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Abstract 

Controlling the Dynamics of Nanoscopic Matter with Electromagnetic Fields 

by 

Haokun Li 

Doctor of Philosophy in Applied Science and Technology 

with the Designated Emphasis in Nanoscale Science and Engineering 

University of California, Berkeley 

Professor Xiang Zhang, Chair 

The electromagnetic force is one of the four basic interactions discovered in nature and it 
plays an essential role in determining the internal properties of most matter seen in daily life.  
In this dissertation, we present the endeavor on exploiting electromagnetic fields to actively 
control the dynamics of various nanoscopic matter, including atomic ion rings, monolayer 
semiconductors, and nanomechanical membranes. The achieved controls open up unique 
opportunities to study fundamental many-body quantum physics and to facilitate information 
and energy transfer processes at the nanoscale. 

This dissertation consists of three sets of experiments. 1. We design and fabricate a surface-
electrode Paul trap and confine up to fifteen 40Ca+ ions into a microscopic ring using radio-
frequency electric fields. The achieved unprecedented circular symmetry enables the first 
observation of localization-delocalization transitions of ion rings at millikelvin temperatures. 
2. We propose and demonstrate a scheme to couple electron valley degree-of-freedom with 
macroscopic mechanical motion using a magnetic field gradient perpendicular to suspended 
monolayer semiconducting transition metal dichalcogenides (for example MoS2). Direct 
transduction of valley excitation into mechanical states is realized for the first time. 3. We 
perform the first experiment to probe and manipulate the phonon energy transfer driven by 
quantum fluctuations of electromagnetic fields (the Casimir effect). With a delicate approach 
to place two nanomechanical membranes parallel and close to each other, we realize the first 
strong Casimir phonon coupling condition and thus observe the thermal energy exchange 
across vacuum between individual phonon modes. 
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Figure 2.1.1 | The left figure shows the standard quadruple electrode configuration for Paul trap. The 
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Figure 2.2.1 | The symmetry of the ion ring was disrupted by complex stray electric fields in previous 
experimental implementations (left). We address this issue by making a small ion ring far from the 
trap surface. The stray electric fields affect the ion ring in a global manner and thus can be easily 
compensated (right). 

Figure 2.2.2 | The top figure shows the schematics our surface ring trap (not in scale). The bottom 
figure shows the cross-sectional electric fields at an instant when the RF voltage is positive to ground. 

Figure 2.3.1 | Fabrication process of the silicon surface ring trap. 

Figure 2.3.2 | Glass wafer (top side) bonded to silicon wafer (bottom side). Wafer size is 4 inch. The 
white dots are the bubbles generated from the wafer bonding process. 

Figure 2.3.3 | Optical images of the top electrodes on the ring trap. The white dashed circle on the 
right figure shows the size of the ion ring. 

Figure 2.3.4 | Top: optical image of the backside of the ring trap. Bottom: surface profile scan along 
the dashed line in the top figure. The flatness at bottom of the scan confirms the through etching of 
the glass substrate. 

Figure 2.3.5 | Scanning electron microscope image of the trap cross section. 

Figure 2.3.6 | Left: an electrical pad on the backside of the trap with Swiss crossed wire bonds, which 
act as a fuss button to secure the electrical bonding between the trap and the printed circuit board. 
Right: a silicon surface trap bonded on a printed circuit board. 

Figure 2.4.1 | Ion trapping experimental setup. 

Figure 3.1.1 | Left: experimental schematics of cooling and trapping of ion rings with the surface 
trap. Right: transitions involved in Doppler cooling of 40Ca+ ions. 

Figure 3.1.2 | (a)–(c) Images of ion crystals composed of four ions (a) and ten ions (b),(c) for different 
total dipole fields Ey. (d) Image of a delocalized ten-ion ring when the total external dipole field is 
close to zero. In (a)–(d), the scale bars are 20 µm. The fluorescence inhomogeneity of the images is 
caused by the size of the Gaussian cooling beam of ~70 µm full width at half maximum. 

Figure 3.2.1 | (a) Illustration of tangential common mode oscillation of the ion ring under an electric 
field. (b), (c) Dependence of the tangential trapping frequency ωt on the total external dipole field 
strength Ey (b) and ion number N (c), respectively. Error bars are smaller than the sizes of the data 
points. The curves correspond to the calculated collective tangential frequencies using the electric 
potential model considering only a homogeneous electric field and the Coulomb repulsion of the ions 
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confined to a ring. The agreement between the calculated results and the experimental data confirms 
that the homogeneous electric fields are the dominant symmetry-breaking mechanism. 

Figure 3.2.2 | The lowest potential energy configurations of a ten-ion crystal as a function of the 
position of the final ion (marked in red). The original equilibrium configuration is shown in (a). 
When the final ion moves from right to left, the nine other ions move into a new minimum 
configuration (b), and the crystal eventually recovers the original equilibrium configuration (c). (d) 
The calculated potential energy of ten ions as a function of the final ion position angle θ, where the 
difference between the minimum and the maximum is the rotational energy barrier VB. The marked 
points correspond to the equilibrium configurations shown in (a)–(c), respectively. In this figure, Ey 
= −2.0 V/m. 

Figure 3.2.3 | Dependence of the calculated rotational energy barrier on the total external dipole field 
strength Ey for 10 ions at the presence of different in-plane quadrupole fields. 

Figure 3.3.1 | Total external electric field strength (a) and corresponding rotational energy barrier 
VB/kB (b) at which the ion crystals are observed to delocalize as a function of the ion number. The 
errors of the electric fields in (a) are 0.1 V/m. The gray line in (b) denotes the measured tangential 
temperature �3 mK of the ions. 

Figure 3.4.1 | (a)–(c) Image of eight-ion rings in the localization-delocalization transition regime. 
(d)–(f) Corresponding simulated angular distribution p(θ) of the ions using the Langevin equation 
with  "# =	3 mK. Reduced fluorescence on the extrema of the x axis is due to the Gaussian profile of 
the detection beam incident from the positive y direction. 

Figure 3.4.2 | Simulated velocity distributions of the ions with different laser displacements from the 
ring center. The y-axis describes how often a specific velocity is found. The electric dipole fields in 
the y direction are 0 and -1.8 V/m in the upper and lower figure. 

Figure 4.1.1 | Left: structure of monolayer transition metal dichalcogenides. Right: electronic band 
structure of the materials which consists of two valleys K and K'. 

Figure 4.2.1 | Valley-mechanical coupling under an out-of-plane magnetic field gradient. 

Figure 4.3.1 | Schematic of the experimental design to observe valley-mechanical transduction.  

Figure 5.1.1 | Fabrication process flow of monolayer valley-resonator with the dry transfer method. 

Figure 5.1.2 | Optical image of the sample during the dry transfer process. The PDMS is peeled off 
from the substrate from the left side to the right side. The black curve shows the peeling off boundary.  

Figure 5.1.3 | Optical image of the final device. The inset shows the photoluminescence emission 
from the material. 

Figure 5.1.4 | Fabrication process flow of monolayer resonator with the critical point dry method. 

Figure 5.1.5 | SEM image of a suspended MoS2 fabricated with the critical point dry method. The 
two sides of the sample are cut with focus ion beam (FIB) to reduce the resonance frequency. 
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Figure 5.2.1 | Left: Photoluminescence spectrum of the monolayer MoS2. Right: Raman spectrum 
measured at the suspended MoS2 monolayer.  

Figure 5.2.2 | Electrical transport curve measured with a separate trilayer MoS2 FET device made 
from the same crystal source.   

Figure 5.2.3 | Left: Calibration of the sample substrate temperature in the cryostat. Right: Simulation 
of local temperature distribution of the monolayer MoS2 under laser heating. The circle indicates the 
laser spot (~1 µm). Here, the thermal conductivity of MoS2 is 30 W/mK. 

Figure 5.2.4 | Mechanical response of the device at room temperature and cryogenic temperature. 

Figure 5.2.5 | Mechanical frequency and quality factor at the low temperature range.  

Figure 5.3.1 | Schematics of the measurement setup. (EOM: electro-optical modulator, ND: neutral 
density filter, P: polarizer, FP: flippable polarizer, HWP: half wave-plate, QWP: quarter wave-plate, 
M: mirror, BS: beam-splitter, FM: flippable mirror, MC: magnetic coil, PBS: polarization beam-
splitter, PD: photodetector, NF: notch filter, APD: avalanche photodetector, DAC: digital analog 
converter, PA: power amplifier). 

Figure 5.3.2 | Time-domain signal showing the H and V polarization components of the pump light 
before QWP1. The polarization modulation frequency is close to the mechanical resonance ~36 MHz. 

Figure 5.3.3 | Reflection spectrum of the supported (left) and suspended (right) monolayer MoS2 
normalized by the reflection from substrate. The red line is obtained by fitting the MoS2 permittivity 
with the model described by Eq. (5.3.1). The inset shows the multi-layer stack used in the calculation. 

Figure 5.3.4 | Optical reflection and displacement detection responsivity of suspended monolayer 
MoS2 at ' = 654 nm as a function of separation between the monolayer and bottom gold surface 
calculated using transfer-matrix method.  

Figure 5.3.5 | Double lock-in scheme to single out the valley-mechanical actuation. 

Figure 5.4.1 | a, The mechanical displacement driven by circularly- and linearly-polarized pump. Δ) 
is the frequency offset from the mechanical resonance. b, Phase response of the driven motion with 
opposite pump helicity and magnetic field gradient. c, The mechanical quadratures of the monolayer 
driven resonantly by opposite valley excitation. Black dashed lines indicate the standard deviation.  

Figure 5.4.2 | Dependence of the valley-mechanical force on the angle * between the quarter wave-
plate axis and the pump laser polarization (a), the pump laser power (b), the magnetic field gradient 
(c), and the temperature (d). Error bars represent the standard errors of the signals. The red band in 
(d) shows the error estimates obtained from the fitting of the data with the exponential dependence. 

Figure 6.1.1 | Upper: electromagnetic modes in vacuum. Lower: the two objects modify the boundary 
conditions of electromagnetic fields and changes the total electromagnetic vacuum energy. As a 
result, the Casimir force emerges. 
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Figure 6.2.1 | Two objects with different temperatures separated by a vacuum gap (left). A zoom-in 
cartoon picture (right) shows the phonon oscillations that cause the infinitesimal displacements of 
the object surfaces, which give rise to oscillating force across the vacuum due to the Casimir effect. 

Figure 6.3.1 | Two mechanical membranes are clamped to substrates with different temperatures 
(left). Their fundamental phonon modes are resonantly coupled through the Casimir force, as 
described by the simplified model (right). As a result, heat is transferred from the hot to the cold side. 

Figure 6.3.2 | Schematics of the structure under theoretical consideration. 

Figure 6.3.3 | Illustration of the theoretical model which includes the mode-mode Casimir coupling 
and mode-bath interactions. 

Figure 6.4.1 | Schematics of the experimental design with double optical interferometry to identify 
phonon thermal transfer driven by the Casimir force. 

Figure 6.4.2 | a, Cross-sectional view of the layered structure used in the experiment. b, Calculated 
Correction factor + against the distance ,. c, Calculated coupling rate -.  versus the distance ,. d, 
Calculated mode temperatures "!0 and "10 as functions of distance ,. 

Figure 7.1.1 | Fabrication process flow for the left (a-d) and right (e-h) samples. 

Figure 7.1.2 | Optical images of the left (a and b) and right (c and d) sample surfaces. 

Figure 7.1.3 | Optical images showing the mounting of the two samples. The left and right samples 
are attached to a custom-made copper plate and a printed circuit board, respectively. 

Figure 7.1.4 | Schematics of the parallel alignment setup. 

Figure 7.1.5 | a, b, Transmission optical images for the aligned (a) and misaligned (b) cases. c, d, 
Optical intensity at different locations of the membranes (markers in a, b) versus the separation 
change. Solid curves are sinusoidal fits with an attenuation factor. The periodicity (~230 nm) matches 
well with the half wavelength of the illumination (~460 nm).  

Figure 7.2.1 | Schematic of the double optical interferometry experimental setup with the integration 
of multiple feedback controls. (ND: neutral density filter, BS: beam splitter, M: mirror, L: lens, DC-
PD: DC photodetector, APD: avalanche photodetector.)  

Figure 7.2.2 | Optical image of the sample mount assembly and control stages. 

Figure 7.2.3 | a, Resonance frequencies of the two modes versus the bath temperatures. b, c, Thermal 
mechanical noise spectrum of mode 1 (a) and mode 2 (b). 

Figure 7.2.4 | Frequency stability under thermal feedback control. The shaded areas represent the 
bandwidths of the mechanical resonances.  

Figure 7.3.1 | a, Thermomechanical noise spectrum of membrane 2 at the distance d = 400 nm with 
different bias voltages. The upper and lower branch corresponds to the symmetric and antisymmetric 
eigenmode, respectively. b, Frequency splitting of the thermomechanical noise spectrum shows a 



	

ix	

parabolic dependence on the bias voltage between the membranes (solid curves are parabolic fits). 
The curvatures of the parabolas are proportional to the electrostatic interaction strength, which have 
a distance dependence of d-3 according to the Coulomb law. We determine the frequency splitting by 
fitting the two peak positions in the spectra, which gives a precision of ~1 Hz (smaller than the data 
markers). 

Figure 7.3.2 | Dependence of electrostatic strength (a) and minimum splitting voltage 23 (b) on the 
distance between the membranes.  

Figure 7.3.3 | The minimum frequency splitting for each distance shows a dependence of ,45.78±3.81. 
This power law verifies that the Casimir interaction is dominant over the electrostatic interaction in 
our measurement.  

Figure 7.4.1 | a, Because of the Casimir interaction, the mode temperatures deviate from their bath 
temperatures when the two membranes are brought close. At d < 400 nm, "80 and "10 become nearly 
identical, showing thermalization of the two phonon modes. The mode temperatures are measured 
from the thermal Brownian motion :;"<0 = =<Ω1⟨@<1⟩. The error bars represent the standard error 
determined by ~4 hours’ continuous measurement. The data agrees well with the calculation using 
coupled-mode Langevin equations (solid lines). b, c, The measured quadrature components of the 
thermal displacement of phonon modes 1 (b) and 2 (c) at mode temperatures "80 = 287.0 K and "10 = 
312.5 K, respectively. Dashed lines indicate the standard deviations of the distriubtions and the 
enclosed areas are proportional to the mode temperatures. d, Probability distributions of the phonon 
mode energy follow the statistics of a canonical ensemble B C< ∝ E4FG/IJKG

L
 represented by the 

solid lines. 

Figure 7.4.2 | When the frequency offset Ω1 − Ω8  is much larger than the linewidths of the modes, 
the mode temperatures "80 and "10 keep the same as their bath temperatures and no heat transfer effect 
is observed. Here, the distance between the membrane is d = 430 nm. 

Figure 7.5.1 | | Frequency shifts of the two modes versus the distance (a). In (b), the Casimir force 
contribution is excluded. Measurement is performed at bath temperatures "8 = 287.0 K and "1 = 
312.5 K, and the frequencies of the modes are offset by ~250 Hz. 

