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Abstract 

Ecological Genetics of Stipa pulchra in Environmental Restoration 

by 

Kathleen Ida Rassbach 

Doctor of Philosophy in Wildland Resource Science 

University of California, Berkeley 

Professor Lynn Huntsinger, Chair 

 

 Ecological restoration has become a large enterprise driven by regulatory policies and by 

public and private initiatives.  Regulatory agencies and ecologists call for use of  propagules that 

are adapted to project sites, compatible with other species, and genetically diverse.  This project 

uses a native California grass, Stipa pulchra, to ask whether the cost-management practice of 

collecting seeds from dense stands of target species can have unintended selective effects on 

species used in restoration.  Absolute cover, standing biomass, species composition, and S. 

pulchra density and culm count were recorded on plots in three central California sites.  S. 

pulchra seeds from these plots were sown in pots allocated to two watering groups and three 

temporal blocks. 

 Pot-study plants grown from seed collected from plots with greater S. pulchra density and 

absolute cover had significantly higher basal diameters, tiller counts, and root: shoot ratios.  

Plants derived from less-competitive plots set seeds earlier and gave rise to more culms.  These 

results indicate that distribution of S. pulchra genotypes in the field may reflect a competition: 

colonization pattern, with more fecund S. pulchra plants inhabiting less-competitive patches than 

those occupied by their more-competitive conspecifics.  Other aspects of pot-study plant growth 

appeared to correlate with background vegetation of the field plots.  Although plants grown from 

seeds collected at the three sites were significantly different, there was no evidence that 

ecological distance reflected geographic distance.  Plants receiving more water had relatively 

greater aboveground growth and lower root: shoot ratios.  Statistical interactions of blocking and 

watering treatments with site may reflect plant adaptation to climate and soil at the various sites.  

Implications of these results apply to environmental restoration and extend to ecological 

research, where nonrandomly collected propagules are often used to represent genetic 

characteristics of entire populations. 
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Chapter 1.  Introduction 

 

Every year, thousands of seed-company workers, public-agency employees, volunteers, 

and enthusiasts fan out across American wildlands to collect native seed.  Their goal is the 

restoration of habitat in places ranging from roadsides and urban streambanks to vast areas 

devastated by fires, mining, flood-control projects, and development.  Restoration projects 

require huge and growing amounts of seeds at substantial cost.  The questions of whether seed 

collection costs and convenience directly and unavoidably impinge on capturing the genetic 

variability of wild populations, and whether this results in nonadaptive genetic selection, 

prompted this project.  While this study focuses on seeds, many of the issues discussed apply to 

cuttings and other propagule types as well. 

 Little information is available on quantities of native seed used nationally, but a few 

figures may provide a sense of scale.  The ecological restoration industry employs an estimated 

126,000 workers and generates nearly $10 billion in economic output annually in the United 

States alone (BenDor et al. 2015).  In the western United States, the largest revegetation need is 

post-fire rehabilitation, where action required on short notice often leaves little opportunity to 

prepare ahead.  In 1999, at least 1.7 million acres of land burned in the Great Basin (BLM 1999).  

Over five million pounds of seed were dispersed over burnt rangelands in Nevada, nearly a third 

of which came from native plant species (Christensen 2000).  The 2007 Murphy Fire complex in 

Idaho and Nevada charred 650,000 acres, requiring an estimated 1.4 million pounds to reseed a 

third of the area.  Hundreds of volunteers were sent into the desert to collect part of the seed, 

despite the drought-induced reduction in seed availability (J. Miller 2007).  In Utah, reseeding 

25,000 acres of the 47,000-acre Wood Hollow Fire restoration area required 352,000 pounds of 

seed at a cost of $3.2 million (Prettyman 2012).  An examination of over 1200 USDA Forest 

Service Burned Area Emergency Response reports taken in the western US during four decades 

(1970s–2000s) found that the area burned annually by wildfire increased several-fold over this 

time, and that the rate of increase accelerated after 1990 (Robichaud et al. 2014).  From 1997 to 

2012, the total area of US land that burned annually continued to increase, to over nine million 

acres (Bracmort 2013).  In recent years, the US Bureau of Land Management (BLM) has 

purchased an annual average of 1.4 million kg of seed annually, mostly for post-fire use, and has 

often needed much more (Oldfield & Olwell 2015).  

 Native seed is costly, ranging from $10 to over $4000 per pound (Olwell 2002; Agrecol 

Native Nursery 2015).  Source-identified
1
 grass seed costs roughly $15-40 per pound for species 

such as Elymus glaucus and Danthonia californica, to as much as $800 per pound for 

Calamagrostis canadensis (Earth-Source, Inc. 2013; Heritage Seedlings, Inc. 2015).  During the 

period 2000 to 2007, Forest Service emergency seeding expenditures increased 192 percent 

compared to the average during the previous 30 years (Peppin et al. 2010).  The BLM native 

plant program budget has experienced similar increases (Figure 1).  An average of 21 percent of 

burned area was seeded in the 1970s, compared to only four percent between 2000 and 2007.  

                                                 
1 Seed identified as to species and location of the parental population. 
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The increased per-acre seeding cost likely reflects increased use of native species and sterile 

hybrids (Peppin et al. 2010). 

 The business of providing seeds and plants for restoration has grown rapidly.  Dozens of 

companies, most of them small businesses, market native plants through revegetation trade 

journals and on the Internet (A. White et al. 2017).  Native-seed producers are steadily expanding 

production (Strategic Marketing Services 2002); one seed-collection and contract-growing 

company, Bitterroot Restoration, reported 40% per year growth for 10 years (Fitzsimmons 2002).  

Unscrupulous or poorly informed seed harvesters have been caught harvesting hundreds of 

pounds of seeds illegally from public lands (Bragg 2000; Stark 2009).  Seed companies often buy 

seeds from many individuals and have to depend on the collectors' integrity and knowledge, thus 

taking the potentially ruinous risk of selling mislabeled seeds.  As a result, some seed companies 

actively avoid local-ecotype seed (S. Smith et al. 2007). 

 Against this backdrop, concerns have been raised about native herb and shrub germplasm 

that is transferred from one location to another (Handel et al. 1994; Helenurm & Parsons 1997; 

2001 2012 

Figure 1. 

US Bureau of Land Management Native Plant 

Program Budget 2001–2012  
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Hufford & Mazer 2003; Knapp & Rice 1996 and 1997; Montalvo & Ellstrand 2000; S. Williams 

& Davis 1996).  Gustafson et al. (2004a and 2004b), for example, found that restored grass 

populations established with presumably local seeds shared greater genetic resemblance with one 

another than with nearby remnant populations, and that populations spread over 200 km that had 

been restored by the same restoration practitioner were genetically more similar to each other 

than to nearby populations.  Y-Y Li et al. (2005) found that artificial populations of the 

endangered dawn redwood (Metasequoia glyptostroboides) were more similar to one another 

than to remnant wild populations.  The limited genetic variation in these restored populations has 

resulted in reduced seed mass and germination rates (Y-Y Li et al. 2012). 

The debate continues today, indeed, the number of scholarly journal articles about 

restoration genetics has increased exponentially (Mijangos et al. 2015).  Issues discussed in the 

literature include maladaptation to abiotic factors such as fire (Falk 2006), soil (Bakker & 

Berendse 1999; Mahieu et al. 2013; Ohsowski et al. 2012), and climate (Johnson et al. 2010); 

and biotic factors such as arthropod consumers, mutualists, pollinators, and pathogens (Cox et al. 

2013; Dixon et al. 2009; Gibbs et al. 2008; Halpern et al. 2007; Kardol & Wardle 2010; Ritchie 

& Johnson 2009).  Insufficient genetic variation may lead to poor long-term adaptation of a 

restored population (Hufford & Mazer 2003; Kettenring et al. 2014).  Where basic adaptation can 

be assured, there remain concerns about genetic compatibility, including introduction of invasive 

genotypes and genetic inundation of small local populations by larger introduced ones (Byrne et 

al. 2011; Millar et al. 2012).  The potential for inbreeding depression, which can affect 

outcrossing species, must be balanced against potential outbreeding depression, an issue for 

inbred species that may not become apparent until the F2 or subsequent generations (Bowles et 

al. 2015; Edmands 2007; Frankham et al. 2011; Lloyd et al. 2012).  Critics worry that fitness of 

existing local populations can be reduced by germplasm introductions, through breakup of 

adaptive gene complexes (Hufford & Mazer 2003; Pélabon et al. 2005); genetic swamping 

(Byrne et al. 2011; Handel et al. 1994; Hufford & Mazer 2003; K. Rice 1995); differing 

flowering phenology (Montalvo et al. 1997), and mismatched ploidy in species with multiple 

ploidy levels (Delaney & Baack 2012; Hufford & Mazer 2003).  Ample disagreement exists on 

these topics (e.g., Cronn et al. 2003; Frankham et al. 2011; Larson et al. 2001). 

Population genetic data is lacking for many wild species.  Critical factors such as mating 

system, gene flow, and ploidy may vary among subpopulations of a species in time and space, 

limiting the applicability of available research (Booy et al. 2000; Coates et al. 2013; Delaney & 

Baack 2012; Etterson et al. 2016; Gehring & Linhart 1992; Knapp & Rice 1996; Liston 2003; 

McArthur & Tausch 1995; Severns & Liston 2008).  Inbred species in particular show variation 

among populations in allele diversity and effective neighborhood size (Schoen & Brown 1991).  

Natural plant populations frequently feature small-scale genetic differentiation in a wide range of 

characters, often reflecting limited gene dispersal and spatial heterogeneity in environmental 

characteristics (Lara-Romero et al. 2014; Linhart & Grant 1996; McLeod et al. 2012; Vekemans 

& Hardy 2004).  Genotypes can be extraordinarily localized, even differing over a few meters 

(Bennington et al. 2012; Bockelmann et al. 2003; Knapp & Rice 1998; Krauss et al. 2013; Y.C. 

Li et al. 2000; Linhart 1988). 
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 Data available to guide restoration practitioners and policy makers is limited.  

Conservation genetics studies generally focus on rare or threatened species, which, because of 

factors related to their rarity, may have population genetic characteristics quite different from the 

community dominants commonly used in restoration programs (Aguilar et al. 2008; Cole 2003; 

Honnay & Jacquemyn 2007).  Rare plants, moreover, may not contribute substantially to 

ecosystem productivity, while the diversity of community dominants, including genetic diversity 

within species, may regulate ecosystem function and composition (Barbour et al. 2009; Grime 

1998; Gustafson et al. 2004b; Seliskar et al. 2002; Whitham et al. 2006). 

 The genetic unknowns interact with the practical elements of restoration, which include 

who is carrying out the restoration and why, applicable regulations, and funding.  Public and 

private agencies often ask producers to meet specific requirements in collection, agronomic seed 

production, and handling of propagules based on limited information about genetic 

characteristics of individual species and populations, all of which can affect the genetic 

characteristics of restoration plantings (Clewell & Rieger 1997; Dorner undated; Knapp & Rice 

1994, 1996, and 1997; Lippitt et al. 1994; Montalvo et al. 1997; S. Smith et al. 2007).  Seed-

source requirements in turn may increase restoration project cost and complexity (Mustoe 2014; 

Richards et al. 1998; Scianna 2003; Strategic Marketing Services 2002).  While many native-

plant seed companies and nurseries claim to provide seeds for specific, site-appropriate ecotypes, 

source population and genetic background of planting stock is often unknown (Cronn et al. 2003; 

Gehring & Linhart 1992; Gibbs et al. 2012; Gustafson et al. 2004a).  At worst, seeds are 

sometimes of the wrong species or are interspecific hybrids (Dunwiddie & Delvin 2006; Gibbs et 

al. 2012; Pendleton et al. 2008). 

 The cost and viability of seed may depend on how it is harvested or otherwise produced 

for planting.  Commercial seed collectors are paid based on the amount of seed collected, and 

may be motivated to collect when and where it is easiest.  Contract growers grow out, or 

"increase," wild-collected, sometimes site-specific seeds and cuttings.  Cultivars of native 

species have been developed for restoration and revegetation.  Growing native plants under 

agronomic conditions, however, may allow selection, drift, and inadvertent cross-pollination 

with other genotypes to shift the means and variances of plant genetic characteristics (A. Dyer et 

al. 2016; Ferdinandez et al. 2005; Montalvo et al. 1997; Schröder et al. 2013; Soleri & Smith 

1995). 

 

Intent of This Study 

 Little data apparently exists on actual among-microhabitat collection practices for native 

herb and shrub germplasm.  The need for cost control may prompt harvesters to seek out and 

harvest from patches containing relatively high densities of target plants, which greatly simplifies 

and speeds collection of herb and grass seed.  This study asks whether this practice may affect 

the genetic characteristics of collected seeds.  If subpopulation differentiation can occur in the 

absence of obvious abiotic environmental variation, it may be wholly unapparent to seed 

collectors.  If adaptive genetic differentiation can occur at the subpopulation level, and if some 

subpopulations are inherently difficult, unpleasant, or time-consuming to harvest, harvesters may 
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encounter substantial difficulties capturing adaptive differentiation within the practical 

limitations of seed collection. 

This research question emerged from a seed collection trip I took with a reputable 

commercial seed supplier that allowed me to observe some aspects of the economic forces in 

seed collection.  Early in the trip, we examined a site that included the target species Danthonia 

californica mixed with the undesirable species Bromus tectorum, each at roughly 40% relative 

dominance.  The culms of both grass species were erect, ripe, and about the same height.  As we 

collected a few ounces of seed, I quickly found that Danthonia seeds had to be harvested stem by 

stem with careful attention to species identification to avoid collecting Bromus.  The seed 

contractor rejected the site as too "weedy" for economical harvesting.  We later visited one of his 

work crews camped out nearby.  The contractor gave them a sample of the Danthonia seeds, and 

instructed them to look out for dense Danthonia patches to harvest.  Danthonia was a new 

product for this contractor, and I later learned that he missed an important factor: Danthonia 

carries much of its seed as cleistogenes at the base of its culms, and restoration harvesters 

generally take whole culms to winnow later (Kathleen Kraft 2002, pers. comm.).  This illustrates 

another issue in commercial seed collection: seed suppliers don't always have the luxury of 

adequate information.  Their workers, moreover, are by no means professional botanists.  The 

camping-out crew members were indigents recruited from city streets, and other harvesters we 

visited included the children of local ranchers.
2
  Like the seed contractor, all of these harvesters 

were paid by the pound.  Seed harvesters need to meet purity requirements, which ensures they 

avoid weed species, but they may have little financial incentive to harvest from a wide range of 

subpopulations within a collection area, and substantial motivation to collect large quantities of 

seed as quickly as possible.  If subpopulations vary in their genetic characteristics, then the 

understandable human tendency to collect seed where doing so is easy and efficient may produce 

unintended selection among genotypes. 

This study examines inherited differences between Stipa pulchra (purple needlegrass) 

plants originating in relatively dense patches versus conspecifics growing sparsely intermixed 

among other species, and focuses on traits that might affect plant performance in restoration 

projects.  The contrast of dense versus sparse patches may bring to light cost-driven, unintended 

selection by seed harvesters among genetically different subpopulations.  This study assumes 

there may be unintended impacts from translocation of inappropriate genetic material in the 

effort to produce new populations or augment existing ones.  The study species is the most 

widespread native California grass species today, and is therefore relatively well-studied and 

often used in revegetation projects (Corbin et al. 2004).  The study sites are natural populations 

in the San Francisco Bay Area that evidently have not been substantially disturbed for at least 20 

years. 

 Chapter 2 explores population genetics theory as it applies to this study.  Chapter 3 

discusses seed collection and production for restoration in light of concerns about restoration 

                                                 
2
 Some restoration projects, including seed collection, are carried out by specially-trained prison inmates (Carl 

Elliott 2016, pers. comm).  Mr. Elliott is Conservation Nursery Manager of the Sustainability in Prisons Project 

(http://sustainabilityinprisons.org). 
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genetics, and Chapter 4 discusses regulatory approaches to these concerns.  Chapter 5 describes 

the study context and the challenge of restoring California grasslands, and presents the study 

hypothesis.  The study sites and experimental methods, including field observations, seed 

collection, and a common-garden study, are described in Chapter 6.  Chapters 7 and 8 present the 

detailed results of the field and common garden study.  The implications of the study results, 

both for ecological theory and environmental restoration, are presented in Chapter 9. 
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Chapter 2.  Role of Population Genetics in Ecological Restoration 

 

Ecological restoration is the effort to produce natural ecosystems by artificial means, in 

order to secure ecosystem services such as erosion control and water filtration, ensure habitat for 

rare species, and maintain wildland species out of respect and appreciation.  Restoration efforts 

are thus controlled both by human preferences and the exigencies of nature.  This chapter 

reviews scientific efforts to define what is needed and what is best avoided in providing plants 

that are genetically adapted to restoration sites.  Key restoration-genetics goals that may 

sometimes come into conflict are local adaptation, adequate genetic diversity, and ability of 

restored populations to adjust to altered conditions such as climate change. The second part 

discusses how patchiness in populations may be reflected in their genetic composition.  

 

Defining Restoration 

 Environmental restoration may be defined as manipulation of natural processes of 

ecological succession to create self-organizing native ecosystems, including viable populations 

of native species that are well-adapted to current conditions and possess enough genetic variation 

for continued evolution (Bradshaw 1996; Hobbs & Norton 1996; Knapp & Rice 1994).  The 

BLM Integrated Vegetation Management Handbook defines restoration as "implementation of a 

set of actions that promotes plant community diversity and structure that allows plant 

communities to be more resilient to disturbance and invasive species over the long term" (BLM 

2008, p. 3-12).  While this definition does not specify indigenous species, BLM policy and 

practice, as discussed in Chapter 4, have increasingly emphasized native species.  The Society 

for Ecological Restoration (SER) describes an ecosystem as successfully restored "when it 

contains sufficient biotic and abiotic resources to continue its development without further 

assistance or subsidy," can "sustain itself structurally and functionally," and will "demonstrate 

resilience to normal ranges of environmental stress and disturbance" (SER 2004, p. 3).  The SER 

Primer specifies that the restored ecosystem will be comprised mostly or entirely of indigenous 

species. 

 Other forms of revegetation do not make a goal of recreating the original ecosystem.  

BLM, for example, defines post-fire rehabilitation as the "repair" of a wildland fire area using 

native or nonnative plant species to obtain a stable plant community that will protect the burned 

area from erosion and invasion by weeds; and defines "revegetation" as establishing desirable 

plants in areas where they are absent or of inadequate density.  The US Department of the 

Interior (DOI) defines "reclamation" as the process of reconverting disturbed land to its former 

or other productive uses, a definition commonly applied in the context of mined lands (DOI 

2013).  DOI notes that the definition of "restoration" and similar terms varies among authorizing 

and implementing agencies.  Stahl et al. (2006) observe that definitions of ecological restoration 

and land reclamation have become more similar since the 1970s, perhaps due to the recognition 

that disturbed sites cannot often be restored to pre-disturbance conditions, and due to legal 

requirements for remediation of planned disturbances that increasingly call for use of native 

species and reestablishment of certain levels of diversity.  
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The effort and expense required for restoration ranges from limited management of 

relatively unmodified sites, to "building of ecosystems from bare ground" on devastated places 

such as mines (Montalvo et al. 1997).  The aim in all cases is to develop a sustainable, essentially 

natural system within limitations of time and budget.  Physical site restoration is sometimes 

enough to allow establishment of native species from the soil seed-pool or through immigration 

from nearby populations (Hobbs & Norton 1996).  Native plants, however, may be seed- or 

recruitment-limited, or prevented from site dominance by invasive species (Kettenring & 

Galatowitsch 2011).  Where disturbance is more severe or native species cannot return on their 

own, restoration extends to planting seeds, cuttings, or other germplasm of one or more species.  

The long-term goal is creation of self-sustaining communities that will support ecosystem 

functions and processes in turn requires plants that are well-adapted to current and future site 

conditions, and will thrive without damaging surrounding ecosystems (Lesica & Allendorf 

1999).  In sum, restorationists need germplasm that is genetically appropriate and fits within 

project budgets. 

 

The Call for Local Germplasm 

 Restoration researchers and practitioners have generally preferred local genotypes for 

restoration purposes (Bischoff et al. 2010; Hancock & Hughes 2012; Hufford & Mazer 2012; 

Johnson et al. 2010; Jones 2013; Krauss et al. 2013).  Restoration guidelines often call for seed 

collected near the restoration site to avoid negative impacts of maladaptation, inbreeding and 

outbreeding depression, and spatial genetic homogenization or genetic swamping (Krauss & He 

2006; McKay et al. 2005; Mortlock 2000).  Preference for local germplasm reflects a substantial 

body of research demonstrating that plants are commonly adapted to their habitat of origin.  This 

"home-site" advantage is particularly apparent in reciprocal transplant experiments where the 

sites used differ in important environmental characteristics such as climate regime, and where 

experiments have continued for a number of years, allowing differences among plants to become 

more apparent (J. Anderson et al. 2011; Bennington et al. 2012; Hufford & Mazer 2012; Ishizuka 

& Goto 2011; K. Rice & Knapp 2008; Vander Mijnsbrugge
 
 et al. 2010; Verhoeven et al. 2011).  

 Using local germplasm may reduce risk of restoration-project failure, and can help 

conserve the genetic diversity represented among populations (Sackville-Hamilton 2001).  Local 

seed may be most important for species with high degrees of population differentiation, such as 

species characterized by short lifespans, small dispersal areas, and self-pollination (L. Garnier et 

al. 2002; Handel 1985; Krauss & He 2006; Levin and Kerster 1971; Loveless & Hamrick 1984; 

C. Williams 1994).  Where a species has limited gene flow, its populations may have long 

genetic memories of initial colonization patterns and subsequent site variations such as climate 

or disturbance (Loveless & Hamrick 1984); Schmitt 2007). 

 Use of local germplasm can help ensure compatibility among species on a restoration 

site.  An ecosystem is not truly restored unless it supports a normal complement of reference-

system species in full interaction with one another and their environment.  As restorationists can 

only plant a subset of an ecosystem's component species, success of a restoration may depend in 

part on genetic compatibility between the restored species and other suitable species that are 
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already in place or are likely to colonize from adjacent areas.  Vandegehuchte et al. (2012) 

studied arthropods living on local and introduced genotypes of the beach grass Ammophila 

arenaria, and found that the diversity of the invertebrate community decreased with increasing 

geographical distance from the plants’ location of origin.  Longcore (2003), working in 

California coastal sage scrub, found that while plant diversity, percent cover, and structural 

complexity did not differ between undisturbed sites and sites restored 15 years earlier, arthropod 

diversity remained lower at restoration sites than at undisturbed or even disturbed sites.  

Longcore et al. (1997), citing unpublished data showing that non-local ecotypes of otherwise 

local plant species may fail to support local insect species, comment that, "a restoration is not 

successful if the plants kill the organisms that depend on them." 

 How local is local enough?  The value of using local germplasm varies among species, 

populations, and restoration projects; it also varies among the differing perspectives of 

restoration researchers.  Adaptation can vary sharply, even over a few hundred meters in areas 

with strong contrasts in edaphic conditions or effective climate regime, such as salt-marsh 

salinity gradients, or snow fields as they ascend to windy ridgetops (Bennington et al. 2012; 

Bockelmann et al. 2003; Lara-Romero et al. 2014).  Plants growing along such gradients can 

vary in flowering phenology, and hybrids derived even from closely spaced populations could 

miss the pollination window (Lara-Romero et al. 2014).  Individual traits may vary in spatial 

genetic structure; for example, traits controlling seedling size may be correlated with temperature 

regime, while root growth may correlate with moisture availability (O'Brien et al. 2007; St. Clair 

& Johnson 2004). 

 Restoration using nonlocal genotypes can produce mixed populations that can replace 

distinctive populations with hybrids, a process called genetic swamping (Todesco et al. 2016).  

Hybrid populations may be unusually vigorous and unduly competitive (Gustafson et al. 2004a 

and 2004b; Schierenbeck & Ellstrand 2009).  Conversely, even where population mixing 

increases fitness via heterosis in the F1 generation, chromosomal recombination may disrupt 

intrinsic coadapted gene complexes (positive epistatic interactions), potentially reducing fitness 

in the F2 generation and beyond (Keller et al. 2000; Tallmon et al. 2004).  Fenster and Galloway 

(2000) found that in some species, making crosses among populations separated by only 

hundreds of meters can result in disruption of fitness components across all phases of life history.  

Finding no linear effect of distance between populations in the extent of hybrid breakdown, they 

state that as much differentiation occurs between populations at the local level as at higher levels.  

The issue is complicated by studies that demonstrate elements of both heterosis and outbreeding 

depression, sometimes at different life stages (Bowles et al. 2015; Edmands 2007).  Some of the 

few studies that follow organisms into F2 and later generations find that initial heterosis in the F1 

generation may be followed by poorer performance in the F2 and F3 generations attributed to 

breakup of adapted complexes, which in turn may or may not be followed by rebounding 

performance in the F6 or later generations (Erickson & Fenster 2006; Johansen-Morris & Latta 

2006; Kramer & Havens 2009).  Where hybridization of indigenous and outside genotypes is 

unlikely, for example, due to differing flowering phenology, the introduced population may 
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simply overwhelm the indigenous plants through greater competitiveness or fecundity 

(Holmstrom et al. 2010). 

 Optimal maximum distances for seed transfer may be species- or even population-

specific, based on the degree of outcrossing and dispersal of each species (Hufford & Mazer 

2003; McCann 2014).  Many conifer species, for example, disperse their genes over wide areas 

(Johnson et al. 2004), but for some conifers, natural gene flow would limit seed collection zones 

to less than 1 km across (Govindaraju 1990; St. Clair & Johnson 2004).  Some restorationists call 

for developing seed-transfer prescriptions based on species- and population-specific data 

regarding ploidy levels, lifespan, mating system, and other factors (Knapp and Rice 1996).  

Because detailed data is unavailable for many species, using propagules from the immediate 

vicinity or nearby populations in matching habitats may entail fewer risks than obtaining 

germplasm from a regional seed-transfer zone (O’Brien & Krauss 2010; Vander Mijnsbrugge et 

al. 2010).  The California Native Plant Society (CNPS) recommends planting germplasm from 

within the same watershed and the same altitude as the project site (CNPS 1995 and 2001); and 

the National Park Service has specified plants from within the same watershed for Golden Gate 

National Recreation Area (McCann 2014).  Where genetic data is lacking, Linhart (1995) 

recommends collecting within areas of probable genetic similarity, e.g., within 100 m for herbs 

and 1 km for trees, distances that may not often be practicable. 

 Why local may not always be best.  Although restorationists commonly prefer locally-

sourced germplasm (Hancock & Hughes 2012), a number of researchers have questioned the 

local-is-best dictum.  Local populations are not always better adapted to a site than populations 

from other, matched provenances (Jones 2013; Leimu & Fischer 2008).  Fragmentation, 

maladaptive drift, genetic impoverishment, and inbreeding can reduce the value of local 

populations, particularly small ones, as seed sources (Broadhurst et al. 2008; Honnay & 

Jacquemyn 2007; Kettenring et al. 2014; McKay et al. 2005).  The alleles needed to adapt to 

changing environments may also be low-frequency alleles, which are the most easily lost from 

small populations.  Where microclimatic or soil conditions vary sharply, plants from nearby 

populations may be poorly adapted to a restoration site, and plants from similar environments 

may provide a better match (Jones 2013; Lawrence & Kaye 2011; Whalley et al. 2013).  Extreme 

disturbance or contamination, such as is often found at abandoned mine sites, may also preclude 

compatibility of local germplasm (Johnson et al. 2010; Lesica & Allendorf 1999).  Where 

adaptation of local and nearby populations to a restoration site are not at issue, local germplasm 

may remain problematic due to the potential impacts of overharvesting seeds from source 

populations (Broadhurst et al. 2008; Meissen et al. 2015; Mortlock 2000; S. Smith et al. 2007).  

From a practical standpoint, a large number of restoration projects, each with its own local 

germplasm sources, would lead to many small collection zones (versus a few large ones), in turn 

translating into higher costs and operational complexities for both resource managers and 

commercial seed producers (Cronn et al. 2003; Mustoe 2014). 
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The Need for Genetic Diversity 

 Artificial populations need to contain adequate genetic diversity in order to thrive.  

Concerns about restoration germplasm relate to both the genetic mean and variance of a restored 

population, that is, whether newly established populations will be adapted to conditions currently 

normal to a site and also be able to adapt to environmental changes over time.  While local 

germplasm is commonly recommended, local populations may not exist.  Of particular concern 

is the potentially limited genetic diversity of some source populations.  As a result, the goals of 

near-term adaptation and long-term adaptability can come into conflict. 

 Populations originating from a small number of genotypes may suffer founder effects and 

greater vulnerability to environmental change (Wise et al. 2002).  Loss of genetic variation can 

also increase likelihood of inbreeding depression, as well as reduced fecundity through loss of 

self-incompatibility alleles (Frankham 2005; Frankham et al. 2011).  The capacity to adapt will 

become increasingly important as mean climate conditions shift and climate variability increases 

in the wake of global warming (Booy et al. 2000; Jump & Peñuelas 2005). 

 Experiments suggest that genetic variability in restoration plantings can result in better 

survival, denser restored populations, greater invasion resistance, greater interspecific diversity, 

and improved provision of ecosystem services (Crawford & Rudgers 2012 & 2013; Crawford & 

Whitney 2010; Crutsinger, Souza & Sanders 2008; Forsman & Wennersten 2015; Hughes et al. 

2008; Maschinski et al. 2012; Reynolds et al. 2012; Vellend 2006).  Much as species diversity 

can increase ecosystem productivity, including productivity of planted communities (Brooker et 

al. 2008; Callaway et al. 2003; Grime 1998; Guo 2007), genetic diversity within species can 

similarly influence population fitness and productivity (Bischoff et al. 2010; Crawford & 

Whitney 2010; Crutsinger, Souza & Sanders 2008; Forsman & Wennersten 2015, Hughes et al. 

2008).  Populations with high levels of heterozygosity may have greater ecological amplitude 

(Procaccini & Piazzi 2001), attributable to the higher fitness of heterozygous individuals under 

some circumstances, and the greater genetic diversity often present in populations with high 

levels of heterozygosity (Booy et al. 2000).  Genetic diversity in plant populations provides for 

spatial and temporal variation in disease-resistance traits, promoting both individual and 

population fitness (Booy et al. 2000; Linhart 1991; Lively 2010).  In eelgrass (Zostera marina) 

this diversity leads to greater shoot density and patch expansion, greater biomass production, 

more flowering, higher percent seed germination, greater faunal abundance, and greater tolerance 

of high water temperatures and other disturbances (Hughes & Stachowicz 2011; Reusch et al. 

2005; S. Williams 2001).  Some authors attribute increased population performance and biomass 

production in genetically diverse populations to niche partitioning and facilitation (Drummond & 

Vellend 2012; Ennos 1985; Hughes et al. 2008).  Others note that research in this area generally 

focuses on short-term plantings with limited numbers of genotypes, and caution that sampling 

effects of including one or more high-yielding genotypes in mixtures may result in increased 

productivity, which in turn may prove transient (Münzbergová et al. 2009). 

 Interspecific effects of within-species genetic diversity.  Genetic variation within 

component species may influence community species diversity and ecosystem functions (Ehlers 

et al. 2016; Gibson et al. 2012; Proffitt et al. 2005; Seliskar et al. 2002).  Violle et al. (2012) 
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contrast three theories that address the relationship of inter- and intraspecific diversity within 

ecosystems. 

 In niche-based theory, the range of resources used by each species (niche width) must 

become narrower as the number of species increases; as species richness increases, 

therefore, intraspecific variation decreases. 

 In neutral theory of biodiversity, intraspecific variation in a community is unpredictable 

and is not related to species diversity.  

 In individual-variation theories, high levels of intraspecific variation help maintain 

interspecific diversity: "high diversity is possible because species differ in so many ways" 

(J. Clark 2010).  

Modeling studies of single functional groups or trophic levels can generate highly variable and 

context-dependent predictions of the effect of genetic diversity on species diversity.  Some 

models indicate that increased intraspecific variation would result in competitive exclusion of 

species, while others support the idea that "diversity begets diversity," an effect enhanced by the 

sessile character of plants. 

 Observational studies reveal that species diversity and intraspecific genetic diversity are 

often correlated (Vellend & Geber 2005).  This is particularly true of studies using discrete 

sampling units such as islands or lakes, versus studies using non-discrete sampling units such as 

equal-area plots (Vellend et al. 2014).  Possible mechanisms for this relationship include species 

diversity fostering genetic diversity (Adams & Vellend 2011), or genetic diversity fostering 

species diversity (Booth & Grime 2003).  It is possible, however, that the correlation stems 

simply from parallel processes acting in a similar manner on both levels of diversity.  Causation 

is difficult to assign in observational studies, in that factors that influence species diversity, such 

as habitat area, environmental heterogeneity, and migration, similarly influence genetic diversity 

within species (Vellend & Geber 2005). 

 Experimental work generally reveals positive correlations between intraspecific and 

interspecific diversity (Whitlock 2014).  Booth and Grime (2003), for example, assembled 

experimental grassland communities of 11 component species using one to four genotypes of 

each species.  Over the next several years, genetically depauperate assemblages lost more species 

diversity (though not significantly) compared to richer communities, and had significantly less-

predictable and less-consistent canopy structure and proportional species composition.  Crawford 

and Rudgers (2012), working with Ammophila breviligulata (American beachgrass) as the 

dominant species in a dune system, manipulated three types of diversity: genetic diversity of 

Ammophila alone; species diversity alone; and species diversity simultaneously with genetic 

diversity in Ammophila.  As genetic diversity within Ammophila increased, the relationship 

between species diversity and community-level biomass shifted from negative to positive. 

 Interactions between interspecific coadaptation and genetic diversity.  Where 

changes in one taxon shift selection pressures in another, the evolution of the two taxa may come 

to be partly dependent on each other (Begon et al. 1990).  This reciprocal relationship operates 

on an individual basis, where the specific genotype of one individual acts on the specific 

genotype of the other.  Experimental studies have found that interactions between plants of 
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different species can vary on a genotype-by-genotype basis.  Taylor and Aarssen (1990), 

studying perennial grasses in a Canadian hayfield, found that certain genotypes of a 

competitively inferior species may outcompete some genotypes of other species that are usually 

competitively superior.  Fridley et al. (2007) grew assemblages of Koeleria macrantha, Carex 

caryophyllea, and Campanula rotundifolia under differing conditions of soil fertility and 

simulated grazing.  Each genotype of the grass performed best next to a different genotype of the 

sedge, and the identity of the highest-performing genotype pairings varied with environment.  

Kelley and Clay (1987) found that co-occurring genotypes of two perennial bunchgrasses, 

Anthoxanthum odoratum and Danthonia spicata, differed in interspecific competitive 

performance; the competitive performance of a specific genotype of one species often depended 

on the genotypic identity of the other species.  Aarssen & Turkington (1985), found that 

Rhizobium and Lolium that are neighbors in the field, when combined, disproportionately 

increase yield of Trifolium when compared to unassociated Rhizobium/Lolium pairings; this 

relationship exists regardless of Trifolium genotype, and is apparently mediated by Rhizobium 

interaction with Lolium (see also Chanway et al. 1989).  Specific genotypes of dominant plant 

species can influence establishment and tissue allocation of specific genotypes of heterospecific 

neighbors (Genung et al. 2012; Gustafson et al. 2014). 

 Where local populations of interacting species have coevolved, genetic variation 

particularly within keystone or dominant species may support species richness in other trophic or 

functional groups (J. Bailey et al. 2009).  Conversely, introduced populations may fail to interact 

compatibly with their new neighbors.  In the case of invasive species, release from enemies, 

indeed release from community complexity (Strauss 2014), can contribute to their ability to 

invade.  In the case of restored species, introduced populations may not only fail to thrive, but 

may also fail to support other species in the community (Longcore 2003; Severns 2011). 

 The relatively new field of community genetics addresses genetic interactions that occur 

between species in complex communities (Whitham et al. 2006).  Most studies to date have 

focused on the effects on arthropod communities of genetic variation in dominant plant species, 

particularly effects mediated by plant secondary metabolites.  Crawford and Rudgers (2013) 

found that genetic diversity in Ammophila breviligulata can influence arthropod communities 

more strongly than does plant species diversity, with arthropod richness and abundance peaking 

at high levels of Ammophila genetic diversity.  Genotypic diversity in tall goldenrod (Solidago 

altissima) can have strong effects on diversity and composition of foliage-consuming arthropods, 

although effects on litter-based arthropods may be smaller (Crutsinger, Reynolds et al. 2008).  

Whitham et al. (2003) have studied how resistance in pinyon pine (Pinus edulis) to a stem-boring 

moth cascades through multiple trophic levels.  Stem-borer damage affects pine tree morphology 

and seed production, and genetic variation in resistance therefore influences competition between 

rodents and birds for seeds, in turn influencing dispersal distance of pinyon seeds.  The stem-

borer resistance factors also influence soil microbes.  In another tri-trophic study, Poelman et al. 

(2013) found that parasitoid wasps may be more attracted to plants that, when damaged by 

herbivores, release relatively large amounts of volatile compounds, a genetic trait; the volatile 

compounds can indicate when the wasps' prey is eating from the plants in question. 
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 In Populus and Eucalyptus hybridizing systems, variation in composition of chemical 

defenses such as tannins and phenolic glycosides differentially affects viability of a wide range 

of herbivores and pathogens, resulting in a very high level of agreement between tree pedigree 

and arthropod community composition on individual trees (Whitham et al. 2003).  The breadth of 

tree genotypes thus determines the potential breadth of arthropod community diversity.  Again, 

these effects can cascade through multiple trophic levels.  Variation in Populus (aspen) affects 

aphid populations, thus affecting their ant mutualists, in turn affecting the predator and parasite 

species specifically dependent on ant-aphid mutualism.  Varying concentrations of inducible 

tannins in Populus leaves also explain a large portion of variation in decomposition rates and N 

mineralization.  Müller et al. (2006) found that chickadees' preference or rejection of gypsy moth 

caterpillars (Lymantria dispar) correlated with genetically-based variation in secondary-

compound content in the caterpillars' Populus tremuloides foliage diet.   

 Plant adaptations that improve fitness with regard to one co-occurring species may reduce 

fitness vis-à-vis others; for example, plant toxins that discourage generalist herbivores may 

stimulate herbivory by specialists (Linhart 1991; Simms 1990).  These interspecific genetic 

effects can vary at fine spatial scales.  Prentice and Cramer (1990) found significant correlations 

between electrophoretic variation in Gypsophila fastigiata (fastigiate gypsophila) and fine-scale 

gradient change (on the order of 1 m
2
) in community composition. 

 Restoration requires the full suite of community organisms, including nitrogen-fixers, 

mycorrhizae, decomposers, pollinators, seed-dispersers, and so forth, which must be able to 

colonize a restored habitat for restoration to succeed (Handel et al. 1994; Hobbs & Norton 1996).  

Evidence of genotype-by-genotype adaptation among species within communities raises the 

question of compatibility of genotypes of different species potentially collected from several 

source ecosystems.  For example, Ji et al. (2010) and Weinbaum et al. (1996) found evidence that 

mycorrhizae matched with their host and soil of origin display greater survival and enhancement 

of plant growth when compared with mycorrhizae grown with exotic hosts and soil.  Introduction 

of alien mycorrhizae in restoration, agronomy, and forestry is troubling to some researchers (e.g., 

Schwartz et al. 2006) and has been implicated in soil-carbon losses associated with carbon-offset 

pine plantations (Chapela et al. 2001).  Many restoration practitioners apply commercial 

mycorrhizae claimed to be appropriate for a wide range of ecosystems (e.g., Pawnee Butte Seeds 

2013); apparently only a minority collect soil as well as seeds in order to propagate native 

mycorrhizae along with coadapted plants (e.g., Recon Native Plants 2013 ).  Perhaps restoration 

practitioners should transplant whole suites of potentially coadapted species to create well-

functioning ecosystems. 

 Maximizing genetic diversity with alternative provenancing.  Concerns about genetic 

diversity in restoration projects have led to the development of a range of alternative seed-

sourcing strategies that aim to capture diverse genotypes and allow evolutionary processes to 

generate new, locally adapted populations.  Some authors recommend that each individual 

restoration project use seeds from a single large, genetically diverse population to retain natural 

genetic structures and avoid potential outbreeding depression, while still providing the diversity 

needed for restored populations to evolve to match site conditions (Krauss & He 2006; Pickup et 
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al. 2012).  Others recommend using propagules from a wide range of source populations growing 

in environments edaphically and climatically matched to the restoration site, in order to improve 

the likelihood of including highly-functioning ecotypes and of ensuring resource capture through 

niche partitioning (Kettenring et al. 2014; Whalley et al. 2013).  Still others suggest, in contrast, 

that hybrids between populations, or mixtures of genotypes from different, ecologically distinct 

populations covering a substantial part of a species' range, may be the best approach for highly 

disturbed, altered, or invaded areas, because the conditions to which local genotypes were 

adapted may no longer exist.  They propose that a mixture of genotypes may reduce problems of 

hybrid failure stemming from environmental incompatibility (Cronn et al. 2003; Johnson et al. 

2010; Lesica & Allendorf 1999).  Frankham et al. (2011) suggest that germplasm from multiple 

populations can be mixed safely without fear of breaking up adaptive complexes if there are no 

fixed chromosome differences, and if the populations diverged less than 500 years ago. 

The question of where to collect germplasm also hinges on the issue of climate change.  

While ecological restoration commonly refers to recreating the community that existed before 

disturbance, long-lived plants may have recruited under conditions that already no longer exist.  

Attempts to create permanent communities may fail given shifting precipitation and temperature 

patterns.  Effective restoration may now mean planting species and genotypes from 

environments that match predicted future climate rather than current conditions (Harris et al. 

2006; McLachlan et al. 2007).  Sgrò et al. (2011) call for "predictive provenancing," the planting 

of genotypes experimentally determined to be adapted to projected site conditions, and suggest 

matching seed stock with 2050 climate projections.  Thomas et al. (2011) and Weeks et al. 

(2011) provide decision-making frameworks addressing which species to move.  These 

approaches would require accurate climate projections as well as more-detailed adaptation data 

than is available for most species.  Broadhurst et al. (2008) recommend "composite 

provenancing," the mixture of seed from populations at a range of distances in an attempt to 

mimic natural gene flow.  Where the data required for predictive or composite provenancing is 

unavailable, Breed et al. (2012) suggest "admixture provenancing," the planting of seed collected 

from multiple large populations "with no spatial bias towards the revegetation site." 

