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Predicting invasive breast cancer versus DCIS in
different age groups
Mehmet US Ayvaci1, Oguzhan Alagoz2, Jagpreet Chhatwal3, Alejandro Munoz del Rio4, Edward A Sickles5,
Houssam Nassif6, Karla Kerlikowske7 and Elizabeth S Burnside2,4*
Abstract

Background: Increasing focus on potentially unnecessary diagnosis and treatment of certain breast cancers
prompted our investigation of whether clinical and mammographic features predictive of invasive breast cancer
versus ductal carcinoma in situ (DCIS) differ by age.

Methods: We analyzed 1,475 malignant breast biopsies, 1,063 invasive and 412 DCIS, from 35,871 prospectively
collected consecutive diagnostic mammograms interpreted at University of California, San Francisco between
1/6/1997 and 6/29/2007. We constructed three logistic regression models to predict the probability of invasive
cancer versus DCIS for the following groups: women ≥ 65 (older group), women 50–64 (middle age group), and
women < 50 (younger group). We identified significant predictors and measured the performance in all models
using area under the receiver operating characteristic curve (AUC).

Results: The models for older and the middle age groups performed significantly better than the model for
younger group (AUC = 0.848 vs, 0.778; p = 0.049 and AUC = 0.851 vs, 0.778; p = 0.022, respectively). Palpability and
principal mammographic finding were significant predictors in distinguishing invasive from DCIS in all age groups.
Family history of breast cancer, mass shape and mass margins were significant positive predictors of invasive cancer
in the older group whereas calcification distribution was a negative predictor of invasive cancer (i.e. predicted
DCIS). In the middle age group—mass margins, and in the younger group—mass size were positive predictors of
invasive cancer.

Conclusions: Clinical and mammographic finding features predict invasive breast cancer versus DCIS better in older
women than younger women. Specific predictive variables differ based on age.

Keywords: Mammography, Logistic models, Breast neoplasms, Overdiagnosis, Biopsy, Aging
Background
The literature reflects that breast cancer has a unique
pathophysiology based on age. Younger patients have a
higher frequency of estrogen receptor-negative, higher-
grade tumors and older patients have a higher rate of es-
trogen receptor-positive, low-grade tumors [1-5]. Evidence
in the literature also demonstrates that mammography
features using standardized descriptors (found in the
Breast Imaging Reporting and Data System—BI-RADS)
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can predict the histology of breast cancer [6,7]. Several
studies have demonstrated the feasibility of predicting
the probability of invasive breast cancer versus DCIS
using patient characteristics and mammographic find-
ings [8,9], by treating age groups uniformly. Our goal
was to show that the inherent age-based differences in
breast cancer pathophysiology will affect the predictive
ability of these models, resulting in differential accuracy
and distinct predictive features based on age.
We were motivated to investigate this question because

of the increasing interest in addressing the potentially un-
necessary diagnosis and treatment of certain breast cancers.
Ductal carcinoma in situ (DCIS), a non-obligate precursor
to subsequent invasive breast cancer [10,11], may remain
indolent for sufficiently long that a woman dies of other
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited.
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causes, a phenomenon referred to as overdiagnosis [12,13].
An extremely valuable cohort of 28 DCIS cases inadvert-
ently treated by biopsy alone revealed that 39% of these
women developed invasive breast cancer in the same quad-
rant, same breast over a median follow-up of 31 years, 5 of
whom (45) died from metastatic disease [10]. The lengthy
natural history of some cases of DCIS implies that women
with a limited life expectancy are less likely to benefit from
treatment on a population level. However, to date, the
medical community does not know which women are likely
to benefit from diagnosis and treatment, thus DCIS will
continue to be treated as the standard of care outside of
clinical trials.
This clinical challenge has substantial public health