Figure 7.5.2 | | Distance dependence of the ratio between the radiation pressure driven by thermal 
fluctuations and the Casimir pressure driven by quantum fluctuations. 
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Chapter 1 

Introduction 

Our quest to understand how electromagnetic fields interact with matter and affect the 
internal thermal, electrical, and mechanical properties of materials has been a fruitful journey 
for several centuries. On the other hand, huge success has also been made by actively using 
electromagnetic force to control the movement of matter for promoting our understanding 
of the physical world and for realizing a variety of technological applications. In accelerator 
physics, oscillating electromagnetic fields are implemented to generate high energy particle 
beams, with which new particles have been produced and discovered. In atomic physics, 
optical tweezers and laser cooling technologies have led to the observation of new phases of 
matter (for example Bose-Einstein condensation) and extremely precise clocks with neutral 
atoms. The electrodynamic ion traps have enabled us to explore quantum mechanics down 
to single particle level and to perform quantum information processing. In nuclear reactors, 
strong magnetic fields are manipulated to confine hot plasmas for generating thermonuclear 
fusion power. Electromagnetically actuated micro/nano electromechanical systems (NEMS 
/MEMS) have been widely used in many areas, such as sensing, switching, biological studies, 
and wireless communications. 

This dissertation presents continued efforts in this context, on using electromagnetic fields 
to control the dynamics of various nanoscopic matter, including atomic ion rings, monolayer 
semiconductors, and nanomechanical membranes. We have achieved unprecedented control 
of those matter and observed exotic physical phenomena. 1. We confined up to fifteen atomic 
ions into a microscopic ring and observed the localization to delocalization transitions at 
millikelvin temperature. 2. We realized valley-mechanical coupling and directly transduced 
electron valley excitation into macroscopic mechanical motion in suspended monolayer 
semiconductors. 3. We realized strong phonon coupling induced by the Casimir force and 
observe the resulting phonon thermal energy transfer between nanomechanical membranes. 
These experimental results and technological developments open up new realms to explore 
many-body quantum physics, and to facilitate information and energy transfer processes at 
the nanoscale.  
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1.1  Controlling the dynamics of atoms and nanomaterials 

1.1.1 Atom trapping and cooling 

The study of the intrinsic properties of atoms is a highly fruitful area of scientific research. 
Nearly a century ago, such inquiry led to the formulation of quantum mechanics, one of the 
cornerstones of modern physics. Since then, measurements with atoms continuously shed 
light on fundamental physics, such as relativity and quantum field theory.  

The successfulness of understanding matter by probing atomic systems highly depends on 
the capability to make precise measurement and control. However, the desired precision and 
control cannot be easily accessed. In solids or liquids, one cannot isolate individual atoms 
from their neighbors. In atomic gases, thermal motions strongly disturb the measurement.  

In light of this, laser cooling and atom trapping technologies were developed in the 1980s, 
including optical trapping of neutral atoms and electrodynamic trapping of charged ions. 
These technologies revolutionize the spectroscopy measurements of atoms. Gigantic success 
has been achieved in making extremely precise atomic clocks and probing fundamental 
physical constants, which further bring insights to the frontier of high energy physics. 

The delicate control of atomic movements has also led to huge triumphs in creating and 
observing new quantum phases of matter. Significant examples include Bose-Einstein 
condensation and Mott insulator to superfluid transition. As far as we know, nearly all 
quantum phases of matter under exploration can be interpreted as a result of symmetry 
breaking [1]. In brief, the equations of motions are invariant under certain symmetry 
operations while physical consequences are not. Usually, the consequences of invariance are 
studied in large systems (for example condensed matter systems [2] and optical lattices of 
cold atoms [3]) to suppress edge effects which can cause undesired symmetry breaking. This 
approach works for investigating global properties, however, it is difficult to be used for 
probing local observables and their correlations, which are the critical aspects of quantum 
matter. 

To this end, quantum systems that naturally embody symmetry (or invariance) and allow for 
single particle control are much desired. Through the implementation of periodic boundary 
conditions, one can hope to realize translational symmetry in small systems where single-
particle control is achievable. This quest motivates us to confine cold ions into a ring shape 
and establish exquisite control [4]. 
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1.2.1 Nanoelectromechanical systems 

The first reported electromechanical device dated back to 1785. In the measurement of 
electrical charge, Coulomb used an electrical torsion balance which consisted of two metal 
balls – one of which was fixed, the other attached to a moving rod that acted as capacitor 
plates, converting a charge difference into an attractive force. This device illustrates the two 
main components in most electromechanical systems: a mechanical element and a transducer. 
The mechanical element either deflects or vibrates in response to an electromagnetic force. 
These mechanical outputs are then detected by a readout transducer. 

With the advancement of nanofabrication and the emergence of nanomaterials (for example 
carbon nanotube and graphene), electromechanical devices have been tremendously scaled 
down. The miniaturization gives rise to many advantages of nanoelectromechanical systems, 
such as ultrasmall mass, ultrahigh resonance frequency, and ultralow mechanical dissipation. 
These properties bring excellent performance in information processing (high speed and low 
power) and sensing (approaching the quantum limit). Nowadays, nanoelectromechanical 
systems are playing important roles in wireless radio-frequency communications and studies 
of biology, chemistry, and quantum physics [5-7]. 

One important social drive for nanoscience is from the information aspect, which demands 
increasing functionalities and scaling. Utilizing the electron valley degree-of-freedom (local 
minima in the band structure of solids) as a new type of information carrier, recently emerged 
valleytronics promises exciting applications in computation and communication beyond 
conventional electronics and spintronics [8,9]. A fruitful scientific question becomes how to 
transfer valley information to mechanical motion? To this end, we realize valley-mechanical 
coupling and demonstrate the first transduction of valley excitation into mechanical states in 
suspended monolayer semiconducting MoS2 [10]. 

Another important motivation for nanoscience is from the energy perspective, which quests 
for increasing efficiency and sustainability. At nanoscale, quantum mechanical effects play 
important roles in many aspects. How do they affect the energy transfer processes [11-13], 
and how can we utilize them to facilitate and manage energy transfer? With this motivation, 
we perform the first experiment using nanomechanical systems to probe and control the 
phonon coupling and thermal energy transfer driven by the quantum vacuum fluctuations of 
electromagnetic fields (the Casimir effect) [14].  
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1.2  Fundamentals of electromagnetic force 

Electromagnetic fields can exert force onto matter and affect their movements [15]. Consider 
a single particle with charge q moving with a velocity v in an electric field E and a magnetic 
field B, the force is given by the Lorentz formula 

F = qE + qv × B.                                                 (1.2.1) 

For a continuum with charge and current densities & and J, the force density f (force per unit 
volume) can be written as 

f = &E + J × B.                                                   (1.2.2) 

By introducing the Maxwell stress tensor 

T() = +, -(-) −
/
0
1()-0 + 3(3) −

/
0
1()30 /5,                  (1.2.3) 

and the Pointing vector 

    7 = 8	×	; /5,                                                  (1.2.4) 

the electromagnetic force can be calculated by  

=	 = ∇ ∙ @ −
1
A0
B7
BC
.																																																					(1.2.5) 

The above equation describes the momentum conservation law in classical electrodynamics, 
where ∇ ∙ @ is the momentum flux density. We note that the equation assumes complete 
knowledge of both ρ and J (both free and bounded charges and currents). For the case of 
nonlinear materials, the nonlinear Maxwell stress tensor must be used. 

Equation (1.2.3) provides a convenient way to calculate the electromagnetic force on objects 
with complex shape, by evaluating the integral of the stress tensor on the surfaces. With the 
development of computational electrodynamics modeling techniques and the advancement 
of computation power and resource, larger and more complex structures can be numerically 
simulated today. 
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1.3  Thesis overview 

This dissertation is summarized into three parts: 1. Realization of translational invariant cold 
ion rings. 2. Valley-mechanical transduction. 3. Casimir phonon coupling and heat transfer. 

In Chapter 2, we introduce the design considerations on achieving circular symmetric ion 
rings using surface-electrode Paul trap. We then describe the fabrication process flow of the 
silicon ring trap which has electrical vias through glass substrate. In Chapter 3, we explore 
the dynamics of laser cooled microscopic ion rings, including the common oscillations and 
localization to delocalization transitions. Both experimental results and numerical simulation 
are presented.  

In Chapter 4, we introduce our design for realizing valley-mechanical coupling in monolayer 
transition metal dichalcogenides through the use of a strong perpendicular magnetic field 
gradient. Chapter 5 describes our experiments on achieving valley-mechanical transduction. 
We fabricate suspended monolayer MoS2 resonators with both dry transfer and critical point 
dry methods. In the optical interferometric measurement, we implement a double lock-in 
technique to single out the valley-actuated mechanical motion. We present effective control 
of valley-mechanical interaction by adjusting the pump light, magnetic field gradient, and 
temperature. 

In Chapter 6, we discuss our experimental design to realize phonon coupling and thermal 
transfer driven by the Casimir force. We analyze the dynamics with coupled-mode Langevin 
equations. Chapter 7 describes our experimental implementations and observations. We 
fabricate nanomechanical membranes with lateral dimensions of ~300 µm and align them in 
parallel with high precision (<10-4 rad) using optical and electrical methods. We bring the 
nanomembranes as close as ~300 nm. A double optical interference setup with multiple 
feedback loops controlling the membrane distance, resonance frequency, and detection 
sensitivity is constructed, and successfully identifies the strong phonon coupling and thermal 
energy transfer induced by the Casimir force. 

1.4  Summary of key results 

The key results of this dissertation are summarized in the following. 1. We trap atomic ions 
into a microscopic ring and preserve the circular symmetry at millikelvin temperatures [4]. 
2. We realize direct transduction of electron valley excitation into mechanical motion in 
monolayer MoS2 resonators [10]. 3. We utilize nanomechanical systems to realize strong 
phonon coupling driven by the Casimir force, and observe the resulting thermal energy 
exchange between individual phonon modes [14].  
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Chapter 2 

Towards freely rotating cold ion rings 

2.1 Background and motivation 

Due to the strong interactions between charge and electromagnetic fields, charged particles 
can be tightly confined in vacuum. Significant examples are the Paul trap using oscillating 
electric fields and Penning trap combining static electric and magnetic fields [16,17]. With 
the revolutionary development of laser cooling and laser spectroscopy over the past several 
decades, both the internal electronic and external motional degrees-of-freedom of trapped 
ions are now controllable down to the single quantum level [18].  

Today, trapped ions are playing significant roles in studies of many-body physics, quantum 
information processing, and precision measurements. While most experiments are carried 
out with linear ion strings, a particularly interesting structure is a ring of ions which ideally 
would exhibit circular symmetry and periodic boundary condition. Many exciting theoretical 
proposals with ion rings have emerged over the past decade [19-25], including the simulation 
of Hawking radiation, the exploration of quantum phase transition, and the test of symmetry 
breaking with indistinguishable particles. However, experimental investigation remains at a 
standstill because of the long-standing challenge to preserve the symmetry of ion rings at 
low temperatures [26-29]. Overcoming such a challenge and creating freely rotating cold ion 
rings thus become the critical requirement to stimulate further research. 

This Chapter presents the design and fabrication of a new surface-electrode microscopic ring 
Paul trap. With this implementation, the circular symmetry of the ion ring is preserved at 
laser cooling temperatures (millikelvin) and can potentially maintained much further [4], as 
demonstrated by our experiments discussed in the following Chapter. This quantum system 
opens up a new regime to explore many-body quantum physics with translational invariance 
where individual particles can be accessed and controlled. In addition, the symmetry and 
periodicity of the ion ring provide a unique platform to explore quantum computing and 
quantum simulation. 
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2.2 Introduction to Paul trap 

Maxwell equations forbid trapping of a charged particle using only static electric fields. The 
idea of utilizing oscillating electric fields to dynamically confine charged particles was 
pioneered by Wolfgang Paul in 1953. To illustrate the concept, we consider a plane F − G 
with a set of radio-frequency (RF) electrodes, as shown in Fig. 2.1.1. At any instant of time, 
the charged particle experienced a quadrupole potential 

 H F, G, C = H,(F, G)cos(ΩNOC).                                     (2.1.1) 

The fast oscillating potential effectively shakes the ion back and forth, resulting in a dipole 
moment of the moving particle. The induced dipole moment is then pulled by the electric 
field gradient toward the saddle point (the RF null), where electric field gradient is zero. 
When the electric field oscillation is much faster than the motion of the charged particle, the 
process can be described with a pseudo potential 

Φ(F, G) = Q0 ∇H,(F, G) 0/4RΩNO0 ,                                  (2.1.2) 

where Q and M are the charge and mass of the particle. The principle can be extended to 
design traps with various geometries. In recent years, the goal of building scalable quantum 
information processors has triggered the rapid development of chip-based ion traps [30], 
where the electrodes are patterned onto surfaces using current semiconductor manufacturing 
technologies. 

 

Figure 2.1.1 | The left figure shows the standard quadruple electrode configuration for Paul 
trap. The middle figure describes the oscillating potential generated by the RF electrodes. 
Effectively, the charged particle experiences a pseudo potential (right figure). The potential 
profile is adapted from Ref. [31]. 
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2.3 Surface trap with circular symmetric potential 

By implementing circular symmetry to the trap design, one can in principle confine ions into 
a ring shape. However, in all previous experimental attempts [26-29], because the ion-
electrode distances were much smaller than the ion ring diameters, the complex stray electric 
fields from the trap electrodes substantially disrupt the circular symmetry, as described in 
Fig. 2.2.1. In our new design [32,33], we address this issue by reducing the ion-ring diameter 
while keeping the ions far away from the electrodes, such that stray fields from imperfections 
vary on length scales larger than the ring diameter. This strategy avoids local distortions of 
the ion ring. The residue global effect can thus be easily compensated with mainly 
homogeneous electric field. 

 

Figure 2.2.1 | The symmetry of the ion ring was disrupted by complex stray electric fields in 
previous experimental implementations (left). We address this issue by making a small ion 
ring far from the trap surface. The stray electric fields affect the ion ring in a global manner 
and thus can be easily compensated (right). 

Our chip-based surface-electrode ring trap consists of three concentric circular electrodes 
surrounded by eight static-voltage compensation electrodes as shown in Fig. 2.2.2. Applying 
an RF voltage to the innermost and outermost circular electrodes with all other electrodes 
held at a DC voltage generates a time-averaged circular potential minimum 400 µm above 
the trap surface. The two radial directions at the time-averaged potential minimum are 
degenerate according to the symmetry of Maxwell equations. The outer radius of the three 
circular electrodes are designed to be 125, 600, and 1100 µm, respectively. The gap between 
the innermost and the next circular electrode is 15 µm, and the gaps between other electrodes 
are 25 µm. The whole electrode pattern possesses a diameter of 6 mm, outside of which is 
ground.  
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Figure 2.2.2 | The top figure shows the schematics our surface ring trap (not in scale). The 
bottom figure shows the cross-sectional electric fields at an instant when the RF voltage is 
positive to ground.  

2.4 Fabrication of silicon surface trap with electrical vias 

To preserve the circular symmetry, electrical connections need to be established beneath the 
trap surface. We develop a procedure to fabricate silicon ring trap with electrical vias through 
a glass substrate. The fabrication process flow is described in Fig. 2.3.1. 

The trap is fabricated from boron-doped silicon anodically bonded on borofloat glass (SiO2). 
The electrodes are patterned using photolithography followed by deep dry etching of silicon. 
The deep electrode trenches ensure that stray fields from bound charges in the glass are well 
shielded. Hydrofluoric acid (HF) etching of the glass underneath the trenches is performed 
to increase the distance between the electrodes through the glass surface and thus prevents 
surface flashover. Electrical vias are created on the backside by HF etching of the glass 
substrate with Au/Cr mask layers, followed by gold deposition and a liftoff process. The trap 
is glued onto the printed circuit board with epoxy. To secure their electrical connection, the 
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metal pads on the backside of the trap is Swiss crossed with gold wire bonds, which function 
as mechanical springs. Below we provide detailed descriptions for each step. 

