQJ3 ) 	. (A.#O) 

The whole group is covered if the parameters are allowed to vary over 

the range 

0<9<2r, 	-00 <1<co, 	-co<T<co. 

For this parameterization, it is convenient to express the representation 

in terms of a mixed basis. 	Letting 	F 	= ip, 	we define 

(2,pU(g),m) 	= 	e 1 	d(y) e_1mQ (A.Ia) 

where 

dam(Y) 	= 	(2,pu[exp( - iu1 1 )]t,m) (A 	2) 



£
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To determine the functions ci m(1)  we must express the states 1 

Ie,m) in the q realization. Using (A.24) and (A.25), we find 

/f (q 
= e1m2 

( 	

(A.) 

where 

f(q) = (cosh q) 1 	 (A 	) 
le  

From Eqs. (A.32), (A.33),  (A.), and (A.35), we obtain for 1> 0 

£ 	 r 	- 	 __ imØ(q) 

d+m(_Y) 
= 	

dq e(cosh q cosh ±sinhl) 	e 

(A. )-7) 

where 

1 	
e+tanhf 

tan •. Ø(q) 
= 	 I 	• 	

(A.Li6) 
- 

In Eq. (A. 1 7), the principal value of the function 

(cosh q cosh y ± sinh y) 	is to be taken. Since i = ip is 

purely imaginary, the integral on the right-hand side of (A.45) 

converges. For m = 0 and a = ~ , Eq. (A.45) can be written as 



: 	

d ,0 (-r) = 	f dq e(cosh q cosh y + sinh 

	

= 	e 	f dq e[o5h  q.(i äosh y) + i sinh 

1 .2+1fO

CO 

 . 	 . 

	

= 	i 	dq e. [cosh q(i cosh ) + i sinh 

 

	

+ 	 dq e[o5h q(i cosh y) + 1 sinh 

00 

- - i + fo 
dq cosh(q){cosh q(i cosh i) + i sinh y] - 

= 12f dq cosh(q)[z + (z2 - i) cosh q]2 	(A 7a) 

where z i sinhi and the phase of (z - 1) 2  is the same as that 

of z. The right-hand side of (A.45a) is a standard integral represen-

tation of a Q function: 21  

d 0 (-y) = 	1 	; 	Q2 (i sinh r) 	 (A 7) 

Using Eq. (A.39) and the fact that d , is even in i, we obtain 

d 0 (y) 	d 0(-y) 	 (Ai8) 



SMO 

For in = 0 and c = -, the right-hand side of (A.45) is 

proportional to the analytic continuation of Q(i sinh y) from 

y > 0 to y < 0 onto the Riemann sheet reached through the cut 

-1 < Re(z) < 1. Therefore, by making use of the discontinuity formula 22  

+ i€) = 	4LjT 
	 - i€) 	ll Pt(x - i€) , 	(A.+9) 

we obtain 

d 0 (-y) = d ,0 (y) = - 	d(-i) 

d -.e-i 

+ 
r( +1) cos 	- £ 5 r(- -2) • 
	 (A.5o) 
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FIGURE CAPTIONS 

Fig. 1 •Tree diagram for the multi-Regge amplitude. 

Fig. 2. Tree diagram with no three-internal-line vertex for the 

3-to-3 amplitude. 

Fig. 3 Tree diagram with one three-internal-line vertex for the 

3-to-3 amplitude. 
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This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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