 Outside the context of restoring disturbed habitats, some authors have suggested 

transporting species to communities where the translocated species do not currently exist but 

might persist in a changed climate, a form of preemptive restoration (McLachlan et al. 2007; 

Weeks et al. 2011).  Other authorities point to evidence that assisted migration may fail or may 

have serious unintended consequences such as hybridization, invasiveness, and disruption of in 

situ populations (Pelini et al. 2009; Ricciardi & Simberloff 2009).  Survey data from Australia 

indicates that while both restoration practitioners and researchers believe that climate change 

may require translocations, they also believe that the information needed to carry out 

translocations in relative safety remains insufficient (Hancock & Gallagher
 
2014; Hancock & 

Hughes 2012).  Ensuring habitat connectivity can increase the ability of species to migrate on 

their own; US Department of Interior Secretarial Order No. 3289 calls for ensuring habitat 

corridors to provide climate-driven migration opportunities, but does not call for active 

translocation of species (Salazar 2009). 
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Patchiness and Genetic Variation  

 Restoration researchers may debate where propagules should be collected, but they agree 

on the need for of genetic variation in restored communities.  Gathering a full range of genotypes 

may require sampling across the whole of a population.  Abiotic factors giving rise to 

subpopulation differentiation can follow gradual clines (such as rainfall) and sharp 

discontinuities (such as localized soil types) that physically separate individuals adapted to 

different regimes (Knapp & Rice 1998; Linhart & Grant 1996; Monson et al. 1992; Owuor et al. 

1999).  The biotic environment, in contrast, presents a shifting array of selective pressures 

exerted by a patchy, overlapping mosaic of mutualists, competitors, predators, and pathogens, 

resulting in individuals with contrasting adaptations intermixed within a small area (Linhart & 

Grant 1996).  Indeed, in diversifying and frequency-dependent selection, genotypes are favored 

merely because they are unusual within a population; examples include host resistance to 

pathogens and gametophytic self-incompatibility (Antonovics & Ellstrand 1984; Hartl & Clark 

1997; Kelley 1984).  Some species display significant genetic structuring among subpopulations 

despite high levels of gene flow (Gehring and Linhart 1992).  Capturing genetic variation 

requires appropriate sampling methods to ensure seed collection across subpopulations, even 

across genetically differentiated patches within a larger population. 

 Variations in density of a species can be both an effect and a cause of microsite 

differences (Beckman & Mitton 1984; Eviner 2004).  A patch containing unusually high or low 

density of a given plant species may initially develop due to abiotic conditions, such as soil 

nutrient or water availability, or may simply reflect stochastic factors such as seed dispersal.  

Clonal growth patterns naturally lend themselves to patch formation. 

 Patch density and competitive regimes.  A dense stand may reflect unusually high site 

quality for the species found there, resulting in some degree of competitive exclusion of other 

species.  These conditions might also select for strong competitors among successful colonists, 

leading to more competitive offspring.  Conversely, even without variation among microsites, a 

dense stand could potentially result from appearance of a genotype that is unusually competitive 

and able to exclude other species. 

 Patchiness of inter- versus intraspecific interactions.  Plants surrounded mostly by 

conspecifics and plants growing in mixed neighborhoods may face different selection regimes, 

potentially leading to genetic differences.  Plants growing in small, dense patches mostly among 

conspecifics would likely experience a narrower range of microenvironments than an equal 

number of conspecifics spread out over larger areas might encounter (L. Huntsinger 2005 pers. 

comm.).  Some studies have demonstrated genetic trade-offs between intra- and interspecific 

competitive ability, in some cases correlated with dense versus dispersed distribution of 

conspecifics (Lankau 2008; Linhart 1988; Semchenko et al. 2013; R. Shaw et al. 1995).  Under 

certain circumstances, plant populations may differentiate into subpopulations with distinct inter- 

and intraspecific competitive abilities (Linhart 1988; Linhart & Grant 1996). 

 Patchiness and facilitation.  A patch may reflect biotic factors that result in positive 

feedbacks.  Self-organized patchiness has been studied particularly in arid systems, where 

interplay between facilitation over short distances and competition over longer ones can result in 
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characteristic patterns in plant cover (Deblauwe et al. 2011; Kéfi et al. 2016; Rietkerk et al. 

2004; Sheffer et al. 2013).  These patterns, in some places nicknamed tiger bush or leopard bush 

for their striped or spotted appearance, develop where vegetation allows for greater infiltration of 

water and nutrients, creating patches of relative fertility within a low-resource environment.  

Plants extend their roots under adjacent bare spaces, further decreasing soil resources and 

seedling survival between vegetated patches.  Similar feedback-driven patterning has been found 

in a wide range of environments, including peat bogs, salt marshes, mussel beds, and ribbon 

forests (Rietkerk & van de Koppel 2008; van de Koppel et al. 2008; Weerman et al. 2012).
3
 

California native perennial grasses can also create zones of resource depletion around 

themselves and form elongated patches parallel to hill contours, which may increase ability to 

harvest water and nutrients (Fehmi et al. 2008; Parker et al. 2012).  In addition, many California 

grassland species are highly dependent on mycorrhizal fungi, whereas exotic species are not.  

This may produce in a positive feedback in which initial dominance of exotic species reduces 

presence of mycorrhizae, thus excluding natives, and initial dominance of natives results in high 

densities of mycorrhizal fungi and sustained dominance of native species (Vogelsang & Bever 

2009). 

 Researchers have generally assumed that facilitation occurs where there is little niche 

overlap (Maestre et al. 2009), and that intraspecific facilitation would be limited to interactions 

between different life stages, such as adult trees providing nurse effects (Fajardo & McIntire 

2011).  A few studies have uncovered same-age intraspecific facilitation, primarily among 

seedlings or young plants.  Chu et al. (2008) planted Elymus nutans in a stressful alpine meadow 

at a range of densities, and found that both individual mean biomass and total mean biomass 

reached a maximum at intermediate densities.  Fajardo and McIntire (2011) planted two-year-old 

lenga beech trees (Nothofagus pumilio) singly and in close-planted groups along a transect 

spanning a forest interior, forest edge, and stressful wind-swept prairie.  They found that tree 

seedlings in groups had better survival than singletons in the windy prairie, while in the forest 

the opposite was true.  Leicht-Young et al. (2011) found that seedling lianas had greater survival 

without reduced height growth under high-density versus low density conditions.  In a nutrient-

limited outdoor pot study employing multiple seed and seedling densities, Sheley and James 

(2014) found that while bottlebrush squirreltail (Elymus elymoides) and medusahead 

(Taeniatherum caputmedusae) reduced each other's growth, both species, in particular 

squirreltail, facilitated their conspecifics. 

 Intraspecific facilitation can shift selection pressures and genotype composition over 

time.  Cohorts establishing at different times may have different adaptations, particularly where 

the pioneer generation alters growing conditions (Linhart & Grant 1996).  Beckman and Mitton 

(1984), for example, found that ponderosa pines (Pinus ponderosa) that were early grassland 

colonists differ genetically from later-establishing conspecifics in adaptation to xeric grassland 

conditions versus the more mesic conditions produced by the initial pioneers.  Facilitation among 

                                                 
3
 Equidistant planting of trees and shrubs is common in mine reclamation.  In addition to giving revegetated areas 

the aesthetics of orchards rather than that of wildlands, this practice assumes purely competitive relationships and 

may reduce the opportunity for intraspecific facilitation. 
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conspecifics would support formation of dense groups of related plants (Dudley et al. 2013; 

Fajardo et al. 2016; Karban & Shiojiri 2010; Kigathi et al. 2013; Lepik et al. 2012). 

 Effects of intra- versus interspecific patch density on mating system.  Plants growing 

in sparse distributions of conspecifics may experience mating conditions that differ from those 

encountered by plants growing in dense conspecific patches.  Self-incompatible plants can suffer 

reduced seed-set in dispersed populations because isolated plants may receive limited 

conspecific pollen (Ghazoul 2005).  While sparse distributions might select for self-compatibility 

(Loveless & Hamrick 1984; Stebbins 1957), self-compatible plants can also have reduced 

reproductive success at low density (Ghazoul 2005).  The effect of high density on mating is 

further influenced by plant size and growth form; flowers within large, dense patches receive 

proportionately little pollen from other conspecific plants, again favoring self-compatibility, 

while closely-interdigitated neighboring plants of a guerrilla
4
 species can freely trade pollen 

(Handel 1985; Heywood 1991; Loveless & Hamrick 1984). 

 Patchy distributions can lead to genetic differentiation of subpopulations through 

isolation by distance (Wright 1943).  Giles et al. (1998), working with the dioecious herb Silene 

dioica, compared genetic differentiation among island populations to differentiation among 

patches separated by tens of meters on the same islands; they found that differences among 

patches were greater than differences among islands, likely due to highly localized pollination 

and seed dispersal.  Distance between mates can affect offspring fitness; in Ipomopsis aggregata 

(scarlet gilia), higher seed set per flower, and greater survival and fecundity of offspring, occur at 

intermediate pollination distances (10 m) compared to 1-m and 100-m pollination distances 

(Waser & Price 1989; Waser et al. 2000). 

 In sum, plants in dense patches may differ genetically from conspecifics in sparse 

distributions for a number of reasons, including intrinsic microsite differences, mating system, 

successional changes, competition, and facilitation, all exerting selective pressures.  Restoration 

prescriptions often call for seed collection from a full range of subpopulations and maintenance 

of the seed's genetic characteristics during agronomic increase.  If the economics of seed 

collection require bypassing sparse patches, and if plants from sparse patches differ genetically 

from plants in dense patches, there may be an unavoidable conflict between cost control and 

genetic goals in environmental restoration.  This study therefore asks whether density variation 

may correlate with important adaptive differences.  

                                                 
4
 Lovett Doust (1981) originated the growth-form descriptor "phalanx" to denote clonal expansion via short 

rhizomes or stolons, versus "guerrilla" to denote penetration of the surrounding neighborhood via long rhizomes or 

stolons. 
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Chapter 3.  Seed Production for Restoration Plantings 

 

 Successful restoration depends on use of appropriate germplasm, as discussed in Chapter 

2.  Seed production for restoration, however, must balance reasonable project economy and 

practicality against the need for germplasm that is well adapted to present and potential site 

conditions, can coexist with other restored or endemic species, and will not damage the 

ecological functioning of the site.  The need in many restoration projects to plant tons of seed 

often means that the planted seeds are not themselves gathered from wildland plants, but instead 

are field-propagated from seeds or cuttings collected in the wild.  Genetic shifts and losses can 

occur at any stage of the reintroduction process, including propagule harvest from wild plants, 

seed bulking and storage, and propagation.  Inadvertent selection can be especially problematic 

where rare species or fragmented populations are concerned (Krauss et al. 2002).  This chapter 

first discusses genetic issues entailed by seed propagation.  The basis for all restoration planting, 

however, is germplasm collected from wild populations, and the conclusion of this chapter 

discusses the potential for inadvertent selection during seed harvesting from natural populations. 

 

Agronomic Increase of Wild-collected Seed 

 Commercial growers provide most restoration seeds.  To produce site-specific seeds, a 

grower typically needs a minimum of three years to collect wild seeds, plant them in a 

production field, and harvest a crop (Majerus 2005).  As a result, agronomic increase of site-

specific seeds is limited to planned restoration projects.  Commercial growers also cultivate 

native plants for restoration outside of planned projects, for example, in preparation for post-fire 

seeding.  The latter category includes seeds originating as US Department of Agriculture Natural 

Resources Conservation Service (NRCS) Plant Materials Center germplasm releases, which are 

discussed further below. 

 Wild species are more difficult to grow than domesticated crops, because of greater seed 

dormancy, longer life cycles, lesser seed output, narrower climate and soil adaptations, and often 

limited information about their original habitat (A. Brown et al. 1997; Scianna 2003).  Surveys 

conducted on the market for native seed have found that impediments to planting diverse, local, 

source-identified seeds include cost, limited availability, and lack of information (S. Smith et al. 

2007; Strategic Marketing Services 2002).  Growers face many impediments, including time 

needed for stands to come to reproductive age, labor and equipment investments, scarcity of 

appropriate local-origin start-up seeds, variable demand, and market competition from cultivars. 

Despite these hindrances, agronomic increase can greatly improve seed availability.  The 

amount of seed required per acre for rapid revegetation is roughly similar to the amount needed 

for plantation establishment (Pacific Northwest Natives 2005).  For Elymus glaucus, ten to 15 

pounds per acre of wild-collected grass seed may be needed to establish a plantation that will 

yield 100-1000 pounds per acre within one or two years (Archibald et al. 2000; D. Dyer 2001; 

Winslow 2002a and 2002b).  The cost of the resulting seed ranges from $8-25 per pound Kaiser 

et al. 2003). 
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 Evolution under agronomic conditions.  While agronomic increase can improve cost 

and availability of native seed, it can also shift genetic characteristics significantly within as little 

as one generation (A. Dyer et al. 2016; Espeland et al. 2016; Ferdinandez et al. 2005; Humphrey 

& Schupp 2002; Knapp & Rice 1994; K. Rice 1995; Rogers 2004; Soleri & Smith 1995).  

Agronomic conditions tend to select for high relative growth rate and select against seed-

dormancy adaptations and other traits that are important to fitness in stressful environments 

(Schröder & Prasse 2013a).  Monoculture production, with its concomitant competitive 

conditions, is more common than mixed-species production (Archibald et al. 2000; D. Dyer 

2001; Strategic Marketing Services 2002; Winslow 2002a and 2002b
5
).  Some increase 

operations use clonal propagules rather than seeds to establish plantations, significantly 

restricting genetic variation.  To overcome selection and drift, seed growers often "refresh" the 

genetics of their crop species by collecting new wild seeds, but the frequency of refreshing is not 

standardized, and guidance for seed growers in the scientific literature is limited (S. Smith et al. 

2007).  Growers of local-ecotype seed also face the constant risk of unintended and undetected 

hybridization of their crop (S. Smith et al. 2007).  Conversely, Dunwiddie & Delvin (2006) note 

that storing and growing out seed collections can help correct for errors made in collection, such 

as confusion of similar taxa. 

 Propagation of field-increase and source-identified seeds often entails intensive 

management, which can affect genetic diversity in wild plants (Borders 2009; A. Dyer et al. 

2016; Kölliker et al. 1998).  Wild-collected seeds may be mechanically cleaned and de-awned, 

refrigerated, subjected to germination treatments such as scarification and stratification, and 

established in a greenhouse before being planted in tilled plots.  The plots may be ripped and 

disked, fumigated and fertilized, seeded with groundcovers such as perennial rye, and treated 

with herbicides, insecticides, and fungicides both before and during growth of the target plants 

(Flessner & Trindle 2007).  Plot borders may be mowed, and young plants irrigated (Archibald et 

al. 2000; D. Dyer 2001; Navarrete-Tindall & Erickson 2002; Winslow 2002a and 2002b).  The 

harvested seeds may in turn be mechanically cleaned or removed from seed pods, sometimes 

through use of a modified meat grinders or hammer mills, then heat-dried, treated with 

insecticides or fungicides, and subsequently refrigerated or frozen (Ailstock & Shafer 2006; 

Archibald et al. 2000; D. Dyer 2001; Laverack et al. 2006; Lippitt et al. 1994; Winslow 2002a 

and 2002b), which may result in differential selection in storage (Goodwin 1994; M. Hamilton 

1994).  Small seeds may be less vulnerable to mechanical damage than larger seeds of the same 

species (Stanton 1985), although they may be less able to survive storage or seedling 

competition.  Despite concerns regarding genetic shifts, some observers believe that large-scale 

propagation programs entailing dedicated seed production areas are needed to meet global 

restoration demand (Nevill et al. 2016). 

 Pre-varietal releases and cultivars.  Because project-specific agronomic production of 

locally adapted seed is impractical for many revegetation projects (Larson et al. 2001), 

restoration projects often employ large quantities of commercial native-species cultivar seeds, 

                                                 
5
 See also the many propagation protocols available on the United States Department of Agriculture Native Plant 

Network, https://npn.rngr.net/npn/propagation/protocols. 
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which are relatively inexpensive and readily available (Baer et al. 2002; Cronn et al. 2003; 

Gustafson et al. 2004a).  The Association of Official Seed Certification Agencies (AOSCA), 

which promulgates testing methods and standards for seed quality, has created a "natural track" 

appropriate for seeds destined for conservation planting that is distinct from the "manipulated 

track" of traditional plant breeding (Young et al. 2003).  Both natural-track and manipulated-

track plants may be released as cultivars after undergoing several generations of selection and 

evaluation in comparative trials.  Unlike traditional cultivars, natural-track cultivars are not 

hybridized across source populations, and efforts are made to limit directional selection during 

cultivar development. 

 Native plant species require 10-20 years to develop as cultivars (BLM undated a).  Plant 

lines that have not undergone enough generations of testing to become full-fledged cultivars can 

be certified as "pre-varietal releases."  Natural-track pre-varietal releases include  

 Source-Identified or "yellow-tag" seeds, which are unevaluated germplasm identified in 

terms of species and location of their wild ancestors, 

 Selected Class or "green-tag" seeds, which have been selected either within or among 

accessions as potentially having desirable inherited traits, and 

 Tested Class or "blue-tag" seed, which have proven to have inherited desirable traits. 

The BLM Integrated Vegetation Management Handbook recommends wild-collected or yellow-

tag seeds for restoration planting (BLM 2008). 

 Natural Resources Conservation Service native plant development.  The NRCS Plant 

Materials Program
6
 has developed and released over 600 varieties of conservation plants, 

predominately grasses and including both native and introduced species, for commercial 

producers to use as planting stock (NRCS 2007).  NRCS staff also processes and grows out seeds 

collected from national parks for restoration in the parks, thus assuring local genetic sources 

(NRCS undated
 
b).  Many NRCS varieties predate by several decades the existence of the 

natural-track designation, but few have undergone intentional genetic manipulation (NRCS 

undated a).  The recent desire for broader-based germplasm and more native materials has led the 

NRCS to focus on explicitly "natural-track" native species and adopt the pre-varietal release 

concept for many of its native-plant releases (S. Lambert 1997).  Seed-labeling rules for natural-

track seeds typically limit agronomic increase to five or fewer generations.  

 Cultivar controversies.  Even though natural-track cultivars have been developed 

specifically for revegetation, use of cultivars is controversial.  Some researchers in this area work 

with conservation cultivars that have been in production for many decades (Gibson et al. 2013; 

Gustafson et al. 2014; Klopf & Baer 2011; A. Lambert et al. 2011; Mutegi et al. 2013), and some 

with more recently developed pre-varietal germplasm releases (Baughman 2014; Herget, 

Hufford, Mummey, Mealor & Shreading 2015).  In either case, these researchers raise questions 

regarding appropriate use of cultivars.  In an article supporting use of "restoration-appropriate" 

cultivars, Jones and Robins (2011) summarized the common objections to using cultivars for 

restoration: 

                                                 
6
 The USDA Soil Conservation Service, founded in reaction to the Dust Bowl of the 1930s, was renamed the Natural 

Resources Conservation Service in 1994. 
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 they do not reflect natural phylogeographic patterns, 

 they induce outbreeding depression upon hybridization with remnant indigenous material, 

 they may themselves be subject to outbreeding depression, 

 they are excessively competitive or potentially invasive, 

 they are poorly adapted and lacking in fitness, 

 they possess too much genetic variation as a result of hybridization, and 

 they possess too little genetic variation as a result of selection. 

 Cultivars are grown and tested largely in monoculture conditions, and important concerns 

about their role in restoration involve potential interactions with other species.  While cultivars 

may be quite vigorous when grown in monoculture, their performance may suffer under 

interspecific competitive conditions (Baughman 2014; Herget, Hufford, Mummey, Mealor & and 

Shreading 2015; Herget, Hufford, Mummey, & Shreading 2015).  Use of cultivars can shift the 

genetic and species composition of other plants in the restored area and in nearby remnant native 

populations (Gustafson et al. 2014; Mutegi et al. 2013).  Cultivars may have faster and more 

abundant germination than noncultivars, but can experience greatly reduced fitness under 

weather extremes (Schröder & Prasse 2013a and 2013b).  Some researchers who might otherwise 

prefer wild-collected seeds are comfortable with use of cultivars for restoration in specific 

circumstances, such as planting tolerant cultivars on soil contaminated with heavy metals, or in 

small, highly disturbed areas where native genotypes may be poorly adapted (Bugg et al. 1997; 

Handel et al. 1994; Humphrey & Schupp 2002; Lesica & Allendorf 1999). 

 

Collecting Wild Seed: Cost Versus Diversity 

 Collection of germplasm from the wild is the starting point for all restoration plantings, 

whether propagules are planted directly or increased via cultivation.  Any inadvertent selection 

during the initial wild-population harvest may be reflected in subsequent generations.  The 

remainder of this chapter focuses on wild-collected seed as the basis for all native-species 

restoration. 

 An optimal seed-collection site, from a collector’s standpoint, would be flat, weed-free, 

and thickly covered with dense stands of the target species; and would have fruiting phenology 

geared to generous, simultaneous seed ripening, characteristics not especially typical of remnant 

natural communities.  Density or dominance of the target species, and presence of weed species, 

can limit seed collection areas.  Sites must be accessible, lawful to harvest, and fruitful enough to 

warrant harvesting.   

 Harvesters can collect seeds from wild stands by hand, through use of equipment such as 

vacuums and brush harvesters, or through collection of seed-containing donor soil or wild hay.  

Hand harvesting is generally the most costly method per pound of seed; one estimate suggests 

wild-collected seed can cost 10 to 100 times more than commercially available seed (S. Smith et 

al. 2007).  In the case of Elymus glaucus, which has relatively large seeds, a person can collect 

anywhere from less than 100 to over 1000 grams of clean seed in an hour from a wild stand 

(Winslow 2002a and 2002b).  Mechanical harvesting is often limited to flat areas near roads that 

have high densities of target species and no weed seeds.  Stevenson et al. (1997) compared 
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manual collection of mixed-species grassland seeds versus mechanical harvesting using a 100-

kg, 11-hp vacuum machine.  Hand collection yielded about 1 kg per 40 hours of collection, 

versus more than 1 kg per 8 hours using the vacuum.  Percent viability of hand-collected seed 

was 13.7, versus 8.5 for vacuum harvested and 56.1 for commercially-grown native seed.  

 As discussed in Chapter 1, manual collection from herbaceous plants is far more efficient 

in dense stands.  For herbaceous species, manual collection is generally necessary, because target 

species rarely grow in pure stands, and topography prevents use of machinery (Lippitt et al. 

1994).  Collecting even small amounts of plant material can be physically challenging.  Where 

disturbance has eliminated easily accessible populations, restorationists may need to collect 

seeds from locations such as cliff faces (Powell 1994; P. Shaw 2014).  Some seagrass restoration 

projects require divers to collect vegetative material from underwater populations.  The divers 

can generally cover only small areas, and some source populations have little genetic diversity; 

both factors can reduce genetic diversity in these restorations (Montalvo et al. 1997; S. Williams 

2001).  Where seagrass seeds are collected, storms can eliminate collection sites, limiting seed 

harvests to protected coves (Ailstock & Shafer 2006). 

 Suitability of collected seeds depends not only on which site is chosen for harvesting, but 

also on how seeds are collected within a site.  Collection procedures may skew the proportions of 

genotypes collected (Gustafson et al. 2004a and 2004b; Y.C. Li et al. 2005).  Avoiding 

inadvertent selection means taking seed from many individuals in a random or at least 

representative fashion (Hufford & Mazer 2003).  Articles in the refereed literature recommend 

optimal collection processes for herbaceous species, such as harvesting seed randomly across the 

full extent of the population or along transects perpendicular to wind or other dispersal direction, 

taking equal amounts of seed from all harvested plants, and including the full range both of 

spatial microenvironments and of seed-ripening times through repeated collections (DeBolt & 

Spurrier 2004; Knapp & Rice 1994).  Collection guidelines aimed at practitioners suggest 

harvesting across all microhabitats and at multiple collection times, but rarely provide much 

information on spatial randomization, which may increase the likelihood that "random" 

collection is merely haphazard.  Some guides include no randomization method (Ailstock & 

Shafer 2006; Florabank undated a & b), while others suggest only that seed be collected from 

widely-spaced individuals (Basey et al. 2015; Dumroese et al. 2008; Florabank undated c).  A 

few guidelines suggest informal transects, for example, collecting at intervals of three paces 

(ENSCONET 2009; Houseal 2009).  The BLM's 39-page Seeds of Success technical protocol for 

seed collection and conservation calls for randomized collection across the full range of a 

population without providing guidance on randomization methods (BLM 2008 and 2015b).  Seed 

harvesting prescriptions historically have varied on how to respond to phenotypic characteristics 

in the field that may indicate genetic variation, for example, whether to harvest only from 

healthy, presumably disease-resistant plants (Dumroese et al. 2008; Lippitt et al. 1994), or to 

harvest as well from "scrawny" or unusual-looking plants to ensure genetic diversity (Basey et 

al. 2015; Dorner undated; Houseal 2009). 

 Seed collection guidelines commonly suggest that collecting seed from at least 30 to 50 

individuals selected randomly and evenly from throughout a population will capture 95% or 
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more of the genetic diversity of a plant population (e.g., BLM 2015b).  Some researchers believe 

these guidelines may not reflect sample sizes needed to capture multiple alleles at multiple loci.  

If the goal is capturing the full range of genetic variation in the source population, hundreds or 

thousands of plants may be needed to sample rare alleles (DeBolt & Spurrier 2004; M. Hamilton 

1994; Knapp & Rice 1994).  Crossa et al. (1993) and Crossa and Venscovsky (2011) present a 

statistical-genetics approach that indicates sample sizes of 160 to 250 plants of a random-mating 

population would be needed to ensure a 90-95% likelihood of capturing at least one copy each of 

alleles that are present at allele frequencies of 0.05 or higher at each of 150 loci.  Based on a 

range of theoretical and empirical evidence, Frankham et al. (2014) indicate that, at minimum, an 

effective population size Ne = 1000 is required to maintain long-term evolutionary potential in 

naturally outbreeding species; in smaller populations the ability to evolve will erode with time.  

Converting Ne into mean adult census population size (N) requires information on the Ne/N ratio, 

which is available for few species.  Average measured Ne/N is 0.10–0.14; but may vary 

tremendously among species or even populations.  Based on this, Frankham et al. (2014) suggest 

that the minimum viable population size (N) for long-term persistence is of the order of several 

thousand individuals.  An additional factor is clonality, in that populations of clonal organisms 

may contain relatively few genetic individuals (Vallejo-Marín et al. 2010), and what appears to 

be many parental plants may represent far fewer genetic individuals.  

Optimal seed harvesting from hundreds or even thousands of rigorously randomized 

parent plants may be practically and economically unfeasible.  Commercial seed suppliers must 

control seed collection costs while adhering to purity standards and narrow limits on percent 

weed contamination.  Land managers often view requirements for using specific species and seed 

sources as barriers to planting native seed, because these requirements increase project cost and 

complexity (Jones & Johnson 1998; Mustoe 2014; Richards et al. 1998).  Cheaper species are 

more readily used than expensive ones, resulting in the common cost-control practice of using a 

minimal number of vigorous, generalist species (Richards et al. 1998).  If propagules of less-

prolific or specialist species are neither planted nor present in the soil, these species may be 

indefinitely excluded (Grime 1998; Pywell et al. 2003).  Ironically, rare and specialist species are 

often those most in need of restoration. 

 If planting a full range of species is too costly, presumably ensuring a full genetic range 

within all those species would be costlier still.  Where portions of a population cannot be 

sampled easily or efficiently, the need to preserve genetic variation may conflict directly with the 

need for cost control.  Under such circumstances, it seems likely that genetic variation will 

suffer.  An obvious example is location of part of a population on steep, unstable slopes or other 

areas that are physically hard to reach; such locations may correspond to differing selective 

regimes and genetic composition. 

 Differential distribution of genetic variation within an otherwise fairly uniform 

environment would be less apparent but may be important.  Manual collection of seed entails 

pulling or cutting off seed heads, or sometimes harvesting whole plants.  If the plants are 

growing in clumps, seeds can be harvested by the handful.  If target plants are intermixed with 

undesirable species, however, collectors may need to harvest stem by stem.  Practical and 
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economic considerations thus conspire to push seed collectors onto dense patches of the target 

species, where they can harvest far more seeds per hour while more easily avoiding weeds.  This 

study explores whether this practice results in unconscious selection between genetically 

differentiated subpopulations.  The relative ease and efficiency of harvesting seeds from high-

density patches means that seed collection may be biased with regard to genetic variation tied to 

patch density.  This study examines the potential relationship between intraspecific patch density 

and genotype. 
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Chapter 4.  Ecological Restoration Policy 

 

 Large-scale restoration projects in the United States commonly take place on public lands 

or in response to regulatory requirements, and as a result the restoration process is substantially 

driven and controlled by state and especially by federal legislation and regulation.  Government 

policies affect which seeds are planted, through definitions of appropriate germplasm sources 

and through assignment of restoration responsibilities and costs.  Policies and practice regarding 

planting native species on public land reflect both the social purposes of restoration and scientific 

perspectives on how best to revegetate disturbed ecosystems (Richards et al. 1998).  Key 

concerns include preservation of at-risk species and their critical habitats, control of introduced 

species, and the maintenance or restoration of native ecosystems. 

 The federal government owns about 640 million acres, or about 28 percent of US land 

area, mostly in the western states and Alaska.  Four agencies administer 609 million acres of this 

land. 

 The US Department of Agriculture Forest Service (USFS) manages 193 million acres; in 

FY 2013, the Forest Service "sustained or restored" almost 880,000 acres of forest and 

grassland and restored 987 miles of stream habitat (USFS 2014). 

 The Bureau of Land Management (BLM), which is part of the Department of the Interior 

(DOI), manages 247 million acres, almost all in the western states and Alaska, and 

administers about 700 million acres of federal subsurface mineral property (Vincent et al. 

2014). 

 The DOI Fish and Wildlife Service (FWS) administers over 150 million acres of federal 

land, and through partnerships with other organizations helps manage and conserve a 

much larger area of non-federal land (FWS 2014).   

 The National Park Service (NPS), also part of DOI, manages about 80 million acres.  

The Interior Department targeted over 1.1 million acres of land and 879 riparian miles for 

restoration between 2011 and 2016 (DOI 2012). 

 While the bulk of this chapter focuses on BLM and USFS, a number of other agencies 

participate in restoration-related activities.  The US Department of Defense (DOD) manages over 

14 million acres of federal land (Vincent et al. 2014).  Limited development and restricted public 

access on some military lands has prevented large-scale habitat loss and protected threatened or 

endangered species, including over 70 species found only on military lands (DOD 2013).  The 

1960 Sikes Act directs the Interior and Defense Departments to work with each other and with 

state agencies to maintain wildlife resources on US military reservations (FWS undated).  The 

DOD Strategic Environmental Research and Development Program has supported native-plant 

research projects geared to producing wear- and weed-resistant native plant genotypes and 

cultivars for use on military bases, including cultivars that have been released commercially for 

use in revegetation (Hild 2004; Palazzo et al. 2003; T. Smith & Hild 2011; USACE 2005). 

 On non-federal lands, the DOD Army Corps of Engineers carries out a wide range of 

projects and regulatory activities involving water resources, including conservation projects, and 

has begun addressing the need for "genetic diversity and genetic integrity" in reservoir, wetland, 
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and estuary projects (P. Bailey & Martin 2007; Streever & Perkins 2000).  In the Interior 

Department, FWS works with other government agencies and private groups in conservation of 

non-federal lands and on administration of the Endangered Species Act; indeed, by far most of 

the habitats managed by FWS are on non-federal lands.  The agency recently targeted almost 

600,000 non-DOI acres for restoration (DOI 2012).  The DOI Bureau of Indian Affairs provides 

funds for restoration-related programs including the return of bison to Native American 

homelands, tribal wetland rehabilitation projects, and watershed restoration efforts (DOI 2012).  

The USDA Farm Services Agency's Conservation Reserve and Conservation Reserve 

Enhancement Programs provide 10- to 15-year rental contracts with farmers in exchange for 

retiring environmentally-sensitive marginal farm land and for planting species, particularly 

natives, to prevent erosion, improve water quality, and conserve wildlife habitat.  As of 

September 2015, 24 million acres and over 170,000 stream miles with riparian forest and grass 

buffers were protected under these programs (USDA 2015).  The USDA Natural Resources 

Conservation Service (NRCS) offers easement programs and assistance to landowners who want 

to protect and restore privately-owned wetlands and forest (NRCS undated c).  The NRCS 

Working Lands for Wildlife (WLFW) program helps ranchers and farmers create and restore 

habitat of targeted declining species (NRCS undated d).  Ranchers and other partners working 

with the Sage Grouse Initiative, part of WLFW, have improved habitat conditions on 4.4 million 

acres (NRCS 2015).  The NRCS also operates the Plant Materials Program, which develops 

plants releases for conservation and restoration. 

 

Evolution of Forest Service and Bureau of Land Management Native Species Policies 

 The dominant agencies in US native seed policy are the Forest Service and BLM.  

Indeed, BLM is the largest seed buyer in the Western Hemisphere (BLM 2009).  Within these 

agencies, policies affecting native-species management have evolved in broadly parallel 

manners, in both cases reflecting opposing pressures to conserve natural habitats and to use land 

for economic production. 

 Early 20th-century federal land policies resulted in the vast expansion of national parks, 

creation of the first federal wildlife refuges, and the development of science-based natural 

resource management (MacCleery 2008).  Following World War II, increased affluence, greater 

mechanization, and improved transportation increased the demand for natural resources and the 

capacity to extract them.  At the same time, demand for outdoor recreation also increased.  As 

public interest in conservation grew in the 1960s, Forest Service and BLM budgets also grew, 

new agency staff introduced greater expertise in wildlife biology, soil science, archaeology, and 

other fields, and legislation shifted the agencies' roles. 

 The Multiple Use Sustained Yield Act (MUSY) of 1960 and the Classification and 

Multiple Use Act (CMUA) of 1964 required the Forest Service and BLM, respectively, to 

manage agency lands not just for economic purposes such grazing, timber, and mining, but also 

for recreation and wildlife habitat (Richards et al. 1998).  In 1965, emblematic of its changing 

role, BLM replaced its old insignia, which depicted a logger, cowboy, oil driller and surveyor, 

with an image of a river winding from a snowcapped peak across a grassland (Muhn & Stuart 
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1988).  In 1976, Congress passed the National Forest Management Act and the Federal Land 

Policy and Management Act, which substantially ended land transfer into private hands and 

mandated the Forest Service and BLM, respectively, to develop in-depth plans for managing and 

preserving agency lands (MacCleery 2008; Muhn & Stuart 1988). 

 The changes in agency policy and culture were reflected in what the agencies planted on 

degraded lands and after wildfires.  During the 1950s, range revegetation projects focused on soil 

stabilization and forage production, often emphasizing widely adapted introduced species.  These 

introduced plants, such as Agropyron species, were used because they compete effectively 

against undesirable nonnative species; however, they can preempt some native species from 

planting sites (Richards et al. 1998).  Since the 1980s, widespread use of nonnative species in 

range revegetation has become politically and scientifically controversial (Richards et al. 1998; 

Morris & Rowe 2014; G. Williams 2005).  While SUMY, CMUA and the 1976 management acts 

supported increased use of native species, field-level native plant polices and manuals took years 

to appear.  Shifting pressures from constituencies supporting or opposing use of native species, 

vague legislative language, potential legal challenges, land managers' discretionary 

interpretations of policies, limited budgets, and limited expertise resulted in erratic 

implementation of native-species policies (Richards et al. 1998). 

 In 1994, several federal agencies announced joint policies affecting native-species 

management (FWS 1994).  In January, the USFS, FWS, BLM, NPS, and the Commerce 

Department National Marine Fisheries Service (NMFS) issued a memorandum of understanding 

to improve cooperation in protection of declining species not yet listed as threatened or 

endangered.  In July, FSW and NMFS jointly issued several policies calling for better species-

protection planning and implementation via greater cooperation among stakeholders, application 

of multispecies and ecosystems approaches, and increased use of scientific expertise.  In 

September, USFS, FWS, BLM, NPS, NMFS and several other federal agencies issued an MOU 

pledging cooperation in protecting listed species.  In May 1994 and most directly affecting native 

plant policy, the USFS, NPS, BLM, FWS and several other federal agencies entered into an 

MOU to link resources and expertise and develop a coordinated national approach to plant 

conservation.  This effort evolved into the Plant Conservation Alliance (PCA), a collaborative 

partnership including 12 federal agency Members and over 300 non-federal Cooperators (BLM 

2014b and 2014d).  In 2015, the PCA Federal Committee, chaired by BLM, issued the National 

Seed Strategy for Rehabilitation and Restoration 2015-2020, again aimed at a more coordinated 

approach to ecological restoration (PCA 2015).  The Strategy entails cooperation among BLM, 

11 other federal agencies, and tribal, state, local, and private entities, including commercial 

growers, to ensure availability of genetically appropriate seed for restoration. 

 In 2001, Congress created the Native Plant Materials Development Program (NPMDP) to 

foster a stable, economical supply of genetically appropriate native plant materials for restoration 

of public lands, "the first program to coordinate native plant materials development on a national 

scale" (BLM 2015c).  The program, administered by BLM, seeks to expand seed collection, 

curation, and storage capacity, and to develop seed transfer guidelines.  In the same year, BLM 



 

29 

joined with the Millennium Seed Bank Project
7
 of the Royal Botanic Gardens, Kew, to found 

Seeds of Success (SOS), which is discussed further below. 

 In 2006, the Forest Service published a framework for restoration and management of 

lands managed by the agency (USFS 2006).  The framework describes increased threats to forest 

and grassland health (fire, disease, insects, invasive species, loss of open space, unmanaged 

outdoor recreation, and climate change) and insufficient Forest Service response due to internal 

agency limitations (limited understanding of ecological restoration, a focus on individual 

programs, and inadequate planning, budgeting, and management).  The framework recommends 

development of a national policy on restoration, greater emphasis on restoration planning, and 

better integration across the agency and its stakeholders.  In 2008, the Chief of the Forest Service 

issued a national ecological restoration policy for Forest Service lands aimed at consistent, 

cohesive agency approach, incorporated in Chapter 2020 of the Forest Service Manual.  The 

policy was administered under an interim directive that was reissued several times, and was 

made permanent in 2016 (USFS 2013, 2015a, and 2016).  The policy set a goal of management 

for ecological resilience in the context of uncertainty and climate change, and describes the 

adaptive capacity of ecosystems as including within-species genetic diversity, biodiversity within 

ecosystems, and heterogeneous ecosystem mosaics within landscapes and biomes.  While these 

policies give all USFS resource-management programs restoration responsibilities, the Forest 

Service continues to support economic activities such as energy development, recreation use, 

grazing, and timber production. 

 Vast amounts of "local" seed.  BLM obtains seed for revegetation and restoration from 

private seed collectors and growers, often in response to wildfire.  In 1999, BLM purchased 6.5 

million pounds of seeds, of which 70% was non-native.  In 2007, following the establishment of 

the Native Plant Materials Development Program, BLM purchased nearly 7.5 million pounds of 

seeds, over half of which were native species.  In 2009, however, BLM purchased less than 0.5 

million pounds (BLM 2011; Christensen 2000).  In years with extensive range fires, demand 

drives seed prices up; for example, in 2012, the price of bluebunch wheatgrass seed increased 

from $4–5 a pound to $20 per pound (Dickie 2015).  To help reduce market fluctuations 

stemming from unpredictable wildfire events, BLM has proposed to buy about 3 million pound 

of seeds annually (BLM 2011).  DOI's Rangeland Fire Initiative began creating a national 

network of seed-storage facilities.  By 2015, three facilities in Idaho and Nevada could store up 

to two million pounds of seed, far more than the 800,000 pounds housed in the Boise facility in 

2010 (Dickie 2015). 

 Seeds of Success.  BLM established Seeds of Success (SOS) in 2001 to collect wildland 

native seed for research, development, germplasm conservation, and ecosystem restoration, as 

the first step of the NPMDP (BLM 2014c and 2014e).  SOS quickly came to include many 

partners, including federal agencies and non-federal organizations committed to employing a 
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 The Millennium Seed Bank Partnership, based in the United Kingdom, is the world’s largest ex situ plant 

conservation program, and works with a network of partners across 80 countries to conserve the germplasm of a 

substantial percentage of at-risk plant species. 
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common protocol for coordinating seed-collection and species-targeting efforts.  As of 2014, 

SOS had garnered over 14,800 native seed collections for its National Collection. 

 The USFS Seed Extractory in Bend, Oregon cleans most of the seeds collected by BLM 

workers.  The first 6,000 seeds in each collection are preserved in cold storage, half at the 

USDA's National Center for Genetic Resources Preservation in Fort Collins, Colorado, and half 

at the Western Regional Plant Introduction Station in Pullman, Washington.
8
  Remaining seeds 

are used for restoration, native-plant materials development by USDA-NRCS and other entities, 

common-garden studies, and seed-increase protocol establishment (BLM 2014c and 2014e).  

SOS set a goal of amassing 10 to 20 collections of each target species across its range in order to 

develop genetically appropriate ecotypes. 

 

Development of Seed Zones 

 Regulatory approaches to delineating appropriate seed-source zones have varied among 

and within agencies and have evolved over time.  During the mid-20th century, concern about 

seed origins of commercial trees arose from observations that conifer plantations established 

using nonlocal seeds sometimes failed following severe weather or outbreaks of insects and 

disease, while adjacent, naturally regenerated stands survived.  Plantation failure often followed 

decades of healthy growth (St. Clair & Johnson 2004).  In 1970, the USFS established roughly 

85 conifer tree zones in California incorporating genetic clines and environmental gradients to 

ensure that conifer seeds were planted in appropriate environs; other timber-producing states and 

British Columbia developed similar tree-seed zones (Alden 1991; Johnson et al. 2004; Kitzmiller 

1990).  Keeping tree-seed transfer within the same zone and the same 500' elevation band was 

meant to ensure adaptation of seed stock to planting sites.  The regional seed zones now used by 

most federal authorities for herbaceous and shrub species broadly follow the model of seed zones 

used for commercial conifers (Johnson et al. 2004; Knapp & Rice 1996). 

 The size and delineation of nonconifer seed zones has continued to evolve.  USFS has 

developed a mapping system for stratifying the earth into progressively smaller areas of 

increasingly uniform ecological potential, as determined by vegetation, soils, lithography, 

geomorphology, and climate.  In 1976, an initial map divided the US into ecoregions and 

subregions (R. Bailey 1976).  The Bailey map was followed by development of section and 

subsection maps and descriptions (ECOMAP 2007).  USFS delineated California into 19 sections 

and 222 subsections (Miles & Goudey 1997). 

 Beginning in the 1990s, individual USFS and BLM offices defined "local" germplasm in 

terms of tree seed zones or ecological subsections (Lowe 1994; USFS Eastern Region 2004).  