 

Figure 2.3.1 | Fabrication process of the silicon surface ring trap. 

(1) The trap fabrication starts with anodic bonding of 4-inch silicon and borofloat glass 
wafers with thickness of 250 µm and 175 µm, respectively. The silicon wafer is highly Boron 
doped with resistivity <0.005 ohm∙cm. Before the bonding, the wafers are cleaned in Piranha. 
Surface cleaning and cleanroom environment is crucial for the success of the bonding. 
Particles on the wafers will cause bubbles (Fig. 2.3.2) or even the failure of the bonding. The 
bonded wafers are diced into 12 × 12 mm2 chips and cleaned again with Piranha. 

 

Figure 2.3.2 | Glass wafer (top side) bonded to silicon wafer (bottom side). Wafer size is 4 
inch. The white dots are the bubbles generated from the wafer bonding process. 
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(2) In order to pattern the top electrodes with photolithography, the chips are coated with 
SPR-220 photoresist with thickness of ~8 µm. Soft bake is performed at 115 °C for 6 min. 
To center the electrode pattern, we use the edges of the square-shaped chip for the alignment. 
The photoresist is exposed with a dose of ~360 mJ/cm2 and developed in MF-26 A for 5 min. 
Hard bake is performed at 80 °C for ~100 mins. SPR-220 is viscous and sensitive to thermal 
shock and humidity change. It is important to prevent bubbles and any abrupt temperature 
change in the process. It will also be helpful to leave the sample at rest for ~30 mins between 
the exposure and the develop process. 

(3) The deep silicon etching is performed in an Inductively Coupled Plasma (ICP) etch 
system. The Advanced Silicon Etch (ASE) process consists of alternating cycles of etching 
and protective polymer deposition to achieve high aspect ratios. To perform etching in the 
system, the chips are bonded to 6-inch handle wafers coated with thick SPR-220 photoresist. 
To enhance the thermal conduction to the chip, the photoresist is removed and cool grease 
is applied in the bonding areas of the handle wafers. After etching, the cool grease is gently 
removed with Acetone, and chips are cleaned with Isopropyl Alcohol and then Piranha.  
Optical images of the top electrode pattern after etching are shown below in Fig. 2.3.3. 

 

Figure 2.3.3 | Optical images of the top electrodes on the ring trap. The white dashed circle 
on the right figure shows the size of the ion ring. 

(4) To open electric vias through the glass substrate, the glass side is thinned down in 49% 
hydrogen fluoride (HF) to ~70 µm, during which the topside of the chips are protected with 
melted wax. Afterwards, the chips are cleaned with hot Acetone and then Piranha. To form 
the HF etching mask, 60 nm Cr and then 200 nm Au are evaporated onto the backside. The 
second photolithography using SPR-220 is performed during which the via patterns are 
aligned to the top electrodes using the edge of the chips. After the hard bake, a short (~1 min) 
oxygen plasma descum process is performed to remove the photoresist residue. With melted 
wax protecting the top surface, the chips are dipped into Au and then Cr etchants and an HF 
etching mask is obtained. 



								

12	

(5) The vias are opened with 49% HF etching, as shown in Fig. 2.3.4. The size of the opening 
window heavily affects the etching rate. Afterwards, the wax and the metals on the chips are 
removed with hot Acetone and Au/Cr etchants. The chips are then cleaned thoroughly with 
Piranha. 

 

Figure 2.3.4 | Top: optical image of the backside of the ring trap. Bottom: surface profile 
scan along the dashed line in the top figure. The flatness at bottom of the scan confirms the 
through etching of the glass substrate. 

(6) To pattern the electrical pads on the backside, a double layer photolithography process 
is performed with g-line & i-line photoresists (or with LOR-5A & i-line). After the develop 
process, a short (~1 min) oxygen plasma descum process is important to remove the resists 
residue. To remove the surface oxide on silicon and improve the electrical contact the chip 
is dipped into diluted HF (1:10) for ~10 s. Immediately after, the chip is placed in vacuum 
to evaporate ~10 nm Cr (for adhesion) and then ~800 nm Au. Metal liftoff process is then 
performed with a long soak in Acetone. 

(7) To prevent surface flashover between the electrodes when high voltage is applied, HF 
etching of the glass from the topside is implemented to increase the distances between the 
electrodes through the glass surface. During the HF etching, the backside of the chip was 
protected with melted wax. A cross-sectional view of the trap is shown in Fig. 2.3.5. The 
deep silicon trench ensures that stray fields from bound charges in the glass are well shielded. 
Afterwards, the wax is removed with hot Acetone and the chip is cleaned with Piranha. 
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Figure 2.3.5 | Scanning electron microscope image of the trap cross section. 

(8) To package the trap, the chip is gently pressed onto printed circuit board without touching 
the center electrode pattern and glued with epoxy. To secure the electrical bonding, all the 
electrodes are Swiss-crossed with gold wire bonds, as shown in Fig. 2.3.6. The wire bonds 
serve as elastic electrical connectors (fuss buttons) between the trap and the printed circuit 
board. This strategy eventually secures the electrical connections for all the 12 electrodes on 
the trap. Attempts of soldering the trap onto the circuit board have also been made but ended 
up with failure. The thin layer of electrical pads on the backside can be sucked into the solder 
paste during the heating. 

 

Figure 2.3.6 | Left: an electrical pad on the backside of the trap with Swiss crossed wire 
bonds, which act as a fuss button to secure the electrical bonding between the trap and the 
printed circuit board. Right: a silicon surface trap bonded on a printed circuit board. 
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2.5 Assembling the ring trap with ion trapping apparatus 

The electrical connection between the trap electrodes and their corresponding pads on the 
printed circuit board needs to be checked thoroughly to secure the trap performance. This is 
achieved by probing the trap surface with an aluminum bonding wire. Since the smallest 
electrode on the trap is ~250 µm in diameter, the probe can be operated with hands under 
human eyes. After loading the trap, the chamber is pumped down and baked for weeks at 
~160 °C to obtain the ultrahigh vacuum <10-10 Torr, which is important for long ion lifetime 
(~hours). All electrical connection needs to be strong enough to survive the baking. Other 
necessary components for trapping include the atom oven (with 40Ca source), ionization and 
cooling lasers (422 nm, 375 nm, 397 nm, 866 nm for 40Ca+), a sensitive imaging setup, 
electric feedthroughs with RF and DC inputs, and an ion pump to keep the ultrahigh vacuum. 
An optical image of the assembled setup is shown below in Fig. 2.4.1. The experimental 
implementation of trapping and cooling is introduced in the following Chapter. 

 

Figure 2.4.1 | Ion trapping experimental setup. 
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Chapter 3 

Dynamics of microscopic ion rings at millikelvin 

With the microfabricated surface trap discussed in Chapter 2, we are able to confine single 
40Ca+ ions into a microscopic ring and study the ion dynamics in this unique geometry. In 
this Chapter, we introduce our experimental characterization of the ion rings combined with 
the numerical analysis. In particular, we observe the transition from localized states to 
delocalized states by preserving the symmetry at laser cooling temperatures. We model the 
system and quantitatively explain our observation with numerical calculation. 

The experimental data in this Chapter was taken with Erik Urban in Prof. Haeffner’s lab [34]. 

3.1 Cooling and trapping of 40Ca+ ions 

In the experiment, we perform Doppler cooling to reduce the kinetic energy of the 40Ca+ ions. 
We use a 397 nm light to excite the S1/2−P1/2 transition of the ion with a detuning ∆. In the 
red detuning case, the ion is more likely to absorb a photon when it is moving towards the 
laser than away from it, resulting in a net cooling effect. The process can be described semi-
classically. Consider the ion is moving with a velocity v and each scattered photon transfers 
momentum ℏU onto the ion, the radiation pressure force is given by 

V =
W/2

1 + W + 2(Δ − UY)/Γ 0 ℏUΓ,																																				(3.1.1) 

where s represents the saturation parameter and Γ denotes the transition linewidth. For small 
velocities, the force can be approximately written as a constant force plus a damping force 
proportional to the ion velocity. The damping force reduces the kinetic energy of the ion 
while the random nature of the scattering events provides a heating mechanism. The heating 
and the cooling processes are balanced at the equilibrium temperature called the Doppler 
limit, which can be expressed as 
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[\(] =
ℏΓ
4U^

1 + W	(1 + ξ)	,																																									(3.1.2) 

where kB is the Boltzmann constant and ξ is the geometric projection of an emission recoil 
kick onto the considered axis [18]. For dipole emission, ξ = 2/5.  

To implement the trapping, we apply a 2π × 5.81 MHz signal with 220 V amplitude to the 
RF electrodes. A flux of neutral calcium atoms generated from a heated atom oven travels 
parallel to the trap surface. The neutral calcium is then ionized inside the trapping region 
through a two-photon process with laser beams at 422 nm and 375 nm. A red-detuned 397 
nm laser beam then cools the ions through the S1/2-P1/2 transition. The P1/2 state may decay 
into the D3/2 state, bringing the cooling process to a halt. To counter this, the ions are re-
pumped to the P1/2 state with laser light near 866 nm [35]. The fluorescence of the ions at 
397 nm is collected with a custom designed objective and imaged on an electron-multiplying 
charge-coupled device (EMCCD) camera (Fig. 3.1.1).  

 

Figure 3.1.1 | Left: experimental schematics of cooling and trapping of atomic ion rings with 
the surface trap. Right: transitions involved in Doppler cooling of 40Ca+ ions. 

When captured by the RF trapping potential, the ions crystallize into a ring because of their 
mutual Coulomb repulsion, as shown in Fig. 3.1.2. With no compensating fields applied, the 
ions are typically pinned to one side of the ring by stray electric fields. The strength of the 
stray fields in the x-y plane is measured to be ~3 V/m by recording the compensating field 
required to reposition the ion crystal to be first symmetric to the x-axis and then to the y-axis. 
A local electric field due to a quadrupole moment of ~1 V/m is also present (expressed as 
the product of the quadrupole moment and ring radius). These stray fields are compensated 
by using the static voltage compensation electrodes before applying additional electric fields 
throughout the extent of this Chapter. The measured radial trapping frequency is 2π × 390 
kHz. The trapping potential is able to hold up to 15 ions in a ring before the ion crystal forms 
a zigzag configuration when pinned. 
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Figure 3.1.2 | (a)–(c) Images of ion crystals composed of four ions (a) and ten ions (b),(c) 
for different total dipole fields Ey. (d) Image of a delocalized ten-ion ring when the total 
external dipole field is close to zero. In (a)–(d), the scale bars are 20 µm. The fluorescence 
inhomogeneity of the images is caused by the size of the Gaussian cooling beam of ~70 µm 
full width at half maximum. 

3.2 Gauging the symmetry of the ion rings 

The presence of external electric fields in the trapping plane causes an asymmetry in the ring 
potential, leading to a finite tangential trapping frequency (common oscillation along the 
circumference of the ring). We gauge the asymmetry by measuring the tangential trapping 
frequency of the ion crystal. In the measurement, we apply a sinusoidal voltage to one 
compensation electrode and observe the excitation of the collective tangential mode with the 
EMCCD camera. Figures 3.2.1(b) and 3.2.1(c) present the observed dependence of the 
tangential trapping frequency on the total external dipole field Ey and the ion number N, 
respectively. As the ion number becomes larger, the increased Coulomb repulsion resulting 
from the reduced ion-ion spacing enforces a more uniform charge distribution in the ring, as 
shown in Figs. 3.1.2(a) and 3.1.2(c). For such a homogeneous charge distribution, an 
external electric field exerts a smaller restoring torque when the ion crystals deviate from 
the equilibrium position. Therefore, we expect the tangential trapping frequencies to 
decrease with an increasing ion number and better compensation of the stray fields. 

The potential energy of the ion crystals can be modeled by considering only a homogeneous 
external field and the Coulomb repulsion of the ions confined to a ring. This results in a 
potential energy of the form 

` = −
1
2

(

a-bc cos d( + a0/ 4ef,c sin
d( − d)
2

(i)

,																(3.2.1) 
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where d denotes the ring diameter, θi describes the angular position of the ith ion, e represents 
the elementary charge, and ϵ0 is the vacuum permittivity. We calculate the frequencies of the 
collective tangential motion by expanding the potential energy of the ion crystals to quadratic 
order in the ion displacements relative to equilibrium. The results are presented in Figs. 
3.2.1(b) and 3.2.1(c). The calculation agrees well with the experimental results over the full 
extent of the measurement without free fitting parameters. This agreement confirms that 
homogeneous electric fields are the dominant symmetry-breaking mechanism in our 
experiment regime.  

 
Figure 3.2.1 | (a) Illustration of tangential common mode oscillation of the ion ring under an 
electric field. (b), (c) Dependence of the tangential trapping frequency ωt on the total external 
dipole field strength Ey (b) and ion number N (c), respectively. Error bars are smaller than 
the sizes of the data points. The curves correspond to the calculated collective tangential 
frequencies using the electric potential model considering only a homogeneous electric field 
and the Coulomb repulsion of the ions confined to a ring. The agreement between the 
calculated results and the experimental data confirms that the homogeneous electric fields 
are the dominant symmetry-breaking mechanism. 

To further examine the effects of possible residual in-plane quadrupole, we add a quadrupole 
term to the potential energy given by Eq. (3.2.1). By comparing the calculated tangential 
trapping frequency and the experimental data, we found that the local electric field strength 
Ad/2 due to the residual quadrupole is smaller than 0.2 V/m. 
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Figure 3.2.2 | The lowest potential energy configurations of a ten-ion crystal as a function of 
the position of the final ion (marked in red). The original equilibrium configuration is shown 
in (a). When the final ion moves from right to left, the nine other ions move into a new 
minimum configuration (b), and the crystal eventually recovers the original equilibrium 
configuration (c). (d) The calculated potential energy of ten ions as a function of the final 
ion position angle θ, where the difference between the minimum and the maximum is the 
rotational energy barrier VB. The marked points correspond to the equilibrium configurations 
shown in (a)–(c), respectively. In this figure, Ey = −2.0 V/m. 

In order to quantify the scale at which the symmetry is broken, we use the magnitude of the 
potential perturbations that localize the ion ring, defined as the rotational energy barrier. To 
obtain the rotational energy barrier, we numerically vary the position of the final ion in the 
chain and use the confirmed model presented in Eq. (3.2.1) to solve for the lowest potential 
energy configuration of the remaining ions, as described by Figs. 3.2.2(a)–3.2.2(c). The 
calculated potential energy of a ten-ion crystal versus the final ion position is plotted in Fig. 
3.2.2(d). The two minimum energy locations correspond to the original equilibrium 
configuration of the crystal, and the peak energy represents the rotational energy barrier VB. 
For ten ions, we observe localized ring crystals with in-plane electric fields larger than (2.0 
± 0.1) V/m. At this electric field, the rotational energy barrier is calculated to be VB/kB = (10 
± 4) mK, where kB represents the Boltzmann constant. 