impact. The age-adjusted incidence rate of ductal carcin-
oma in situ (DCIS) between 1973 and 2000 increased
from 4.3 to 32.7 per 100,000 women-years, an increase
of 660% [14], the majority of cases detected on mammo-
graphic screening [15]. While incidence increased in all
age groups, the increased rate of DCIS was most notable
in women > 50 [16]. The 2009 National Institutes of
Health (NIH) consensus conference on DCIS highlighted
the need for data to improve our understanding of and
management decisions around this increasingly common
diagnosis [17]. Two particularly important components
of this “call to action” include: 1) gaining a better under-
standing of the characteristics of DCIS versus invasive
cancer in distinct patient populations, for example,
women of different ages, that may someday guide opti-
mal management based on expected natural history of
disease and 2) discovering unique features of DCIS in
these same populations in order to inform prospective
identification and enable personalization of care.
Thus, the specific purpose of this study was to confirm

the hypothesis that age-related differences exist when dis-
criminating invasive breast cancer from DCIS. In addition,
we aimed to discover the clinical and mammographic fea-
tures that are differentially predictive based on age.

Methods
Patients
The University of California, San Francisco (UCSF) Insti-
tutional Review Board approved this Health Insurance
Portability and Accountability Act-compliant study. In
addition, they waived the requirement for informed con-
sent because there were no patient identifiers associated
with the data, thereby minimizing any risk (particularly
confidentiality risk). Our initial dataset consisted of 146,198
consecutive mammograms with 35,871 diagnostic exams
that were prospectively collected between 1/6/1997 to 6/9/
2007 from UCSF and were interpreted by 13 radiologists.
This facility used eight analog mammography units during
the collection of the data. Mammography reports were
generated during routine clinical practice, using a semi-
structured format recording patient characteristics, breast
density, and the principal mammographic finding for
abnormal examinations. Additional details describing
the findings were dictated in free text by the interpret-
ing radiologist. Mammography features were based on
the BI-RADS lexicon, which consists of descriptors and
final assessment categories that standardize mammog-
raphy reporting [18].
We used pathology results from biopsy (within this

same timeframe) as our reference standard to determine
if breast cancer cases were invasive or DCIS. We labeled
biopsies that revealed both invasive cancer and DCIS as
invasive. We found a total of 4,081 biopsies of which,
1,554 revealed invasive cancer or DCIS. We matched
each biopsy with a preceding diagnostic mammography
exam less than 90 days prior to biopsy. We excluded 79
biopsies that did not have corresponding diagnostic
mammograms, leaving 1,475 biopsies eligible for study,
performed on 1,384 women (Figure 1).
We populated mammographic variables according to

the BI-RADS lexicon in two ways. Patient characteristics
and mammographic descriptors reported in structured
format were exported directly. Mammographic descriptors
contained in the free text reports were extracted via a nat-
ural language processing (NLP) algorithm previously de-
veloped and evaluated [19]. A total of 10 variables were
available in structured format and six variables were ex-
tracted via the NLP code (Table 1). In the structured part
of our database, we labeled all missing variables as “miss-
ing.” In the rest of this manuscript, the term “biopsy” re-
fers to the entire record including clinical/demographic
factors, mammographic findings (from the associated
diagnostic mammogram), and the pathologic finding from
the biopsy: invasive cancer or DCIS.

Statistical analysis
We designated women ≥ 65 as the older group, women
50–64 as the middle group, and women < 50 as the youn-
ger group. We developed three separate multiple-predictor
logistic regression models one for each age group, using R
[20]. For interested readers, we constructed a fourth model
for the whole biopsy population (including all ages) using
the same methodology (Additional file 1). Each model
included clinical and mammographic predictor variables
(from Table 1) and a binary outcome variable (invasive/
DCIS). We defined positive as invasive cancer and negative
as DCIS. We used backward/forward stepwise regression
with Akaike information criterion (AIC) to obtain our
models [21]. The Wald chi-square statistic was used to as-
sess the significance of model predictors. All p-values were
from two-sided tests with a significance level of 0.05. Due
to limited number of pair-wise comparison, p-values were
not adjusted for multiple testing (see Additional file 2 for
further details of the statistical analysis).



