
UC San Diego
UC San Diego Previously Published Works

Title

Transposable Elements, Inflammation, and Neurological Disease

Permalink

https://escholarship.org/uc/item/97c2r1zv

Authors

Saleh, Aurian
Macia, Angela
Muotri, Alysson R

Publication Date

2019

DOI

10.3389/fneur.2019.00894
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97c2r1zv
https://escholarship.org
http://www.cdlib.org/


REVIEW
published: 20 August 2019

doi: 10.3389/fneur.2019.00894

Frontiers in Neurology | www.frontiersin.org 1 August 2019 | Volume 10 | Article 894

Edited by:

Avindra Nath,

National Institute of Neurological

Disorders and Stroke, United States

Reviewed by:

Hervé Perron,

Independent Researcher, Geneva,

Switzerland

Santiago Morell,

University of Cambridge,

United Kingdom

Carmen Salvador-Palomeque,

The University of

Queensland, Australia

*Correspondence:

Alysson R. Muotri

muotri@ucsd.edu

Specialty section:

This article was submitted to

Neuroinfectious Diseases,

a section of the journal

Frontiers in Neurology

Received: 27 April 2019

Accepted: 02 August 2019

Published: 20 August 2019

Citation:

Saleh A, Macia A and Muotri AR

(2019) Transposable Elements,

Inflammation, and Neurological

Disease. Front. Neurol. 10:894.

doi: 10.3389/fneur.2019.00894

Transposable Elements,
Inflammation, and Neurological
Disease
Aurian Saleh, Angela Macia and Alysson R. Muotri*

Department of Pediatrics, Rady Children’s Hospital San Diego, University of California, San Diego, San Diego, CA,

United States

Transposable Elements (TE) are mobile DNA elements that can replicate and insert

themselves into different locations within the host genome. Their propensity to

self-propagate has a myriad of consequences and yet their biological significance is

not well-understood. Indeed, retrotransposons have evaded evolutionary attempts at

repression and may contribute to somatic mosaicism. Retrotransposons are emerging

as potent regulatory elements within the human genome. In the diseased state, there

is mounting evidence that endogenous retroelements play a role in etiopathogenesis

of inflammatory diseases, with a disposition for both autoimmune and neurological

disorders. We postulate that active mobile genetic elements contribute more to human

disease pathogenesis than previously thought.

Keywords: LINE-1, HERV, retrotransposition, CNS, inflammation, reverse transcriptase inhibitors

INTRODUCTION

Discovered in the context of maize kernel mosaicism (1), transposons are present in virtually
all eukaryotes and mobilize from one chromosomal loci to another through either a DNA or
RNA intermediate. They parallel viruses in many ways—with regards to their structure and
function as they ensure their own survival by way of reintegration (2). Human Endogenous
Retroviruses (HERV) and Long-Interspersed Nuclear Element-1 (LINE-1) are two main classes
of retrotransposons and are mobilized through a “copy and paste” mechanism. HERV and
LINE-1 insertions have accumulated throughout evolution and host genomes have simultaneously
coevolved with these mobile elements by employing a variety of factors to suppress aberrant activity
(3). LINE-1 somatic retrotransposition has been well-demonstrated to occur in neuronal lineage,
however the significance of retroelement activity to normal brain function remains uncertain.
Furthermore, the contribution of these elements to the symptomatology of neurodegenerative
diseases is a topic of recent exploration. We begin this review with a brief overview of the types
of transposable elements and their methods of integration. We will then discuss the consequences
of retrotransposon activity and their dynamic relationship with various regulators. Finally, we will
review the direct influence of these elements on CNS function and their contribution to disease
and neuroinflammation.
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TRANSPOSABLE ELEMENTS: AN
OVERVIEW

Transposable elements comprise at least 45% of the human
genome while coding sequences occupy <3% (4). These highly
repetitive strands of “junk” DNA are capable of generating
new copies in the human germline and certain somatic tissues.
Transposable elements (TE) can be classified as either DNA
transposons or retro (RNA) transposons. The mobilization
of these elements is referred to as either transposition
or retrotransposition. DNA transposons, known as Class I
transposons, are flanked by terminal inverted repeats and
transpose with a “cut and paste” mechanism whereby the
sequence is excised from one region, catalyzed by a transposase
enzyme, and integrated into a separate region in the genome
[Figure 1; (2, 7)]. DNA transposons constitute 3% of the genome
and are no longer active in most mammals (4, 8).

Retrotransposons, also referred to as Class I transposable
elements, integrate into the genome via an RNA intermediate,
utilizing a “copy and paste” mechanism; this allows the
active retroelements to retain their original location in the
genome while accumulating copy numbers elsewhere. These
retroelements can be further classified based on the presence of
long terminal repeats (LTR) in the sequence. Elements such as
Mammalian apparent LTR-retrotransposons (MaLR) and human
endogenous retroviruses (HERV) both contain LTR sequences
that flank internal coding regions (9). LTR retrotransposons
comprise about 8% of the human genome [Figure 1; (10)].

Non-LTR retrotransposons can be further classified into
two subtypes: LINE (Long Interspersed Nuclear Elements)
and SINE (Short Interspersed Nuclear Elements) (Figure 1).
Together, LINE and SINE comprise ∼33% of the human
genome (4). SINEs, including Alu and SVA elements, are non-
autonomous sequences transcribed by RNA Polymerase III
(11). Alu sequences are present in over one million copies in
the human genome while SINE-R/VNTR/Alu (SVA) elements
together constitute more than 10% of the human genome
(4). The LINE-1 encoded proteins (ORF1/2p) recognize and
bind to non-autonomous SINE sequences in trans to mediate
their mobilization.

HERV
HERV copies comprise 5–8% of the human genome, with some
lower estimates at 1% (12, 13). HERV elements possess similar
genomic organization to that of exogenous retroviruses, such as
HIV. Briefly, HERV elements include gag, pol, and env regions
that are flanked by LTR sequences on either side (Figure 1).
The gag and pol genes encode a retroviral capsid protein and
enzymes (protease, reverse transcriptase and integrase) required
for viral replication and integration, respectively (12). HERVs
also contain the presence of a gene encoding an envelope protein
(Env), a remnant of their exogenous retroviral origin prior
to their insertion and endogenization into germline cells (14).
Functional env proteins have been shown to initiate innate and
adaptive immune responses (15).

