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Model of cortical organization embodying a basis for a theory of
information processing and memory recall

(Hebb synapse/selective adaptive network/axial next-nearest-neighbor Ising model/fluctuations/synchronous time steps)

GORDON L. SHAW, DENNIS J. SILVERMAN, AND JOHN C. PEARSON
Physics Department, University of California, Irvine, CA 92717

Communicated by Frederick Reines, December 10, 1984

ABSTRACT Motivated by V. B. Mountcastle's organiza-
tional principle for neocortical function, and by M. E. Fisher's
model of physical spin systems, we introduce a cooperative
model of the cortical column incorporating an idealized sub-
structure, the trion, which represents a localized group of neu-
rons. Computer studies reveal that typical networks composed
of a small number of trions (with symmetric interactions) ex-
hibit striking behavior-e.g., hundreds to thousands of quasi-
stable, periodic firing patterns, any of which can be selected
out and enhanced with only small changes in interaction
strengths by using a Hebb-type algorithm.

In the spirit of Mountcastle's (1) organizational principle for
neocortical function, and strongly motivated by Fisher's (2-
5) model of physical spin systems, we have developed a co-
operative mathematical model of the cortical column. Our
model incorporates an idealized substructure, the trion,
which represents a localized group of neurons. The trion
model allows for a completely new framework for informa-
tion processing and associative memory storage and recall:
Small networks of trions with highly symmetric interactions
are found to yield hundreds to thousands of quasi-stable, pe-
riodic firing patterns (see Fig. 1). Experience or learning
would then modify the interactions (away from the symmetric
values) and select out the desired patterns [as in the selection
principle of Edelman (6)]. Remarkably, we have found that
relatively small modifications in trion interaction strengths
(away from the symmetric values) via a Hebb-type algorithm
(7) will enhance and select out any desired pattern. Concep-
tually, this suggests a radically different approach from
those information processing models that start at the oppo-
site extreme of a randomly connected neural network with
no periodic firing patterns, and then [via Hebb-type modifi-
cations (7) in the synaptic interactions] reinforce specific fir-
ing patterns. Another exciting feature is that our model in-
cludes the known statistical fluctuations in the post-synaptic
potentials. These fluctuations are essential for having the
huge number of patterns. We believe that these phenomena are
of interest to workers in the fields of neurophysiology and
cellular automata (8, 9) and to molecular scale processors,*
as possibly applied to a future generation of computers.

Despite the substantial theoretical efforts and results in
modeling neural networks (see, e.g., references in refs. 10-
12) the bases for the tremendous magnitudes of the process-
ing capabilities and the memory storage capacities of mam-
mals remain mysteries. We believe Mountcastle's (1) colum-
nar organizing principle for the functioning of the neocortex
will provide a basis for these phenomena, and we construct a
mathematical model based on it. He proposed that the well-
established cortical column (-500 ,um in diameter) is the ba-
sic network in the cortex and comprises small irreducible

processing units. The subunits are connected into columns
or networks having the capability of complex spatial-tempo-
ral firing patterns. The creation and transformation of such
patterns constitute the basic events of short-term memory
and information processing. We strongly emphasize this as-
sumption: that higher mammalian cortical processes involve
complex spatial-temporal network neuronal firing patterns;
this is in contrast to the assumption that the "coding" in-
volves sets of neurons firing with high frequency.
A model presented by Little and developed by Little and

Shaw (13-16) mapped the neural network problem onto a
generalization of the (classical) Ising spin model of magne-
tism. Consider a network of interconnected neurons in
which each neuron has two possible states, corresponding to
whether or not it has recently fired. These states are updated
synchronously in discrete time steps (TO), of the order of the
refractory period (a few msec). The state of the system at
time niO is probabilistically related to the state of the system
at time (n - 1)ro by the interactions between the neurons.
The probabilistic feature simulates the known fluctuations in
the post-synaptic potentials due to the statistical nature of
the release of neurotransmitter. Examination of the solutions
of the large fluctuation limit of this model revealed a subunit
organization (17, 18) in which only a few levels (+, 0, -,
with respect to background) of the output of each subunit of
perhaps 30-100 neurons (19, 20) was important. (For exam-
ple, in a group composed of 60 neurons, firing levels of +, 0,
and - could correspond to 60-41, 40-21, and 20-0 neurons
firing, respectively. More levels or nonequal and nonsym-
metric spacing are easily accommodated.) The question we
address in this paper is what qualitatively new phenomena
can occur as a result of having such substructure.
The trion model is an attempt to abstract (in contrast to

