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Measuring the rate of innovation in academia and industry is fundamental to monitoring the 
efficiency and competitiveness of the knowledge economy. To this end, a disruption index (CD) 
was recently developed and applied to publication and patent citation networks (Wu et al., 2019; 
Park et al., 2023). Here we show that CD systematically decreases over time due to secular 
growth in research production, following two distinct mechanisms unrelated to innovation – one 
behavioral and the other structural. Whereas the behavioral explanation reflects shifts associated 
with techno-social factors (e.g. self-citation practices), the structural explanation follows from 
‘citation inflation’ (CI), an inextricable feature of real citation networks attributable to increasing 
reference list lengths, which causes CD to systematically decrease. We demonstrate this causal link 
by way of mathematical deduction, computational simulation, multi-variate regression, and quasi-

experimental comparison of the disruptiveness of PNAS versus PNAS Plus articles, which differ 
primarily in their lengths. Accordingly, we analyze CD data available in the SciSciNet database 
and find that disruptiveness incrementally increased from 2005-2015, and that the negative 
relationship between disruption and team-size is remarkably small in overall magnitude effect 
size, and shifts from negative to positive for team size ≥ 8 coauthors.

1. Introduction

Disruptive innovation refers to intellectual and industrial breakthroughs that sidestep conventional theory or practice by appealing 
to new value networks, to the extent that the disruptive entrants can quickly and unexpectedly overcome the competitive advantages 
characteristic of established incumbents (Christensen et al., 2015). In the case of scientific advancement, the process of disruptive 
innovation manifests as intellectual contributions that appeal to novel configurations of concepts and methods belonging to the 
knowledge network (Pan et al., 2018; Petersen, 2022; Yang et al., 2023), thereby substituting prior combinatorial knowledge à 
la Schumpeter’s theory of creative destruction (Schumpeter, 1942). Against this backdrop, Funk and Owen-Smith (2017) recently 
developed an index for quantifying citation disruption (denoted by 𝐶𝐷) according to the implicit value of intellectual attribution 
that is encoded within the local structure of citation networks, with the objective of identifying intellectual contributions that appeal 
to new streams of intellectual attribution while subverting established ones.
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Identifying the micro-level processes underlying disruption and quantifying its overall rate are fundamental to understanding 
scientific progress, and can in principle guide the management of institutions and policies that accelerate innovation. As such, the 
𝐶𝐷 index has received considerable attention and inspired a significant volume of follow-up research. However, there is a growing 
literature that challenges the definition and application of 𝐶𝐷 to real scientific and patent citation networks (Bentley et al., 2023; 
Bornmann et al., 2020; Holst et al., 2024; Leibel & Bornmann, 2024; Macher et al., 2024; Petersen et al., 2024; Ruan et al., 2021). 
One stream of critique calls into question the long-term temporal decline in 𝐶𝐷 reported by Park et al. (2023), and the morose 
interpretation of its implications on the status and outlook of the scientific endeavor (Holst et al., 2024; Kozlov, 2023). In particular, 
Macher et al. (2024) identify a substantial number of missing patent citations in the data analyzed by Park et al. (2023), both at the 
beginning of their data sample and towards the end, which effectively reduces the number of backwards citations (i.e. references) 
and forward citations that were analyzed. Once correcting for the data omission, the re-analysis reveals an increasing rate of disrup-

tion in several patent domains central to the techno-informatic revolution of the last 30 years. This increase is consistent with the 
persistent increase in combinatorial innovation observed in science over the same period (Yang et al., 2023), and the general purpose 
technologies of the AI revolution (Eloundou et al., 2024) that have already disrupted the process of knowledge production across the 
sciences (Abramson et al., 2024; Davies et al., 2021; Krenn & Zeilinger, 2020; Merchant et al., 2023; Tshitoyan et al., 2019; Wang et 
al., 2023a).

Similarly, a recent independent re-analysis by Holst et al. (2024) shows that missing citations in the scientific publication data, 
which are more prominent in the early years of the sample, give rise to a substantial subsample of publications with 0 references – 
which by definition correspond to maximum disruption value of 𝐶𝐷 = 1. They show that the prevalence of these temporally biased 
data anomalies are entirely sufficient to generate the negative trend in 𝐶𝐷 reported by (Park et al., 2023); upon correcting for 
these anomalies, they show that 𝐶𝐷 trends insubstantial for both patents and publications. A third independent study on scientific 
publications by Bentley et al. (2023) also reports an accelerating rate of disruption at the end of their data sample after developing 
a weighted variant of 𝐶𝐷 that accounts for temporal shifts in the connectivity of real citation networks. In addition to these studies 
reporting an increasing rate of innovation according to temporal patterns in the citation network, a complementary approach based 
upon measuring combinatorial innovation in the knowledge network also reports a persistent innovation rate over time (Petersen, 
2022).

A second stream of critique focuses on how 𝐶𝐷 is defined, and the implications of its mathematical formulation on its reliability 
in bibliometric analysis (Bornmann et al., 2020; Leydesdorff et al., 2021; Petersen et al., 2024; Ruan et al., 2021; Wu & Wu, 2019). 
Taken together, these considerations further call into question a number of studies reporting statistical relationships between 𝐶𝐷 and 
various covariates related to research production and team assembly – such as career productivity, team size, citation impact, and 
the geographic dispersion of team members (Li et al., 2024; Lin et al., 2023a; Park et al., 2023; Wang et al., 2023b; Wu et al., 2019) – 
most notably because each of these covariates also grows with time. Statistical relationships between 𝐶𝐷 and other time-dependent 
covariates are susceptible to omitted variable bias, which is a formidable source of measurement error in statistical analysis. As such, 
the connection between these two streams is the role of secular growth, which manifests as a temporal bias that underlies the data 
artifacts generating declining trends in 𝐶𝐷 and the susceptibility of 𝐶𝐷 to measurement error due to its non-linear dependence on 
the structure and rate of backwards citations.

Against this backdrop, here we contribute to these two streams by demonstrating how systematic measurement bias deriving 
from the inextricable densification of empirical citation networks, combined with omitted variables capturing confounding shifts in 
scholarly citation practice, contributes to the mis-measurement of a “decline in disruptiveness” (Park et al., 2023). Our critique is 
centered upon the role of reference list in the definition of 𝐶𝐷, and the implications of multifold increases in reference list lengths 
over the last half century, which is a fundamental source of ‘citation inflation’ (CI) (Petersen et al., 2018). Specifically, we apply 
four complementary methodologies that expose the underlying bias in 𝐶𝐷 definition and its application – deductive quantitative 
reasoning, computational modeling, a quasi-experimental test, and multivariate regression – the results of which are consistent with 
a companion study (Petersen et al., 2024) based upon different data sources and regression model specification.

In order to test and validate the CI hypothesis – that increasing reference list lengths confound the measurement of trends in 𝐶𝐷

and covariate relationships – we developed a quasi-experiment based upon the entire corpus of research published in Proceedings of 
the National Academy of Sciences of the United States of America (PNAS) over the 5-year period 2011-2015. Our identification strategy 
is based around comparing research articles published in the traditional format (print and online publication) to those published as 
long-form PNAS Plus articles (online-only publication) (Schekman, 2010; Verma, 2012) – as these two publication formats are nearly 
indistinguishable, aside from the longer reference list lengths of PNAS Plus articles. We conclude with a large-scale multivariable 
regression analysis of 7.8 million articles from 1995-2015, which accounts for the data quality and measurement biases identified, 
thereby improving upon the methodological designs employed in Park et al. (2023); Wu et al. (2019). Results show that (a) the net 
effect size of temporal and team-size trends are at the level of noise and therefore inconsequential to science and innovation policy; 
and (b) by including appropriate controls and focusing on the metric itself instead of percentile values, the relationship between 𝐶𝐷

and team size is instead increasing.