Figure 1 Patient population derived from consecutive image guided biopsies revealing cancer.
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To evaluate the performance of our models, we used a
modified leave-one-out cross validation, a process that
provided an estimated probability of invasive cancer for
each biopsy. Biopsies assigned a probability above a given
threshold were, by definition, predicted to be invasive can-
cer. Biopsies assigned a probability below that threshold
were, by definition, predicted to be DCIS. Using this pro-
cedure, we calculated the number of true positives (inva-
sive prediction and invasive outcome), false positives
(invasive prediction and DCIS outcome), true negatives
(DCIS prediction and DCIS outcome), and false negatives
(DCIS prediction and invasive outcome) at all possible
thresholds between 0 and 100%. We then used probability
estimates and outcomes to create receiver operating char-
acteristics (ROC) curves and calculate the area under the
curves (AUC). We compared AUC values using methods
appropriate for unpaired and uncorrelated ROC curves
using a nonparametric approach [22].

Results
Data
Of the 1,475 biopsies analyzed, 1,063 revealed invasive
breast cancer diagnoses and 412 revealed DCIS. Of the
1384 included patients, 86 had multiple biopsies; 81 pa-
tients were biopsied twice and 5 patients were biopsied
three times. The age of the subjects ranged from 27 to 97
with mean 43.1 for the younger group, 56.6 for middle age
group, and 74.5 for the older group. We found that the
proportion of DCIS was slightly higher in the younger and
middle age groups than the overall proportion with a
lower proportion in the older group (Table 2).

Logistic regression models in different age groups
In our models, if a variable is positively correlated with in-
vasive cancer it is also negatively correlated with DCIS
(because the outcome variable and the outcomes of all
cases are binary: invasive cancer or DCIS). Thus, we will
typically summarize our results in terms of the correlation
with our positive outcome—invasive cancer. However the
converse (the opposite direction correlation with DCIS)
will also be mentioned when clinically relevant.
In the model for the older group, presence of a palpable

lump (p = 0.013), family history of breast cancer (p = 0.043),
principal mammography finding (p < 0.001), mass margins
(p < 0.001), and mass shape (p = 0.033) were statistically sig-
nificant in positively predicting invasive cancer. Calcification



Table 1 List of structured and extracted variables*

Structured Variables extracted using NLP

• Age • Calcification distribution

• Family history (of breast cancer)† • Calcification morphology¥

• Personal history (of breast cancer) • Mass margins

• Prior surgery‡ • Mass shape

• Palpable lump • Architectural distortion

• Breast density • Focal asymmetric density

• BI-RADS assessment

• Indication for exam if diagnostic

• Principal mammography findingΨ

• Mass size

*These variables were used as input to the stepwise regression to produce the
models for older and younger women.
†Defined as family history of breast cancer (Minor = one or more relatives more
distant than first-degree relatives, Strong = one first-degree relative with
unilateral postmenopausal breast cancer, Very Strong = more than one
first-degree relative with unilateral postmenopausal breast cancer, one
first-degree relative with bilateral breast cancer, or one first-degree with
premenopausal breast cancer).
‡Defined as prior breast surgery of any kind.
ΨPrincipal mammographic finding: architectural distortion, calcifications,
asymmetry (one view), focal asymmetry (two views), developing asymmetry,
mass, single dilated duct, both calcifications and something else.
¥To overcome low frequency categories, features are grouped into high
probability malignancy, intermediate and typically benign categories, as
described in the Breast Imaging and Reporting Data System (BI-RADS)
lexicon [18].
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distribution (p = 0.008) was also statistically significant but
was negatively correlated with invasive cancer (positively
correlated with DCIS). Prior surgery (p = 0.132) and focal
asymmetric density (p = 0.077) were included by stepwise
regression due to their predictive ability of invasive cancer,
despite being non-significant. The remaining variables as
listed in Table 1 did not improve the AIC of the fitted
model, therefore were not included in the final model
(Table 3).
In the model for middle age group, presence of a palp-

able lump (p < 0.001), principal mammography finding
(p < 0.001), and mass margins (p < 0.001) were significant
in predicting and positively correlated with invasive can-
cer. In addition, prior surgery (p = 0.050) and mass shape
(p = 0.080) were included due to their predictive ability of
invasive cancer, despite being non-significant (Table 4).
In the model for younger women, presence of a palp-

able lump (p < 0.001), principal mammography finding
(p < 0.001), and mass size (p = 0.047) were significant in
Table 2 Proportion of DCIS in each age group