Transcriptionally active HERV subfamilies havemore recently
been implicated as pathophysiological contributors to various

disorders (Table 1). An initial 1993 study reported that
the addition of herpes simplex virus type 1 (HSV-1) to
primary leptomeningeal cells isolated from a patient with
multiple sclerosis (MS) lead to robust co-expression of
retroviral-like particles and reverse transcriptase activity (16).
The original multiple sclerosis associated retrovirus (MSRV)
sequence identified in the virus-like particles was shown to be
highly represented in human DNA but never characterized until
MSRV-specific primers defined the previously unknown HERV-
W subfamily (17, 18).

This work provided the initial evidence for retroviral-
triggered HERV activation as a contributor to the pathology
in neurological disorders (16). Similar reports have shown that
addition of other exogenous retroviruses, such as HIV-1 and
HTLV-1, result in increased expression of HERV-W andHERV-K
Env proteins, resulting in a mis-regulated immune response (19).
Implications of these elements in neurological diseases sporadic
amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS)
will be discussed more extensively later in the review (Table 1).

LINE-1 Retrotransposons
LINE-1 elements are ubiquitous, autonomous retrotransposons
with an estimated 500,000 copies contained within the human
genome (3, 4). A majority of LINE-1 copies are immobile
and unable to retrotranspose, due either to 5′ truncations or
inversions introduced into the sequence (20–23). Approximately
80–100 copies are mobile (labeled retrotransposition-competent
LINE-1 or RC-L1) (24). Of these, six highly active, or “hot” LINE-
1s are responsible for a bulk (84%) of the retrotransposition
activity, according to an in-culture cell retrotransposition
assay (24).

Full length, RC LINE-1 are 6 kb in length and contain a
5′ untranslated region (5′ UTR), two open reading frames (ORF1,
2), and a 3′ UTR punctuated with a poly-A tract (25) (Figures 1,
2). The LINE-1 promoter region has no TATA-box and displays
both sense and antisense activity within the 5′ UTR (25, 26).
Additionally, a primate-specific antisense ORF0 of unknown
function has also been described within this region (27). The
LINE- 1 ORF1 encodes for a protein that has nucleic acid
chaperone activities and an RNA binding domain (28, 29). ORF2
encodes for a protein with enzymatic activity strictly required for
LINE-1 retrotransposition. ORF2p has both endonuclease (EN)
and reverse transcriptase (RT) activities; equally critical for target
site cleavage and integration [Figure 2; (30, 31)].

The LINE-1 transcription start site begins at the RNA
polymerase II promoter region, or more precisely, within the
first 100 base pairs of the 5′ UTR (25, 32). Once transcribed,
the full-length capped and polyadenylated LINE-1 mRNA is
exported into the cytoplasm where it combines in cis with ORF1
and ORF2 proteins to form a ribonucleoparticle (RNP) complex
(Figure 2) reviewed in Doucet et al. (33), Macia et al. (5), and
Elbarbary et al. (34). In a more traditional model, the RNA-
protein complex can be imported back into the nucleus by a
mechanism not well-understood, where target-primed reverse
transcription (TPRT) might take place. The RNP complex binds
preferentially to an AT rich consensus target (5′ TTTT/AA 3′ and
variants) recognized by the EN (35–37). The EN nicks the bottom

Frontiers in Neurology | www.frontiersin.org 2 August 2019 | Volume 10 | Article 894

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Saleh et al. TEs, Inflammation, and Neurological Diseases

FIGURE 1 | Transposable elements in the human genome. A schematic of the general structure of different classes of mobile elements. On the right is the estimated

percentage present within the human genome. ITR, inverted terminal repeat; LTR, long terminal repeat; UTR, untranslated region. HERV genes include gag, which

encodes viral structural proteins, pol, which encodes viral enzymes, and env, which encodes for the viral envelope protein. Black arrows indicate sense and antisense

promoter regions. Black and gray double helices represent DNA. AAAA, represents polyA tail. This figure has been adapted from several reviews (5, 6).

TABLE 1 | Disease and associated retroelements.

Disease Retrotransposon Mutation/Gene Referenced Elevated Cytokines CNS vs. Systemic

Multiple Sclerosis (MS) HERV-W IFNγ, IL-6, TNF-α CNS

Aicardi-Goutieres Syndrome (AGS) LINE-1 TREX1, RNaseH2 TNF-α, IL-15, IFN-α CNS

Rett Syndrome (RTT) LINE-1 MeCP2 IL-6, IL-8 CNS

Sporadic Amyotrophic Lateral Sclerosis (ALS) HERV-K TDP-43 TNF-α, IL-6, IL-8, IL-1β CNS

System Lupus Erythematosus (SLE) HERV-E Sgp3 IL-15, IL-10, IFN α/β, IL-6 Systemic

Aging-related pathologies LINE-1 SIRT6 IFN Systemic

Autism Spectrum Disorder (ASD) LINE-1 IFNγ, IL-1β, IL-6 CNS

Diseases listed with associated endogenous retroelement contributions and observed cytokine expression in vivo or in vitro. Genes listed were ones referenced in the main text. Last

column addresses whether effects are primarily systemic or localized to CNS.

DNA strand, exposing a 3′ OH which primes the reverse
transcription of the LINE-1 mRNA template into cDNA.
Recent observations have challenged this model, suggesting
that TPRT might also start in the cytoplasm or either
unfinished retrotransposition events might be transported back
to the cytoplasm (38). The complete mechanism of second
DNA strand cleavage and subsequent cDNA synthesis is
unknown, but recent studies have suggested that RNase H2 is
required to degrade the RNA:cDNA hybrid generated during
this step (39).

Heterogeneity of Insertional Preferences
and Distribution of Retrotransposons
Across Different Populations
Selective processes and insertion bias impact the distribution
of LINE-1 elements in the genome (40). The distribution
of retrotransposons within the genome is variable; SINEs
are more aptly tolerated by the cell and have been shown
to localize in gene-rich (GC-rich) regions whereas pre-
existing, static LINEs are highly enriched in intergenic (AT-
rich) isochores, likely due to the length of their insertion
sequences (34, 41).

