
UC Davis
UC Davis Previously Published Works

Title

Net‐benefit regression with censored cost‐effectiveness data from randomized or 
observational studies

Permalink

https://escholarship.org/uc/item/97f02978

Journal

Statistics in Medicine, 41(20)

ISSN

0277-6715

Authors

Chen, Shuai
Hoch, Jeffrey S

Publication Date

2022-09-10

DOI

10.1002/sim.9486
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97f02978
https://escholarship.org
http://www.cdlib.org/


Net-benefit regression with censored cost-effectiveness data 
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Abstract

Cost-effectiveness analysis is an essential part of the evaluation of new medical interventions. 

While in many studies both costs and effectiveness (e.g., survival time) are censored, standard 

survival analysis techniques are often invalid due to the induced dependent censoring problem. We 

propose methods for censored cost-effectiveness data using the net-benefit regression framework, 

which allow covariate-adjustment and subgroup identification when comparing two intervention 

groups. The methods provide a straightforward way to construct cost-effectiveness acceptability 

curves with censored data. We also propose a more efficient doubly robust estimator of average 

causal incremental net benefit, which increases the likelihood that the results will represent a valid 

inference in observational studies. Lastly, we conduct extensive numerical studies to examine the 

finite-sample performance of the proposed methods, and illustrate the proposed methods with a 

real data example using both survival time and quality-adjusted survival time as the measures of 

effectiveness.

Keywords

Censored data; Cost-effectiveness analysis; Double robustness; Inverse-probability weighting; 
Net-benefit regression

1 | INTRODUCTION

Economic evaluation of new treatments is important given rising healthcare costs and 

limited resources. If a new medical intervention has higher costs but greater health benefit 
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than its comparator (usual care), a decision must be made. This decision is informed with 

estimates of the new intervention’s extra costs and extra effectiveness. A new intervention 

is cost-effective if the extra cost of an extra unit of effectiveness (e.g., one more year of 

life) is less than the decision maker’s (maximum) willingness to pay (WTP) for it. There 

are two main summary statistics in cost-effectiveness analysis (CEA): the incremental cost-

effectiveness ratio (ICER) and the incremental net benefit (INB). The ICER1,2,3 is defined 

as the ratio of extra cost to extra effectiveness ΔCost/ΔEffect, where ΔCost and ΔEffect 

are differences in expected cost and expected effectiveness between new and conventional 

intervention groups.

However, statistical problems associated with ratio statistics are apparent in interpreting 

and making statistical inference with the ICER. For example, van Hout et al.2 cite Fieller4 

in noting that, “the ratio of two normal distributed variables (i.e., ΔCost and ΔEffect) has 

neither a finite mean nor a finite variance.” In addition, the ICER is a ratio statistic with 

a skewed distribution, and researchers need to be careful when handling the uncertainty 

of ICER. When the denominator of ICER is close to 0, its confidence interval (CI) may 

include infinite values, and an analyst who chooses to construct a CI for the ICER using 

bootstrapping – a popular method for handling uncertainty in CEA – may need to reorder 

the bootstrap replicates based on their positions from a cost-effectiveness plane to correctly 

obtain the tail cut-off points of the CI for the ICER.5 However, the reordering process can be 

subject to error in an applied setting because, as Stinnett and Mullahy6 note, “the negative 

portion of the probability distribution of (the ICER) does not lend itself to meaningful 

interpretation.” Due to the problems associated with the ICER, attention has shifted to the 

INB.2,7,8

The INB requires the specification of the decision maker’s WTP (denoted as λ) for an 

additional unit of effectiveness, and can be defined as INB(λ) ≡ λ·ΔEffect − ΔCost. INB(λ) 

> 0 means that the new intervention is cost-effective since the extra benefits outweigh the 

extra costs. The linear form of INB has more attractive statistical properties than the ICER 

and offers a simpler alternative for handling uncertainty in CEA, e.g., in construction of a 

95% CI. In situations where the analyst wants to incorporate covariates in the analysis of a 

cost-effectiveness dataset, e.g., by adjusting for patient demographics, one can estimate INB 

using regression-based methods. For example, the use of covariate adjustment is essential 

for observational studies, since treatment assignments are likely related to covariates of 

patients, leading to potential confounding issues (e.g., the covariates affecting costs and 

effectiveness are imbalanced across treatment groups, potentially biasing the assessment of 

the new intervention). In clinical trials, covariates can also be used to adjust for imperfect 

randomization, to improve efficiency and to generate hypotheses about subgroups for whom 

a new intervention is especially cost-effective. The net-benefit regression framework9,10 

allows statistical CEA within a standard regression-type framework where advanced 

methods can be accommodated, like those for censored data.

Censoring brings unique challenges to CEA. In clinical studies, survival time and medical 

costs are frequently censored due to incomplete follow-up before the event of interest (e.g., 

due to study termination, deaths or disease relapses may not be observed). Analyzing 

censored cost data requires advanced statistical methodologies, due to the “induced 
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informative censoring” problem, first noted by Lin and colleagues.11 For example, a 

healthier patient will accumulate costs slowly, and hence will have lower costs at both 

censoring time and event time, leading to violation of independent censoring assumption 

at cost scale. Therefore, traditional survival analysis methods, such as the Kaplan–Meier 

estimator and the Cox regression model, are no longer valid for analyzing cost (or quality-

adjusted survival) data at the scale of cost (or quality-adjusted survival) directly. To handle 

censoring in a cost-effectiveness dataset, we propose to use inverse probability weighting12 

in a net-benefit regression framework, where the measure of effectiveness can be either 

survival time, quality-adjusted survival time or some other censored outcome variable.

Many cost-effectiveness datasets come from non-randomized sources such as administrative 

data, and it is desirable to handle data that are both censored and non-randomized. We 

propose a novel doubly robust estimator of average causal INB, which not only improves 

efficiency by utilizing cost history, but also increases the likelihood that the results will 

represent a valid inference for INB in observational studies, and therefore could provide a 

valuable tool for such datasets.

The remainder of the article is organized as follows. In Section 2, we first review net-benefit 

regression framework with uncensored data, and then propose the net-benefit regression 

methods for censored data. We also propose a doubly robust estimator of average causal 

INB based on our net-benefit regression, and discuss the connections between the proposed 

methods and other existing estimators. In Section 3, we conduct simulation studies to 

examine the finite-sample properties of the proposed methods. In Section 4, we apply the 

methods to a real data example from Multicenter Automatic Defibrillator Implantation Trial 

with Cardiac Resynchronization Therapy (MADIT-CRT), a randomized clinical trial for 

cardiovascular disease. Finally, we discuss our findings in Section 5.