2. Background & related literature

2.1. Definition of CD and its susceptibility to secular growth

The disruption index 𝐶𝐷𝑝 (Funk & Owen-Smith, 2017; Park et al., 2023) measures the degree to which an intellectual contribution 
2

𝑝 (e.g. a patent or academic research publication) supersedes the sources cited in its reference list, denoted by the set {𝑟}𝑝 . The 
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Fig. 1. Citation inflation is an inextricable feature of citation networks. The disruption index 𝐶𝐷𝑝 is calculated according to three non-overlapping subsets of 
{𝑐}𝑝 = {𝑐}𝑖 ∪ {𝑐}𝑗 ∪ {𝑐}𝑘 , of sizes 𝑁𝑖 , 𝑁𝑗 and 𝑁𝑘 , respectively. (a,b) Schematic of the citation network sub-graph contributing to the calculation of the disruption 
index for two papers that differ only in the connectivity of the single reference contributing to 𝑁𝑘. Moreover, in order to convey the magnitude and impact of secular 
growth as it manifests on real citation networks, the subset {𝑐}𝑘 for publication 𝑝𝑎 is characteristic of citation rates in the 1980s, whereas for 𝑝𝑏 it is characteristic 
of the 2000s. Consequently, 𝐶𝐷𝑎 = 0.69 and 𝐶𝐷𝑏 = 0.45, corresponding to a 35% decrease in 𝐶𝐷 attributable to 20 years of increasing citation network density. (c)

Schematic illustrating the inflation of the reference supply: both the annual publication rate 𝑛(𝑡) (comprised of increasingly variable article lengths) and the number 
of references per publication, 𝑟(𝑡), have grown exponentially over time. Consequently, the observed densification is both within- and across-generation, such that 
older publications can receive more citations from present day research than from contemporaneous research due to secular growth. (d) Citation inflation even affects 
journal with relatively small change in 𝑛(𝑡), such as traditional print journals like Nature, which have witnessed 7-fold increases in reference list lengths over the last 
60 years.

argument for 𝐶𝐷𝑝 is that if future contributions cite 𝑝 but do not cite members of {𝑟}𝑝, then 𝑝 plays a disruptive role in the citation 
network. As such, disruption can be inferred according to the local structure of the subnetwork {𝑟}𝑝 ∪ 𝑝 ∪ {𝑐}𝑝 that includes the set 
of citing nodes {𝑐}𝑝 connecting to either the focal node 𝑝 or any member of {𝑟}𝑝. According to its definition (Funk & Owen-Smith, 
2017; Park et al., 2023) reformulated as a ratio (Wu et al., 2019), 𝐶𝐷𝑝 is calculated by identifying three non-overlapping subsets of 
{𝑐}𝑝 = {𝑐}𝑖 ∪ {𝑐}𝑗 ∪ {𝑐}𝑘, of sizes 𝑁𝑖, 𝑁𝑗 and 𝑁𝑘, respectively – see Fig. 1(a,b) for a schematic illustration. In practice, a citation 
window (CW) is used to temper the effects of right-censoring bias, such that only citations occurring within a CW-year period are 
included in the subnetwork {𝑐}𝑝. In what follows, we employ a CW = 5-year window denoted by 𝐶𝐷𝑝,5, as in prior research (Park 
et al., 2023; Wu et al., 2019); however, the fundamental issues with the definition of 𝐶𝐷 are independent of CW (Petersen et al., 
2024), and so for brevity we represent the general definition by 𝐶𝐷𝑝.

The subset 𝑖 refers to members of {𝑐}𝑝 that cite the focal 𝑝 but do not cite any elements of {𝑟}𝑝, and thus measures the degree 
to which 𝑝 disrupts the flow of attribution to members of {𝑟}𝑝. The subset 𝑗 refers to members of {𝑐}𝑝 that cite both 𝑝 and {𝑟}𝑝, 
measuring the degree of consolidation that manifests as triadic closure in the subnetwork (i.e., triangles formed between {𝑟}𝑝 , 𝑝, 
{𝑐}𝑗 ). The subset 𝑘 refers to members of {𝑐}𝑝 that cite {𝑟}𝑝 but do not cite 𝑝. As such, Wu et al. (2019) show that 𝐶𝐷𝑝 can be 
calculated as the ratio

𝐶𝐷𝑝 =
𝑁𝑖 −𝑁𝑗

𝑁𝑖 +𝑁𝑗 +𝑁𝑘

= 𝐶𝐷nok

1 +𝑅𝑘

, (1)

where the second equivalence is a simple re-organization of the equation to highlight the extensive quantity 𝑅𝑘 =𝑁𝑘∕(𝑁𝑖 +𝑁𝑗 ) ∈
[0, ∞), which measures the rate of extraneous citation. Such re-organization facilitates deducing the scaling behavior of 𝐶𝐷 associated 
with the number of articles 𝑛(𝑡) and the average reference list length per article 𝑟(𝑡) per year 𝑡.

According to the network growth properties, we can approximate how 𝑁𝑖, 𝑁𝑗 and 𝑁𝑘 grow using basic scaling arguments based 
upon the two fundamental sources of growth, 𝑛(𝑡) and 𝑟(𝑡). First consider publications in the reference list of 𝑝𝑎 in Fig. 1(a) that 
are unconstrained by the first-order citation network {𝑐}𝑝 around the focal publication 𝑝 from year 𝑡. Since most citations are made 
between papers with relatively small publication-year differences (Pan et al., 2018), then the dominant first-order contribution to 𝑁𝑘 is 
the contemporaneous total citation rate, 𝐶(𝑡) = 𝑛(𝑡)𝑟(𝑡). Now considering the set {𝑐}𝑖 ∪{𝑐}𝑗 , since these publications conditionally cite 
𝑝 and can only cite 𝑝 once, then 𝑁𝑖+𝑁𝑗 grows as 𝑛(𝑡). Hence, because 𝑁𝑘 ∼ 𝑛(𝑡)𝑟(𝑡) and 𝑁𝑖+𝑁𝑗 ∼ 𝑛(𝑡) then 𝑅𝑘 =𝑁𝑘∕(𝑁𝑖+𝑁𝑗 ) ∝ 𝑟(𝑡); 
see (Petersen et al., 2024) for empirical validation and Fig. S1 in the Supplemental Materials for computational validation.

Consequently, because the ratio 𝐶𝐷nok = (𝑁𝑖 −𝑁𝑗 )∕(𝑁𝑖 +𝑁𝑗 ) ∈ [−1, 1] is an intensive measure, 𝐶𝐷𝑝 features a numerator that is 
3

bounded and a denominator that is unbounded. As such, 𝐶𝐷𝑝(𝑡) converges over time to 0 because the denominator grows proportional 
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Fig. 2. Descriptive statistics: extremely concentrated and leptokurtic distribution of CD. Publication data were obtained from the SciSciNet open data repository 
(Lin et al., 2023b), selecting journal articles published in the 21-year range 1995-2015, and further selecting only the articles with reference list lengths in the range 
10 ≤ 𝑟𝑝 ≤ 200. This assures that we are not basing results upon editorials, comments, and other articles that do not represent substantial research products, and avoids 
the susceptibility of 𝐶𝐷 to small data sample fluctuations, e.g. as shown by Holst et al. (2024) that 𝐶𝐷 =𝑁𝑖∕𝑁𝑖 = 1 if 𝑟𝑝 = 0 and 𝑐𝑝 > 0, which occurs surprisingly 
frequently with a bias towards early years. (a) The frequency distribution 𝑃 (𝐶𝐷𝑝,5) is extremely leptokurtic. (b) Zooming in on the ±5𝜎 range of the 𝐶𝐷𝑝,5 distribution 
shows that 95.5% of the data are within ±2𝜎 of the average CD value. The deviation between the vertical black and magenta lines shows the relatively small amount 
of variation in CD attributable to the temporal trends shown in Fig. 5(a), which shows 𝛾𝑡 from 1995-2015 (a total of 0.00045 units of CD, corresponding to 0.06𝜎 in 
terms of the standard deviation of 𝐶𝐷). (c) Frequency distribution 𝑃 (Norm𝐶𝐷𝑝,5) calculated for the normalized metric Norm𝐶𝐷𝑝,5 defined in Eq. (2), and plotted 
over the ±5𝜎 range. The deviation between the vertical black and green lines shows the 0.09𝜎 effect size attributable to the team-size trends shown in Fig. 5(b). For 
visual comparison, the solid black curve represents a 𝑁(0, 1) normal distribution, showing that 𝐶𝐷 is still leptokurtic after accounting for journal-year average and 
variation scale with Norm𝐶𝐷𝑝,5 .