A recent meta-analysis of engineered LINE-1 insertions
by Flasch and colleagues reported a strong bias for LINE-1

insertional preferences. Wild-type LINE-1 EN preferentially
nicks the lagging strand of DNA replication fork, resulting
in cDNA insertions into leading strand templates (42). It was
determined that varied levels of open chromatin state had only
minor influence on LINE-1 insertion preference. A similar
study recently published by Sultana and colleagues corroborated
these findings. De novo LINE-1 retrotransposition was induced
in cultured HeLa S3 cells followed by ATLAS-seq profiling to
detect and map integration sites. This study also confirmed
minimal association (2–3%) of all insertions in chromatin

segments annotated as weak enhancers or with histone
modifications characteristic of weak enhancers (H3K4me1)
(43). The strongest association was enrichment of LINE-1
insertions within early replicating regions of the genome.
Insertion orientation was shown to be influenced by the
directionality of the replication machinery; EN cleavage of
the bottom strand was highly enriched when replication
fork moves leftward. Both studies provide evidence
that LINE-1 integration events do not target expressed
genes, open chromatin or transcribed regions but instead
associate with host DNA replication (42, 43). These findings
provide the first clues that LINE-1 integration and DNA
replication may be mechanistically linked.

There is heterogeneity in the distribution of endogenous
retroelements across different human populations: from
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FIGURE 2 | LINE-1 retrotransposition cycle and host factor regulation. Structure of full-length genomic LINE-1. 5′ UTR contains sense and antisense promoter

activity. Relative positions of ORF0, ORF1, and ORF2, 3′ UTR and a poly A tail are shown. EN denotes endonuclease, RT denotes reverse transcriptase, and C

denotes cysteine-rich domain. RNA polymerase II mediates transcription of retrotransposition-competent LINE-1 sequence. This transcript is exported from the

nucleus where it forms an RNP complex with ORF1p and ORF2p. Through a mechanism not well-understood, the RNP is imported into the nucleus to begin reverse

transcription and integration through TPRT. The ORF2 EN nicks the bottom strand of the DNA, exposing a 3′ OH, which serves as a primer for the RT to generate the

cDNA from the LINE-1 mRNA. How the second strand is synthesized and integrated is a poorly understood mechanism. LINE-1 is regulated at distinct intermediates

of retrotransposition, indicated in red boxes.

the presence/absence of the element to single nucleotide
polymorphisms (SNPs) [Figure 3; (20, 44, 45)]. Because RC-L1
mobilize to novel insertion sites, it is logical that individuals
will carry differences in the presence or absence of LINE-1
insertions at various loci in their genome. Polymorphisms in
retroelement insertions are generated either in the germline or
early in embryonic development (Figure 3). Germline insertions
are incorporated into all tissue types within the individual and
are heritable by the next generation. Somatic de novo LINE-1
insertions, which occur later in development, are not inherited
by subsequent generations and are localized to the cell(s) in
which the insertion occurred (Figure 3).

As a consequence, polymorphisms can generate variability
in activity levels of retrotransposons. Indeed, allelic variability
within the LINE-1 elements was demonstrated to have up to
16-fold differences in activity (44). To study the differential
expression of polymorphic LINE-1 elements, Philippe et al.

mapped active LINE-1 HS-Ta (human-specific) copies according
to their epigenetic signatures in 12 somatic cell lines. A restricted
subset of polymorphic LINE-1 loci remain highly active but
are differentially regulated according to cell type (46). ORF1p
expression was high in neural progenitors and cancer cell
types studied while little to no expression was seen in primary
fibroblasts, consistent with previous work (47–49). In summary,
LINE-1 transcription in somatic cells was shown to be governed
by locus- and cell-type- specific determinants (46).

Polymorphisms are observed with HERV elements as well.
Next generation sequencing (NGS) characterized unfixed HERV-
K insertions across different human populations (14, 50). Scans
for polymorphisms in HERV-K loci revealed 17 loci in the
individuals studied that were not present in the human reference
genome. On average, each individual possessed six loci, often
in the heterozygous state, that were not found in the reference
genome (50). A separate study analyzed 36 non-reference
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FIGURE 3 | Somatic vs. Germline Insertions. Differences between the heritability of germline vs. somatic retrotransposon insertions. (A) Somatic insertions lead to

mosaicism within the individual but are not inherited. (B) Generally, germline or early embryonic insertions are incorporated into the three germ layers and are present

in all tissue types. (C) Example of polymorphisms across different populations based on the presence or absence of an insertion.

polymorphic HERV-K proviruses from more than 2,500 globally
sampled individuals found insertion frequencies ranging from
<0.0005 to >0.75, and varied by population (14).

In summary, a myriad of selective processes influences the
distribution and insertional preferences of retrotransposons. This
allows for genomic mosaicism within a single individual as well
as polymorphisms across different human populations.

CELLULAR IMPACT OF LINE-1
RETROTRANSPOSITION

There are innumerable ways in which retrotransposons can
influence the genome and impact cellular function (Figure 4).
LINE-1 elements generate structural variation/instability within
the genome and subsequently interfere with host gene expression.
In this section, we review the insertional and transcriptional
impact of LINE-1 elements in the human genome.

The current rate of LINE-1 retrotransposition has been
estimated to occur between 1 out of 20 and 1 out of 200
births, depending upon the method used in the analysis
(10). LINE-1 insertional mutagenesis has resulted in over 120
cases of spontaneous or inherited disease; including diseases
such as hemophilia A, cystic fibrosis, and breast cancer;
reviewed in Chen et al. (51). Apart from mutations caused
by insertions, DNA recombination of chimeric LINE-1 can
lead to retrotransposition-mediated deletions, duplications, or
rearrangements (52, 53).

Insertional mutagenesis is not the only hazard for our
cells, the presence of both sense and antisense promoter

within the 5′UTR of LINE-1 elements can activate upstream
or downstream transcription [(34, 54, 55); Figure 4]. Among
all the transcriptionally active elements present in the human
genome, the strength of LINE-1 promoters has been shown
to be sequence and context-dependent. Lavie et al. generated
5′ UTR constructs to test observable differences in promoter
strength. Although there was no clear link between nucleotide
variations and transcriptional activity, deletion of 5′ genomic
flanking sequences from the constructs resulted in both enhanced
and diminished promoter activity, depending on whether the
sequence acted as an enhancer or repressor (32). As for the
LINE-1 antisense promoter, Matlik and colleagues established its
activity as tissue specific; driving transcription of adjacent genes
to yield chimeric transcripts of host genes [Figure 4; (56, 57)].