being derived) from the level of individual neurons to the
next level or scale of phenomenological relevance. In mak-
ing this change of scale, we have drawn from the previously
discussed work of Mountcastle (1), from our theoretical
studies (13-20), and from the ANNNI model work of Fisher
(2-5). Fisher showed that a simple extension of the Ising
model, the ANNNI (axial next-nearest-neighbor Ising) mod-
el, exhibits a large number of possible stable phases or or-
dered configurations of spins, whereas the nearest-neighbor
Ising model has just two stable phases. The number of stable
phases in these physical models is related to the memory
capacity or processing capability in our neural model. [Fig-
ure 1 in ref. 2 illustrates the infinite number of distinct spa-
tially modulated phases in the ANNNI model. None of these
phases is coexistent for a given set of parameters (except at a
special multiphase point or line), whereas many of the analog
quasi-stable periodic firing patterns can be excited for a giv-

Abbreviations: ANNNI model, axial next-nearest-neighbor Ising
model; MP, magic pattern.
*Yates, F. (1984) Proceedings of Conference on Chemically Based
Computer Design, October 24-28, 1983, University of California,
Los Angeles, CA.
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FIG. 1. An example of time evolution of firing activity in a net-
work of six trions. Each square in a given row represents the firing
level of a trion at a given time step. A, m, andm represent firing
levels above background, at background, and below background,
respectively. Time steps (rows) are consecutively ordered, begin-
ning at the top of the column on the left and continuing from the
bottom of that column to the top of the next column, etc. There are
seven different periodic patterns present here that cycle two or more
times. This example was derived from a Monte Carlo simulation
based on Eq. 1, using the trion parameters of Table la, with B = 10.

en set of system parameters.] There are three essential fea-
tures (2-5) responsible for this additional complexity. (i) A
strong positive coupling between nearest-neighbor spins
within each layer, which causes them to align, thus providing
essential stability against random thermal fluctuations. (ii)
There are two levels of interaction between spins of different
layers: a positive interaction (aligning) between nearest-
neighbor' layers and a negative interaction (reversing) be-
tween next-nearest-neighbor layers. (iii) Finite fluctuations
are essential for the appearance of the large number of
phases: in the zero fluctuation limit there are only two stable
phases. We have incorporated into our trion model analogs
of these three key features, and we have found that they are
all essential for its rich behavior.

In our network composed of interconnected trions, each
has three possible states, S, denoted by +(+1), 0, -(-1),
which represent a firing output above background, at back-
ground, and below background, respectively. Associated
with each of the three trion states S is a statistical weighting
term g(S), with g(0) >> g(-/+), which takes into account
the number of equivalent firing configurations of the trion's
internal neuronal constituents (17-20). Thus, by effectively
averaging over the states of its constituents and by using the
approximation of only three distinct firing levels with g(0)
>> g(-/+), the output of the trion gains crucial stability,
which is analogous to feature i described above in the
ANNNI model. The trion states are updated synchronously
in discrete time steps T(>T0). The state of the system at time
nT is probabilistically related to the states of the system at

times (n - 1)T and (n - 2)r by the values of g(S) and the
temporal interactions between trions. The dependence on
the two previous time steps is analogous to feature ii de-
scribed above in the ANNNI model, and the probabilistic
factor is due to the random nature of synaptic transmission
as well as other sources of noise. The probability Pi(S) of the
ith trion attaining state S at time nT is given by