Biopsies revealing
DCIS

Biopsies revealing
invasive carcinoma

T

Age < 50 110 264 3

50 < =Age < =64 170 398 5

Age > =65 132 401 5

Total 412 1063 1
predicting and positively correlated with invasive cancer.
In addition, architectural distortion (p = 0.063) and mass
shape (p = 0.090) were included due to their predictive
ability of invasive cancer, despite being non-significant
(Table 5).
For completeness, we also built a forth logistic regression

model for the whole biopsy population (Additional file 1).
In this model, the presence of a palpable lump (p < 0.001),
principal mammographic finding (p < 0.001), mass margins
(p < 0.001), and mass shape (p = 0.001) were significant in
predicting and positively correlated with invasive cancer.
Three non-significant variables positively correlated with
invasive cancer: family history of breast cancer (p = 0.080),
BI-RADS assessment (p = 0.13), architectural distortion
(p = 0.15): and one non-significant variable negatively cor-
related with invasive cancer: calcification distribution (p =
0.080) were included by stepwise regression due to their
predictive ability (Additional file 1: Table S1).
We compared the performance of our models in dis-

criminating between invasive cancer and DCIS using AUC
values (Figure 2). The models for older and the middle age
groups performed significantly better than the model
for younger group (AUC = 0.848 vs, 0.778; p = 0.049 and
AUC= 0.851 vs, 0.778; p = 0.022, respectively). The AUC
difference between the model for older group and the
middle group was not statistically significant (p = 0.803).
Next, we plotted the misclassification rates for two

models (for the younger and older groups) at all possible
thresholds between 0-100%, above which the biopsy was
predicted to be invasive (Figure 3). Clinically, misclassi-
fying invasive cancer as DCIS is a more serious error
(defined as a false negative) than misclassifying DCIS as
an invasive cancer (defined as a false positive). The false
negative rate was lower for the older group at almost all
threshold levels of risk when compared to the younger
group. In other words, the model for older group per-
formed better than that for the younger group in terms
of accurately predicting invasive cancer. The false posi-
tive rate was also better for the older group at lower
threshold levels but appeared equivalent to or slightly
worse than the younger group at higher threshold levels.

Discussion
Our logistic regression models demonstrate that differen-
tiation of invasive cancer from DCIS using clinical and
otal biopsies Total patients DCIS percentage (%) and the
95% confidence interval

74 353 29.4 (25.0,34.2)

68 538 29.9 (26.3, 33.8)

33 493 24.8 (21.3,28.6)

475 1384 27.9 (25.7,30.3)



Table 3 Multivariable model for older group using stepwise regression with AIC criterion*

Risk factor Beta Odds ratio 95% CI (Lower -Upper) p value

(Intercept) −1.16 0.31 0.18 - 0.55 0.000 ***

Palpable lump 0.013 **

No corresponding palpable mass 0.00 1(referent)

Missing −0.30 0.74 0.05 - 10.55 0.824

Corresponding palpable mass 0.80 2.22 1.12 - 4.41 0.022 **

Family history 0.043 **

None 0.00 1(referent)

Missing −0.89 0.41 0.13 - 1.32 0.135

Strong −0.32 0.73 0.33 - 1.59 0.422

Very strong 1.66 5.24 0.84 - 32.78 0.076 *

Prior surgery 0.132

Not present 0.00 1(referent)

Missing −0.36 0.70 0.07 - 6.82 0.759

Present 0.57 1.78 0.99 - 3.17 0.053 *

Principal mammography finding <0.001 ***

Calcifications or Single dilated duct 0.00 1(referent)

Architectural distortion 20.56 Inf 0.00 - Inf 0.993

Associated calcifications 2.16 8.67 3.39 - 22.14 0.000 ***

Missing 2.10 8.14 3.88 - 17.09 0.000 ***

Asymmetry or Focal asymmetry 2.94 18.87 3.79 - 93.87 0.000 ***

Mass 3.04 20.93 9.20 - 47.65 0.000 ***

Developing asymmetry 2.80 16.45 1.78 - 151.95 0.014 **

Calcification distribution 0.008 **

Not present 0.00 1(referent)

Linear or Segmental −3.11 0.04 0.00 - 0.49 0.011 **

Clustered −0.69 0.50 0.22 - 1.18 0.113

Regional or Scattered −1.94 0.14 0.01 - 2.83 0.202

Mass margins <0.001 ***

None 0.00 1(referent)