𝑟(𝑡), which itself grows exponentially, 𝑟(𝑡) ∝ exp[𝑔𝑟𝑡] with 𝑔𝑟 = 0.018 corresponding to a roughly 2% annual growth rate (Pan et al., 
2018; Petersen et al., 2018). This convergence of 𝐶𝐷𝑝(𝑡) → 0 as 𝑟(𝑡) increases over time is conveyed by the very narrow empirical 
frequency distribution 𝑃 (𝐶𝐷) calculated for a large sample of 7.66 million publications from the 21-year period 1995-2021 – see

Fig. 2(a).

2.2. Citation inflation: a measurement bias deriving from secular growth

Citation inflation (CI) refers to the exponential growth of citations produced via the secular growth of the scientific endeavor 
(Petersen et al., 2018), and has a natural counterpart in patenting (Huang et al., 2020). Fig. 1(c) illustrates how CI arises through 
the combination of increasing reference lists, denoted by 𝑟(𝑡), and increasing publication (or patenting) rates, denoted by 𝑛(𝑡), which 
significantly increases the density of citation networks over time. In the case of scientific research production, empirical growth 
4

rates estimated from the entire Clarivate Analytics Web of Science citation network show that total volume of citations generated by 
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the scientific literature, 𝐶(𝑡), grows exponentially with annual rate 𝑔𝐶 = 𝑔𝑛 + 𝑔𝑟 = 0.051; hence, the number of links in the citation 
network is growing by roughly 5% annually, corresponding to a doubling period of just ln(2)∕𝑔𝐶 = 13.6 years (Pan et al., 2018).

Moreover, as references tend to increasingly extend further back in time, the impacts of CI are not constrained to contemporaneous 
layers of the citation network, but instead are cross-generational. As such, the increasing density of citation networks manifests at 
both the source (reference) and destination (citation) of each new link, which is a temporal bias that is challenging to neutralize in 
the development of standardized network metrics. For example, in the 1980s the median-cited paper received 2 citations within 5 
years of publication; however by the 2000s, this nominal quantity increased to 9 (Pan et al., 2018). In addition, there has been a 
paradigm shift towards online publishing that has facilitated greater publication volumes, faster publication times, and longer articles 
with longer reference lists. Take for example the journal Nature for which 𝑛(𝑡) has been roughly constant over the last 60 years: in 
1970 the average number of references per articles was 𝑟𝑝 = 7; by 2000 𝑟𝑝 increased to 24; and by 2020 𝑟𝑝 = 51, a 7-fold increase 
over the 60-year period – see Fig. 1(d) and Fig. S2.

2.3. Issues with prior works analyzing trends in CD

Park et al. (2023) develop four robustness check approaches: comparison with alternative definitions of 𝐶𝐷, normalization of 
𝑁𝑘 in 𝐶𝐷, regression adjustment, and synthetic randomization of the citation network. Yet each is susceptible to either data quality 
issues that are temporally biased towards early years, or measurement bias and omitted variable bias associated with the definition 
of 𝐶𝐷.

First, because alternative disruption variants, namely 𝐶𝐷nok and 𝐶𝐷∗ (Bornmann et al., 2020; Leydesdorff et al., 2021), are 
constructed around similar ratios, they are also susceptible to data quality issues as well as CI. However, it is notable that the 
alternative indices are less susceptible to CI, and indeed their trends shown in Extended Data Fig. 7 of Park et al. (2023) are markedly 
less prominent than what is shown for 𝐶𝐷. In the particular case of 𝐶𝐷nok, the location of the average value is large enough that a 
vast majority of papers are classified as disruptive – which begs for metric validity improvement. Moreover, in our companion study 
focusing upon a computational model, we show that even the tempered decline in 𝐶𝐷nok can be attributed to CI (Petersen et al., 
2024).

Second, in order to attenuate the effect of CI, Park et al. (2023) develop both ‘paper’ and ‘field x year’ normalized variants of 𝐶𝐷 by 
modifying the factor 𝑁𝑘 in Eq. (1). In the first case, they replace 𝑁𝑘 with 𝑁𝑘− 𝑟𝑝. However, according to scaling behavior arguments, 
since 𝑁𝑘 ∼ 𝑛(𝑡)𝑟(𝑡) then (𝑁𝑘 − 𝑟𝑝) ∼ (𝑛(𝑡)𝑟(𝑡) − 𝑟𝑝) ≈ (𝑛(𝑡) − 1)𝑟(𝑡), which does not generate the intended consequence. Moreover, the 
reduction of 𝑁𝑘 by 𝑟𝑝 still renders these normalized variants susceptible to the scenario exhibited in Fig. 1(a,b), whereby citing just 
a single highly-cited paper causes 𝑁𝑘 to vastly exceed the difference 𝑁𝑖 −𝑁𝑗 in the numerator of 𝐶𝐷, such that 𝐶𝐷𝑝 → 0. In the 
second approach, using the field-year normalized variant, the average 𝑟(𝑡) for papers from the same field and year is subtracted. This, 
however, results in the same issue, 𝑁𝑘 − 𝑟(𝑡) ∼ 𝑛(𝑡)𝑟(𝑡) − 𝑟(𝑡) = (𝑛(𝑡) − 1)𝑟(𝑡).

Third, the regression adjustment implemented by Park et al. (2023) is poorly documented, as there is no model specification; 
moreover, Extended Table 8 only shows the estimated coefficients for the year indicator variable, and does not show the estimates for 
other controls. And according to Extended Data Table 1 in Park et al. (2023), their model specification does not incorporate available 
publication-level factors that co-vary with 𝐶𝐷𝑝, namely 𝑟𝑝, 𝑐𝑝 and the number of coauthors, 𝑘𝑝.

And finally, robustness checks based upon rewired citation networks are insufficient since the degree-preserving randomization 
holds constant 𝑟𝑝 or 𝑐𝑝. Hence, this randomization scheme can only be expected to attenuate biases attributable to correlated citation 
behavior – contrariwise, biases deriving from data quality issues and CI can be expected to persist. Moreover, because shuffling the 
citation network reduces the rate of triadic closure to random chance, then this null model essentially converts all 𝑁𝑗 links into 
𝑁𝑖 links. Consequently, the expected randomized value is 𝐶𝐷Rand

𝑝
= ((𝑁𝑖 + 𝑁𝑗 ) − 0)∕(𝑁𝑖 + 𝑁𝑗 + 𝑁𝑘) = 1∕(1 + 𝑅𝑘) > 0, which is 

positive definite and converges to 0 as 𝑅𝑘 increases. Park et al. then calculate a Z-score comparing the real and randomized values, 
𝑍𝑝 = (𝐶𝐷𝑝−𝐶𝐷Rand

𝑝
)∕𝜎[𝐶𝐷Rand

𝑝
], and plot the average value over time in Extended Data Fig. 8 (Park et al., 2023). Their results show 

extremely negative 𝑍-score values (upwards of 2𝜎 effect sizes). These deviations are also methodological artifacts: since 𝐶𝐷Rand
𝑝

> 0, 
then all papers with 𝐶𝐷𝑝 < 0 deterministically yield 𝑍𝑝 < 0; moreover, the standard deviation 𝜎[𝐶𝐷Rand

𝑝
] is extremely small because 

the chances of the randomization producing triadic closure are extremely small. Hence, with little variation to work with around a 
systematically small value 𝐶𝐷Rand

𝑝
≈ 1∕(1 + 𝑅𝑘) ∼ 1∕𝑟(𝑡), this randomization approach vastly underestimates the intrinsic scale of 

variation, i.e., 𝜎[𝐶𝐷Rand
𝑝

] ≪𝜎[𝐶𝐷𝑝].
In a different study on the relationship between 𝐶𝐷 and team size, Wu et al. (2019) also develop robustness checks based upon 

multi-variate regression. However there is no clear model specification provided in their Supplementary Table 4; hence, in addition 
to omitting 𝑐𝑝 and 𝑟𝑝, it is unclear how they controlled for publication year. Moreover, the majority of their analysis is based upon 
descriptive trend analysis using percentile values of 𝐶𝐷. This mapping of nominal 𝐶𝐷 values to percentiles obfuscates the extremely 
narrow distribution of 𝐶𝐷 – see Fig. 2(a). At the same time, this modification of dependent variable generates the appearance of 
considerable effect sizes. Because most publications are concentrated around relatively small 𝐶𝐷 values, a small idiosyncratic shift 
in 𝐶𝐷 will generate disproportionately large shifts in the percentile value.