2 | METHODS

2.1 | Review of net-benefit regression and cost-effectiveness acceptability curves with 
uncensored data

Net-benefit regression9,10 was originally proposed for uncensored data as a regression type 

framework for CEA. For subject i, denote Effecti as the measurement of effectiveness, 

and Costi as cost. The net-benefit regression framework can be employed to estimate cost-

effectiveness by calculating a net benefit (NB) value for each subject: NBi ≡ λ · Effecti 
− Costi. The resulting NBi is the ith individual’s net benefit value, where λ denotes WTP 

for an additional unit of effectiveness. Let Ui be a vector of explanatory variables, which 

includes 1 for an intercept, Ai = 1 or 0 as the treatment indicator variable (taking the value 

one for the treatment under consideration and zero for the conventional treatment), Zi = (Zi1, 

…, Zip)T as a vector of covariates such as patient demographics, and possibly Ai × Zi as the 

interaction of treatment indicator and covariates. For a given λ, the model can be

NBi = λ ⋅ Effecti − Costi = β0 + βAAi + βZ
T Zi + βAZ

T Ai × Zi + ϵi = θTUi + ϵi, (1)
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where θ = β0, βA, βZ
T , βAZ

T T
, Ui = 1, Ai, Zi

T , AiZi
T T

, and ϵi is the error term without specified 

distribution. Note that, the coefficient θ depends on λ, and hence the more accurate notation 

is θ(λ) = (β0(λ), βA(λ), βZ(λ)T, βAZ(λ)T)T. In the following sections, we suppress (λ) 

in the coefficients for notational convenience as long as the context is clear. Large and 

statistically significant elements in βAZ for interactions help identify important patient 

subgroups, which is essential for subgroup identification and hypothesis generation. These 

subgroups can be helpful to decision-makers who may need to focus funding on groups for 

whom treatment is especially cost-effective. When there is no censored data, the estimator of 

θ can be obtained by the ordinary least squares method (for a given WTP value of λ), and 

the standard error estimate can be obtained by non-parametric bootstrapping or the standard 

Huber–White sandwich estimator,13 which is robust to heteroscedastic errors.

The cost-effectiveness acceptability curve (CEAC)7,14 handles two uncertainty problems 

in cost-effectiveness. The first is which λ value for WTP to use, and the second is the 

probability that the new treatment is cost-effective for a given WTP value of λ. The CEAC 

shows the probability on the vertical axis as a function of the given WTP value of λ on 

the horizontal axis. While in theory the CEAC can be made with the ICER or the INB, in 

practice the INB is recommended (to avoid errors due to the ICER’s nature as a ratio). When 

the INB is used to make the CEAC, the CEAC shows the probability that INB is positive for 

a given λ, that is, CEAC(λ) ≡ Pr(λ·ΔEffect − ΔCost > 0) (in a Bayesian sense). When there 

is no treatment-covariate interaction (i.e., βAZ(λ) = 0), the INB is βA(λ), and the CEAC is 

CEAC(λ) = Pr {βA(λ) > 0|λ} (in a Bayesian sense). In the frequentist view, with a normal 

approximation for the distribution of βA(λ), the adjusted CEAC (as a function of λ) can be 

estimated by

CEAC(λ) = Φ
βA(λ)

SE βA(λ)
,

where Φ(·) is the cumulative distribution function of standard normal distribution, βA(λ) is 

the estimate for βA(λ), and SE βA(λ)  is the Huber–White sandwich standard error estimator. 

When including treatment-covariate interaction (i.e., βAZ(λ) ≠ 0), the cost-effectiveness is 

allowed to be heterogeneous across different patient subgroups, depending on covariates Z. 

In this case, the INB for a patient subgroup with covariate Z is βA(λ) + βAZ(λ)TZ, and 

Z-specific CEAC is CEAC(λ; Z) = Pr {βA(λ) + βAZ(λ)TZ > 0|λ, Z} (in a Bayesian sense). 

In the frequentist view, it can be estimated with a normal approximation by

CEAC(λ; Z) = Φ
βA(λ) + βAZ(λ)TZ

SE βA(λ) + βAZ(λ)TZ
.

When there is no interaction, this Z-specific CEAC(λ; Z) reduces to CEAC(λ) by setting 

βAZ(λ) = 0, and is constant across all patients. Alternatively, bootstrap methods can be 

used to construct the CEAC if there is concern about the central limit theorem delivering 

normality with small sample size.10
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2.2 | Net-benefit regression with censored data

2.2.1 | Notations and assumptions for censored data—We define T as the 

survival time from the beginning of the study until the occurrence of an event of interest 

(e.g., death or disease relapse), and C as censoring time. For subject i in the cohort, we 

observe follow-up time Xi ≡ min(Ti, Ci) and the failure indicator Δi ≡ I{Ti ≤ Ci}, where 

I(·) is indicator function. The cost accumulation process Mi(t) tracks accumulated costs from 

time 0 to t. We use (potentially censored) survival time Ti as the measure of effectiveness 

(i.e., Effecti = Ti), and total cost until time of failure event Mi(Ti) as the measure of cost 

(i.e., Costi = Mi(Ti)). Note that both Ti and Mi(Ti) are possibly censored. We will extend the 

methods to when quality-adjusted survival time serves as the effectiveness measure later.

Assume that censoring time C is independent of both survival time T and the cost 

accumulation process Mi(t), (0 ≤ t ≤ X), possibly conditional on covariates Z and 

treatment A. This assumption is adopted in most survival data analyses. In addition, the 

marginal distribution of costs may be nowhere identifiable without making some parametric 

assumptions due to the presence of censoring.15 Hence, a limited time horizon is often 

required, for example, we measure life-years saved within a limited horizon of L years, and 

also costs within L years, where L is chosen such that a “reasonable number” of subjects 

are still being observed at that time. A consequence of applying such a restriction is that a 

survival time longer than L can be considered equivalently as having an event at time L; that 

is, we can redefine the survival time as TL = min(T, L). However, we still use T instead of 

TL for notational convenience.

2.2.2 | Method not using cost history: simple weighted method—Lin16 

proposed regression methods for cost data originally, based on the inverse probability 

weighting technique.12,17,18 We extended the idea of Lin’s method to net-benefit regression 

framework, and can estimate the coefficients by the simple weighted (SW) method,

θSW = argmin
θ

∑
i = 1

n Δi
K Ti

λTi − Mi Ti − θTUi
2,

where K Ti  is the Kaplan-Meier estimator for the survival function of the censoring variable 

C, K(t) = Pr(C > t), evaluated at Ti. The main idea is that one complete observation at 

Ti represents 1/K(Ti) potential people that might have been observed. Although K can 

be estimated in the entire population (when the distribution of censoring variable is the 

same across different treatments), stratifying the estimate of K by treatment group improves 

efficiency,19,20 which uses K1(t) and K0(t) as Kaplan-Meier estimators within treatment 

group A = 1 and 0, respectively. Using the Kaplan-Meier estimator for the survival function 

of the censoring variable assumes that censoring time does not depend on covariates, which 

could be reasonable in well-conducted clinical trials where most censoring occurs due to 

staggered entry and study termination. An extension to allow covariate-dependent censoring 

is to replace the Kaplan-Meier estimator for K(t) by the estimator from regression models 

such as Cox proportional hazards model.21

It is possible to obtain the closed form of SW estimator as
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θSW = ∑
i = 1

n Δi
K Ti

Ui
⊗ 2

−1
∑

i = 1

n Δi
K Ti

λTi − Mi Ti Ui,

where a⊗2 = aaT. When there is no censoring, SW estimator reduces to the ordinary least 

squares estimator. To construct a confidence interval and the CEAC, bootstrap methods 

could be used. Alternatively, a normal approximation based on the robust estimator for the 

variance-covariance matrix of θSW  (provided in Appendix A) can be used.

