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Abstract: Most brain magnetic resonance imaging (MRI) studies concentrate on a single MRI contrast
or modality, frequently structural MRI. By performing an integrated analysis of several modalities,
such as structural, perfusion-weighted, and diffusion-weighted MRI, new insights may be attained to
better understand the underlying processes of brain diseases. We compare two voxelwise approaches:
(1) fitting multiple univariate models, one for each outcome and then adjusting for multiple compari-
sons among the outcomes and (2) fitting a multivariate model. In both cases, adjustment for multiple
comparisons is performed over all voxels jointly to account for the search over the brain. The multivar-
iate model is able to account for the multiple comparisons over outcomes without assuming independ-
ence because the covariance structure between modalities is estimated. Simulations show that the
multivariate approach is more powerful when the outcomes are correlated and, even when the out-
comes are independent, the multivariate approach is just as powerful or more powerful when at least
two outcomes are dependent on predictors in the model. However, multiple univariate regressions
with Bonferroni correction remain a desirable alternative in some circumstances. To illustrate the
power of each approach, we analyze a case control study of Alzheimer’s disease, in which data from
three MRI modalities are available. Hum Brain Mapp 35:831–846, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Among the various imaging technologies for studies of
the brain, such as magnetic resonance imaging (MRI),
computed tomography (CT), positron emission tomogra-
phy, and single-photon emission CT, MRI stands out by
providing a wide range of methods to map various aspects
of the brain, including structure, physiology, function, and
metabolism. Despite the many MRI modalities available
and their often complementary nature, most brain studies
have used either a single MRI modality or analyzed each
modality separately. Some commonly used MRI modalities
include: structural MRI to measure tissue atrophy; diffu-
sion weighted imaging (DWI), which is frequently used to
examine the microstructural integrity of white matter
(WM); perfusion-weighted MRI, which relates to the arte-
rial blood flow in the brain; functional MRI, which is used
to study regional brain activity; and MR spectroscopic
imaging, which is used to study cerebral metabolite con-
centrations. These imaging modalities provide different,
but not necessarily independent, information about the
brain. By performing an integrated analysis of several
modalities simultaneously, new insights may be attained.
We refer to the use of two or more MRI methods collec-
tively as multimodality MRI. A joint analysis of multiple
modalities not only enables the discovery of effects appa-
rent in two or more modalities simultaneously but also
provides information regarding the relationships between
modalities.

Researchers have already made some effort to combine
information from two different MRI modalities. For
instance, to identify regions of concordance and dissocia-
tion between structural and perfusion-weighted MRI,
without explicitly modeling the correlation between them,
Hayasaka et al. (2006) proposed using functions to com-
bine test statistics from different modalities. The signifi-
cance of the resulting combined statistic was then assessed
using permutation tests. A growing number of studies
have used various approaches to jointly analyze structural
and functional MRI data, including blind source separa-
tion methods (Li et al., 2009) and machine learning meth-
ods (Lemm et al., 2011). Avants et al. (2008, 2010) used a
Hotelling’s T2 test and sparse canonical correlation to
jointly analyze structural and diffusion MR images. When
reading papers that use multivariate methods such as
Hotelling’s T2 to jointly analyze two imaging modalities
(Avants et al., 2008), it is natural to ask whether this
approach is preferable to doing univariate analyses for
each modality and then adjusting for multiple compari-
sons. If it is, then a more general multivariate regression
model can potentially be used to jointly analyze any num-
ber of outcomes and account for covariates.

The goal of this article is to answer this question and
propose a general statistical methodology that can be used
to analyze several MRI modalities simultaneously to
increase the statistical power of finding localized charac-
teristics of disease, as well as revealing relationships

between the modalities. For this purpose, we assume that
the imaging data are a set of coregistered scalar images
from a number of subjects, corresponding to various imag-
ing modalities. Since we are doing a voxel-wise analysis,
we require spatial registration to be performed on all
modalities with the same resolution.

The dataset that motivated this article was a pilot imag-
ing dataset obtained using more than two MRI modalities,
including structural MRI, DWI, and perfusion-weighted
MRI. This dataset was collected on patients with Alzhei-
mer’s disease (AD) and healthy elderly controls to further
examine the relationship between macrostructural (struc-
tural MRI), microstructural (DWI), and physiological (per-
fusion-weighted MRI) changes in the brain and the
diagnosis of AD. Preliminary exploratory analysis indi-
cated the presence of voxelwise correlations between
modalities and this was confirmed by our formal analysis
(Data Analysis Results Section).

Although others have documented superiority of multi-
variate over univariate approaches in general (e.g., Zellner
and Huang, 1962), this has rarely been shown in neuroi-
maging (Young et al., 2010). In neuroimaging specifically,
Lazar et al. (2002) and Heller et al. (2007) proposed meth-
ods for pooling p-values from various outcomes to test the
simultaneous null hypothesis. In this article, we consider
whether further gains can be attained by modeling the de-
pendence explicitly via multivariate analysis.

To do this, we first compare the power of multiple voxel-
wise univariate regressions (one univariate model per mo-
dality followed by calculating a combined p-value) with
voxelwise multivariate regression (multiple modalities
serving as multiple outcomes in a single multivariate model
with multiple covariates) in a simulation study. We then
perform both types of analysis on experimental multimo-
dality brain MRI data. Although our data is on three modal-
ities of MRI, a joint analysis could similarly be performed
on other modalities that provide a single measurement per
voxel (or using a voxelwise summary measure from modal-
ities such as fMRI that yield multiple measures per voxel).