Not only does the activity from the LINE-1 promoter at
insertion sites contribute to aberrant host gene expression; LINE-
1 insertions can also create splicing variants, generate mis-spliced
or prematurely truncated transcripts, promote transcriptional
termination or even promote changes to our epigenome
(Figure 4). Splicing of pre-mRNAs is a tightly regulated process
as it contributes to proteomic diversity and modulates gene
expression. RNA extracted from human Ntera2 and Sk-Br-3
cancer cells, which express high levels of LINE-1 transcripts,
identified many functional splice sites within the 5′UTR (58). It
was demonstrated that several of these LINE-1 splice variants
are capable of undergoing retrotransposition. Upon insertion,
these active splice sites can disrupt normal gene expression via
alternative splicing of mRNA transcripts (58). Similarly, Alu
elements harbor consensus sequences that resemble 5′ and 3′

splice site signals, contributing to modifications in pre-mRNA
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FIGURE 4 | Consequences of LINE-1 retrotransposition. Ongoing retrotransposition generates genomic instability and consequently interferes with host gene

expression at many levels. Consequences include disruption of gene function due to LINE-1 insertions, as well as generation of mis-spliced or prematurely truncated

transcripts. Insertions have been shown to impact host gene expression through changes in epigenetic patterning and LINE-1 promoter activity. This figure is adapted

from Macia et al. (5) and Garcia-Perez et al. (6).

splicing (59, 60). In addition, the presence of LINE-1 adenosine-
rich insertions can give rise to new polyadenylation signals,
resulting in transcriptional termination [Figure 4; (61)].

LINE-1 elements not only create changes in splicing;
LINE-1 loci that contain premature stop codons may
still encode for truncated ORF2 proteins with a retained
functional EN domain (62). It was suggested that EN
activity of ORF2p may generate nicks independent of
retrotransposition and could therefore contribute to double
stranded breaks (DSBs) formation (63). In fact, the number
of observed LINE-1 induced DSBs was demonstrated
to be greater than the predicted numbers of successful
insertions (63).

Finally, LINE-1 can also alter the epigenome; methylation of
LINE and SINE CpG islands leads to “epigenetic patterning”
and subsequent silencing of neighboring gene promoters [(64);
Figure 4]. Baylin et al. demonstrated that hypermethylation
stemming from human Alu elements can silence tumor
suppressor genes (65) which has large implications for their
role in cancer. Alternatively, hypomethylation of the LINE-1
promoter was shown to directly activate an alternate transcript
of the MET oncogene in bladder tumors; inducing ectopic gene
expression and possibly altering disease susceptibility (66). In
summary, new TE insertions have been shown to have many
profound effects on the genome. A contributor to genomic
variation, retrotransposons alter host gene expression at the
epigenetic, transcriptional and translational level. Host cells have
simultaneously evolved many responses in order to repress TE
activity, which we review in the next section.

CELLULAR RESPONSES TO
RETROTRANSPOSITION

Intrinsic immune responses to viral pathogens are co-opted to
restrict retroviruses and retrotransposons as well. Given that
these retroelements can impact the cell in a myriad of ways, the
host genome has coevolved to employ a variety of responses to
repress aberrant activity.

LINE-1 Transcriptional Repression
Transcriptional repression is a major mechanism of TE
regulation and can be achieved with the deposition of repressive
epigenetic modifications. DNA methylation, in the form of
5-methylcytosine (5 mC) and N6-methyladenine (6mA) are
widely used chemical modifications in eukaryotes and higher
organisms [Figure 2; (67)]. Waves of hypomethylation during
embryogenesis are linked with higher rates of retrotransposition.
This effect has been replicated in embryonic stem cells
(ESC) and induced pluripotent stem cells (iPSCs) (68–70).
In preimplantation mouse embryos, which are exceptionally
hypomethylated, genomic integrity is maintained with factors
such as histone chaperone chromatin assembly factor 1 (CAF-1)
(71). CAF−1 was shown to mediate the replacement of Histone
variant 3.3 (H3.3) with H3.1/3.2, which serves as a repressive
histone modification and subsequently protects the embryo from
retrotransposon activity [Figure 2; (71)]. When histone variant
H3.3 was deleted from embryonic stem cells, trimethylation of
histone 3 on lysine 9 (H3K9me3) was shown to be reduced at
HERV sites, establishing an important link between H3.3 and
endogenous retrovirus silencing (72).

Transcriptional silencing of retrotransposons can be induced
by DNA methylation or histone modifications, but TEs also
harbor binding sites for many transcription factors, enabling
context-specific transcriptional regulation. The Kruppel-
associated box (KRAB)-containing zinc finger proteins (KZFPs)
are key regulators of TE activity—often repressing TEs expressed
in early embryos (73, 74). Mechanistically, repression is mediated
once the C-terminus tandem array of zinc finger motifs binds to
target TE sequences and the KRAB domain recruits and tethers
to the cofactor KAP-1 (KRAB associated protein 1). KAP-1
then functions as a scaffold for chromatin modifying complexes
such as SETDB1 (Set Domain Bifurcated-1) and H3K9 methyl
transferase [Figure 2; (75, 76)].

In order for KAP1 to target a specific retroelement, the
associating KRAB-ZFP must evolve to bind to that specific
regulatory sequence. This is usually followed by mutations in
this sequence, such that retrotransposons evade repression; a
true evolutionary arms race (77). A recent study by Trono et al.
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elucidated the role of KZFPs on TEs during embryonic genome
activation (EGA), demonstrating that a large proportion of TE-
embedded regulatory sequences have been co-opted to serve
as lineage- or tissue-specific enhancers of gene expression (78).
Authors observed clustered TE sequences of the evolutionarily
recent SVA, LTR5Hs-HERVK, and LTR7-HERVH in human
embryonic stem cells (hESC) during EGA. These sequences
were shown to strongly associate with members of the Kruppel-
like factor (KLF) family of transcription factors, notably
KLF4. Clustered regularly spaced short palindrome repeats—
interference (CRISPRi) targeting of these TE sequences led
to up- and downregulation of genes near the target vicinity.
For example, CRISPRi of an LTR5Hs-based enhancer resulted
in a significant downregulation of PRODH, a neuron-specific
gene located 2 kb downstream from the enhancer. Thus, TEs
which possess embedded enhancer sequences could subsequently
exert large transcriptional influence in hESCs during EGA.
By examining the degree of conservation within the zinc
fingerprints, evolutionarily recent human KZFPs were shown
to target TE subfamilies of similar ages (78). In sum, these
recent studies demonstrate the intricate, coevolutionary dynamic
between KZFPs and TEs.