2.2.3 | Method using cost history: partitioned method—The SW estimator is 

good for the case when only the total accumulated costs, instead of the cost history, are 

available. Clearly the SW estimator is not efficient since it does not use the total costs 

from censored people, nor the cost histories from either censored or complete (uncensored) 

observations. By extending the idea of Lin’s partitioned regression method16 for cost 

data to our net-benefit regression framework, we partition time L into m intervals with 

partition points 0 = a0 < a1 < ⋯ < am = L. For the kth interval (ak−1, ak], re-define 

survival time of the ith patient Tki* = min Ti, ak , event (e.g., death or clinical event) 

indicator Δki* = I Tki* ≤ Ci , and follow-up time Xki* = min Tki* , Ci . Denote observed follow-up 

time accumulated within interval (ak−1, ak] as tki* , and observed cost accumulated from 

ak−1 to ak as Mki* . Note that tki* = Mki* = 0 if Xi < ak−1, and tki* = min Xi, ak − ak − 1 and 

Mki* = Mi min Xi, ak − Mi ak − 1  if Xi ≥ ak−1. Consequently, for a patient i censored after 

the kth interval (i.e., Ci > ak), the cost within this interval is complete with Δki* = 1. The 

procedure of redefinition is performed for each interval, and separate regressions will be 

done within each interval. The closed form of the partitioned estimator is θPT = ∑k = 1
m θk, 

where

θk = ∑
i = 1

n Δki*

K Tki* Ui
⊗ 2

−1
∑

i = 1

n Δki*

K Tki* λtki* − Mki* Ui,

By utilizing cost history, partitioned regression is expected to be more efficient than simple 

weighted regression in general. The robust estimator for the variance-covariance matrix of 

θPT  is provided in Appendix A.

2.2.4 | Using quality-adjusted life years (QALYs) as effectiveness—In studies 

that evaluate new therapies for chronic diseases such as cancer or cardiovascular disease, 

extending overall survival time may not be the only goal. Improving patients’ quality of 

life is also important. The quality-adjusted life year (QALY) is a measure which combines 

patients’ quality of life and survival time together and provides a useful summary for 

evaluating the treatment effect.22,23,24 A patient’s health history is partitioned into different 

health states, e.g., toxicity state during cancer treatment, period of good health, and disease 

relapse state. Each state is assigned a utility weight, usually ranging from 0 (death) to 
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1 (good health). The ith individual’s (possibly censored) QALY, Qi(Ti), is defined as the 

integration of utilities over the survival time Ti,

Qi Ti = ∫0

Ti
qi(u)du,

where qi(u) is the utility weight for the ith individual at time u. Due to possible 

censoring, we can observe the history of accumulative QALY until follow-up time Xi, 

i.e., Qi(t) = ∫0
tqi(u)du, (0 ≤ t ≤ Xi). Similar to costs and survival time, we only consider the 

QALYs accumulated within a time limit L, and assume that censoring is independent of the 

health history process and hence utility weights (possibly conditional on treatment A and 

covariates Z). Like costs, QALYs are subject to the “induced informative censoring” issue 

even when censoring is completely at random. Our proposed censored net-benefit regression 

methods can be easily extended to the case when the QALY is the measure of effectiveness. 

The simple weighted estimator is

θSW
Q = ∑

i = 1

n Δi
K Ti

Ui
⊗ 2

−1
∑

i = 1

n Δi
K Ti

λQi Ti − Mi Ti Ui

and the partitioned estimator is θPT
Q = ∑k = 1

m θk
Q

, where

θk
Q = ∑

i = 1

n Δki*

K Tki* Ui
⊗ 2

−1
∑

i = 1

n Δki*

K Tki* λQki* − Mki* Ui,

Qki*  is the observed QALY accumulated from ak−1 to ak. Note that Qki* = 0 if Xi < ak−1, 

and Qki* = Qi min Xi, ak − Qi ak − 1  if Xi ≥ ak−1. The robust estimators for the variance-

covariance matrices of θSW
Q

 and θPT
Q

 are provided in Appendix A.

2.2.5 | Doubly robust estimator of average causal INB—In observational studies, 

estimation of the average causal treatment effect on a patient’s outcome should adjust 

for confounders that are associated with both treatment exposure and outcome. For two 

treatment options (e.g., new treatment and usual care), the propensity score25,26 is the 

probability of a person receiving new treatment conditional on the observed covariates, 

which is commonly used to adjust for confounding in observational studies for causal 

inference. The propensity score can be used to construct weights for individual observations 

to adjust for confounding. Goldfeld27 proposed a partitioned method to analyze cost-

effectiveness based on a propensity score weighting method, which relies on a correctly 

specified propensity score model and tends to be biased if the propensity score model is 

mis-specified. Later, Wang and colleagues28 proposed a doubly robust estimator for average 

causal treatment effect for censored medical costs, which is doubly robust in the sense that it 

remains consistent when either the model for the treatment assignment (i.e., propensity score 

model) or the regression model for the outcome (i.e., cost regression model) is correctly 
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specified. However, Wang et al. only used total costs from complete subjects and hence is 

not efficient when cost history is available. In addition, their method only estimated costs 

without handling cost-effectiveness. We propose a doubly robust estimator by utilizing cost 

(and QALY) history to improve efficiency, as well as extending to other outcome variables 

such as the QALY and the net benefit. Therefore, our proposed method is doubly robust, 

more efficient, and can perform CEA directly within our framework.

Denote the outcome of a patient as Y, which is the patient’s total cost M(T) in the original 

method proposed by Wang et al.28 for estimating average causal treatment effect on costs. To 

estimate average causal INB, let the outcome Y be net benefit, which is λT − M(T) (if using 

survival time T as effectiveness) or λQ(T) − M(T) (if using QALY, Q(T), as effectiveness). 