P (S) g(S)-exp[B MicS]
Lg(s).exp[B.Mis] [1]

ml= E [VijS, + Wti-SJi - VT,

where S' and S. are the states of thejth trion at times (n - 1)T
and (n - 2)T, respectively. Vi and WV are the interactions
between trions i andj between time nrand times (n - 1Wand
(n - 2)T, respectively. VT is an effective firing threshold. B is
inversely proportional to the level of noise, "temperature,"
or random fluctuations in the system. The deterministic limit
is taken by letting B approach infinity (analogous to the noise
approaching zero), in which case the S = 0 states vanish.
Although our basic formalism (Eq. 1) is not derived from

models of single neurons, the simplifying form readily fol-
lows from our previous work (17, 18), and the approximation
that each trion corresponds to a group of 30-100 neurons (19,
20) for which g(0)/g(-/+) 500. The key assumption con-
cerning two discrete time steps r clearly warrants further dis-
cussion. In analogy with the next-nearest-neighbor spatial
interactions in Fisher's spin model being a crucial feature in
obtaining many stable phases, we find that interactions last-
ing two time steps led to a striking increase in the number
and complexity' of our quasi-stable periodic firing patterns.
(Mathematically, the presence of interactions spanning two
time steps leads to the description of the system by second-
order difference equations, which are known to yield oscilla-
tory solutions, while first-order equations only yield expo-
nential solutions.) First, we note that the trion time step Twe
have in mind is =50 msec, a much larger time than the indi-
vidual neuronal firing time of a few msec. To establish the
plausibility of such a r value, we note that the observation of
periodic bursting in cortex has a long history [see, in particu-
lar, Morrell et al. (21, 22), who found multipeak responses in
cat visual cortex with peak separation of =50 msec.] In addi-
tion to the'simulation studies reported in this paper, we have
conducted neurophysiological experiments (23) to test cer-
tain assumptions of the model. We present in Fig. 2 some of
our data from cat primary visual cortex recordings from a
group of 2-3 neurons, which show four equally spaced peaks
in the post-stimulus histogram in response to a flashed bar
(see also Figure 1 of ref. 23). These peaks are separated by
=50 msec, in close agreement with Morrell's data (21, 22).
Clearly, it would be very interesting to record simultaneous-
ly from two or more closely spaced microelectrodes to test
our assumption of a discrete time step r. Although we have
no evidence for interactions lasting two time steps, we are
able to construct several different mechanisms for it. We be-
lieve these are both reasonable and testable. For example,
we might imagine that the upper and lower cortical layers in
a column separately are trion networks. If the firing of the
upper layers is delayed from the bottom layers by r/2 (i.e.,
the peak burst firings were interleaved), then the interaction
of the two networks with interactions lasting only one step is
readily mapped onto our two time-step model. The experi-
mental search for such an interleaving of bursts between up-
per and lower layers would be of great interest.
We have studied properties of the stochastic time evolu-

tion of the states of the system as a function of B. g(S), V,
and W, as given by Eq. 1. Our calculations have considered

E

Biophysics: Shaw et aL

X

x

DQ
XI

x

x
I

I

--L-l

I
XW

I

m

D.
m

IX
DO
x

x D
XDC
m

Aw
_AAN
DC
m c

E

E

3 D(I

I m

DQ

DQM
2 XE
3



Proc. NatL Acad. Sci. USA 82 (1985)

40

30k
()

z 20
0

oLaAJ
o . 100.~o 200 300

ms

FIG. 2. Spike firing response of a cluster of three neurons in area
17 of a cat to a stationary flashed bar (2½/2 by 1/40). Forty stimuli were
presented with a 400-msec interstimulus interval and a 34-msec stim-
ulus duration (denoted by horizontal bar), and data are displayed
using a 2-msec bin. Note the presence of four peaks in the histo-
gram. The interpeak interval is remarkably consistent at 50 ± 3
msec, which suggests a trion interburst interval of =50 msec. These
data are similar to those presented in ref. 23.