However, there is some evidence indicating that this arms-
race hypothesis may be too simplistic (79, 80). Imbeault et al.
performed a clustering and aging analysis of various KZFPs
to estimate their evolutionary ages. These conserved sequences
were aligned against various transposable element subfamilies;
many transposable element-KZFP pairs were found to be highly
conserved long after the transposable elements lost their ability
to mobilize (80). In some cases, KZFPs appear much earlier than
their TE target, illustrating a complex co-option model where
specific regulatory networks are established (78, 80). This is an
example whereby the host facilitates the impact TEs can have by
regulating their disruptive capacity. In addition, host cells even
use conserved TE sequences to their advantage by setting up
tissue-specific transcriptional networks.

Post-transcriptional Regulation of LINE-1
Elements
LINE-1 can be regulated post-transcriptionally by small RNAs,
like microRNAs (miRNAs) or PIWI-interacting RNAs (piRNAs).
Small RNAs can act via targeted RNA degradation, reviewed
in Heras et al. (81) and Mita and Boeke (82). The role of
RNA interference (RNAi) effectors in regulating TE transcripts
is substantial; RNA-induced silencing complex (RISC) pathways
are common cellular processes that utilize endonucleolytic
cleavage to degrade TE transcripts (83, 84). Mutations to
the Dicer protein, a component of the RISC complex, result
in elevated transcription of LINE-1 elements (3). The recent
discovery of small, non-coding miRNAs also highlighted their
critical regulatory role. It was recently shown that miRNA-
128 restricts LINE-1 activity via two mechanisms (Figure 2).
It can directly target ORF2 RNA for degradation or target
the 3′ UTR sequence of required cofactor TNPO1 (nuclear
import factor transportin 1) (85). TNPO1 has been proposed
to facilitate transport of LINE-1 RNP complex into the nucleus

by binding to nuclear localization signals (85). Another recent
study identified a separate cellular target of miRNA128-mediated
LINE-1 repression (86). hnRNPA1 (heterogeneous nuclear
ribonucleoprotein A1) binds to poly(A) sequences in mRNA
to facilitate nuclear shuttling (87, 88). hnRNPA1 has been
described to interact with LINE-1 ORF1p within the RNP
complex and with TNPO1, through its nuclear localization signal
(89, 90). miRNA128 was shown to repress hnRNPA1 by directly
binding to the coding sequence of hnRNPA1mRNA, significantly
reducing levels of de novo LINE-1 retrotransposition (86).
piRNAs are important repressors of TE activity in the germline
(Figure 2). They interact with the PIWI subfamily of Argonaute
nucleases and have been shown to cleave TE transcripts in
cytoplasm as well as recruit repressive histonemodifiers to silence
transcription (91). Intact piRNA pathway was demonstrated to
be necessary for de novo methylation of LINE-1 transgene in
male mice testes (92). If the LINE-1 transcript is not targeted
for degradation, the cell will employ other host factors to target
downstream complexes within the retrotransposition cycle.

Post-translational Mediated Repression
The LINE-1 RNP complex, a retrotransposition intermediate,
is commonly targeted for destabilization and degradation (93).
The zinc-finger protein ZAP, in addition to targeting several
viral families, has been suggested to colocalize with LINE-
1 RNA in cytoplasmic stress granules to promote loss of
RNP integrity and inhibit LINE and Alu retrotransposition
[Figure 2; (94–96)]. Post-transcriptional modifications of LINE-
1 mRNAs within the RNP complex offers another way of
restricting mobility. TUT7 (terminal uridyl transferase 7) in
cooperation with MOV10, transfers uridine residues to LINE-
1 mRNA in the cytoplasm. MOV10, a helicase, displaces
ORF1p to allow for cytoplasmic 3′ uridylation—ultimately
inhibiting ORF2p RT initiation within the nucleus [Figure 2;
(97)]. In addition, the APOBEC family of enzymes, specifically
APOBEC3G and APOBEC3F, have been shown to work through
a process independent of cytosine deamination to selectively
inhibit Alu retrotransposition, possibly by destabilizing the RNP
complex [Figure 2; (98)]. APOBEC3B/F also strongly interfere
with LINE-1 activity; catalytically inactive APOBEC mutants
maintained LINE-1 inhibition, also indicating a deamination-
independent mechanism (99, 100), while APOBEC3A has been
proposed to localize in the nucleus to deaminate the transiently
expressed LINE-1 ssDNA that appears during integration
and prevent retrotransposition (101). Even with the plethora
of host mechanisms put in place to repress endogenous
retroelements, de novo insertions still take place within somatic
tissues, with substantial LINE-1 retrotransposition occurring in
neural lineages.

LINE-1 IN THE DEVELOPING BRAIN

A plethora of evidence supports that both endogenous and
engineered LINE-1 retrotransposition can occur pre and post-
mitotically in the healthy and diseased brain, reviewed in
Suarez et al. (102). New retrotransposition events can alter gene
expression and ultimately influence cellular phenotype; in the
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healthy brain this is thought to contribute to neuronal somatic
diversification (49, 103). Through the use of an engineered
LINE-1 element tagged to a retrotransposition-indicator cassette,
retrotransposition events were shown to occur in vitro with
adult rat neural progenitor cells (NPCs) and in the brains of
mice in vivo (103). This was one of the earliest documented
cases of somatic retrotransposition occurrence in vivo (103).
A few years later, endogenous LINE-1 mRNA was shown to
be detectable in NPCs isolated from human fetal brain cells
(47). To investigate endogenous LINE-1 activity, a copy number
variant (CNV)-based qPCR assay was performed on genomic
DNA extracted from various tissue types of healthy human
adults. Interestingly, it was reported that ORF2 content in the
hippocampus was consistently higher when compared to heart
or liver samples from the same individual (47). Few years
later, by using Retrotransposition-capture sequencing (RC-seq),
a high throughput sequencing method that targets LINE-1 5′ and
3′ ends, applied to DNA extracted from various tissues again
identified significantly higher ORF2 copies and LINE-1 CNV
within the hippocampus (49). Separate studies implemented
single-cell RC-seq on hippocampal neurons and resulted in
an estimated 1.2–13.7 somatic LINE-1 insertions per neuron
(104–106), although the frequency of de novo insertions per
cell is highly debated (107). The hippocampus, being one of
the few brain regions consisting of a neurogenic niche, is
ubiquitous with genomic LINE-1 mosaicism. Because LINE-
1 retrotransposition events have increased occurrence during
neurogenesis (103, 108), it is likely that LINE-1 activity rises in
a region like the hippocampus (47). Interestingly, in a recent
analysis of 24 hippocampal neurons using RC-seq, whole genome
sequencing (WGS) and LINE-1 insertion profiling revealed that
somatic insertions which occur during neurodifferentiation in
hESCs may occur due to mutations at the Ying Yang 1 (YY1)
transcription factor binding site (109). This YYI binding site in
the LINE-1 promoter region is known to mediate CpG island
methylation and epigenetic repression. Specific loci without
an intact YY1 binding site were shown to generate cortical
and hippocampal neuron LINE-1 insertions, corroborating an
underlying epigenetic mechanism for LINE-1 retrotransposition
during neural development (109).