Let Y(1) and Y(0) be the potential outcomes if the corresponding treatment A were 1 and 

0 respectively, which may be contrary to the fact. They are counterfactuals or potential 

outcomes because an individual can only receive one treatment, so A can only take one 

value (1 or 0) for this person. The actual outcome is Y = AY(1) + (1 − A)Y(0). Similarly, let 

Y k
(1) *  and Y k

(0) *  be potential outcomes accumulated in the kth interval. The average causal 

treatment effect on outcome is defined as

δ ≡ E Y (1) − E Y (0) = μ1 − μ0 = ∑
k = 1

m
E Yk

(1) * − E Yk
(0) * .

Let mk(A, Z) ≡ E Y k* ∣ A, Z  as the expectation of outcome accumulated in the kth interval of 

a person with treatment A and covariates Z, where Y k* = λtk* − Mk* (if using survival time 

as effectiveness) or Y k* = λQk* − Mk* (if using the QALY as effectiveness). The mk(A, Z) 

is unknown and can be estimated using our partitioned net-benefit regression. When the 

net-benefit regression does not include a treatment-covariate interaction and is correctly 

specified, it is easy to see δ = βA = ∑k = 1
m mk(1, Z) − mk(0, Z).

Assume treatment A is independent of Y k
(1) * , Y k

(0) * , Tk
(1) * , Tk

(0) *  given covariates Z, which 

is the conditional ignorable treatment assignment assumption commonly made in causal 

inference. Assume 0 < π(Z) < 1, where π(Z) = Pr(A = 1|Z) is the propensity score, 

which makes sure that each individual has positive probability to be assigned to one of the 

treatments. The propensity score π(Z) is usually unknown and estimated by a model (e.g., 

logistic model or probit model).

We propose the doubly robust estimator for δ as δ = ∑k = 1
m μk1 − μk0 , where

μk1 = ∑
i = 1

n Δki*

KAi Tki*
AiYki*
π Zi

−
Ai − π Zi

π Zi
⋅ mk 1, Zi / ∑

i = 1

n Δki*

KAi Tki* ,

and
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μk0 = ∑
i = 1

n Δki*

KAi Tki*
1 − Ai Yki*
1 − π Zi

+
Ai − π Zi
1 − π Zi

⋅ mk 0, Zi / ∑
i = 1

n Δki*

KAi Tki* ,

where KAi(t) is K1(t) or K0(t) for treatment group A = 1 or 0 respectively (i.e., 

Kaplan-Meier estimators stratified by treatment group), and mk(A, Z) is the estimator for 

mk(A, Z) = E Y k* ∣ A, Z  based on our partitioned net-benefit regression.

This estimator remains consistent when either the treatment propensity score model or 

the net-benefit regression model is correctly specified. This property of double robustness 

provides twice the chances to obtain consistent estimates in observational studies, and can 

always obtain consistent estimates in randomized trials (since the propensity scores is known 

in randomized trials). The proof of double robustness of the proposed estimator is provided 

in Appendix B, and the corresponding variance estimator is provided in Web Appendix A.

2.2.6 | Relationship with other estimators—Our proposed methods unify many 

existing methods in the net-benefit framework as special cases. Currently, there is no 

method available for censored cost-effectiveness data to do cost-effectiveness directly in 

a single model incorporating covariates, cost (and QALY) history, and double robustness, so 

implementation would entail considerable effort using existing methods. On the other hand, 

our proposed method handles these within one framework.

In the absence of covariates, the proposed net-benefit regression model reduces to an 

unadjusted net-benefit regression (i.e., a simple model only including the intercept and 

treatment indicator variable). An alternative way to perform unadjusted CEA is stratified 

analysis within each treatment group separately, by estimating mean effectiveness, mean 

cost, and their variances and covariance between cost and effectiveness within each 

treatment group.17,18,29 These estimators can be used to estimate unadjusted INB and 

construct CEAC. The stratified analysis based on SW mean estimators17,18,29 can be viewed 

as a special case of our SW net-benefit regression when no covariate is adjusted in our 

regression. Similarly, the stratified analysis based on partitioned mean estimators17 is a 

special case of our partitioned net-benefit regression when no covariate is adjusted.

When only a categorical covariate and its interaction with treatment are included in net-

benefit regression, our proposed model includes an intercept, the treatment indicator A, 

a categorical covariate Z, and the interaction between A and Z. An alternative way is to 

perform separate subgroup analysis within each subgroup defined by Z, by estimating mean 

effectiveness and mean cost of each treatment group within each subgroup. When the same 

K is used, the two methods will obtain the same INB estimates. Therefore, performing 

separate subgroup analyses can be viewed as a special case of the proposed net-benefit 

regression.

The doubly robust estimator for cost estimation proposed by Wang et al.28 can be viewed 

as a special case of our estimator. When there is no partition (m = 1) and the outcome is 

cost (i.e., λ = 0 in our net-benefit regression), our proposed doubly robust estimator reduces 
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to the estimator proposed by Wang et al.. The proposed propensity score-adjusted method 

by Goldfeld27 to analyze cost-effectiveness using partitioned method will perform similarly 

to our doubly robust estimator when the propensity score model is correctly specified (e.g., 

in randomized studies). However, our method is consistent even when the propensity score 

model is mis-specified, as long as the net-benefit model is correctly specified, while the 

method by Goldfeld tends to be inconsistent if the propensity score model is mis-specified.

Two separate regressions for effectiveness and costs could be fitted to perform CEA with 

censored data, proposed by Willan and colleagues.30 Later, Pullenayegum and Willan20 

further derived the semi-parametric efficient parameter estimates for this 2-regression 

method. In their works, the two separate regressions need to be fitted for effectiveness and 

cost respectively, and the covariance between effectiveness and cost must be estimated to 

construct the CEAC. In Web Appendix E, we provided the proof of equivalence between the 

2-regression approach and our net-benefit regression, when using the same set of covariates 

and same partition intervals for costs and effectiveness. In practice, using our net-benefit 

regression is a more straightforward way to construct the CEAC, since the researchers only 

need to examine the estimated coefficient on the treatment indicator variable in a single 

regression. On the other hand, the 2-regression method also can estimate CEAC, but is 

more laborious, which needs to fit two separate regressions and estimate the covariance 

between cost and effectiveness models. In addition, it is more straightforward to obtain our 

proposed doubly robust estimator of average causal INB based on the net-benefit regression 

framework than the 2-regression method.

3 | SIMULATION STUDY

Treatment A and patient characteristic Z were generated independently from a Bernoulli 

distribution with Pr(A = 1) = 0.5 and Pr(Z = 1) = 0.5. Survival time T was generated from 

an exponential distribution with the rate parameter of 1/exp(2.2 − 0.5Z + 0.1A + 1.2A × 

Z). Survival time was then truncated at time L = 10. Motivated by the data generation 

process used by Lin11 and Zhao and Tian,18 U-shaped sample paths for the cost distribution 

were adopted, where the entire time period of L = 10 years was partitioned into 10 equal 

intervals. Each individual’s costs consisted of random initial diagnostic costs incurred at 

time 0, random terminal costs incurred at the failure (death) time, fixed annual costs (which 

vary from individual to individual), and random annual costs (which vary from year to year). 