Circumscribed −2.51 0.08 0.01 - 0.45 0.004 ***

Ill-Defined 0.19 1.21 0.46 - 3.20 0.703

Obscured 0.10 1.10 0.11 - 11.31 0.935

Spiculated 28.70 Inf 0.00 - Inf 0.983

Mass shape 0.033 **

None 0.00 1(referent)

Irregular 1.91 6.78 0.78 - 58.79 0.083 *

Lobular or Oval −0.13 0.87 0.24 - 3.16 0.838

Round −15.53 0.00 0.00 - Inf 0.987

Focal asymmetric density 0.077 *

Not present 0.00 1(referent)

Present 1.63 5.10 0.54 - 47.77 0.154

The model is presented in the order of inclusion into the model.
*Asterisks denote the level of significance such that: ***p-value < 0.001; **p-value < 0.05, and *p-value <0.1.
“Inf” (short for infinity) is inserted at places where the data for the corresponding variable is sparsely populated and produces a very high and unstable odds ratio.
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Table 4 Multivariable model for the middle group using stepwise regression with AIC criterion*

Risk factor Beta Odds ratio 95% CI (Lower -Upper) p value

(Intercept) -1.367 0.255 0.16 - 0.41 <0.001 ***

Principal mammography finding <0.001 ***

Calcifications or Single dilated duct 0 1(referent)

Architectural distortion 18.123 Inf 0 - Inf 0.979

Associated calcifications 1.911 6.757 3.04 - 15.03 <0.001 ***

Missing 0.562 1.754 0.95 - 3.23 0.072 *

Asymmetry or Focal asymmetry 2.212 9.13 1.83 - 45.5 0.007 ***

Mass 2.81 16.604 7.54 - 36.55 <0.001 ***

Developing asymmetry 18.049 Inf 0 - Inf 0.991

Palpable lump <0.001 ***

No corresponding palpable mass 0 1(referent)

Missing 1.01 2.74 0.68 - 11.1 0.158

Corresponding palpable mass 1.2 3.322 1.91 - 5.79 <0.001 ***

Mass margins <0.001 ***

None 0 1(referent)

Circumscribed 0.529 1.697 0.14 - 20.5 0.677

Ill-Defined 0.24 1.272 0.31 - 5.24 0.74

Obscured 16.662 Inf 0 - Inf 0.991

Spiculated 2.6 13.463 3.03 - 59.76 0.001 ***

Prior surgery 0.05 **

Not present 0 1(referent)

Missing 0.729 2.074 0.97 - 4.42 0.059 *

Present 0.627 1.871 1.07 - 3.28 0.029 **

Mass shape 0.08 *

None 0 1(referent)

Irregular 2.114 8.28 0.96 - 71.31 0.054 *

Lobular or Oval 0.728 2.072 0.36 - 11.88 0.414

Round 16.123 Inf 0 - Inf 0.997

The model is presented in the order of inclusion into the model.
*Asterisks denote the level of significance such that: *** p-value < 0.001; **p-value < 0.05, and * p-value <0.1.
“Inf” (short for infinity) is inserted at places where the data for the corresponding variable is sparsely populated and produces a very high and unstable odds ratio.
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mammographic features is more accurate in the older
(≥65) and middle age (50–64) groups than in the younger
group (<50). We found that presence of a palpable lump
and the principal mammographic finding type were statis-
tically significant predictors of invasive cancer versus
DCIS in all three models. However, we did find variable
combinations that uniquely predict invasive cancer based
on age. Family history, mass shape, and mass margins
were significant positive predictors of invasive cancer in
the older age group whereas calcification distribution was
negatively associated with invasive cancer (positively asso-
ciated with DCIS). Mass margin was a significant pre-
dictor of invasive cancer in the middle age group. Mass
size was a significant predictor in the younger group.
These age-based combinations are different from the sig-
nificant variables identified using a single model for the
whole group (Additional file 1), which included presence
of a palpable lump, principal mammographic finding, mass
margins, and mass shape.
Thus, we validate our original hypothesis that the ability

to differentiate invasive cancer from DCIS based on clin-
ical and mammography features depends on age. We posit
several possible explanations for this age dependence.
First, since we know that the pathophysiology of invasive
breast cancer differs with age [1-4], perhaps this disease
difference manifests in distinct mammographic appear-
ance that allows better prediction in older versus younger
women [23,24]. Second, superior predictive performance
in the older group may be related to the higher sensitivity
and positive predictive value of mammography (usually
attributed to decreasing breast density) in this popula-
tion [25,26]. In other words, radiologists may be able to