Retrotransposition during neural development may
contribute to “genome plasticity” and neuronal diversity by
allowing for variation in genomic DNA from cell to cell. By
studying the effects of retroelements during neurogenesis,
one can examine the early fate choices between different cell
lineages (103). Muotri et al. reports a 10-fold increase in
LINE-1 promoter during the first 24 h of neuronal induction,
consistent with downregulation of the Sox2 promoter (103).
It was proposed that subtle changes to LINE-1 promoter
methylation may explain the selective activity levels in NPCs;
perhaps that the LINE-1 promoter is temporarily released from
epigenetic suppression during neurogenesis (47, 49). Indeed,
temporal methylation patterning of the LINE-1 promoter during
neurogenesis was analyzed in a fairly recent study; researchers
applied RC-seq to observe distinct DNA methylation profiles
for de novo LINE-1 insertions in an hiPSC line (108). RC-seq
performed on cells throughout various timepoints of fibroblast

reprogramming and neurodifferentiation identified two well-
characterized de novo LINE-1 insertions. General trends showed,
on average, ∼60% methylated CpG dinucleotides in fibroblasts
andmature neurons, while only∼30% were methylated in iPSCs.
Surprisingly, they observed a 23% reduction in methylation in
day 112 neurons when compared to earlier day 72 neurons.
This was followed by a significant 20% increase in methylation
at day 156 neurons (108). This study establishes a dynamic
temporal patterning of methylation for the LINE-1 promoter
during neurodifferentiation. The evidence collected on LINE-1
mobilization in both the developing and adult brain, opens new
questions about their contribution to somatic mosaicism, aging
and neurological diseases.

MOBILE ELEMENTS AND
NEURODEGENERATIVE DISORDERS

There has been an increasing interest in studying endogenous
retroelements as their activation has been observed and
implicated in a variety of neurological disorders (Table 1). For
example, all three HERV-K structural genes (gag, pol, env)
have been shown to have increased expression in patients with
sporadic ALS when compared to healthy controls (110). ALS is
neurodegenerative disease characterized by loss of both upper
and lower motor neurons. A number of studies have established
the presence of retroviral RT activity in the serum of ALS patients
(111, 112). Higher expression of HERV K-Env—a powerful
immunopathogenic envelope protein—is observed in cortical
pyramidal and spinal neurons in post-mortem brain tissue of ALS
patients (110). It is not currently known what triggers expression
of HERV-K in adult neurons; however, activation of HERV-K
genes was shown to decrease dendritic length, branching, and
complexity of transgenic mice motor neurons (110).

Abnormalities in transactive response DNA-binding protein
43 (TDP-43) is likewise observed in the majority of sporadic ALS
cases (Table 1). TDP-43 is a dimeric nuclear protein and part
of the heterogenous nuclear ribonucleoprotein family (hnRNP)
(113). In the CNS, its function is broadly categorized as a
regulator of pre and post-transcriptional events as it binds
to UG-rich motifs in single-stranded RNA/DNA (113, 114).
Crosslinking immunoprecipitation (CLIP-seq) and chromatin
immunoprecipitation (ChIP) data exhibits TDP-43 binding
broadly to retrotransposon-derived transcripts in human brain
tissue and directly to the HERV-K LTR sequence, respectively
(110, 115). A study conducted by Lisa Krug et al. addressed
whether functionally abnormal TDP-43 expression in Drosophila
causes a derepression of retrotransposable elements and if so,
whether this contributes to a degenerative phenotype (116).
Expression of human TDP-43 (hTDP-43) was shown to induce
broad retrotransposon transcript expression in Drosophila
neurons and glia. Glial expression of hTDP-43 causes a
remarkable reduction of Dicer-2/Argonaute2 mediated silencing
while causally inducing DNA-damage mediated cell death (116).
In a more recent study, analysis of diseased neuronal nuclei from
brain tissue of patients with frontotemporal degeneration ALS
(FTD-ALS), provides insight for molecular changes associated
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with TDP-43 loss. Liu et al. utilized fluorescence-activated cell
sorting (FACS) to fractionate diseased neurons followed by
ATAC-seq to quantify chromatin accessibility (117). Loss of
nuclear TDP-43 was associated with chromatin decondensation
around LINE-1 elements. Although it is unclear whether
decondensation of LINE-1 elements is a direct result of TDP-
43 protein loss, there appeared to be some specificity or
preference in decondensation of LINE-1 elements over other
repetitive sequences (117). Together, these findings in humans
and vertebrate models, suggest that unregulated retroelement
expression is somewhat involved in the pathology of ALS,
although there is no evidence that it is the primary cause of the
syndrome. Potential therapy in the form of antiretroviral RTi is
also underway in clinical trials of ALS patients (118, 119).

Sporadic Alzheimer’s Disease (SAD) has also been linked
to retroelement activation; however, studies have displayed
conflicting results on whether LINE-1 sequences are upregulated
in patients with SAD (120, 121). “Mosaic genomic recombination
events” were observed within the Alzheimer’s-related gene,
amyloid precursor protein (APP), in neurons of patients with
SAD (122). These variants, which lacked intronic sequences, were
termed “genomic cDNAs” (gencDNAs). It was hypothesized that
they originated from RNA and required endogenous RT activity
to insert into double strand breaks. Addition of nucleoside
reverse transcriptase inhibitors (nRTi) abacavir (ABC) and
azidothymidine (AZT) prevented the production of gencDNAs,
further encouraging their therapeutic potential (122). In order
to determine the effect of Alzheimer’s Tau pathology on TE
activity, wild-type and Tau mutant Drosophila were profiled for
TE activation including 8 LTR retrotransposons and 4 non-LTR
retrotransposons (123). Authors observed a significant increase
in expression in three of the 12 TEs assessed in the mutant
fly brains (copia, gypsy and het-a) suggesting a possible Tau-
associated mechanism for TE activation (123).