The random annual costs and terminal costs for all patients were generated from log-normal 

distributions with parameters (4, 0.22) and (9, 0.62), respectively. The diagnostic costs were 

generated from log-normal distributions with parameters (9.5, 0.22) and (8.5, 0.22) for the 

treatment group (A = 1) and the conventional group (A = 0), respectively. The fixed annual 

costs were generated from log-normal distributions with parameters (7, 0.22), (6.8, 0.22), (6, 

0.22) and (4.5, 0.22) for Z = 0, A = 0 group, Z = 1, A = 0 group, Z = 0, A = 1 group, and Z 
= 1, A = 1 group, respectively. To reflect common real world data such as the MADIT-CRT 

data, the new treatment had higher initial diagnostic costs for performing treatment, but 

lower fixed annual costs subsequently.
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We also considered two scenarios for the distribution of the censoring time C. C was 

generated independently from a uniform distribution on [0,25] years for light censoring, or 

[0,14] for heavy censoring, leading to censoring rates of about 25% and 48%, respectively.

The true values of mean effectiveness E(T|A, Z) and mean costs E{M(T)|A, Z} were derived 

theoretically (details provided in Web Appendix D) based on their distributions for all 

combinations of treatments and subgroups, which were listed in Table 1. Based on these 

values, we calculated the true coefficient θ = β0, βA, βZ
T , βAZ

T T
 in net-benefit regression for a 

given WTP λ.

We evaluated the estimated coefficient θ  using different methods. In particular, we were 

most interested in estimating βA (i.e., INB in subgroup Z = 0) and βA + βAZ (i.e., INB 

in subgroup Z = 1). We consider the following estimation methods: (1) the ordinary least 

squares method that uses only complete-case (uncensored) data (CC); (2) the ordinary least 

squares method that uses both censored and uncensored data ignoring censoring status (AL); 

(3) the simple weighted estimator (SW); and (4) the partitioned estimator (PT) using yearly 

data. Approaches (1) and (2) are naive estimators ignoring censoring, whereas (3) and (4) 

provide consistent estimators. For (3) and (4), estimation of K was stratified by treatment 

group to improve efficiency.

Table 2 summarizes the results based on 2,000 runs for different sample sizes and levels 

of censoring, for the subgroup of Z = 1. It is clear that the naive approach using all 

data (AL) is biased and yields incorrect coverage probabilities for the 95% CIs for the 

coefficient of interest. The naive approach using complete-case data only (CC) is apparently 

biased with heavy censoring, while it seems to produce reasonable coverage probabilities 

for most light censoring scenarios. However, since this estimator uses only the complete 

observations, which tend to consist of those with short survival times, the costs can be biased 

downward (or upward) when people with shorter survival times have smaller (or larger) 

costs. Therefore, the CC method is not recommended since the net benefit value (NB= λ 
· Effect − Cost) will also be biased generally for most values of λ, with the exception 

when λ · bias(Effect) − bias(Cost) is close to 0. The coverage probabilities of the two naive 

methods do not improve with increased sample sizes, but deteriorate when the sample size 

increases, especially for the heavy censoring case. The SW method and the more efficient 

partitioned method (PT) produce coverage probabilities that are close to the nominal value. 

The estimated standard errors (SEs) of the PT estimator are close to the empirical SEs. The 

SEs of the SW estimator are slightly overestimated, leading to higher coverage probabilities 

than those of the PT estimator, especially under heavy censoring. The SE becomes smaller 

as the sample size increases from 200 to 800. We also notice that the SEs for the partitioned 

method generally are smaller than those for the simple weighted method, and the difference 

becomes more pronounced when the censoring is heavier. Hence it would be advantageous 

to use the partitioned estimator when the censoring is heavy and cost history data are 

available. The summary of results for subgroup of Z = 0 is provided in Web Appendix 

B with similar conclusions. During the simulation, we also compared the 2-regression 

approach from Willan et al.30 to confirm the equivalence between the 2-regression method 

Chen and Hoch Page 11

Stat Med. Author manuscript; available in PMC 2023 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and our proposed method. More details about equivalence will be discussed in Section 4 for 

the MADIT-CRT study.

We also performed additional numerical studies for the proposed doubly robust estimator, 

where the simulation scenario tried to mimic an observational study. The results demonstrate 

that the proposed estimators are doubly robust, and the partitioned method improved 

efficiency over the SW method. The details of the simulation and results are in Web 

Appendix C. The results also indicated that the doubly robust estimator may be biased 

when both propensity score and outcome models are mis-specified. To minimize the bias 

of the proposed doubly robust estimator when the two models might be both mis-specified, 

machine learning techniques (e.g., neural networks, boosting, Super Learner) could be 

employed to better estimate the two models.31,32,33

4 | A REAL DATA EXAMPLE: MADIT-CRT

The Multicenter Automatic Defibrillator Implantation Trial - Cardiac Resynchronization 

Therapy (MADIT-CRT) was a multicenter clinical trial designed to evaluate the potential 

health benefit of cardiac resynchronization therapy (CRT) when added to the implantable 

cardiac defibrillator (ICD) in patients with mild cardiac symptoms.34 Patients were recruited 

into the study over time and were randomized into either the ICD arm or the CRT with 

an ICD (CRT-ICD) arm in a 2:3 ratio. After the trial was completed, it was shown that 

CRT-ICD reduces the risk of the occurrence of heart failure or death, especially in patients 

with left bundle branch block (LBBB) conduction disturbance.

Due to the huge costs associated with the implantation of ICD, a cost-effectiveness analysis 

was also conducted based on patients from the US centers, with 503 patients in the ICD 

arm and 748 in the CRT-ICD arm.35 There were 859 LBBB patients among them. Health 

care utilization data were collected by phone and at follow-up visits at one month after 

randomization, and at three month intervals after that. Cost assessment processes were 

similar to the MADIT-I and MADIT-II studies.36,37 The patient health-related quality of 

life was assessed using the EQ-5D instrument,38 prior to randomization and at 6 months 

intervals after that. Costs data were collected with available cost history, discounted at 3% 

annual rate. The utility weights were collected at 6 month intervals. We assume utility 

remains the same until the next measurement, and it becomes zero at death. Each patient’s 

survival time and QALY were also discounted at 3% annual rate.