A third study analyzes the relationship between 𝐶𝐷 and collaboration distance among coauthors (Lin et al., 2023a). This analysis 
also omits 𝑐𝑝 and 𝑟𝑝 from their multivariate robustness check (see Extended Data Table 1), and instead categorizes papers as being 
before or after 2000 (a crude temporal control) and being solo-author or not (a crude team size control). As an example of persistent 
negligence for confounding factors, Lin et al. write: “For example, the 1953 paper on DNA by Watson and Crick is among the most 
5

disruptive works (D = 0.96, top 1%), whereas the 2001 paper on the human genome by the International Human Genome Sequencing 
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Consortium is highly developing (D = -0.017, bottom 6%).” Yet these papers are from vastly different socio-technological eras, with 
the former produced by two coauthors citing 𝑟𝑝 = 6 prior works, where the latter is attributed to 200+ coauthors and cites 𝑟𝑝 = 452
prior works.

Additionally, results reported by Lin et al. (2023a) are based upon the relative rates of 𝐶𝐷 > 0 versus 𝐶𝐷 < 0. This dependent 
variable is simply the sign of 𝐶𝐷, which only depends on the numerator difference, 𝑁𝑖 −𝑁𝑗 . While this choice may at first appear 
to be less susceptible to CI, it is still susceptible to the data quality issues identified by (Holst et al., 2024; Macher et al., 2024), as 
well as confounding trends in the rate of triadic closure attributable to shifts in self-citation and other correlated citation behaviors 
(Tahamtan & Bornmann, 2018), which are more prominent in larger teams – and larger teams are more likely to be extended across 
larger distances.

In response to these issues, two streams of critique have emerged regarding research on 𝐶𝐷 – one regards data quality issues 
and the other regards methodological choices. Regarding the former, citation networks based upon publication and patent data are 
susceptible to missing references, citations, and the mis-classification of non-research oriented content (e.g. editorials) as the products 
of dedicated research. These data quality issues are more frequent for older publications, and less so for newer ones, as the modern 
publication industry benefits from information system features that were not available in the past (e.g. Digital Object Identifiers, 
standard typesetting tools such as LaTex, and web-based publication). As demonstrated by Holst et al. (2024), the frequency of 
publications with 0 references is highly concentrated during early years. They show that this systematic bias in data quality contributes 
significantly to the decline in 𝐶𝐷, since papers with 𝑟𝑝 = 0 correspond to maximum disruption, 𝐶𝐷𝑝 = (𝑁𝑖 − 0)∕(𝑁𝑖 + 0 + 0) = 1. 
Similarly, Macher et al. (2024) show that left-censoring bias in US patent data means that patents from early years are artificially 
missing references to patents before the starting date of the dataset; upon correcting for these omitted references, which increases 𝑟𝑝
closer to their true value, then the decline in 𝐶𝐷 for patents is greatly reduced.

A second stream of critique regards the methodological choices, e.g. omitted variables and the susceptibility of 𝐶𝐷 to secular 
growth. By way of example, Bentley et al. (2023) modify the definition of 𝐶𝐷𝑝 to account for CI according to both the number of 
publications 𝑛(𝑡) and the total number of citations produced, 𝐶(𝑡) = 𝑛(𝑡)𝑟(𝑡). Their re-analysis reveals an increasing weighted 𝐶𝐷

from the early 1990s through 2013. Bentley et al. (2023) also critique the natural language analysis by Park et al. (2023), noting 
that inferences based upon word usages are also susceptible to secular trends in usage frequency and semantic shift (Hamilton et al., 
2016; Kristiansen, 2008).

To summarize, several recent analyses report findings of the following form: as 𝑋 increases, 𝐶𝐷 decreases (where 𝑋 is time, 
individual publication rate, team size, nominal citations, and collaboration distance) (Li et al., 2024; Lin et al., 2023a; Park et al., 
2023; Wang et al., 2023b; Wu et al., 2019). Accordingly, we conjecture that any variable 𝑋(𝑡) that increases over time will generate 
correlations of this pattern – yet the degree to which such correlations survive confounders and whether they represent significant 
effect sizes is a more intriguing matter. To this end, here we seek to consolidate a growing number of critiques – first by addressing 
methodological issues, and concluding with a regression framework that also addresses the data quality issues.

3. Methods

3.1. Computational simulation model – testing the CI hypothesis

Computational ‘toy models’ are designed to capture the essential parameters underlying observed variation, while neglecting those 
features that are perceived to be weakly related. However, an unavoidable limitation to such approaches is determining what exactly 
are the essential parameters. Motivated by these modeling principles, we exploit a parsimonious citation network growth model that 
does not account for various sources of heterogeneity underlying scientific publication, such as team size and reference list lengths. 
Instead, all synthetic publications in our model from the same year have the same number of references, 𝑟𝑝 = 𝑟(𝑡) ≡ average reference 
list length. In this way, we can rule out the intra-annual variation in 𝑟𝑝 as a source of the effect we are seeking to understand and 
isolate.

The computational model does account for latent features of scientific production, in particular the exponential growth of 𝑛(𝑡)
and 𝑟(𝑡). As such, we can use our model to re-analyze the temporal trends in 𝐶𝐷 reported by Park et al. (2023), using two types of 
synthetic networks generated by our model – one generated with CI and one without CI – that are otherwise statistically identical by 
construction. Our citation network model belongs to the class of growth and redirection models (Barabasi, 2016; Krapivsky & Redner, 
2005) and implements stochastic link dynamics that mimic preferential attachment (Barabasi, 2016). The statistical properties of the 
citation networks generated by the model were tested and validated against comprehensive real citation data from the Web of Science 
(Pan et al., 2018). This model reproduces a number of statistical regularities established for real citation networks – both structural 
(e.g. a log-normal citation distribution (Radicchi et al., 2008)) and dynamical (e.g., increasing reference age over time (Pan et al., 
2018); exponential citation life-cycle decay (Parolo et al., 2015; Petersen et al., 2014)).

Network growth in this model is governed by two complementary citation mechanisms that can be controlled by tunable parame-

ters: (i) direct citation and (ii) redirected citation (Pan et al., 2018; Petersen et al., 2024). The second mechanism (ii) controls the rate 
of triadic closure in the synthetic citation network, thereby capturing correlated shifts in scholarly citation practice, such as citation 
trails illuminated by web-based hyperlinks that make it easier to find and cite prior literature; and self-citation among individuals and 
journals aimed at increasing their prominence in the attention economy. As such, the latter mechanism models the ‘consolidation’ 
measured by 𝑁𝑗 in 𝐶𝐷𝑝, which explicitly measures the number of citations that feature triadic closure. In related work focusing on 
the details of this computation model (Petersen et al., 2024), we find that CI has a stronger role in explaining the decline in 𝐶𝐷5(𝑡)
6

than the redirection mechanism, and so in what follows we mainly focus on the effects of CI.
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Accordingly, here we focus on the network growth parameters that determine the rate of CI, which thereby facilitates measuring 
the impact of secular growth on two trends: (a) the decline in the average 𝐶𝐷𝑝,5 value in year 𝑡, denoted by 𝐶𝐷5(𝑡); and (b) the 
CI scaling hypothesis 𝑅𝑘(𝑡) ∝ 𝑟(𝑡) connecting the rate of extraneous citations featured in the denominator of Eq. (1) to the average 
number of references per paper. Note that the increase in 𝑟(𝑡) manifests from secular growth as well as shifts in scholarly citation 
practice. For example, papers with more authors tend have longer reference lists (Petersen et al., 2024), partly because larger teams 
tend to write longer papers, but also because there are more authors seeking to benefit from self-citation.