Table 5 Multivariable model for younger group using stepwise regression with AIC criterion*

Risk factor Beta Odds ratio 95% CI (Lower -Upper) p value

(Intercept) −0.64 0.53 0.35 - 0.8 0.002 ***

Palpable lump 0 ***

No corresponding palpable mass 0 1(referent)

Missing −0.68 0.51 0.16 - 1.6 0.246

Corresponding palpable mass 1.21 3.36 1.79 - 6.32 0 ***

Principal mammography finding 0 ***

Calcifications or Single dilated duct 0 1(referent)

Architectural distortion 1.95 7.05 0.75 - 65.98 0.087 *

Associated calcifications 1.58 4.85 1.87 - 12.55 0.001 ***

Missing 1.02 2.76 1.34 - 5.7 0.006 ***

Asymmetry or Focal asymmetry 1.86 6.41 1.26 - 32.64 0.025 **

Mass 2.74 15.51 4.97 - 48.35 0 ***

Developing asymmetry 16.5 Inf 0 - Inf 0.997

Architectural distortion 0.063 *

Not present 0 1(referent)

Present 1.78 5.91 0.67 - 52.13 0.11

Mass shape 0.09 *

None 0 1(referent)

Irregular 15.83 Inf 0 - Inf 0.986

Lobular or Oval 0.09 1.1 0.23 - 5.21 0.787

Round −19.53 0 0 - Inf 0.996

Mass size 0.047 *

None 0 1(referent)

20-Oct −0.97 0.38 0.03 - 4.61 0.447

20-50 1.7 5.47 1.17 - 25.69 0.031 **

<10 −0.58 0.56 0.19 - 1.63 0.287

> = 50 −0.58 0.56 0.14 - 2.25 0.413

The model is presented in the order of inclusion into the model.
*Asterisks denote the level of significance such that: *** p-value < 0.001; **p-value < 0.05, and * p-value <0.1.
“Inf” (short for infinity) is inserted at places where the data for the corresponding variable is sparsely populated and produces a very high and unstable odds ratio.
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identify and characterize findings predictive of invasive
versus DCIS with more accuracy and precision in older
women. Importantly, age, menopausal status, breast
density, distinct breast cancer pathophysiology, and the
accuracy of mammography, are interrelated and may
contribute in complex ways to superior predictive abil-
ity in the older group. Third, increasing breast cancer
incidence seen with advancing age [27] may also par-
tially explain the differential performance that we iden-
tify. A larger number of cancers in our middle and older
group may provide more statistical power to enable
demonstration of better performance as compared to
the younger group.
Our work reinforces prior research showing that both

clinical and mammography features can contribute to pre-
dicting the risk of invasive disease versus DCIS consi-
dering all age groups together [8,9,28,29]. However, we
demonstrate that distinct variables are uniquely predictive
of invasive cancer in different age groups. Clinical vari-
ables like prior surgery may have high predictive ability in
only older group because this variable has more time to
accumulate in older group possibly lending more power to
this predictor. Of note, in our results, a very strong family
history of breast cancer is more positively correlated with
invasive cancer than DCIS in the older but not the youn-
ger age group. This appears counter to the finding in re-
cent literature that breast cancer risk associated with
family history actually decreases with age when comparing
women with and without breast cancer [30]. Our result is
particularly intriguing. Despite strong evidence that the
risk of all types of breast cancer related to family history
decreases with age, the risk of invasive cancer compared
to DCIS may actually increase with age. This finding de-
serves further study.
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Masses found on mammography were significant predic-
tors in all age groups. However, certain mass descriptors
predicted invasive cancer in only one group. Mass shape
was a significant predictor of invasive cancer in the older
group, mass margin was a significant predictor in the
older and middle groups, and mass size was a significant
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Figure 3 Misclassification rates of models for older versus younger group
rate (FPR) for two of the age-based models: the older group (dashed lines) and
predictor in the younger group. These results suggest that
margins and shape may be more difficult to reliably assess
in younger women due to high breast density. Breast dens-
ity has previously been shown to be a strong risk factor for
both invasive cancer and DCIS compared to women with-
out cancer [31]. Our results are consistent with this finding
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in that we did not find breast density to be a stronger pre-
dictor of invasive versus DCIS in our study nor was it dif-
ferentially predictive based on age.
Because the rationale for our study was to test whether