BLM's California office called for germplasm to originate in the same USFS ecological 

subregion, vegetation series, and general soil type within 500' elevation of the project site; 

further tailoring could be based on research regarding individual species (Hastey 1996).  Other 

BLM offices had differing policies (BLM undated b and c).  BLM additionally put forward plans 

to develop seed-transfer zones for 250 restoration "workhorse" species (BLM 2009). 
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 In the first ten years of SOS, portions of seeds collected from specified species (the "Kew list") were sent to the 

Royal Botanic Garden, Kew, for long-term storage in the Millennium Seed Bank. 
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 The BLM has its own seed-zone system.  The Integrated Vegetation Management 

Handbook defines "local" in terms of Omernik Level III ecoregions, at least as a starting point in 

lieu of species-specific data (BLM 2008).
9
  These ecoregions are based on maps developed by 

the US Environmental Protection Agency in collaboration with other federal and state agencies, 

and denote areas within which ecosystems have broadly similar geology, soils, climate, 

hydrology, wildlife, and vegetation.  While the Omernik and Bailey systems are conceptually 

similar, the resulting maps differ in detail.  The Omernik Level III map divides the continental 

United States into 105 ecoregions.  California is divided into eleven Level III ecoregions and 

Nevada into three (EPA 2016; USGS 2016). 

 Seed transfer within Omernik Level III subregions may be most appropriate for 

widespread plants living in areas with limited environmental gradients.  They may be less 

appropriate in areas with strong variations in climate, soils, or topography, and where small, 

isolated populations may differ from one another genetically (S. Miller et al. 2011).  Level III 

land segments can be further subdivided into Omernik Level IV ecoregions, or by overlaying the 

Level III map with another land-segmentation system (Johnson et al. 2010).  For example, the 

USFS Western Wildland Environmental Threat Assessment Center (WWETAC) has developed 

generalized provisional seed zones based on climate indices including mean monthly maximum 

and minimum temperatures and an aridity index calculated as a function of mean annual 

precipitation and mean annual temperature.  The intersection of temperature and aridity bands 

results in the delineation of 64 regions of relative climatic similarity (Bower et al. 2014).  (This 

method does not appear to distinguish zones that differ in seasonality of precipitation.)  

Superimposing Omernik’s level III ecoregions over these climate zones can help to distinguish 

areas that are similar climatically yet different ecologically.  WWETAC has indicated that these 

zones are only a starting point for guiding seed transfer, and should be used in conjunction with 

species-specific information and local knowledge of microsite differences.  Empirical seed zones 

have been developed for a handful of species, primarily western-state grasses, via common-

garden studies assessing production, morphology, phenology, and physiological traits.  Genetic 

variation is linked with collection-location environments by means of regression models, and the 

results extended to delineate seed zones (WWETAC undated). 

 Another approach is represented in focal-point models that account for biogeoclimatic 

features of the landscape, such as climate, aspect, and soil characteristics.  A model developed by 

Hargrove and Hoffman (2004), for example, does not rely on predefined boundaries.  Instead, it 

relies on degrees of similarity between source and potential planting sites in different dimensions 

of a statistically-generated multivariate space incorporating as many as 25 factors at fine 

resolution, including elevation, temperature, precipitation, soil characteristics, and solar inputs.  

Depending on model specifications, this method can easily divide the United States into 

thousands or even millions of cells — which may well ensure precise ecological matching of 

seeds to restoration sites, but may not be very practical for the massive and often unpredictable 

germplasm needs of agencies like BLM.  
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 The Omernik ecoregions are modified from Omernik 1987.  
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Assigning Costs and Responsibility 

On public lands, post-fire rehabilitation and mining reclamation cover the largest land 

areas and have substantially different goals and methods (Richards et al. 1998).  Wildfire 

protection and post-fire treatment are increasingly important for both the Forest Service and 

BLM, and post-fire planting is the largest federal use of native seeds.  The proportion of USFS 

budget spent on wildfire suppression increased from 13% to over 40% between 2004 and 2014 

(USFS 2104). 

 In the 1970s, Congress directed federal agencies with wildland fire protection 

responsibilities to overcome historical inefficiencies.  Catastrophic fires in the late 1980s and 

1990s spurred efforts to develop a more comprehensive wildland fire strategy.  In 2002, the 

Secretaries of Agriculture and the Interior established the Wildland Fire Leadership Council to 

support a more unified federal approach to wildfire preparedness, suppression, and post-fire 

rehabilitation.  As of 2016, the council included the US Fire Administration (part of the 

Homeland Security Department), with representation of state, tribal, county, and municipal 

government officials (Forests and Rangelands 2015).  In 2009, Congress passed the Federal Land 

Assistance, Management, and Enhancement (FLAME) Act, which provided separate funding for 

emergency wildfire suppression to reduce transfers from other programs; and required DOI and 

USFS to develop a cohesive strategy to address wildland fire problems (DOI-OPA 2012). 

 Wildfires are treated as emergencies under the National Environmental Protection Act 

(Richards et al. 1998).  Post-fire planting has historically focused on immediate watershed 

protection, and secondarily on the need for wildlife habitat, forage production, and preventing 

spread of invasive species.  In the 1990s, USFS emergency fire procedures called for reseeding 

to establish immediate-term cover to protect watersheds, life, and property, but not to improve 

wildlife habitat or other ecosystem functions.  In contrast, BLM was directed to reseed burned 

areas with species, including native plants, that would also provide wildlife habitat (Richards et 

al. 1998).  These agencies now have more unified policies calling for natural revegetation or 

planting of "genetically local" native species when possible, using non-invasive introduced 

species only as needed for stabilization (USFS 2015b). 

 The second largest revegetation need after fire is mine reclamation (Richards et al. 1998).  

There are 14,000 active mines in the US, including about 1,700 coal mines, 11,000 quarries and 

sand or gravel mines, and 1,200 metal and non-metal mines; over 90% of the total are surface 

mines (CDC 2015).  Where a single large party is responsible for damage to publicly owned 

resources, as is common in the case of mining, cost of restoration can be assigned.  Depending 

on the nature and location of the mineral resource, public-lands mine reclamation is administered 

by BLM, USFS, or state authorities.  These agencies generally require the mine operator to seek 

establishment a plant community that will support designated post-mining land uses, typically a 

native ecosystem capable of natural successional processes (30 CFR; 36 CFR; Richards et al. 

1998; USFS 2008).  Costs are often assigned through bonds that can be used to pay for 

restoration if the responsible party defaults on its commitment to restore the ecosystem to some 

specified condition.  The value of restoration bonds have unfortunately not always been 
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sufficient to pay for reclamation, and in some cases it has been more attractive to default (GAO 

2011; Holl & Howarth 2000). 

 There are about 5,200 abandoned coal mines and 39,000 known and an estimated 

100,000 – 500,000 unidentified or uncharacterized abandoned hardrock mines in the US, 

including over 47,000 in California (BLM 2015c; CA-AMLU 2000).  These mines mostly date 

from before imposition of mine closure and revegetation standards.  Reclaiming these sites can 

be costly; for example, a single abandoned mine site, the Pleasant View Project in Hopkins 

County, Kentucky covered 250 acres and required 10 tons of seed for revegetation (OSMRE 

2002).  DOI's Office of Surface Mining Reclamation and Enforcement (OSMRE) administers the 

Surface Mining Control and Reclamation Act and manages reclamation of abandoned coal 

mines, substantially via grants to states and tribes with approved programs.  In 2016, OSMRE 

recently set a goal of reclaiming 14,000 acres degraded by past coal mining (OSMRE 2016). 

 Reclamation of abandoned hardrock and uranium mines falls within the purview of 

several agencies, in particular BLM's Abandoned Mine Lands program and its partners.  The 

primary focus in reclamation of abandoned mines is managing safety and health hazards, such as 

open shafts and toxic runoff; however, many of these sites are revegetated with native species 

(BLM 2014a).  Reclamation of abandoned mines has faced challenges due to unclear 

jurisdiction, differing agency approaches, and inadequate funding (EPA 2010).  A per-ton fee on 

coal helps pay for reclamation of abandoned coal mines, but no similar funding source exists for 

abandoned hardrock mines, which are reclaimed using other agency funding (DOI 2012; GAO 

2012).  Abandoned sand, gravel, and clay pits and quarries are not addressed by federal programs 

and are managed at state and local levels (BLM 2014a). 

 There are also over 800,000 active and as many as three million abandoned oil and gas 

wells in the US (A.R. Brandt et al. 2014a and 2014b; Kang et al. 2014).  Active oil sites are 

supposed to be revegetated at the oil company's cost, generally with native species, as part of 

closure operations (DOI & USDA 2007).  The cost of closing abandoned oil and gas sites falls 

on state agencies, whose focus is on capping and safety.
10

  

 Where damage has already occurred, recovering restoration costs via fines can be 

difficult, especially if the responsible party cannot be identified or made to pay; if the 

disturbance resulted from the activities of many small parties, such as pollution in urban streams; 

or if there is no responsible party, as in the case of exotic species in California grasslands.  Under 

these circumstances, restoration costs may be paid through taxation, including excise taxes 

related to environmental disturbance, much like taxes on coal to reclaim abandoned mined lands.  

Paying for restoration through general taxation can be justified by the provision of ecosystem 

services to society as a whole and/or removal of damages such as those caused by wildfires (Holl 

& Howarth 2000). 

 

Compensatory Mitigation: Restoration as Replacement 

In circumstances not governed by mining law, unavoidable habitat damage may fall 

under requirements of the National Environmental Policy Act (NEPA, 1969), the Clean Water 
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 Abandoned oil and gas wells notably leak large amounts of methane, a potent greenhouse gas (Kang et al. 2014). 
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Act (1972), or the Endangered Species Act (1973) (Holl & Howarth 2000; Zedler & Callaway 

1999).  The US and several other countries nominally employ a mitigation hierarchy of: (1) 

avoiding impacts, (2) minimizing impacts; and (3) offsetting or compensating for residual 

impacts as an option of last resort.  In practice, however, avoidance is ignored more often than it 

is implemented (Clare et al. 2011). 

Compensatory mitigation can entail generating or sometimes preserving replacement 

habitat of a size similar or larger to land slated for development, with the underlying assumption 

that acreage is a reasonable surrogate for function (USACE 2002).  Biodiversity offsets are thus 

intended as a means of balancing development and conservation goals.  Under the Clean Water 

Act, options for compensatory mitigation, in order of preference, are 

 mitigation banks, which are large sites where habitat is created, restored, or preserved, 

thus creating mitigation credits that can be sold to permittees required to provide 

compensatory mitigation;  

 in-lieu fee programs, which allow for funds to be paid to governmental or non-profit 

natural resources management entities to satisfy compensatory mitigation requirements, 

and transfer the responsibility of providing compensatory mitigation to the in-lieu 

program sponsors; and 

 permittee-responsible mitigation, in which the permittee retains full responsibility for 

establishing, restoring, or preserving compensatory habitat (EPA undated). 

 Mitigation banks have advantages compared to individual mitigation projects, in that they 

result in larger (albeit fewer) conservation sites, consolidate economic, planning, and scientific 

resources, and improve economies of scale (Mack & Micacchion 2006).  Generating a single 

large mitigation site in lieu of many smaller sites, however, increases the biological cost if the 

single site fails (Maron et al. 2012; Moilanen et al. 2009).  As of 2011, at least 45 mitigation 

programs existed around the world, and at least 27 programs were under development, 

underpinning a multibillion-dollar mitigation market (Madsen et al. 2011).  The majority of 

mitigation credits in the US, however, are still provided through permittee-responsible mitigation 

(Madsen et al. 2011). 

 Since 1980, federal law has required compensatory mitigation for wetland losses, often 

through wetland creation or restoration (BenDor 2009), making wetland mitigation perhaps the 

oldest offset program (McKenney & Kiesecker 2010).  Wetland mitigation in the US can 

therefore illustrate the underlying issues for many other habitat offsets.  In 1987, the US adopted 

a "no net loss" policy requiring full replacement of impacted wetlands in terms of acreage and 

functionality (BenDor 2009).  Mitigation policies call for offsetting activities to be in place 

before allowing project impacts, thus requiring developers to anticipate project impacts and 

finance up-front costs (McKenney & Kiesecker 2010).  US wetland mitigation policy allows for 

offset-credit releases as project milestones are reached, such as securing a site, developing plans, 

and planting vegetation.  An estimated 90 percent of US wetland banks sell some credits before 

achieving any performance standard (McKenney & Kiesecker 2010).  In some cases, as much as 

100 percent of offset credits have been released once adequate hydrology was established but 

before any planting occurred (Mack & Micacchion 2006). 
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 If replacement habitat is of lower quality, acre-for-acre mitigation means a net loss of 

habitat. Although US offset policy calls for no net loss of wetland function, the ecological 

function and quality of a compensation site may not match that of the impact site.  Mitigation 

ratios are used to account for these differences; thus an impact site of 10 acres might be replaced 

by a 30-acre mitigation site of lower per-acre quality.  Less clear is how to calculate a ratio that 

will ensure the mitigation site at least matches the ecological function of the impact site 

(Moilanen et al. 2009; Maron et al. 2012).  The law allows for offset transactions based on land 

area alone; for example, Ohio’s ratio is 1-to-1 for wetlands restoration and 2-to-1 for 

preservation. 

 A number of observers have questioned the adequacy of such ratios.  Mack & 

Micacchion (2006) examined the 12 oldest of Ohio's 25 wetland mitigation banks, and found that 

only three of them successfully met restoration criteria, five passed in some areas, and four 

functioned as shallow unvegetated ponds rather than as wetlands.  None of the mitigation banks 

provided adequate amphibian habitat.  Site monitoring by the Army Corps and EPA had not 

resulted in amelioration of the mitigation-bank failures.  Similarly limited success has been 

reported for a wide range of restoration and mitigation projects (Moreno-Mateos et al. 2012; Rey 

Benayas et al. 2009; Suding 2011), implying that mitigation ratios now in use are inadequate. 

 Methods suggested to improve compensatory mitigation would multiply its costs.  

BenDor (2009) recommends lengthening the time developers are responsible for mitigation-site 

monitoring, encouraging mitigation methods that have significant lead times (such as banking) to 

reduce time lags, enforcing the use of viable compensation sites, and raising mitigation ratios.  

Moilanen et al. (2009) propose "robustly fair offset ratios" to incorporate the uncertainties of 

effective restoration and time discounting, and demonstrate that even moderate estimates of time 

lags, potential for failure, and discount rates can result in offset ratios that are one or even two 

orders of magnitude larger than current ratios.  Curran et al. (2014) conducted a meta-analysis of 

108 studies to estimate the time required for a disturbed, restored ecosystem to converge on the 

species diversity of undisturbed habitat.  They found that disturbed ecosystems can eventually 

recover, and that recovery time is significantly shortened by active restoration; nevertheless, 

large, unavoidable lag times and uncertainty of success make reasonable compensation ratios 

range from 20: 1 to 100: 1.  One can easily imagine that developers might find the resulting 

mitigation costs to be unacceptable. 

 

Shifting Political Sands 

 This chapter has described efforts by government, in particular at the federal level, to 

balance competing demands for consumption and use of natural resources against care and 

protection of ecosystems.  During most of the last several decades, governmental policies have 

moved largely in the direction of maintaining natural systems.  Federal restoration policy, 

however, continues to shift in response to political mood swings. 

 In January 2017, Donald Trump assumed the US presidency.  The administration's 

proposed 2018 budget included deep cuts in environmental programs, including major initiatives 

that incorporate ecosystem restoration in the Great Lakes, Chesapeake Bay, South Florida, and 
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the San Francisco Bay delta.  As of June 2017, information on the BLM website regarding the 

Seeds of Success program had been severely truncated, and a number of program documents 

appeared to be no longer available.  Environmentalists have of course been profoundly dismayed 

at the shift towards resource extraction and away from valuing natural systems for their own 

sake.  Elimination and reduction of ecological restoration programs will also displace many 

workers.  The 126,000 people employed in restoration considerably exceed the number 

employed in coal mining, and restoration indirectly supports an estimated additional 95,000 jobs 

(BenDor 2015).  For growers who have taken on the challenge of growing native-plant seed for 

use in restoration, moreover, policy shifts away from planting native seeds could devastate their 

investments. 
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Chapter 5.  Study Area and Problem Description 

 

Study Area 

 This project takes place in the context of California grasslands, which are the subject of 

many restoration efforts.  Grasslands and oak woodlands now cover respectively about 4.4 

million and 1.7 million hectares on the coast and in the foothills surrounding the central valleys 

of California (CDF-FRAP 2003).  California grasslands receive limited precipitation, ranging 

from about 12 cm per year in the southern San Joaquin Valley to nearly 200 cm per year near the 

Oregon border, with considerable year-to-year variation (Heady et al. 1992).  Nearly all this 

precipitation falls between November and April.  For perennial species, rapid early growth may 

be of critical importance to allow plants to grow large and deep-rooted enough to endure the long 

summer drought (A. Dyer et al. 2000; Dyer & Rice 1999). 

 California's native perennial grasses are mostly bunchgrasses (Heady et al. 1992).  

Studies of S. pulchra in pre-Columbian grassland conjecture a range of one to seven plants per 

m
2
, with basal area comprising up to 10% of total plant cover and foliar cover up to 25% 

(Bartolome et al. 2013; Heady et al. 1992; K. White 1967).  Space between clumps of perennial 

grasses probably featured annual grasses and forbs (A. Dyer & Rice 1997; Heady et al. 1992).  

Many of the perennial grasses are long-lived, and may have always recruited episodically, 

particularly if conditions supporting successful recruitment, such as reduced competition and 

adequate rainfall, were infrequent (J. Hamilton et al. 1999). 

The historical composition and extent of California native grasslands is uncertain.  

Clements (1934) observed Stipa pulchra-dominated associations growing along railroad rights-

of-way, and suggested that California's grasslands were once dominated by this species.  

Phytolith evidence, however, supports the contention that much of what is now annual grassland 

did not predominantly support native perennial grasses (Evett & Bartolome 2013).  Parts of 

California's current grasslands may have been dominated by woody vegetation (J. Hamilton 

1997), coastal scrub (Hopkinson & Huntsinger 2005), or forbs (Solomeschch and Barbour 2004). 

 Loss of native prairie.  California prairies underwent extensive floristic changes 

beginning around 1775 with European exploration and settlement.  Introduced annual plants such 

as Avena, Bromus, and Erodium species invaded and substantially replaced the native species 

(Bartolome et al. 2013; Heady et al. 1992).  This change is one of the most extreme examples of 

community invasion over a large area and a short time (J. Hamilton et al. 1999).  The resulting 

California annual grassland type consists mainly of introduced species, some 400 of which have 

been recorded (McNaughton 1968).  Species introductions continue to the present, and 

introduced perennial grasses are increasingly common near the coast (Corbin & D'Antonio 

2010). 

Native grasses are now less visible and in many places absent from their original range, 

remaining most common in areas of relatively greater precipitation, such as near the coast 

(Jackson 1985), and inland on serpentine soils (McNaughton 1968).  Introduced grasses now 

typically comprise 80-97% of foliar cover, and define most California grasslands (Heady 1956; 

Heady et al. 1992).  Where the introduced annual grasses originated, they are ruderal species 
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adapted to colonizing grazed or cultivated sites.  Because the introduced plants are largely 

annual, the floristic composition of the grassland changes from year to year in response to 

environmental fluctuations such as fire, grazing, and climate variations (Bartolome 1979; 

Bartolome et al. 1980; McNaughton 1968).  This year-to-year variation in annual cover, coupled 

with the long life and infrequent recruitment of the perennial species, creates difficulty in 

determining whether native species are still decreasing, stable, or increasing (J. Hamilton et al. 

1999). 

The factors causing the destruction of native grasslands are not fully understood.  

Explanations for grassland conversion include introduction of farming and livestock grazing, 

changes in fire regime, and competitive suppression by introduced species (Heady et al. 1992).  

These factors overlap in space and time over the whole of California grasslands, making them 

difficult to untangle (Corbin et al. 2004). 

Agriculture and grazing.  Soil cultivation physically destroys many perennial forbs and 

grasses, which may subsequently fail to reestablish.  Stromberg and Griffin (1996) found that 

several native plant species, including S. pulchra, Poa secunda, and Chlorogalum 

pomeridianum, occur only on land with no history of cultivation.  S. pulchra only slowly 

recolonizes previously disturbed areas. 

 Grazing is often cited as an important factor in floristic change (Jackson 1985).  

Livestock were introduced to California in 1769, and within a century had expanded into the 

available rangeland, devastating the range during the drought of 1862-64 (Kosco & Bartolome 

1981).  Some studies associate grazing by domestic livestock with reduced species richness and 

increased soil exposure (Stromberg & Griffin 1996), while others examine potential benefits of 

grazing treatments to reduce competition from annual grasses (Bartolome et al. 2004; Corbin et 

al. 2004; Dyer 2002).  Grazing and grazing-removal studies in California grasslands have shown 

inconsistent benefits to populations of native perennial grasses (Bartolome et al. 2004; Corbin et 

al. 2004; HilleRisLambers
 
et al. 2010; Hull & Muller 1977; Seabloom et al. 2003). 

 Fire regime.  Lightening-related fires are rare in most of California, making fire an 

infrequent prehuman event in the present study area.  In oak woodlands, Native Americans 

sometimes ignited fires to discourage insect pests, make acorn-gathering easier, and promote the 

abundance of herbaceous food plants (M. Anderson 2007).  The Gold Rush and agriculture 

resulted in continued burning up to about 1900, followed by fire suppression.  Fire has varying 

effects on native and introduced grassland species, depending on factors such as season (Larios 

et al. 2013), and has been studied as a means of decreasing annual species (Bartolome et al. 

2004; Dyer 2002; Hatch et al. 1991; Seabloom et al. 2003).  Changes in fire patterns may have 

contributed to reduced prevalence of natives. 

 Competitive suppression.  The introduced annual species that began arriving with early 

European explorers and continued during Spanish settlement are mainly of Mediterranean origin 

and preadapted to California’s climate (Hatch et al. 1991; Jackson 1985).  These species come 

from a genetically rich, ecologically wide-ranging part of the world, and had survived millennia 

of selection under Old-World anthropogenic conditions including species introductions, livestock 

grazing, and cultivation.  Variation among these species in phenology and climate adaptation 
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allows different suites of exotics to dominate from year to year across the many habitats of 

California grassland (Bartolome 1979; Bartolome et al. 1980; Gulmon 1979). 

 The introduced grasses are mostly winter annuals that evade rather than endure the long 

summer drought, by growing rapidly, setting seed, and senescing before water in the upper soil is 

gone.  These species are adapted to colonizing disturbed sites and in some cases to low nutrient 

availability (Jackson 1985), and may benefit from ongoing disturbance by gophers (Heady et al. 

1992; Seabloom et al. 2003; Stromberg & Griffin 1996).  The annuals produce large numbers of 

seeds (Larios et al. 2013); the resulting large seed pool may compensate for high mortality when 

growing conditions are poor (Aarssen 2000; Bartolome 1979).  The relatively large seeds and 

rapid germination of some introduced annuals give them a head start on growth and competition 

(Hull & Muller 1977; Jackson 1985; Stromberg & Griffin 1996).  They extensively exploit the 

upper soil to 50 cm depth, and during early spring they are able to reduce moisture levels in the 

upper 30 cm of soil more rapidly than perennials (Holmes & Rice 1996; Seabloom et al. 2003).  

Their relatively high allocation to shoot biomass allows for rapid photosynthetic assimilation and 

growth, followed by generous seed set.  Annual grasses can reduce light levels near the soil 

surface through their continuous, dense cover and accumulation of dead biomass, potentially 

suppressing native forbs and reducing species diversity (Molinari & D'Antonio 2014).  In 

contrast, native perennial species allocate more biomass to roots, grow more slowly, and develop 

deeper roots than annuals (Holmes & Rice 1996), which allows them to tap deep soil resources 

and maintain green tissue long after the annuals have senesced.  The competitive nature of the 

introduced species may have been a primary factor in the elimination of native plants from much 

of their range, and may be the greatest impediment to grassland restoration. 

The competitive environment natives now experience may be very different from the one 

in which they evolved.  Rather than competing with a few large bunchgrasses, native grass and 

forb seedlings now must cope with many small annual plants (Dyer & Rice 1997).  Failure of 

perennial bunchgrasses to return to dominance with reduction of grazing, difficulties establishing 

stands via seeding, and competition experiments all point to interference by introduced species.  

Coexistence between annual and perennial grasses may be based on the ability of perennials to 

gain access to resources of deeper soil zones, thus compensating for their slower aboveground 

growth (Seabloom et al. 2003). 

The relative importance of disturbance versus competition in grassland conversion may 

have differed across California climates and ecosystems.  In the hotter, drier interior grasslands, 

exotic annual grasses clearly suppress both seedling and adult native grasses (Bartolome & 

Gemmill 1981; A. Dyer & Rice 1997).  In the coastal prairie (within 100 km of the coast), native 

grasses compete more effectively with annuals (Seabloom et al. 2003), indicating that grassland 

conversion there may have required widespread disturbance or stress (Corbin & D'Antonio 

2004).  In a coastal-prairie study, Corbin and D'Antonio (2004) found that exotic annual grasses 

suppress natives in the first growing season, while natives have no effect on exotics; in 

subsequent seasons, the natives suppress the annual grasses, and the effect of the annual exotics 

on native-species productivity becomes smaller over time.  They concluded that where the 

experience of summer drought is modified by maritime influences, native grasses may have an 
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incumbency advantage starting with their second year.  The introduced perennial grasses that are 

becoming more prevalent in the coastal grasslands function similarly to native perennials, but in 

some cases can outcompete the natives (Corbin & D'Antonio 2010).  

Seabloom et al. (2003) suggest that loss of native grasslands was likely due to heavy 

grazing reducing the number of native plants, and the resulting loss of seed production and 

impaired recruitment led to continued dominance by introduced annuals.  Perennial grasses can 

take decades to invade and increase in numbers because of limited seed dispersal (Stromberg & 

Griffin 1996).  Dispersal limitation combined with prodigious seed production on the part of 

introduced annuals means that severe disturbance, such as combined drought and fire, can tip the 

balance in favor of introduced annuals (Larios et al. 2013).   Observing that a mixture of native 

perennial grasses seeded at 2500 seeds/m
2
 was able to establish effectively and suppress 

productivity of annual grasses, Seabloom et al. (2003) concluded that restoration of perennial 

grasses in some areas would only require direct seeding.
11

 

 

Restoration of California Grasslands: Limited Prospects  

 Complete restoration of California's grasslands to pre-Columbian conditions would 

require permanent removal of competitive introduced species, which makes full restoration 

effectively impossible.  Instead, native grassland restoration efforts focus on seeding, 

transplanting, or increasing stands of native species and reducing cover of exotics (Corbin et al. 

2004; Huntsinger et al. 1996) to produce a mixed annual-perennial grassland.  "In essence we are 

attempting to establish a new set of ecological processes that will create and maintain a visual 

appearance that mimics California's native prairie" (Hatch et al. 1991, p. 346). 

Even if complete restoration cannot be accomplished, there are reasons to pursue partial 

grassland restoration via introduction of native species.  In situations such as roadside planting, 

the consistent year-to-year soil cover and extensive, persistent root systems of native shrubs and 

perennials make these species useful for weed suppression and erosion protection (Bugg et al. 

1997; Cione et al. 2002; Holmes & Rice 1996).  The perennial species tap deep soil moisture, 

extending seasonal productivity and potentially removing resources that might otherwise be 

available to invasive summer annuals (Holmes & Rice 1996; K. Rice et al. 1993; Tilman 1997).  

Several of the native grasses, including S. pulchra, are valuable as forage due to their palatability 

(Hatch et al. 1991).  Adding perennials to the existing annual grasslands may increase cover, 

productivity, and stability of ecosystem functions through greater species diversity (Schwartz et 

al. 2000; Tilman 1997 and 2004; Tilman et al. 1996).  Where cultivation or disturbance has 

reduced pools of soil carbon, grassland restoration may be more effective than natural succession 

in hastening recovery of soil carbon (Baer et al. 2002).  Restoration of native grasses may 

improve habitat for oaks (K. Rice et al. 1993) and for native annual forbs that have become rare 

in the wake of invading annuals, so long as populations of the invading species are drastically 

curtailed (C. Brown & Bugg 2001; Carlsen et al. 2000).  Native grasses may also improve habitat 

                                                 
11

 This seeding rate may be compared with the present study's estimate of natural seed production, which averaged 

about 400 seeds/m
2
 where S. pulchra was present at low density, and about 2000 seeds/m

2
 where S. pulchra density 

was high. 



 

41 

and resource availability for native animal species (Lesica & Allendorf 1999).  Finally, 

restoration of California's native species may be desirable for aesthetic reasons and for the 

intrinsic worth of native ecosystems (Holl & Howarth 2000). 

 

Stipa pulchra 

 This study uses Stipa pulchra to examine potential subpopulation differentiation in 

relationship to environmental restoration.  One of the species commonly used in California 

grassland restoration, S. pulchra is currently the most widely distributed native perennial grass.  

It grows naturally in a variety of soil types and on all slope aspects from the coast to the Sierra 

Nevada foothills, in habitats receiving from 56 to over 127 cm annual precipitation and at 

elevations ranging from near sea level (in the present study) to 890 m (Bartolome & Gemmill 

1981; Knapp & Rice 1998).  Estimated longevity of S. pulchra individuals is in excess of 100 

years (J. Hamilton et al. 1999 citing unpublished data). 

Several researchers have described S. pulchra as the dominant perennial grass in 

California prior to European settlement (Heady 1977; Heady et al. 1992).  Some of its 

characteristics, however, indicate that S. pulchra may have acted as a colonist of disturbed sites.  

S. pulchra germinates under all but the most severe moisture stress, and establishes more easily 

on bare ground than under mulch (Bartolome & Gemmill 1981).  It is often found growing in 

disturbed areas, such as roadcuts adjacent to undisturbed grasslands (Heady et al. 1992; also 

observed during the present study), and thrives after competitors are removed by fire and grazing 

(Bartolome & Gemmill 1981; but see Larios et al. 2013).  It self-pollinates, allowing 

reproduction at low densities that might occur after long-distance dispersal or disturbance 

(Aarssen 2000; Larson et al. 2001; Stebbins 1957).  Much like introduced annuals, S. pulchra 

produces copious, relatively large seeds, and germinates rapidly, but in most circumstances its 

seedlings do not effectively compete with introduced annual seedlings (Bartolome & Gemmill 

1981; Larson et al. 2001). 

Competition from introduced annuals affects both seedling and adult S. pulchra, although 

the ecological impact of competition may be greatest at seedling and recruitment stages (Howard 

& Goldberg 2001) and varies according to site conditions.  S. pulchra germinates and leafs out 

more slowly than introduced annuals, reaching peak density later and suffering greater mortality 

than the introduced annuals during the growing season (Bartolome & Gemmill 1981; Stromberg 

& Griffin 1996).  Bartolome and Gemmill (1981) found that S. pulchra seeds planted in pots 

with seeds of the introduced annuals Bromus hordeaceus and Festuca myuros germinated more 

slowly and attained lower density with high densities of the annual species, even though S. 

pulchra emergence may be accelerated in the presence of specific introduced species and its total 

germination is not affected (Dyer et al. 2000).  S. pulchra seedling mortality is high during the 

spring peak growth period for annuals (Bartolome & Gemmill 1981).  Survivorship of S. pulchra 

seedlings is low (roughly 1 percent, even on undisturbed soil), and as few as 0.01 percent of S. 

pulchra seedlings planted into annual grassland survive into their fourth year (Stromberg & 

Griffin 1996). 
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Mature S. pulchra plants have as much as 94–98 percent year-to-year survival rate in the 

presence of annuals, but their growth and fecundity is commonly reduced by competition (A. 

Dyer & Rice 1999).  In a multiyear study of weeding, grazing, and burning treatments, A. Dyer 

and Rice (1997) found that the rapid growth and strong intraspecific competitive effect of S. 

pulchra in weeded plots was not apparent on unweeded plots, indicating that diffuse competition 

from annuals had an overriding effect.  Dennis (1989) found that weeding S. pulchra plots in 

mid-December tripled tiller number and somewhat increased flowering.  J. Hamilton et al. (1999) 

found that S. pulchra is water-limited in the presence of annuals, and that removal of annuals 

increased S. pulchra performance to the same degree as watering without weeding. 

 

Overview of This Research Project 

 This study uses S. pulchra to ask whether economic considerations of seed collection 

conflict directly with restoration goals of capturing genetic variation and establishing well-

adapted new populations.  Do S. pulchra plants in sparse patches, where seeds would be difficult 

to collect, differ genetically from plants in dense patches, where seed collection would be most 

efficient?  Would seed harvesting on dense patches alone lead to omission of genotypes found in 

sparse patches?  Seed collectors paid on a product-weight basis may be driven to bypass sparse 

stands.  If plant genetic charcteristics differ according to patch density, harvesting solely from 

dense patches might skew the genetic composition of collected seed and affect the range of 

microenvironments to which the collected seeds may be adapted. 

This study focuses on patches where a great deal of seed is readily available, which I call 

"thick" patches, in comparison to "thin" patches where there is little seed of the target species.  

While "thick" and "thin" correspond roughly to dense and sparse relative cover of S. pulchra, the 

correspondence is far from exact, and patches were selected for study based on apparent 

availability of seed prior to any cover measurements.  Thus for experimental methods and results 

reported herein, S. pulchra culm density, rather than S. pulchra cover, more accurately reflects 

the study approach. 

 The experimental hypothesis (H1) underlying this study is that plants grown from seeds 

collected from thick patches differ genetically from plants grown from thin-patch seeds, with 

divergence potentially including 

 emergence time and growth rate; 

 reproductive timing and allocation; 

 morphological characters such as leaf length and width, number of tillers, and below- 

versus aboveground biomass; and 

 differential response to watering treatments. 

The corresponding null hypothesis (H0) is that plants from thick patches do not differ from 

plants originating in thin distributions.  Rejection of the null hypotheses would follow detection 

in a common garden setting of consistent, significant differences between plants correlated with 

intraspecific density in the field 

This study employs S. pulchra from three sites.  Concerns regarding genetic variation 

among plants from different sites are well incorporated in restoration literature.  Use of multiple 
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sites is intended here to address whether differences between plants from thick versus thin plots 

are consistent among sites, and to compare variation among populations to variation within 

populations. 

 The study approach entailed characterizing patches (plots) with differing amounts of 

available S. pulchra seeds, collecting seeds from these plots, and planting them in a common 

garden.  Effects on soil moisture mediated through competition are often cited as an important 

impact of introduced grass species in California (A. Dyer & Rice 1997; Holmes & Rice 1996), 

and unusually dry or wet winters may improve competitive outcome for S. pulchra by, 

respectively, desiccating annual seedlings or relieving water shortage (J. Hamilton et al. 1999).  

The common garden experiment therefore included two watering treatments to explore 

differential moisture response among plants from different sites and plot types. 
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Chapter 6.  Methods 

 

Field Study 

 As described in Chapter 1, this project focuses on differences in plants from "thick" 

patches of Stipa pulchra, where large amounts of seed would make seed collection relatively 

quick and easy, versus "thin" patches, where scarcity would render seed collection more difficult 

and time-consuming.  In addition, it addresses potential variation in plants correlated with other 

field variations such as absolute cover and species diversity.  Seeds collected during the field 

study were used in the common-garden study discussed later in this chapter, and patch 

characteristics measured in the field study were used in analysis of common-garden 

measurements. 

 Time and place of field study.  Field observations took place during the spring and 

summer of 2000 and 2001.  Overall weather in the study area was cooler and drier in the months 

preceding the second field season compared to the first (Table 1).  The study patches were in 

three sites in the San Francisco Bay Area that represent a range of soil and climate conditions, 

had experienced little or no disturbance for two or more decades prior to this study, and contain 

areas of variable S. pulchra density (Figure 2) 

. Point Molate (37° 58'N, 122° 25'W) is a rocky hillside northwest of the former Pt. 

Molate naval refueling station that overlooks San Francisco to the southwest and San Pablo Bay 

to the north.  The site is in the Ecological Subregions of California (Miles & Goudey 1997) 

subsection 261Ad (Central California Coast East Bay Terraces and Alluvium).  The hillside, 

while privately owned, is unfenced and used by hikers and others as de facto open space.  The 

plots were on the west-facing part of the hillside in relatively steep terrain. 

 At the National Climatic Data Center cooperative weather station in Richmond, about six 

km southeast of Pt. Molate, the average annual daily minimum temperature between 1981 and  

 

 

 

Table 1 

Climate Conditions During Field Study Years (October 1 to September 30) 

Location Date range 

Total precipitation 

(cm) 

Mean temperature 

(degrees C) 

Richmond 1999 – 2000 59.2 13.6 

 2000 – 2001 36.4 12.5 

Graton 1999 – 2000 104.7 14.1 

 2000 – 2001 65.7 13.7 

Western Regional Climate Center. http://www.wrcc.dri.edu.  Accessed March 10, 

2015. 
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2010 was 10.2°C, with an average daily low temperature of 6.1°C in January, the coldest month 

(Western Regional Climate Center 2015).  Average annual daily maximum temperature was 

19.3°C, with average daily high temperatures of 23.4°C in September, the warmest month.  Total 

annual precipitation in those years averaged 63.3 cm, reaching its maximum in midwinter with 

an average of 12.3 cm of rain falling in January, and diminishing to less than 1 cm during the 

summer months.  Observations indicate that Pt. Molate has the shortest growing season of the 

three sites, with grass foliage senescing a few weeks earlier in spring than at the other sites. 

 Soil at Pt. Molate is Millsholm Loam, a loamy, mixed, thermic Lithic Xerochrepts in the 

Los Osos/Millholms series, a well-drained upland soil formed from interbedded shale and fine-

Figure 2.  

Map of Study Area 

 

Adapted from California Department of Fish and Game 2005. 

40 km 

Sonoma 

Pt. Molate 

Richmond Field Station 

 
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grained sandstone (Welch 1977).  This soil is medium-tan in color and rocky.  Occasional rock 

outcrops indicate that soil is underlain in some areas with shallow bedrock. 

 Richmond Field Station (RFS; 37° 55'N, 122° 20'W) is adjacent to San Francisco Bay, 

and is owned by the University of California at Berkeley.  Like Pt. Molate, RFS is in the 

ecological subregion and subsection 261Ad (Miles & Goudey 1997).  Richmond Field Station is 

about four km from the National Climatic Data Center cooperative weather station in Richmond, 

and about nine km from Pt. Molate.  Precipitation and temperature regimes at Richmond Field 

Station and Pt. Molate are broadly similar. 

 The RFS grasslands were probably once used for grazing and harvesting hay.  Available 

evidence, including the presence of Stipa pulchra, Elymus glaucus, and Wyethia angustifolia, 

implies that the site was not severely disturbed prior to 1910.  In about 1910, the area was 

subdivided into parcels, roads were graded, and a sidewalk system was installed, but no 

permanent structures were built.  Aerial photographs taken in 1939, 1946, and 1953 may indicate 

past irrigation but show no development or uniform cultivation (David Amme Associates 1993). 

 Soil at the Richmond Field Station is a fine, montmorrillonitic, thermic Typic 

Pelloxererts belonging to the Clear Lake Series of the Clear Lake-Cropley Association.  Formed 

from fine-textured alluvial deposits, this is a dark-gray clay soil (David Amme Associates 1993; 

Welch 1977).  The soil is poorly drained, and the site has less than one percent slope, so that 

water stands in wet swales for days at a time in the rainy season.  During the summer, the soil 

shrinks, becomes very hard, and sometimes cracks.  RFS includes the only coastal prairie 

grassland on lowland clay soils in the greater East Bay area.
 
 

 Ocean Song Farm and Wilderness Center, Sonoma County (Sonoma; 38° 24'N, 123° 

1'W) is a former ranch in a rolling landscape about 8.5 km west of Occidental in Sonoma County 

(Kathleen Kraft pers. comm. 2001).  The Ecological Subregions of California (Miles & Goudey 

1997) places this site in Section 263A: Northern California Coast, near the boundary between 

subsections 263Ag and 263Aj (respectively the Coastal Franciscan and the Coastal Hills–Santa 

Rosa Plain subsections).  The site is currently operated as a private not-for-profit learning center 

(Ocean Song 2014). 

 The Sonoma site is the most mesic and has the widest annual and diurnal temperature 

range of the sites.  At the National Climatic Data Center cooperative weather station in Graton, 

about 13 km east of Ocean Song, the average annual daily minimum temperature from 1981 to 

2010 was 5.8°C, with an average daily minimum temperature in December, the coldest month, of 

1.9°C (Western Regional Climate Center 2015).  The average annual daily maximum 

temperature was 22.3°C, with an average daily high temperature of 28.6°C in July, the warmest 

month.  Total annual precipitation averaged 107.4 cm, reaching its maximum in midwinter with 

an average of 21.3 cm falling in January and less than two cm during the summer months.  

During the field observations in summers of 2000 and 2001, the study area was often cloaked 

with heavy ground-level fog in the mornings, which would lift gradually before noon and return 

around sunset.  Ground and plant surfaces were sometimes wet with condensation until 

midmorning.  In contrast, RFS and Pt. Molate sometimes had overcast skies but no ground fog.  

 



 

47 

 Soil at the Sonoma site is in the Yorkville-Laughlin association of sandy-clay and clay 

loams (ArcGIS 2014; V.C. Miller 1972).  Surface soil in the study patches is intermediate 

between Pt. Molate and RFS soils in rockiness.  Yorkville soils are derived in part from 

serpentinized igneous rocks, and the Ocean Song area includes some patches of serpentine soil.  

S. pulchra is better able than most introduced grasses to grow well on serpentine soil 

(McNaughton 1968), and S. pulchra originating on serpentine soil may differ genetically and 

phenotypically from other S. pulchra ecotypes (Huntsinger et al. 1996).  The plots at the Sonoma 

site all contain vigorously-growing introduced grasses, which implies they are sited on non-

serpentine soil. 

 Plot selection.  At each site, patches containing relatively large numbers of seed-bearing 

S. pulchra culms were designated as "thick," and represent stands that might attract a person 

seeking efficient collection of seeds.  Each thick patch was matched at the same site to a "thin" 

patch with broadly similar slope, aspect, general composition of forb, legume and grass species, 

and overall appearance, but with far fewer S. pulchra culms.  Plots were loosely paired in terms 

of background vegetation to avoid, for example, having all thin plots at a given site dominated by 

Bromus while thick plots were dominated by Avena.  The core factor in designating patches as 

thick or thin was apparency of S. pulchra culms, rather than density or percent cover of S. 

pulchra.  In practice, thick patches had disproportionately higher density of S. pulchra than thin 

patches.  Study patches were large enough to accommodate a 2 × 3 meter plot area with a buffer 

at least one meter wide of similar S. pulchra culm frequency. 

 A total of 14 plots were established, in seven plot pairs distributed among the three sites 

(Table 2).  The plots were spread out across the site at Pt. Molate, such that the members of each 

thick-thin plot pair were not paired in space.  Plots were also unpaired in space at RFS, but 

because the site is smaller than the other two, all the plots were relatively closely spaced.  At 

Ocean Song in Sonoma, each thick plot was within a few meters of its paired thin plot, with the 

two pairs spread farther apart. 