METHODS

A common way to examine the relationships between
disease and brain alterations is to consider each image
voxel individually. For a single modality, each voxel can
be thought of as having a vector of image values, with one
observed value for each subject. Since we are interested in
determining whether there is a relationship between dis-
ease status and image values at a specific voxel, we pro-
pose a testable hypothesis for each imaging modality:

H01: Disease status does not have an effect on the values
observed by a given imaging modality (in a particu-
lar voxel).

HA1: Disease status has an effect on the values observed
by a given imaging modality (in a particular
voxel).
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These hypotheses can be tested using univariate linear
regression models with disease status as the independent
variable and voxel values as the dependent variable, one
regression model per modality. The flexibility of such
models allows for adjustment of covariates such as age
and sex.

However, fitting multiple univariate models to test H01

for each modality can lead to false positives due to the
increased number of tests. There are several methods for
combining p-values in a way that accounts for multiple
comparisons. (We review some of these methods in the
Testing the Global Null Hypothesis Section.) The resulting
combined p-value can be used to reject the global null
hypothesis:

H02: Disease status does not have an effect on the values
observed by any of the imaging modalities (in a
particular voxel).

HA2: Disease status has an effect on the values observed
by at least one of the imaging modalities (in a par-
ticular voxel).

H02 is the intersection of H01 for all the modalities of
interest. It is also referred to as the intersection null
hypothesis, conjunction of null hypotheses, or omnibus
null hypothesis (Heller et al., 2007).

Another way to test the global null hypothesis is to test
all the modalities at once using a multivariate linear regres-
sion model. Each voxel is now thought of as having a corre-
sponding matrix of image values with a column for each
modality and a row for each subject. At each voxel, this
outcome matrix is treated as the dependent variable in a
multivariate multiple regression model. The multivariate
model allows us to test the global null hypothesis, H02, in
one step. That is, a p-value can be obtained directly from
the model to test H02, in contrast to obtaining multiple p-
values, each testing H01 for a single modality, and then
combining them to test H02. The two main advantages of a
multivariate analysis, as opposed to separate univariate
analyses for each modality, are the potential increase in
power attained by taking advantage of correlations between
the imaging modalities and the ability to estimate these cor-
relations to better understand the relationships between
modalities. In the Univariate Linear Regression and Multi-
variate Linear Regression Sections, we summarize some
known statistical results about univariate and multivariate
multiple regression (Mardia et al., 1979), so that we will
later be able to discuss in precise terms the similarities and
differences between the two approaches.

Univariate Linear Regression

The model

For a single voxel, let y be the observed vector of the de-
pendent variable on each of n subjects. The dependent
variable corresponds to a single imaging modality. In

addition, let Xn � p be a matrix of p covariates on each of
the n subjects. At each voxel, we consider a univariate
multiple linear regression model of the form

yi ¼ Xbi þ ui; (1)

for the ith modality, where bi is a vector of p unknown
regression parameters and ui is a zero-mean vector of n
unobserved Gaussian disturbances, with Cov(ui) ¼ r2

i I. It
is assumed that observations corresponding to different
subjects are independent. An unbiased estimator of r2

i is
given by r̂2

i ¼ ðyi � XbbiÞTðyi � XbbiÞ=ðn� pÞ. An unbiased
estimator of the matrix of regression coefficients b is given
by the maximum likelihood estimator (MLE).

bbi ¼ ðXTXÞ�1XTyi: (2)

Assuming the univariate model (1), H01 can be restated as
b ¼ 0, where b, a single element of the vector bi, is the
coefficient of disease. A t-test can easily be used to test
H01, as it can be shown that bbi � Npðbi;r2

i ðXTXÞ�1Þ.

Testing the global null hypothesis

To test H02 using univariate regression, a univariate
regression is performed on each outcome and the p-values
are then combined into a single joint p-value. Note that
this is all still within a single voxel; we will address the
multiple testing over voxels in our data analysis in the
Data Analysis Results Section. Correction for multiple test-
ing within each voxel is necessary because, if q coefficients
for q outcomes are tested, each at level a, then the proba-
bility of obtaining false positives at any of the q tests is
higher than the desired significance level a.

Lazar et al. (2002) and Heller et al. (2007) have considered
several ways to combine multiple tests. An easy way to cor-
rect for multiple testing is to use the Bonferroni correction.
Typically, the Bonferroni correction is implemented by
dividing the threshold of significance by the number of tests,
or, equivalently, by multiplying each p-value by the number
of tests and using the original significance threshold. Benja-
mini and Heller (2008) showed that, to use Bonferroni to test
the global null hypothesis, H02, one only needs to consider
the minimum of the p-values multiplied by the number of
tests [see Eq. (3) in their paper]. This is because, if the mini-
mum adjusted p-value does not meet significance, then none
of the other adjusted p-values will either. That is, letting
p1, : : : ,pq denote the p-values for the q outcomes, the p-value
for the global null hypothesis, H02, is

pB ¼ minðqp1; : : : ; qpq; 1Þ

For example, if we had the four p-values, 0.01, 0.04, and
0.11, and 0.40, the Bonferroni-corrected p-values would be
0.04, 0.16, 0.44, and 1. To test the global null hypothesis,
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H02, we only need to consider whether the minimum of
these, 0.04, is less than our significance threshold. If we set
the significance threshold at the commonly used 0.05 level,
then we can reject the global null hypothesis. This type of
correction is guaranteed to control the rate of false posi-
tives regardless of the true covariance between the out-
comes, which is unknown. Conversely, its generality
makes it conservative, especially if q is large. Fortunately,
when combining imaging modalities, q will be small.