Using similar method, we can also include the possible residual component in the calculation 
of the rotational energy barrier. The results for ten ion ring at small dipole fields is shown in 
Fig. 3.2.3. The dashed line indicates the tangential temperature of the ions determined by 
measuring the Doppler-broadening of the 729 nm 42S1/2−32D5/2 transition. The calculated 
energy barrier can be several orders of magnitude lower than the temperature of the ions (~3 
mK, dashed line). This number explains the delocalization of the ion rings shown in Fig. 
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3.1.2(d), where the kinetic energies of the ions are much larger than the confining energy 
barrier and thus the ions no longer have a constant angular position.  

 
Figure 3.2.3 | Dependence of the calculated rotational energy barrier on the total external 
dipole field strength Ey for 10 ions at the presence of different in-plane quadrupole fields. 

3.3 Transition from localized states to delocalized states 

As we decrease the dipole electric field, the symmetry of the ring is restored and the ions 
start to become delocalize. For a ten-ion crystal, delocalization occurs at Ey = −(1.9 ± 0.1) 
V/m, corresponding to a rotational energy barrier of VB/kB = (6 ± 3) mK. When more ions 
are held in the trap, the field strength at which the ring delocalizes increases, as shown in 
Fig. 3.3.1(a). This trend is due to the fact that increased Coulomb repulsion from more ions 
increases the force necessary to deform the ring.  

The delocalization point is sensitive to the position of the cooling beam. The radiation 
pressure from an unbalanced cooling beam exerts a net torque on the ring, leading to a 
delocalization at larger fields. For this reason, the cooling laser is positioned to the point at 
which the transition occurs at the smallest field. Numerical analysis of radiation pressure 
induced ion rotation is described in section 3.4. 

Although the electric field strength at which the ring delocalizes increases with an increased 
ion number, we find that the corresponding rotational energy barrier is independent of the 
ion number, as shown in Fig. 3.3.1(b). The proximity of the tangential ion temperature to the 
transition energy barrier VB/kB suggests that delocalization occurs when the thermal energy 
of the ions is large enough to overcome the rotational energy barrier.  
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Figure 3.3.1 | Total external electric field strength (a) and corresponding rotational energy 
barrier VB/kB (b) at which the ion crystals are observed to delocalize as a function of the ion 
number. The errors of the electric fields in (a) are 0.1 V/m. The gray line in (b) denotes the 
measured tangential temperature �3 mK of the ions. 

3.4 Molecular dynamics simulation of ion rings 

In this section, we provide the molecular dynamics simulation of the delocalization process 
of the ion ring by including the stochastic effect of the temperature using the Langevin 
equation 

k
c
2
d( = −l

c
2
d( + m( C − a-b sin d( +

a0 cos d( − d) /2

4e+, csin d( − d) /2
0

)n(

,					(3.4.1) 

where d( − d) ∈ 0, 2e  and m is the mass of 40Ca+ ions. The fluctuating forces m(  are 
related to the tangential ion temperature [q  and the effective laser damping l	~	ℏ(2e/
397	uk)0  by 1m( C 1m) Cv = 2lUw[q1()1 C − Cv . We simulate the fluctuating forces 
with random number generators in Matlab and obtain the angular distribution p(θ) of the 
ions (normalized such that x d cd = y0z

, ).  

In Fig. 3.4.1, we compare the numerical simulation results with the experimentally observed 
ion fluorescence distribution near the localization-delocalization transition points. The 
qualitative agreement between the numerical results and the experimental data suggests that 
the delocalization can be well described by thermal effects when we balance the radiation 
pressure of the cooling laser. 
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Figure 3.4.1 | (a)–(c) Image of eight-ion rings in the localization-delocalization transition 
regime. (d)–(f) Corresponding simulated angular distribution p(θ) of the ions using the 
Langevin equation with  [q =	3 mK. Reduced fluorescence on the extrema of the x axis is 
due to the Gaussian profile of the detection beam incident from the positive y direction. 

 
Figure 3.4.2 | Simulated velocity distributions of the ions with different laser displacements 
from the ring center. The y-axis describes how often a specific velocity is found. The electric 
dipole fields in the y direction are 0 and −1.8 V/m in the upper and lower figure. 
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The ion dynamics under the cooling beam can be further studied numerically by considering 
the quantum jump process. Basically, the ions absorb the photons come from the laser beam 
and emits photons randomly and abruptly to all directions. The momentum transfer between 
photons and ions significantly affects the dynamics of the ion ring. When the laser beam is 
shifted from the center of the ring, the imbalanced radiation pressure push the ions to rotate. 
As the ion velocities reach certain values, the Doppler effects will change the absorption of 
the ions and thus balance intensity distribution of the laser beam. As a result, the ion ring 
will reach a steady rotation state with a nonzero averaged velocity. The velocity distributions 
for a ten-ion ring at the steady state are shown in Fig. 3.4.2. The presence of a dipole field 
will broaden the velocity distribution as it can accelerate or deaccelerate the ions when they 
are rotating. In the simulation, we use realistic parameters that are close to our experimental 
conditions. The Gaussian laser beam has a width of ~70 µm and the saturation factor at the 
beam center is 0.3. 

3.5 Conclusion and outlook 

In conclusion, we have implemented a novel surface trap design and confined rings of 40Ca+ 
ions. Unavoidable symmetry-breaking stray electric fields can be nearly compensated with 
homogeneous fields to provide a high degree of circular symmetry. The circular symmetry 
of the ion ring is preserved at millikelvin temperatures and can be potentially maintained 
much further. Approaching smaller energy scales, we expect that higher order multipole 
fields will become relevant to the circular symmetry, as shown in Fig. 3.2.3. To explore these 
effects, further cooling of the rotational degree of freedom is required. 

Our system opens up a new regime to experimentally explore many-body quantum physics 
with translational invariance where individual particles can be accessed and controlled. The 
symmetry and periodicity of the ion ring provide a unique platform in which to explore 
quantum computing and quantum simulation.  

In the classical regime, the control and probe of ion rings may shed light on the puzzled ion 
transport process in one/two dimensional channels [36,37], where the Coulomb repulsion 
and ion correlations play a significant role under the strong confinement. Understanding the 
complex ion transport process at nanoscale is important for cell biology, clean energy and 
water purification.  

Remark: Chapter 2 and Chapter 3 include published materials from H.-K. Li*, E. Urban*, et 
al. “Realization of translational symmetry in trapped cold ion rings.” Phys. Rev. Lett. 118, 
053001 (2017). (*contributed equally). 
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Chapter 4 

Valley-mechanical coupling in monolayer semiconductors 

4.1 Background and motivation 

In addition to charge and spin, electrons travelling in periodic lattice of some solids possess 
an extra degree-of-freedom called “valley”, which specifies which states the electrons 
occupy among the degenerate energy extrema in the band structure. Different from the 
conventional electronics and spintronics, valleytronics encodes information to the “valleys” 
and holds great potential to the developments of communication and computation [38,39]. 
Over the past decade, significant progresses have been made in controlling and probing the 
valley dynamics, especially in two dimensional van der Waals monolayer semiconductors 
[8,9,40].  

To date, explorations of valleytronics have focused on optoelectronic and magnetic means 
[41-48]. Incorporating mechanical degree-of-freedom would stimulate both fundamental 
studies of valley and mechanical properties of solids and new applications of valleytronics, 
as evidenced by the huge success of micro/nano electromechanics [5-7]. Mechanical systems 
are intrinsically immune to electromagnetic interference. Their functionalities as switches, 
filters, and oscillators are ubiquitous in daily used devices [49], such as cellphones. They are 
also renowned for their versatility to interact with various physical environments while 
maintaining low dissipation. Excellent mechanical sensors and transducers have been 
demonstrated in both classical and quantum scenarios [50-53]. The latter plays an important 
role in fundamental studies of macroscopic quantum phenomena, such as the Schrödinger 
cat paradox. 

In this Chapter, we introduce a scheme to couple electron valley and mechanical motion in 
two dimensional semiconductors. With this scheme, we are able to directly transduce valley 
excitation into macroscopic mechanical motions of the materials [10]. The experimental 
realization using monolayer MoS2 is described in the following chapter. Our study lays the 
foundation for a new class of valley-controlled mechanical devices and facilitates realization 
of hybrid valley-mechanical systems. 

 



								

25	

4.2 Electron valley in monolayer transition metal dichalcogenides 

Monolayer transition metal dichalcogenides have recently emerged as important materials 
for valleytronics and optoelectronics applications. The structure of the materials is shown in 
Fig. 4.1.1. In a monolayer MX2, a single layer of transition metal atoms (M = Mo, W) is 
sandwiched by two layers of chalcogen atoms (X = S, Se). The semiconducting materials 
have direct band gaps in the infrared-visible range. Their honeycomb lattice supports two 
valleys in momentum space (namely K and K') and thus forms a spin-like binary system 
called valley-pseudospin. Because of the broken inversion symmetry and the strong spin-
orbit coupling, the materials hold intriguing valley properties [39]. First, the two valleys K 
and K' can be selectively excited by circularly-polarized light with helicity {|  and {} , 
respectively. This unique selection rule provides a powerful tool for optical generation and 
manipulation of the valleys [41,42]. Second, the Berry curvature (effective magnetic field in 
momentum space) can significantly modify the electron dynamics and generate appealing 
electrical transport phenomena such as the valley Hall effect, which allows us to probe valley 
polarization with electrical method [43]. Third, due to the time reversal symmetry, electrons 
in the two valleys possess magnetic moments that are same in magnitude while opposite in 
sign. This property enables the valley Zeeman effect and therefore allows us to lift the valley 
degeneracy with out-of-plane magnetic fields [45,46]. With these properties, the research on 
valleytronics on two dimensional semiconductors has grown rapidly over the past several 
years. 

 

Figure 4.1.1 | Left: structure of monolayer transition metal dichalcogenides. Right: electronic 
band structure of the materials which consists of two valleys K and K'. The figure is adopted 
from Ref. [8]. 
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4.3 Valley-mechanical coupling under a magnetic field gradient 

In addition to the intriguing valley properties, nanomechanical devices [54-56] made of two 
dimensional crystals exhibit high mechanical strength [57], high quality-factors [58], and 
extraordinary force and mass sensitivities [59]. Their extremely small masses also give rise 
to large quantum zero-point motions which are desirable for the study of quantum dynamics. 
These facts motivate us to explore valley-mechanical interaction in monolayer van der Waals 
semiconductors. 

Our concept is presented in Fig. 4.2.1. Because of the broken inversion symmetry, electrons 
at K and K' valleys possess opposite Berry curvatures and undergo clockwise and counter-
clockwise hopping motions, which result in out-of-plane valley magnetic moments. This 
orbital magnetic moment is locked to the magnetic moments from the electron spin and the 
parent atomic orbitals. As a result, the total magnetic moments carried by electrons at the 
two valleys are equal in magnitude while opposite in sign.  

In the presence of a perpendicular magnetic field gradient, the material encounters a net force 
which is proportional to the field gradient and the net valley population. Direction of the 
force is determined by which valley is populated and therefore it enables the transduction of 
the valley excitation (K or K') to the mechanical displacement (upward or downward), as 
described below in Fig. 4.2.1. In this scenario, the valley-mechanical interaction strength 
can be effectively controlled with the magnetic field gradient. 

 

Figure 4.2.1 | Valley-mechanical coupling under an out-of-plane magnetic field gradient. 
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4.4 Experimental design 

The schematics of our experimental design is shown in Fig. 4.3.1. It consists of a monolayer 
MoS2 suspended over square hole structures conformally coated with Ni/Fe permalloy films. 
On top of the permalloy, a thin film of gold (30 nm) is placed to enhance the surface adhesion 
to monolayers and the optical reflectivity. The lateral dimension of the square hole is 5.2 × 
5.2 µm2. Under an applied magnetic field perpendicular to the substrate, the permalloy 
structure distort the local field and induces a field gradient. The color-scale represents the 
magnitude of z-component of the magnetic field 3~ simulated by a finite element method. 
With a magnetic field of 26 mT, the field gradient in the central area of the suspended MoS2 
reaches ~4000 T/m. In the simulation, we use the permeability of the permalloy thin film 
calibrated by a superconducting quantum interference device. The relative permeability is 
5� ≈ 2.2 in the out-of-plane direction (hard axis) and 5∥ ≈ 72.2 in the in-plane direction. 
The thickness of the permalloy is ~150 nm on the side walls and ~600 nm on the planar 
surface. At such thicknesses, the field gradient is mostly determined by the geometric size 
of the hole structure and the applied magnetic field.  

The monolayer is normally incident by a pump laser beam at 633 nm whose polarizations 
are modulated between LCP and RCP. The pump polarization controls the valley population 
through the optical selection rule mentioned above. The mechanical displacement is detected 
by a linearly polarized probe laser (654 nm) through the interference between the lights 
reflected from the monolayer MoS2 and the bottom gold surface. The MoS2-gold distance is 
designed to be 1.83 µm, which enables high displacement sensitivity and high magnetic field 
gradient. 

 

Figure 4.3.1 | Experimental design to realize valley-mechanical transduction. 
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4.5 Basic analysis of valley-mechanical interaction 

For a membrane under tensile-stress occupying the region −É
0
< F < É

0
 and −É

0
< G < É

0
, the 

displacement of the fundamental mechanical mode can be expressed as  

Ö, F, G, Ü = Ö Ü á F, G 																																												(4.4.1)                                          

where á F, G = cos zà
É

cos zb
É

 is the mode profile and Ö[Ü] is the displacement at the 
center of the resonator. Under a driving force V[Ü], the displacement follows 

Ö Ü = ã Ü V Ü 																																																		(4.4.2)                                               

where ã Ü = 1/kåçç(Ü0 − Ω\0 + éÜΩ\/Q) is the mechanical susceptibility, Ω\/2e is 
the resonance frequency, and Q is the mechanical quality factor. The effective mass kåçç is 
1/4 of the mass of the suspended MoS2, and it is calculated to be 21 fg using the density of 
the material. Consider the distribution of the magnetic field gradient ∇3(F, G) and the carrier 
densities uè and uèê in the plane of the monolayer, the total valley-mechanical force can be 
expressed as 

Vëíììåb Ü = cF
É
0

}É0

cG
É
0

}É0

á F, G uè F, G, Ü − uèê F, G, Ü g5w∇3 F, G 			(4.4.3) 

Here, g represents the Lande g-factor and 5w denotes the Bohr magneton. At low pumping 
power, the valley carrier densities are proportional to the pump intensity, which can be 
described by a Gaussian function exp(−2(F0 + G0)/ò/0) with ò/ being the width of the 
pump beam. In our implementation, the valley carriers mainly distribute in the central area 
of the suspended material since the pump beam width ò/	~	1	µm is much smaller than the 
resonator lateral size (5.2 µm). The magnetic field gradient is also relatively uniform in the 
pump area as verified by our numerical simulation. Under such conditions, the valley 
mechanical force can be approximated as 

V Ü ≈ yè Ü − yèê Ü 5wg∇3 0,0 																																(4.4.4)                                 

where yè  and yèê  are the numbers of carriers at the ô and ôv valleys, respectively. The 
single-phonon valley-mechanical coupling rate is given by 

 ö, = g5w∇3F~õç/ℏ,                                            	(4.4.5)  

which describes the valley energy shift induced by the quantum zero-point motion of the 
resonator F~õç = ℏ/4eú\kåçç, where ú\ stands for the mechanical resonance frequency. 
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Chapter 5 

Realization of valley-mechanical transduction 

Utilizing the experimental scheme discussed in Chapter 4, we are able to realize valley-
mechanical coupling and demonstrate the direct transduction of valley excitation into nano-
mechanical states. In this Chapter, we discuss about our experiment methods, including 
sample fabrication, material characterizations, measurement setup, signal acquisition, and 
data analysis. We observe unambiguous valley-actuated mechanical motion and present 
effective control of valley-mechanical force using various external conditions, including 
pump light, magnetic field gradient, and temperature. 