 

 

 

Table 2  

Distribution of Field Plots Among Sites, Plot Pairs, and Plot Types 

Hierarchal Level  

Site  Pt. Molate  RFS  Sonoma 

Plot Pair  PtM1 PtM2 PtM3  RFS1 RFS2  Son1 Son2 

Plot Type:           

   Thick ("K")  P1K P2K P3K  R1K R2K  S1K S2K 

   Thin ("N")  P1N P2N P3N  R1N R2N  S1N S2N 
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 As Stipa seed and pollen are wind-distributed, plants are apt to be more closely related to 

individuals located directly up- or downwind than to those located perpendicularly across the 

prevailing wind.  To reduce the likely degree of genetic relatedness among plants in each plot, 

plots were oriented perpendicular to prevailing wind patterns as indicated by the lodging pattern 

of the grasses at Pt. Molate and RFS.  At Ocean Song, the prevailing wind is from the northwest, 

but is not strong enough at ground level to result in a consistent lodging pattern in the grasses, so 

the plots in one pair were oriented roughly north-south and the others east-west. 

 Plot characterization and seed collection.  A 2-meter × 3-meter plot was established in 

each of the selected thick and thin patches at the three sites.  Fieldwork on these plots included 

collecting seeds for common-garden planting, and characterizing the plots by measuring 

 percent absolute cover,   

 percent relative cover of S. pulchra and of other species, 

 number of S. pulchra culms per m
2
, 

 number of seeds per culm, and 

 height of S. pulchra culms.  

As described later in this chapter, field methods evolved during the first weeks of the 2000 

season, particularly affecting data collection on the first four plots at Pt. Molate. 

 Plot subdivision.  Division of the plots into smaller units allowed data collection at 

different scales and supported subsampling within each plot.  Each 2 × 3 meter plot was divided 

into six meter-square subplots, and subplot corners were marked with survey flags that remained 

in place through both years of fieldwork.  Each meter-square subplot was further divided into 10 

cm × 10 cm cells using a grid system (Fehmi & Bartolome 2001) made by weaving yardsticks 

through the grass at 10 cm intervals.  The grid was used in subsampling, as described below. 

 Absolute and relative cover.  Cover was visually estimated at the meter-square subplot 

scale, including 

 absolute cover to a maximum of 100 percent, 

 relative cover of individual species to a maximum of 100 percent, and 

 area of soil covered with recent gopher tailings, versus soil that was unvegetated for other 

reasons, in 2001 only. 

 Culm count.  All S. pulchra culms were counted each 10 cm × 10 cm cell, omitting 

culms that were not open enough to be sure of species or that appeared sterile.  Some culms 

produced only pale, unfilled seeds, and others were affected by a blight that replaced the entire 

panicle with dark-brown spores initially enclosed by the sheath.  If seed had dehisced, there was 

no way to determine whether the released seed was viable or not; culms were recorded as viable 

unless they clearly were not.  Culms that might have developed or opened after plot 

characterization were also omitted; this would have most strongly affected plots at Pt. Molate 

that were sampled before the end of the growing season in 2000. 

 Seed collection.  The common-garden study described later in this chapter required 

collecting sufficient seeds from across each plot, ideally in sibships (i.e., seeds from the same 

culm).  During each field season, four 10 cm × 10 cm cells in each meter-square subplot (totaling 

24 cells per plot) were chosen at random for seed collection.  All ripe seeds in these randomly 



 

49 

selected plot cells were collected, with each culm’s seed put into a separate, labeled envelope 

identifying the culm.  In 2000, the panicle was collected as well in order to count florets.  On thin 

plots, the limited number of culms led to collection of seed from plot cells adjacent to the 

random cells, or from all culms with enough seeds for purposes of the common garden study.  To 

ensure having sufficient seed, additional seed was harvested in bulk from all plots, generally 

from culms that lacked sufficient ripe seed to represent a sibship (i.e., fewer than six seeds).  To 

the extent practicable, seeds were bulk-collected in small groups; for example, a seed envelope 

might contain seeds taken from several culms growing inside one 10 cm × 10 cm plot cell.  As a 

result, some envelopes of bulk-collected seeds may have represented single parent plants.  Bulk-

collected seeds were riper in some cases than seeds from single culms, particularly for seeds 

collected in 2000 from Pt. Molate plots. 

 Culm heights in the field.  The same randomly selected 10 cm × 10 cm cells used for 

seed collection were also used for measuring S. pulchra culms.  Height was measured from the 

soil surface to the bottom of the highest glume on each culm.  This meant omitting closed culms, 

which may not have been fully elongated, and culms with blight.  Culm heights were not 

measured on the first four Pt. Molate plots in 2000. 

 Where possible, four plot cells per subplot (24 per plot) were used for height 

measurements.  If there were not enough S. pulchra culms in four cells to produce adequate 

samples (about 20 culms per subplot), four or eight more random cells per subplot were added to 

the sample.  In practice, getting a reasonable sample often required more cells than anticipated, 

particularly on thin plots.  Moving across a subplot breaks the culms, so it was not possible to 

increase sample size from a subplot after initial sampling.  Instead, if the first subplot sampled in 

a plot provided a skimpy sample of culms, subsequent subplot sampling was adjusted by adding 

more random cells.  As a result, the number of plots cells used sometimes varied from one 

subplot to the next within a plot, as the original estimate of number of plot cells needed for 

adequate sampling met reality.  In several thin plots, height measurements were taken from all 

mature, unbroken culms. 

 S. pulchra culm collection for seed counting.  The randomly selected 10 cm × 10 cm 

cells were also used to collect panicles for seed-production estimates.  S. pulchra bears one seed 

per spikelet, so each pair of glumes remaining on a culm after seed drop represents a seed.  In 

2000, all S. pulchra culms from the randomly selected 10 cm × 10 cm cells were bagged, and 

florets (i.e., pairs of glumes) were later counted in the lab.  As described above, the number of 

plot cells sampled varied depending on the frequency of culms, and all open culms were 

collected from some thin plots.  Where the resulting sample contained too many culms to 

reasonably count florets, culms were randomly subsampled within subplot in the lab.  Collecting 

culms for floret counts was added to the sampling protocol after fieldwork began, so on four Pt. 

Molate plots, culms were collected in 30 cm strips along the north, east, and south edges of these 

plots for floret counting. 

 Aboveground biomass production in the field.  In 2001, biomass samples were 

collected from the field plots to determine aboveground production.  From each of the random 

cells initially selected that year for seed collection and culm counts, aboveground plant material 



 

50 

was clipped to approximately 1 cm above soil level and placed in an individually labeled bag.  

Some of the selected plot cells had no visible aboveground biomass; these cells were counted as 

having zero biomass.  Where recent gopher activity produced bare soil, gopher mounds may 

have hidden current-year growth. 

 Most of the biomass samples contained some material remaining from the prior year's 

growing season.  In the lab, each bag's contents were separated into material from 2001 and 2000 

based on appearance.  Material that was largely intact and mostly golden-yellow to reddish-

brown was assumed to be current-year growth, whereas material that was dull, friable, and gray 

or black from weathering was assumed to be left over from 2000.  The 2001 material was 

rebagged separately from the 2000 material, dried at 65
o
C for 24 to 48 hours, and weighed.  

Because samples were collected after most seeds of all species had fallen, mass of seed 

production was not captured.  The separation of material from Sonoma County into 2001 and 

2000 origin was complicated by the collection of these samples in September.  By this time, the 

frequent heavy fog and dampness had begun the weathering process, so that some materials in 

these samples were not unambiguously separable by year of growth. 

 Summary of fieldwork.  The products of seed collection and plot characterization 

included 

 seeds collected and labeled by sibship (culm), plus bulk-collected seed 

 number of S. pulchra culms  

 culm characteristics (height and number of florets), and 

 plot characteristics: "snapshot" estimates of percent live cover, species composition, and 

aboveground biomass production. 

 

Common Garden Study 

 The common-garden pot study examined differences among S. pulchra plants grown 

from the field-collected seeds.  The central question was whether variation among plants in the 

common garden would correlate with the biotic environment of maternal plants, in particular 

whether systematic differences would exist between plants from thick and thin plots.  The steps 

in the common garden study were 

 weighing seeds and allocating them among block and treatment groups, 

 taking measurements during plant emergence and growth, and 

 harvesting the plants for further measurements. 

 Seed weighing.  Seeds were weighed to determine initial biomass, which may reflect 

maternal environmental effects (Roach & Wulff 1987) and is critical in plant establishment and 

early competition.  Seed collection in the field centered on obtaining enough seeds from each 

plot for common-garden planting rather than on determining differences among plots in mean 

seed weight.  As a result, inferences cannot be drawn about the sites based on weight of field-

collected seeds.  Seed collection in the field was not wholly random, because the amount of ripe 

seed available varied considerably among plots and between years. 

Awns were removed before the seeds were weighed.  Seeds that were very green and 

small, damaged, or hollow were discarded as nonviable; these seeds generally weighed very 
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little, 1.0 mg or less.  Remaining seeds were weighed on a Sartorius BP 201 S analytic balance, 

nominally to the nearest 0.1 mg, although observations indicate precision was not better than 0.3 

mg. 

 As described above, seeds were collected into envelopes, with each envelope 

representing a single culm or small bulked group of seeds.  Scrutiny of weights of seeds 

collected in 2000 revealed that a number had been misweighed.  The misweights generally 

occurred in groups, so that most or all seed weights from a sibship or bulk-collected group would 

be wrong.  Suggested possible causes included poor scale calibration, static electricity buildup in 

the plastic weigh-boat, and air currents in the room.  To correct these problems, the scale was 

moved to a windowless room, the plastic weigh-boat was replaced with a paper weigh-boat or no 

weigh-boat, and scale-calibration frequency was increased.  In order to identify misweighed 

batches, several seeds from each culm or bulk-collected group were reweighed; where 

misweighed seeds were found, the whole group was reweighed.  Weight checks of seeds 

collected in 2001 revealed no errors. 

 Data from an earlier greenhouse planting indicated that 

 mature seeds (generally mouse-gray in color) had a higher emergence percentage than 

green seeds;  

 small seeds had lower percent germination, e.g., seeds weighing less than 2.2 mg had a 

germination rate of less than 20 percent, compared to 77 percent for seeds heavier than 

2.2 mg; and 

 for a given weight, small green seeds had lower emergence rates than small mature seeds. 

To improve percent emergence, the common-garden study excluded seeds weighing less than 2.4 

mg, and excluded green seeds where mature ones were available. 

 Seed allocation.  Sibships were chosen for planting from culms distributed across each 

source plot, limiting use of seeds harvested from culms growing near one another.  Sibships and 

seeds within sibships were otherwise selected at random for planting, within restrictions of seed 

availability and quality.  Exceptions to the preferred distribution of seeds and sibships occurred 

where there were not enough mature seeds of 2.4 mg or more from enough culms in a given plot.  

Thin plots, particularly at Pt. Molate, contained far fewer culms relative to thick plots, and thus 

provided fewer culms having six or more ripe seeds.  To compensate, small sibships, e.g., two 

sibships of three seeds each, were combined and distributed among treatments in the same 

manner as sibships.  Bulk-collected seeds were planted where the number of small sibships was 

insufficient.  The number of small families and bulk seeds planted varied significantly by plot 

type, site, and collection year. 

 Equal numbers of seeds from each plot and year were allocated between two watering 

treatments and three temporal planting blocks, which are described under "Growing Conditions" 

below.  A total of 1008 seeds, i.e., 36 seeds per plot per seed-collection year, were used in the 

pot study.  Sibships (or combined sibships) were allocated orthogonally to block and watering 

treatments to render within-family variance independent of variance due to treatments (Mead 

1988).  One seed per sibship (i.e., culm) was allocated to each block  treatment combination (as 
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amended by the need to use small sibships and bulk-collected seeds), for a total of 12 sibships 

per plot:  

 

1008 seeds = 2 treatments  3 blocks  14 plots  2 years 6 sibships/ (year  plot) 

 

 The thin plot in plot pair PtM2 produced insufficient seed for the common-garden study.  

To compensate, seeds collected up to 60 cm east of this plot were planted, and a similarly sized 

area from the western part of the plot was omitted from planting.  The added area was part of this 

plot during the initial, more ambitious 3 m  3 m field-plot layout, and there were no differences 

in common-garden results between the original and added areas of this plot. 

 Planting procedures.  Seeds were planted in "Deepots" (Stuewe and Sons, Corvallis, 

Oregon, USA), which are tapered black plastic pots approximately 6.4 cm (2.5") in diameter and 

25 cm (10") tall.  The Deepots (hereafter "pots") fit into plastic collars that each hold 20 pots in 

staggered rows, which provides for hexagonal close-packing of approximately 215 pots per 

square meter, or 20 per square foot.  Most of the pots were previously used, and had been 

sterilized with bleach solution before use in a related pot study not reported here.  These pots 

were reused without washing for the current pot study.  All pots were filled with "UC Berkeley" 

potting mix provided by the Oxford Tract Greenhouse, which consisted of 0.56 m
3
 fine sand per 

m
3
 peat moss, contained no fertilizer, and had relatively poor drainage.  The potting mix was 

autoclaved prior to use. 

 Before planting, each group of 20 pots sharing a collar was assigned to a block  

treatment group, and the individual pots in each collar were randomly allocated to a specific plot 

and year.  Seeds were randomly distributed to the pots designated for that plot and year in each 

block treatment group.  Seeds were planted singly, each in the center of its own pot, stipe-end 

down so that the distal end of each seed was about five mm below the surface of the potting mix.  

Planting took place over a four-week period.  To synchronize emergence, the planted pots 

remained dry and under cover until their initial watering.  

 Growing conditions.  The common-garden plants grew outdoors for about 20 weeks 

from initial watering to harvest.  The plants grew on two wooden tables in the UCB Oxford Tract 

parking lot, with each table's plants assigned to a watering treatment described below.  The tables 

ran lengthwise east-west about two meters south of a lathhouse.  The growing period for the 

common garden, March to August, differed from the natural growing season for S. pulchra.  The 

asphalt of the parking lot radiated considerable heat during the summer.  Fans in a nearby 

greenhouse periodically discharged warm, humid air intermittently through the lathhouse and 

over the collar array.  As a result, the common-garden seedlings experienced a warmer 

environment than is common for Stipa pulchra in the wild. 

 Temporal blocks.  The logistics of planting, growing, monitoring and harvesting large 

numbers of individual plants dictated dividing the study into three equal temporal blocks set one 

week apart.  While this division was purely practical, it had substantial effects on growth of the 

plants.  The influence of blocks likely stemmed from increasing temperatures during the 

common-garden study (Figure 3). 
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 On March 8, the first block of planted pots was moved onto the tables and watered.  The 

next two blocks followed at one-week intervals, and the new sets of pots in their collars were 

interspersed among others in the same watering group.  When all blocks had been moved to the 

tables, each table held 27 collars in two rows.  A 28th collar with pots containing unplanted 

potting mix was placed in the southwest corner of each array of collars to make two rows of 14 

collars each. 

 To minimize temperature fluctuations, collars were pushed together on the tables so that 

the interior pots were in hexagonal close-packing array.  During the first two weeks, wooden 

boards were leaned against the south-facing side of each array to reduce solar heat gain.  When 

all three blocks were on the tables, the boards were removed, the exterior pot surfaces of each 

array were covered with aluminum foil crimped to the tops of the pots, and boards were then 
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placed against the collars on all four sides of each array.  The boards came to about four cm of 

the tops of the pots.  The pots and boards remained in place until the end of the experiment. 

 Watering treatments.  Moisture is a critical limiting factor in California grasslands, and 

potentially interacts with inter- versus intraspecific competition.  Watering was geared to 

keeping one set of pots quite moist, and the other somewhat dry.  The watering scheme evolved 

during the course of the study.  All three temporal bocks experienced the shifts in watering 

simultaneously, which resulted in some variation among blocks in watering treatment.  

 On the day each block was moved to the tables, it received its first watering.  Pots in the 

"wet" group were again watered the next day.  Thereafter for the first several weeks, the wet 

group was watered three times per week at 2- and 3-day intervals, and the "dry" group was 

watered twice per week at 3- and 4-day intervals.  This schedule was shifted as needed in 

response to rain, which sometimes resulted in slightly longer or shorter intervals between soil 

wetting times.  Greenhouse staff initially applied diluted fertilizer to all plants once per week as 

part of the plants' watering schedule, using approximately 450 g "Plantex" fertilizer (Plantco, 

Inc.) diluted in 338 liters (80 gallons) tap water (Table 3).  Otherwise, ordinary tap water was 

used for watering. 

 For both watering treatments, watering was initially geared to saturating the soil at each 

watering.  In the initial weeks of the experiment, soil in the dry group dried to a finger's depth 

(about five cm) between waterings in warm weather while remaining moist at the bottom; in very  

 

 

 

Table 3.  

Constituents of Plantex Fertilizer 

Constituent Percent 

Nitrogen 20 

Phosphorus 20 

Potassium 20 

Boron 0.02 

Copper 0.05 

Iron 0.10 

Manganese 0.05 

Molybdenum 0.0005 

Zinc 0.05 

EDTA 1.0 

Chlorine (max) 0.3 
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warm weather, soil in the wet group also dried to a finger's depth.  Starting June 1, to sharpen the 

difference between treatments, the watering schedule was shifted to an 8-day schedule in which 

the wet plants were watered to saturation every other day, and the dry group was watered to 

saturation every four days.  Once per eight days, all plants received diluted Plantex, leaving the 

potting mix saturated. 

 On June 7, rolled leaves were apparent on several recently watered plants.  By this time, 

many of the plants had roots growing out of the bottom of the pots and spreading laterally on the 

surface of the wooden tables.  In the case of the plants with rolled leaves, the extending roots 

were brown and decomposed-looking, indicating they suffered from root rot, probably Pythium 

species (Robert Raabe, pers. comm. 2002).  As the potting soil had been autoclaved prior to use, 

likely sources of infection included the tables, which had seen many years of service, and 

pathogens present in the seeds.  Not surprisingly, most of the affected plants were in the more 

frequently watered group.  The majority were localized in a few collars, which may have 

reflected sources of infection on the tables, or areas on the tables where water formed puddles 

under the pots.  On June 14, to reduce further damage, watering to saturation was replaced with 

timed watering (a set number of minutes moving back and forth over the plants with a sprinkler 

wand), which reduced the amount of water used roughly by half.  To reduce the stress this put on 

the dry group, all plants were watered every other day, with the plants in the dry group receiving 

half as much water as the plants in the wet group.  From late June through late July, watering 

times were incrementally reduced to gradually dry down the plants, eventually reaching about 

one-third the watering levels of mid-June.  During this time, the amount of fertilizer was 

proportionately reduced, and the wet and dry groups continued to receive the same amount of 

fertilizer. 

 Herbivore control.   Plastic bird netting draped over the pots during the early weeks of 

growth protected the plants from birds.  After a snail injured several seedlings, snail bait was 

placed around but not in the pots to prevent further snail and slug damage.  The damaged plants 

were omitted from statistical analyses of data collected after the damage occurred. 

 Measurements.  The data collection schedule followed the same intervals as the original 

blocking schedule, so that a given measurement took place for each block at the same number of 

weeks from initial watering (Table 4).  Measurements of growth and reproduction taken during 

emergence, growth, and harvest were aimed at identifying systematic differences among plants 

from different plots.  Of particular interest were functional traits important in differential 

adaptation to competitive versus disturbed or (to a lesser extent) stressful environments (Dietz et 

al. 1998; Grime 1988; McIntyre et al. 1999; Weiher et al. 1999). 

 Emergence.  For eight weeks, the array was checked daily for seedling emergence.  

During the first few days for each block, a few seeds were dislodged by watering, and were re-

embedded or covered with a pinch of soil.  A number of seedlings later emerged markedly off-

center in their pots, indicating seed movement due to watering. 

 Early growth and morphology.  At seven and 13 weeks after initial watering of each 

block, each plant's tillers were counted, and its height was measured as the taller of leaf length or 

culm height.  In early July, about 16 weeks after initial watering of the first block, width of the  
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Table 4.   

Common Garden Measurements 

Measurement What measurement may reflect 

Seedling emergence time Establishment success in competitive 

conditions 

Tiller number  Space acquisition 

Clonality 

Longevity 

Aboveground biomass at harvest Competitive ability 

Growth rate 

Belowground biomass at harvest* Competitive ability 

Stress tolerance 

Growth rate 

Height Competitive ability 

Seed dispersal distance 

Leaf width* Stress tolerance 

Flowering phenology Short-term fecundity 

Number of culms and seeds Short-term fecundity 

Weight of offspring seeds Parental investment 

Potential establishment success of offspring 

*Measured for a subset of plants. 

 

 

 

widest leaf was measured on 59 percent of the plants.  At this point, some plants displayed 

moisture stress, especially on the south-facing side of the planting array, which made accurate 

measurement difficult; thus, leaf width measurements focused on plants on the north-facing side. 

 Reproduction and seed collection.  Culms became apparent on a few plants in the last 

days of May, and were counted weekly thereafter until harvest.  Culms were counted as they 

became mature enough that awns had become visible.  Once seeds began ripening, seeds were 

collected every three to four days by stroking the panicle over an envelope or by picking 

individual seeds.  Indications of seed ripeness included opening glumes, bent awns, and easy 

dehiscence.  Where possible, seeds were collected multiple times from individual plants.  All 
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seeds collected from an individual plant were put into an individual labeled envelope.  Seed 

collection initially focused on ripe seed and (towards the end) on seeds from plants due to be 

harvested, whether ripe or not. 

 A heat wave in early July caused the majority of culms on the dry-treatment plants to turn 

yellow and at least partly dry out.  Most of the visible seeds on these plants appeared to stop 

developing, and dead, very immature seeds clung to these culms afterward.  Later inspection 

uncovered a few filled seeds within the culm sheaths.  (A similar phenomenon occurs in the 

field: filled, viable-looking seeds appear enclosed within culm sheaths near the bottom of 

otherwise dried-out panicles.)  All the plants remained green at least at the base, though few of 

the yellowed plants subsequently formed new culms. 

 It was not possible to collect ripe seeds from all plants.  Some never produced any seeds, 

and because ripe seeds dehisce rapidly, the few seeds that were produced on some plants escaped 

collection.  Seeds collected from some plants appeared to have been damaged by the July hot 

spell.  Maturity and color formation of these seeds may have been compromised by drying-out of 

plants as seeds developed, that is, seeds not yet of mature color or size may have developed bent 

awns, open glumes, and easy dehiscence through plant dehydration alone.  Many of the seeds 

removed from fully open culms, while filled, were green in color. 

 Harvest procedures.  Vegetation harvesting began on July 22, with one block harvested 

per week.  Measurements taken on each plant during harvest included 

 length of longest leaf, and height of tallest culm in reproductive plants;  

 basal diameter, measured twice in perpendicular directions; 

 number of tillers; and 

 proportion of green versus senesced foliage 

Aboveground biomass was harvested by cutting plants about 1 cm above the soil level, bagging 

the tops in individual paper sacks, and allowing them to air-dry for several weeks.  The roots 

remained in their pots, wrapped and kept dry with heavy plastic, for several months. 

 Estimation of seed production in the common garden.  Seed production was estimated 

by counting florets (i.e., glume pairs).  For each plant, the culm having the median number of 

florets was used for counting.  Where a plant had an even number of culms, the larger of the two 

median culms was used.  A regression comparing the number of florets on the median culm to 

the mean number of florets per culm on the same plant was conducted for a subsample of plants 

consisting of one collar of plants (20 pots) for each block treatment combination, or about 1/9 

of the total plants.  In this subsample, florets from all partly-open to fully-open culms were 

counted.  The regression estimated the mean number of florets per culm from the number of 

florets on the median culm as 

 

mean = 0.8528  median + 2.766 

 

This yielded an R
2
 of 0.9122 when calculated using the subsample of plants. 

 All open and partly-open culms from each aboveground biomass sample were separated 

out and the sheaths opened up to expose hidden florets.  The panicles were sorted by estimated 
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number of florets, and the median culm chosen by appearance.  Where panicles were broken, the 

broken-off top was mated with the bottom that seemed the closest match.  All florets on the 

median culm were counted, including immature florets and those affected by the July heat wave, 

but ignoring any wispy, apparently sterile florets. 

 Offspring seed weight measurement.  During floret counting, all remaining seeds were 

stripped from the panicles and placed in identifying envelopes.  Because some loose seeds 

bagged with the panicles may have fallen from adjacent plants before harvest, only seeds that 

were still attached to the panicles were retained.  Except for some seeds that had remained on the 

panicle and enclosed by the sheath, seeds taken from the bagged biomass samples were not 

wholly ripe.  Seeds at apparently comparable maturity had been collected from 24 plants both 

before harvest and from bagged panicles, allowing for a comparison.  Seeds harvested from 

growing plants were on average six percent heavier than seeds from the same plants in the same 

maturity class that were harvested from bagged panicles, but this difference was not statistically 

significant.  For 18 plants from which no seeds were collected prior to harvest, seeds collected 

from the bagged panicles were substituted for seed weighing. 

 Prior to weighing, seeds were de-awned, and extremely green, unfilled, damaged, brittle, 

and distorted seeds were discarded.  Where seeds remaining in a seed sample varied substantially 

in color, they were grouped by apparent ripeness: 

 mature: medium to dark gray in color with no greenish color, or 

 immature: gray-green to yellow-green. 

From each common-garden plant, the most mature-looking group of seeds (i.e., one seed-color 

group) was weighed as a group to the nearest 0.1 mg on a Sartorius BP 210 S scale.  

 Biomass weights.  To finish preparing aboveground biomass samples for weighing, any 

potting mix and remaining seeds were removed, and each sample was dried in a paper bag at 

65
o
C for at least 36 hours prior to weighing.  Roots were subsampled to examine belowground 

biomass.  The subsample consisted of the plants in the first two blocks from six of the field plots 

(one plot pair from each site), excluding plants affected by root rot or snails.  To harvest the 

roots, each plant was taken from its pot, remaining leaf stubble was cut down to the crown, and 

potting mix washed off.  The roots were fragile and some small roots were lost.  The washed 

roots were dried in individual paper bags at 65°C for at least two days for storage, then again 

oven-dried at 65°C prior to weighing.  Aboveground and belowground biomass samples were 

weighed to the nearest 0.01 g on Mettler PM600 and Mettler PE3600 scales. 

 Summary of common garden measurements.  The completed inventory of common-

garden data included 

 planted seed weight and seedling emergence time, 

 plant height and tiller count at three growth stages, 

 leaf width for a subset of plants, 

 basal area at harvest , 

 aboveground biomass at harvest, 

 belowground biomass for a subset of plants, 

 number of culms per plant 
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 number of seeds on each reproductive plant's median culm, and 

 weight of seeds 

 

Statistical Analysis 

 This study sets p ≤ 0.05 as statistically significant and p > 0.5 but ≤ 0.10 as marginally 

significant.  All analyses were conducted with Stata 6.0 (StataCorp 1999).  Statistical methods 

employed herein include analysis of variance and covariance (ANOVA and ANCOVA), regression 

and logistic regression, and chi-square analysis.  Some of the regressions employ the "cluster" 

option provided by Stata, which groups non-independent observations into clusters and 

calculates robust standard errors to account for lack of independence.   

 Group variables were employed in some situations, in particular logistic regressions.  In 

the common garden, for example, Pt. Molate seeds had significantly lower emergence rates than 

did seeds from the other sites; the other sites do not differ from one another.  The logistic 

regression examining emergence percentages therefore retains the group variable "Pt. Molate (vs. 

the other sites)" as a significant factor.  

 Data transformation.  Few of the response variables had normal distributions.  

Statistical tables and graphs using transformed data in this study note what transformation was 

applied.  Data transformation methods to improve distributions and correct heteroskedasticity 

included 

 natural-log transform, 

 square-root transform, 

 Box-Cox transform provided by Stata,
12

 which uses an iterative procedure to estimate the 

value of a constant λ used to create a more normally distributed variable: 

 

transformed y = (y
λ
 − 1)/λ 

 

 logit transformation, where 0 < y <1: 

 

transformed y = ln(y/1 − y) 

 

 rank transform. 

For some natural-log and Box-Cox transformations, a constant was included in the 

transformation formula in order to avoid undefined quantities such as ln(0), or to reduce 

skewness; in the latter case, Stata calculated the constant.  In a few cases, data transformation 

entailed multiple steps (e.g., the square root of logit-transformed data might be used). 

 Rank transformation served where other transformations were unable to render normal 

distributions.  The use of ranked data in this study follows Conover (1980), who notes that most 

nonparametric tests are essentially parametric methods applied to ranked data.  He recommends 

                                                 
12

 G.E.P. Box and D.R Cox. 1964. An analysis of transformations. Journal of the Royal Statistical Society, Series B 

26: 211-243. Cited in StataCorp 1999. 
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applying ANOVA and other parametric tests to ranked data and states that while this procedure is 

only conditionally distribution-free, it is "robust" in that the true level of significance is usually 

fairly close to the approximate level of significance derived from the test, no matter what the 

underlying population distribution might be. 

 Correlated variables.  Several explanatory variables in this study's statistical analyses 

are intercorrelated.  Site, for example, correlates with absolute cover.  Either variable or both 

might be statistically significant in a given statistical test; thus, aboveground biomass in the field 

varied significantly by both site and absolute cover.  Multicollinearity can reduce the precision of 

statistical inference and hinder determining which variables really matter.  Where two or more 

intercorrelated variables were statistically significant, the variable that better explained the 

variance was retained, and other variables were eliminated if it appeared they did not contribute 

uniquely to the analysis and if eliminating them did not substantially reduce R
2
.  Variance-

inflation factors were also calculated, and interactions that had variance-inflation factors in 

excess of 10 were generally eliminated.  Finally, for common-garden results, univariate analyses 

were performed for comparison with multivariate tests; results of both univariate and 

multivariate tests are summarized in Tables 57-62 near the end of Chapter 8. 

 Implications of hierarchical data structure.  Each seed planted in the common garden 

had a hierarchy of origin including site and plot pair, which complicates interpretation of results.  

Nested ANOVA requires that experimental units in the nested level be randomly selected.  

Although the plots were broadly typical of their sites except for the density of S. pulchra, the 

process of selecting and matching them in pairs meant that the plot pairs did not represent a 

random sample from each site.  Nesting plot pairs within site in ANOVA would therefore not be 

methodologically rigorous.  If plot pairs were treated as nested within site, F for site would be 

calculated as 

 

mean square (site) / mean square (plot pair) 

 

The multivariate ANOVAs and ANCOVAs herein, however, do not nest plot pair within site.  F for 

site is calculated as  

 

mean square (site) / error mean square 

 

which has the effect of changing, usually increasing, the likelihood of site being judged 

significant.  This arrangement complicates determination of how within-site variation compares 

to between-site variation.  Where the multivariate test indicates significance at both site and plot-

pair levels, a simple nested ANOVA was performed for comparison purposes only; results of these 

simple ANOVAs are provided along with multivariate results in the next chapters. 

 Means separation.  A-posteriori means-comparison tests presuppose that for any , the 

likelihood of falsely rejecting the null hypothesis for at least one comparison increases for each 

additional comparison.  If n is the number of comparisons, the chance of committing at least one 

Type I error is 1-(1-)
n
.  Means-comparison tests seek to correct this by shifting  downward to 
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reflect the number of comparisons.  In the Bonferroni adjustment, if  is set at 0.05,  for means 

separation becomes 0.05/n.  In a study comparing four treatments and producing four means, for 

example, the six possible comparisons between means would yield an  of 0.05/6 = 0.0083.  

From a practical standpoint, the results of means separation tests are commonly reported by 

multiplying the p-value by the number of tests and comparing the adjusted p with the nominal  

(e.g., 0.05). 

 In this study, where statistical analysis indicates significance at both the site and plot-pair 

levels, the Bonferroni adjustment is adapted by setting  in a manner that reflects both levels: 

 (1)  whether sites differ: 

  2 levels  3 between-site comparisons   = 0.05/6 

 (2)  whether plot pairs within sites differ: 

  Sonoma and RFS, with two plot pairs each: 

   2 levels  3 sites 1 within-sitecomparison   = 0.05/6 

  Pt. Molate, with three plot pairs: 

   2 levels  3 sites 3 within-site comparisons   = 0.05/18 

For ease of interpretation, p values are adjusted in the text to reflect the shifted , that is, if  = 

0.05/6, p was multiplied by 6.  Where variation at a given hierarchical level (e.g., among sites) 

was not significant in the multivariate test, only the remaining levels were subject to means 

comparisons, and p was accordingly adjusted.  For frequency data,  and p values were adjusted 

in the same manner. 

 Pseudo-R
2
 in logistic regression.  There have been a number of efforts to develop a 

statistic for logistic regression that is comparable to R
2
 as calculated in linear regression.  

Unfortunately none of these efforts has produced a statistic that is wholly comparable to R
2
, and 

the various pseudo-R
2
 methods have differing results (UCLA Statistical Consulting Group 2011).  

Stata provides McFadden's pseudo-R
2
, calculated as  

 

pseudo-R
2
 = 1 − [ln   (MFull)]/ [ln   (MIntercept)] 

 

where Mfull = Model with predictors, Mintercept = Model without predictors, and    = estimated 

likelihood.  McFadden's pseudo-R
2
 is provided here in logistic-regression tables, but should be 

interpreted with caution. 

 

Results: A Prelude 

 The field study revealed few significant differences between thick and thin plots other 

than in seed production, and to a limited extent in absolute cover and species diversity.  The 

common-garden study revealed a number of significant differences in growth, morphology, and 

reproduction that correlated with measurements taken in the field, in particular with culm count 

and absolute cover on field plots.  The following chapter provides a detailed description of field-

study and common-garden results, and Chapter 9 discusses some implications of these results. 
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Chapter 7.  Results of Field Study 

 

Overview 

 This study explores inherited aspects of Stipa pulchra growth and reproduction as they 

correlate with patch characteristics, in particular with cover of S. pulchra and other species.  The 

data can be divided into field and common-garden components.  Field work, which took place at 

three sites during the spring and summer of 2000 and 2001, examined differences among plots 

and provided information on the seeds collected in the field (Table 5).  Field observations 

included cover and composition estimates, weight of aboveground biomass, number and height 

of S. pulchra culms, and count of florets on a sample of S. pulchra culms (Table 6).  The 

common-garden study, which is discussed in the following chapter, measured growth and 

reproduction of S. pulchra plants grown from the collected seeds. 

 Notes on variables, figures, and tables.  Tables and graphs indicate the plot pairs by site 

and number; e.g., PtM1, PtM2, and PtM3 are the three plot pairs at Pt. Molate.  The letters K and  

 

 

 

Table 5. 

Field Study Explanatory Variables: Time and Place of Field Work 

Variable Description 

Site Three sites 

 Pt. Molate 

 Richmond Field Station (RFS) 

 Ocean Song, Sonoma County (Sonoma) 

Plot pair Two to three pairs of plots on each site 

 PtM1, PtM2, PtM3 

 RFS1, RFS2 

 Son1, Son2 

Year Year of field work (2000 or 2001) 

Date Date of field observations  

 in 2000, between 4/21 and 7/13 

 in 2001, between 7/10 and 9/19 
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N respectively indicate thick and thin plot type; thus P1K denotes the thick plot in the pair PtM1.  

The statistical analyses presented here used culms/m
2
 in the field as a covariate, and the thick-

versus-thin designation was used primarily in depicting the data.  Most of the response variables 

required transformation for statistical analysis; the transformation used for each statistical test 

may be found in the table or graph presenting the analysis.  The data displayed in graphs is raw 

(untransformed) data except where noted. 

 

 

 

Table 6. 

Field Study Results Variables: Field Measurements 

Variable Description 

Count of Stipa pulchra culms Culms per m
2
 on each plot in each year 

Absolute cover of 

 All species combined 

 S. pulchra 

 Native perennial grasses 

other than S. pulchra 

Visual estimate on each plot in each year 

Aboveground biomass Oven-dry weight of biomass clipped in 2001  

Species richness Count of species on each plot in each year 

Simpson's index Simpson's index D on each plot in each year, 

calculated as 

D = 1/∑pi
2 

where pi is the estimated relative cover of each 

species (Begon et al. 1990) 

Species evenness Simpson's index D/species richness 

S. pulchra culm height Heights of culms on plots in both years 

Seed production per culm Floret count on culms sampled by plot in 2000  

 

  



 

64 

Results 

 Count of S. pulchra culms in the field.  Culms/m
2
 ranged from six to 149 (Tables 7 and 

8).  As discussed in Chapter 6, plots were selected in pairs, each including a "thin" member with 

relatively few S. pulchra culms/m
2
, and a "thick" member with relatively many.  In practice, the 

number of culms/m
2
 varied considerably within plot type, as well as among sites (Figure 4).  If 

plot type or another factor indicating S. pulchra density is not included in the ANCOVA, the 

number of culms/m
2
 of plot area does not vary significantly by site, plot pair, year, or date of 

data collection as main effects.  These factors are also nonsignificant in univariate analysis, 

although RFS plots had a higher culm count per square meter than did plots at the other sites.  If 

absolute cover of S. pulchra is included in the ANCOVA, site becomes significant in interaction 

with year, in that S. pulchra cover increased at RFS and Sonoma in the second year, while culm 

counts dropped at Sonoma. 

 Cover of S. pulchra.  Absolute cover of S. pulchra ranged from about one to 37 percent 

(Figure 5).  S. pulchra made up nearly 70 percent of native perennial grass cover overall.  

Absolute cover of S. pulchra did not vary significantly with site, plot pair, absolute cover, date, 

or year in univariate or multivariate analysis.  Relative cover of S. pulchra was higher at Pt. 

Molate than at the other sites, reflecting the generally lower absolute cover of all species at Pt. 

Molate.  One plot at Pt. Molate had particularly dense cover of S. pulchra.  

 Relationship of culm count to S. pulchra cover.  The relationship between culm count 

and cover of S. pulchra was not linear.  A simplified model of this relationship, 

 

ln(culm count) = 2.49 + [0.64 × ln(absolute cover of S. pulchra)] 

 

(R
2
 = 0.7277; p > 0.0001) indicates that as S. pulchra cover increased, the number of culms  

 

 

 

Table 7.  

Stipa pulchra Culms/m
2
 and Absolute Cover of S. pulchra on Field Plots by Site 

Site n Culms/m
2
 

(95% confidence range) 

Percent S. pulchra cover 

(95% confidence range) 

Pt. Molate 12 37 

(19–45) 

10.9 

(2.6–11.8) 

RFS 8 82 

(31–128) 

10.1 

(2.5–16.9) 

Sonoma 8 47 

(11–74) 

 9.1 

(1.4–16.1) 

Means are arithmetic and weighted by year.  Confidence ranges are back-calculated 

from confidence limits for natural-log transformed data. 
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Table 8. 

ANCOVA of Stipa pulchra Culms/m
2
 Plot Area 

 

N = 28 

R
2
 = 0.9595 

Adjusted R
2
 = 0.9425 

Source  

Sum of 

Squares df 

Mean 

square F p 

Model 21.991 8 2.749 56.35 <0.0001 

Site 0.340 2 0.170 3.48 0.0514 

Year 1.863 1 1.863 38.20 <0.0001 

Absolute cover of  

   S. pulchra) 15.955 1 15.955 327.08 <0.0001 

Site × year 1.447 2 0.723 14.83 0.0001 

Site × S. pulchra cover 0.535 2 0.267 5.48 0.0132 

Residual 0.927 19 0.049   

   Total 22.9174 27 0.849   

Data transformation: ln(culm count); absolute cover of S. pulchra is also natural-log 

transformed.
 13

 

 

 

 

relative to the area of cover decreased (Figures 6 and 7).  In every plot pair, the thin plot had 

more culms per unit area of S. pulchra cover than the thick plot.  

 The ratio of culms to S. pulchra cover decreased at all three sites between 2000 and 2001, 

particularly at Sonoma compared to Pt. Molate.  In 11 of the 14 plots, the ratio of culms to cover 

of S. pulchra diminished between 2000 and 2001.  This shift may have occurred in response to 

generally cooler, moister conditions in the second field year. 

 

 

  

                                                 
13

  In the presentation of common-garden results, culm count in the field is transformed differently for conducting 

logistic regression.  The transformation used for logistic regression produces a somewhat better distribution; 

however, the natural-log transformations used here produce very similar results in ANCOVA and result in an 

intuitively clearer relationship between culms/m
2
 plot area and culms/m

2
 S. pulchra cover. 
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 Absolute cover on field plots.  Absolute cover of all species combined varied 

significantly by site (p < 0.0001, R
2
 = 0.5962).

14
  Factors other than site were not significant.  Pt. 

Molate had less cover overall than either of the other sites (p = 0.001; Figure 8).  Each thin plot 

at Pt. Molate had lower absolute cover than its corresponding thick plot, but the site × culm 

count interaction was not significant in the ANCOVA. 

                                                 
14

 Absolute cover is transformed in the ANCOVA as 

  
ln(              /100.01

 1   (              
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) 
  1.  
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Figure 4.   

Stipa pulchra Culms per m
2
 of Plot Area in Field 

 
K = thick plot; N = thin plot; 0 indicates 2000 field season; 1 indicates 

2001.  N = 28. 
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 Species composition of field plots.  Grass species prevalent at all three sites included 

Avena barbata (especially at Pt. Molate), Bromus diandrus, B. hordeaceous, Festuca perennis, 

F. myuros, and Aira caryophyllea (Tables 9 and 10).
15

  Other species common on field plots at 

Pt. Molate included Erodium species, Chlorogalum pomeridianum, Carpobrotus edulis, Rumex 

species, and Eriogonum species.  At RFS, Phalaris aquatica, Vicia species, Dipsacus, 

Convolvulus arvensis, and Wyethia species were relatively common, and at Sonoma, common  

                                                 
 
15

 Nomenclature for species encountered in fieldwork for this study follows Jepson Flora Project (eds.) 2017. Jepson 

eFlora, http://ucjeps.berkeley.edu/eflora, accessed on April 7, 2017. 

Figure 5.  

Absolute Cover of Stipa pulchra 

 

K = thick plot; N = thin plot; 0 indicates 2000 field season; 

1 indicates 2001.  N = 28. 
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Figure 6. 

Culms/m
2
 Versus Absolute Cover of Stipa pulchra 

 

Double log scale. Regression lines shown here were calculated 

separately for each site.  N = 28. 
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Figure 7.  

Culms/m
2
 Stipa pulchra Cover Versus Percent 

Cover of S. pulchra 

 

Double log scale. Regression lines shown here were calculated 

separately for each site.  N = 28. 
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species included Holcus lanatus, Rumex acetosella, Linum species, and several compositae, in 

particular Cirsium vulgare and Sonchus oleraceus. 

 Native perennial grass species other than S. pulchra included Stipa lepida, Danthonia 

californica, and small amounts of Elymus glaucus.  In multivariate regression, combined 

absolute cover of these grasses correlated positively with absolute cover of all species combined 

(Table 11); however, in simpler models this was significant only at Pt. Molate.  Cover of these 

grass species was less at RFS than at the other sites (p < 0.05; Figure 9).  Notably, neither S. 

pulchra cover nor S. pulchra culm count correlated significantly with cover of other native 

grasses in univariate or multivariate analyses.  If the analysis is cast to include plot type, 
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Figure 8. 