A major advantage of the Bonferroni method is that it
can provide a multiple-comparisons-adjusted p-value for
each individual outcome (the p-value multiplied by the
number of tests). This is practical for most situations in
which the researcher wants to determine which outcomes
are associated after the global null hypothesis is rejected.
The other methods described here for testing the global
null hypothesis only provide a single combined p-value.
Even when using the multivariate model, we cannot first
test the global null hypothesis and then also test each indi-
vidual outcome without affecting our type one error.

If the outcomes are independent, then other methods are
available to combine the q univariate p-values into a single p-
value to test H02. The Stouffer combined p-value is given by

pS ¼ 1� U
1ffiffiffi
q
p
Xq

i¼1

U�1ð1� piÞ
" #

;

where U denotes the cumulative distribution function (cdf)
of the standard normal distribution. The Fisher combined
p-value is given by

pF ¼ 1� F2q �2
Xq

i¼1

logðpiÞ
" #

;

where F2q denotes the cdf of the v2
2q distribution. If the

outcomes are independent, then the above combined p-val-
ues are valid in the sense that their distribution under the
null hypothesis is uniform. The disadvantage of these
combined p-values is that they are not necessarily valid if
the q outcomes are not independent.

Multivariate Linear Regression

The model

As pointed out by Worsley et al. (2004), the simplest
approach to analyzing multimodality data is to use a mul-
tivariate multiple regression model at each voxel. Similar
to the univariate model, the multivariate multiple regres-
sion model can be written as

Y ¼ XBþU: (3)

This is similar to Eq. (1) except Y, B, and U are now matri-
ces, not vectors. (X is the same matrix in both models.) For

any given voxel, Yn 3 q is the observed matrix of q
outcome variables on each of n subjects. That is,

Y ¼ ðy1 y2 : : :yqÞ;

where yi for i ¼ 1, : : : ,q are the outcome vectors used in
the univariate models. Bp�q is a matrix of unknown regres-
sion parameters and Un�q is a zero-mean matrix of unob-
served Gaussian errors. It is assumed that observations
corresponding to different subjects are independent.
Observations corresponding to different outcomes for the
same subject may be dependent, but this dependency is
assumed to be the same for all subjects. In model (3), this
is reflected by the assumption that the rows of Un�q have
a common covariance Rq�q. Each diagonal element of R is
the variance of the residuals of a given modality. Each off-
diagonal element of R is the covariance between the resid-
uals of one modality and the residuals of another modal-
ity. It follows that estimating R in a multivariate analysis
yields estimates of the residual variance for each modality
and estimates of the residual covariance between modal-
ities after adjusting for the covariates in the model. An
unbiased estimator of the covariance R is given by
R̂ ¼ ðY� XbBÞTðY� XbBÞ=ðn� pÞ. The MLE for B is

bB ¼ ðXTXÞ�1XTY: (4)

This is similar to the univariate case [Eq. (2)], although B
and Y are now matrices. In fact, each of the q columns of bB
is equivalent to bbi in one of the q univariate models. To see
this, notice that each column of bB is simply (XTX)� 1XT mul-
tiplied by the corresponding column in Y. Since (XTX)� 1XT

is the same in both models and one column of Y in the
multivariate model is equivalent to a vector yi in a univari-
ate model, each column of bB is equivalent to a bbi in a uni-
variate model. That is, the least-squares (or maximum
likelihood) estimation of the mean model parameters results
in the same unbiased estimates regardless of whether the
univariate or the multivariate model was used. However,
the standard errors and p-values obtained will differ.

Testing the global null hypothesis

Scientific questions at each voxel may be formulated in
terms of tests of B. In their most general form, linear
hypotheses may be written as the null hypothesis CBM ¼
D for appropriate matrices Cg�p and Mq�r. For example,
suppose FA calculated from DWI is the first of q ¼ 4 out-
comes and an indicator of disease is the third of p ¼ 3
covariates. Then, H01 for FA corresponds to C ¼ [0 0 1], M
¼ [1 0 0 0]T, and D ¼ 0, while the global null, H02, corre-
sponds to C ¼ [0 0 1], M ¼ diag(1,1,1,1), and D ¼ [0 0 0
0]. M also allows for testing linear combinations of
outcomes, which cannot be done using the univariate
model. As an example, if multiple modalities have the
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same units, like the multiple outcomes of MRI spectros-
copy, then the matrices

C ¼ ½0 0 1�;M ¼

1 0 0
�1 1 0
0 �1 1
0 0 �1

2664
3775;

and D ¼ [0 0 0] test whether disease has the same effect
on all the outcomes, as opposed to the effects being differ-
ent. For any choice of C, M, and D, the likelihood ratio
test of the general linear hypothesis CBM ¼ D is given by
the test statistic

k ¼ jEj
jEþHj

where

E ¼ ðn� pÞMTR̂M

and

H ¼MTbBTCT CðXTXÞ�1
CT

h i�1
CbBM:

k has a Wilks’ lambda distribution with parameters r, n �
p, and g. As Wilks’ lambda quantiles are difficult to com-
pute, we use Bartlett’s v2 approximation (Bartlett, 1938).
[Note that Rao’s F approximation (Rao, 1951) can also be
used and generally leads to the same decision.]