5.1 Fabrication of valley-resonators 

In this section, we present the fabrication process for making the valley-resonators. Two 
methods for suspending two dimensional semiconductors are presented here: the dry transfer 
method and the critical point dry method. Our final experimental design is accomplished by 
the dry transfer method. 

5.1.1 Dry transfer method 

Fabrication process of the valley-mechanics device using dry transfer method is illustrated 
in Fig. 5.1.1. We first spin-coat poly-methyl-methacrylate (PMMA) on a silicon substrate. 
The thickness of the PMMA is calibrated with both thin film optical interferometry and 
scanning profilometry. The PMMA is patterned with square hole structures using electron 
beam lithography. After the develop process, PMMA is reflowed on hotplate at 135 °C for 
5 min to smoothen the sharp edges at the top of the square holes. To generate the local 
magnetic field gradient on the device, we deposit a permalloy thin film (Ni/Fe, Kurt J. Lesker 
Company, part #: EJTPERM253A2) using magnetron sputtering. The sample is tilted by 
~45° during the deposition to ensure that all the sidewalls are well covered. On top of the 
permalloy, a thin film of gold (30 nm) was deposited by electron-beam evaporation to 
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enhance the surface adhesion to monolayers and the optical reflectivity. Finally, monolayer 
MoS2 is exfoliated onto Polydimethylsiloxane (PDMS) (Gel-Pak, X4) and then transferred 
onto the patterned substrate with the dry transfer method developed in Ref. [60]. 

 

Figure 5.1.1 | Fabrication process flow of monolayer valley-resonator using the dry transfer 
method.  

The monolayer material can be very fragile during the dry transfer process, especially at the 
empty hole region where the material has no mechanical support beneath. The successfulness 
of the transfer process heavily relies on reducing the stretch of the material. To lower the 
chance of breakage, it is very important to align the material parallel to the substrate and 
reduce the PMMA pickup speed. The parallelism can be identified by the moving speed of 
the touching boundary under optical microscope by keeping the same pickup speed. For a 
single hole, the PMMA pickup usually last for 30 to 60 minutes. Another strategy we use is 
to pattern square holes instead of circular holes. The abrupt change of tension is prevented 
by starting the pickup from one corner of the square. Finally, heating up the substrate by ~20 
degrees after placing on the MoS2&PMMA can soften the PMMA, and therefore reduce the 
tension and increase the success rate. The final success rate we obtain is ~20%. An optical 
image showing the dry transfer process is shown below in Fig. 5.1.2. 
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Figure 5.1.2 | Optical image of the sample during the dry transfer process. The PDMS is 
peeled off from the substrate from the left side to the right side. The black curve shows the 
peeling off boundary.  

An optical image of the device for our final measurement is shown in Fig. 5.1.3. The three 
holes on the upper right of the optical image are covered with monolayer MoS2. A slight 
optical contrast between the three holes and the hole on the lower left is present due to the 
optical absorption of the material. The photoluminescence emission from the suspended 
regions is much stronger than that from the metal substrate and thus verifies that the 
membrane is freestanding, as shown by the inset. 

 

Figure 5.1.3 | Optical image of the final device. The inset shows the photoluminescence 
emission from the material. 
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5.1.2 Critical point dry method 

At the early stage of the project, we have also used a critical point dry method [61] to suspend 
two dimensional semiconductors and then test their mechanical properties. The fabrication 
process flow is presented in Fig. 5.1.4. MoS2 flakes are first exfoliated onto stackings of 
PMMA/aquaSave/PMMA. The MoS2 is then pressed onto a chip coated with HSQ (FOX-
15). The two chips are immersed into deionized water which removes the aquaSave and 
leaves a PMMA layer on top of the MoS2. Afterwards, the PMMA is patterned with electron 
beam lithography (EBL). After the development process, the chips are evaporated with 10 
nm Cr and 90 nm Au. The samples are then lifted off in acetone, transferred to aquatic 
KOH/NaCl solution (40 g water, 0.56 g KOH, and 0.58 g NaCl) for the development of HSQ. 
Finally, the samples are immersed into IPA and released with critical point drying. 

 

Figure 5.1.4 | Fabrication process flow of monolayer resonator with the critical point dry 
method. 

A scanning electron microscope (SEM) image of a suspended MoS2 flake is shown in Fig, 
5.1.5. This process allows us to electrically access the suspended materials from the sides. 
However, it is not compatible with the patterning of permalloy film structures, which are 
required to generate strong magnetic field gradient. Hence, we did not proceed this method 
for the final measurement. 



								

33	

 

Figure 5.1.5 | SEM image of a suspended MoS2 fabricated with the critical point dry method. 
The two sides of the sample are cut with focus ion beam (FIB) to reduce the resonance 
frequency. 

5.2 Material characterizations 

We characterize the suspended MoS2 membrane using photoluminescence and Raman 
spectroscopy. The results for the sample we use in the final measurement (Fig. 5.1.2) are 
shown in Fig. 5.2.1. The photoluminescence emission from the suspended region is over 10 
times stronger than that from the supported region. As a result of the tensile stress, the 
photoluminescence peak is slightly red shifted at the suspended region. The Raman peaks of 
phonon modes A1g and E2g are separated by 19.9 cm-1. These features are in good 
agreement with previous studies of monolayer MoS2 and verifies the monolayer nature of 
our valley-resonator.  

On a separate device, the electrical properties of a trilayer MoS2 exfoliated from the same 
crystal source is characterized by a field-effect transport measurement, as shown in Fig. 5.2.2. 
A field-effect transistor (FET) is fabricated on the MoS2 flake supported on SiO2 using few 
layer graphene for ohmic electrical contacts. A transfer curve measured at 20 K shows that 
the device has a turn-on voltage of 60 V. Such a high turn-on voltage reveals the intrinsic 
nature of our MoS2 crystal source. 
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Figure 5.2.1 | Left: Photoluminescence spectrum of the monolayer MoS2. Right: Raman 
spectrum measured at the suspended MoS2 monolayer.  

 

Figure 5.2.2 | Electrical transport curve measured with a separate trilayer MoS2 FET device 
made from the same crystal source.   
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Sample substrate temperature calibration is performed by mounting a temperature sensor 
directly onto the sample stage. As shown on the left of Fig. 5.2.3, the temperature of the 
sample stage deviates significantly from the cryostat (Janis ST-500) inner temperature 
mainly due to thermal radiation entered from the optical viewport. The lowest sample stage 
temperature we attain in the experiment is 20 K.The optical absorption of the suspended 
monolayer MoS2 is measured to be 3.4% at 633 nm (pump) and 4.8% at 654 nm (probe), 
which is enhanced by the optical interference effect. We estimate the optical absorption 
heating using finite element simulation. Experimental and theoretical values of the thermal 
conductivity of monolayer MoS2 range from ~20 W/mK to ~50 W/mK [62-64]. With laser 
spot sizes of ~1 µm, central region of the monolayer is estimated to be heated up by 5 to 15 
K relative to the surrounding substrate under laser powers of 11 µW for the pump and 4 µW 
for the probe, as shown on right of Fig. 5.2.3. 

 

Figure 5.2.3 | Left: Calibration of the sample substrate temperature in the cryostat. Right: 
Simulation of local temperature distribution of the monolayer MoS2 under laser heating. The 
circle indicates the laser spot (~1 µm). Here, the thermal conductivity of MoS2 is 30 W/mK. 

Mechanical response of the device is characterized under vacuum (~10-6 Torr) in cryostat. 
Before lowering the temperature to cryogenic level, the chamber was pumped for 2 days to 
fully evacuate the residual air trapped under the monolayer. We characterize the mechanical 
resonance by modulating the intensity of the pump light, which thermo-optically drives the 
monolayer resonator. The driving signal increases when the laser spots move towards the 
center of the suspended region, which confirms that the mechanical mode we probe is the 
fundamental mode. Mechanical spectra measured at 300 K and 30 K are shown in Fig. 5.2.4. 
At room temperature the resonance frequency is 17.7 MHz and quality factor is 120, while 
at 30 K the frequency rises to 35.7 MHz and quality factor to 22,000. The quality factor is 
comparable to the state of the art record of monolayer semiconductor nanoresonators [58]. 
For the temperature range from 30 K to 46 K, the resonance frequency and quality factor are 
plotted in Fig. 5.2.5. Both of them decreases with increasing temperature. 
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Figure 5.2.4 | Mechanical response of the device at room and cryogenic temperatures. 

 
Figure 5.2.5 | Mechanical frequency and quality factor at the low temperature range. 
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5.3 Measurement setup and signal acquisition 

The measurement setup is shown in Fig. 5.3.1. A continuous wave (CW) linearly polarized 
pump beam (633 nm) passes through an electro-optical modulator (EOM) (Conoptics, model: 
350-160) which modulates the laser polarization between horizontal (H) and vertical (V) 
while keeps the optical intensity constant. The pump polarization is further adjusted by a 
half wave-plate. Before incident onto the cryostat, it passes through a quarter wave-plate 
(QWP1). Depending on the angle (d) between the pump polarization and QWP1 axis, the 
pump polarization is modulated with LCP-RCP (d = −e/4), H-V (d = 0), and RCP-LCP 
(d = +e/4). To examine the polarization modulation, the laser is directed onto a polarizing 
beam-splitter by a flippable mirror and collected by two AC photodetectors. Typical time-
domain signals from the oscilloscope are shown in Fig. 5.3.2, which shows the square-wave 
modulation of the polarization and constancy of the laser intensity. 

 

Figure 5.3.1 | Schematics of the measurement setup. (EOM: electro-optical modulator, ND: 
neutral density filter, P: polarizer, FP: flippable polarizer, HWP: half wave-plate, QWP: 
quarter wave-plate, M: mirror, BS: beam-splitter, FM: flippable mirror, MC: magnetic coil, 
PBS: polarization beam-splitter, PD: photodetector, NF: notch filter, APD: avalanche 
photodetector, DAC: digital analog converter, PA: power amplifier). 
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Figure 5.3.2 | Time-domain signal showing the H and V polarization components of the 
pump light before QWP1. The polarization modulation frequency is close to the mechanical 
resonance ~36 MHz. 

A CW probe beam (654 nm) is used for interferometric detection of the resonator motion. It 
joins the pump beam through a 50/50 beam-splitter. An additional quarter wave-plate 
(QWP2) is placed in its path to compensate the effect of QWP1 placed before the objective. 
This makes sure that the probe light incident onto the sample is always linear polarized. Both 
the pump and probe beam are focused down to ~1	µm spot size using a long working 
distance objective and normally incident onto the sample. The reflected light passes through 
a notch filter, which blocks the pump beam, and is focused onto an avalanche photodetector 
(APD). The signal from the APD then goes to a network analyzer which controls the 
modulation frequency of the EOM. 

A magnetic coil placed in front of the cryostat generates an out-of-plane magnetic field at 
the sample, which is distorted locally around the monolayer by the permalloy film to 
generate the field gradient. The magnetic field from the coil is calibrated using a Hall probe. 
The current of the coil is supplied by a bipolar power amplifier (Kepco, model: BOP 100-4). 
A digital analog converter (DAC) controls the output current of the power amplifier and thus 
controls the magnitude and direction of the magnetic field gradient. 
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Because of the low laser power used in the measurement (~11 µW for pump and ~4 µW for 
probe), the interferometric detection is not able to resolve the thermomechanical noise of the 
resonator, which is commonly used for calibrating the resonator displacement. In order to 
obtain the actual displacement of the resonator and the force acting on it, we extract the 
permittivity of MoS2 monolayer with reflection spectroscopy and calculate the displacement 
detection responsivity with multilayer optical transfer-matrix method. 

 

Figure 5.3.3 | Reflection spectrum of the supported (left) and suspended (right) monolayer 
MoS2 normalized by the reflection from substrate. The red line is obtained by fitting the 
MoS2 permittivity with the model described by Eq. (5.3.1). The inset shows the multi-layer 
stack used in the calculation. 

The reflection spectrum of a supported MoS2 and that of a suspended MoS2 (normalized by 
the reflection from the substrate) are shown in Fig. 5.3.3. For suspended monolayer, the 
reflection spectrum displays interference fringes, and the exciton absorption peaks are 
slightly red-shifted due to film stress. To obtain the optical constants, we follow the approach 
used in Ref. [65]. Assuming that the permittivity of MoS2 monolayer consists of a sum of 
Lorentzians, we have 

+/É}ùûü† Ü = ° ⋅ +£û] Ü +
Üõ,/
0

Ü/0 − Ü0 + éΓ/Ü
+

Üõ,0
0

Ü00 − Ü0 + éΓ0Ü
													(5.3.1) 

The first term ° ⋅ +£û](Ü) accounts for contributions from oscillators of high energy. Here 
we use the same value of +£û](Ü) as Ref. [65] and use a proportional constant ° as a fitting 
parameter. For the oscillator terms, we use two Lorentzians to account for the two exciton 
peaks observed in the reflection spectra. With this model, the reflection spectra from the 
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multi-layer stacks can be calculated using the standard transfer-matrix method. The fitted 
reflection spectra show well agreement with the measurement results. 

After obtaining the permittivity of the monolayer MoS2, we calculate the displacement 
detection responsivity with optical transfer matrices [66]. The calculated optical reflection 
from the suspended monolayer device and the detection responsivity at the probe wavelength 
654 nm are plotted as functions of the separation between the suspended monolayer and the 
substrate in Fig. 5.3.4. At 1.83 µm, the detection responsivity is -0.45 %/nm. This value is 
used to calibrate the actual displacement of the resonator. 

 

Figure 5.3.4 | Optical reflection and displacement detection responsivity of suspended 
monolayer MoS2 at l = 654 nm as a function of separation between the monolayer and 
bottom gold surface calculated using transfer-matrix method. 

In the measurement, we employ a double lock-in scheme to single out the valley-mechanical 
actuation and eliminate the effects of other forces such as the thermo-optical or optical 
radiation pressure. In this scheme, both the pump laser polarization and magnetic field 
gradient direction are modulated, as shown in Fig. 5.3.5. Under such condition, only the 
demodulated signals that correspond to both modulations are measured. The polarization 
modulation signal has a frequency close to the mechanical resonance frequency and is 
demodulated in the network analyzer. The magnetic gradient modulation has a frequency of 
~0.1 Hz and is demodulated through an in-house computer program. 
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Figure 5.3.5 | Double lock-in scheme to single out the valley-mechanical actuation. 

Due to the local laser heating effects, the mechanical resonance frequency is sensitive to the 
laser spot position on the suspended monolayer. To acquire clean signals of the valley-
actuated mechanical motion, it is crucial to stabilize the mechanical resonance by reducing 
the vibration of the cryostat stage. Another important strategy is to place the laser spots right 
at the center of the suspended area. Under such condition, the mechanical resonance can be 
insensitive to the relative displacement between the sample and the laser spots. This critical 
condition is achieved by precisely varying the laser spot position with piezoelectric motors 
and searching for the lowest mechanical resonance frequency of the sample. 