Absolute Cover of All Species 

 
K = thick plot; N = thin plot; 0 indicates 2000 field season; 1 indicates 

2001.  N = 28. 
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Table 9.  

Absolute Cover and Relative Cover by Species on Field Plots in 2000 

Site Pt. Molate Richmond Field Station Sonoma 

Plot pair PtM1 PtM2 PtM3 RFS1 RFS2 Son1 Son2 

Plot P1K P1N P2K P2N P3K P3N R1K R1N R2K R2N S1K S1N S2K S2N 

Date of observation 4/25 4/23 4/30 4/29 5/29 5/26 6/3 5/28 6/9 6/6 7/7 7/13 6/27 6/26 

Absolute cover (%) 27 22 47 37 64 42 90 100 82 94 86 82 58 79 

Relative cover (%):               

   CA perennial grass total  51 7 56 4 83 13 7 1 23 2 29 10 21 2 

      Stipa pulchra  12 7 13 4 74 5 7 1 23 1 24 3 15 <1 

      Stipa lepida   39 0 42 0 1 3 0 0 0 0 0 0 0 0 

      Danthonia californica   0 0 0 0 0 0 0 0 0 0 3 4 3 1 

   Alien perennial grass total 0 0 0 0 0 0 0 0 6 2 1 0 0 0 

   All perennial grass total  51 7 56 4 83 13 7 1 29 4 30 10 21 2 

   Annual grass total   40 68 13 72 3 57 89 96 63 87 52 70 66 75 

      Avena spp.  0 33 2 9 1 45 1 2 1 0 1 1 0 1 

      Bromus diandrus  39 34 7 59 1 6 5 3 1 1 1 1 0 0 

      Bromus hordeaceous 0 0 1 3 1 6 3 3 2 4 2 20 2 3 

      Festuca perennis  0 0 0 0 0 0 39 86 25 63 4 0 42 18 

      Festuca myuros  0 1 2 1 0 0 41 2 34 19 38 44 12 29 

   All grass total  92 75 68 76 86 70 96 97 92 91 82 79 87 77 

   Total forbs and legumes  8 25 32 25 13 30 4 3 8 9 17 20 13 18 

   Shrubs  0 0 0 0 0 0 0 0 0 0 1 0 0 5 

   Ferns and mosses  0 0 0 0 1 1 0 0 0 0 0 0 0 0 

 

7
0
 



 

 

Table 10.    

Absolute Cover and Relative Cover by Species on Field Plots in 2001 

Site Pt. Molate Richmond Field Station Sonoma 

Plot pair PtM1 PtM2 PtM3 RFS1 RFS2 Son1 Son2 

Plot P1K P1N P2K P2N P3K P3N R1K R1N R2K R2N S1K S1N S2K S2N 

Date of observation 7/17 7/10 7/20 7/11 7/18 7/14 7/27 8/20 8/24 8/21 9/13 9/14 9/18 9/19 

Absolute cover (%) 59 43 69 67 49 40 95 94 98 91 96 91 98 97 

Relative cover (%):               

   CA perennial grass total  71 10 48 5 52 9 21 13 19 5 26 9 37 4 

      Stipa pulchra  35 10 16 3 51 6 21 12 19 4 16 3 22 2 

      Stipa lepida   36 0 33 0 0 2 0 0 0 0 0 0 0 0 

      Danthonia californica   0 0 0 0 0 0 0 1 0 0 2 2 14 1 

   Alien perennial grass total  0 0 0 0 0 0 0 0 10 9 1 0 0 0 

   All perennial grass total  71 10 48 5 52 9 21 13 29 14 27 9 37 4 

   Annual grass total   12 65 41 83 34 55 65 73 63 66 65 89 59 89 

      Avena spp.  6 57 15 71 23 53 2 4 0 1 1 1 0 1 

      Bromus diandrus  4 8 4 6 4 1 17 31 5 17 2 1 0 4 

      Bromus hordeaceous  1 0 3 3 2 1 8 11 20 9 12 24 8 3 

      Festuca perennis  0 0 0 0 0 0 20 22 16 17 0 0 32 24 

      Festuca myuros  1 0 17 2 0 0 18 5 22 20 47 61 15 52 

   All grass total   83 76 89 88 86 64 86 86 92 80 92 98 96 93 

   Total forbs and legumes  13 24 11 12 14 36 14 13 7 14 5 2 34 4 

   Shrubs  4 0 0 0 0 0 0 0 0 0 3 0 <1 4 

   Ferns and mosses   0 0 0 0 0 0 0 2 1 6 0 0 0 0 

 

7
1
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Table 11.  

ANCOVA of Absolute Cover on Field Plots of Native Grass Species Other Than 

Stipa pulchra 

 

N = 28 

R
2
 = 0.5554 

Adjusted R
2
 = 0.4998 

Source 

Sum of 

Squares df 

Mean 

Square F p 

Model  991.350 3 330.449 9.99 0.0002 

Site 991.222 2 495.112 14.99 0.0001 

Absolute cover of all  

   species 311.129 1 311.129 9.41 0.0053 

Residual  739.652 24 33.069 

  
   Total  1785.000 27 66.111 

  
Data transformation: ranks of absolute cover of native species other than S. pulchra  

 

 

 

however, plot type and its interaction with site are significant, an artifact largely stemming from 

large amounts of S. lepida on two thick plots at Pt. Molate that in turn resulted from the 

resemblance of the two Stipa species, especially in early springtime, to the inexperienced 

researcher marking out research plots.  No native perennial grasses other than S. pulchra were 

observed on five plots in 2000, nor on three plots in 2001. 

 Plot disturbance.  Recent gopher tailings covered an average of 1.7 percent of plot area 

in 2001.  Plots at Pt. Molate had more gopher disturbance than plots at RFS and Sonoma (p < 

0.005).  There was no other disturbance apparent on the field plots. 

 Species richness and evenness.  Species diversity entails both the number of species and 

the evenness of distribution of individuals among these species (Hurlbert 1971).  A total of 43 

species appeared on the field plots, along with five categories not identified to species, such as 

ferns.  Over the two years of field work, a total of 29 species were observed on Pt. Molate plots, 

and 24 species each on RFS and Sonoma plots.  The average number of species observed per 

individual plot was very slightly greater for Sonoma than for the other sites (R
2
 = 0.0230; p < 

0.05).  There was limited consistency among plot pairs or between years in observed species 

richness, however, particularly on Pt. Molate plots. 
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 Species richness and evenness can be described together in terms of Simpson's index D 

(Begon et al. 1990).  The index was calculated as 

 

D = 1/∑pi
2
 

 

with pi equal to the proportional fractional relative cover of each species.  Simpson's index 

increased substantially in 2001 on RFS plots while decreasing somewhat overall at the other sites 

(Table 12; Figure 10); this may be due in part to the seasonally later 2001 field work. 

  

Figure 9.  

Absolute Cover of Native Perennial Grasses Other Than 

Stipa pulchra 

 
K = thick plot; N = thin plot; 0 indicates 2000 field season; 1 indicates 2001.  

N = 28. 
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 Simpson's index D reaches its maximum when species distribution is perfectly even.  

Simpson's index divided by total number of species (i.e., D/richness) therefore provides an index 

of species evenness (Begon et al. 1990).  In ANCOVA, species evenness was a function of the 

interactions between site, year, and culm density, with no significant main effects. 

 Aboveground biomass production.  Aboveground biomass production on field plots in 

2001 varied by the cube of absolute cover (p < 0.0001, R
2
 = 0.8208).

16
  This substantially reflects  

  

                                                 
 16

  Field biomass was not normally distributed and was marginally heteroskedastic in regression; results are nearly 

identical using logit- or rank-transformed data. 
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Figure 10.  

Simpson's Index by Site, Plot Pair, Plot Type, and Year 

 
K = thick plot; N = thin plot; 0 indicates 2000 field season; 1 indicates 

2001.  N = 28 
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Table 12. 

ANCOVA of Simpson's Index D on Field Plots 

 

N = 28 

R
2
 = 0.5523 

Adjusted R
2
 = 0.4506 

Source 

Sum of 

Squares df 

Mean 

Square F p 

Model  7.037 5 1.407 5.43 0.0021 

Site 1.183 2 0.592 2.28 0.1257 

Year  0.850 1 0.850 3.28 0.0839 

Site × year  5.248 2 2.624 10.12 0.0008 

Residual  5.704 22 0.260 

  
   Total  12.741 27 0.472 

  
Data transformation:  (Simpson's index

0.4199
 − 1) / 0.4119  

 

 

 

the variation in cover among sites; however, ANOVA of variation of biomass among sites explains 

less of the variance.  RFS and Sonoma plots were more productive than Pt. Molate plots (Figure 

11). 

 Height of S. pulchra culms.  Culm heights were measured on each plot in each year, 

excepting the four Pt. Molate plots where culms were not measured in 2000; a total of 3309 

culms were measured.  Calculating mean culm heights by plot and year yielded 24 data points.  

Mean culm height was less at Pt. Molate than at the other sites in both years (p ≤ 0.01); culm 

height did not differ between RFS or Sonoma in either year.  Between 2000 and 2001, mean 

culm height declined an average of almost 17 percent on those plots for which there are two 

years' data (Table 13; Figure 12). 

 Cooler, drier weather preceding the 2001 field season may have induced production of 

shorter culms.  Another possibility is that the between-year difference may reflect experimental 

artifacts stemming from measuring culm heights later in the field season during 2001 than 2000.  

First, S. pulchra may produce relatively short culms late in the growing season, though these 

likely are a small fraction of total culms.  Second, culms that had been broken by wind (typically 

the taller ones) were omitted from height measurement.  As culms were measured later in the 

2001 field season than in 2000, greater cumulative wind damage in 2001 may have contributed 

to the height difference between years.  If wind damage was the reason for culm height reduction  
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Table 13. 

Cluster Regression of Stipa pulchra Culm Height in Field 

 

N = 3309, in 14 clusters (one cluster per plot) 

R
2
 = 0.2732 

Source Coefficient 

Standard 

Error t p 

RFS (vs. the other sites) 25.48 3.47 7.35 <0.001 

Sonoma (vs. the other sites) 25.83 2.03 12.74 <0.001 

Year -4.53 1.59 -2.85 0.014 

Sonoma × year -9.03 2.14 -4.21 0.001 

RFS × year -14.51 2.82 -5.14 <0.001 

Constant 53.16 0.01 4841.16 <0.001 
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Figure 11. 

Biomass per m
2
 and Absolute Cover in Field, 2001 
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between years, however, it seems likely that the height difference between years would be larger 

for the taller percentiles of culms than for the shorter, and this is not the case (Table 14). 

 Seed production per culm.  S. pulchra produces one seed per spikelet, so seed 

production is easily estimated after seed drop by counting glume pairs on the remaining 

panicles.
17

  There was an average of 23 florets per panicle (ranging from four to 87 florets) on 

culms collected in 2000.  If the 915 floret counts used for estimating seed production are  

 

                                                 
17

 As noted in Methods, for four plots on Pt. Molate estimates of seeds per culm are based on counts from panicles 

harvested from narrow strips adjacent to the plots.  This estimate is weighted based on number of culms sampled in 

each strip. 

0 

0 

1 

1 

Figure 12.   

Stipa pulchra Culm Height in Field 

 

K = thick plot; N = thin plot; 0 indicates 2000 field season; 1 indicates 2001. 

Filled squares indicate means; dotted lines indicate 95% confidence ranges. 

N = 3309. 
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Table 14. 

Height of Stipa pulchra Culms in Field by Year and Site 

 

 

Plot × year averages (cm) Raw data (cm) 

 

  

 Percentiles 

Year Place n 

Mean 

(95% CI) n  10
 

50
 

90
 

2000 PtM3* 2 53.2 

(53.0–53.4) 

298 31 54 73 

 RFS 4 79.5 

(68.4–90.7) 

594 55 78 103 

 Sonoma 4 79.1 

(72.8–85.4) 

284 55 81 100 

        

2001 Pt. 

Molate* 

6 48.7 

(42.7–54.6) 

816 28 48 70 

 PtM3 2 49.1 

(6.5–91.7)  

310 27 49 68 

 RFS 4 64.4 

(56.1–72.7) 

827 35 65 92 

 Sonoma 4 61.2 

(54.6–67.7) 

490 32 62 86 

* Heights were measured on one plot pair only at Pt. Molate in 2000; heights were 

measured on all plots in 2001. Culm heights averaged over plot × year. 

 

 

 

pooled into plot-wise averages, no statistical tests of the pooled data against any of the applicable 

study factors (site, plot pair, absolute cover, culm count, or Simpson's index) yields significant 

results, although culms from thick plots at Pt. Molate produced relatively small numbers of seeds 

(Table 15).  Culms that provided seeds for the common garden study had a higher average 

number of florets than did culms used to estimate seed production in the field. 

 Seed production per m
2
 plot area.  The large variation in seed production among S. 

pulchra culms results in substantial uncertainty in estimates of seed production per m
2
 in the 

field.  Thick plots, which produced more culms per unit area, presumably also produced more 

seeds.  Because thin plots produced more culms per m
2
 of S. pulchra cover, they may also have 
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produced a larger number of seeds than thick plots relative to the area occupied by S. pulchra.  A 

graphic approximation calculated as 

 

seeds/m
2
 = (florets/culm) × (culms/m

2
) 

 

calculated for each plot implies that the difference between thick and thin plots in seed 

production may have been greater at RFS and Sonoma than at Pt. Molate in 2000 (Figure 13).  

 

 

 

Table 15. 

Florets per Stipa pulchra Culm in Field Samples 

 

 

Mean florets per culm 

by plot type 

Site Plot pair Thick Thin 

Pt. Molate PtM1 19 25 

 PtM2 18 20 

 PtM3 17 30 

 

   RFS RFS1 22 29 

 RFS2 29 20 

 
   

Sonoma Son1 27 21 

 Son2 21 15 

For PtM1 and PtM2, culms harvested adjacent to plots were used for 

floret counts.  N = 14. 
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Figure 13.  

Approximate Stipa pulchra Seed Production per m
2
 on 

Field Plots in 2000 

 
K = thick plot; N = thin plot.  N = 14. 
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Chapter 8.  Results of Common-Garden Study 

 

Overview 

 S. pulchra plants grown in the common garden from seeds collected on the field plots 

were observed from seedling emergence through reproduction.  The first part of this chapter 

describes common-garden plant growth and morphology, including allocation ratios that can 

reflect ecological strategies.  The second part provides data on reproduction by seed of common-

garden plants.  The end of this chapter summarizes these results and discusses effect sizes of 

explanatory variables.  The results show substantial variation among the common-garden plants 

reflecting experimental growing conditions and factors measured in the field.  Implications of 

these results are discussed in Chapter 9. 

 Tables 5 and 6 in Chapter 7 and Tables 16-20 on the following pages list the variables 

used in the text, tables, and graphs in this chapter.  Some of the response variables also act as 

explanatory variables.  The response variable emergence time, for example, was affected by 

seed-source site and weight of the planted seed, and as an explanatory variable in turn affected 

several later measurements, such as aboveground biomass of common-garden plants. 

 

 

 

Table 16. 

Explanatory Variables in Common-Garden Results: 

Factors Stemming from Plot-Level Field Conditions 

Variable Name Description 

Absolute cover Absolute cover of all species on each field plot in each year 

Count of Stipa pulchra 

   culms 

Number of culms per m
2
 on each field plot in each year 

Simpson's index Simpson's index D of each field plot in each year 

S. pulchra culm height 

   in the field 

Mean height of tallest 10% of culms on each field plot in 

   2001 

 

 

 

 During the field study, the presence of S. pulchra was measured both as cover of S. 

pulchra and as number of S. pulchra culms per m
2
.  Culm count in the field, rather than S. 

pulchra cover, is used as an explanatory variable in this chapter because culm density was 

precisely measured in the field (by counting) rather than visually estimated as was S. pulchra 

cover, and because culm density is the factor that would influence seed collectors.  Results of 

statistical analyses were generally similar whichever measure of S. pulchra was used. 
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Table 17. 

Explanatory Variables in Common-Garden Results: 

Factors Stemming from Common Garden Experimental Conditions 

Variable Description 

Block Three planting blocks spaced at one-week intervals 

Watering Two groups varying in amount of water they received  

Planted seed weight Weight of each field-collected seed planted in the common 

   garden 

Seed ripeness Ripeness of planted seeds, based on color 

Measurement period Three measurement periods for tiller count and plant height 

Seed harvest Whether common-garden offspring seeds were harvested 

   from live plants or from plants that had been harvested 

 

 

 

Seedling Emergence 

 Weight of planted seeds.  Seed collection during fieldwork focused on obtaining enough 

seed from each plot for the common-garden experiment.  Sufficient ripe seed was not always 

available on plots with low culm density, resulting in occasional collection of unripe, less well-

filled seed.  The common-garden experiment omitted planting of damaged seeds and seeds 

weighing less than 2.4 mg.  Variation in common-garden seed weights therefore likely differs 

from the variation in weight of seeds in the field (Table 21). 

 Seeds planted in the common garden had a mean weight of 4.6 mg.  Seeds were classified 

as appearing fully ripe (gray-brown in color) or partly ripe (gray-green).  Ripe seeds (845 of the 

1008 planted) were about nine percent heavier on average than unripe seeds.  Seeds collected in 

2001 were about 10 percent heavier than seeds gathered in 2000.  Seeds from Pt. Molate were 

about 10 percent heavier than seeds from the other sites (p < 0.005), and the difference between 

the two RFS plot pairs was marginally significant in means separation.  Weight of planted seeds 

correlated positively with field culm count for Pt. Molate and RFS, but negatively for Sonoma.  

The significance of field culm count in the multivariate ANCOVA depends on this interaction; in 

univariate regression, field culm count had no significant effect on seed weight.  Significant two- 

and three-way interactions of site plot pair, year, culm density, and seed ripeness may reflect 

effects stemming from variation in seed-collection conditions among individual plots during each 

year. 
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Table 18. 

Response Variables in Common-Garden Results: 

Emergence, Growth, and Morphology 

Variable Name Description 

Percent emergence  Which seeds produced seedlings 

Emergence time* Days to emergence from first watering 

Tiller count* Total number of tillers (vegetative tillers plus culms) per plant 

   measured at 

 7 weeks from first watering 

 13 weeks from first watering 

 19 weeks from first watering 

Plant height Height of tallest part of plant measured at 

 7 weeks from first watering 

 13 weeks from first watering 

 19 weeks from first watering 

Culm height Tallest culm at harvest 

Foliage height Tallest point on foliage at harvest 

Leaf width Width of widest leaf (subsample of plants) 

Basal area Basal area at harvest, calculated from two perpendicular basal 

   diameters 

Aboveground 

biomass* 

Oven-dry weight of aboveground portion of common-garden 

   plant, minus seeds 

Belowground biomass Oven-dry weight of washed roots and crown (subsample of 

   plants) 

Total biomass Sum of aboveground-and belowground biomass (subsample 

   of plants) 

* Variable also appears as an explanatory variable. 

 

 

 

 

 



 

84 

Table 19. 

Response Variables in Common-Garden Results: 

Sexual Reproduction 

Variable Description 

Percent reproduction* Whether plants produced flowers (i.e., visible awns) 

Weeks to first 

   reproduction* 

Number of weeks until awns became visible in reproductive 

   plants 

Common-garden culm 

   count* 

Number of culms on each flowering plant at harvest in the 

   common garden 

Seeds per culm Count of florets on median culms of common-garden plants 

Seed color* Color of common-garden offspring seed as estimate of  

  ripeness (2 levels) 

Offspring seed weight Mean weight per plant of individual seeds produced by 

   common garden plants 

* Variable also acts as an explanatory variable. 

 

 

 

 Percent emergence.  A total of 870 seedlings emerged from 1008 planted seeds (Table 

22).  Emergent seeds had a mean weight of 4.7 mg.  The smallest emergent seed weighted 2.4 

mg, and among seeds weighing less than 4.7 mg, larger seeds had a higher likelihood of 

emergence.  Above 4.7 mg, seed weight had no effect on percent emergence.  Seeds in the third 

block had roughly five percent lower emergence than seeds planted in the other blocks, possibly 

due to increasing temperatures during the initial weeks of the experiment.  Seeds collected in 

2000 had an 82 percent emergence rate, versus 91 percent for seeds collected in 2001; this was 

due in part to the slightly smaller size of seeds collected in 2000.  In addition, among seeds 

weighing less than 3.8 mg, the older seeds had substantially lower emergence rates.  (Above this 

weight the age difference was not significant.)  Seeds from Pt. Molate had an emergence rate 

roughly 11 percent less than that of the other sites.  Seeds collected in 2000 from the first plot 

characterized at Pt. Molate had a particularly low emergence rate, about 46 percent that of other 

seeds collected that year.  The poor quality of these seeds likely reflects the experimenter's seed-

collection expertise and the paucity of seeds on that plot rather than substantive differences 

among seed sources, and may explain some difference among sites and plot pairs and between 

years.  Neither seed ripeness nor watering treatment affected percent emergence. 
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Table 20. 

Response Variables in Common-Garden Results: 

Ratios 

Variable  Description 

Aboveground relative 

   growth rate (RGR) 

Incremental aboveground rate of growth in common-garden 

   plants, calculated as 

ln  
                   

                   
               

   where "growing days" is counted from time of emergence 

   to harvest 

  

Belowground relative 

   growth rate  

Incremental rate of root growth in common-garden plants,  

  calculated for a subsample of plants as 

ln  
                   

                   
               

  

Root: shoot ratio Ratio of belowground biomass to aboveground biomass in 

   common-garden plants (subsample of plants) 

  

Ratio of flowering to 

   vegetative tillers 

Ratio of number of culms to number of vegetative tillers at 

   harvest in common-garden plants that flowered 

 

 

 

 Time to emergence.  Seedling emergence occurred within four to 27 days, with an 

average of 9.9 days.
18

  Temporal block had the largest effect on emergence times; seedlings in 

the first block, which experienced cooler germination temperatures, took more than three days 

longer on average to emerge than seedlings in the other blocks (Table 23; all differences between 

blocks were significant at p < 0.001).  For the first two blocks, seeds that received more water 

emerged about a half-day earlier than seeds receiving less.  While Pt. Molate seedlings on 

average emerged more quickly than those from the other sites, the differences between plot pairs 

within the sites are larger than differences among sites (Figure 14), and site is not significant in 

simple nested ANOVA.  Within sites, the difference in emergence time is significant between 

                                                 
18

  Four plants emerged after the period during which emergence was recorded; these plants are omitted from 

analyses that include emergence time as a factor.  All four were from thick plots, one from RFS, the other three from 

Sonoma.  Except in the unlikely case that these four plants took at least 76 days to emerge, the average emergence 

time of thick-plot seedlings would remain shorter than the average for thin-plot plants. 
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Sonoma plot pairs (p < 0.01) and marginally so between RFS plot pairs (p = 0.07).  Seeds from 

field plots having greater species diversity and from plots with a lower culm count had slightly 

greater emergence time.  In univariate regression, Simpson's index remains significant (p < 0.05), 

but culm count does not.  Heavier seeds emerged faster than lighter ones; seed ripeness had no 

effect. 

 

 

 

Table 21. 

ANCOVA of Weight of Seeds Planted in Common Garden 

 

N = 1008 

R
2
 = 0.1662 

Adjusted R
2
 = 0.1432 

Source 

Sum of 

Squares df 

Mean 

Square F p 

Model 5.099 27 0.189 7.23 <0.0001 

Site 0.196 2 0.098 3.74 0.0240 

Plot pair 0.342 4 0.085 3.27 0.0112 

Seed collection year 0.310 1 0.310 11.89 0.0006 

Culm count in field 0.254 1 0.254 9.72 0.0019 

Seed color 0.155 1 0.155 5.94 0.0150 

Site × culm count 0.200 2 0.100 3.82 0.0222 

Plot pair × year 1.075 6 0.179 6.86 <0.0001 

Plot pair × seed color 0.635 6 0.106 4.06 0.0005 

Year × seed color 0.187 1 0.187 7.15 0.0076 

Site  × year × culm count 0.227 3 0.076 2.89 0.0344 

Residual 25.589 980 0.026 

  
   Total 30.688 1007 0.030 

  
Data transformation: ln(seed weight + 1.3215) 
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Table 22. 

Logistic Regression of Seedling Emergence versus Nonemergence in the 

Common Garden 

 

N = 1008 

Log likelihood = -298.05 

Likelihood Ratio Chi-Square (8) = 208.90 (p < 0.0001) 

Pseudo-R
2
 = 0.2595 

Source Odds Ratio 

Standard 

Error z p 

Block 3 (vs. blocks 1 & 2) 0.552 0.122 -2.696 0.007 

Pt. Molate (vs. the other sites) 0.123 0.049 -5.271 <0.001 

PtM1 (vs. PtM2 & PtM3) 0.403 0.144 -2.537 0.011 

PtM2 (vs. PtM1 & PtM3) 2.951 1.261 2.533 0.011 

Seed collection year 2.630 6.285 3.296 0.001 

Planted seed weight 15.486 17.162 8.706 <0.001 

Pt. Molate × year 6.512 3.052 3.997 <0.001 

Year × seed weight 0.008 0.011 -3.320 0.001 

Seed weight is natural-log transformed. 

  

 

 

Unplanned Experimental Factors  

 Snail damage.  Not long after seedling emergence, a snail damaged 19 plants before its 

abrupt demise.  The damage set these plants back, and their subsequent size and fecundity cannot 

be regarded as depending either on seed source or on planned experimental conditions.  These 

plants were omitted from analyses of data gathered subsequent to the damage. 

 Root rot.  As described in Chapter 6, a few weeks after seedling emergence a number of 

plants displayed inward-rolling leaf margins, symptomatic of water stress, which appeared to 

stem from root rot.  About eight percent of the plants eventually showed rolled leaves when 

recently watered; these plants were omitted from analyses of data recorded after the stress was 

observed.  Plants from one Sonoma plot pair had over twice the average incidence of root rot 

(Table 24).  If absolute cover is included in the logistic regression, however, statistical analysis 

instead indicates that plants from RFS had lower incidence of root-rot compared to plants from 
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Table 23. 

ANCOVA of Days to Emergence in Common Garden 

 

N = 866 

R
2
 = 0.5151 

Adjusted R
2
 = 0.4940 

Source 

Sum of 

Squares df 

Mean 

Square F    p 

Model 42.653 36 1.185 24.460 <0.0001 

   Block 8.355 2 4.178 86.250 <0.0001 

   Watering 0.577 1 0.577 11.910 0.0006 

   Site 1.025 2 0.513 10.580 <0.0001 

   Plot pair 1.742 4 0.435 8.990 <0.0001 

   Seed collection year 0.434 1 0.434 8.950 0.0029 

   Culm count in field 0.523 1 0.523 10.810 0.0011 

   Simpson's index 0.136 1 0.136 2.800 0.0947 

   Planted seed weight 0.898 1 0.898 18.530 <0.0001 

   Block × water 0.912 2 0.456 9.410 0.0001 

   Block × site 1.621 4 0.405 8.370 <0.0001 

   Block × plot pair 1.436 8 0.179 3.710 0.0003 

   Block × culm count 0.609 2 0.304 6.280 0.0020 

   Water × plot pair 0.603 6 0.100 2.070 0.0540 

   Culm count ×  

      seed weight 0.240 1 0.240 4.950 0.0263 

   Residual 40.156 829 0.048 

  
      Total 82.809 865 0.096 

  
Data transformation: = ln(emergence time – 0.4336) 

  

 

 

 

 

 



 

89 

the other sites, and that plants originating from seeds collected on plots with greater absolute 

cover and with higher culm counts were more likely to develop symptoms.  Differences in 

likelihood of root rot associated with seed-source location may have resulted from intrinsic 

susceptibility in these plants or from pathogens present in the seeds.  If susceptibility to root rot 

reflects autecological differences among plants, the loss of the diseased plants from this study 

potentially biases later results.  

 At the end of the growing period, root preparation for biomass weighing revealed that 

about 10 percent of the remaining plants had unusually weak, fragile roots.  Most of these were 

in the heavily watered group.  The root: shoot ratio of these plants was less than that of other  

  

Figure 14.     

Days to Emergence in the Common Garden 

 

Squares are arithmetic means; lines are 95% confidence intervals back-

calculated from natural-log transformed data.  K = thick plot; N = thin 

plot.  N = 866. 
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Table 24. 

Logistic Regression of Root-Rot Incidence in the Common Garden 

 

N = 870 

Log likelihood = -208.175 

Likelihood Ratio Chi-Square (5) = 45.90 (p < 0.0001) 

Pseudo-R
2
 = 0.0993 

Source Odds Ratio Standard Error z p 

Watering 3.842 1.179 4.385 <0.001 

Pt. Molate (vs. the other sites) 4.517 2.553 2.668 0.008 

Sonoma (vs. the other sites) 5.334 2.131 4.191 <0.001 

Absolute cover in field 2.730 1.011 2.713 0.007 

Culm count in field 1.730 0.385 2.462 0.014 

Absolute cover is transformed as 

 

   1. 0   ln  
              /100.01

1                  /100.01 
   

 

Culm count in the field is transformed as  

 

ln   .85   ln  
          /150

1              /150 
   

 

 

 

common-garden plants.  Some of these fragile-rooted plants had grown adjacent to plants that 

had already been eliminated due to root rot.  It seems likely that the fragile roots stemmed from 

mild root rot.  These plants were omitted from analyses involving root biomass data. 

 

Growth and Morphology 

 Measurements reflecting overall growth and morphology of common-garden plants 

included 

 height and number of tillers at seven, 13, and 19 weeks after initial watering, 

 width of the widest leaf at about 16 weeks (subset of plants), 

 basal area at harvest, and 

 weight of oven-dry above- and belowground biomass at harvest. 
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 Plant height.  The first height measurement took place before any culms were visible.  

The second measurement recorded the tallest part of each plant, whether culm or foliage.
19

  At 

harvest, when the third height measurement was taken, 655 of the 756 plants recorded had culms 

with visible awns, and for 466 of these plants the tallest part of the plant was a culm.  At harvest, 

the highest point of foliage was measured, and the tallest culm as well in reproductive plants. 

 Average plant height increased from 113 mm at seven weeks to 542 mm at 19 weeks, 

when plants were harvested.  Plant heights across the three measurement periods were trimodally 

distributed, and within each period the height distribution was slightly right-skewed (Table 25; 

Figure 15).  In order to compare plant heights over three measurement periods, height data were 

transformed by  

1. taking the square root of each height observation to improve the distribution of data 

within each measurement period; 

2. standardizing each measurement period's square-root transformed observations to a mean 

of 0 and standard deviation of 1; 

3. combining the standardized observations into one dataset containing three observations 

for each plant (Figure 16; Table 26); and  

4. analyzing the standardized, transformed data using Stata’s cluster-regression function, 

treating measurement period as a continuous variable. 

 In the first measurement period, plants in the first block were shortest and those in the 

third were tallest (Table 27).  By the last measurement period, plants in the third block were 

about 10 percent shorter than those in the other blocks.  A large part of the difference among 

blocks stems from the lesser proportion of plants setting seed in the third block, because mature 

S. pulchra culms are taller than the foliage.  If the comparison is limited to reproductive plants, 

however, those in the third block nevertheless were shorter at the last measurement than those in 

the other blocks.  The generally higher temperatures experienced by plants in the third block may 

have encouraged initial rapid growth, then reduced growth as the weather became even warmer 

and watering was reduced.  In the first measurement period, plants receiving more water were 

taller than those receiving less, became relatively shorter at the second measurement, and then 

became taller again by harvest. 

 At each measurement period, Pt. Molate plants were taller than RFS and Sonoma plants 

(significantly so in the first two periods; p < 0.005), and RFS plants were shorter than those from 

the other sites (significantly so in the second and third period; p < 0.005).  Conversely, Pt. 

Molate plants were the shortest in the field and RFS plants the tallest.  Plot pairs within site 

changed rank order with regard to common-garden plant height from one period to the next  

 

 

                                                 
19

  The second and third height measurements and tiller counts took place after the appearance of root rot, so these 

later measurements include fewer plants.  During the first measurement period, plants that eventually developed root 

rot did not differ in height or tiller count from those that remained healthy.  Plants that later developed root rot were 

omitted from cluster regressions of height and tiller count. 
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Table 25.  

Mean Height of Plants by Planting Block and Measurement Period 

Block n Period Height (mm) 

1 270 1 94 

  2 287 

  3 552 

2 262 1 120 

  2 360 

  3 569 

3 252 1 127 

  2 364 

  3 503 
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Figure 15. 

Distribution of Untransformed Common-Garden Plant Heights 

at First, Second, and Third Measurement Periods 
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Figure 16. 

Two-Step Data 

Transformation of 

Common-Garden Plant 

Heights   

Top: raw data (site means) 

Middle: square-root 

   transformed 

Bottom: standardized  

  square-roots 

P = Pt. Molate 
R = RFS 
S = Sonoma 
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Table 26.  

Mean Plant Height in Common Garden: 

Comparison of Raw, Square-Root Transformed, and Standardized Data: 

Means by Site and Measurement Period 

 Data transformation 

 

Raw data 

(mm) 

 

Square root 

 Standardized 

square root 

Period  1 2 3 

 

 1 2 3 

 

1 2 3 

Site            

Pt. Molate 

(n = 315) 

127 375 566  11.2 19.2 23.6  0.467 0.393 0.165 

RFS 

(n = 248) 

102 290 471  10.0 16.9 21.4  -0.389 -0.463 -0.414 

Sonoma 

(n = 222*) 

106 333 587  

 

10.2 18.0 23.8  -0.228 -0.040 0.228 

* For period 1, n = 221. 

 

 

 

(Figure 17; Table 28), and heights varied significantly between plot pairs for all three sites by the 

third measurement.  In simple ANOVA, site is not significant if plot pair is nested within site.
20

  

The height of the tallest decile of culms measured in the field did not correlate significantly with 

common-garden plant height in the multivariate cluster regression.
21

 

 Across sites, the correlation of plant height in the common garden with culm count in the 

field became increasingly negative from one measurement to the next.  This pattern in part 

reflects the lesser likelihood of seed-set in plants originating in plots with high culm counts (as 

discussed later in this chapter), but the pattern exists for both reproductive and nonreproductive 

common-garden plants.  When first measured, the height of common-garden plants correlated 

positively with culm count in the field for RFS plants, and negatively for Sonoma plants.  At the 

second measurement, this correlation was negative for both RFS and Sonoma, and became 

increasingly negative at the third measurement.  Height of Pt. Molate plants in the common 

garden correlated positively with field culm count throughout, although the correlation became 

  

                                                 
20

 As discussed in Chapter 6, nested ANOVA is used here for descriptive purposes only, not as formal analysis. 

 
21

 The correlation of the heights of the tallest 10 percent of culms versus all culms in the field exceeded 95 percent.  
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Table 27. 

Cluster Regression of Common-Garden Plant Height over Three Measurement 

Periods 

 

N = 2346 

Number of clusters (i.e., plants) = 782 

F (21, 781) = 101.88 

R
2
 = 0.5283 

 

Coefficient 

Standard 

Error t p 

Block 2 (vs. 1 and 3) 1.024 0.112 9.128 <0.001 

Block 3 (vs. 1 and 2) 1.604 0.121 13.225 <0.001 

Watering 0.055 0.068 0.799 0.425 

Measurement period -0.776 0.046 -16.828 <0.001 

Pt. Molate (vs. the other sites) 0.734 0.155 4.726 <0.001 

RFS (vs. other the other sites) -0.141 0.057 -2.464 0.014 

PtM1 (vs. PtM2 and PtM3) 0.349 0.073 4.795 <0.001 

Son2 (vs. Son1) 0.389 0.068 5.735 <0.001 

Culm count in field -0.002 0.001 -3.383 0.001 

Plant height in field -0.007 0.004 -1.857 0.064 

Planted seed weight 0.112 0.019 6.058 <0.001 

Emergence time -0.070 0.007 -9.301 <0.001 

Reproduction -1.159 0.104 -11.104 <0.001 

Block 3 × water -0.190 0.077 -2.466 0.014 

Block 1 × period 0.433 0.037 11.811 <0.001 

Block 3 × period -0.251 0.037 -6.746 <0.001 

Block 1 × reproduction -0.167 0.094 -1.779 0.076 

Watering × period 0.089 0.031 2.916 0.004 

Period × Pt. Molate -0.342 0.032 -10.800 <0.001 

Period × reproduction 0.958 0.042 22.619 <0.001 

Pt. Molate × culm count 0.006 0.001 4.122 <0.001 

  Constant 0.577 0.375 1.540 0.124 

Data transformation: height
0.5

 standardized within period to mean = 0 and standard 

deviation = 1. 
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weaker from one measurement period to the next.  Height of common-garden plants overall 

correlated positively with planted seed weight and negatively with emergence time throughout 

the common-garden pot study; in both cases the correlations became weaker from one 

measurement period to the next. 

 Foliage height at harvest.  The highest part of plant leaves averaged 451 mm in dry-

treatment plants and 486 mm in plants receiving more water (Table 29).
22

  Plants in the second 

block had taller foliage than those in the other blocks.  Sonoma plants had the tallest foliage, and 

RFS plants the shortest; all between-sites means comparisons are significant at p ≤ 0.005.  Pt. 

Molate plants responded least and Sonoma plants most to higher levels of watering. Variation 

                                                 
22

 Foliage height was not recorded for the first 24 plants harvested.  
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Figure 17. 

Plant Height in Common Garden by Plot Pair and 

Measurement Period 

 
Data transformed as standardized square root of height.  N = 2346 

(782 observations per measurement period). 
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among plot pairs within sites was greater than variation between sites, however, and site was not 

significant in simple nested ANOVA (Figure 18).  All comparisons of means between plot pairs 

within site were at least marginally significant.  Plants grown from seeds collected in 2001 grew 

about one percent taller in foliage height and displayed a larger response to more water than did  

 

 

 

Table 28. 

Common-Garden Plant Heights by Period, Site, and Plot Pair: 

Means and 95% Confidence Intervals 

  

Mean height (confidence interval) 

(cm) 

Site and 

plot pair n Period 1 Period 2 Period 3 

Pt. Molate 315 127 (122–129) 375 (359–379) 567 (541–573) 

PtM1 95 132 (125–136) 421 (405–432) 640 (611–659) 

PtM2 106 131 (123–136) 338 (319–349) 485 (457–501) 

PtM3 114 120 (112–124) 371 (344–383) 580 (540–599) 

        

RFS 248 102 (97–103) 290 (274–294) 471 (442–478) 

RFS1 124 102 (97–104) 300 (282–309) 497 (466–512) 

RFS2 124 102 (95–105) 279 (259–288) 445 (404–459) 

        

Sonoma* 222 106 (102–108) 333 (311–339) 587 (541–596) 

Son1** 102 103 (98–107) 274 (253–284) 487 (432–506) 

Son2 120 108 (102–111) 384 (358–396) 671 (629–692) 

Means are arithmetic; 95% confidence intervals are back-calculated from square-root 

transformed data. 

 

*n = 221 in period 1. 

** n = 101 in period 1. 
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Table 29. 

ANCOVA  of Foliage Height at Harvest in the Common Garden 

 

N = 756 

R
2
 = 0.5527 

Adjusted R
2
 = 0.5405 

Source 

Sum of 

Squares df 

Mean 

Square F p 

Model 5.691 × 10
6
 20 2.846 × 10

5
 45.41 <0.0001 

   Block 1.624 × 10
5
 2 8.120 × 10

4
 12.96 <0.0001 

   Watering 2.383 × 10
5
 1 2.383 × 10

5
 38.02 <0.0001 

   Site 4.795 × 10
5
 2 2.397 × 10

5
 38.25 <0.0001 

   Plot pair 2.880 × 10
5
 4 7.201 × 10

4
 11.49 <0.0001 

   Seed collection year 7.397 × 10
2
 1 7.397 × 10

2
 0.12 0.7313 

   Emergence time 3.019 × 10
4
 1 3.019 × 10

4
 4.82 0.0285 

   Reproduction 5.422 × 10
5
 1 5.422 × 10

5
 86.51 <0.0001 

   Block × water 4.673 × 10
4
 2 2.336 × 10

4
 3.73 0.0245 

   Water × site 9.071 × 10
4
 2 4.536 × 10

4
 7.24 0.0008 

   Water × year 2.474 × 10
4
 1 2.474 × 10

4
 3.95 0.0473 

   Site × reproduction 1.011 × 10
5
 2 5.055 × 10

4
 8.07 0.0003 

   Emergence time ×  

      reproduction 5.896 × 10
4
 1 5.896 × 10

4
 9.41 0.0022 

   Residual 4.606 × 10
6
 735 6.267 × 10

3
   

      Total 1.030 × 10
7
 755 1.364 × 10

4
   

 

 

 

plants from seeds collected in 2000.  Foliage of reproductive plants was nearly 60 percent taller 

than foliage of nonreproductive plants, largely due to elongation of stem internodes in tillers that 

produced culms; that is, the leaf blades were not necessarily longer but were simply higher above 

the soil surface.  Emergence time and leaf length correlated negatively in plants that reproduced, 

and were uncorrelated in nonreproductive plants. 

 Culm height at harvest.  The tallest culms of reproductive plants averaged 582 mm in 

height (Table 30).  Plants from block 3 had significantly shorter culms than plants in the other  
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blocks (p < 0.001).  Plants receiving more water had culms about 22 percent taller than those 

receiving less; this difference was greater for plants in block 3 than in the other blocks.  Plants 

from Sonoma had the tallest culms at a mean of 665 mm, and at 508 mm RFS plants had the 

shortest (p ≤ 0.005 for all between-site differences).  RFS plants responded most strongly and Pt. 

Molate plants least to watering treatment.  Two of three possible means separations between Pt. 

Molate plot pairs within site were significant (p < 0.01).  In simple nested ANOVA of plot pair 

within site, site is not significant.  Plants from larger seeds and plants that emerged faster had 

taller culms. 
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Figure 18.   

Foliage Height at Harvest in the Common Garden 
 

Means and 95% confidence intervals.  K = thick plot; N = thin plot.  

N = 760. 

RFS2 Son1 

K K K K K K N N N N N N N K 

Site: 

Plot pair: 

Plot type: 

PtM1 PtM2 PtM3 RFS1 Son2 

RFS Pt. Molate Sonoma 
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Table 30. 