Recall that the estimator of B is the same as we would
obtain if we calculated each column of it separately using
a standard univariate multiple regression. The test statis-
tics and their distributions used to test the hypothesis H02

of no effect on any of multiple modalities, however, are
different. In the Simulations section, we use simulations to
compare the two approaches.

SIMULATIONS

The goal of the following simulations is to compare the
statistical power of the methods described above for testing
whether any of the outcomes are related to a covariate of
interest. For this purpose, we simulate model (3) for q ¼ 4
outcomes and p ¼ 3 covariates. The covariates are a vector
of ones as the intercept term, a continuous covariate repre-
senting standardized age, and a dichotomous covariate rep-
resenting disease. For each of n ¼ 20 subjects, the
continuous covariate was produced independently from a
standard normal distribution. Half of the subjects were ran-
domly assigned to the disease group and half to the healthy
group. For each subject, the model was used to generate
data for each voxel in a cube of 10 � 10 � 10 voxels. When
generating the data, the regression coefficients were set to
zero everywhere except for the central 2 � 2 � 2 voxel
cube, where the intercept and the regression coefficient for

age were set to 1, while the regression coefficient for the
disease was set to either 0 or 2. The number of outcomes
generated with a nonzero regression coefficient of disease is
a parameter d. We henceforth refer to the d outcomes simu-
lated with nonzero regression coefficients of disease as
‘‘truly associated’’ outcomes since, regardless of the results
of any statistical tests subsequently run, they are generated
assuming an association between the outcome and disease.
Gaussian noise was then added independently at each
voxel, independently for each subject. We simulated four
different covariance structures for R. The diagonal entries
(the variances of the outcomes) were set to 1 in all cases. In
the first two scenarios, the off-diagonal elements (covarian-
ces between the outcomes) are all set to 0 in the independ-
ent case, and then 0.5 to produce a strong exchangeable
correlations structure. The last two simulated scenarios had
more complicated covariance matrices and are discussed
later in this section.

In Figure 1, we assume independence and compare the
empirical cdfs of uncorrected p-values for testing B31 ¼ 0.
Testing whether B31 ¼ 0 tests whether disease (the dichot-
omous third covariate) has an effect on the first outcome
(i.e., H01). In each quadrant of the figure, empirical cdfs of
the p-values derived from applying multivariate and uni-
variate analyses are shown for a given number of truly
associated outcomes, d. Each plot also shows the cdf of
p-values under the null hypothesis for reference (note that
p-values under the null hypothesis are uniformly distrib-
uted; accordingly, the black line is the cdf of a uniform
distribution with a range from 0 to 1). A higher curve indi-
cates higher power. The top left panel shows that if one
knows a priori which outcome to test, then an uncorrected
univariate analysis has better statistical power than a mul-
tivariate test of all outcomes. However, if there are two or
more dependent outcomes, then the multivariate test is
equal or better than the uncorrected univariate test, even
before correcting for multiple comparisons. The lower
right panel shows that both methods produce uniformly
distributed p-values under the null hypothesis of no asso-
ciated outcomes (d ¼ 0). The univariate test is valid here
because we are only testing one outcome and therefore do
not need to correct for multiple comparisons.

Figure 2 shows a similar comparison under independ-
ence when all outcomes are tested and, thus, correction
for multiple comparisons is needed. The Bonferroni cor-
rection and Fisher’s combined p-value perform better
than the multivariate method when one or two outcomes
(modalities) are dependent on disease status, that is,
when d ¼ 1 or 2. Stouffer’s combined p-value is less
powerful than Fisher’s in the first panel when only one
outcome is truly associated but outperforms Fisher’s if
there are at least three affected outcomes. The lower right
panel shows that all four methods produce uniformly
distributed p-values under the null hypothesis of no asso-
ciated outcomes (d ¼ 0). This confirms that the p-values
for each of the methods are valid under the assumption
of independence.

r Multivariate Analysis of Multimodality MRI r
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Figure 3 displays the simulation results assuming pair-
wise correlations of 0.5 between outcomes. At first glance,
it would seem that the Stouffer method performs best,
closely followed by Fisher. However, the lower right panel
clearly shows that these two methods do not preserve
type-one error rate when the tests being combined are cor-
related; p-values generated by the Stouffer and Fisher
methods are not valid under dependence. Conversely, the
univariate (Bonferroni adjusted) and multivariate methods
remain valid. Of the two, the multivariate method per-
forms best, but the Bonferroni correction is not far behind,
especially when three outcomes are affected (i.e., d ¼ 3).
The conservative nature of the Bonferroni correction is evi-
dent in the lower right panel where the cdf of Bonferroni
corrected p-values falls below the 45-degree line.

We were also interested in looking at how the methods
perform when the correlation between outcomes is negative.
To do this, we simulated data using an extreme correlation

matrix estimated using real data (a description of the dataset
can be found in the Data Analysis Section). Out of all the
gray matter (GM) voxels, we chose the estimated correlation
matrix containing the single largest negative element, which
was �0.7560350. For the next set of simulations, we used the
correlation matrix containing this value:

1:0000000 �0:7560350 �0:2996368
�0:7560350 1:0000000 0:3001049
�0:2996368 0:3001049 1:0000000

24 35:
The columns (from left to right) and rows (from top to
bottom) of the correlation matrix correspond to deforma-
tion-based morphometry (DBM) jacobian, fractional anisot-
ropy, and regional cerebral blood flow. Because there were
three outcomes in the data used to estimate this correla-
tion matrix, this set of simulations generated three out-
comes. Figure 4 displays the simulation results. The

Figure 1.