We use this computational model to test the CI hypothesis by generating two distinct network ensembles, each comprised of 10 
random networks grown over 𝑡 = 1...𝑇 periods (representative of publication years), terminating the network growth for 𝑇 ≡ 150. 
Each network realization is seeded with common initial conditions – e.g. the initial cohort features 𝑛(1) = 30 nodes, each with 𝑟(1) = 5
references. These synthetic citation networks are available for cross-validation, and can be used to develop alternative scientometrics 
that are less biased by CI (see Data Accessibility statement).

The first ensemble incorporates the empirical rates 𝑔𝑛 = 0.033 and 𝑔𝑟 = 0.018 for the entire 𝑇 ≡ 150 periods, with networks 
reaching a final size of 𝑁 = 125, 270 nodes and 5,948,492 links with 𝑟𝑝 ≡ 𝑟(𝑡 = 150) = 73 after 150 periods. The second ensemble 
features the same 𝑔𝑛 and thus reaches the same final size of 𝑁 = 125, 270 nodes. However, the growth of 𝑟(𝑡) is suddenly quenched 
at 𝑇 ∗ = 108 to 𝑔𝑟 = 0, such that 𝑟(𝑡) = 34 for 𝑡 ≥ 𝑇 ∗, which effectively ‘turns off’ CI attributable to growing reference lists – see Fig. 
S1(a,b). We note that Pan et al. (2018) use this computational model to instead explore the implications of a sudden increase in 𝑟(𝑡), 
i.e. simulating the emergence of online-only mega-journals and their impact on the citation network.

3.2. Multi-variate empirical analysis of |𝐶𝐷𝑝,5| – testing the CI hypothesis

In order to further test the CI hypothesis in an empirical setting, we resort to the following simplified scenario. We analyze the 
absolute value |𝐶𝐷𝑝,5| so that the regression model specification is not confounded by the two different mechanisms that can generate 
reductions in 𝐶𝐷 – one relating to the numerator of Eq. (1) which depends on the rate of triadic closure in the network, and the 
other relating to the denominator which directly results from CI. After confirming the CI hypothesis, we then analyze 𝐶𝐷𝑝,5 in the 
following section in order to further test the relationship between disruption and covariates.

To empirically test the CI hypothesis, we exploit the 2011 launch of a strategic publishing model developed by the journal PNAS, 
consisting of a long-form online-only publishing option – called PNAS Plus – to complement its traditional print option (Schekman, 
2010). Article submissions were not processed, reviewed or prioritized according to the author-designated print option (Verma, 2012), 
and so publications in these two formats are satisfactory counterfactuals for testing whether publications with larger 𝑟𝑝 are biased 
towards smaller 𝐶𝐷𝑝. To demonstrate this causal link, we juxtapose the two sets of articles that are otherwise indistinguishable, on 
average, aside from PNAS Plus articles having longer reference lists. See Fig. S3 for comparison of the two subsamples across various 
characteristics.

To facilitate reproduction, we base our empirical analysis on pre-computed 𝐶𝐷𝑝,5 values that are available in the SciSciNet open 
data repository (Lin et al., 2023b), which features pre-calculated 𝐶𝐷𝑝,5 , along with the coauthor count 𝑘𝑝, and 𝑟𝑝 values. Because 
computing 𝐶𝐷𝑝,5 requires 5 years of post-publication citation data, in what follows we compare the disruptiveness of 18,644 research 
articles published in PNAS from 2011-2015. Notably, online-only PNAS Plus articles feature a different page numbering system, and 
so by inspecting this metadata for each article we identified 12.6% of the total sample as PNAS Plus articles.

We exploit this quasi-experimental setting in order to distinguish between the following behavioral (i) and statistical (ii & iii) 
mechanisms that could contribute to declines in 𝐶𝐷:

(i) 𝑁𝑗 > 𝑁𝑖: the main hypothesis for explaining the decline in 𝐶𝐷 put forward by Park et al. (2023) is that there have been 
fundamental shifts in scientific practice that have shifted away from disruptive science towards consolidating science. However, 
they do not eliminate the possibility that 𝑁𝑖 is growing faster than 𝑁𝑗 , on average, due to behavioral shifts affecting scholarly 
citation practice. Hence, increasing rates of 𝑁𝑗 relative to 𝑁𝑖, may follow from a number of competing practical mechanisms, 
which they do discuss, but do not distinguish.

(ii) Statistical ‘large N’ convergence of 𝐶𝐷: The distribution of 𝐶𝐷 is extremely concentrated around the centroid value of 0 – see

Fig. 2(a.b). Hence, it is possible that (𝑁𝑖 −𝑁𝑗 ) → 0 as 𝑐(𝑡) ≫ 1 and 𝑟(𝑡) ≫ 1 increase over time, representing a statistical limit 
associated with increasing network density. Note that this candidate mechanism is reflected by the numerator of 𝐶𝐷 in Eq. (1).

(iii) Citation inflation: as 𝑅𝑘 ≫ 1, 𝐶𝐷 converges to 0 (since the numerator of 𝐶𝐷 is bounded). Unlike (ii), the source of this statistical 
mechanism is in the denominator of Eq. (1). Such convergence would explain the very small variance in the 𝐶𝐷𝑝,5 distribution, 
which is extremely leptokurtic – see Fig. 2(c).

Park et al. (2023) attribute the observed decline in 𝐶𝐷 to shifting balance of disruptive innovation captured by mechanism (i). 
However, they do not rule out mechanisms (ii) or (iii), which are not related to the innovation capacity of the scientific enterprise, 
but instead reflect the susceptibility of the 𝐶𝐷 metric to statistical bias.

For this reason, we test the CI hypothesis using the absolute value, |𝐶𝐷𝑝,5|, which is more sensitive to the CI mechanism (iii) 
because positive adjustments to negative 𝐶𝐷 values and negative adjustments to positive 𝐶𝐷 values in response to shifts in positive 
definite metrics (i.e., 𝑟𝑝 > 0) correspond to the same regression adjustment when using this absolute metric. This modification is 
similar in motivation to the alternative disruption metric employed by Lin et al. (2023a), who base their results on the sign of 𝐶𝐷, 
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which depends solely on the numerator 𝑁𝑖 −𝑁𝑗 , and thus altogether avoids the measurement bias associated with mechanism (iii).
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Fig. 3. Computational simulation of growing citation networks: after ‘turning off’ CI, the systematic decline in 𝐶𝐷 reverses. (a) The average 𝐶𝐷5(𝑡) calculated 
across 10 different computational realizations of (i) the standard CI model and (ii) the CI model with quenched reference list growth (𝑔𝑟 = 0) for 𝑡 ≥ 108. (b) Average 
rate of extraneous citation, 𝑅𝑘(𝑡), showing that 𝐶𝐷5(𝑡) converges to 0 because the denominator of the disruption index in Eq. (1) is unbounded as 𝑟(𝑡) grows.