Retroelement recombination events are also implicated in
early onset Parkinson’s Disease (PD). Whole genome sequencing
analysis of three families with early onset PD revealed five
different structural variations in the PRKN (parkin RBR E3
ubiquitin protein ligase) gene. Structural variation formation is
proposed to occur with non-allelic homologous recombination.
LTR and non-LTR retrotransposon sequences were identified
within two kilobases of the deletion break point, suggesting
that the deletions may have originated due to retrotransposition
events (124). The link between retroelement activation in
neurodegenerative disorders is present but not fully established.
We consistently see an upregulation of retroelements in the
diseased state, but we do not fully understand how this
is initiated or whether it directly contributes to disease
pathology. The following section will review the evidence
which supports endogenous retroelements as initiators of
inflammation and subsequent inflammatory responses in the
diseased state.

TES AND INFLAMMATION

The immune system protects against viral infections through
coordinated innate and adaptive immune responses and
while the contribution of innate immunity to anti-viral

defenses has been extensively studied, little is known about
the contribution of transposable elements to immune
responses exempt of viral infection. When viral DNA is
present in the cytoplasm, it triggers activation of the cGAS-
STING pathway, subsequently producing interferons to
initiate an inflammatory response (Figure 5). The interferon
responses elicited during the targeting of virus-infected cells
may be mechanistically linked to deregulating retroelement
production (125). There is mounting evidence that endogenous
retroelements play a large role in initiating neuroinflammation.
Endogenous nucleic acid detection by the innate immune system
underlies many autoimmune diseases (126) When there is an
inflammatory response but no viral infection, what is the role
of retroelements? More specifically, how are these engaging
the pathophysiological pathways leading to features of the
disease pathology?

There is increasing interest in studying endogenous
retroelements as contributors to a variety of inflammatory and
neurodegenerative disorders. Diseases such as MS and Aicardi-
Goutières syndrome (AGS) have retrotransposon intermediates
linked as key effectors of inflammation (16, 38, 127). In
addition, there are now several studies that link aging, TEs,
and inflammation.

Aging
Mechanisms repressing LINE-1 activity are shown to be less
efficient during the aging process. A recent study by De Cecco
and colleagues demonstrates increased LINE-1 transcript levels
in senescent cells. The accumulation of the cytoplasmic LINE-1
cDNA drives expression of the senescence- associated secretory
phenotype (SASP). A type-I interferon (IFN) response is typical
with age-associated inflammation in several tissues (Table 1).
Liver and adipose tissue of 26-month-oldmice showed significant
increase in LINE-1 mRNA expression when compared to mice
at 5 months. IFN-I and SASP response genes were assessed
by RT-qPCR and showed the same trend. This response is
antagonized through the use of reverse-transcriptase inhibitors
(RTi). Mice treated with RTis demonstrate a reduced IFN
response and associated inflammation (128). However, RTis
have exhibited an intrinsic anti-inflammatory property, leading
some to believe the effects as non-specific (129). The effects
of LINE-1 activity in aging were also examined in the mono-
ADP-ribosylase/deacetylase protein SIRT6 (Silent Mating Type
Information Regulation 2 Homolog 6) deficient mice. SIRT6
KO mice display a severe aging phenotype, with a lifespan
of 35 days (130). SIRT6 KO mice demonstrate high levels of
LINE-1 expression due to SIRT6’s repressive role in ribosylating
KAP1 (131, 132). Without SIRT6, LINE-1 cytoplasmic DNA
levels increased, triggering cGAS (cyclic GMP-AMP synthase)
-mediated IFN response. Treatment with the RTi inhibitors
lamivudine and stavudine, significantly expanded the lifespan of
the mice while also improving body mass, mobility and behavior
phenotypes (130). These results further implicate LINE-1 as a
contributor to the pathology of age-related diseases. Although
further investigation is needed regarding the mechanisms in
which new L1 copies are generated in the cytoplasm, these novel
data encourage the potential therapeutic use of RTis for various
age-associated conditions.
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FIGURE 5 | Hypothesized model of retroelement-mediated neuroinflammation. Environmental or cellular triggers may activate retrotransposon transcription.

Production of pathogenic HERV Envelope proteins (Env) or cytoplasmic accumulation of LINE-1 ssDNA activates an innate immune response. Astrocytes become

activated, releasing proinflammatory cytokines and reactive oxidative species (ROS). This has toxic effects on neighboring neurons and could promote morphological

and synaptogenic defects, subsequently promoting neuropathophysiological effects. Figure is adapted from Thomas et al. (38).

Multiple Sclerosis
Following the original identification of retroviral-like particles
(16), additional research revealed increased RT activity and
HERV protein production with Herpesviridae stimulation
of various human cells in vitro (133–136). MS is an
hyperinflammatory, demyelinating disease of the CNS with
no known cure. The disease is characterized by lesions in
white matter that lead to blood-brain barrier breakdown and
axonal disruption down the spinal cord (137). In addition
to genetic and environmental factors, expression of HERVs
is now considered a risk factor for MS disease progression
(135). The retroviral-like particles isolated from cell culture
supernatants of MS patient samples, referred to as MS-associated
retroviral agent (MSRV), were demonstrated to originate
from HERV elements, as mentioned previously (17, 18, 138).
Herpes virus is suggested to upregulate HERV-W expression,
which encodes for its own immunopathogenic envelope
protein (Env). In vitro stimulation with HERV-W Env proteins
displays activation of innate immune responses through pattern
recognition receptors TLR4 and CD14, leading to considerable
proinflammatory cytokine production (134). Peripheral blood
mononuclear cells, isolated from relapse-remitted MS patients
and stimulated with the MSRV Env protein, induces elevated

IFNγ, IL-6 and TNF- α expression (134, 139). Clinical trials
performed on MS patients with the antiretroviral integrase
inhibitor, raltegravir, failed to see reduction in lesion count,
progression, or inflammatory cytokine levels, suggesting
HERV W-Env protein production is not targeted with this
integrase (140).