5.4 Observation and control of valley-mechanical actuation 

We observe valley-actuated mechanical motion of the MoS2 monolayer at low temperature. 
We alternatingly populate the K and K' valleys by modulating the polarization of the pump 
beam (633 nm) between left-circular and right-circular (LCP and RCP) while keeping the 
light intensity constant (with methods discussed in the above Chapter). This modulation 
results in an oscillating push-pull force that drives the mechanical resonator. The measured 
mechanical displacement exhibits a Lorentzian shape response that follows the previously 
characterized mechanical susceptibility, as shown in Fig. 5.4.1a. In contrast, a linearly-
polarized pump shows no driving effect because it equally populates both valleys and 
therefore the net force is zero.  

As we switch the pump polarization to opposite helicity, the mechanical displacement 
displays a e-phase difference, as shown in Fig. 5.4.1b, which confirms that population of 
different valleys exerts opposite forces onto the material. An opposite magnetic field 
gradient also induces a e-phase shift of the displacement by switching the sign of the force. 
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In the measurement, the polarization modulation (close to the mechanical resonance ~36 
MHz) is much slower than the depopulation of the valley carriers, whose timescale is 
between picoseconds and a few nanoseconds [42,67-69]. As a consequence, the valley 
population adiabatically follows the polarization modulation of the pump light.  

 

Figure 5.4.1 | a, The mechanical displacement driven by circularly- and linearly-polarized 
pump. Δú is the frequency offset from the mechanical resonance. b, Phase response of the 
driven motion with opposite pump helicity and magnetic field gradient. c, The mechanical 
quadratures of the monolayer driven resonantly by opposite valley excitation. Black dashed 
lines indicate the standard deviation.  

Utilizing the fact that the direction of the force depends on which valley is populated, we 
demonstrate transduction of the valley excitation into the mechanical state of the nano-
resonator. We examine the mechanical quadratures of the monolayer when it is resonantly 
driven by opposite valley carrier population, as shown in Fig. 5.4.1c. Using a measurement 
bandwidth of 1 kHz with 1024 averages, we resolve two distinct mechanical states with 
opposite phases and similar amplitudes. The confidence level of differentiating the two states 
is approaching unity, according to the independence sample T-test. This result demonstrates 
that the valley excitation of the monolayer is unambiguously transferred into the mechanical 
states. 

We further quantify the dependence of valley-mechanical force on the pump light and 
magnetic field gradient. We obtain the force through the measurement of the mechanical 
displacement and susceptibility with methods discussed in the above Chapter. By varying 
the angle d between the quarter-waveplate axis and the pump laser polarization from −e/4 
(LCP) to 0 (linearly-polarized) and to +e/4 (RCP), the measured force shows a sin 2d  
dependence, as shown in Fig. 5.4.2a, which verifies that the force is proportional to the net 
valley population. This relation is further confirmed by a measurement of the pump power 
dependence shown in Fig. 5.4.2b. We also observe that the valley-mechanical force increases 
linearly as a function of the out-of-plane magnetic field gradient, as shown in Fig. 5.4.2c. 
This observation verifies that the measured force is originated from the magnetic moment of 
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the valley polarized carriers. The above results demonstrate effective control over the valley-
mechanical interaction through various external conditions. 

The valley-mechanical force also displays a strong dependence on temperature, as shown in 
Fig. 5.4.2d. The force becomes observable when the sample temperature is lowered below 
46 K and rises steadily as the temperature is further reduced. These can be attributed to the 
increase of the steady state net valley populations at lower temperatures due to longer valley 
polarization lifetime. The temperature dependence of the valley-mechanical force roughly 
follows exp	(Δ/Uw[) with Δ ~ 23 meV. This characteristic energy matches the phonon 
energy of monolayer MoS2 at K point, which suggests that such an activation behavior may 
be caused by phonon-assisted intervalley scattering [41,70]. 

 

Figure 5.4.2 | Dependence of the valley-mechanical force on the angle d between the quarter 
wave-plate axis and the pump laser polarization (a), the pump laser power (b), the magnetic 
field gradient (c), and the temperature (d). Error bars represent the standard errors of the 
signals. The red band in (d) shows the error estimates obtained from the fitting of the data 
with the exponential dependence. 

From the measured valley-mechanical force, the number of imbalance valley carriers can be 
calculated from V = yè − yèê g5w§3. Using the Lande g-factor of 4 for monolayer MoS2 
[71], the number of imbalance valley carriers is estimated to be ~2000. These carriers mainly 
distribute in the ~1 µm laser spot of the pump light, resulting an imbalance valley carrier 
density of ~2 × 1011 cm-2, which agrees with the number reported in Ref. [43] for the same 
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pump intensity of ~11 µW/µm2. From the rate equation cy/cC = −y/•ë + ¶ß/ℏΩû, the 
valley population at steady state is given by y = •ë¶ß/ℏΩû, where •ë is the valley lifetime, 
¶ the optical absorption, ß the pump laser power, and ℏΩû the photon energy of the pump 
laser. The calculated valley lifetime is •ë ~ 0.4 ns. This number is comparable to the reported 
valley lifetime for resident carriers (electrons or holes) in monolayer MoS2 [42,68]. With the 
zero-point motion of F~õç = 0.11	pm, the single-phonon coupling rate is calculated to be 
ö,/2e = g5w∇3F~õç/ℎ = 24	Hz.  

5.5 Conclusion and outlook 

We have realized coupling of valley and mechanical degrees-of-freedom in a monolayer 
MoS2 and demonstrated direct transduction of valley excitation into mechanical states. 
Stronger valley-mechanical coupling rate can be obtained using magnetic nanostructure 
which can enhance the magnetic field gradient (up to 107 T/m [72]). The valley lifetime 
(•ë = 1/´Y) can be extended up to ~1 µs by using 2D heterostructure of MoS2/WSe2 to 
spatially separate the electron and hole layers [73]. With both improvements mentioned 
above, a single-valley cooperativity (defined as °, = 4ö,0/ ë́´\) exceeding 1 is achievable, 
which would enable us to explore quantum coherent effects of valley-mechanical interaction. 

Our experiment facilitates hybridizing valley pseudospin with other information carriers, 
such as microwave photons and superconducting qubits. The valley-mechanical coupling 
also lays the foundation for new types of valley-actuated mechanical devices. One interesting 
example is the “valley switch” which uses a valley signal to switch another valley signal - 
an analogue of electronic transistor.  

Remark: Chapter 4 and Chapter 5 include materials from H.-K. Li*, K. Y. Fong*, et al. 
“Valley optomechanics in a monolayer semiconductor.” (to appear in Nature Photonics) 
(*contributed equally). 
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Chapter 6 

Phonon heat transfer across the quantum vacuum 

6.1 Background and motivation 

In the theory of quantum mechanics, quantum fields are never at rest but constantly fluctuate 
even at absolute zero temperature. These fluctuations lead to extraordinary consequences in 
many areas ranging from atomic physics (e.g. spontaneous emission [74] and the Lamb shift 
[75]) to cosmology (e.g. the Hawking radiation [76]). In 1948, based on quantum fluctuations 
of electromagnetic fields, Casimir described a bizarre force acting between neutral objects 
[77]. Today, probing this effect is of both fundamental interest in quantum field theory and 
practical importance in nano-/micro- technology [78,79].  

While the mechanical consequences of the Casimir effect have been extensively studied and 
precisely quantified [80-87], its role in thermodynamics is rarely explored. Recently, it is 
predicted that the Casimir force can induce phonon tunneling between nearby objects and 
thus transfer heat through a vacuum gap [11-13]. This unique quantum effect represents a 
different heat transfer mechanism from the conventional concepts of conduction, convection, 
and radiation. However, such prediction has not been experimentally observed due to the 
stringent requirements under sub-nanometer gaps. At such small distances, other effects such 
as evanescent electric fields, charge-charge interaction, and surface phonon polaritons may 
contribute and obscure the experimental verification [88-91]. 

In this Chapter, we provide a scheme to observe heat transfer between two objects driven by 
quantum vacuum fluctuations [14]. We utilize nanomechanical systems to access individual 
phonon modes and resonantly enhance the thermal energy exchange. With this strategy, the 
distance range in which the phenomenon becomes significant is boosted up by over two 
orders of magnitude to hundreds of nanometers, allowing us to rule out other short-range 
effects. In the following Chapter, we present experimental observation of Casimir strong 
phonon coupling and the resulting thermal energy transfer. Our experiment reveals a new 
mechanism of heat transfer through the quantum vacuum. It also opens new opportunities to 
study quantum thermodynamics and energy transport using nanomechanical devices. 
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6.2 Introduction to the Casimir force 

Long-range forces that act between electrically neutral objects have been discussed for 
centuries. However, only after the development of quantum mechanics and quantum field 
theory has the physical picture of these forces become clear and the first quantitative results 
obtained. The origin of both the Casimir and van der Waals forces is connected to quantum 
fluctuations, which are the temporary changes of the fields in space, as explained in the 
Heisenberg uncertainty principle. For each mode (or harmonic oscillation) in space with 
frequency Ü, the lowest possible energy is ℏÜ/2. Summing over all possible oscillators at 
all points in the whole space gives an infinite quantity, which can be viewed as the energy 
of the vacuum. 

The Casimir force can be understood as a result of electromagnetic vacuum energy change 
by bulk bodies. Their presence in vacuum changes the electromagnetic boundary conditions 
and thus affects the mode distribution and the total vacuum energy, as illustrated in Fig. 6.1.1. 
The total energy change heavily depends on the distance between the two objects and the 
Casimir force is obtained by taking the first derivative. For two parallel perfect conducting 
plates, the Casimir force per area is given by V̈ í≠(c) = −ℏAe0/240cÆ [77]. In reality, the 
dispersion of the material needs to be considered and the Casimir force can be calculated 
with the Lifshitz formula [78]. Today, experimental quantification of the Casimir force plays 
an important role in the development of quantum field theory and micro/nano- technologies. 

 

Figure 6.1.1 | Upper: electromagnetic modes in vacuum. Lower: the two objects modify the 
boundary conditions of electromagnetic fields and changes the total electromagnetic vacuum 
energy. As a result, the Casimir force emerges. 
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6.3 Phonon heat transfer driven by the Casimir force 

In conventional theory, thermal radiation is the only heat carrier across the vacuum [92]. The 
story is quite different when two objects are placed in proximity. Near-field thermal radiation 
emerges when the surface distance is below the wavelengths of thermal photons. Similarly, 
other near-field mechanisms would also come into play (or even become dominant) as the 
distance is smaller than the characteristic wavelengths of the energy carriers. Electrons, 
phonons, phonon-polaritons and so on can tunnel through the vacuum gap through various 
mechanisms and transfer heat. Understanding these complex processes of energy transfer at 
the nanoscale is of both fundamental interests and practical significance. With the strong 
quest of scaling down information, energy, and manufacturing technologies, it is important 
to know how to manage heat at short length scales. 

In many solids, most of the thermal energy lies in the phonon spectrum. Recent theories raise 
the possibility that phonons may tunnel across the vacuum from one surface to another, 
mediated by the Casimir force [11-13]. Intuitively, this heat transfer mechanism can be 
understood as follows. The thermal vibration of some phonon modes in solids could lead to 
surface displacement, as shown in Fig. 6.2.1. Since the Casimir force depends on the relative 
distance between the two surfaces, an oscillating force across the vacuum emerges, resulting 
the coupling between the phonon modes in the two nearby objects. As a consequence of this 
Casimir coupling, thermal energy is transferred across the phonon modes from the hot to the 
cold side. 

 

Figure 6.2.1 | Two objects with different temperatures separated by a vacuum gap (left). A 
zoom-in cartoon picture (right) shows the phonon oscillations that cause the infinitesimal 
displacements of the object surfaces, which give rise to oscillating force across the vacuum 
due to the Casimir effect. 
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6.4 Casimir coupling between individual phonon modes 

According to previous calculations, the Casimir phonon heat transfer becomes prominent 
only when the separation between bulk solids is at sub-nanometer scale [11,12], which is 
challenging to achieve in experiment. Moreover, at such small distances, other effects such 
as charge-charge interaction, evanescent electric fields, and surface phonon polaritons may 
contribute and obscure the experimental verification. To single out the phonon coupling 
effects driven by the Casimir force, we use nanomechanical oscillators that allow us to access 
individual phonon modes. The energy transfer can be strongly enhanced under resonance 
condition, and the distance range in which the phenomenon becomes significant can be 
boosted up to hundreds of nanometers. 

 

Figure 6.3.1 | Two mechanical membranes are clamped to substrates with different 
temperatures (left). Their fundamental phonon modes are resonantly coupled through the 
Casimir force, as described by the simplified model (right). As a result, heat is transferred 
from the hot to the cold side. 

In a specific case shown in Fig. 6.3.1, we consider the fundamental modes of two parallel 
nanomechanical membranes that are resonantly coupled to each other through the Casimir 
interaction. The two membranes are clamped to substrates at different temperatures ([/ and 
[0). In the regime where thermal Brownian motions of the phonon modes are much slower 
than the response time of the Casimir effect, the Casimir force acts instantaneously and is 
conservative in nature [93-95]. The Casimir interaction effectively acts as a coupling spring 
that connects the two modes, through which the thermal energy is transferred from the hot 
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to the cold side. The whole system can be described by a simplified spring-mass model 
shown on the right side of Fig. 6.3.1. 

At large separation, the phonon modes of the membranes are in thermal equilibrium with 
their thermal baths, i.e., [/v = [/ and [0v = [0, where [/v and [0v are the mode temperatures 
determined by the thermal Brownian motion of the modes. At shorter distance, the Casimir 
interaction dominates and induces thermal energy exchange between the phonon modes. 
This causes observable deviation of the mode temperatures from their bath temperature. A 
detailed theoretical analysis is presented below. 

We consider two parallel planes separated by a distance c, as shown in Fig. 6.3.2. Within 
the region −Ø(/2 < F, G < Ø(/2 (i = 1, 2), the membrane can make vertical displacement 
∞((F, G). The two membranes are connected to thermal baths at temperatures [/ and [0.  

 

Figure 6.3.2 | Schematics of the structure under theoretical consideration. 