Empirical cdfs of multivariate and uncorrected univariate p-values assuming independent out-

comes for: d ¼ 1, d ¼ 2, d ¼ 3, and d ¼ 0 truly associated outcomes. The light gray line shows

the uniform distribution as a reference.
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results are very similar to those seen with exchangeable
correlation (Fig. 3), with the most obvious difference being
the increase in power when using the multivariate method
when d ¼ 1. This is likely due to the large (negative) corre-
lation between the first and second outcomes.

To better simulate correlations similar to our real data, we
ran simulations in which the 1000 simulated voxels were
assigned 1000 correlation matrices randomly selected from
the GM voxels in the real dataset. Only GM was sampled as
one of the outcomes (regional cerebral blood flow) is not a
reliable measure in WM. In the upper left plot of Figure 5,
when only one outcome is associated with disease, the Bon-
ferroni correction has higher power, similar to what was
seen in the simulations where all outcomes were independ-
ent (Fig. 2). This is likely because many of the correlations
observed in the real dataset were much smaller than those
simulated in Figures 3 and 4. However, when two or three

outcomes are truly associated, the multivariate method still
has higher power; although the difference in power between
the multivariate method and bonferroni correction is not as
marked as in Figures 3 and 4.

The simulation results shown in Figures 2–5 are also
summarized in Table I, which shows the voxelwise power
of each method to detect an association in each of the
simulated conditions (i.e., the number of times the affected
voxel had a p-value less than 0.05 was divided by the total
number of simulations). The numbers reiterate the points
mentioned above. For example, we see again that Fisher
and Stouffer are not valid in the correlated outcomes
setting as they have a type one error greater than 0.05 (the
last two numbers in the d ¼ 0 column).

Across all the simulated scenarios, we see that the multi-
variate approach has about as much power or more power
than Bonferroni correction when there are two or more

Figure 2.

Empirical cdfs of multivariate and combined p-values assuming independent outcomes for: d ¼ 1,

d ¼ 2, d ¼ 3, and d ¼ 0 truly associated outcomes. The light gray line shows the uniform distri-

bution as a reference.
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truly associated outcomes. When only one outcome is
truly associated, the multivariate method has higher
power when the correlation is exchangeable with q ¼ 0.05
and when the extreme correlation matrix with large nega-
tive correlation was used. However, when the correlations
are small or nonexistent as in Figures 5 and 2, respectively,
Bonferroni has higher power. In all the simulation results,
‘‘power’’ refers to the probability of rejecting the global
null hypothesis given the relationship we assumed when
we generated the data. It does not take into account any
other testing necessary to determine which outcome(s) are
associated once the global null hypothesis is rejected.

DATA ANALYSIS

This cross-sectional MRI study included 84 subjects: 31
with AD (mean age and standard deviation: 65.90 � 10.22

years; 35.48% females) and 53 elderly healthy control sub-
jects (age: 65.45 � 9.45 years; 50.94% female). Age, gender,
and diagnosis were available for all subjects. Subjects were
chosen from a database trying to approximately match age
and gender between the AD and control groups. For 19
subjects, Mini-Mental State Examination (MMSE) scores
(Folstein et al., 1975) were available; 9 AD patients had an
average MMSE score of 21.78 � 6.06 and 10 controls had
an average score of 29.90 � 0.32.

For each subject, we have brain maps of three quantities,
each derived from a separate imaging modality:

1. DBM jacobian (Jacobian): Using data obtained from
the sMRI modality, deformation fields relating each
brain image to an unbiased atlas brain image were
computed. The Jacobian determinant of the deforma-
tion fields (i.e., Jac-map), giving the fractional volume
contraction or expansion at each voxel evaluated, was

Figure 3.

Empirical cdfs of multivariate and combined p-values under exchangeable correlation with q ¼
0.5 for: d ¼ 1, d ¼ 2, d ¼ 3, and d ¼ 0 truly associated outcomes. The light gray line shows the

uniform distribution as a reference.
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calculated, providing a map of brain atrophy. Num-
bers greater (smaller) than one imply local volume
expansion (contraction).

2. Fractional anisotropy (FA): FA was computed in the
native space of each DTI set (estimated from the
DWI modality) after eddy current and geometrical
distortion correction using the standard formula for
Euclidian FA (Basser and Pierpaoli, 1996). The frac-
tional anisotropy map was then affine coregistered
to subjects’ T1 images and mapped onto the atlas
brain image space using the deformation map from
DBM.

3. Regional cerebral blood flood (rCBF): rCBF was
based on continuous arterial-spin labeling MRI (Dai
et al., 2008) and was recorded as partial volume
corrected cerebral blood flow maps, first coregis-
tered to subjects’ T1 images and then mapped onto

the atlas brain space using DBM deformation field.
Average perfusion measurements from the motor
cortex region were used for intensity normali-
zation.