terms Vii, Vj±1, Wij, WHII, WU±2. The principal finding has
been that networks of a small number of trions with highly
symmetric Vs and Ws can exhibit hundreds to thousands of
quasi-stable periodic firing patterns. Since any of these pat-
terns can be enhanced and selected out by small changes in
the Vs and Ws (away from the symmetric values) by using a
standard Hebb-type algorithm (7), we denote these patterns
as MPs (magic patterns). Quasi-stable means that the proba-
bility of the MP repeating itself or cycling is relatively high.
[The MPs are found by computing the most probable tempo-
ral evolution of the trion states from each of the possible
initial conditions and by determining whether that evolution
leads back to the initial conditions with a high probability.
Networks of six trions with interactions spanning two time
steps have 3(6+6) 531,441 possible initial conditions (the
number of configurations of the Ss of the first two time
steps).] We assume that the cycling of a MP for a few cycles
is related to short-term memory or to some element of infor-
mation processing (questions concerning these relationships,
as suggested in the concluding paragraphs, will clearly in-
volve much future work). Thus, we consider a large number
of MPs to indicate a large storage capacity or processing ca-
pability. Not only do we have huge numbers of MPs, but
they have the further very interesting properties that (i) in
the absence of outside stimuli, a particular MP can persist
for a few or many cycles depending on the noise parameter B
(see Table 1). (ii) The MPs can flip from one to another, even
without outside stimuli (see Fig. 1). (iii) The results are not
very sensitive to arbitrary substantial (10%-20%) changes in
the interaction potential V values (compare a and b in Table
1). (iv) Using a Hebb-type algorithm (7), relatively small (less
than =5%) changes in the V and W values away from the
symmetric values will enhance and select out any of the
MPs. [Here we illustrate with a specific example how the
Hebbian plasticity algorithm (see Eq. 2) enhances the MP's
probabilities of cycling even for the "complex" six cycles in
a finite range ofB. The sample MP is that labeled E3 in Table
2. For instance, the changes in the nearest-neighbor interac-
tions for the third trion are AlV34 = 0.1 and A/V32 = -0.02,
derived from Eq. 2 with E = 0.02. The resulting new proba-
bilities of cycling (using the complete set of changes in the V
and W values including next nearest neighbors for all six
trions) are 0%, 24%, 51%, 27%, and 0%o for B values of 20,
10, 8, 6, and 4, respectively, as compared with the corre-
sponding probabilities of Table 1, which are 96%, 80%, 28%,
0%, and 0%, demonstrating the significant increase or en-

hancement of cycling probability due to the Hebbian change
for B values 8 and 6.]

Table 1. Properties of two representative networks with 6 trions

Fluctuation parameter B

MP class 40 20 15 10 8 7 6 5 4

(a)
A (17) 95 95 95 95 95 94 89 56 2
B (72) 94 94 94 94 94 93 88 60 4
C (2) 91 91 91 91 91 90 88 69 14
D (2) 98 98 98 98 97 97 94 75 15
E (156) 96 96 96 80 28 5

(b)
Al (5) 14 43 57 62 36 1
A2 (12) 32 60 70 71 43 1
Bl (36) 28 56 66 69 44 2
B2 (36) 16 65 78 82 80 53 4
C (2) 34 61 70 73 56 9
D (2) 37 65 75 79 60 10
E1 (36) 18 5 1
E2 (6) 14 28 4 1
E3 (36) 7 44 42 7 1
E4 (6) 54 91 88 19 1

The periodic firing patterns (MPs) are grouped into classes
defined by the member MPs having the same probability of cycling
for all values of B. Five of the 21 classes are shown in (A). The
defining parameters are as follows: (a) Vii-1 = 1.0, VY+1 = 1.0, Wii2
= -1.0, Wii+2 = -1.0, g(-) = 1, g(0) = 500, g(+) = 1; (b) Vii-1 =
0.8, V+l= 1.0, W2ii-2 -1.15, WU+2 = -1.1, g(-) = 1, g(0) = 500,
g(+) - 1. The number of MPs in each class is indicated in
parentheses. Values represent the percent probability of each MP
cycling or repeating for B ranging from B = 4 (high noise level) to B
- 40 (low noise level). By breaking the symmetry of the interactions
some of the classes in (a) split into several classes in (b). This is
denoted by subscripting the labels of the split classes in (b). The
interactions between the trions in these networks have periodic
boundary conditions, which is equivalent to a ring-like spatial
connection of the trions. Only those MPs with a cycling probability
>10% at B = 10 are included, and probabilities of cycling <1% are
not listed. The total number of MPs in (a) is 1804 and in (b) is 883.
One of the classes not shown is the background MP with all Os, in a
class by itself and having a probability of cycling of 98%.