Because of the quantum fluctuations of the electromagnetic field, there exists Casimir force 
acting between the two membranes. Since the phonon wavelength of the fundamental modes 
are much larger than the distance between the membranes, we can use the Proximity Force 
Approximation [96]. By expanding the force to the first order, the equations of motion for 
the two membranes with built-in tensile stress are given by 

{/∇0∞/ F, G, C + V̈ í≠
v c ∞/ F, G, C − ∞0 F, G, C = &

B0∞/(F, G, C)
BC0

						(6.3.1) 

{0∇0∞0 F, G, C + V̈ í≠
v c ∞0 F, G, C − ∞/ F, G, C = &

B0∞0(F, G, C)
BC0

						(6.3.2) 

Here, we assume that the two membranes have the same density & (mass per area) but 
different stress {/ and {0. The stress depends on the bulk temperatures and therefore can be 
controlled. V̈ í≠ represents the Casimir force per area, which depends on the displacement 
profiles of both membranes.  
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For tensile-stressed membranes, the fundamental eigenmode profile is given by ∞( F, G, C =
∞((C) cos(eF/Ø() cos(eG/Ø() (i = 1, 2). When the Casimir force is small compared to the 
stress force, its existence does not affect the mode profile. Performing integration on both 
sides, we obtain 

−
e0{/
2

∞/ 	+ V̈ í≠
v c 	

Ø/0

4
∞/ − °∞0 = &

Ø/0

4
∞/																							(6.3.3) 

−
e0{0
2

∞0 	+ V̈ í≠
v c

Ø00

4
∞0 − °∞/ = &

Ø00

4
∞0																								(6.3.4) 

where the correction term ° accounts for the mode profile mismatch, i.e., 

° = cF cos
eF
Ø/
cos

eF
Ø0

≤≥¥ Éµ,É† /0

}≤≥¥ Éµ,É† /0

0

																																		(6.3.5) 

The two coupled equations can be rewritten as 

∞/ + Ω0∞/ − 2Ωö¨ ∞/ − ¶/∞0 = 0																																				(6.3.6)                                 

∞0 + Ω0∞0 − 2Ωö¨ ∞0 − ¶0∞/ = 0																																				(6.3.7)                                 

assuming the resonance frequencies of the of the two mechanical modes are matched through 
temperature control of the stress (Ω = Ω/ = Ω0). The coupling rate ö¨  and the correction 
factor ¶(  are given by ö£ = V̈ í≠

v c /2Ω& and ¶( = 4°/Ø(0 , respectively. We employ the 
Langevin formula to describe thermal fluctuation and dissipation [97,98] 

∞/ + 2´/∞/ + Ω0∞/ − 2Ωö¨ ∞/ − ¶/∞0 = 1V//k/																						(6.3.8)                  

∞0 + 2´0∞0 + Ω0∞0 − 2Ωö¨ ∞0 − ¶0∞/ = 1V0/k0																						(6.3.9)                 

where the fluctuating forces are related to the bath temperatures [( and mechanical dampings 
´(  by 1V( C 1V) Cv = 1()1 C − Cv 8Uw[(´(k( . The effective mass k(  is given by one 
quarter of the total mass of the resonator, i.e., k( = Ø(0&/4. Using the quadrature notations 
defined as ∑ C = ∑ C a}(∏q + ∑∗ C a(∏q /2 for ∑ ∈ {∞/, ∞0, 1V/, 1V0} and assuming ´( ≪
Ω, we obtain 

∞/ + ´/∞/ − éö¨ ∞/ − ¶/∞0 = é1V//2Ωk/																											(6.3.10)                       

∞0 + ´0∞0 − éö¨ ∞0 − ¶0∞/ = é1V0/2Ωk0																											(6.3.11)                        
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In the frequency domain, they become 

Ü + ö¨ + é´/ −ö¨¶/
−ö¨¶0 Ü + ö¨ + é´0

∞/[Ü]
∞0[Ü]

= − /
0∏

1V/ Ü /k/

1V0 Ü /k0
,									(6.3.12)        

which lead to the spectral densities  

Ωæµ∗æµ Ü =
Ü + ö¨ 0 + ´00 2Uw[/´//k/ + ö¨0¶/02Uw[0´0/k0

Ω0 Ü + ö¨ 0 − ´/´0 − ö¨0¶/¶0	 0 + ´/ + ´0 0 Ü + ö¨ 0 			(6.3.13) 

Ωæ†∗æ† Ü =
Ü + ö¨ 0 + ´/0 2Uw[0´0/k0 + ö¨0¶002Uw[/´//k/

Ω0 Ü + ö¨ 0 − ´/´0 − ö¨0¶/¶0	 0 + ´/ + ´0 0 Ü + ö¨ 0 .			(6.3.14) 

The mean square of the phonon mode displacements are related to the spectral densities by 
∞( 0 = cÜø

}ø Ωæ¿∗æ¿ Ü /2e . Using Uw[(v = k(Ω0 ∞(0 , the mode temperatures can be 
expressed as 

[/v =
cÜ
e

Ü + ö¨ 0 + ´00 [/´/ + ö¨0¶/¶0[0´0
Ü + ö¨ 0 − ´/´0 − ö¨0¶/¶0	 0 + ´/ + ´0 0 Ü + ö¨ 0 						(6.3.15)

ø

}ø
 

[0v =
cÜ
e

Ü + ö¨ 0 + ´/0 [0´0 + ö¨0¶/¶0[/´/
Ü + ö¨ 0 − ´/´0 − ö¨0¶/¶0	 0 + ´/ + ´0 0 Ü + ö¨ 0 						(6.3.16)

ø

}ø
 

 

In some special cases, the above integrals can be carried out analytically. 

Case 1: ö¨ ≪ ´/, ´0 (weak coupling) 

[/v = [/,					[0v = [0																																																		(6.3.17)                                          

Case 2: ö¡ ≫ g/, ´0 (strong coupling) 

[/v = [0v = [q√v =
[/´/ + [0´0
´/ + ´0

																																								(6.3.18) 

Case 3: ´/ = ´0 = ´ and Ø/ = Ø0 = Ø 

[/v =
[/ 1 + ö£0

2´0 + [0
ö£0
2´0

1 + ö£0
´0

	,							[0v =
[0 1 + ö£0

2´0 + [/
ö£0
2´0

1 + ö£0
´0

										(6.3.19) 
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In case 3, the mode temperatures are solely determined by the ratio ö¨/´ 0. Note also that 
ö¨ ∝ V̈ í≠

v c , therefore, the Casimir heat transfer effect rises sharply at short distance.  

Net energy flow rate from the thermal bath to the mode can be calculated from 

ß( = 1V( − 2´(k(∞( ⋅ ∞( = 2´(Uw [( − [(v 																									(6.3.20)                       

In the strong coupling regime (ö¡ ≫ g/, ´0), we obtain 

ß0 	= −ß/ =
2´/´0
´/ + ´0

Uw [0 − [/ 																																	(6.3.21) 

The above theoretical model is picturized below in Fig. 6.3.3. 

 

Figure 6.3.3 | Illustration of the theoretical model which includes the mode-mode Casimir 
coupling and mode-bath interactions. 

6.5 Experimental design 

Our experimental design is shown in Fig. 6.4.1. Two tensile stressed stoichiometric Si3N4 
membranes of different dimensions (330×330×0.1 µm3 and 280×280×0.1 µm3) are coated 
with gold (75 nm) on both sides for the purposes of optical reflection and electrical contact. 
The mesa structure on the left sample and the electrical pads on the right sample are created 
for high precision parallel alignment (details will be discussed in the next Chapter). Partially 
reflecting mirrors (M1 and M2) are placed behind the membranes, and CW laser beams (633 
nm) are sent from both sides to interferometrically measure the thermo-mechanical motion 
of the membranes. The distance between the mirrors and the membranes are controlled by 
piezo-actuators with feedback loops to maintain long-term stability of the interferometric 
detection sensitivity. The samples are mounted on closed-loop thermoelectric cooler and 
heater to stabilize the bath temperatures and tune the mechanical resonance frequencies. A 
bias control voltage ( ≈̀) is applied across the two membrane surfaces to compensate any 
built-in electrostatic potential that may overwhelm the Casimir effect. 
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Figure 6.4.1 | Schematics of the experimental design with double optical interferometry to 
identify phonon thermal transfer driven by the Casimir force. 

 

Figure 6.4.2 | a, Cross-sectional view of the layered structure used in the experiment. b, 
Calculated Correction factor m against the distance c. c, Calculated coupling rate ö¨  versus 
the distance c. d, Calculated mode temperatures [!v and [0v as functions of distance c. 
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Taking into consideration the finite conductivity and dispersion of the gold film and also the 
geometry of the membrane structure as shown in Fig. 6.4.2a, the Casimir force per area can 
be written as 

V̈ í≠(c) = −m
ℏAe0

240cÆ
																																												(6.3.22) 

where m stands for the correction factor applied to the Casimir force between two planar 
perfect conductors. We numerically calculate the Casimir force using the Lifshitz theory and 
plot m as a function of distance in Fig. 6.4.2b. Details of the calculation method can be found 
in Ref. [78]. In the distance range that we concern (between 300 nm and 800 nm), m is 
between 0.70 and 0.85 according to the calculation. 

Figure 6.4.2c compares the Casimir phonon coupling rate (ö¨) with the mechanical damping 
rates (´/,	´0). The corresponding mode temperatures [/v and [0v as a function of distance is 
shown in Fig. 6.4.2d. The results clearly show that thermalization (i.e., [/v = [0v) occurs when 
the system enters the strong coupling regime (i.e., ö¨ ≫ ´/, ´0). 
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Chapter 7 

Observation of the Casimir phonon heat transfer 

In this Chapter, we present our experiments which lead to the realization of strong Casimir 
phonon coupling and the observation of the resulting thermal energy transfer across the 
vacuum. We fabricate the nanomechanical membranes and develop a delicate method to 
place them in parallel with high precision (<10-4 rad). We quantify the temperature change 
of the fundamental phonon modes by measuring their thermal Brownian motion and show 
the thermalization of the two phonon modes in the strong Casimir phonon coupling regime. 
The observation agrees well with our theoretical prediction and is clearly distinguished from 
other effects such as near-field radiation and electrostatic interaction.  

7.1 Device fabrication and parallel alignment 

Figure 7.1.1 illustrates the device fabrication procedures. The process started with a silicon 
wafer (500 um thick) coated with LPCVD stoichiometric Si3N4 (100 nm thick) on both sides. 
Photolithography was performed at the backside of the wafer and SF6 plasma etching was 
used to remove the Si3N4 at the opening windows. The silicon wafer was then etched through 
in KOH solution (25%, 80oC, 7 hr), creating freestanding Si3N4 membranes at the frontside 
of the wafer. 

For the left sample, a photolithography and SF6 plasma etching were performed to define a 
square region (500 × 500 um2) around the membrane, whose corners will contact with the 
spacers on the right sample. A short KOH (25%, 80o C, 15 min) etch was used to create a 
mesa structure with a depth of around 25 µm. After the KOH wet etching, the sample was 
evaporated with 75 nm Au on both sides. 

For the right sample, the first photolithography and liftoff were performed to pattern contact 
electrodes (75 nm Au) at the corners of the membrane. The second photolithography and 
liftoff were performed to pattern spacers (150 nm Au). After that, the backside of the sample 
is evaporated with 75 nm Au.  
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Figure 7.1.1 | Fabrication process flow for the left (a-d) and right (e-h) samples. 

The optical images of the fabricated samples are shown in Fig. 7.1.2. The two suspended 
nanomechanical membranes have different lateral dimensions (330×330 µm2 and 280×280 
µm2). To ensure the electrical access to the top surface on the left sample, a small portion of 
the Si3N4 at the corner of the mesa was released onto the bottom surface during the KOH 
etching, as shown in Fig. 7.1.2b. The evaporated Au eventually connects electricity from the 
bottom surface to the top of the mesa. 

Cleanliness of the membrane surfaces is crucial for aligning the two membranes to short 
distances (about 300 nm). Samples are inspected under confocal microscope which can 
clearly identify small particles of ~100 nm size. To maintain high-degree of cleanliness, the 
sample fabrication, wire-bonding, and mounting of samples onto sample holders are all 
carried out in high-class cleanroom environment. The left and right samples are attached to 
a custom-made copper plate and a printed circuit board, respectively, as shown in Fig. 7.1.3. 
Surface roughness on the membranes is characterized to be less than 1.5 nm using atomic 
force microscopy.  
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Figure 7.1.2 | Optical images of the left (a and b) and right (c and d) sample surfaces. 

 

Figure 7.1.3 | Optical images showing the mounting of the two samples. The left and right 
samples are attached to a custom-made copper plate and a printed circuit board, respectively. 
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To observe the Casimir interaction between two parallel planes, high degree of parallelism 
between the two surfaces is crucial. So far, most of the Casimir force measurements were 
carried out in sphere-plane configuration because of the challenge of high precision parallel 
alignment. The smallest parallel-plate distance achieved in Casimir measurement is ~600 
nm [82]. We overcome this challenge by implementing the mesa-spacer structure (developed 
previously in Ref. [99]) and employing the optical interference imaging technique. Such 
effort allows us to explore Casimir interaction between parallel plates with an unprecedented 
distance of ~300 nm. 

The parallel alignment schematics is shown in Fig. 7.1.4. On the left chip, the mechanical 
membrane is fabricated at the center of a mesa which has a height of ~25 µm. On the right 
chip, four contact spacers (~150 nm in height) and electrodes are patterned at the four corners 
outside the membrane. The 75 nm gold film coated on both sides of the membranes block 
the red detection laser (633 nm) while allowing dim transmission of the blue illumination 
from a high brightness LED (460 nm). A bias voltage ≈̀  is applied between the two 
membrane surfaces. When the two samples are brought close and touch each other at the 
spacer region, an electrical signal will be picked up and the signal will indicate which corner 
is touching. Simultaneous touching of the four corners indicate good alignment of 
parallelism. In the experiment, the distance at which the first corner touches and the distance 
at which all four corners touch are within 80 nm. 

 

Figure 7.1.4 | Schematics of the parallel alignment setup. 
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Simultaneously, the parallelism between the membrane is monitored optically by examining 
the brightness distribution of the interference pattern, as shown in Figs. 7.1.5a and 7.1.5b. 
Aligned membranes show uniform optical images when varying the distance (Fig. 7.1.5a). 
By analyzing the optical intensity at different locations of the membrane while changing the 
membrane-membrane separation, we obtain the relative tilting angle of the membranes with 
respect to the x and y axes Δdà = 22 ± 25	µrad and Δdb = 43 ± 24	µrad (Fig. 7.1.5c). For 
comparison, images of the misaligned membranes are shown in Fig. 7.1.5b, which give rise 
to Δdà = 228 ± 33	µrad and Δdb = 179 ± 39	µrad (Fig. 7.1.5d). 

 

Figure 7.1.5 | a, b, Transmission optical images for the aligned (a) and misaligned (b) cases. 
c, d, Optical intensity at different locations of the membranes (markers in a, b) versus the 
separation change. Solid curves are sinusoidal fits with an attenuation factor. The periodicity 
(~230 nm) matches well with the half wavelength of the illumination (~460 nm).  
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7.2 Measurement setup and signal acquisition 

The experimental setup is illustrated in Fig. 7.2.1. Two laser beams split from an intensity 
stabilized He/Ne laser (Thorlabs, HRS015B) are sent to the back sides of the membranes to 
interferometrically detect the thermal Brownian motion of the membrane modes. The 
distance between the mirrors and the membranes are controlled by piezo-actuators using the 
DC component of the reflected lights (monitored by photodetectors) as the feedback signal. 
This feedback control enables us to achieve long term stability of the detection sensitivity. 
The left/right samples are mounted on closed-loop TEC h cooler/heater using platinum RTD 
as temperature sensor. Feedback control of the bath temperatures allows stabilization and 
tuning of the mechanical resonances (see latter discussion). The right sample is mounted on 
a calibrated closed-loop piezo linear stage, which controls the relative distance between the 
membranes with a precision of ~5 nm.  

 

Figure 7.2.1 | Schematic of the double optical interferometry experimental setup with the 
integration of multiple feedback controls. (ND: neutral density filter, BS: beam splitter, M: 
mirror, L: lens, DC-PD: DC photodetector, APD: avalanche photodetector.)  
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An optical image of the sample mount assembly and the control stages is shown in Fig. 7.2.2. 
The left sample (with mesa structure) is attached to a custom-made copper plate using 
conductive silver paint. The right sample (with patterned electrodes) is mounted on a printed 
circuit board with the on-chip electrodes wire-bonded to the corresponding contact pads. 
During the measurement, the whole assembly is kept in high vacuum with a pressure below 
10-6 Torr. To avoid excessive optical heating, laser powers are kept low at ~8 µW before 
entering the chamber.  