Before statistical analysis, spatial smoothing was per-
formed on all images using SPM software package avail-
able for Matlab; the contribution of neighboring values
to the center pixel was weighted by a Gaussian spatial
kernel with a filter width of 10 mm full width at half
maximum in the atlas image space. The size of the
smoothing kernel matched the size of the effect we
sought while accounting for residual errors in the non-
linear spatial normalization. The reference atlas used in
calculating DBM was also used to generate probabilistic
tissue segmentations for GM, WM, and cerebrospinal
fluid.

Figure 4.

Empirical cdfs of multivariate and combined p-values, under the scenario of an extreme correla-

tion matrix estimated from real data, for: d ¼ 1, d ¼ 2, d ¼ 3, and d ¼ 0 truly associated out-

comes. The light gray line shows the uniform distribution as a reference.
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Subjects

All subjects were recruited from the Memory and Aging
Center of the University of California, San Francisco and
diagnosed based on information obtained from an
extensive clinical history and physical examination. MR
images were used to rule out other major neuropatholo-
gies such as tumors, strokes, or inflammation but not to
diagnose dementia. The subjects were included in the
study if they were 55 years old or older and had no his-
tory of brain trauma, brain tumor, stroke, epilepsy,
alcoholism, psychiatric illness, or other systemic diseases
that affect brain function. Subjects received a standard bat-
tery of neuropsychological tests including assessment of
global cognitive impairment using MMSE and global func-
tional impairment using the Clinical Dementia Rating scale
(Morris, 1993). AD patients were diagnosed according to

the criteria of the National Institute of Neurological and
Communicative Disorders and Stroke-Alzheimer’s Disease
and Related Disorders Association (NINCDS/ADRDA)
(McKhann et al., 1984). All subjects or their legal guardi-
ans gave written informed consent before participating in
the study, which was approved by the Committees of
Human Research at the University of California and the
VA Medical Center at San Francisco.

Image Acquisition

All scans were performed on a 4 Tesla (Bruker/Siemens)
MRI system with a single housing birdcage transmit and
eight-channel receive coil. T1-weighted images were
obtained using a 3D volumetric magnetization-prepared
rapid acquisition gradient echo sequence with TR/TE/TI

Figure 5.

Empirical cdfs of multivariate and combined p-values, where the correlation matrix for each

voxel was the estimated correlation matrix from a randomly selected GM voxel in our real data,

for: d ¼ 1, d ¼ 2, d ¼ 3, and d ¼ 0 truly associated outcomes. The light gray line shows the uni-

form distribution as a reference.
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¼ 2300/3/950 ms, 7-degree flip angle, 1.0 � 1.0 � 1.0 mm3

resolution, and 157 continuous sagittal slices.

Deformation-Based Morphometry

Each individual skull-stripped and bias field corrected
brain image volume was affine registered to a reference
brain image to adjust for global differences in brain posi-
tioning and scale across individuals. The unbiased aver-
age brain used as an atlas was generated from 20 healthy
elderly individual brains (i.e., age of 50 to 70 years)
using an unbiased atlas formation technique based on
large deformations mapping; specifically, a nonlinear
inverse-consistent fluid-flow deformation spatially nor-
malized affine registered individual brains to the refer-
ence brain (Lorenzen et al., 2005). This set of 20 healthy
elderly individuals did not include any controls studied
in this work.

Diffusion Weighted Imaging

Diffusion-weighted images were acquired based on a
dual-refocused spin-echo echo-planar imaging (EPI)
sequence supplemented with twofold parallel imaging
acceleration [GeneRalized Auto-calibrating Partially Paral-
lel Acquisitions] (Griswold et al., 2002) to reduce suscepti-
bility distortions. Other imaging parameters of DWI were
TR/TE ¼ 6000/77 ms, field of view 256 � 224 cm, matrix
size 128 � 112 mm2, 2 � 2 mm2 in-plane resolution, and
40 axial slices, each 3 mm thick. Diffusion encoding was
accomplished using six, noncollinearily directed magnetic

field gradients with b ¼ 1000 s/m2 and normalized to a
single EPI without diffusion encoding (b ¼ 0). Four diffu-
sion acquisitions were averaged to boost the signal to
noise ratio.

Steps involved in preprocessing of DWIs were as fol-
lows: Motion and eddy-current distortion artifacts were
removed by affine coregistration of each diffusion-
weighted image to the unweighted (b ¼ 0) image in the
diffusion imaging sequence followed by a fluid-flow warp-
ing based nonlinear geometry distortion correction to es-
tablish anatomical correspondence between structural and
diffusion-weighted images. Diffusion tensors were com-
puted using a linear least squares algorithm implemented
in TEEM software (http://www.na-mic.org/Wiki/
index.php/TeemSummary).

Perfusion-Weighted Imaging

Perfusion-weighted images were acquired using a con-
tinuous arterial spin labeling (cASL) sequence (Detre et al.,
1992) with a single-shot EPI part and TR/TE ¼ 5200/9 ms
timing to map the perfusion signal at 3.75 � 3.75 mm2

inplane resolution. cASL-MRI consisted of 16 slices, each 5
mm thick and with a 1.2 mm interslice gap. Arterial spin
labeling was accomplished with a two-second hyperbolic
radiofrequency pulse, followed by an additional one-sec-
ond postlabeling delay.