We performed partitioned net-benefit regressions within a 4-year limit, using life years 

(LYs) or QALYs as effectiveness. The monthly costs were used to perform partitioned 

regression. The regression included LBBB status, treatment indicator, and their interaction 

as explanatory variables. Estimation of K was stratified by treatment group to improve 

efficiency. The estimated coefficients for different WTP values of λ are summarized in 

Table 3 using LYs as effectiveness. In contrast, the 2-regression method from Willan et 
al.30 fits the two models with λ = 0 and infinity (NA in the table), and estimates the 

covariance between costs and effectiveness. Denote θEffect as the estimated coefficient from 

the regression for effectiveness (i.e., regression with dependent variable to be LY or QALY), 

and θCost from the regressions for costs (i.e., regression with dependent variable as Cost, 
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which can be obtained by simply flipping the sign of estimated coefficients from our 

net-benefit regression with λ = 0). The 2-regression method is equivalent to our net-benefit 

regression in the sense that θNBR = λθEffect − θCost, where θNBR is the estimated coefficients 

from our net-benefit regression for a given λ, which can be mathematically proven (this 

was demonstrated for a simple linear regression estimated by ordinary least squares for 

uncensored randomized data,39 and we provide a detailed proof for censored scenario in 

Web Appendix E) and easily verified in Table 3. Taking λ = 20 as an example, the estimated 

coefficient of interaction between LBBB and treatment is 13.4 by the partitioned estimator 

given λ = 20, which equals 20 × 0.27 − (−7.9), where 0.27 is the estimated coefficient of 

interaction by the partitioned estimator with λ =NA (for Effect), and 7.9 is the estimated 

coefficient of interaction by the partitioned estimator with λ = 0 (for -Cost, where “-” is 

used to flip the sign of coefficient since the dependent variable here is -Cost instead of Cost).

These results show that there is no significant interaction between LBBB and treatment 

for costs (λ = 0), but the interaction is significant when WTP λ is larger, with LBBB 

subjects achieving higher net benefits from CRT-ICD treatment in comparison to their 

non-LBBB counterparts. The results for simplified unadjusted analysis are also presented, 

which ignored covariates and the potential for heterogeneous cost-effectiveness across 

patient subgroups (equivalent to stratified analysis based on mean cost and effectiveness 

estimators within each treatment group). We also performed the two naive biased methods 

using complete-case (uncensored) data only (CC) and using all data but ignoring censoring 

(AL), which produced quite different estimates from our consistent partitioned estimator. 

The CC method also has a much larger standard error due to discarding censored patients. 

The results for QALY as effectiveness are in Web Appendix B with similar findings.

Next, the estimated CEACs based on the fitted net-benefit regressions appear in Figure 1. 

The curves demonstrate the probabilities that the CRT-ICD is cost-effective compared to 

the ICD only, given different WTP values of λ for an additional LY or QALY. Due to the 

fact that much higher costs were associated with CRT-ICD while the survival time was 

not prolonged among non-LBBB patients, the CEAC curves for non-LBBB are close to 0. 

Among LBBB patients, the probability that the CRT-ICD is cost-effective is much higher 

than the probability among non-LBBB patients, indicating heterogeneous cost-effectiveness 

across different patient subgroups. As a comparison, the unadjusted CEACs for all patients 

are illustrated in the plots, which is the special case of net-benefit regression with only 

an intercept and a treatment indicator in the model, i.e., U = (1, A). We also performed net-

benefit regression adjusted by LBBB status, i.e., a special case when U = (1, A, Z) where Z 
is the indicator of LBBB. The adjusted curve is similar to the unadjusted curve, which is as 

expected for a randomized clinical trial and indicates no major randomization issues. As an 

example to show equivalence between the 2-regression method and net-benefit regression, 

we also included the CEAC by the 2-regression method adjusted by LBBB in Figure 1, 

which produced the same CEAC curves with our LBBB-adjusted net-benefit regression 

method. However, to estimate the CEAC, the 2-regression method needs additionally 

to estimate the covariance between cost and effectiveness models and hence is not as 

straightforward as our net-benefit regression.
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We estimated the LBBB-adjusted ICERs along with the 95% confidence intervals based on 

the LBBB-adjusted regressions, which were 74.1 (95% CI: (−∞, −335.8) ∪ (9.4, ∞), LY 

as effectiveness) and 56.4 (95% CI: (−∞, −924.2) ∪ (5.6, ∞), QALY as effectiveness). 

Note that, the confidence intervals of the ICERs included infinity due to the fact that the 

denominators of ICERs were close to 0. Furthermore, analysts must be extremely cautious 

to apply the correct cost-effectiveness definition if using the ICER.6,40 For example, the 

standard definition of cost-effectiveness is that the ICER is smaller than a pre-determined 

WTP, which does not apply when ΔEffect < 0 (e.g., if the ICER > 0 but ΔCost < 0 and 

ΔEffect < 0 then the decision rule of cost-effectiveness must be inverted to be that the 

ICER is greater than a pre-determined WTP). Likewise, ICER < 0 must be investigated 

closely to determine if this results from ΔCost < 0 and ΔEffect > 0 or ΔCost > 0 and 

ΔEffect < 0, which occurs for the CIs of ICERs in the MADIT-CRT example. Therefore, 

the interpretation of the ICER and its confidence interval needs more carefulness and 

it is recommended to examine the ICER on a cost-effectiveness plane to prevent mis-

interpretation. On the other hand, a CEAC based on the INB is less problematic. In 

Web Appendix B, we provided more explanation about the LBBB-adjusted ICER and its 

connection with the CEAC in the MADIT-CRT study.

Our net-benefit regression framework is a flexible way to adjust for covariates and identify 

subgroup effects defined by LBBB status, and can easily incorporate more covariates. Note 

that, the net-benefit regression might suffer from a potentially mis-specified regression 

model and we could use the proposed double robust estimator, which can always obtain 

consistent estimates on average causal INB for randomized trials such as MADIT-CRT, 

since the propensity scores were known. Since LBBB status is binary, the mis-specification 

issue is minimal in this application. However, the doubly robust estimator might be 

worthy to consider when the researcher would like to account for more covariates 

(especially continuous covariates) and their interactions to improve estimation efficiency 

for randomized trials.

5 | DISCUSSION

We proposed a unified net-benefit regression framework for censored cost-effectiveness 

data from either randomized or observational studies, which allows covariate-adjustment 

and helps identify subgroups when comparing two treatment options, where the measure 

of effectiveness is either survival time or the QALY. Our proposed censored net-benefit 

regression framework unifies many existing methods as special cases, and is straightforward 

to construct the cost-effectiveness acceptability curve in practice. These methods provide 

valuable tools for the economic evaluation of new treatments, especially when the data are 

subject to censoring, as is common in prospective studies.