ANCOVA of Culm Height in the Common Garden at Harvest 

 

N = 640  

R
2
 = 0.4150 

Adjusted R
2
 =  0.3990 

Source 

Sum of 

squares df 

Mean 

square F p 

Model 6.743 × 10
5
 17 3.967 × 10

4
 25.96 <0.0001 

Block 6.569 × 10
4
 2 3.285 × 10

4
 21.50 <0.0001 

Watering 2.152 × 10
5
 1 2.152 × 10

5
 140.83 <0.0001 

Site 1.322 × 10
5
 2 6.611 × 10

4
 43.27 <0.0001 

Plot pair 7.780 × 10
4
 4 1.945 × 10

4
 12.73 <0.0001 

Planted seed weight 8.383 × 10
3
 1 8.383 × 10

3
 5.49 0.0195 

Emergence time 1.956 × 10
4
 1 1.956 × 10

4
 12.80 0.0004 

Block × site 1.591 × 10
4
 4 3.978 × 10

3
 2.60 0.0350 

Water × site 1.194 × 10
4
 2 5.971 × 10

3
 3.91 0.0206 

Residual 9.504 × 10
5
 622 1.528 × 10

3
 

  
   Total 1.625 × 10

6
 639 2.543 × 10

3 

  
Data transformation: [(culm height)

0.8257 
− 1]/ 0.8257 

 

 

 

 Tiller counts.  Like plant height, the number of tillers (including both vegetative and 

sexually reproductive tillers) was trimodally distributed over the three measurement periods 

(Table 31).  Tiller counts were adapted for statistical analysis by 

1. standardizing tiller counts within measurement periods to a mean of 0 and standard 

deviation of 1; 

2. combining the standardized observations into one dataset containing three observations 

for each plant; 

3. transforming the pooled observations as (tillers + 5)
0.8

; and 

4. analyzing the standardized, transformed data using Stata’s cluster-regression function, 

treating measurement period as a continuous variable.
23

 

 

                                                 
23

 Plants that developed root rot after the first tiller count were omitted from the cluster regression. 
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Table 31.  

Tiller Counts by Site and Measurement Period in the Common Garden 

 Tiller count: mean and standard deviation 

Period 1 2 3 

Site    

Pt. Molate 

(n =315) 

7.0 (1.9) 21.1 (6.4) 34.5 (8.1) 

RFS 

(n = 248) 

7.2 (2.1) 24.4 (5.6) 41.3 (7.9) 

Sonoma 

(n = 222*) 

6.8 (1.8) 21.8 (5.0) 34.0 (7.0) 

Plants that developed root rot after the first measurement are omitted. 

* For period 1, n = 221. 

 

 

 

 Plants in the third block initially had more tillers than those in other blocks, but this 

difference had disappeared by the third measurement period (Table 32).  Plants in the well-

watered group had almost one more tiller each than plants in the dry group at the first and third 

measurements; this fractional tiller gave wet-treatment plants a nine percent higher tiller count in 

the first measurement period, which declined to about two percent at the last measurement.  The 

slight increase in tiller count with more water was smallest in Pt. Molate plants. 

 Plants from RFS had larger numbers of tillers than plants from the other sites at the 

second and third measurements (p < 0.001; Figure 19).  Plot pairs varied marginally within site 

for RFS plants in the first measurement period, and in the third period for Pt. Molate plants (both 

p ≤ 0.10).  Common-garden tiller count correlated positively with culm count in the field; the 

strength of this correlation, while remaining small (particularly for Pt. Molate), increased over 

the three measurement periods, and was significant in univariate regressions within measurement 

period.  The correlation of common-garden tiller count with absolute cover, while also small, 

became larger from one measurement period to the next, and had a small but significant effect on 

tiller counts in univariate regressions within measurement period.  When first counted, the 

number of tillers correlated positively with planted seed weight, but by the last observation the 

correlation had become negative; planted seed weight was not significant in the cluster 

regression.  Tiller count correlated negatively with emergence time, but this relationship also 

became weaker over time. 

 Leaf width.  Leaf width, measured once on the widest leaf of each of a subsample of 

plants, averaged 3.8 mm.  Greater watering (particularly in the second block) and heavier planted 

seeds correlated with wider leaves (Table 33).  Sonoma plants had the widest leaves and RFS 

plants the narrowest; all differences between sites were significant (p < 0.001).  Within sites, leaf 
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Table 32. 

Cluster Regression of Common-Garden Tiller Count over Three Measurement 

Periods 

 

N = 2346 

Number of clusters (i.e., plants) = 782 

F (17, 781) = 108.86 

R
2
 = 0.3917 

Factor Coefficient 

Standard 

Error t p 

Block 2 (vs. other blocks) 0.991 0.048 20.677 <0.001 

Block 3 (vs. other blocks) 1.357 0.050 27.173 <0.001 

Watering 0.196 0.041 4.795 <0.001 

Measurement period 0.380 0.022 16.970 <0.001 

Pt. Molate (vs. other sites) 0.309 0.087 3.568 <0.001 

RFS (vs. other sites) 0.157 0.037 4.210 <0.001 

PtM3 (vs. PtM1 & PtM2) 0.175 0.048 3.619 <0.001 

RFS2 (vs. RFS1) 0.085 0.041 2.082 0.038 

Absolute cover in field 0.003 0.001 2.919 0.004 

Culm count in field 0.001 0.000 4.207 <0.001 

Emergence time -0.052 0.004 -11.527 <0.001 

Block 2 × period -0.416 0.025 -16.985 <0.001 

Block 3 × period -0.496 0.025 -19.528 <0.001 

Water × period -0.070 0.020 -3.522 <0.001 

Water × Pt. Molate -0.087 0.051 -1.708 0.088 

Period × Pt. Molate -0.119 0.020 -5.848 <0.001 

Pt. Molate × culm count -0.005 0.001 -5.147 <0.001 

   Constant 2.792 0.114 24.525 <0.001 

Data were standardized within measurement period to a mean of 0 and standard 

deviation of 1.  The three sets of data were pooled, then retransformed as (tillers + 5)
0.8

. 
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width correlated positively with culm frequency in the field, significantly so for Pt. Molate and 

nonsignificantly for the other sites.  Conversely, the culm-frequency: leaf-width correlation was 

negative across sites (Table 34).  Block was a marginally significant factor in the multivariate 

ANCOVA, but its significance stemmed from interactions with watering treatment and site. 

 Basal area at harvest.  Mean basal area at harvest was 306 mm
2
 for well-watered plants 

and 231 mm
2
 for plants receiving less water (Table 35; Figure 20).  Plants in the first block had 

mean basal area about 20 percent smaller than that of plants in the other blocks (p < 0.001).  

Basal area differed between plot pairs within site among Pt. Molate and Sonoma plants (p < 

0.01); differences among plot pairs within these sites were larger than those between sites.  Basal 

area in the common garden correlated positively with culm count in the field.  Although the 

ANCOVA indicates that absolute cover in the field and common-garden basal area were positively 

correlated, examination of the data indicates this was the case for Pt. Molate and Sonoma only.  

Plants grown from larger seeds and early-emerging plants had larger basal area.   

1 2 

 
3 

Figure 19. 

Tiller Count in Common Garden by Plot Pair and 

Measurement Period   
 

Tiller counts standardized within measurement period to mean = 0 

and standard deviation = 1.  N = 2346. 
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Table 33. 

ANCOVA of Leaf Width of Common Garden Plants (Subsample of Plants) 

 

N = 438 

R
2
 = 0.4904 

Adjusted R
2
 = 0.4724 

Source 

Sum of 

squares df 

Mean 

square F p 

Model 6.707 15 0.447 27.20 <0.0001 

Block 0.077 2 0.038 2.34 0.0976 

Watering 0.543 1 0.543 33.02 <0.0001 

Site 2.048 2 1.024 62.29 <0.0001 

Culm count in field 0.189 1 0.189 11.51 0.0008 

Planted seed weight 0.141 1 0.141 8.59 0.0036 

Block × water 0.223 2 0.112 6.78 0.0013 

Block × site  0.227 4 0.057 3.45 0.0087 

Site × culm count 0.203 2 0.101 6.17 0.0023 

Residual 6.970 424 0.016   

   Total 13.678 439 0.031   

Data transformation: (leaf width
0.1694

 − 1) / 0.1694) 

 

 

 

 Aboveground biomass.  Oven-dry aboveground biomass averaged 1.79 g per dry-

treatment plant, and 2.63 g for plants receiving more water (Table 36).  Plants from the third 

temporal block had about eight percent less aboveground biomass at harvest than plants from the 

other blocks (p < 0.05), potentially because hotter, drier conditions in June and particularly July 

reduced growth.  Plants grown from RFS seeds produced less aboveground biomass overall than 

plants from the other sites (Figure 21); however, because of the substantial difference in 

aboveground biomass between Sonoma plot pairs (p < 0.01), site is not significant in simple 

nested ANOVA.  Aboveground biomass of common-garden plants correlated positively with culm 

count in the field for Pt. Molate plants and negatively for Sonoma plants.  Plants grown from 

larger seeds and plants that emerged rapidly had greater aboveground biomass at harvest. 
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Table 34. 

Correlation between Culm Count on Field Plots and Leaf Width in Common 

Garden Among and Within Sites 

Site 

Mean culms/m
2
 

in field 

Leaf width* 

(mm) 

Leaf width: culm 

count correlation 

(r) 

Pt. Molate 

(n = 175) 

37.9 3.7 

(3.7–3.8) 

0.2524 

RFS 

(n = 126) 

82.5 3.4 

(3.3–3.5) 

0.0146 

Sonoma 

(n = 139) 

46.0 4.3 

(4.2–4.3) 

0.0708 

Across sites 

(N = 440) 

54.3 3.8 

(3.7–3.8) 

-0.1289 

* Arithmetic mean of leaf widths, and 95% confidence limits back-calculated from 

confidence limits for (leaf width
0.1694

 − 1)/0.1694.  For Pt. Molate plants, univariate 

regression of leaf width over culm count is significant at p <0.01; for RFS and Sonoma 

plants the relationship is not significant in univariate regression 

 

 

 

 Belowground biomass.  Root biomass was determined for plants from one plot pair per 

site (PtM1, RFS2, and Son1) for the first two planting blocks only, a total of 186 plants.  Mean 

root biomass was 1.24 g per plant.  Root biomass of plants that received more water averaged 

about nine percent greater than that of dry-treatment plants, but the difference between wet- and 

dry- treatment groups was not significant in multivariate ANCOVA or in univariate ANOVA.  

Greater belowground biomass correlated with higher culm counts in the field (Table 37). 

 Root biomass correlated positively with planted seed weight and negatively with days to 

emergence for plants in the first temporal block only.  While the multivariate ANCOVA implies 

that absolute cover and emergence time influenced common-garden root biomass, their 

significance depends on their interaction; neither of these factors is significant in univariate 

regression.  (The correlation between belowground biomass and absolute cover is more positive 

for slow-emerging plants; the correlation between belowground biomass and emergence time is 

more negative for plants from plots with relatively low absolute cover.) 

 Total biomass.  Total biomass, calculated as the sum of above- and belowground 

biomass for the subsample of plants with weighed roots, averaged 4.08 g in heavily watered 

plants and 3.04 g in those receiving less water (Table 38).  While significant in the multivariate 

ANCOVA, block was not significant in univariate tests.  Plants grown from larger seeds and from  
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Table 35. 

ANCOVA of Basal Area of Common Garden Plants 

 

N = 780 

R
2
 = 0.4795 

Adjusted R
2
 = 0.4707 

Source 

Sum of 

squares   df 

Mean 

square F p 

Model 20.068 13 1.544 54.28 <0.0001 

Block 0.869 2 0.435 15.28 <0.0001 

Water 8.022 1 8.022 282.10 <0.0001 

Plot pair 2.672 6 0.445 15.66 <0.0001 

Absolute cover in field 0.131 1 0.131 4.60 0.0322 

Culm count in field 1.242 1 1.242 43.68 <0.0001 

Planted seed weight 0.176 1 0.176 6.20 0.0130 

Emergence time  0.945 1 0.945 33.22 <0.0001 

Residual 21.783 766 0.028   

   Total 41.850 779 0.054   

Data transformation:  ln(basal area + 77.435) 

 

 

 

seedlings that emerged faster had significantly greater total biomass.  Culm count in the field, 

which correlated negatively with aboveground biomass and positively with root biomass, did not 

influence total biomass.  

 Green foliage at harvest.  The estimated fraction of aboveground foliage that remained 

green at harvest varied from five to 95 percent, with a mean of 64 percent.  Watering treatment 

was by far the most influential factor, with heavily-watered plants averaging 74 percent green 

foliage versus 53 percent for dry-treatment plants (Table 39)
24

.  Sonoma plants had about 14 

percent more green foliage than plants from the other sites; most of the difference among sites 

was concentrated in the heavily-watered group.  The difference for Sonoma plot pairs in percent  

                                                 
24

 Percent green foliage was not recorded for the first 30 plants harvested. To correct for skewness and kurtosis, a 

two-step data transformation was applied.  Data were first logit transformed, then transformed again using the Box-

Cox transformation.  This resulted in nonsignificant skewness and significant but much improved kurtosis of 2.65.  

Results of ANCOVA of this doubly-transformed data are not substantially different than results of ANCOVA of the same 

data rank-transformed or squared.  
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green foliage at harvest exceeded differences between sites, however, and in simple nested 

ANOVA plot pair was significant and site was not.  In the multivariate ANCOVA, percent green 

foliage correlated marginally with Simpson's index and with culm count in the field, but neither 

culm count nor Simpson's index correlated with percent green tissue in simple regression.  

Aboveground biomass interacted with plot pair for Pt. Molate and RFS plants.  Plants that 

emerged faster had lower average percent green foliage at harvest. 

 The relationship between percent green foliage and plant size at harvest was complex.  

For all plants combined, plants with greater aboveground biomass were greener (in particular, if  

 

Figure 20.   

Basal Area at Harvest in the Common Garden 
 

Squares are arithmetic means; lines are 95% confidence intervals back-

calculated from ln(basal area + 77.435).  K = thick plot; N = thin plot.  

N = 784. 
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Table 36.  

ANCOVA of Aboveground Biomass of Common-Garden Plants 

 

N = 781 

R
2
 = 0.4016 

Adjusted R
2
 = 0.3906 

Source 

Sum of 

squares df 

Mean 

square F p 

Model 21.600 14 1.543 36.71 <0.0001 

Block 1.192 2 0.596 14.19 <0.0001 

Watering 13.623 1 13.623 324.17 <0.0001 

Site 2.827 2 1.413 33.63 <0.0001 

Plot pair 0.909 4 0.227 5.41 0.0003 

Culm count in field 0.127 1 0.127 3.03 0.0823 

Planted seed weight 0.238 1 0.238 5.66 0.0176 

Emergence time 0.877 1 0.877 20.88 <0.0001 

Site × culm count 0.663 2 0.331 7.88 0.0004 

Residual 32.192 766 0.042   

   Total 53.792 780 0.069   

Data transformation: ln(aboveground biomass + 0.711) 

 

 

 

they came from plots with high Simpson's index).  This stems from watering treatment, in that 

well-watered plants were both greener and larger.  Within the well-watered group, however, 

percent green foliage was negatively correlated with aboveground biomass; this correlation 

became increasingly negative from one block to the next.  There was little correlation between 

aboveground biomass and percent green foliage in the dry group.  This could imply that large 

size led to greater water stress and senescence of leaves when watering was reduced in plants 

accustomed to plenty of water.  If percent green foliage is instead compared to root: shoot ratio, 

however, it appears that a larger root: shoot ratio is associated significantly if weakly with a 

lower percentage of green foliage for both wet-treatment plants (R
2
 =0.1613; p < 0.0005 in 

univariate regression) and dry-treatment plants (R
2
 =0.0697; p < 0.01).  This may indicate the 

plants increased root biomass as they became water-stressed. 

 Aboveground relative growth rate.  Relative growth rate (RGR) is the percentage 

increase in a plant's dry weight per unit time.  Over the growth of a plant, small differences in 
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RGR can result in considerable differences in size.  Aboveground RGR was calculated in this 

study as  

ln  
                   

                   
               

 

where the term "growing days" means the time between seedling emergence and harvest.
 25

 

  

                                                 
25

  Formula adapted from Stanton (1985). 

Figure 21.   

Aboveground Biomass at Harvest in the Common Garden  
 

Squares are arithmetic means; lines are 95% confidence intervals back-

calculated from ln(aboveground biomass + 0.711).  K = thick plot; N = 

thin plot.  N = 785. 
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Table 37. 

ANCOVA of Belowground Biomass in the Common Garden (Subsample of Plants) 

 

N = 186 

R
2
 = 0.1917 

Adjusted R
2
 = 0.1552 

Source 

Sum of 

squares df 

Mean 

square F p 

Model 1.849 8 0.231 5.25 <0.0001 

Block 0.036 1 0.036 0.81 0.3702 

Absolute cover 0.575 1 0.575 13.05 0.0004 

Culm count in field 0.685 1 0.685 15.56 0.0001 

Planted seed weight 0.478 1 0.478 10.85 0.0012 

Emergence time 0.649 1 0.649 14.73 0.0002 

Block × seed weight 0.135 1 0.135 3.07 0.0815 

Block ×  

   emergence time 0.228 1 0.228 5.18 0.0241 

Absolute cover ×  

   emergence time 0.683 1 0.683 15.51 0.0001 

Residual 7.794 177 0.044    

 
   Total 9.642 185 0.052    

 
Data transformation: ln(belowground biomass + 0.533) 

 

 

 

 Plants receiving more water had greater aboveground RGR (Table 40).  Plants in the first 

block had the greatest growth rate, and those in the third block the least, possibly reflecting 

increasing temperatures and lesser overall water received by the plants in the later blocks.  

Sonoma plants grew about five percent faster than plants from the other sites.  The multivariate 

ANCOVA indicated small but significant differences among plot pairs within site in aboveground 

RGR.  These differences are significant in one comparison between plot pairs at Pt. Molate (p < 

0.05) and marginally significant for Sonoma (p < 0.10).  Plants from Pt. Molate plots with high 

culm count grew slightly faster than other plants, resulting in a site × culm count interaction; 

culm count is not a significant influence on aboveground relative growth rate in univariate 

analysis. 
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Table 38. 

ANCOVA of Total Biomass of Common-Garden Plants (Subsample of Plants) 

 

N = 186 

R
2
 = 0.3149 

Adjusted R
2
 = 0.2998 

 

Sum of 

squares   df 

Mean 

square F p 

Model 1.971 4 0.493 20.80 <0.0001 

Block 0.126 1 0.126 5.34 0.0220 

Watering 1.330 1 1.330 56.13 <0.0001 

Planted seed weight 0.132 1 0.132 5.59 0.0192 

Emergence time 0.156 1 0.156 6.60 0.0110 

Residual 4.288 181 0.024   

   Total 6.260 185 0.034   

Data transformation: ln(total biomass + 1.542) 

 

 

 

 Weight of planted seeds strongly influenced aboveground RGR.  While larger initial seed 

mass and rapid emergence were associated with greater aboveground biomass, lesser initial seed 

weight and slower emergence were associated with greater aboveground RGR, that is, plants that 

started out smaller and later to some extent caught up with the others (Table 41).  An inverse 

relationship between growth rate and seed weight or seedling size has been found in several 

intraspecific studies (Gross & Smith 1991; Houssard & Escarré 1990; Meyer & Carlson 2001; 

Roach 1986). 

 Belowground relative growth rate.  Belowground RGR was calculated for plants in the 

first two blocks from plot pairs PtM1, RFS2, and Son1 as 

 

ln  
                   

                   
               

 

where the term "growing days" indicates the time between seedling emergence and harvest.  

Plants in the first block had slightly greater belowground RGR compared to the other blocks; 

block was not significant in univariate ANOVA.  Common-garden belowground RGR correlated  
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Table 39. 

ANCOVA of Percent Green Foliage of Common-Garden Plants at Harvest 

 

N = 751 

R
2
 = 0.4259 

Adjusted R
2
 = 0.4045 

Source 

Sum of 

squares df 

Mean 

square F 

 

p 

Model 497.579 27 18.429 19.87 <0.0001 

Block 0.480 2 0.240 0.26 0.7720 

Watering 69.144 1 69.144 74.55 <0.0001 

Site 7.641 2 3.821 4.12 0.0166 

Plot pair 21.759 4 5.440 5.86 0.0001 

Culm count in field 3.351 1 3.351 3.61 0.0578 

Simpson's index 4.809 1 4.809 5.18 0.0231 

Emergence time 9.082 1 9.082 9.79 0.0018 

Aboveground biomass in  

   common garden 5.154 1 5.154 5.56 0.0187 

Water × site 10.644 2 5.322 5.74 0.0034 

Water ×  

   aboveground biomass 10.271 1 10.271 11.07 0.0009 

Plot pair ×  

   aboveground biomass 16.308 6 2.718 2.93 0.0079 

Simpson's index × 

   aboveground biomass 2.896 1 2.896 3.12 0.0777 

Block × water ×  

   aboveground biomass 12.474 4 3.118 3.36 0.0097 

Residual 670.613 723 0.928   

   Total 1168.192 750 1.558   

Data transformation:    

 

 

 

where x= 0.01 × percent green foliage at harvest.   

[(ln[x/(1 − x)]) + 3]
1.17

 − 1 

1.17 
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Table 40. 

ANCOVA of Aboveground Relative Growth Rate in the Common Garden 

 

N = 781 

R
2
 = 0.5495 

Adjusted R
2
 = 0.5413 

Source 

Sum of 

squares df 

Mean 

square F p 

Model 50.426 14 3.602 66.75 <0.0001 

Block 1.599 2 0.800 14.82 <0.0001 

Water 16.144 1 16.144 299.15 <0.0001 

Site 3.398 2 1.699 31.48 <0.0001 

Plot pair 1.306 4 0.327 6.05 0.0001 

Culm count in field 0.261 1 0.261 4.83 0.0282 

Planted seed weight 14.983 1 14.983 277.64 <0.0001 

Emergence time 2.643 1 2.643 48.98 <0.0001 

Site × culm count in field 0.755 2 0.378 7.00 0.0010 

Residual 41.337 766 0.054 

  
   Total 91.763 780 0.118 

   

 

 

positively with culm count and absolute cover in the field (Table 42).  If the ANCOVA is cast with 

site in place of absolute cover, the result is nearly the same with R
2
 = 0.4610.  Belowground 

RGR correlated negatively with planted seed weight.  For slow-emerging Sonoma and RFS 

plants, belowground RGR correlated positively with days to emergence, but in plants from plots 

with lower absolute cover (i.e., the plots in PtM1), belowground RGR decreased with greater 

time to seedling emergence.  For fast-emerging plants, the influence of absolute cover in the field 

on common-garden belowground RGR was limited. 

 Root: shoot ratio.  The root: shoot ratio of common-garden plants (from the first two 

temporal blocks, plot pairs PtM1, RFS2, and Son1) averaged 0.56.  Well-watered plants had an 

average root: shoot ratio about 40 percent less than that of dry-treatment plants (Table 43).  

Among plot pairs, RFS2 plants had the greatest root: shoot ratio overall (p < 0.01).  While the 

root: shoot ratio of well-watered plants varied little among the three plot pairs, the ratio varied 

substantially among these plot pairs for dry-treatment plants, and was greatest for RFS2 plants 

(Table 44).  Root: shoot ratio correlated positively with culm count in the field.  Although the  
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Table 41. 

Aboveground Biomass and Proportional Growth by Planted Seed Weight Group  

Planted seed weight n 

Mean aboveground 

biomass (g) 

Mean 

(aboveground biomass)

(planted seed weight)
 

< 4.7 mg 407 2.16 543.8 

≥ 4.7 mg 378 2.26 408.0 

 

 

 

 

 

Table 42. 

ANCOVA of Belowground Relative Growth Rate in the Common Garden (Subset of 

Plants) 

 

N = 186 

R
2
 = 0.4613 

Adjusted R
2
 = 0.4402 

Source 

Sum of 

squares df 

Mean 

square F  p 

Model 10.266 7 1.467 21.78 <0.0001 

Block 0.628 1 0.628 9.33 0.0026 

Absolute cover in field 0.986 1 0.986 14.65 0.0002 

Culm count in field 1.171 1 1.171 17.39 <0.0001 

Planted seed weight 2.006 1 2.006 29.79 <0.0001 

Emergence time 0.502 1 0.502 7.46 0.0070 

Block × emergence time 0.448 1 0.448 6.66 0.0107 

Absolute cover ×  

   emergence time 1.108 1 1.108 16.45 0.0001 

Residual 11.987 178 0.067 0.00 <0.0001 

   Total 22.253 185 0.120 0.00 <0.0001 
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Table 43.   

ANCOVA of Root: Shoot Ratio of Common Garden Plants (Subset of Plants) 

 

N = 186 

R
2
 = 0.4034 

Adjusted R
2
 = 0.3693 

Source 

Sum of 

squares df 

Mean 

square F p 

Model 6.920 10 0.692 11.83 <0.0001 

Block 0.181 1 0.181 3.10 0.0801 

Watering 2.480 1 2.480 42.41 <0.0001 

Site 0.744 2 0.372 6.36 0.0022 

Culm count in field 0.846 1 0.846 14.47 0.0002 

Planted seed weight 0.228 1 0.228 3.91 0.0496 

Emergence time 0.222 1 0.222 3.80 0.0530 

Block × emergence time 0.232 1 0.232 3.97 0.0478 

Water × site 0.437 2 0.219 3.74 0.0257 

Residual 10.233 175 0.058 

  
   Total 17.154 185 0.093 

  
Data transformation [(root biomass/aboveground biomass)

0.4293
 − 1] / 0.4293 

 

 

 

ANCOVA does not indicate the existence of interactions between culm count and other factors, the 

correlation between culm count and root: shoot ratio was strongest for RFS plants and for dry-

treatment plants.  Slow-emerging plants, particularly in the second block, developed relatively 

high root-shoot ratios.  In univariate tests, block is not significant and emergence time is.  

Planted seed weight correlated positively with root: shoot ratio in the multivariate ANCOVA but 

was not a significant factor in univariate regression.  The ANCOVA can be cast with absolute cover 

replacing site with a reduction in R
2
 to 0.3607 (Table 44). 

 The ANCOVA can also be cast to include whether or not plants set seed as an explanatory 

variable, in which case R
2
 is 0.4294, with little effect on the other variables.  Reproductive RFS 

and Sonoma plants averaged mean root: shoot ratio nearly 30% lower than that of  
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Table 44.   

Absolute Cover in Field and Root: Shoot Ratio by Plot Pair and Watering 

Treatment 

   Root: shoot ratio by watering treatment 

Plot pair 

Absolute cover 

(%) 

 

Dry treatment Wet treatment 

PtM1 

(n = 56) 

38.6  0.57 

(0.51–0.61) 

0.46 

(0.37–0.51) 

RFS2 

(n = 71) 

90.9  0.82 

(0.74–0.87) 

0.52 

(0.42–0.57) 

Son1 

(n = 61) 

88.5  0.62 

(0.54–0.67) 

0.46 

(0.36–0.51) 

Root: shoot ratios are arithmetic means; 95% confidence limits (in parentheses) are 

back-transformed from confidence limits of 

[(root biomass/aboveground biomass)
0.4293

 − 1] / 0.4293. 

 

 

 

nonreproductive plants (p < 0.002).  (All subsampled Pt. Molate plants set seed.)  Among 

reproductive plants, root biomass correlated negatively with the ratio of culms to tillers (R
2
 = 

0.0996; p = 0.0001) and the number of florets on median culms (R
2
 = 0.1639; p < 0.0001.)  

 

Reproduction by Seed 

 Measures of reproduction by seed in the common garden included percentage of plants 

that reproduced, time to initial reproduction, number of culms per plant and seeds per culm, and 

weight of seeds.  In Stipa pulchra, the panicle gradually extends upward within the enclosing 

terminal leaf until the upper florets begin to emerge.  The awns are the first part of these florets 

to become visible.  Sexual reproduction is defined here as production of one or more culms 

mature enough to have visible awns.   

 Which plants reproduced.  Out of 785 plants, 655 set seed.  Plants in the heavily-

watered group were a fraction of a percent less likely to reproduce than plants receiving less 

water (Table 45); while significant in the multivariate logistic regression, this difference was not 

significant in a chi-squared test addressing the effect of watering alone.  Among sites, 89.5 

percent of Pt. Molate plants, 80.2 percent of RFS plants, and 78.4 percent plants from Sonoma 

set seed (Table 46).  The difference between Pt. Molate and each other site is significant (p <  

0.05).  All plants originating from plot pair PtM1 set seed, as did all plants from the thin plots in 

plot pairs RFS1 and Son2.  All differences between plot pairs within site were at least marginally 

significant in simple chi-squared testing.  The likelihood of reproduction correlated negatively 

with culm count in the field, although this difference was small for Pt. Molate plants (Figure 22).   
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Table 45. 

Logistic Regression of Reproduction by Seed in the Common Garden 

 

N = 690 

Log likelihood = -226.60 

Likelihood Ratio Chi-Squared (8) = 214.57 (p  < 0.0001) 

Pseudo-R
2
  = 0.3213 

Source Odds Ratio Standard Error z p 

Watering 0.337 0.094 -3.880 <0.001 

Pt. Molate (vs. other sites)  0.397 0.198 -1.852 0.064 

Sonoma (vs. other sites)  2.058 1.139 1.304 0.192 

PtM2 (vs. PtM1 & PtM3) 0.124 0.057 -4.526 <0.001 

Son1 (vs. Son1) 0.012 0.010 -5.199 <0.001 

Culm count in the 

   field 0.057 0.020 -8.013 <0.001 

Aboveground biomass 

   in common garden 43.983 25.012 6.654 <0.001 

Sonoma × culm count 3.612 1.850 2.507 0.012 

All plants from plot pair PtM1 set seed in the common garden; this plot pair is omitted 

from the logistic regression.  Culm count in the field is transformed as  

 

 .85      
          150 

1              150  
  

 

Aboveground biomass of common garden plants transformed as ln(biomass + 0.7110). 

 

 

 

For all plot pairs except PtM1, plants from the plot with lower culm density were more likely to 

set seed.  Plants with greater aboveground biomass at harvest were more likely to reproduce.  

Plants grown from seeds collected in 2001 were about 11 percent more likely to reproduce than 

plants from seeds gathered in 2000; this was significant in a chi-squared test but not in the 

multivariate logistic regression, presumably due to nonsignificant interactions involving other 

factors. 

 Time to reproduction.  Awns first became visible on common-garden plants in the ninth 

week, and over 90 percent of reproductive plants began setting seed by 15 weeks (Figure 23). Pt. 

Molate plants initiated reproduction first, followed about one week later by Sonoma and RFS   
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Table 46.   

Percentage of Plants Setting Seed in the Common Garden by Site and Plot Pair 

Site n 

Percent 

reproduction 

 

Plot pair n 

Percent 

reproduction 

Pt. Molate  315 89.5  PtM1 95 100.0 

    PtM2 106 77.4 

    PtM3 114 92.1 

       

RFS 106 80.2  RFS1 124 91.9 

    RFS2 124 68.5 

       

Sonoma 114 78.4  Son1 102 57.8 

    Son2 102 95.8 

 

 

 

plants respectively (difference between Pt. Molate and each other site: p < 0.005).  Inspection of 

the data indicates that differences between Pt. Molate plot pairs in time to initial reproduction are 

greater than differences between sites, however, and site is not significant in simple nested 

ANOVA comparing differences among sites to differences among plot pairs within sites. 

 The number of weeks to first reproduction correlated positively with field culm count in 

the multivariate ANCOVA, and in univariate regressions within site for RFS and Sonoma plants 

(for RFS and Sonoma p <0.05; Figure 23; Table 47).  For Pt. Molate plants these variables were 

negatively correlated for one plot pair and positively for another (p < 0.005 for the Pt. Molate 

plot pairs).  Weeks to first reproduction correlated positively with Simpson's index in the 

multivariate ANCOVA and in univariate regression (i.e., across sites), but in single-site regressions 

the correlation is negative for Pt. Molate and Sonoma, and null for RFS. 

 Block was not a significant factor in the multivariate ANCOVA, but interacted significantly 

with other factors.  Plants in the first block initiated seed production more slowly than plants in 

the other blocks, likely because of cooler temperatures; this effect was stronger for Sonoma and 

RFS plants than for Pt. Molate plants.  For all three blocks, plants starting from larger seeds 

began reproduction more quickly than other plants; this effect was weakest for the first block and 

strongest for the last.  Plants that emerged slowly as seedlings initiated seed production relatively 

late.  This correlation was larger in plants from plots with low culm counts; conversely, the 

slower initiation of reproduction for plants from plots with high culm counts was more marked in 

plants that had emerged quickly as seedlings.  Plants receiving more water began seed production 

a fraction of a day later than plants receiving less; this was not significant in univariate analysis. 
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0 

Figure 22. 

Percent Reproduction by Seed in the Common Garden 

versus Culm Count in the Field 

 

Upper part of figure: diamonds indicate mean percent reproduction 

grouped by plot × year.  Graphed lines show likelihood of reproduction 

(logistic regression predicted probability and 95% confidence interval of 

the prediction).  Bottom of figure: culms/m
2
 in the field by plot, two-

year average.  Tick marks in lower graph line up with plot designations 

(e.g., S2N).  Plot designations are grouped into lines by site for clarity.  

N = 785. 
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Figure 23. 

Percentage of Common Garden Plants Bearing Culms by Number of 

Weeks Since Initial Watering  
 

Graphed lines represent averages of individual plots.  Dotted lines = thick plots, solid lines = 

thin plots. 
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Table 47. 

ANCOVA of Weeks to First Seed Set 

 

N = 655 

R
2
 =  0.3973 

Adjusted R
2
 =  0.3783 

Source 

Sum of 

Squares df Mean Square F   p 

Model 6.631 × 10
-2

 20 3.316 × 10
-3

 20.89 <0.0001 

Block 3.674 × 10
-4

 2 1.837 × 10
-4

 1.16 0.3149 

Watering 5.756 × 10
-4

 1 5.756 × 10
-4

 3.63 0.0573 

Site 8.970 × 10
-3

 2 4.485 × 10
-3

 28.26 <0.0001 

Plot pair 1.347 × 10
-2

 4 3.367 × 10
-3

 21.22 <0.0001 

Culm count in field 2.000 × 10
-3

 1 2.000 × 10
-3

 12.60 0.0004 

Simpson's index 1.764 × 10
-3

 1 1.764 × 10
-3

 11.11 0.0009 

Planted seed weight 7.517 × 10
-4

 1 7.517 × 10
-4

 4.74 0.0299 

Emergence time 2.748 × 10
-3

 1 2.748 × 10
-3

 17.32 <0.0001 

Block × site 1.994 × 10
-3

 4 4.984 × 10
-4

 3.14 0.0142 

Block × seed weight 1.075 × 10
-3

 2 5.377 × 10
-4

 3.39 0.0344 

Culm count ×  

   emergence time 7.630 × 10
-4

 1 7.630 × 10
-4

 4.81 0.0287 

Residual 1.006 × 10
-1

 634 1.587 × 10
-4

 

  
   Total 1.669 × 10

-1
 654 2.552 × 10

-4
 

  
Data transformation: (weeks

-0.7621
 − 1)/−0.7621.  

 

 

 

 Culms per common-garden plant.  Reproductive plants each produced an average of 

4.5 culms.  Factors having the largest effects on culms per reproductive plant included 

aboveground biomass at harvest and weeks to initial reproduction—plants that grew larger and 

started setting seed sooner produced more culms (Table 48).  Plants receiving more water 

produced about 23 percent more culms than those receiving less.  Block 3 reproductive plants  
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Table 48.  

ANCOVA of Culms per Reproductive Plant in the Common Garden 

 

N = 655 

R
2
 = 0.6908 

Adjusted R
2
 = 0.6795 

Source 

Sum of 

Squares df    

Mean 

Square F  p 

Model 577.930 23 25.127 61.29 <0.0001 

Block 13.346 2 6.673 16.28 <0.0001 

Watering 1.228 1 1.228 3.00 0.0840 

Site 9.820 2 4.910 11.98 <0.0001 

Plot pair 11.406 4 2.852 6.96 <0.0001 

Absolute cover in field 2.460 1 2.460 6.00 0.0146 

Culm count in field 1.557 1 1.557 3.80 0.0518 

Planted seed weight 3.884 1 3.884 9.47 0.0022 

Emergence time 6.269 1 6.269 15.29 0.0001 

Aboveground biomass in  

   common garden 

137.403 1 137.403 335.15 <0.0001 

Week to first seed set 70.157 1 70.157 171.12 <0.0001 

Block ×  

   aboveground biomass 

7.871 2 3.936 9.60 0.0001 

Water × site 7.588 2 3.794 9.25 0.0001 

Water × weeks 2.557 1 2.557 6.24 0.0128 

Absolute cover ×  

   seed weight 

1.724 1 1.724 4.21 0.0407 

Culm count × weeks 2.883 1 2.883 7.03 0.0082 

Water × culm count × 

   weeks 

1.766 1 1.766 4.31 0.0384 

Residual 258.697 631 0.410   

   Total 836.626 654 1.279   

Data transformation: (culms per reproductive common-garden plant
0.5118

 − 1) / 0.5118 
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had relatively few culms at harvest, possibly due to high temperatures in June and early July and 

the resulting reduction in reproduction by seed; the increase in culm production with greater 

biomass was more pronounced in block 3 than in the other blocks. 

 Reproductive Pt. Molate plants produced about 25 percent more culms each than did 

reproductive RFS or Sonoma plants, and Pt. Molate plants responded more strongly to greater 

watering than did other plants.  Differences in average culm production in reproductive plants 

were greater between plot pairs at Pt. Molate and at Sonoma than they were between sites 
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Figure 24. 

Culms per Reproductive Plant in the Common Garden at 

Harvest and Culms/m
2
 on Field Plots 

 

Each regression line includes all data for its respective plot pair. Stars are 

included to illustrate outlying points, four of which came from the plot 

P1N (three from seed collected from the same maternal plant), and two 

from plot P3N.  The outlying data is included in the regression lines, 

without which the graphed lines for these two plot pairs would be less 

steep but still significant. The graphed line trending upward to the right 

represents plot pair PtM2. 

P = Pt. Molate 
R = RFS 
S = Sonoma 
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(Figure 24), and site is not significant in simple nested ANOVA.  The number of culms in 

reproductive common-garden plants correlated negatively with absolute cover in the field; this 

correlation was more strongly negative for plants grown from larger seeds.  For all but one plot 

pair (at Pt. Molate), plants from the thin plot produced more culms.  The negative correlation 

between culm count in the field and culms on common-garden plants was more pronounced in 

plants that initiated reproduction relatively early.  Plants grown from larger seeds or that emerged 

quickly produced relatively few culms; neither the weight of the planted seed nor emergence 

time is significant in univariate regression. 

 Florets per median culm.  The median culms of reproductive common-garden plants 

bore an average of 23 florets each.  Plants receiving more water produced about 15 percent more 

florets per median culm (Table 49), and plants in the second block had about nine percent more 

florets per median culm than plants in the first block (p < 0.005).  Aboveground biomass at 

harvest had the largest effect in the multivariate ANCOVA, with larger plants producing more 

florets per median culm, particularly among dry-treatment plants.  Among sites, Sonoma plants 

produced the most florets per median culm, and RFS the fewest (all between-site differences p < 

0.01; Table 50).  Florets per culm in the common garden and culm count in the field correlated 

negatively in dry-treatment plants and were uncorrelated in plants receiving more water.   Florets 

per culm correlated positively with culm count in the field for Pt. Molate plants.  Common-

garden RFS plants with more culms also had more florets per culm; this correlation was weakly 

negative for Pt. Molate and Sonoma plants.  Sonoma plants responded slightly more to extra 

water, but the site × watering interaction is not significant in simpler models.  Although plot pair 

is not significant as a main effect in the multivariate ANCOVA nor in simple models that include 

site, there were nonsignificant differences between plot pairs within site in block 1 (Pt. Molate 

plot pairs) and block 3 (Sonoma plot pairs).  Florets per median common-garden culm increased 

with later dates of seed collection in the field.  Florets per median culm correlated negatively 

with weeks to first reproduction in multivariate analysis, but in univariate analysis the effect of 

weeks to reproduction was not significant. 

 Ripeness of individual offspring seeds.  Seeds were collected from 512 of the 655 

plants that reproduced.   As seeds ripened in the common garden, they dropped from the plants.  

Ensuring that collected seeds came from specific plants meant that seeds could only be collected 

if they had not yet been shed.  As a result, about 51 percent of the collected seeds were not 

completely ripe.  To control for this artifact, seed color classification was used as a proxy for 

seed ripeness in statistical analyses of seed weight.  In addition, seeds harvested from 18 

harvested plants were included in weight analysis in cases where few or no seeds had been 

collected from these plants while still growing, typically from plants that produced very few 

culms; pre- or post-harvest class was included as an explanatory variable in the ANCOVA. 

 Collected seeds varied in color from grayish tan (i.e., ripe) to light green.  Ripe seeds 

weighed 5.3 mg on average and unripe seeds 4.6 mg.  The proportion of collected seeds that 

appeared ripe declined as the experiment moved from one block to the next, particularly for RFS 

plants (Table 51).  Seeds from plants that received less water appeared greener than seeds from  
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Table 49. 

ANCOVA of Florets per Median Culm in Common-Garden Plants 

 

N = 637 

R
2
 = 0.4958 

Adjusted R
2
 = 0.4691 

Source 

Sum of 

Squares df   

Mean 

Square F  p 

Model 17.861 32 0.558 18.56 <0.0001 

Block 0.281 2 0.141 4.68 0.0096 

Watering 0.125 1 0.125 4.16 0.0417 

Site 0.799 2 0.400 13.29 <0.0001 

Plot pair 0.088 4 0.022 0.73 0.5697 

Seed collection date 0.131 1 0.131 4.35 0.0374 

Culm count in field 0.004 1 0.004 0.12 0.7239 

Aboveground biomass  

   in common garden 4.107 1 4.107 136.56 <0.0001 

Weeks to first reproduction 

   in common garden 0.302 1 0.302 10.04 0.0016 

Culms per common- 

   garden plant 0.870 1 0.870 28.93 <0.0001 

Block × plot pair 1.177 12 0.098 3.26 0.0001 

Water × site 0.256 2 0.128 4.26 0.0145 

Water × culm count in field 0.205 1 0.205 6.83 0.0092 

Site × culms in common  

   garden 0.950 2 0.475 15.80 <0.0001 

Water × aboveground biomass 

    in common garden 0.257 1 0.257 8.54 0.0036 

Residual 18.165 604 0.030 

  
   Total 36.025 636 0.057 

  
Data transformation: ln[(floret count on median culm) + 3.696]  
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Table 50. 

Florets per Median Culm on Common Garden Plants by Site and Plot Pair 

Site n Florets per culm  Plot pair n Florets per culm  

Pt. Molate 279 22.0 

(20.8–22.1) 

 PtM1 94 22.0 

(20.6–22.6) 

 

     PtM2 81 21.9 

(19.9–22.5) 

 

     PtM3 104 22.0 

(20.4–22.6) 

 

        

RFS 190 20.3 

(19.1–20.5) 

 RFS1 110 20.0 

(18.7–20.5) 

 

     RFS2 80 20.7 

(18.9–21.3) 

 

        

Sonoma 168 27.9 

(26.2–28.2) 

 Son1 55 29.2 

(26.4–30.4) 

 

     Son2 113 27.2 

(25.6–27.8) 

 

Means are arithmetic; 95% confidence intervals are back-calculated from confidence 

limits for ln[(floret count on median culm) + 3.696] 

 

 

 

plants that had received more, again particularly for RFS plants.  Pt. Molate seeds appeared 

relatively ripe compared to RFS and Sonoma seeds; however, differences between Sonoma plot 

pairs are greater than differences between sites.  Seeds collected from plants that had relatively 

many culms generally appeared riper. 