Processing of the cASL images involved normalization
of the perfusion signal by the arterial water density, dif-
ferential intensity scaling, and affine alignment followed
by the fluid-flow warping based nonlinear geometry

TABLE I. The power of each method to detect an association in a single voxel with a type one error level of 0.05

d ¼ 0 d ¼ 1 d ¼ 2 d ¼ 3

Independent outcomes
Multivariate 0.0506 0.8623 0.9951 >0.99995
Univariate (Bonferroni) 0.0493 0.9358 0.9961 0.9998
Fisher 0.0491 0.8659 0.9991 >0.99995
Stouffer 0.0509 0.5299 0.9798 >0.99995

Exchangeable Correlation (q ¼ 0.5)
Multivariate 0.0475 0.9710 0.9951 0.9973
Univariate (Bonferroni) 0.0420 0.9245 0.9713 0.9861
Fisher 0.0846 0.8321 0.9936 0.9991
Stouffer 0.1000 0.4808 0.9493 0.9995

Extreme correlation matrix from real data containing large negative values
Multivariate 0.0499 0.9995 >0.99995 >0.99995
Univariate (Bonferroni) 0.0469 0.9604 >0.99995 >0.99995
Fisher 0.0749 0.9313 >0.99995 >0.99995
Stouffer 0.0894 0.6245 0.9981 >0.99995

Each voxel assigned a correlation matrix from a random gray matter voxel in real data
Multivariate 0.0529 0.9313 0.9981 >0.99995
Univariate (Bonferroni) 0.0501 0.9554 0.9935 0.9991
Fisher 0.0576 0.9121 0.9994 >0.99995
Stouffer 0.0583 0.6371 0.9918 >0.99995

As in Figures 2–5, d is the number of truly associated outcomes; that is, the number of outcomes that were generated as dependent on
disease state.
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distortion correction to establish anatomical correspon-
dence between structural and perfusion images and par-
tial volume correction applied to estimate rCBF in
institutional units. rCBF maps were intensity calibrated
based on the average rCBF from the sensori-motor
cortex.

Data Analysis Results

For illustration, Figure 6 shows the average Jacobian,
average FA, and average rCBF maps over all 84 subjects.
As expected, we observe high anisotropy in the WM and
high perfusion in the GM. The predominately green color
of the average Jacobian map merely indicates that, on
average, subjects’ images had to be contracted to be regis-
tered to the atlas image.

As the Jacobian is positive and centered around one, we
applied a log transformation to it before analysis. In both
the univariate and multivariate models, we adjusted for
age and AD diagnosis. No higher-order covariates were
used (e.g., age2, age*disease) as we could not visually
detect such relationships when plotting outcomes versus
age in a random sample of individual voxels and because
we were concerned about the feasibility of estimating an
additional three parameters for every covariate added
using only 84 subjects.

Figure 7 shows the distribution of voxelwise correla-
tions between the residuals after a given modality has
been regressed on covariates including disease status.
The histograms show a positive mean correlation
between FA and rCBF in the GM, as well as a tendency
toward negative correlations between Jacobian and FA in
the WM. In each histogram, the mean differed signifi-

cantly from zero. Figure 8 shows the correlations between
residuals of each pair of outcomes. Both positive and
negative correlations are observed through out the brain.
In the tissue right above the corpus callosum, in which
correlation is strongly negative between Jacobian and FA,
and between FA and rCBF, but strongly positive between
Jacobian and rCBF. Because the residuals are correlated,
p-values obtained from univariate and multivariate
regression analyses will not necessarily be similar.

We analyzed the data three ways: (A) univariate analy-

sis for a single modality with FDR correction across
voxels; (B) univariate analysis for two modalities in WM

(Jacobian and FA) or three modalities in GM (Jacobian,
FA, and rCBF) with Bonferroni correction for the number

of modalities followed by FDR correction for the number
of voxels based on the minimum of the three Bonferroni-

adjusted p-values; and (C) multivariate analysis of two
(in WM) or three (in GM) modalities followed by FDR

correction for the number of voxels. The multiple univari-
ate and multivariate analyses were performed as

described in Univariate Linear Regression and Multivari-

ate Linear Regression Sections, using maximum likeli-
hood estimation. The FDR correction for testing multiple

voxels was performed separately for GM and WM (Geno-
vese et al., 2002). Figure 9 shows maps of t-statistics for

the coefficient of disease for each the three modalities, in
voxels considered significant by each of the three meth-

ods: A, B, or C. The disease covariate is coded 1 for sub-
jects with AD and 0 for controls. As a result, positive

t-statistics in Figure 9 indicate an increase in outcome

measure for diseased subjects, whereas negative t-statistics
indicate a decrease.

Figure 6.

Average maps for all subjects: average Jacobian map, average FA map, and average rCBF map.

The Jacobian is expressed as ratio between the subject-specific volumes and the atlas volume;

FA is an index between 0 and 1; rCBF is expressed in institutional units, proportional to blood

flow in ml/100mg/min. The colors shown in the color bars are overlayed onto an atlas image

with 50% opacity to allow the atlas to remain visible.
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When the Jacobian was the dependent variable, univar-
iate analysis revealed significantly smaller tissue volumes
in AD patients compared with healthy elderly partici-
pants throughout the brain. Though univariate analysis of
FA or rCBF revealed several regions of differences
between AD and healthy elderly, subjects reductions of
FA were observed only in limited regions of the temporal
and frontal lobe, and rCBF differences were not observed
in the anterior cingulate or temporal lobe. However,
when data were analyzed using the multivariate model, it
was revealed that atrophy in the frontal lobe, cingulated
gyrus, and temporal lobe was accompanied by reductions
of FA and differences in rCBF.