3.3. Empirical multi-variate analysis of 𝐶𝐷𝑝,5 – testing temporal and team-size relationships

We apply multi-variate regression in order to estimate the temporal trends in 𝐶𝐷 and the relationship between 𝐶𝐷 and team-size 
𝑘𝑝. As in the previous section, we use pre-calculated data from SciSciNet (Lin et al., 2023b) for publications from the period 1995-

2015 published by sources classified in the dataset as “Journal”. To avoid data quality issues highlighted by Holst et al. (2024), we 
also implement the following thresholds: we exclude publications with reference list lengths outside the range 10 ≤ 𝑟𝑝 ≤ 200, which 
focuses on publications that are sufficiently embedded in the literature to ensure that they are likely products of dedicated research; 
we exclude team sizes outside the range 1 ≤ 𝑘𝑝 ≤ 25 to focus on the small and medium science regime analyzed by Wu et al. (2019); 
and we exclude publications outside the citation counts range 1 ≤ 𝑐𝑝,5 ≤ 1000, which avoids the definitional issue that 𝐶𝐷𝑝 = 0 for 
un-cited publications.

For the remaining set of publications that satisfy these thresholds, we then ranked the corresponding journals by their total 
publication volume over the 21-year period, and select the top 1000 most prominent journals. This journal exclusion produces just a 
0.26% decrease in the sample size, resulting in 7,819,889 publications. Focusing on prominent journals facilitates defining a robust 
normalized disruption index,

Norm𝐶𝐷𝑝,5,𝑗,𝑡 =
𝐶𝐷𝑝,5,𝑗,𝑡 −𝐶𝐷𝑗,𝑡

𝜎[𝐶𝐷]𝑗,𝑡
, (2)

that is standardized at the year-journal level, where 𝐶𝐷𝑗,𝑡 is the average 𝐶𝐷 value and 𝜎[𝐶𝐷]𝑗,𝑡 is the standard deviation calculated 
for publications from journal 𝑗 in year 𝑡. See Fig. 2(c) for the frequency distribution 𝑃 (Norm𝐶𝐷𝑝,5,𝑗,𝑡), which is also leptokurtic.

Importantly, this normalized disruption metric controls for year-specific factors such as journal publication modality (online, 
print, hybrid), as well as the characteristic value and variability of 𝐶𝐷 according to the discipline associated with 𝑗, etc. To ensure 
that results are not biased by extreme outliers, we exclude publications with |Norm𝐶𝐷𝑝,5,𝑗,𝑡| ≥ 5, which corresponds to just a 0.66% 
decrease in the sample size. The resulting sample is comprised of 7,768,207 publications (comprising 99% of the original data sample), 
with the most productive (least productive) journal featuring 138,883 (respectively, 3371) publications over the 21-year period.

4. Results

4.1. Computational validation of the CI hypothesis

We generated and analyzed two ensembles of 10 random networks each. We report average values calculated across each ensemble 
so that our results are not sensitive to the idiosyncratic fluctuations of individual synthetic networks generated via our Monte Carlo 
simulation model. Thus, average differences between the two ensembles derive only from the presence or absence of CI in the 
generation of the synthetic citation networks.

Fig. 3 confirms that both network ensembles are statistically identical for the first 107 periods, which is by construction. However, 
in the second ensemble we eliminate the effects of CI from the citation network for 𝑡 ≥ 𝑇 ∗ = 108 by quenching the growth of 𝑟(𝑡)
such that 𝑟(𝑡) = 34 for 𝑡 ≥ 𝑇 ∗. This sudden halt represents a hypothetical scenario in which journals were to impose a hard cap on 
reference list lengths in order to temper CI. Such caps are not inconceivable, as Nature provides a soft policy that “articles typically 
have no more than 50 references” in their formatting guide for authors.

Fig. 3(a) compares the trend in the average 𝐶𝐷5(𝑡) calculated for these two scenarios. The decline in 𝐶𝐷 reproduces the magnitude 
of empirical decline reported by Park et al. (2023) for 𝑡 < 𝑇 ∗. However, the two curves diverge for 𝑡 ≥ 𝑇 ∗, with the curve featuring 
quenched reference lists suddenly reversing course, thereby revealing the acute effect of CI on 𝐶𝐷. Similarly, Fig. 1(b) tracks the 
growth of 𝑅𝑘(𝑡), showing that this quantity is extensive when 𝑟(𝑡) is growing, and intensive when 𝑟(𝑡) is constant. Moreover, Fig. 
S1(c-f) shows that the model reproduces the relationship 𝑅𝑘(𝑡) ∝ 𝑟(𝑡), and also shows that the proportionality is independent of the 
citation window (CW) used for calculating 𝐶𝐷𝐶𝑊 (𝑡); see Petersen et al. (2024) for additional empirical validation based upon a 
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different dataset. Accordingly, our generative network model demonstrates that CI controls the trends in 𝐶𝐷(𝑡).

https://www.nature.com/nature/for-authors/formatting-guide
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Fig. 4. Quasi-experimental test and validation of the CI hypothesis: counterfactual juxtaposition of research articles published in PNAS versus PNAS Plus.

(a) Frequency distribution of the absolute disruption index, |𝐶𝐷𝑝,5|. (b) Frequency distribution of the number of references per paper, 𝑟𝑝. See Fig. S3 for comparison 
of the two subsamples across a wider range of characteristics. Dashed vertical bars indicate the subsample means. (c) For both subsamples, the decline in is fully 
attributable to the variation in 𝑟𝑝 such that the difference in average reference list lengths accounts for the entire, albeit small, difference in average |𝐶𝐷𝑝,5|.

4.2. Quasi-experimental validation of the CI hypothesis based upon |𝐶𝐷𝑝,5|

The difference in the average |𝐶𝐷𝑝,5| value between the PNAS and PNAS Plus publication sets is incremental, with the PNAS Plus

articles featuring smaller |𝐶𝐷𝑝,5| values across the bulk of the sample distribution – see Fig. 4(a,b). In terms of relevant citation 
network characteristics related to the local subnetwork that defines 𝐶𝐷𝑝 , PNAS Plus articles differ primarily in terms of 𝑟𝑝 , as they 
feature 100 × (57 −41)∕41 = 39% more references per article, on average. Otherwise, the two subsamples are nearly indistinguishable 
in terms of citation impact (𝑐𝑝,5) and team size (𝑘𝑝) – see Fig. S3.

We test the relationship between |𝐶𝐷𝑝,5| and various covariates using the model specification employed in our companion study 
(Petersen et al., 2024), which is based upon disruption index values calculated from the Microsoft Academic Graph dataset (Sinha et 
al., 2015). Instead, here we use publicly available publication metadata from the SciSciNet open data repository (Lin et al., 2023b). 
We use the following multivariate linear regression model,

|𝐶𝐷𝑝,5| = 𝑏𝑡 + 𝑏𝑘 ln𝑘𝑝 + 𝑏𝑟 ln 𝑟𝑝 + 𝑏𝑐 ln 𝑐𝑝,5 + 𝜖𝑡 , (3)

which accounts for team size and the most relevant scalar citation network quantities relating to 𝐶𝐷. We estimate the parameters of 
the model using the STATA 13 package “xtreg fe” using publication-year fixed effects; each covariate enters in logarithm to temper the 
right-skew in the distribution of each variable. For the full list of parameter estimates see Table S1. As a demonstration of parameter 
estimate robustness and generalizability, we applied the same model to 6.9 million articles from the same period, 2011-2015, which 
shows consistent results across a larger range of journals – see Table S2.

In supports of the CI hypothesis, results show a negative relationship between |𝐶𝐷𝑝,5| and 𝑟𝑝: 𝑏𝑟 = −0.0039; 𝑝 = 0.002; 95% CI 
= [−0.0055 − 0.0023]. Put in real terms, a paper with twice as many references (2𝑟𝑝) has a |𝐶𝐷𝑝,5| value that is 𝑏𝑟 ln(2) = −0.002
smaller than if it had 𝑟𝑝 references. This scenario corresponds to a 0.6𝜎 effect size, as the joint standard deviation across both 
PNAS subsamples is 𝜎[|𝐶𝐷𝑝,5|] = 0.0065. Notably, the sign, magnitude, statistical significance level of 𝑏𝑟 is consistent with the analog 
coefficient reported by Leahey et al. (2023). The relationship between |𝐶𝐷𝑝,5| and 𝑘𝑝 are not robust in sign, which is likely attributable 
to the small effect size compounded by the non-linear increasing relationship between 𝑘𝑝 and 𝑟𝑝 over time (Petersen et al., 2024), 
which we address in the following section.