Systemic Lupus Erythematosus
Elevated HERV transcription has been implicated in systemic
lupus erythematosus (SLE) pathogenesis. HERV-E mRNA
expression levels were found to be higher in lupus CD4+ T cells
than in cells from healthy controls (141) but the full contribution
of HERV activity to SLE etiology is not known. Deletions in
the genes encoding for the KZFP, SNERV1/2 (suppressor of
non-ecotropic ERV-1/2) resulted in a 2-fold increase in gene
expression of six genes directly overlapping a non-ecotropic ERV
sequence (NEERV) (127). The NEERV envelope glycoprotein
gp70 is a major immunoantigen and promotes nephritis in
murine models (142). SNERV1/2 bind to the gp70-associated
loci, Sgp3, and recruit KAP1 to repress transcription. SNERV
deletions in New Zealand Black mice resulted in elevated
NEERV transcripts and gp70 expression. These results indicate
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that defects in HERV repression may promote human lupus
pathogenesis (127).

Autism Spectrum Disorders
Activity of LINE-1 elements have additionally been implicated
in many Autism Spectrum Disorders (ASD) phenotypes.
Researchers have found a reduction of methylation and
an increase in LINE-1 expression in ASD post-mortem
brains (143, 144). ASD is a developmental disorder that
impairs communication and behavior; however, little is
known about the etiology of the disease. At the cellular level,
researchers have found that individuals with ASD frequently
show widespread inflammation and elevated brain cytokine
expression. Additionally, a growing body of evidence supports
the view that a chronic inflammation may contribute to
autism symptomatology, with active neuroinflammatory
processes being found throughout the brain in both cerebral
cortex and cerebellum of patients with autism (145–148).
Although new LINE-1 insertions seem to occur frequently
in neurons, little is known about the contribution of this
element in glial cells. It is becoming increasingly evident that
under pathological conditions, there is a non-cell autonomous
effect in the CNS, in which glial cells are as vulnerable
as neurons (149). Astrocytes are often indicated as the
contributors to disease phenotypes and in some instances,
the disease initiators (150–152). Accumulating evidence
links the cytokine dysregulation and persistent inflammatory
phenotypes seen in mice and iPSC-derived models with
astrocyte functional abnormalities [Figure 5; (153, 154)]. Indeed,
ASD-derived astrocytes secrete elevated cytokines such as
interleukin-6 (IL-6), which may interfere with proper neuronal
development (155).

Rett Syndrome
Rett Syndrome (RTT), once considered part of ASD, is an X-
linked progressive neurodevelopmental disorder with autistic
features, characterized predominantly by various mutations
in the methyl CpG binding protein-2 (MeCP2) (156). Post-
mortem brain tissue samples analyzed showed higher genomic
LINE-1 ORF2 sequences in RTT patients when compared
to controls (157). Muotri et al. demonstrated that MeCP2
loss of function increases susceptibility for LINE-1 insertions
because the 5′UTR sequence within the LINE-1 promoter are
targets of MeCP2-mediated transcriptional repression [Figure 2;
(157)]. Conditioned media taken from RTT mutant astrocytes
had adverse effects on wild type mouse neurons. After just
24 h, neurons grown in RTT astrocyte conditioned media
had significantly smaller soma sizes, shorter neurites and less
terminal ends (158). Re-expression of MeCP2 specifically in
astrocytes improved locomotion, anxiety levels, and prolonged
the lifespan of globally deficient MeCP2 mice. Even more,
restoration of MeCP2 in astrocytes restored VGlut1 levels and
dendritic morphology of neurons in vivo (159). More research
must be conducted to confirm whether the abnormally high
presence of LINE-1 retroelements seen in RTT contributes

to: (1) the inflammatory response seen in astrocytes and (2)
disease progression.

Aicardi-Goutières Syndrome
Indeed, it has been found that the accumulation of LINE-1
copies in neurodevelopmental diseases promote inflammatory
effects in astrocytes, as is in the case of AGS (38). AGS is a
progressive inflammatory disorder that affects newborns and
results in severe mental and physical handicap as well as greatly
reduced lifespan. AGS can arise from mutations in three-
prime repair exonuclease 1 (TREX1). Mutations in TREX1—
which functions to degrade dsDNA/ssDNA—result in significant
cytoplasmic accumulation of DNA species, which are then sensed
as viral or “non-self.” This leads innate immune responses,
such as the induction of IFN [Figure 5; (160)]. Thomas et al.
demonstrated that a majority of those DNA species consist of
cytoplasmic LINE-1 ssDNA. TREX-1 deficient NPCs expressed
70% more LINE-1Hs elements (38). Chronic RTi treatment of
TREX1 deficient cell lines was shown to reduce cytoplasmic
ssDNA to near control levels as well as improve neurite
growth and decrease IFN secretion from astrocytes (38). In a
2018 phase II clinical trial for AGS patients, combinations of
RTis were administered for 12 months to observe changes in
interferon signaling (161). Across all patients who completed
the study, the median interferon score dropped from 9.66 to
5.33. Interferon levels in serum and plasma were also reduced.
Strikingly, global interferon-stimulated gene expression (ISG)
decreased after 12 months of treatment but then returned to
pre-treatment levels 6 months after discontinuing RTi treatment
(161). Thus, RTi treatment can prove to be a promising
therapeutic alternative for pathologies in which inflammation is
a common denominator.

CONCLUSION

Reviewed here are recent reports which highlight aberrant
TE activation as contributors to a variety of neurological,
neurodegenerative, and autoimmune pathologies. Activation of
retroelements confer genomic and cellular instability as TEs
can disrupt coding regions, rewire transcriptional networks,
and modify epigenetic and post-transcriptional regulation
of gene expression. Indeed, retrotransposons have evaded
evolutionary attempts at repression and contribute to somatic
mosaicism. In the diseased state, where repression or regulation
of retrotransposons is diminished, expression of endogenous
nucleic acids are upregulated, promoting a response from the
host, similar to the one that occurs upon a viral infection or to
environmental triggers. In most cases, the cell will initiate an
interferon response. Persistent inflammation leads to functional
abnormalities and disease phenotypes; therefore, we speculate
that retroelement misregulation impacts human pathogenesis to
a larger extent than previously thought.
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