 

Figure 7.2.2 | Optical image of the sample mount assembly and control stages. 

At room temperature (~296 K), the resonance frequencies of the phonon two modes are off 
by ~50 kHz because of the membrane size difference (330 × 330 µm2 and 280 × 280 µm2). 
We match the resonance frequency of the two modes by thermally tuning the stress of the 
membranes. At bath temperatures [/ = 287.0 K and [0 = 312.5 K, their resonances match at 
Ω/2e = 191.6 kHz (dashed line in Fig. 7.2.3a), with high quality factors of Q1 = 4.5 × 104 
and Q2 = 2.0 × 104. Using optical interferometry, we resolve the thermal mechanical noise 
of the two modes with high signal-to-background ratios ~20 dB, as shown in Figs. 7.2.3b 
and 7.2.3c. 

In the experiment, the maximum bath temperature difference and the minimum sample 
distance we can achieve are ~35 K and ~250 nm. These conditions set requirements on the 
resonance frequencies and the quality factors. Since both values can vary from sample to 
sample, we examined about five pairs of devices before reaching the final pair. 
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Figure 7.2.3 | a, Resonance frequencies of the two modes versus the bath temperatures. b, c, 
Thermal mechanical noise spectrum of mode 1 (a) and mode 2 (b). 

Without any feedback control, the mechanical resonance frequencies typically drift at a rate 
of ~0.5 Hz/min. During the thermal transfer measurement, we control the bath temperatures 
and lock the mechanical resonance to a certain frequency. With this exquisite control, the 
frequency mismatch of the two phonon modes can be maintained below 2 Hz, which is well 
below the linewidths of the two mechanical modes (4.6 Hz and 9.6 Hz), as shown in Fig. 
7.2.4.	The bath temperatures were monitored during the feedback control. The fluctuations 
of the bath temperatures are unresolvable with the sensitivity (0.01 K) of our platinum 
resistance temperature detectors. Based on the fluctuations of the resonance frequencies (~2 
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Hz) and the measured frequency-temperature coefficient ~2 kHz/K of the membrane modes, 
we can estimate the fluctuation of the bath temperature to be ~0.001 K. 

 

Figure 7.2.4 | Frequency stability under thermal feedback control. The shaded areas represent 
the bandwidths of the mechanical resonances.  

7.3 Realization of the Casimir strong phonon coupling 

To verify that the phonon mode coupling is originated from the Casimir force, we examine 
the phonon mode coupling characteristics. When the membranes are brought close, we 
observe an anti-crossing feature in the thermal noise spectra, as shown in Fig. 7.3.1a. This 
feature reveals the strong coupling of the two phonon modes. The upper and lower branch 
corresponds to the symmetric and antisymmetric eigenmode, respectively. The frequency 
splitting Δú of the two peaks is a direct indicator of the coupling strength.  

Taking both Casimir and electrostatic effects into account, the observed frequency splitting 
can be expressed as Δú = Δú̈ í≠ + Δú ìå, with Δú̈ í≠	(∝ Casmir force gradient) and Δú ìå ∝

≈̀ − ,̀
0 + À̀\≠

0 c}Ã  being the Casimir and the electrostatic component, respectively 
[100]. ,̀  and À̀\≠  represent the first and the second-moment of the surface potential 
difference between the two metallized membranes, which can result from oxidization, strains, 
impurities in the surfaces or different crystal orientation of the metal domains. The first-
order electrostatic effect exhibits a unique dependence of ≈̀ − ,̀

0c}Ã, as shown in Fig. 
7.3.1b, which provides an effective way to calibrate the absolute distance between the two 
nanomembranes [82,83,85], as discussed below. 
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Figure 7.3.1 | a, Thermomechanical noise spectrum of membrane 2 at the distance d = 400 
nm with different bias voltages. The upper and lower branch corresponds to the symmetric 
and antisymmetric eigenmode, respectively. b, Frequency splitting of the thermomechanical 
noise spectrum shows a parabolic dependence on the bias voltage between the membranes 
(solid curves are parabolic fits). The curvatures of the parabolas are proportional to the 
electrostatic interaction strength, which have a distance dependence of d-3 according to the 
Coulomb law. We determine the frequency splitting by fitting the two peak positions in the 
spectra, which gives a precision of ~1 Hz (smaller than the data markers). 

In the experiment, the strain gauge sensor of the piezo linear stage only monitors the distance 
change δc between the membranes. We use the unique distance and voltage dependence of 
the electrostatic effect to calibrate the absolute distance between the two membranes c =
	δc + c,. At each distance, the measured frequency splitting shows a parabolic dependence 
on the bias voltage. We fit the parabolic curvatures (electrostatic strength) with a distance 
power law of δc + c, }Ã using c, as the fitting parameter. The results are shown in Fig. 
7.3.2a. Using this method, we determine the absolute distance between the membrane with 
a precision of ~5 nm. From the same data, we also obtain the surface potential ,̀ at each 
distance using the parabolic fits of the frequency splitting, as shown in Fig. 7.3.2b. The 
surface potential remains constant at different distances, which agrees with the theory 
prediction of parallel planes configuration [100]. In contrast, a distance dependence in ,̀ is 
expected for sphere-plane configuration in other Casimir force experiments. 

The bias voltage ≈̀ is applied throughout the heat transfer measurement to compensate the 
surface potential ,̀ at each separation. We apply the bias voltage by dividing the voltage 
output of a low noise source meter (Keithley 2400) by over 150 times. The noise power 
density of the bias voltage (Y≈0/∆ú) is <10-17 V2/Hz in the frequency ranges of 10-50 Hz 
and 182-194 kHz. 
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Figure 7.3.2 | Dependence of electrostatic strength (a) and minimum splitting voltage ,̀ (b) 
on the distance between the membranes.  

When ,̀	is compensated by the applied bias voltage ≈̀, we observe that the frequency split 
shows a distance dependence of c}Æ.œ/±,./0 (see below in Fig. 7.3.3). This verifies that the 
Casimir effect dominates over the electrostatic effect in our measurement. This result also 
represents the first demonstration of strong phonon coupling induced by the Casimir force. 

 

Figure 7.3.3 | The minimum frequency splitting for each distance shows a dependence of 
c}Æ.œ/±,./0 . This power law verifies that the Casimir interaction is dominant over the 
electrostatic interaction in our measurement.  
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7.4 Observation of the Casimir phonon heat transfer 

We observe the heat transfer between the phonon modes of the membranes through the 
Casimir interaction. The mode temperatures exhibit a strong dependence on the distance, as 
shown in Fig, 7.4.1a. At large separation, the mode temperatures are the same as their 
thermal bath temperatures, while at small separation (d < 600 nm) they begin to deviate. As 
the distance further decreases to d < 400 nm, [/v and [0v become nearly identical, showing 
thermalization of the two phonon modes. In the measurement, the mode temperatures are 
determined by their thermal Brownian motions, i.e. Uw[(v = k(Ω0⟨Ö(0⟩, where k(  is the 
effective mass and ⟨∗⟩ represents the ensemble average. The mechanical motion can be 
decomposed into Ö( C = “( C cosΩC + ”( C sinΩC , with “((C) and ”((C) being the two 
displacement quadrature components. The measured two quadrature components display 
circularly symmetric distribution in the phase space showing that the thermal motions are 
random with all phases being equally available (Figs. 7.4.1b and 7.4.1c). A plot of the 
probability distribution of the total energy (Fig. 7.4.1d), i.e. -( = k(Ω0 “(0 + ”(0 , shows 
that the energy distribution follows the statistics of a canonical ensemble, i.e. ß -( ∝
a} ¿/‘’÷¿

ê
.  

It is important to note that such a heat transfer effect is observed only when the resonance 
frequencies of the phonon modes are matched within the linewidth, i.e., Ω0 − Ω/ < ´/, ´0. 
As a control experiment, we offset the resonance frequencies of the modes while fixing the 
distance between the membranes. When the frequency offset Ω0 − Ω/  is much larger than 
the linewidths, the mode temperatures keep the same as their bath temperatures, as shown in 
Fig. 7.4.2.  

The observed phenomenon can be quantitatively explained by the competition between the 
Casimir coupling rate (ö¡ ∝ Casimir force gradient) and the mode-bath thermal exchange 
rate (g( = Ω/2Q(). When d decreases from 600 nm to 350 nm, ö¨  increases rapidly and the 
system evolves from weakly coupled (ö¨ ≪	´() to strongly coupled (ö¨ ≫ ´(), as shown 
before in Fig. 6.4.2. When ö¡ ≫ g(, thermalization of the phonon modes occurs ([/v ≈ [0v ≈
[q√v ) with the thermalized temperature determined by [q√v = ([/g/ + [0g0)/(g/ + g0). At this 
regime, the net heat flux transferred across the two thermal baths mediated by the strongly 
coupled phonon modes is calculated to be ß0→/ = 2Uw [0 − [/ g/g0/(g/ + g0) = 6.5×
10}0/ J/s. Using the coupled-mode Langevin equations in the above Chapter, we calculate 
the distance dependence of the mode temperatures (solid lines in Fig. 7.4.1a), which well 
describes the experiment data.  

In the experiment, the fluctuation of the electrostatic force would drive and thus heat up the 
mechanical modes. The voltage difference between the two membranes is given by 

≈̀ − ,̀ + Y≈ C . The residual voltage ≈̀ − ,̀  is estimated to be ~5 mV based on the 
precision in determining ,̀ (see data in Fig. 7.3.2b). The fluctuation voltage is much 
smaller than the residual voltage, namely Y≈ C ≪ ≈̀ − ,̀ . Under such condition, the 
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electrostatic force per area can be written as f, ≈̀ − ,̀ ≈̀ − ,̀ + 2Y≈ C /2c0. Using 
the estimated noise power density of the bias voltage (Y≈0/∆ú) ~ 10-18 V2/Hz near the 
mechanical resonance frequency, the mode temperature rise is calculated to be less than 
0.01 K when the distance is larger than 350 nm. Therefore, this electrostatic heating effect 
is neglectable in our experiment. 

	

Figure 7.4.1 | a, Because of the Casimir interaction, the mode temperatures deviate from 
their bath temperatures when the two membranes are brought close. At d < 400 nm, [/v and 
[0v become nearly identical, showing thermalization of the two phonon modes. The mode 
temperatures are measured from the thermal Brownian motion Uw[(v = k(Ω0⟨Ö(0⟩. The error 
bars represent the standard error determined by ~4 hours’ continuous measurement. The data 
agrees well with the calculation using coupled-mode Langevin equations (solid lines). b, c, 
The measured quadrature components of the thermal displacement of phonon modes 1 (b) 
and 2 (c) at mode temperatures [/v = 287.0 K and [0v = 312.5 K, respectively. Dashed lines 
indicate the standard deviations of the distriubtions and the enclosed areas are proportional 
to the mode temperatures. d, Probability distributions of the phonon mode energy follow the 
statistics of a canonical ensemble ß -( ∝ a} ¿/‘’÷¿

ê
 represented by the solid lines. 
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Figure 7.4.2 | When the frequency offset Ω0 − Ω/  is much larger than the linewidths of the 
modes, the mode temperatures [/v and [0v keep the same as their bath temperatures and no 
heat transfer effect is observed. Here, the distance between the membrane is d = 430 nm. 

7.5 Analysis of thermal radiation effects 

In this section, we distinguish the observed heat transfer from thermal radiation effects.  

In the experiment, the bath temperatures are measured by platinum resistance temperature 
sensors attached to the sample holders. When the two membranes are brought close, near-
field thermal radiation could induce a deviation of the local temperatures on the membrane 
surface, resulting a difference between the actual the measured bath temperatures. Above 
300 nm separation, radiation heat transfer coefficient between gold surfaces has been 
measured to be <1.4 W/m2K [101]. Using thermal conductivity of gold (~150 W/mK at 75 
nm [102]) and silicon nitride (~10 W/mK [103]) thin films, the local temperature deviation 
is estimated to be <0.02 K, which is over two orders of magnitude smaller than the mode 
temperature change we observed (see Fig. 7.4.1). 

The local temperature change due to thermal radiation also modifies the membrane stress 
and therefore induces a frequency shift down (up) of the mechanical mode 1 (2) when the 
membranes are close. Unlike the Casimir phonon coupling, this thermal radiation effect does 
not depend on the frequency matching of the two modes. To observe this effect, we offset 
the frequencies of the two modes by ~250 Hz and fix the output of the heater and cooler. 
The measured frequency shifts are shown in Fig. 7.5.1a. We note here that the observed 
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frequency shifts also include the contribution from the Casimir force, which is given by 
−V̈ í≠

v c /2Ω&. Excluding the Casimir force contribution, the frequency shifts are <40 Hz 
when d > 300 nm, as shown in Fig. 7.5.1b. Based on the measured frequency-temperature 
coefficient ~2 kHz/K of the membrane modes (see Fig. 7.2.3), these frequency shifts 
correspond to temperature changes of <0.02 K, which agrees well with our calculation. 

 

Figure 7.5.1 | | Frequency shifts of the two modes versus the distance (a). In (b), the Casimir 
force contribution is excluded. Measurement is performed at bath temperatures [/ = 287.0 
K and [0 = 312.5 K, and the frequencies of the modes are offset by ~250 Hz. 

 

Figure 7.5.2 | | Distance dependence of the ratio between the radiation pressure driven by 
thermal fluctuations and the Casimir pressure driven by quantum fluctuations. 
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Thermal fluctuations of electromagnetic fields can also induce a pressure Vq√ c, [  on the 
membranes. In the Casimir force community, this pressure is interpreted as the thermal 
Casimir pressure [104], which can be calculated with the Lifshitz formula [78]. In our 
experimental condition (d < 800 nm), the thermal radiation pressure (at 300 K) is calculated 
to be less than 4% of the Casimir pressure driven by quantum fluctuations, as shown in Fig. 
7.5.2, and therefore its effects are negligible. 

7.6 Conclusion and outlook 

In conclusion, we have experimentally demonstrated phonon thermal transfer induced by 
quantum vacuum fluctuations of electromagnetic fields using nanomechanical devices. Our 
observation is unambiguously distinct from other effects including electrostatic interaction 
and near-field thermal radiation. As the first demonstration of the principle, we focus on heat 
transfer between single phonon modes. When the majority of phonon modes in solid take 
part in the thermal exchange process, the effect generalizes to heat transfer between two bulk 
solids [11,105].  

The ability of controlling thermal energy flow with quantum vacuum opens up a new arena 
to study quantum thermodynamics [106,107] and to implement quantum thermal machines 
[108]. Moreover, our method for achieving and controlling the strong Casimir phonon 
coupling provides a versatile platform to implement coherent phonon process (e.g. phonon 
state transfer and entanglement) using quantum vacuum. In particularly, when the frequency 
of the phonon oscillation is comparable to the electromagnetic mode frequency, the dynamic 
Casimir effect would emerge and influence the phonon coupling and energy transfer process 
[95]. This intriguing condition can be achieved in a microwave optical cavity with movable 
boundaries which can oscillate at high frequencies (in the gigahertz range).  

Remark: Chapter 6 and Chapter 7 include materials from K. Y. Fong*, H.-K. Li*, et al. 
“Phonon thermal transfer induced by quantum vacuum fluctuations.” (under review) 
(*contributed equally). 
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