The counterfactual design facilitates estimating the differences in |𝐶𝐷𝑝,5| between the PNAS and PNAS Plus deriving solely from 
the differences in 𝑟𝑝. Our results show that 100% of the difference in the average |𝐶𝐷𝑝,5| between the two journal subsets are 
explained by 𝛿, the difference in the average 𝑟𝑝 across the two subsets – see Fig. 4(c). Hence, these empirical results definitively 
demonstrate that a significant portion of variation in 𝐶𝐷 is attributable to variation in 𝑟𝑝. For this reason, the main results reported 
in Park et al. (2023) survived their robustness checks, e.g. the random rewiring they employed conserves 𝑟𝑝 , and Extended Table 1 
and Supplementary Table 3 show that they did not include 𝑟𝑝, 𝑐𝑝 or 𝑘𝑝 as publication-level covariates of 𝐶𝐷. Since 𝐶𝐷 is a citation-

network based indicator, other cited- and citing-document variables that explain citation counts (e.g., document, citation context, 
author and journal-oriented features) (Tahamtan & Bornmann, 2018) are needed to explain the remaining variation in 𝐶𝐷. One 
limitation of such factor analysis methodologies is the difficulty in defining and measuring publication quality, which is an omitted 
variable in most studies, and limits the conclusiveness of estimated relationships.

4.3. Empirical re-analysis of 7.8 million publications from 1995-2015 – testing for 𝐶𝐷 correlations with 𝑡 and 𝑘

There is considerable disagreement emerging from research analyzing the relationships between 𝐶𝐷 and various other factors. 
For example, Wu et al. (2019) mainly rely on descriptive methods to establish a negative relationship between 𝐶𝐷𝑝 and the team 
size, 𝑘𝑝. Instead, Petersen et al. (2024) and Leahey et al. (2023) employ multivariate regression and report a positive relationship, and 
no relationship between 𝐶𝐷𝑝 and 𝑘𝑝, respectively. One reason for the discrepancy emerging in the literature is a lack of consistency 
in the data and methodological specifications.

Hence, in this section we re-analyze publication-level temporal trends (Park et al., 2023) and team-size trends (Wu et al., 2019) 
in 𝐶𝐷𝑝,5 using publicly available citation network data from SciSciNet (Lin et al., 2023b). We restrict our analysis to publications 
9

that feature explicit signatures of research outcomes – namely, those with sufficiently large 𝑟𝑝 that we can be confident that they 
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Fig. 5. Non-linear temporal and team-size trends in CD after controlling for CI. Marginal effects produced by multivariable regression that control for 𝑟𝑝 and 
𝑐𝑝 (CI), increasing team sizes (𝑘𝑝), and tendency for larger teams to produce longer papers with longer reference lists (𝑘𝑝 × 𝑡). (a) Results indicate that disruptive 
science has incrementally increased since 2006 – which is consistent with three independent re-analyses reported by Bentley et al. (2023); Holst et al. (2024); Macher 
et al. (2024). The magnitude of the effect size (0.06𝜎) is relatively small. (b) In contrast to results reported by Wu et al. (2019), our results indicate that large teams 
(incrementally) disrupt and small teams (incrementally) develop science. The magnitude of the effect size (0.09𝜎) is inconsequential in terms of team science policy 
guidance and team assembly strategy. Shown are factor variable point estimates with 95% confidence intervals; Gray error bars are not statistically deviant from the 
baseline level indicated by the horizontal dashed line (𝑝 > 0.05). See Tables S3 & S4 for the full list of model parameter estimates.

are not editorials, commentaries, book reviews or other non-research based content that may be misclassified as dedicated research. 
This selection also excludes publications featuring substantial missing network data (Macher et al., 2024), since these data quality 
issues effectively reduce 𝑟𝑝, and consequently give rise to spuriously large ±𝐶𝐷; this selection also avoids the issue deriving from the 
surprisingly frequent singularity identified by Holst et al. (2024) whereby papers with 𝑟𝑝 = 0 generate 𝐶𝐷𝑝 = 1. As such, we focus 
on the components of the citation network that are both conceivably and consequentially disruptive, in line with the originator’s 
definition of disruption representing a form of breakthrough innovation (Christensen et al., 2015).

We analyze the temporal trend in 𝐶𝐷 using the following model specification,

𝐶𝐷𝑝,5,𝑗,𝑡 = 𝑏𝑗 + 𝑏𝑘 ln𝑘𝑝 + 𝑏𝑘2(ln𝑘𝑝)2 + 𝑏𝑘×𝑡(ln𝑘𝑝 × 𝑡) + 𝑏𝑟 ln 𝑟𝑝 + 𝑏𝑟2(ln 𝑟𝑝)2 + 𝑏𝑐 ln 𝑐𝑝,5 + 𝑏𝑐2(ln 𝑐𝑝,5)2 + 𝛾𝑡 + 𝜖𝑗 , (4)

which incorporates squared terms to account for non-linear relationships. For example, because 𝑁𝑘 ∼ 𝑛(𝑡)𝑟(𝑡) appears in the denom-

inator of 𝐶𝐷, a linear correction for 𝑟𝑝 is likely insufficient. The coefficient 𝑏𝑟 = −0.0033 (p-value < 0.001; 95% CI =[-0.0042, 
-0.0025]) is negative, reflecting the first-order residual impact of CI. For the full list of parameter estimates see Table S3.

Fig. 5(a) reports the trend in the factor variable 𝛾𝑡 , which captures year-specific trends that persist in spite of other publication-

level controls. Note that the regression adjustment robustness checks in Supplementary Table 1 reported by Park et al. (2023) does 
not report any of the field-year and paper-level controls, and so it is not possible to validate our results according to their covariates; 
in particular, they not include the covariates 𝑟𝑝 , 𝑘𝑝 and 𝑐𝑝,5 in their model specification. Our reanalysis indicates that the residual 
trend in 𝐶𝐷(𝑡) associated with time is at the level of noise, as the uptick in the regression-adjusted 𝐶𝐷(𝑡) after 2008 corresponds to 
just a 0.06𝜎 effect size relative to the baseline level in 1995.

In order to evaluate team-size trends, we leverage the journal-year normalized disruption index Norm𝐶𝐷 to estimate the stan-

dardized parameters of the model

Norm𝐶𝐷𝑝,5,𝑗,𝑡 = 𝑏𝑡 + 𝛾𝑘 + 𝑏𝑟 ln 𝑟𝑝 + 𝑏𝑟2(ln 𝑟𝑝)2 + 𝑏𝑐 ln 𝑐𝑝,5 + 𝑏𝑐2(ln 𝑐𝑝,5)2 + 𝜖𝑡 . (5)

As such, coefficients are measured in units of 𝜎[𝐶𝐷]𝑗,𝑡, which facilitates assessing the relative magnitude of effect sizes. The interaction 
term represented by (ln𝑘𝑝 × 𝑡) controls for the tendency of larger teams to produce longer papers with longer reference lists (Petersen 
et al., 2024). After controlling for temporal variation and CI, we find that 𝐶𝐷 increases (albeit weakly) with team size (for 𝑘𝑝 ∈ [3, 25]) 
– which is consistent with a statistically significant and positive coefficient associated with ln𝑘𝑝 identified in our companion study 
(Petersen et al., 2024). As with the temporal trend, the net effect is at the level of noise, with the difference between 𝑘𝑝 = 2 and 
𝑘𝑝 = 25 corresponding to just a 0.09𝜎 effect size. These results are in disagreement with the results reported Wu et al. (2019). One 
source of discrepancy is the methodology, as their descriptive analysis does not account for multivariable interactions. Moreover, Wu 
et al. base their analysis upon differentials in the percentile values of 𝐶𝐷𝑝,5, which obscures the relatively small magnitude of the 
effect size obtained for nominal 𝐶𝐷 values, which are extremely narrowly distributed around 𝐶𝐷 = 0 as illustrated in Fig. 2.