 Unit weight of common-garden offspring seeds.  Individual seeds harvested from 

common-garden plants had an average weight of 4.9 mg.  Seeds harvested from plants receiving 

more water were heavier than seeds from dry-treatment plants (Table 52).  In well-watered 

plants, the average unit weight of seeds harvested in the common garden increased from one 

block to the next despite the greater apparent ripeness of seeds in the earlier blocks.  Pt. Molate 

and Sonoma plants produced heavier seeds than RFS plants, and significant differences existed 

in two of three comparisons between plot pairs within site for Pt. Molate (p < 0.05).  Culm count  
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Table 51. 

Logistic Regression: Color Classification of Seeds Collected from Common-

Garden Plants 

 

N = 512 

Log likelihood = -234.220 

Likelihood Ratio Chi-Squared (9) = 241.15 (p < 0.0001) 

Pseudo-R
2
 = 0.3398 

Source Odds Ratio Standard Error z p 

Block 1 (vs. blocks 1 & 2) 0.624 0.176 -1.674 0.094 

Watering  0.229 0.066 -5.102 <0.001 

RFS (vs. the other sites) 41.052 29.829 5.112 <0.001 

Sonoma (vs. the other sites) 32.154 13.293 8.395 <0.001 

Son1 (vs. Son2) 0.039 0.021 -6.005 <0.001 

Culms per common- 

  garden plant 0.721 0.085 -2.781 0.005 

Seed harvest* 14.759 13.205 3.009 0.003 

Block 1 × RFS 0.190 0.125 -2.53 0.011 

Watering × RFS 0.129 0.096 -2.746 0.006 

Culms per common-garden plant transformed as 

[(culms per common-garden plant)
0.5126

 − 1]/0.5126 

 

* I.e., seeds collected from live versus harvested plants. 

  

 

in the field correlated positively with unit offspring seed weight in the multivariate ANCOVA, and 

for six of seven plot pairs, plants from the thick plot produced heavier seeds.  Culm count, 

however, was not a significant factor affecting common-garden seed weight in univariate 

regression.  Unit offspring seed weight increased with greater planted seed weight, faster 

seedling emergence, and greater aboveground biomass.  Although the weight of seeds harvested 

from live versus cut plants did not differ significantly in univariate ANOVA, the multivariate 

ANCOVA classes seeds collected from live plants as lighter than those harvested from cut plants 

because seeds from live plants were riper-looking relative to their weight. 
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Table 52.  

ANCOVA of Unit Weight of Seeds Collected from Common Garden Plants 

 

N = 512 plants 

R
2
 = 0.6501 

Adjusted R
2
 = 0.6328 

Source 

Sum of 

Squares df  

Mean 

Square F  p 

Model 287.368 24 11.974 37.69 <0.0001 

Block 10.783 2 5.392 16.97 <0.0001 

Watering 2.576 1 2.576 8.11 0.0046 

Site 40.311 2 20.155 63.45 <0.0001 

Plot pair 14.171 4 3.543 11.15 <0.0001 

Culm count in field 1.926 1 1.926 6.06 0.0142 

Planted seed weight 4.838 1 4.838 15.23 0.0001 

Emergence time 7.216 1 7.216 22.72 <0.0001 

Culms on common- 

   garden plants 

6.598 1 6.598 20.77 <0.0001 

Aboveground biomass 

   in common garden 

17.559 1 17.559 55.28 <0.0001 

Seed harvest 2.766 1 2.766 8.71 0.0033 

Seed color 6.965 1 6.965 21.93 <0.0001 

Block × water 5.919 2 2.959 9.32 0.0001 

Site × seed color 3.417 2 1.709 5.38 0.0049 

Seed harvest ×  

   seed color 

1.166 1 1.166 3.67 0.0560 

Water × site × seed color 3.324 3 1.108 3.49 0.0157 

Residual 154.702 487 0.318   

   Total 442.070 511 0.865   
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 Ratio of flowering to vegetative tillers in sexually reproductive plants.  After a tiller 

produces seeds, it senesces.  Tillers that have not flowered can continue to grow and may 

generate additional tillers.  Common-garden plants producing more total tillers generally also 

produced more flowering tillers.  The number of flowering tillers correlated somewhat negatively 

with the number of vegetative tillers, however, implying a partial tradeoff between sexual 

reproduction and further growth (Table 53). 

 Reproductive plants receiving more water had a higher ratio of reproductive to vegetative 

tillers (Table 54).  The effect of greater watering in reproductive plants was an increase in the 

number of culms they produced; the number of vegetative tillers did not much change with 

watering treatment.  Site is not significant as a main effect, and differences between plot pairs at 

Pt. Molate and Sonoma were as large as differences between sites (Figure 25).  Pt. Molate plants 

responded more strongly than RFS or Sonoma plants to additional water (Table 55).  A greater 

proportional allocation to flowering tillers in the common garden correlated negatively with culm 

count in the field for all plot pairs except two at Pt. Molate.  Plants in the third block had a lower 

ratio of culms to tillers than those in the second block (p < 0.01).  Plants that had emerged  

 

 

 

Table 53.   

Plants That Set Seed Finished with Fewer Vegetative Tillers 

  

 Mean tillers per plant by tiller type 

Site Tiller type  Plants without seeds Plants producing seeds 

Pt. Molate Vegetative  31.7 29.8 

 

Reproductive   — 5.1 

 

Total  31.7 34.9 

 

n  33 282 

RFS Vegetative  39.1 37.8 

 

Reproductive  — 4.0 

 

Total  39.1 41.8 

 

n  49 199 

Sonoma Vegetative  32.9 30.2 

 

Reproductive  — 4.0 

 

Total  32.9 34.3 

 

n  48 174 
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Table 54.   

ANCOVA of Ratio of Flowering to Vegetative Tillers in Flowering Plants 

 

N = 655 

R
2
 = 0.6442 

Adjusted R
2
 = 0.6318 

Source 

Sum of 

squares df 

Mean 

square F p 

Model 98.375 27 3.644 43.15 <0.0001 

Block 4.581 2 2.291 27.13 <0.0001 

Watering 0.277 1 0.277 3.29 0.0704 

Site 0.101 2 0.051 0.60 0.5490 

Plot pair 2.623 4 0.656 7.77 <0.0001 

Culm count in field 0.239 1 0.239 2.83 0.0930 

Emergence time 1.585 1 1.585 18.76 <0.0001 

Weeks to first seed set 29.404 1 29.404 348.22 <0.0001 

Aboveground biomass in 

   common garden 11.400 1 11.400 135.00 <0.0001 

Block × site 0.694 4 0.174 2.06 0.0852 

Block ×  

   aboveground biomass 2.967 2 1.483 17.57 <0.0001 

Water × site 2.719 2 1.359 16.10 <0.0001 

Plot pair × culm count 1.175 6 0.196 2.32 0.0318 

Residual 52.944 627 0.084 

  
   Total 151.320 654 0.231 

  Data transformation: 

ln  
                 

                  
  0.04 4  
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quickly as seedlings allocated slightly more to flowering tillers.  The ratio of flowering to 

vegetative tillers correlated strongly and negatively with weeks to first seed set, and correlated 

positively with aboveground biomass, particularly in the third block.   

 Total seed mass and seed mass: biomass allocation ratio.  The total weight of seeds 

produced by individual common-garden plants was not directly measured and cannot be treated 

statistically with precision; however, some trends can be discussed.  The total weight of seeds per 

plant may be estimated as 

 

average individual seed weight × florets per median culm × culms per plant. 

 

0 

RFS Pt. Molate 

K K K K K K N N N N N N N K 

Site: 

Plot pair: 

Plot type: 

PtM1 PtM3 PtM2 RFS1 RFS2 Son1 Son2 

Sonoma 

0.3 

Figure 25.   

Ratio of Culms to Vegetative Tillers in Reproductive 

Plants in the Common Garden  
 

Filled circles and lines are means and 95% confidence intervals back-

calculated from (culms/tillers)
0.468

 - 1)/0.468. Open squares are 

arithmetic means. K = thick plot; N = thin plot.  N = 655. 
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Table 55.   

Mean Ratio of Flowering to Vegetative Tillers by Site and Watering Treatment in 

Reproductive Plants 

 Watering treatment 

 Dry  Wet 

Site n Ratio  n Ratio 

Pt. Molate 153 0.15  129 0.23 

RFS 100 0.11  99 0.12 

Sonoma 96 0.14  78 0.15 

 

 

 

Table 56. 

Coefficients of Variation of Culms per Reproductive Plant, Seeds per Median 

Culm, and Weight of Individual Seeds 

Variable N Mean  

Standard 

deviation CV 

Culms per reproductive plant 655 4.485 — — 

ln(culms per plant) 655 1.345 0.604 0.664 

Seeds per median culm 637 23.046 6.488 0.282 

Weight of individual seeds 512 4.946 0.934 0.189 

The variable culms per reproductive plant is approximately log-normal, and the CV of 

log-normal data is calculated as (exp[(sdln)
2
] − 1)

0.5
 where sdln is the standard deviation 

of the natural-log transformed data.  The variables seeds per median culm and 

individual seed weight are approximately normally distributed. 

 

 

 

Of these three variables, the number of culms per reproductive plant has the largest coefficient of 

variation (and presumably contributes the most variability to total seed mass), followed 

respectively by seeds per culm and weight of individual seeds (Table 56). 

 The allocation by a parent plant to seeds can be described in terms of 

 

total weight of seeds/aboveground biomass. 
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The average total weight of seeds as estimated above was 581 mg per reproductive plant, and the 

seed mass: aboveground biomass ratio in reproductive plants averaged 0.24.  Plants having large 

aboveground biomass were more likely to set seed, produced more culms, more florets per culm, 

and heavier individual seeds, thus probably produced more seed mass per plant overall.  In 

contrast, belowground biomass was uncorrelated with likelihood of reproduction, culms per 

plant, seeds per median culm, or weight of individual seeds.  Plants receiving more water appear 

to have allocated proportionally more to seed production than to biomass. 

 Reproductive Pt. Molate plants produced the largest number of culms, Sonoma plants the 

largest number of florets per median culm, and RFS plants the least massive individual seeds.  As 

a result, among plants from the three sites, those from RFS appear to have had both the lowest 

total seed mass per plant and the smallest ratio of seed mass to aboveground biomass.  Inspection 

of the data implies that variation in total seed mass per plant between plot pairs at Pt. Molate and 

at Sonoma was probably substantial.  Culm count in the field and Simpson's index appeared to 

have little effect on total seed mass per reproductive plant or proportional allocation to seeds; 

thus the major effect on reproductive allocation by field culm count and Simpson's index is on 

likelihood of seed set. 

 

Effect Size of Explanatory Variables 

 The foregoing parts of this chapter focused on response variables.  The remainder 

summarizes these results in terms of explanatory variables.  Because a large sample size can lend 

statistical significance to small effects, the following pages also address effect sizes in common-

garden results (Tables 57–62).  Effect size in multivariate ANCOVA or regression is estimated here 

as eta squared (2
), calculated as SSeffect/SStotal.  Some of the explanatory variables incorporated 

in this study are collinear or causally related; univariate and multivariate analyses are compared 

here to shed light on these relationships.  Temporal block, watering treatment, site, and plot pair 

in general had substantially larger effect sizes than most of the other explanatory variables. 

 Temporal blocks.  Dividing the common-garden study into temporal blocks was aimed 

only at easing experimental logistics, but it affected nearly every response variable.  Plants in the 

first block experienced cooler, somewhat moister growing conditions than plants in the 

subsequent blocks.  Block 1 plants emerged relatively slowly, began setting seed relatively  

slowly, and had more green foliage at harvest than those in the later blocks.  Plants in the third 

block, which experienced the warmest, driest conditions; initially grew rapidly; by the end of the 

experiment, however, they had lesser overall growth rates and produced fewer culms and heavier 

individual seeds.  Temporal blocking more strongly influenced initial than later measurements of 

tiller number and plant height, potentially implying that blocking most strongly affected early 

growth. 

 Watering treatment.  Watering treatment significantly influenced the great majority of 

response variables.  Plants receiving more water had more rapid emergence, wider leaves, a 

larger percentage of green foliage at harvest, greater basal area, greater aboveground biomass, 

and a higher relative growth rate.  At seven weeks they were taller and had more tillers than dry-

treatment plants, though these differences became proportionally smaller over later  



 

Table 57. 

Effect Size Estimates R
2
 and 2

 for Common-Garden Main-Effects Response Variables:  

Days to Emergence, Basal Area, Leaf Width, and Percent Green Foliage at Harvest 

 

Response variables 

 

Days to 

emergence* 

 

Leaf width*† 

 Basal area 

at harvest* 

 Green foliage 

at harvest* 

Explanatory variables  R
2
 2 

   R
2
 2

   R
2
 2

  R
2
 2

 

Block 0.3857 0.1009  ns 0.0056  0.0819 0.0208  0.0157 ns 

Watering treatment 0.0062 0.0070  0.0290 0.0397  0.2021 0.1917  0.2601 0.0592 

Site 0.0191 0.0124  0.3881 0.1497  0.0379 ns  0.0305 0.0065 

Plot pair 0.0393 0.0210  0.3935 ns  0.0940 0.0638  0.0645 0.0186 

Seed-collection year 0.0036 0.0052  ns ns  ns ns  ns ns 

Seed-collection date 0.0145 ns  0.0396 ns  0.0066 ns  0.0037 ns 

Absolute cover in 

field 0.0207 ns 

 

ns ns 

 

0.0609 0.0031 

 

0.0084 ns 

Culm count in field ns 0.0063  0.0166 0.0138  0.0610 0.0297  ns 0.0029 

Simpson's index 0.0410 0.0016  ns ns  0.0044 ns  ns 0.0041 

Planted seed weight 0.0314 0.0108  0.0076 0.0103  ns 0.0042  0.0087 ns 

Days to emergence na na  0.0089 ns  0.0938 0.0226  0.0157 0.0078 

R
2
 calculated via univariate regression or ANOVA for each explanatory variable; eta squared (2

) calculated as 

SSeffect/SStotal from the multivariate ANCOVA.  Numbers in italics are marginally significant (0.05 < p ≤ 0.10); numbers in 

regular type are significant to p ≤ 0.05. 

* Site not significant and plot pair significant in simple nested ANOVA.  ** Site significant and plot pair not significant in 

simple nested ANOVA. † Subsample of plants. 

1
3
4
 



 

 

Table 58. 

Effect Size Estimates R
2
 and 2

 for Common-Garden Main-Effects Response Variables:  

Height and Tiller Counts Across Measurement Periods 

 

Response variables 

 Plant height  Tiller counts 

Explanatory variables R
2
 2

  R
2
 2

 

Block 0.0695 0.0641  0.1535 0.0622 

Watering treatment 0.0102 ns  0.0025 0.0020 

Measurement period ns 0.0054  ns 0.0109 

Site 0.1034 0.0039  0.0503 0.0020 

Plot pair 0.1719 0.0169  0.0638 0.0121 

Seed-collection year 0.0038 ns  ns ns 

Seed-collection date 0.0029 ns  ns ns 

Absolute cover in field 0.0732 ns  0.0160 0.0008 

Culm count in field 0.0573 0.0019  0.0204 0.0019 

Simpson's index 0.0175 ns  0.0063 ns 

Field culm height 0.0289 ns  na na 

Planted seed weight 0.0630 0.0113  ns ns 

Days to emergence 0.1404 0.0265  0.1467 0.0314 

R
2
 values derived from univariate cluster regressions; number in italics marginally significant (0.05 < 

p ≤ 0.10); all others p ≤ 0.05.  Eta squared (2
) calculated as SSeffect/SStotal from ANCOVAs that are 

similar but not identical to the cluster regressions in Tables 27 and 32; please refer to those tables for 

statistical significance. 

1
3
5
 



 

 

Table 59. 

Effect Size Estimates R
2
 and 2

 for Common-Garden Main-Effects Response Variables: 

Height in Single Measurement Periods 

 

Response variables 

 

First height 

measurement*  

Second height 

measurement*  

Third height 

measurement*  

Foliage height at 

harvest*  

Culm height at 

harvest* 

Explanatory 

variables R
2
 2 

 

 

R
2
 2

 

 

R
2
 2

 

 

R
2
 2

 

 

 R
2
 2

 

Block 0.2363 0.0389  0.1281 0.0476  0.0271 0.0205  0.0190 0.0158  0.0348 0.0404 

Watering treatment 0.0304 0.0229  0.0194 0.0250  0.0719 0.0214  0.0218 0.0231  0.1391 0.1324 

Site 0.1504 0.0031  0.1305 0.0393  0.0800 0.0059  0.0849 0.0466  0.1447 0.0814 

Plot pair 0.1664 0.0374  0.2603 0.0938  0.2257 0.0147  0.2438 0.0280  0.2002 0.0479 

Seed-collection year 0.0038 ns  0.0041 ns  0.0035 ns  0.0056 ns  ns ns 

Seed-collection date 0.0168 ns  0.0048 ns  ns ns  0.0105 ns  0.0058 ns 

Absolute cover in 

field 0.0855 ns 

 

0.1051 ns 

 

0.0380 ns 

 

0.0133 ns 

 

0.0131 ns 

Culm count in field ns 0.0091  0.1000 0.0252  0.1256 0.0027  0.0976 ns  0.0167 ns 

Simpson's index 0.0318 0.0080  0.0159 ns  0.0086 ns  ns ns  ns ns 

Planted seed weight 0.1254 0.0386  0.0642 0.0081  0.0213 0.0019  0.0133 ns  0.0190 0.0052 

Days to emergence 0.4166 0.1049  0.1402 0.0146  0.0113 0.0058  0.0134 0.0029  0.0127 0.0120 

R
2
 calculated via univariate regression or ANOVA for each explanatory variable; eta squared (2

) calculated as SSeffect/SStotal from 

the multivariate ANCOVA.  Numbers in italics are marginally significant (0.05 < p ≤ 0.10); numbers in regular type are significant 

to p ≤ 0.05. 

* Site not significant and plot pair significant in simple nested ANOVA. 

1
3
6
 



 

 

Table 60. 

Effect Size Estimates R
2
 and 2

 for Common-Garden Main-Effects Response Variables:  

Tiller Counts in Single Measurement Periods 

 

Response variables 

 First tiller count*  Second tiller count*  Third tiller count** 

Explanatory variables R
2
 2 

  R
2
 2

  R
2
 2

 

Block 0.4168 0.0938  0.3973 0.2260  0.0119 0.0255 

Watering treatment 0.0234 0.0132  0.0028 0.0062  ns ns 

Site ns 0.0040  0.0592 0.0152  0.1499 0.0343 

Plot pair 0.0185 0.0107  0.0719 0.0128  0.1673 0.0180 

Seed-collection year ns ns  ns ns  ns ns 

Seed-collection date ns ns  ns ns  ns ns 

Absolute cover in field ns 0.0023  0.0305 ns  0.0431 ns 

Culm count in field 0.0069 ns  0.0173 ns  0.0473 ns 

Simpson's index ns ns  0.0121 ns  0.0191 0.0063 

Planted seed weight 0.0356 0.0136  ns ns  0.0072 ns 

Days to emergence 0.5005 0.1397  0.1707 0.0144  ns 0.0168 

R
2
 calculated via univariate regression or ANOVA for each explanatory variable; eta squared (2

) calculated as 

SSeffect/SStotal from the multivariate ANCOVA.  Data are transformed as for cluster regression.  Numbers are 

significant to p ≤ 0.05. 

* Site not significant and plot pair significant in simple nested ANOVA.  **Both site and plot pair at least 

marginally significant in simple nested ANOVA. 

  

1
3
7
 



 

 

Table 61. 

Effect Size Estimates R
2
 and 2

 for Common-Garden Main-Effects Response Variables: 

Biomass and Relative Growth Rate 

 

Response variables 

 

Aboveground 

biomass*  

Belowground 

biomass*†  Total biomass*†  

Root: shoot 

ratio*†  

Aboveground 

RGR** 

 Belowground 

RGR*† 

Explanatory 

  variables R
2
    R

2
    R

2
    R

2
   R

2
 

 

R
2
 

Block 0.0116 0.0222  ns  ns   ns 0.0201  ns  0.0106  0.0930 0.0174  ns 0.0282 

Watering 

   treatment 0.2636 0.2533  ns  ns   0.2501 0.2125  0.2064 0.1446  0.1729 0.1759  ns ns  

Site 0.0446 0.0526  ns  ns   ns ns   0.0985 0.0434  0.0433 0.0370  0.0917 ns  

Plot pair 0.0790 0.0169  na  na   na na   na  na  0.0612 0.0142  na na  

Seed- collection 

   year ns ns  ns  ns   ns ns   ns ns  ns ns  ns ns  

Seed-collection 

   date ns ns  ns  ns   ns ns   ns  ns  0.0089 ns  0.0170 ns  

Absolute cover 

   in field 0.0035 ns  ns  0.0596  ns ns   0.0674 ns  0.0113 ns  0.0851 0.0443 

Culm count  

   in field 0.0070 0.0024  0.0453 0.0710  ns ns   0.1172 0.0493  ns 0.0028  0.0891 0.0526 

Simpson's index ns ns  ns  ns   ns ns   0.0685 ns  0.0108 ns  0.0337 ns  

Planted seed 

   weight 0.0116 0.0044  0.0223 0.0496  0.0272 0.0211  ns  0.0133  0.2262 0.1633  0.1956 0.0901 

Days to 

   emergence 0.0232 0.0163  ns  0.0673  0.0498 0.0249  0.0297 0.0129  0.1048 0.0288  ns 0.0226 

R
2
 calculated via univariate regression or ANOVA; eta squared (2

) calculated as SSeffect/SStotal from the multivariate ANCOVA.  

Numbers in italics are marginally significant (0.05 < p ≤ 0.10); numbers in regular type are significant to p ≤ 0.05. 

* Site not significant and plot pair significant in simple nested ANOVA.  **Both site and plot pair at least marginally significant in 

simple nested ANOVA.  † Subsample of plants. 

1
3
8
 



 

1
3
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Table 62. 

Effect Size Estimates R
2
 and 2

 for Common-Garden Main-Effects Response Variables: 

Reproduction by Seed 

 

Response variables 

 

Weeks to 

reproduction*  

Culms per 

reproductive 

plant*  

Ratio of culms 

to vegetative 

tillers*  

Seeds per 

median culm*  

Individual seed 

weight** 

Explanatory variables  R
2
 2 

   R
2
 2

  R
2
 2

   R
2
 2

   R
2
 2

 

Block 0.0741  ns  0.0115 0.0160  0.0147 0.0303  0.0171 0.0078  ns 0.0244 

Watering treatment ns 0.0034  0.0310 0.0015  0.0216 0.0018  0.0622 0.0035  0.0994 0.0058 

Site 0.1790 0.0537  0.0489 0.0117  0.0994 ns  0.2034 0.0222  0.2680 0.0912 

Plot pair 0.2684 0.0807  0.1552 0.0136  0.2224 0.0173  0.2073 ns  0.3039 0.0321 

Seed-collection year ns  ns  ns ns  ns ns  0.0094 ns  ns ns 

Seed collection date 0.0370  ns  0.0251 ns  0.0219 ns  0.0724 0.0036  ns ns 

Absolute cover in field 0.1737  ns  0.0645 0.0029  0.1136 ns  0.0071 ns  0.1182 ns 

Culm count in field 0.0361 0.0120  0.0356 0.0019  0.0615 0.0016  ns ns  ns 0.0044 

Simpson's index 0.0055 0.0106  ns ns  ns ns  0.0056 ns  0.0096 ns 

Planted seed weight 0.0540 0.0045  ns 0.0046  0.0161 ns  0.0046 ns  0.0795 0.0109 

Days to emergence 0.1154 0.0165  ns 0.0075  0.0045 0.0105  0.0177 ns  0.0116 0.0163 

Aboveground biomass 

   in common garden ns  ns  0.1921 0.1642  0.1301 0.0753  0.2313 0.1140  0.1986 0.0397 

Weeks to reproduction na  na  0.3619 0.0839  0.3867 0.1943  ns 0.0084  0.0446 ns 

Plants that did not set seed are omitted from this table. R
2
 calculated via univariate regression or ANOVA; eta squared (2

) 

calculated as SSeffect/SStotal from the multivariate ANCOVA.  Numbers in italics are marginally significant (0.05 < p ≤ 0.10); 

numbers in regular type are significant to p ≤ 0.05. 

* Site not significant and plot pair significant in simple nested ANOVA.  **Both site and plot pair at least marginally significant in 

simple nested ANOVA. 
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measurements.  Plants receiving more water were slower and slightly less likely to set seed.  In 

other measures of sexual reproduction, however, they exceeded dry-treatment plants: they had 

more culms per plant and a larger ratio of culms to vegetative tillers, more seeds per median 

culm, and riper-looking individual seeds.  Seeds produced by well-watered plants were 

individually heavier than seeds from dry-treatment plants, particularly in the third temporal 

block.  Plants receiving more water, however, did not differ from dry-treatment plants in root 

biomass and had lower root: shoot ratios. 

 Site versus plot pair (and plot).  Seed-source site was a significant factor in most of the 

statistical analyses in this study.  Pt. Molate plants emerged and began setting seed relatively fast.  

They were more likely to reproduce sexually, allocated a larger share of tillers to reproduction, 

and had lesser basal area at harvest than RFS or Sonoma plants.  Pt. Molate plants differed from 

RFS and Sonoma plants in their response to temporal blocking; emergence of Pt. Molate 

seedlings was more accelerated in the warmer conditions experienced by block 3, and initial 

reproduction of these plants was delayed less in the cooler conditions experienced by plants in 

blocks 1 and 2.  Unlike plants from the other sites, Pt. Molate plants did not increase tillering in 

response to extra water.  Well-watered Pt. Molate plants, however, increased allocation of extant 

tillers to reproduction by about 35 percent, versus 15 percent and eight percent respectively for 

RFS and Sonoma plants. 

 Plants grown from RFS seeds emerged more slowly, produced narrower leaves and more 

tillers, and allocated less to sexual reproduction than did plants from the other sites.  RFS plants 

were relatively short but had the largest basal area and belowground biomass among plants from 

the three sites, and increased their root: shoot ratio more in response to dry treatment.  Leaves of 

RFS plants became wider from one temporal block to the next.  The negative correlation between 

culm count in the field and likelihood of reproduction in the common garden was greatest for 

RFS plants, as was the positive correlation between culm count in the field and root: shoot ratio. 

 Sonoma plants had the fewest tillers and the widest leaves.  In contrast to RFS plants, 

Sonoma plants had increasingly narrow leaves from one block to the next.  Although they had 

lesser belowground biomass and a lower root: shoot ratio, they had a larger proportion of green 

foliage at harvest. 

 Plants from the three sites, however, seem less sharply differentiated when within-site 

variation is taken into account.  In the majority of multivariate tests, the variance explained by 

site (2
) is less than the variance explained by plot pair.  As discussed in Chapter 6, thick and 

thin plots were broadly matched in pairs in terms of slope, aspect, and background vegetation in 

order to prevent, for example, comparing thin plots dominated by Bromus to thick plots 

otherwise full of Avena.  An unanticipated result of this approach was that for many common-

garden response variables, paired plots indeed appear to have performed as pairs.  This raises the 

question of whether within-site variation equals or exceeds between-site variation for the plants 

examined in this study.  Because plots (and therefore pairs) were not randomly selected, nested 

ANOVA cannot be used here with analytical rigor.  Nested ANOVA considered as a descriptive 

method coupled with nonstatistical examination of results, however, may suggest relationships 

that might be formally examined with a different sampling protocol. 
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 For the majority of cases where both site and plot pair were significant factors in 

multivariate tests, simple nested ANOVA broadly suggests that plot pair overshadowed site.  The 

differences between plot pairs within site exceeded those between sites, in terms of raw numbers, 

for the second and third height measurements, foliage height at harvest, likelihood of 

reproduction, and ratio of culms to vegetative tillers in reproductive plants.  For aboveground 

biomass and percent green tissue at harvest, the differences in raw numbers between sites were 

similar in size to differences between plot pairs within site.  For the first height measurement and 

for culm height at harvest, the differences between sites in raw numbers were larger than those 

between plot pairs within site.  Where simple nested ANOVA indicated significance both for site 

and for plot pairs within site, raw-number differences between sites were greater than those 

between plot pairs; cases included the final tiller count, aboveground RGR, and the average 

weight of individual seeds.   

 For several variables, however, it appears that the locus of variation could be more 

accurately placed at the level of plots within pairs; that is, in raw averaged numbers the 

differences between plots within pairs roughly equaled or exceeded differences between plot 

pairs within sites.  These variables include days to emergence, first and second tiller counts, 

basal area, weeks to reproduction, and number of culms per reproductive plant. In addition, root: 

shoot ratio and belowground RGR was larger for plants from the thick plot in each of the pairs 

tested. 

 While not analytically rigorous, taken together the results described above imply that 

variations within site at the level of plot pairs are potentially on a scale similar to that of 

variations between sites.  Dissimilarities between plants from different plot pairs within sites 

(and similarities within pairs) may indicate that the loose matching of these plots based on 

background vegetation in fact reflected ecological similarities between patches.  The variation 

among plots within sites and pairs, which often exceeded differences among sites and among plot 

pairs within sites, implies pervasive small-scale variation in S. pulchra. 

 Site versus absolute cover across sites.  Differing absolute cover was an important part 

of differences among sites.  In both univariate and multivariate tests, absolute cover as an 

explanatory variable readily substituted for site, in most cases with reduced R
2 

or
 2

.  Absolute 

cover was at least marginally significant in six out of 25 multivariate tests, potentially implying a 

role for absolute cover beyond collinearity with site.
26

  Assuming a 10 percent chance of 

committing a Type I error if α is set at 0.10, and if the 25 multivariate tests could be considered 

independent of one another, a result of six out of 25 significant tests would itself be a significant 

result.  In univariate regression within site, however, for three of these six response variables 

absolute cover was significant within only one site; for two response variables absolute cover 

was not significant within any site, and for one variable the slope differed in sign between sites. 

 Site, but not absolute cover, was a significant variable in multivariate testing for 17 of the 

remaining response variables.  For eight of these, Pt. Molate plants and RFS plants are most 

dissimilar in terms of average results; that is, for these eight response variables the differences 

between sites parallel the variation among sites in absolute cover.  For example, weeks to 

                                                 
26

 These 25 variables are likelihood of root rot and likelihood of reproduction, plus the response variables in Tables 

57 and 59–62.  Absolute cover is significant in univariate tests with 21 of these response variables. 
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reproduction follows the same pattern as absolute cover: PtM < Son < RFS.  Absolute cover was 

thus arguably implicated in another eight tests, for a total of 14 of 25 response variables. 

 There remain nine response variables for which differences among the sites did not 

parallel absolute cover.
27

  For six of these nine variables (such as aboveground biomass at 

harvest and florets per culm), plants from Sonoma and RFS (the sites with highest absolute 

cover) are most dissimilar in terms of average results; for the final three, plants from Pt. Molate 

and Sonoma are the least similar.  These nine results may be due to factors reflecting site 

proximity, such as climate, soil, or metapopulation dynamics. 

 Absolute cover within site.  Among the 17 response variables for which absolute cover 

was significant in univariate but not multivariate testing, absolute cover was significant within 

site in five univariate tests for Pt. Molate plants alone, in five univariate tests for RFS and Pt. 

Molate plants, and in one for Pt. Molate and Sonoma plants.  Where absolute cover was 

significant within two sites, the correlation of absolute cover with the response variable differed 

in sign between sites.  Weeks to reproduction, for example, correlated positively with absolute 

cover for Pt. Molate plants and negatively for RFS plants, though in both cases the correlation 

was very small.  The effects of absolute cover and culm count in the field in general were 

positively correlated for Pt. Molate plants. 

 Field culm count.  Culm count in the field was at least marginally significant as a main 

effect in 16 of the 23 multivariate statistical tests and 16 of the univariate tests summarized in 

Tables 57 and 59–62.  Culm count was also the factor with the largest effect (i.e., odds ratio) in 

likelihood of reproduction, and correlated significantly with likelihood of root rot.  Plants 

originating in plots with higher culm counts developed wider leaves when considered within site, 

lower stature (particularly in later measurements), larger basal area, lesser likelihood of seed set, 

fewer culms, greater root biomass, and higher root: shoot ratios.  In most tests the effect size of 

field culm count was small; however, its effect was larger in measurements of sexual 

reproduction versus allocation to growth.  Absolute cover and culm count were correlated at Pt. 

Molate.  In simple regressions addressing Pt. Molate plants alone, absolute cover correlated more 

strongly than culm count for basal area, likelihood of seed set, ratio of reproductive to vegetative 

tillers, and weeks to first reproduction. 

 Simpson's index.  Simpson's index was at least marginally significant in five of 25 

multivariate statistical tests summarized in Tables 57 and 59–62, a result that itself would be 

marginally significant (p < 0.10) if the tests could be considered as independent of one another.  

The index, however, was not significant in likelihood of root rot or sexual reproduction, which 

combined with the other tests pushes the total outside of marginal significance.  Simpson's index 

was at least marginally significant in 13 of the 23 univariate tests, reflecting the index's 

correlation with culm count, absolute cover, and site.  Most effect sizes associated with 

Simpson's index were very small; plants from plots with higher Simpson's index emerged more 

slowly, and developed somewhat higher root: shoot ratios than other plants. 

 Emergence time.  Time to seedling emergence was a significant factor affecting most 

response variables.  Quickly emerging plants had greater above- and belowground biomass and 

basal area at harvest; they grew taller, had more tillers and wider leaves, and began setting seed 
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  For eight of these nine response variables, absolute cover is at least marginally significant in univariate testing. 
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sooner than slow-emerging plants. The effect of emergence time on plant height and tiller count, 

as measured by R
2
 and 2

, appears to have been greater during the early growth of the plants, in 

that early tiller counts and height measurements were more strongly affected by emergence time, 

and slow-emerging plants had greater above- and belowground relative growth rates.  The slower 

growth of plants in the first block appears tied at least in part to slower seedling emergence. 

 Seed weight.  Planted seed weight affected nearly as many response variables as did 

emergence time.  Plants grown from heavier seeds emerged faster, had wider leaves, greater 

above- and belowground biomass, and greater basal area.  They began reproducing sooner, had 

more culms per plant, more seeds per median culm, and heavier individual offspring seeds.  Seed 

weight may have exerted a diminishing effect on overall growth over time, in that the effect size 

of seed weight on plant height and tiller count, as measured by R
2
 and 2

, diminished from one 

measurement period to the next.  While plants grown from large seeds had substantially more 

tillers at seven weeks, by harvest they had somewhat fewer tillers than did plants from smaller 

seeds.  Plants grown from larger seeds had lower above- and belowground relative growth rates. 

 Year and date.  Seed collection year was at least marginally significant in only one 

multivariate test summarized in Tables 57 and 59–62.  As previously noted, seeds collected from 

a few plots in 2000 were of lower quality than seeds collected in 2001 from the field.  Year was 

significant in six of 23 univariate tests, likely because of the effect of this quality difference on 

seed weight and emergence time.  Seed collection date was a significant factor in only one 

multivariate test, less than might be expected by chance; the significance of date in 14 of the 23 

univariate tests stems from the correlation of date with site. 

 

Summary 

 The plants in the common garden were strongly affected by growing conditions 

experimentally imposed by temporal blocking and watering treatment.  Initial seed weight and 

time to emergence were important influences, particularly on early growth.  Results stemming 

from the location where seeds were collected point to inherited variation in plant characteristics.  

While the site where seeds were collected was clearly an important factor in growth and 

reproduction, the plot, plot pair, or both appear to have been similarly important.  The density of 

culms, which was the starting point for this study, was generally of smaller effect than growing 

conditions, site, or plot pair, but nevertheless had notable effects particularly on reproduction and 

potential perenniation.  Results entailing absolute cover per se (arguably) and Simpson's index 

(more arguably) imply that these measures may also reflect ecologically localized plant variation 

that might be better captured with a study design keyed to these measurements.  The following 

chapter discusses the implications of these results, particularly as they apply to characteristics of 

plants based on small-scale variation, and the implications for ecological restoration and other 

endeavors where capturing variability among plants is of critical importance. 
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Chapter 9.  Discussion 

 

 This study emerged from the observation that seed collection for environmental 

restoration encounters issues of cost and convenience that might result in unconscious, 

unintended genetic selection during harvesting of seeds from wild populations.  The field and 

common garden studies described in the previous chapters focused primarily on patch density, 

which would affect seed-collection efficiency, and secondarily on potential correlations between 

background vegetation and inherited variation in Stipa pulchra.  The first part of this chapter 

provides expanded interpretation of these results. 

 Within-site variation among plants may indicate differential competitive versus 

colonizing abilities. 

 Other within-site variations may reflect patch-level differentiation keyed to background 

vegetation. 

 Comparison of field and common-garden results speaks to physical versus ecological 

distance.  

 Responses to blocking and watering treatments point to plastic responses to climate 

variation. 

The next part of this chapter describes potential limitations of this study, and discusses 

transgenerational effects in experimentation.  Finally, this discussion suggests broader 

implications for the fields of ecology and ecological restoration, and concerns about appropriate 

application of ecological restoration. 

 

Differences Among Subpopulations 

 The results of the common-garden study provide evidence that within populations of S. 

pulchra, patch characteristics may correlate with inherited differences among plants.  While the 

focus of the research project was intraspecific density of S. pulchra, the results suggest that 

absolute cover, background vegetation, and possibly species diversity may also correlate with 

inherited variation.  Variation among S. pulchra plants from different subpopulations within sites 

appears to be smaller yet comparable to variation among plants from different populations. 

 Absolute cover and S. pulchra culm density: competition.  For RFS and Sonoma 

common-garden plants, several characteristics that affect life history correlated with culm count 

in the field.  Plants grown from seeds collected on thick plots at these sites had larger basal areas 

at harvest, less likelihood of setting seed, lower ratios of culms to vegetative tillers, and later 

seed set.  For most plot pairs, reproductive plants from the thick plot had wider leaves and 

produced heavier seeds.  In sum, Sonoma and RFS plants from plots with high culm counts 

allocated somewhat more to long-term growth and less to near-term sexual reproduction than 

their counterparts from plots with less S. pulchra.  Basal area also correlated positively with 

absolute cover for Sonoma plants. 

 The effect of intra- versus interspecific competition (i.e., of S. pulchra culm count versus 

absolute cover) differed for Pt. Molate plants compared to RFS and Sonoma plants.  Overall 

absolute cover was relatively high at RFS and Sonoma, respectively averaging 94 and 86% at 

these sites, versus 49% at Pt. Molate.  In addition, absolute cover at Pt. Molate correlated with S. 
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pulchra density in the field.  For Pt. Molate plants, absolute cover on seed-source field plots 

correlated in the common garden with basal area, likelihood of setting seed, time to first seed set, 

and the ratio of culms to vegetative tillers.  The first three of these response variables also 

correlated with field-plot culm frequency, but the absolute-cover relationship was stronger. 

 Lower S. pulchra density in thin patches at RFS and Sonoma, and lower S. pulchra 

density plus lower absolute cover in thin patches at Pt. Molate, suggests that plants in these plots 

experienced less intra- and interspecific competition than their thick-plot counterparts.  The 

characteristics of common-garden plants originating in these patches may reflect a colonizing 

lifestyle expressed as higher likelihood of sexual reproduction, shorter time to first seed set, and 

larger ratios of culms to vegetative tillers.  Earlier and greater allocation to sexual reproduction, 

and less to growth and perenniation, would improve fitness in disturbed, open habitats where 

adult mortality is relatively high, competition is less intense, and seedlings have greater chances 

of establishing (Grime 1977 and 1988; MacArthur & Wilson 1967).  When grown in the 

common garden, plants originating from plots with potentially higher levels of inter- and 

intraspecific competition (i.e., plots with greater density of S. pulchra or greater absolute cover) 

allocated less to sexual reproduction, and somewhat more to perenniation in the form of greater 

basal area and higher root: shoot ratios.  Limiting immediate sexual reproduction in favor of 

long-term growth would contribute to survival in relatively stable, closed habitats where 

seedlings have limited potential for establishment and the ability to occupy space, compete for 

light and water, and survive from year to year is critical to fitness (Dietz et al. 1998; E. Garnier 

1992; Grime 1977 and 1988; Gross & Smith 1991; Hautekèete
 
 et al. 2002; Keddy et al. 2002; 

Lankau & Strauss 2011).  The pattern found here may reflect the interrelated tradeoffs of growth 

versus reproduction and competition versus colonization.  It is important to note that this study 

did not entail measurements of competition, colonization, or longevity, nor of environmental 

factors that would affect competitive conditions in the field, such as soil fertility or moisture 

availability.  Proof would require direct study of competitive ability, such as replacement-series 

experiments (Jolliffe 2000). 

 Resource and meristem tradeoffs in growth versus reproduction.  Plants face tradeoffs 

in allocating growth within and among roots, shoots, and reproductive structures (Bloom 1986; 

E. Garnier 1991).  These tradeoffs include differential allocation of limited resources among 

plant tissues, and differential allocation of meristems among functions such as vegetative growth 

and sexual reproduction.  Resource limitation is associated with negative correlations between 

immediate fecundity versus growth, survival, and long-term fecundity (Ronsheim & Bever 2000; 

Sugiyama & Bazzaz 1997 and 1998; van Kleunen et al. 2002; Watson 1984).  Within a given 

overall allocation to seeds, a plant can produce many small seeds or fewer larger ones, balancing 

greater seed production against better provisioning of individual seeds (C. Smith & Fretwell 

1974). 

 Resource trade-offs.  In the pot study, plants receiving more water grew relatively larger 

than their drier counterparts.  While well-watered plants overall were no more likely to set seed, 

those that did had larger ratios of reproductive to vegetative tillers, more seeds per median culm, 

and heavier individual seeds.  Well-watered seed-producing plants did not finish with more 

vegetative tillers than their drier counterparts; the absence of additional vegetative growth in 
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these plants implies that the extra resources (water) mostly contributed to seed production.  The 

positive intercorrelation of vegetative growth measures (e.g., aboveground biomass and basal 

area) with reproductive allocation (e.g., ratios of culms to vegetative tillers, seeds per median 

culm, and weight of individual seeds) among plants in both watering regimes suggests that 

aboveground resource allocation was balanced between overall growth and sexual reproduction. 

 Root: shoot ratios.  Plants subsampled for root biomass showed significant reductions in 

root: shoot ratio if they set seed.  Among plants that set seed, root: shoot ratio correlated 

negatively with both the ratio of culms to tillers and the number of seeds per median culm.  