Our simulation results demonstrate that naive methods that either ignore censoring or fail to 

account for it properly (by using either uncensored data only, or treating censored data as 

if they were not censored) produce biased results. Use of these methods should be avoided 

in the analysis of censored cost-effectiveness data. The simple weighted estimator can be 

useful and convenient when we have only the total costs and QALYs at the end point for 
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each subject. In contrast, when cost (and quality of life) history data are available, the 

partitioned estimator can be more efficient, especially when the censoring rate is high.

Many cost-effectiveness datasets come from non-randomized sources (e.g., administrative 

data). Our proposed doubly robust estimator utilizes both the propensity score and net-

benefit regression models, and is consistent when either model is correctly specified. 

Compared with existing methods, our proposed estimator is doubly robust and uses cost 

(and quality of life) history to improve efficiency, which provides a tool to address the 

challenges of both observational and censored data in a net-benefit regression framework 

when history data are available. This is a major advantage for comparative effectiveness 

research using data that are both censored and non-randomized, providing a strong option 

for “real world” cost-effectiveness analysis using administrative data routinely collecting 

payer cost and patient outcomes.

The linear models might not be appropriate for some applications. By combining the 

ideas of Lin’s generalized linear models for cost data41 with the proposed methods of this 

paper, we may develop net-benefit regression methods for cost-effectiveness analyses using 

generalized linear models. Some have compared various advanced econometric techniques 

including generalized method of moments (GMM) for uncensored cost-effectiveness data 

and these might be extended to a scenario with censored data that were not randomized.42 

Additionally, EEE models developed by Basu and Rathouz43 seem promising as they 

extend the estimating equations in generalized linear models to estimate parameters in 

the link function and variance structure simultaneously with regression coefficients. While 

simulation studies by Willan et al.44 examined the effect of skewing on statistical inference 

based on least squares methodology and concluded, “Apart from the confidence intervals for 

treatment effect being a little conservative (i.e. a little too wide), there appears to be no real 

cause for concern, even when cost data are log-normal and the total sample size is as small 

as 100”, guidance is needed in this area for censored data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A |: VARIANCE-COVARIANCE MATRIX ESTIMATORS FOR NET-

BENEFIT REGRESSION COEFFICIENT ESTIMATORS

Following the idea of Lin16 which was originally proposed for cost regression, the robust 

estimators for the variance-covariance matrices of the estimated regression coefficients can 

be obtained as follows in practice.

The robust estimator for the variance-covariance matrix of θSW  can be obtained by 

Var θSW = 1
nI 0

−1I 1I 0
−1, where

I 0 = 1
n ∑

i = 1

n
Ui

⊗ 2, (A1)

and

I 1 = 1
n ∑

i = 1

n Δi
K Ti

λTi − Mi Ti − θSW
T Ui Ui+ 1 − Δi G Xi − ∑

j = 1

n 1 − Δj I Xj ≤ Xi G Xj
∑l = 1

n I Xl ≥ Xj

⊗ 2
,

G(t) =
∑i = 1

n Δi
K Ti

I Ti > t λTi − Mi Ti − θSW
T Ui Ui

∑i = 1
n I Xi ≥ t

.

The robust estimator for the variance-covariance matrix of θPT  can be obtained by 

Var θPT = 1
nI 0

−1I 2I 0
−1, where I 0 can be calculated by (A1), I 2 = ∑k = 1

m ∑k = 1
m I kl, 

I kl = 1
n ∑k = 1

m ξ kiξ li
T ,

ξ ki =
Δki*

K Tki* λtki* − Mki* − θk
TUi Ui

+ 1 − Δki* Gk Xki* − ∑
j = 1

n 1 − Δkj* I Xkj* ≤ Xki* Gk Xkj*

∑l = 1
n I Xkl* ≥ Xkj*

,

Gk(t) =
∑i = 1

n Δki*

K Tki* I Tki* > t λtki* − Mki* − θk
TUi Ui

∑i = 1
n I Xki* ≥ t

.

Similarly, the robust estimator for the variance-covariance matrix of θSW
Q

 can be obtained by 

Var θSW
Q = 1

nI 0
−1I 1

QI 0
−1, where
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I 1
Q = 1

n ∑
i = 1

n Δi
K Ti

λQi Ti − Mi Ti − θSW
Q T

Ui

Ui+ 1 − Δi GQ Xi − ∑
j = 1

n 1 − Δj I Xj ≤ Xi GQ Xj
∑l = 1

n I Xl ≥ Xj

⊗ 2
,

GQ(t) =
∑i = 1

n Δi
K Ti

I Ti > t λQi Ti − Mi Ti − θSW
Q T

Ui Ui

∑i = 1
n I Xi ≥ t

.

The robust estimator for the variance-covariance matrix of θPT
Q

 can be obtained by 

Var θPT = 1
nI 0

−1I 2
QI 0

−1, where I 2
Q = ∑k = 1

m ∑l = 1
m I kl

Q, I kl
Q = 1

n ∑i = 1
n ξ ki

Q ξ li
Q T

,

ξ ki
Q =

Δki*

K Tki* λQki* − Mki* − θk
Q T

Ui Ui + 1 − Δki* Gk
Q Xki* − ∑

j = 1

n 1 − Δkj* I Xkj* ≤ Xki* Gk
Q Xkj*

∑l = 1
n I Xkl* ≥ Xkj*

,

Gk
Q(t) =

∑i = 1
n Δki*

K Tki* I Tki* > t λQki* − Mki* − θk
Q T

Ui Ui

∑i = 1
n I Xki* ≥ t

.

APPENDIX B |: DOUBLE ROBUSTNESS OF THE PROPOSED DOUBLY 

ROBUST ESTIMATOR FOR AVERAGE CAUSAL INB

Following the idea of Wang et al.,28 we now show the double robustness of 

the proposed estimator μk1, i.e., μk1 is a consistent estimator of μk1 if either 

the model for the propensity score π(Z) = π(Z; ϕ) is correct or the regression 

model E Y k* ∣ A = 1, Z = mk A = 1, Z; θk  is correct, where ϕ and θk are true parameters 

for propensity score model and regression model, respectively. Denote estimator 

πn(Z) = π Z; ϕn , and mk, n(A = 1, Z) = mk A = 1, Z; θk, n . Let ϕn p ϕ* and θk, n p θk*. If the 

propensity score model is correct, then ϕ* = ϕ; if the regression models are correct, then 

θk* = θk.