5. Discussion

A growing body of research seeks to relate 𝐶𝐷𝑝 to time-dependent covariates such as team size (Wu et al., 2019), novelty (Leahey 
et al., 2023), the geographic dispersion of team members (Lin et al., 2023a), and citation impact (Wang et al., 2023b) – all of which 
are quantities that have systematically increased over time. A common pattern among these studies is a result of the form: as 𝑋
increases, 𝐶𝐷 decreases. However, this class of result follows naturally from the susceptibility of correlations between 𝑋(𝑡) and 
𝐶𝐷(𝑡) to (a) temporal biases associated with the secular growth of the scientific enterprise, and (b) temporal biases associated with 
increasing data completeness of the citation network data over time.

Data quality issues, deriving from missing citations and references, generate a fundamental source of error that Holst et al. (2024); 
10

Macher et al. (2024) show are responsible for the anomalous decline in 𝐶𝐷(𝑡) reported by Park et al. (2023). In their comprehensive 
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patent re-analysis, Macher et al. (2024) show that missing references at the beginning of the patent data artificially reduce 𝑟𝑝 for 
early patents; upon correcting for their omission, which effectively increases 𝑟𝑝 for those early patents, the negative trend in 𝐶𝐷(𝑡)
largely disappears. Similarly, in their combined publication and patent re-analysis, Holst et al. (2024) show that a significant source 
of systematic error follows from including items with 𝑟𝑝 = 0 that generate 𝐶𝐷𝑝 = 1 outliers. They show that these anomalies tend to 
occur earlier in the publication and patent datasets. Upon correcting these issues, they also show that the negative trend in 𝐶𝐷(𝑡)
largely disappears. This second re-analysis also provides the full set of coefficients estimated in their regression adjustment analysis, 
which shows a negative correlation between 𝐶𝐷𝑝 and 𝑟𝑝 – see 𝛽1 in Table S1 reported by Holst et al. (2024). Indeed, these data 
quality issues give rise to the same net effect attributable to CI. Beyond data quality issues, another issue is the small effect size 
measuring correlations between 𝐶𝐷 and relevant covariates. Our re-analysis of temporal trends and team-size trends generate effect 
sizes at the 0.06𝜎 and 0.09𝜎 level, respectively; moreover, the directions of the trends are in disagreement with previous studies (Park 
et al., 2023; Wu et al., 2019).

To summarize, even in the absence of data quality issues, the 𝐶𝐷 index decreases over time due to two mechanisms unrelated 
to innovation – one behavioral, and the other structural. Importantly, as formulated, the disruption index does not account for 
confounding shifts in citation behavior (e.g. self-citation, impact factor boosting) that increase the rate of triadic closure measured 
by 𝑁𝑗 in the numerator of 𝐶𝐷. Thus, decreases in 𝐶𝐷 could follow from a number of competing mechanisms, some behavioral and 
reflecting a number of citation factors that evolved over time (Tahamtan & Bornmann, 2018), others statistical in nature. For this 
reason, alternative variants of the disruption index (Bornmann et al., 2020; Park et al., 2023) such as 𝐶𝐷nok that excludes 𝑁𝑘 from 
Eq. (1) are also biased, because shifts in scholarly practice that manifest as network autocorrelations, such as self-citation and journal 
impact-factor boosting, increase the overall rate of consolidation (triadic closure) measured by the term 𝑁𝑗 . The scientometrics 
community should be aware of this issue, which we believe is valuable to inform future research problem and metrics choices; we do 
stop short of recommending any specific alternative formulations of 𝐶𝐷, however, in order to maintain neutrality on the issue of next 
steps. In order to facilitate the development of unbiased citation-network metrics, we do make available the ensemble of synthetic 
citation networks so that they can be used to test future citation-based indices for systematic bias (see Data Availability statement).

Instead, in this work we focused on testing the ‘CI hypothesis’ that underlies the structural mechanism highlighted above. Indeed, 
shifts in strategic behavior and normative practice are challenging to directly measure. For this reason, we confront this issue via 
computational simulation in our companion work (Petersen et al., 2024). In short, our mixed method approaches consistently demon-

strate that CI causes the denominator of 𝐶𝐷 defined in Eq. (1) to systematically increase as reference lengths increase over time, 
which causes 𝐶𝐷 to converge to 0. According to its present definition, there is no clear way to correct for this dependence, since 𝐶𝐷𝑝

is non-linearly related to 𝑟𝑝 via the factor 𝑁𝑘. This susceptibility is illustrated in Fig. 1, which shows how a publication (or patent) 
needs to only cite one highly-cited publication for 𝑁𝑘 to increase to the extent that 𝐶𝐷→ 0, independent of the difference 𝑁𝑖 −𝑁𝑗 . 
The likelihood and magnitude of this one-off mechanism is increasing over time as a result of CI (Pan et al., 2018).

This issue is not merely a temporal bias, it also affects publications from the same publication cohort that have significantly 
different 𝑟𝑝. As a case example, we juxtaposed the disruptiveness of PNAS versus PNAS Plus articles published from 2011-2015, 
which differ primarily in their article lengths. Results show that nearly all of the difference in disruptiveness is attributable to the 
PNAS Plus articles having larger 𝑟𝑝 on account of their extended online-only publication format. Hence, a significant amount of the 
variation in 𝐶𝐷 derives from variation in 𝑟𝑝, which could follow simply from journal-specific constraints on article lengths. By way 
of example, our analysis based upon the temporally-standardized disruption measure Norm𝐶𝐷𝑝,5 defined in Eq. (2) shows that the 
covariate with the largest effect size is 𝑟𝑝 , which features a 0.14𝜎 effect size for each unit change in ln 𝑟𝑝 – see Table S4.

While in this work we do not propose specific modifications to the disruption metric that address the various measurement bias 
challenges we identified, we do recommend that citation metrics satisfy the following three conditions. First, in support of cross-

temporal analysis, metrics should follow a stationary distribution over time, such as with normalized citation metrics that leverage 
the log-normal distribution of citation counts (Petersen et al., 2018; Radicchi et al., 2008). Second, metrics should be at most weakly 
sensitive to the secular growth of the academic enterprise, in particular CI deriving from increasing 𝑟(𝑡) and 𝑛(𝑡). And third, citation 
metrics should capture the consensus of the broader scientific community (as with citation counts) and not be entirely dependent on 
author choices (as with the selection of items included in a reference list).

We conclude with a hypothetical policy consideration regarding the management of the scientific publishing enterprise. As refer-

ence list lengths become longer, some journals now propose soft caps on the number of references allowed, which is more typical in 
letters journals such as Nature. While supporting acuity and conciseness, such caps also temper the effects of CI in research evaluation. 
Our computational simulation shows that journal policies that limit 𝑟𝑝 could ameliorate the systematic decrease in 𝐶𝐷(𝑡), and could 
simultaneously address related shortcomings in citation practice – such as, surgical self-citation by authors (Ibrahim et al., 2024; 
Ioannidis et al., 2019), large-scale citation rings (Evdaimon et al., 2024), institutional and national collectives (Qiu & Qiu, 2024; 
Tang et al., 2015), and journal impact-factor boosting (Ioannidis & Thombs, 2019; Martin, 2016).1

1 Yet much deeper modifications to academic publishing process and culture are needed in order to fully stymie such citation trends. It is worth noting that the 
patent citation system involves patent examiners who mediate the annotation of prior art citations. Implementation of third-party reference list annotators in academic 
journals could reduce the phenomena of surgical self-citation, and points to the use-case of unbiased academic-AI examiners to serve this role in the academic peer-
11

review process.
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