Taken together, these results imply a reduction in long-term growth potential in plants that set 

seed.  

  Meristem trade-offs.  Plants can face meristem tradeoffs a result of their modular 

structure.  Early commitment of meristems to sexual reproduction can ultimately limit the final 

size and reproductive output of a plant.  Conversely, continuing immediate-term vegetative 

growth may limit sexual reproduction in the short run while potentially increasing resource 

capture and the number of meristems available for subsequent sexual reproduction (Geber 1990; 

Huber & During 2000; Pan & Price 2002).  Plants generally maintain a pool of quiescent 

meristems, and under natural conditions probably experience resource limitation more frequently 

than meristem limitation (Geber 1990). 

 In the present study, plants that set seed had somewhat fewer vegetative tillers at harvest 

than did non-reproductive plants.  Huber and During (2000) modeled meristem allocation and 

found that total fecundity correlated negatively with meristem allocation to flowering if their 

modeled plants allocated more than 30 percent of meristems to flowering.  Twelve of the total 

655 reproductive plants in this study allocated over 30 percent of total tillers to seed production, 

yet the remaining 643 reproducing plants still averaged fewer vegetative tillers than did 

nonreproducing plants.  Of these twelve plants, ten were from Pt. Molate, and nine were from 

thin plots. 

 Growth versus reproduction in clonal plants.  Variation in S. pulchra plants in how they 

balance short-term seed production against long-term growth raises questions about the role of 

sexual versus asexual reproduction in this species.  Sexual reproduction can be biologically 

costly and risky (Silvertown & Lovett-Doust 1993), yet provides a means to repair DNA, 

combine beneficial mutations, purge deleterious alleles, respond to environmental changes, and 

generate density- and frequency-dependent advantages mediated by competitors, pathogens, and 

predators where differing from one's neighbors is advantageous (Antonovics & Ellstrand 1984; 

Ellstrand & Antonovics 1985; Kelley 1984 and 1989; Nürnberger & Gabriel 1999; W. Rice 2002; 

West et al. 1999).  Clonality, in contrast, allows for dedication of resources and meristems to 

indefinite extension of the genetic individual.  The advantages of clonal growth, such as 

persistence in habitats unfavorable for sexual reproduction, ability to spread the risk of death 

among ramets, and availability of alternative means of reproduction, however, come at the cost 

of potential effects on sexual reproduction.  Clonal growth can trade off against reproduction by 

seed (Cheplick 1995).  The larger a clonal organism becomes, moreover, the greater the chances 

its flowers will receive pollen from within the clump versus from other conspecifics (Vallejo-

Marín et al. 2010), particularly in plants with a phalanx growth form, such as S. pulchra. 
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 In S. pulchra, high levels self-pollination by homozygous parents (Larson et al. 2001) 

obviates many of the adaptive advantages of sexual reproduction.  S. pulchra, as a clonal plant 

with a phalanx growth habit, cannot readily disperse as vegetative propagules and may even 

interfere with its own growth more than that of its neighbors (Schmid & Harper 1985).  

Production of seeds provides an effective means of dispersal (Stöcklin & Winkler 2004).  Where 

sexual and asexual reproduction differ little in genetic terms, selection would favor sexual 

reproduction or clonal expansion depending on whether the likelihood of genotype survival is 

increased more by seed generation or ramet production.  High production of seeds can help 

ensure genotype survival in a frequently disturbed habitat, particularly if vegetative dispersal 

distances are small compared to the typical size of disturbed patches, as would commonly be the 

case in phalanx species (Winkler & Fischer 1999). 

 Competition versus colonization.  The allocation tradeoff between growth and fecundity 

contributes to a tradeoff between competitive ability versus ability to disperse and colonize 

unoccupied sites.  A large literature focuses on interspecific competition-colonization models, 

varying in assumptions about the importance of factors such as a strict competitive hierarchy or 

environmental heterogeneity for maintaining coexistence, and the extent to which stochastic 

factors also affect biodiversity (e.g., Aremasekare 2003; Calcagno et al. 2006; J. Clark et al. 

2007; Pacala & Rees 1998; Yu & Wilson 2001).  Tilman (1994) models the stable coexistence of 

two species, a poor competitor with a high rate of colonizing empty patches, versus another that 

is more competitive but less fecund.  The strong colonizer, as modeled, can coexist with the 

strong competitor as long as sufficient empty patches continue to become available.  Even if it 

lacks a high colonization rate, moreover, a weak competitor can coexist with a strong competitor 

if it has greater longevity than the strong competitor and the habitat is at least 50 percent 

unoccupied.  Tilman's competition-colonization tradeoff model broadly accords with aspects of 

MacArthur and Wilson's (1967) concept of r- and K-selection and Grime's (1977 and 1988) 

ruderal versus competitive plant-strategy categories, in that the probability of seedling 

establishment versus adult survival determines the theoretical fitness benefit of contrasting 

allocation strategies. 

 Intra- versus interspecific competition and colonization.  The great majority of empirical 

studies of competition-colonization tradeoffs deal with interspecific comparisons (Lankau & 

Strauss 2011).  In S. pulchra, competitive ability would entail allocating substantially to resource 

capture (for example, allocating to roots in habitats with limiting soil resources), and colonizing 

ability would entail greater seed production.  Plants grown from seeds collected at Pt. Molate, the 

site with the lowest and most varied absolute cover, produced seeds earlier than plants from the 

other sites, were more fecund, and increased root: shoot ratio less in response to water limitation, 

potentially reflecting overall greater allocation to colonization.  Within Pt. Molate plants, the 

greater allocation to growth versus seed production in plants from plots that had both high culm 

counts and high levels of absolute cover may reflect more competitive conditions. 

 At RFS and Sonoma, absolute cover and culm count were weakly and negatively 

correlated, and the differential allocation patterns (to long-term growth versus reproduction) 

correlated with culm count rather than with absolute cover.  The pattern in these plants may 
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reflect a competition-colonization tradeoff at the intraspecific level.  The earlier reproduction and 

greater seed production of thin-plot plants from these sites implies greater colonization rates.  

 If the results of the common garden study can be taken as suggesting that differential 

competitive versus colonizing ability correlates with absolute cover and S. pulchra density, 

further conjectures may follow.  Traits conferring greater intraspecific competitive ability may 

trade off against traits favored under interspecific competition.  Contrasting distributions of S. 

pulchra and resulting selection may create feedbacks that strengthen the distribution pattern.  

 Few studies have directly tested whether there are evolutionary tradeoffs between inter- 

and intraspecific competitive ability, particularly in the complex context of field communities 

(Lankau & Strauss 2011).  In a pot study, T.E. Miller (1995) grew three generations of Brassica 

rapa in two environments: intraspecific competition and interspecific competition with 

Raphanus sativus.  In each competitive environment, plants producing the most flowers were 

outcrossed to provide seeds for the next treatment generation, and a random set were outcrossed 

to produce seeds for control plants.  After one generation without competition, plants from the 

intraspecific-selection line grew faster and increased flower production by more than 50% over 

that of the control line and by more than 19% over the interspecific-selection line.  Linhart 

(1988) found that inter- versus intraspecific competitive ability in Veronica peregrina, a self-

pollinating California vernal-pool endemic, depended on where seeds were collected from within 

an undisturbed population: plants grown from seeds collected from largely monospecific central 

subpopulations were better adapted to growing in intraspecific neighborhoods, whereas plants 

grown from seeds collected at the patch periphery, where Veronica plants were surrounded by 

grasses, were better adapted to living among with grasses.  In a comparison Veronica population 

that was disturbed by yearly plowing, these differences were greatly attenuated.  R. Shaw et al. 

(1995) found evidence that some genotypes of Nemophila menziesii (baby blue eyes) that have 

high fitness at high intraspecific densities do poorly at high densities of the interspecific 

competitor Bromus diandrus.  Brassica nigra (black mustard) plants encounter conflicting 

selection pressures on investment in sinigrin, a toxic secondary compound, depending on 

whether the plants experience greater levels of intra- versus intraspecific competition.  Lankau 

(2008) grew black mustard with heterospecific neighbors, and found the plants undergo selection 

favoring higher sinigrin content, while those grown with conspecific neighbors experience 

selection that favored lesser sinigrin investment.  Similar patterns were observed in naturally 

occurring patches of black mustard that varied in percent composition of conspecifics and 

heterospecifics.  Lankau (2012 & 2013) found a similar pattern with the invasive herb Alliaria 

petiolata (garlic mustard), mediated by the toxic effect of sinigrin on the soil microbial 

community.  Where they co-occur with Alliaria, populations of the native herb Pilea pumila 

develop tolerance of the conditions generated by Alliaria at the cost of reduced fitness where 

Alliaria is absent. 

 How did thick versus thin patches get that way?  Results of the present study raise the 

question of how density variations came to occur in the study populations, if not simply by 

means of stochastic processes.  In California, higher levels of disturbance have been associated 

with greater cover of annual grasses and lower species richness (Robinson et al. 1995).  

Stromberg and Griffin (1996) suggested a positive feedback loop between gopher disturbance 
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and the density of annual grasses, which was confirmed for some circumstances by Seabloom et 

al. (2003).  The present study found no difference in rodent disturbance of thick versus thin field-

plots; however, differences in relative cover of perennial grasses would correlate with past rather 

than immediate disturbance.  The amount of rodent disturbance noted in this study is a great deal 

less than described, for example, by Stromberg and Griffin (1996) for annual grasslands.  Pt. 

Molate had the greatest relative cover of native perennial grasses, the most evidence of digging 

activity, and produced common-garden plants with the highest fecundity levels.  There is no 

evidence of substantial disturbance by other causes, such as tilling, at any of the sites for several 

decades. 

 An alternative explanation of density variation is that S. pulchra may itself create thick 

versus thin distributions.  Theory and experimental observations indicate that abundant species 

are generally more competitive than their less-abundant neighbors (Gurevitch 1986; Harpole & 

Tilman 2006; Howard & Goldberg 2001; Tilman 2004).  If more-competitive species are more 

abundant on a local basis, then perhaps more-competitive genotypes within a population would 

also be more abundant on a microsite basis, and may produce denser patches than less-

competitive conspecifics.  In this case, stochastic factors may have scattered S. pulchra 

genotypes over a given site, and those with greater competitive ability may have ultimately 

generated thick patches.  

 Plot pairs within sites: background vegetation and differentiation.  At the outset of 

field work, the thin and thick plots within each pair were very roughly matched in terms of plot 

characteristics other than S. pulchra density.  Using paired plots was intended to prevent 

confounding of S. pulchra culm density with other plot characteristics, such as species 

composition.  Consistent variations in common-garden plants correlated with plot pairs within 

sites were therefore not anticipated.  In the common garden, plot pair as an explanatory variable 

was nevertheless at least marginally significant as a main effect in ANCOVAs addressing 

emergence time, basal area, tiller counts, height and number of culms, aboveground biomass and 

growth rate, proportion of green tissue at harvest, likelihood of sexual reproduction, weight of 

individual offspring seeds, and the ratio of culms to vegetative tillers in reproductive plants.  

That is, plot pairs differed from one another.   

 Variation in the common garden among plants grown from seeds originating in different 

plot pairs, and similarity within pairs, may imply inherited variation among S. pulchra that in 

turn reflects interspecific neighbors in source plots.  Species identity of neighbors can correlate 

with the abiotic conditions that plants experience.  An individual S. pulchra plant and its 

heterospecific neighbors, moreover, form important parts of each other's environment.  Neighbor 

identity, even neighbor genotype, can influence differential allocation to secondary compounds 

and among tissues (Barton & Bowers 2006; Chen et al. 2012; Fridley et al. 2007).  California 

grassland species differ in their effects on microsite ecosystem properties such as litter quantity 

and quality, soil temperature and moisture, and soil biota (Bastow et al. 2008, Eviner 2004, 

Hawkes et al. 2005), with effects that can persist longer than the plants that produce them 

(Grman & Suding 2010).  Hull and Muller (1977) cite indications of complex interactions 

between S. pulchra and different species of introduced grasses. 
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 Because S. pulchra is perennial and most other species in the field plots were annual, it is 

possible that species composition of plot pairs reflected abiotic conditions, or that differences 

among S. pulchra genotypes affected conditions for other species, excluding some or facilitating 

others.  The extent to which plots within pairs paralleled one another in the common garden is 

nevertheless surprising, given the coarse matching of plot pairs in the field.  Spatial 

autocorrelation, either genetic or environmental, may have been a factor at Sonoma, where thick 

and thin members of each plot pair were a few meters apart from one another and the pairs more 

widely spaced.  Similarities within plot pairs for RFS and Pt. Molate plants were unlikely to have 

stemmed from proximity of plots within pairs.  The sample of plot pairs within sites is too small 

to draw any conclusions about how variation among specific neighbor species may reflect 

mechanisms that underlie differences among S. pulchra plants.  The potential existence of 

genetic variation correlated with background vegetation nevertheless implies that comprehensive 

sampling of genetic variation would require collecting germplasm from across the full range of 

vegetative environments associated with a target plant population.  

 Plots.  As described in Chapter 8, much of the variation among plants in the common 

garden appeared to lie at the plot level.  Variation existing beyond differences attributable to site, 

plot type, or plot pair may reflect genetic similarities among plants within plots as much as 

differences among plants from different plots.  The extensive homozygosity found in S. pulchra 

(Larson et al. 2001) implies that offspring would be nearly identical genetically to their parents 

and siblings.  Seeds fall within a meter of the parent plant (Stromberg & Griffin 1996, citing 

unpublished data), increasing potential for mating among close relatives and genetic 

autocorrelation within a patch.  Over the life of a genetic individual, moreover, a single S. 

pulchra clump may break up into pieces so that multiple clumps in a patch might originate from 

a single seed.  As a result, common-garden plants in this study may have been very closely 

related to nominal non-siblings originating in the same plot. 

 Patch variation and seed collection for restoration.  The pattern of variation found in 

the common-garden study implies appreciable levels of subpopulation differentiation in this 

species.  Microhabitat correlates of genetic differentiation may underlie systematic variation such 

as that indicated by this study among plants from plots varying in absolute cover, S. pulchra 

density, or background vegetation.  Variation in soil fertility, disturbance history, and other 

selective factors reflected in this pattern might be unapparent to seed collectors.  Even if 

inherited variation among plots followed no pattern, however, the extent of differences among 

plots indicates that capturing the full range of genetic variation within a population of S. pulchra 

via seed collection would require sampling broadly across the patches comprising a population.  

This result contrasts with Larson et al. (2001), who found limited genetic variation within S. 

pulchra populations. 

 

Differences Among Populations 

 Significant differences existed among sites in both the field and the common garden.  

Percent cover, aboveground biomass, culm count, and culm height were greater on the field plots 

at RFS and Sonoma than at Pt. Molate, but there was no significant difference among sites in 

overall absolute cover of S. pulchra.  Simpson's index varied among sites only in interaction with 
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year.  In the common garden, however, plants from different sites diverged on many measured 

characteristics, including morphology, growth, and reproduction. 

 Variation among plants originating at different sites is wholly expected, given the 

differing soil and climate regimes at the three sites.
28

  There were few positive correlations 

among sites, however, between field- and common-garden results.  Common-garden Pt. Molate 

plants began reproduction earlier than plants from other sites, likely reflecting the shorter 

growing season of the parental site.  Pt. Molate plots had the smallest number of culms per m
2
 S. 

pulchra cover area in the field, yet in the pot study Pt. Molate plants produced the most culms.  

Conversely, RFS had the highest level of absolute cover, implying high levels of competition, 

and in the common garden, RFS plants had the lowest culms: tillers ratios.  In the field, however, 

RFS plants had the largest number of culms relative to S. pulchra cover area.  Culm height varied 

significantly by site in both field and common garden, but Pt. Molate plants had relatively tall 

culms in the common garden, versus shorter ones in the field.  The lesser height and fecundity of 

Pt. Molate plants in the field versus the common garden may reflect the drier, rockier soil at that 

site compared to RFS and Sonoma. 

 The pattern of differences among these study sites sheds light on the practice in 

restoration of using physical distance between populations as a proxy for genetic distance.  Pt. 

Molate and RFS lie within 12 km of each other in the same USDA ecological section and 

subregion, while Sonoma, about 70 km from the other sites, is in a different ecological section 

and subregion (Miles & Goudey 1997).  If genetic differentiation among populations is 

correlated with distance, Pt. Molate and RFS plants should be relatively alike.  Perusal of the 

graphs in Chapter 8 reveals, however, that relatively few significant differences were recorded in 

the common garden between Pt. Molate and Sonoma plants and substantially more between Pt. 

Molate and RFS plants.  This echoes the finding by Knapp and Rice (1996) that proximity 

between populations may not always indicate quantitative-genetic similarity.  While distant sites 

may experience isolation by distance (IBD), nearby populations may be isolated from one 

another by environmental differences.  Sexton et al. (2014) performed a meta-analysis of 

empirical studies examining the relative prevalence of IBD versus isolation by environment 

(IBE), and found that IBE is only slightly less prevalent than IBD alone; combined IBD and IBE 

was the commonest pattern.  Grey et al. (2014) characterized neutral genetic diversity and 

structure in Andropogon gerardii from 11 prairies across a precipitation gradient between Kansas 

and Illinois, and concluded that IBE explained their results better than IBD.  In the present study, 

phenotypic differences between Pt. Molate and RFS common-garden plants may reflect the 

substantial differences in soil and slope at the two sites, resulting in a longer annual period of 

moisture availability at RFS. 

 

 

                                                 
28

 The differences in growing season among the three sites meant that sampling was sequential (Pt. Molate followed 

a month later by RFS, then Sonoma another month later).  As a result, site as a factor could be confounded with 

variations in flowering phenology rather than true variations in growing conditions.  Seed collection for all sites 

occurred about two months later in the second field season, however, and site interacted statistically with date and 

year less than might be expected by chance. 
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Treatment Effects and Interactions 

 The common-garden study applied two treatments, differential watering regime and 

temporal blocking.  Variations in growth and allocation among plants in different treatments may 

indicate phenotypic plasticity.  Interactions between seed sources and watering treatment or 

block could reflect inherited variation in plasticity of measured traits (Stearns 1989).  In this 

study, watering and blocking treatments interacted most often with site.  To the extent that the 

treatments may have corresponded, from the plants' perspective, to climate variation, these 

interactions may represent adaptive plasticity. 

 Watering treatment and site.  Higher levels of watering in the common garden 

significantly affected most measurements and resulted in bigger, more fecund plants.  Watering 

treatment interacted at the  = 0.10 level with site in nearly a third of statistical tests, more than 

would be expected by chance alone.  In response to more water, for example, Sonoma plants 

developed relatively taller culms and foliage than plants from the other sites.  Pt. Molate plants 

given extra water had slightly fewer tillers and greater ratios of culms to tillers than dry-

treatment plants.  In a climate characterized by limited availability of water and by variation in 

annual precipitation, plastic response to water may be adaptive.  The frequency of significant 

interactions between watering treatment and the other seed-source factors (plot pair, culm count, 

absolute cover, and Simpson's index) did not exceed chance.  Plants in the common garden 

veered between root rot and desiccation, and more finely-tuned watering treatments may have 

elicited more evidence of among- and within-population variations in plasticity. 

 Temporal blocks.  The common-garden experiment was divided into temporal blocks in 

order to make the experiment manageable, with no presumptive systematic effects.  Instead, 

block was a significant factor in most measurements, from emergence through growth and 

reproduction, probably because of higher temperatures experienced by the second and especially 

the third block compared to the first.  Planting block, moreover, interacted with site at the  = 

0.10 level in over a quarter of statistical tests, more than would be expected by chance. 

 Several block × site interactions involved reproduction.  Pt. Molate plants varied among 

blocks more than plants from the other sites in terms of the culms: tillers ratio.  Conversely, Pt. 

Molate plants showed the least variation in time to reproduction, and Sonoma plants the greatest 

variation, in response to temporal blocking.  This result may reflect the shorter growing season at 

Pt. Molate, where more-plastic allocation to sexual reproduction may be coupled with an earlier, 

narrower reproductive window.  Other interactions involved morphology.  For example, leaves of 

Sonoma plants became narrower, and those of RFS plants wider, as the experiment moved from 

one block to the next.  The effects of block seem to have echoed those of watering treatment 

(drier conditions paralleling hotter ones).  Pt. Molate plants, for example shifted reproductive 

allocation similarly in response to both treatment factors.  The frequency of interactions between 

block and the other seed-source factors (plot pair, culm count, absolute cover, and Simpson's 

index) did not exceed chance. 

 

Study Limitations 

 Some aspects of this study may limit its applicability to natural systems.  Growth and 

phenology of plants grown singly in pots may differ substantially from growth of plants in 
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natural soil under competitive conditions (Martin & Harding 1982; Mehrhoff & Turkington 

1990; R. Shaw & Platenkamp 1993; R. Shaw et al. 1995).  Mortality in S. pulchra and many 

other plant species is disproportionately high during emergence and establishment (Bartolome & 

Gemmill 1981; Larson et al. 2001), and self-thinning can impose differential selective effects 

that would not occur in pot studies (Lankau & Strauss 2011).  Experiments measuring short-term 

growth can yield only limited information on long-term growth, competition, survival, and 

reproduction (Aarssen & Keogh 2002; Bennington et al. 2012; Gordon & Rice 1998).  Finally, 

use of seed collected in the field for common-garden research potentially compounds genetic 

differences with transgenerational effects. 

 Transgenerational effects.  Parental environmental effects are nongenetic phenotypic 

effects on plants stemming from the parental (commonly maternal) environment (Galloway 

2001; Roach & Wulff 1987; Weiner et al. 1997; Weis et al. 1987).  These effects are commonly 

defined as the influence of the environment experienced by the parental plant on the phenotype 

of its offspring, via factors such as seed provisioning, seed architecture, seed-coat thickness, and 

germination timing (Donahue 2009; Wolf & Wade 2009).  Under this definition, maternal effects 

do not result directly from maternal nuclear and cytoplasmic DNA, but from maternal 

phenotype, which in turn is influenced by genetic and environmental sources of variation, 

including genotype-by-environment interactions. 

 Perhaps the most commonly cited parental effect is variation in seed weight, which can 

reflect seed provisioning and seed-coat thickness, and has been correlated with drought, 

temperature extremes, defoliation, and other factors in the maternal environment; seed position 

on the inflorescence; number of ovules pollinated; and timing within the flowering season 

(Donahue 2009; Hendrix & Trapp 1992; Roach & Wulff 1987; Vaughton & Ramsey 1998; 

Weiner et al. 1997; Wolfe 1995).  Seed weight can vary by a factor of five to 10 within a single 

maternal plant (Sultan 1996; Vaughton & Ramsey 1998).  While large seeds generally have 

higher germination rates, emerge faster, and are more likely to establish, seed weight effects 

often diminish or disappear within weeks under experimental conditions (Houssard & Escarré 

1990; Paz & Martínez-Ramos 2003; Roach 1986; Roach & Wulff 1987; Weiner et al. 1997; Weis 

et al. 1987).  Under competitive field conditions, however, the initial size differences stemming 

from varying seed weights may translate into disproportionate fitness differences in adults 

(Roach & Wulff 1987; Stanton 1985; Stratton 1989).  Seed weight reflects quantitative but not 

necessarily qualitative provisioning; the nitrogen content of the seed, for example, may correlate 

with nitrogen available to the maternal plant, even if seed weight is unaffected (Violle et al. 

2009). 

 Most research on maternal effects focuses on domesticated species.  Wild species often 

show less variation than cultivated species in effects of maternal environment on seed 

characteristics.  Wild plants may reduce number and seed-weight variation rather than mean 

weight of seeds in the face of resource limitation (Roach & Wulff 1987; Sultan 1996; Violle et al. 

2009; Weiner et al. 1997).  The present study repeats this pattern, in that well-watered plants 

produced 23 percent more culms, and 15 percent more florets per median culm than plants in the 

dry group; ripe seeds harvested from well-watered plants, however, were individually only about 

12 percent heavier than seeds taken from dry-treatment plants. 
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 Maternal seed provisioning is only one form of transgenerational effect.  Epigenetic 

effects can modify genetic expression through mechanisms such as DNA methylation, chromatin 

structural changes, or small, non-coding RNA molecules (Bossdorf et al. 2008).  These 

epigenetic changes may be inherited from either parent and can pass through multiple 

generations (Bischoff & Müller Schärer 2010).  Transgenerational environmental effects not 

mediated by maternal provisioning may be adaptive if they improve the offspring's ability to 

thrive under conditions that in effect are predicted by the parent's experience.  Examples of such 

effects include induction of resistance traits against herbivores (Bischoff & Müller Schärer 2010; 

Holeski et al. 2012) and ability to maintain fitness despite stressfully warm growing conditions 

(Whittle et al. 2009).  Medrano et al. (2014) found that epigenetic polymorphism was greater 

than genetic polymorphism in the perennial herb Helleborus foetidus sampled at ten sites in 

Spain, and suggest that epigenetic variation may provide an important measure of functional 

diversity in a species with modest genetic diversity. 

 Environmentally and genetically based relationships between species within a patch can 

be difficult to untangle.  Aarssen and Turkington (1985) found evidence of "precisely-defined" 

biotic specialization in genotype pairs of Trifolium repens and Lolium perenne growing together 

in a British Columbia pasture, and suggested that Trifolium clonal foraging allowed it to 

"choose" suitable Lolium neighbors.  Evans and Turkington (1988), working in the same pasture 

or a similar one, found that a significant proportion of morphological variation among Trifolium 

genets was accounted for by the species of grass the Trifolium was growing with in the field; this 

variation, however, disappeared over time when the plants were grown in standard soil in a 

greenhouse, implying that the variation was an environmental carry-over.  Turkington (1989), 

working in a pasture with much larger patches dominated by single grass species, concluded in 

this case that variation among Trifolium clones correlating with neighboring grass species was 

genetically based.  Chanway et al. (1989) and Turkington (1989) concluded that the genetically 

based relationship between Trifolium and neighboring grasses is mediated by soil 

microorganisms associated with, and perhaps regulated by, the grass species or genotype.  This 

relationship would be lost in the standard soil used in the greenhouse, thus disguising the role of 

genetics. 

 Methods of managing transgenerational effects in experimentation are imperfect.  A 

common method is growing out wild-collected seeds for a generation in a common environment 

and using F1 progeny for experimentation.  Several generations, however, would be needed to 

eliminate epigenetic effects.  Drift, selection, and inadvertent cross-pollination can occur in a 

common environment, moreover, potentially shifting the genetic characteristics of the sample 

within even a single generation.  The present study illustrates this problem, in that some sibships, 

particularly from Sonoma, produced no offspring seeds in the common garden.  Producing seeds 

in a common environment might also result in new epigenetic effects and varying genotype-by-

environment interactions stemming from different maternal genotypes. 

 Another method for addressing transgenerational effects is using seed weight or juvenile 

plant size as a covariate, or planting same-size juvenile plants at the beginning of an experiment.  

Latzel (2015) notes that using seed weight as a covariate would help account for quantitative 

provisioning, and that measuring growth during early stages would account for seed quality.  
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Size-based methods, however, would not address some forms of epigenetic variation, and seed 

weight may also reflect genotype of the seed (Houssard & Escarré 1990).  Finally, Roach & 

Wulff (1987) suggest collecting and storing seeds over several years to control for year-to-year 

environmental variation. 

 The challenge of managing transgenerational effects appears correlated with a tendency 

to ignore them.  Latzel (2015) examined all journal articles published during 2011–2013 that 

studied local adaptation by conducting reciprocal transplants, a total of 44 articles.
29

  Of these, 21 

studies neither incorporated measures in their study design to deal with transgenerational effects 

nor discussed these effects in their findings.  Eleven studies grew out seeds for a generation in a 

common environment and used F1 seeds for experimentation, or grew ramets of clonal plants in a 

common environment for two or more months.  Five used seed weight or seedling size as a 

covariate, and one compared plants at different life stages based on the assumption that maternal 

effects would be most apparent in early life stages. 

 The present study uses seeds collected in the wild, and incorporates seed weight, 

collection date, year, and emergence time in statistical analyses as partial proxies for parental 

environmental effects.  As discussed in Chapter 8, seed weight affected emergence time, overall 

growth, and reproduction, but the effect of seed size appeared to diminish over time.  The weight 

of offspring seeds correlated with the weight of seeds planted in the common garden.  Seeds 

collected in 2001 were about 3 percent heavier, and emerged about 4 percent slower, than those 

collected in 2000; nevertheless, collection year and date were significant in fewer multivariate 

analyses than might be expected by chance alone. 

 Among studies examining parental effects, an article by Bergum et al. (2012) is 

particularly relevant to the present study.  They propagated two offspring generations of 

Sporobolus airoides from maternal plants originally transplanted to a greenhouse from areas 

invaded by Acroptilon repens and from adjacent non-invaded areas in three rangeland sites.  

Offspring derived from both invaded and non-invaded subpopulations changed phenotypically 

from one generation to the next, with the offspring of plants collected from the invaded areas 

showing greater differences between generations.  Despite these changes, offspring derived from 

the two subpopulation types remained significantly different from one another. 

 

Broader Implications of This Study  

 The field and common garden studies described here found correlations between S. 

pulchra density variation and subpopulation differentiation.  The results may also imply inherited 

variation reflecting other dissimilarities among patches, including cover and composition of 

other species.  The remainder of this chapter focuses on some implications stemming from these 

results, including 

 speculations regarding S. pulchra under post-European selection regimes, 

 speculations regarding unintended effects of density differences in ecological studies, 

and 

 implications for environmental restoration. 

                                                 
29

 The query was conducted on the Web of Knowledge on December 1, 2013 and used the search rule "local 

adaptation* AND plant* AND transplant* AND Year Published=(2011–2013)." 



 

156 

 

 Post-European selection in Stipa pulchra.  The present study provides evidence that S. 

pulchra varies in characteristics potentially associated with competitive ability, and that this 

variation correlates with indications of competitive environment (absolute cover and S. pulchra 

patch density).  If greater patch density in S. pulchra results from more effective competition 

with introduced species, S. pulchra and potentially other native species may be capable of 

adapting to compete more effectively with exotic annuals.  A growing body of research indicates 

that at least some native species undergo inherited phenotypic and genotypic shifts in response to 

invaders, which in some cases appears to enhance the ability of native species to compete with 

introduced species (Bergum et al. 2012; Deck et al. 2013; Lankau 2012 and 2013; Mealor et al. 

2004; Oduor 2013; Rowe & Leger 2011). 

 S. pulchra is a long-lived species, and plants now growing in the field may be few 

generations removed from initial European colonization.  These plants nevertheless need to 

survive and reproduce in what has become a substantially novel selective environment.  The 

introduction of both cattle and invasive annual grasses following European colonization meant a 

radical shift in disturbance and competition regimes.  High levels of cattle grazing such as those 

of the 19th century may have selected for more fecund S. pulchra genotypes such as this study 

found in sparse patches.  Subsequent reduction in grazing and increasing competition with 

annual grasses may have shifted selection in favor of the more competitive-seeming genotypes 

present in dense patches.  Differentiation in allocation can be induced in a few generations of 

vigorous selection for competitive traits (Agrawal et al. 2013; T.E. Miller 1995; van Kleunen et 

al. 2002).  

 Unintended effects of density differences on ecological research.  The present study 

raises the speculation that intrapopulation differences, such as those found here in S. pulchra, 

may influence research results in unintended and unrecognized ways.  Many studies of natural 

populations employ seeds collected from the wild, whether these seeds are used directly or 

propagated for later experimentation.  Resulting journal articles often make no statement 

indicating whether seeds were collected at random, even though they are meant to represent 

entire wild populations (Violle et al. 2012).  Where articles state that seeds were collected at 

random, they rarely describe the randomization procedure.  If researchers collect seeds from 

dense patches, or otherwise unconsciously favor one type of patch over another, they may skew 

seed sampling in terms of inherited characteristics.  The intrinsically time-consuming and 

counter-intuitive nature of collecting plant material from sparse patches or from areas heavily 

vegetated with thistles or poison oak, characteristics potentially correlated with subpopulation 

differentiation, were very apparent during field work for this study; indeed, simply finding 

enough seeds on thin plots was sometimes problematic.  In the common garden, some sibships 

produced no seeds, implying that laboratory propagation might additionally skew representation 

of genotypes. 

 Seed collection and propagation for research may thus impose unintended selective 

effects with regard to unobvious subpopulation differentiation, potentially affecting experimental 

results.  Such artifacts may explain some differences among studies.  For example, K. Rice and 

Knapp (2008) point to evidence that S. pulchra is an outcrossing species, whereas Larson et al. 

(2001) found no heterozygotes among the S. pulchra plants they analyzed.  Larson et al. (2001) 
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obtained their wild-collected seed from sites having a spatial scale of one hectare or less, and do 

not indicate that the seeds were collected at random.  Both small population size and the 

potential for seed to have come from within dense patches may have reduced the likelihood of 

encountering heterozygotes. 

 Practical implications for restoration.  The initial question prompting this study was 

whether cost control in seed collection could skew the inherited characteristics of a restored 

population; the answer is yes.  In the case of S. pulchra, conspecific density, which is an 

important factor affecting seed collection cost and convenience, correlates with inherited 

variation in life-history traits.  In addition, differences found among plot pairs within sites, and in 

plants from Pt. Molate plots varying in absolute cover, suggest that the identity and density of 

background species may also correlate with inherited traits in S. pulchra.  Taken together, these 

subpopulation differences are both substantial and consistent. 

 These results imply that a restored population founded using germplasm collected from a 

restricted subset of patch types could have lower genetic variance and skewed genetic means 

compared to the source population.  This finding may well be applicable to other species 

characterized by subpopulation differentiation.  For such species, comprehensive representation 

of genetic variation within populations, which is a goal of seed collection for restoration, would 

clearly require thorough sampling of differentiated subpopulations.  It is unrealistic, however, to 

expect that many seeds would be collected from thin patches, or from patches representing the 

full range of background vegetation on a site, unless this is explicitly required of seed collectors.  

Collecting sufficient seed from thin plots for the present study proved challenging and time-

consuming; attempting to harvest seeds in quantity where they are least available may seem 

nonsensical in a budget-limited context.  In response to a talk about the present study, a Bay Area 

restoration consultant said its results would trouble commercial seed collectors, who already face 

many challenges in collecting locally-adapted seeds (D. Amme 2004 pers. comm.). 

 The choice of harvesting seeds only from dense patches, or from both dense and sparse 

areas, may depend on restoration goals.  If the characteristics of common-garden plants grown 

from seeds collected on thick patches translate to greater competitiveness in the field, planting 

seeds collected from dense patches alone may produce a restored population that is more 

competitive with introduced annuals.  Collecting seeds for restoration specifically from stands of 

native plants that have persisted despite invasion is an approach advocated by some authors 

(Ferrero-Serrano et al. 2011; Sebade et al. 2012).  The value of restoring with unusually 

competitive genotypes is debatable, however, if these genotypes tend to exclude other species 

(Cronn et al. 2003; Gustafson et al. 2004a).  In the present study, moreover, plants from thick 

plots displayed relatively low seed production in the common garden, implying that limiting 

planting to seeds from dense patches could exacerbate seed limitation, which has been identified 

as problematic for native species in California and elsewhere (A.J. Brandt & Seabloom 2012; C. 

Clark et al. 2007; Seabloom et al. 2003; Tilman 1997 and 2004). 

 The added cost of collecting seeds from sparse as well as dense patches might be 

alleviated by collecting a smaller but more diverse seed pool for agronomic increase.  If the 

present study serves as a model, however, agronomic increase would rapidly shift proportions of 

collected genotypes to the more fecund genotypes found in less-competitive patches.  Sibships 
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within plots, moreover, varied substantially in common-garden seed production, as illustrated by 

Figure 24; some sibships produced large numbers of seeds while others produced none.  Shifts in 

gene frequencies could be reduced by harvesting equal numbers of seeds from each reproductive 

plant in seed-increase fields, at considerable loss of the advantages of agronomic increase.  

 Another option would be collecting and planting a wider range of genotypes at the cost of 

planting fewer species.  The long-term effect of making this short-term trade-off could depend in 

part on how species richness and within-species genotypic richness interact.  As discussed in 

Chapter 2, species diversity and genetic diversity are often correlated (Vellend et al. 2014; 

Vellend & Geber 2005; Violle et al. 2012), although the causality of the relationship can be 

difficult to determine.  Restorationists sometimes plant a limited range of species, expecting (or 

hoping) that additional desired species will establish at a site on their own.  If greater 

intraspecific genetic variation would create more competition for available niche breadth, as 

niche theory suggests, then planting a wider range of genotypes within species may result in 

exclusion of would-be arrivals, be they natives or undesirable invaders (Crutsinger, Souza & 

Sanders 2008).  If genetic variation supports species richness, then planting a wider range of 

genotypes within species may help support establishment of new arrivals (Vellend 2006). 

 

Problems in Restoration Beyond Germplasm 

 Results of this study provide evidence that complete sampling of genetic diversity in 

natural populations may be intrinsically difficult and costly, simply because some of that 

diversity is associated with circumstances that would hinder seed collection.  Garnering 

appropriate and adequately diverse germplasm is only one of many challenges in effective 

ecosystem restoration.  A substantial body of research indicates that restoration projects often fail 

to meet ecosystem goals, such as primary productivity, nutrient accumulation, and species and 

functional-group diversity (Garcia et al. 2015; Hilderbrand et al. 2005; Mack & Micacchion 

2006; Polley et al. 2005; Suding 2011; Zedler & Callaway 1999).  In a study combining a survey 

and a literature meta-analysis, Godefroid et al. (2011) found that reintroduced plants often have 

low survival, flowering and fruiting rates, respectively averaging 52%, 19% and 16%.  They 

noted also that survival rates reported in the literature are over twice as high as rates reported by 

survey participants, underscoring concerns that publication bias may encourage unwarranted 

expectations of restoration success.  Some ecological processes, such as soil development, 

mycorrhizal associations, and hydrologic regimes, may take decades or more to restore (Curran 

et al. 2014; Hilderbrand et al. 2005).  Restorations that might superficially appear successful can 

have unintended negative outcomes, such as failing to support or even imperiling the survival of 

desirable species (Longcore 2003; Severns 2011).  Monitoring periods are typically short, five 

years or less, meaning that delayed but correctable problems in restoration may go unnoticed, 

increasing the likelihood of failure (BenDor 2009; Maron et al. 2012).  For many restoration 

projects, no monitoring or assessment is recorded, omitting "even the most rudimentary 

information on project actions and outcomes" (Bernhardt et al. 2005). 

 This pattern of limited success is confirmed in Suding's 2011 extensive review of 

restoration studies and meta-analyses.  While some restoration projects are successful, a 

discouragingly large proportion of them result in partial or failed recovery, and in divergence of 
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seemingly-parallel restorations toward differing ecological endpoints.  Successful restorations 

can take decades, even centuries, to progress toward reference conditions (Curran et al. 2014).  

Suding (2011) noted that incomplete recovery can persist indefinitely because of constraints that 

do not self-correct over time, such as isolation and invasive species.  Other factors cited as 

impeding restoration success include strong abiotic-biotic feedbacks, historical legacies, 

introduction of desirable species that inadvertently exclude colonizing natives, and inappropriate 

genetic structure of introduced populations.  Restoration meta-analyses by Rey Benayas et al. 

(2009) and Moreno-Mateos et al. (2012) reached similar conclusions. 

 Limited restoration success would be discouraging enough if restoration attempts were 

limited to addressing past disturbances and if the potential for failure was seen as sufficient 

reason to avoid future ecosystem damage.  As described in Chapter 4, however, compensatory 

mitigation policies mean that habitats lost to development are nominally replaced (offset) 

through creation or restoration of habitats elsewhere.  Restoration is being called upon to deliver 

replacement habitat in order that intact habitat may be destroyed, exchanging "certain losses for 

uncertain gains" (Maron et al. 2012).  The unfortunate result is often net loss of biodiversity 

(Curran et al. 2014; Moreno-Mateos et al. 2012). 

 This cost to biodiversity and ecosystem function results from both the restoration failures 

discussed above, and the time lag that exists even for successful projects between habitat lost and 

habitat gained.  Aggregated over many mitigation efforts, this time lag represents a substantial 

net loss of habitat function (BenDor 2009).  Moilanen et al. (2009) liken this result to "making a 

zero interest rate (biodiversity) loan to someone who is known to be unreliable and might pay 

back decades later." 

 As Suding (2011) points out, if some restorations succeed, then restoration is possible at 

least in some situations.  Restoration failures are frequently ascribed to social factors, including 

inadequate goal-setting, planning, implementation, and management (Bernhardt et al. 2005; 

Godefroid et al. 2011; Mack & Micacchion 2006; Suding 2011; Tischew et al. 2010)  These 

social factors, in turn, largely boil down willingness to commit sufficient economic resources to 

restoration in order to improve outcomes.  The results of this study indicate that cost control 

could directly affect genetic variation of seeds collected from the wild, which in turn is only one 

of many facets of what successful restoration might require. 

 Even if economic and institutional constraints could be overcome, the intertwined 

complexity of natural systems that lend them much of their beauty and fascination may hinder 

efforts at restoration.  As Hilderbrand et al. (2005) note, ecological restoration strives to recreate 

complex systems using simplified guiding principles that can reduce its success.  The intricate 

relationships that bind a bunch of organisms into an ecosystem can take far more time to develop 

than impatient humans want to invest.  Restorationists, moreover, cannot prevent new insults, 

such as invasive species or climate change, from threatening restored ecosystems.  Restoring an 

ecosystem to predisturbance conditions may often be impossible; in particular, California prairies 

as they existed before European colonization are probably forever lost. 

 The prospect of expensive, labor-intensive projects that may never meet original 

objectives raises question regarding the goals of restoration.  In the face of climate change, 

invasive species, land-use change, and other anthropogenic impacts, some have recently come to 
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suggest considering some altered ecosystems as "novel ecosystems" that warrant being protected 

as such (Hobbs et al. 2009).  A few restoration experts suggest lowering the standards for 

restoration, asking, for example, whether we want genetic conservation at all costs, or expedient, 

affordable restoration (Cronn et al. 2003).  Others suggest a hierarchy of goals from restoration 

with local genotypes through "restoration" using non-native species (Jones 2003), an approach 

that many restorationists would find objectionable. 

 This study has explored one example of how cost management might impinge on 

restoration results.  Using ecological restoration to mitigate damage from economic activity pits 

effective restoration against profits.   A better alternative would be preventing damage to 

ecosystems when possible, rather than permitting losses and hoping for successful ecological 

compensation.  Restorationists should vigorously reiterate the scientific, technical, and economic 

impediments to restoration, to supplant the optimistic vision of recreating nature with a more 

realistic perspective of the limited but still valuable benefits of restoration.  A.D. Bradshaw 

described restoration as the "acid test" of ecological knowledge (Bradshaw 1996).  It may also be 

a test of our willingness to face the limits of our ability to manipulate nature.   
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