In Table 1 we show the salient properties of two different
networks of 6 trions, as defined by different V and W values.
The particular V and W values of these two networks were
chosen to illustrate typical model behavior (a more complete
investigation of the parameter space will be presented else-
where). Network a has symmetrical interactions, and has the
large total number of MPs of 1804. These 1804 MPs fall into
21 different classes (defined by the member MPs having the
same probability of repeating for all values of B). Five of
these classes are shown in Table 1. Network b is the same as
network a but its interactions are asymmetrical, being within
20% of their corresponding values in network a. This sub-
stantial change in the interactions did not eliminate the ca-
pacity for large numbers of MPs nor did it introduce new
MPs, thus illustrating the stability of the system. However,
breaking the symmetry of the interactions did transform the
structure and properties of the MP classes, creating greater
diversity of response. Many of the classes in network a split
to form several classes in network b, as denoted by sub-
scripts in the class labels in network b. The classes also show
more interesting variability with the level of noise, especially
the rapid decrease in the probability of repeating at low as
well as at high levels of noise. The low noise extinction oc-
curs because finite levels of noise are needed to sustain the
trion S = 0 firing levels in asymmetrical networks (as can be
seen from Eq. 1, S = + 1 will dominate as the noise goes to
zero). This suggests that nonspecific inputs to the trion net-
work might simulate noise, which could tune the network's
response properties-i.e., changes in B will change which
classes have the highest probability of repeating.

2366 Biophysics: Shaw et aL
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Table 2. Representative MPs from classes in Table 1

Al A2 B1 B2 C
-+ - - - -0--- + -- - - -
+ - 0 - -- 0 + 0 - -- - - -

0 0000 00 + 00- 00 0 000 0 0 + 0 0- 0 0 0 0
+ + + + + + + + 0 + - + + + 0 + 0 + + + 0 -0 0 + 0 + 0 +
+ + + + + + + + + - + 0 + + + 0 + + + + + -0 0 + 0 + 0 + 0
0 000 00 + 0 0 -0 + 00 000 + + 0-0 00 00 00

D El E2 E3 E4
0 0 0 0 0 - - -- + +- - - + -0 - + 0 + -0
+ - + - + .0 + + 0- - + 0 - + - - 0 + + 0--
- + - + - + 0 + 0- 0 + - + 0 + -0 - + + - 0 + + 0 + -0-

+ + 0 + 0 + + 0 0 + 0 -
+ + + - + + - + + - 0 +
+ 0 - 0 - 0 + - +

Time steps are arranged vertically and trion numbers are arranged horizontally.

We have found, in general, as illustrated in the example in
Table la, that highly symmetrical trion interactions lead to
huge numbers of MPs. We speculate that these symmetrical
interactions might be specified genetically, giving a "naive"
network that could initially respond to many different input
signals. Experience or learning [during a critical period (24)]
could then modify the connections via a Hebb-type mecha-
nism (7) to select out the appropriate responses or MPs. We
assume that the cycling of the trion network through a firing
pattern will produce small changes in the V and W values
given by the Hebb-type algorithm (7, 17, 18)

A Vij = E Z S&Tr)SfrT- 1)
cycle [2]