clinical and mammography variables were differentially
predictive of invasive breast cancer versus DCIS based
on age, we do not claim that our predictive model would
be appropriate for use in clinical practice. Nevertheless,
our study is an important step in demonstrating that
predicting invasive versus in situ breast disease appears
to be possible and superior for older and middle age
women as compared to younger women. Prospective pre-
diction of invasive versus in situ breast cancer will require
more sophisticated and accurate models, inclusion of con-
secutive cases of both benign and malignant diagnoses,
and development of improved predictors, possibly mo-
lecular markers that confer invasive risk [32].
Our predictive models are limited by the unavoidable

challenge of clinical data that is inherently imperfect. We
believe we were justified in assuming a high performance
of NLP extraction of free text predictors based on the fact
that these algorithms [19,33] have been shown to perform
well previously in a similar task. However, our dataset does
not include some of the breast cancer risk factors that are
well established albeit with moderate impact on risk such
as body mass index [8,29]. Inclusion of such variables in
larger databases may improve prediction accuracy.
Several study design decisions, though necessary to val-

idate our specific hypothesis, may limit the generalizability
of our results to other scientific questions. For example,
our decision to exclude benign cases and include only the
malignant cases in this study precludes us from using our
models for prospective risk prediction. However, we did
not intend to create a predictive model to be used prior to
biopsy but rather to demonstrate age based differences in
the differentiation of invasive cancer from DCIS as well as
identify predictors that differ based on age. Our decision
to group women into three age groups was a compromise
weighing several considerations. First, these age groups are
convenient because they reflect the usual age grouping in
incidence and mortality reporting [34]. Second, these cut-
offs split the data roughly into tertiles. Third, we hoped
this grouping strategy might balance sample size con-
straints with a clear demarcation between pre-menopausal
(the younger) and post-menopausal (the older) age groups.
The literature demonstrates that the median age at natural
menopause is 52.54 years in a multi-ethnic population in
the US [35,36]. Our results for the middle age group are
consistent with this threshold because these women (ran-
ging in age from 50 to 64) are likely predominantly com-
prised of post-menopausal women. That is why the middle
age group was more similar to the older (undoubtedly
post-menopausal) group in terms of risk factors for inva-
sive breast cancer versus DCIS than they were to the
younger group. We recognize that earlier work is wary of
assignment of women into specific age groups with abrupt
cut point (most commonly done at age 50) because out-
comes do not suddenly change at these specified thresh-
olds [37]. Of note, age, included as a continuous variable
in our logistic regression (see Additional file 1), was not a
significant predictor and thus does not shed further light
on this relationship. Analysis of the interactions between
smaller intervals of age in this discrimination task would
be interesting; however, larger data sets would be required
in order to provide the power to observe these differences.

Conclusion
We are encouraged that our logistic regression model doc-
umented age-based differences in the discrimination be-
tween invasive cancer and DCIS, performing best in older
age groups. Unique age-based predictive variables provide
a first clue as to what clinical and mammographic features
may be valuable as we start to contemplate risk-based
screening and diagnosis of breast cancers most likely to
cause harm. Additional research will be crucial for further
elucidation of the reasons for the age-based differences in
predictive variables and their interactions with age, meno-
pausal status, breast cancer pathophysiology, and mam-
mography accuracy. Elucidating these relationships will
likely be a step toward ultimately improving physicians’
ability to prospectively distinguish invasive breast cancer
and DCIS in the pursuit of personalized and optimal care.

Additional files

Additional file 1: Model for all women and trial of age as a predictor
variable [38].

Additional file 2: Advanced statistical methods [39].
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