By the uniform consistency of the Kaplan–Meier estimator, we have

μk1 = E
Δk*

KA Tk*
AYk*

π Z; ϕ* − A − π Z; ϕ*
π Zi; ϕ* ⋅ mk 1, Z; θk* + op(1)

= E E
Δk*

KA Tk*
AYk*

π Z; ϕ* − A − π Z; ϕ*
π Z; ϕ* ⋅ mk 1, Z; θk*

∣ Yk
(1) * , Yk

(0) * , Tk
(1) * , Tk

(0) * , Z, A + op(1)

= E
AYk*

π Z; ϕ* − A − π Z; ϕ*
π Z; ϕ* ⋅ mk 1, Z; θk*

KA Tk
(A) *

KA Tk
(A) * + op(1)

= E Yk
(1) * + E A − π Z; ϕ*

π Z; ϕ* ⋅ Yk
(1) * − mk 1, Z; θk* + op(1) .
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If ϕ* = ϕ,

E A − π Z; ϕ*
π Z; ϕ* ⋅ Yk

(1) * − mk 1, Z; θk*

= E A − π(Z)
π(Z) ⋅ Yk

(1) * − mk 1, Z; θk*

= E E A − π(Z)
π(Z) ⋅ Yk

(1) * − mk 1, Z; θk* ∣ Yk
(1) * , Z

= E π(Z) − π(Z)
π(Z) ⋅ Yk

(1) * − mk 1, Z; θk* = 0.

If θk* = θk,

E A − π Z; ϕ*
π Z; ϕ* ⋅ Yk

(1) * − mk 1, Z; θk*

= E A − π Z; ϕ*
π Z; ϕ* ⋅ Yk

(1) * − mk 1, Z; θk

= E E A − π Z; ϕ*
π Z; ϕ* ⋅ Yk

(1) * − mk(1, Z) ∣ A, Z

= E A − π Z; ϕ*
π Z; ϕ* ⋅ E Yk

(1) * ∣ A, Z − mk(1, Z) = 0.

So μk1 p μk1 for both cases. Similarly, we have μk0 p μk0 when either ϕ* = ϕ or θk* = θk. 

Because δn = ∑k = 1
m μk1 − μk0 , we have δn p ∑k = 1

m μk1 − μk0 = μ1 − μ0 when either ϕ* 

= ϕ or θk* = θk(k = 1, …, m). That is, δn is doubly robust when either the propensity score 

model or the outcome regression model is correct.

Abbreviations:

CEA cost-effectiveness analysis

CEAC cost-effectiveness acceptability curve

ICER incremental cost-effectiveness ratio

INB incremental net benefit

LY Life Years

NB net benefit

SW simple weighted

QALY Quality-Adjusted Life Years

WTP willingness to pay
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FIGURE 1. 
Cost-effectiveness acceptance curves (CEAC) for the MADIT-CRT study limited to a 4-year 

time horizon, from fitted partitioned net-benefit regression, using (A) life years (LYs) or 

(B) quality-adjusted life years (QALYs) as effectiveness. The solid curve is from unadjusted 

regression including the treatment indicator only. The dash-dotted curve is from regression 

adjusted by LBBB status (i.e., including the treatment indicator and LBBB status). The 

dashed curve and dotted curve are for LBBB and non-LBBB patients, respectively, from 

the regression including treatment indicator, LBBB, and their interaction. The thin solid 

gray curve is from the 2-regression method adjusted by LBBB status, which shows the 

equivalence to our method numerically.
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TABLE 1

Mean (standard deviation) of effectiveness and cost for different treatment A and patient subgroup Z in 

simulated data.

Measurement Subgroup Z

Treatment A

Mean Difference Between Treatment 1 and 0

0 1

Mean (SD) Mean (SD)

Effectiveness (Survival) 0 6.04 (3.6) 6.31 (3.6) 0.27

1 4.59 (3.4) 7.88 (3.2) 3.29

Costs (in $1000) 0 18.61 (6.1) 22.72 (6.8) 4.11

1 17.62 (6.6) 18.60 (6.5) 0.98
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TABLE 2

Summary for estimated incremental net benefit (in $1000) in subgroup Z=1 (i.e., βA + βAZ) with different 

WTP values of λ (in $1000) based on 2,000 runs.

n λ Method

Light Censoring Heavy Censoring

Bias (SEE, ESE) 95% CP Bias (SEE, ESE) 95% CP

200 15 CC −1.8 (12.3, 12.1) 0.941 −9.2 (14.8, 14.5) 0.897

AL −13.2 (10.4, 10.1) 0.755 −23.1 (9.6, 9.3) 0.295

SW −0.6 (11.5, 11.7) 0.949 −0.5 (14.1, 14.8) 0.942

PT −0.5 (11.1, 11.0) 0.945 −0.5 (12.0, 12.0) 0.941

30 CC −2.8 (24.2, 23.7) 0.940 −16.2 (28.9, 28.3) 0.907

AL −25.6 (20.8, 20.0) 0.769 −44.7 (19.1, 18.5) 0.317

SW −1.0 (22.7, 23.0) 0.948 −0.8 (27.6, 29.0) 0.943

PT −1.0 (21.8, 21.6) 0.943 −1.0 (23.6, 23.5) 0.941

400 15 CC −1.3 (8.6, 8.6) 0.948 −8.7 (10.5, 10.3) 0.864

AL −12.7 (7.2, 7.2) 0.569 −22.7 (6.6, 6.6) 0.069

SW −0.2 (8.0, 8.3) 0.956 −0.1 (9.6, 10.5) 0.962

PT −0.1 (7.8, 7.8) 0.951 −0.1 (8.4, 8.5) 0.952

30 CC −1.8 (16.7, 16.8) 0.948 −15.2 (20.5, 20.1) 0.874

AL −24.6 (14.2, 14.2) 0.592 −43.8 (13.1, 13.1) 0.081

SW −0.4 (15.7, 16.3) 0.956 −0.1 (18.7, 20.6) 0.963

PT −0.3 (15.2, 15.3) 0.950 −0.2 (16.3, 16.7) 0.953

800 15 CC −1.4 (6.1, 6.1) 0.941 −9.0 (7.3, 7.3) 0.772

AL −13.0 (5.1, 5.1) 0.276 −23.0 (4.6, 4.7) 0.002

SW −0.1 (5.8, 5.9) 0.957 −0.1 (6.8, 7.4) 0.966

PT −0.1 (5.6, 5.5) 0.951 −0.1 (6.0, 6.0) 0.950

30 CC −2.1 (11.9,11.9) 0.945 −16.0 (14.2, 14.3) 0.806

AL −25.1 (10.0, 10.0) 0.296 −44.4 (9.2, 9.3) 0.002

SW −0.2 (11.3, 11.5) 0.959 −0.3 (13.4, 14.5) 0.969

PT −0.2 (10.9, 10.8) 0.954 −0.3 (11.8, 11.8) 0.950

Note:“Bias” is the absolute bias, i.e., difference between the mean estimate and the true value; “SEE” is the empirical standard error of the 
estimates; “ESE” is the mean of the estimated standard errors; column “95% CP” gives the proportion containing the true value within 95% 
confidence interval; “CC” uses only uncensored data; “AL” uses both censored and uncensored data ignoring censoring status; “SW” is simple 
weighted estimator; and “PT” is partitioned estimator.
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