DISCUSSION

Maximizing power is important for multiple modality
imaging studies in which the total number of statistical
tests may be a multiple of the number of modalities and
voxels. An adjustment for multiple comparisons must be
done to preserve the desired type-one error rate. In this ar-
ticle, we focused on comparing methods available for test-
ing multiple imaging modalities in voxelwise analysis. In
particular, we compared multivariate regression analysis
to multiple univariate regression models with correction
for multiple comparisons. We considered three ways to
adjust for multiple comparisons after fitting multiple

Figure 7.

Histograms of voxelwise correlations between residuals from regressing a given modality on

covariates including disease status. Light gray vertical lines indicate the mean. All means are sig-

nificantly different from zero. A histogram for WM is only shown for correlations between Jaco-

bian and FA because the perfusion signal of WM is not reliable.
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univariate models: Bonferroni correction, Stouffer’s com-
bined p-value, and Fisher’s combined p-value. Our simula-
tions confirmed that as Stouffer’s and Fisher’s combined p-
values assume independence between tests, they do not
produce valid p-values when the tests are correlated. Since
it cannot be assumed that multiple imaging modality
measures on the same voxel are independent, these meth-
ods are not appropriate. In comparing the multivariate
model to multiple univariate models followed by Bonfer-
roni correction, we found that the multivariate model has
higher power to reject the global null hypothesis if more
than two outcomes were associated with covariate of inter-
est or if the outcomes were highly correlated. Conversely,
if only one or two outcomes are associated with the cova-
riate of interest and the outcomes were independent, fit-
ting multiple univariate models and applying Bonferroni
correction is more powerful.

Beyond simply maximizing power to reject the global
null hypothesis, there are other issues, such as the
hypothesis of interest and computational efficiency, that
should be taken into account when choosing between
multivariate and multiple univariate analysis. For
instance, if estimating the correlations is of inherent inter-
est, then certainly the multivariate model is preferable.
Likewise, if the main objective is to find voxels where
more than one outcome is associated, then the multivari-
ate model provides the most powerful way to do this. On
the contrary, if easily obtaining a p-value for each
outcome that accounts for multiple comparisons is highly
desirable, multiple univariate analyses with Bonferroni
correction are a better option. Using Bonferroni correction
may also be more computationally thrifty. Fitting a multi-
variate model at each voxel can be computationally inten-
sive when the number of voxels is large. In our case, the

multivariate fitting was coded in C (http://www.nitr-
c.org/projects/valmap), as other implementation attempts
in Matlab or R were excessively time-consuming. The
Bonferroni combined p-value was much simpler to imple-
ment. In the simulations and data analysis, we saw that
the Bonferroni combined p-value does not perform as
well as the multivariate model, but it did not lag far
behind, yielding similar significance regions in Figure 9.
In addition to power, the hypothesis of interest, ease of
implementation, and other issues are important to con-
sider when choosing a method of analysis.

In our analysis of experimental data, we demonstrated
both multivariate analysis and univariate analysis with
Bonferroni correction. We sought to boost power and
gain anatomical insight into imaging of neurodegenera-
tive diseases by jointly analyzing structural, perfusion-
weighted, and diffusion-weighted MRI measures.
Multivariate analysis allowed for detection of the effect of
disease on each modality and also helped elucidate rela-
tionships between the various modalities with respect to
the disease process. In Figure 9, voxels with statistics
large in magnitude (shown as red or blue) in more than
one modality indicate simultaneous effects of the disease
on these modalities. For instance, the Jacobian maps show
enlargement of the ventricles, while the FA maps show a
simultaneous reduction in FA in the corpus callosum. It
is known that the regression coefficients in a multivariate
model are the same as those in the separate univariate
models. Therefore, simultaneous effects such as the above
could also be inferred from separate univariate analyses.
The main advantage of the multivariate approach is to be
able to detect larger areas of significance, thus detecting
brain changes that may not be visible in the univariate
analyses.

Figure 8.

Correlations between residuals after adjusting for age and disease status are mapped onto the

atlas image with an axial cut through left hippocampus and sagittal cut slightly left of midline,

revealing the cingulate cortex. Correlations with residuals of rCBF are only shown in GM as

rCBF is not a reliable measure in WM.
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In this article, we considered multivariate modeling of
multiple outcomes for the same voxels, but not joint mod-
eling of multiple outcomes at different voxels. The FDR
correction performed over voxels was marginal and did
not consider the dependence between voxels. It is likely
that detection power could be improved and more infor-
mation could be gained by joint multivariate modeling
between voxels or by applying other methods that account
for spatial correlations between voxels (Bowman, 2005;
Derado et al., 2010). For example, random field theory,
which accounts for spatial correlations between voxels,
could be used instead of FDR to control for multiple test-
ing over voxels (Worsley et al., 2004). These methods are

also attractive from the perspective of the neural connec-
tivity of the brain. The study of these more complex meth-
ods is left for future work.

Although we have only demonstrated the analysis of
three modalities of MRI, the statistical concepts are gen-
eral, and are, in principle, applicable to other imaging
technologies. However, some modalities, such as fMRI
which produces an entire time series of outcomes for each
voxel, may require adaptions of the methods presented
here. Importantly, the interpretation of the correlations
will depend on the modalities analyzed.
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