A Wij = E X Si&T)S{Tr- 2), E > 0.
cycle

By changing the V and W values away from their symmetric
values by using Eq. 2, we find that any of the MPs can be
enhanced and selected out (in the sense that the particular
MP and some others in its class have their firing probabilities
enhanced, whereas most others are supressed). Although it
is easy to show that Eq. 2 must enhance any one cycle, it
seems remarkable to us that this works for every MP in Ta-
ble 1 (and other examples of MPs we have investigated), and
even for the very complex six cycles shown in Table 2 (for B
values <10). We believe that our model might provide a spe-
cific framework for Edelman's group-selective theory of
brain function (6).
We have carried out the same analysis on networks identi-

cal to those in Table 1 a and b except that the statistical
weight of the trion zero firing level, g(O), is set equal to zero.
This is equivalent to a single neuron model (i.e., 1 neuron per
trion), in which there are no S = 0 states. These networks
are capable of supporting only 12 and 5 MPs, respectively. In
general, we have found that only networks for which
g(O)/g(-/+) >> 1 have large numbers of MPs. In addition
to this condition on the statistical weights and the necessity
of finite fluctuations, large numbers of MPs require that the
interactions span two time steps (i.e., some nonzero W) with
both positive (excitatory) and negative (inhibitory) interac-
tions.
We have investigated several other aspects of the model

(we are exploiting the content-addressable nature of the MPs
in our computer studies of these properties). Networks of
seven and eight trions yield qualitatively similar numbers of
MPs. The particular cyclic boundary conditions used do not
appear to be a critical factor. [Recent models (25) of the spa-
tial organization of orientation minicolumns in the primary

visual cortex of cats and monkeys suggest that they are ar-
ranged in circular groupings, lending support to our periodic
boundary conditions.] Networks with fixed boundary condi-
tions also support many MPs, as do networks with g(+)/
g(-) ratios not equal to one. Monte Carlo simulations of the
temporal evolution of trion states, using Eq. 1 and a random
number generator, are being used to study the dynamic prop-
erties of transitions between MPs (Fig. 1) and to study the
effect of relaxing our assumption of synchronous firing. In-
troducing partial asynchrony (by updating at random one
trion prior to the others) does not seriously degrade the qua-
si-stability of the MPs, though some reasonable semblance
of a basic time step is necessary to fully exploit the potential
of the model.
Major fundamental questions remain to be investigated: In

working toward a theory of associative memory storage and
recall, we need to know why reinforcing any particular MP
via the Hebb algorithm (Eq. 2) will enhance it and select it
out. This seems truly remarkable for some of the complex
long-cycle MPs. Clearly, we need to know how outside stim-
uli excite the various MPs. As noted, certain MPs spontane-
ously flip to other MPs. This phenomenon should be rele-
vant in obtaining and understanding hierarchies of associa-
tions, as well as the profound problem of obtaining long
complex time sequences. Periodic driving inputs and the
coupling of two or more trion networks should be consid-
ered. The nature of the internal processing within each trion
must also be understood before a theory of information proc-
essing can be complete.
We conclude that the trion model allows for a completely

new framework toward developing theories for information
processing and for associative memory storage and recall.
Even at these initial stages of the model, we believe that it
will be very powerful in simulating multielectrode recordings
in cortex, thus stimulating new ideas in designing and ana-
lyzing these important experiments. In particular, we believe
that it will be crucial to both have several closely spaced (50-
200 ,um separation) microelectrodes that can monitor neu-
rons in several nearby trions and have stimuli of the sequen-
tial type used previously (23, t) to excite the MPs. If, indeed,
there is an approximately synchronous time step r(30-100
msec) when groups of cortical neurons tend to burst, this
should be exploited in the presentation of stimuli to the ani-
mal. Repetitive dynamic sequences spaced at time intervals
r might resonantly excite the spatial-temporal MPs. It also

tPearson, J. C., Diamond, D. M., McKenna, T. M., Rinaldi, P. C.,
Shaw, G. L. & Weinberger, N. M. (1983) 13th Annual Meeting of
the Society for Neuroscience, Boston, MA, Nov. 6-11, 1983, abstr.
238.9.
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appears potentially useful to do conditioning experiments of
the type used by Morrell (21, 22) to excite these patterns.
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