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Abstract

Recent neurophysiological studies of speaking are beginning to elucidate the neural mechanisms 

underlying auditory feedback processing during vocalizations. Here we review how research 

findings impact our state feedback control (SFC) model of speech motor control. We will discuss 

the evidence for cortical computations that compare incoming feedback with predictions derived 

from motor efference copy. We will also review observations from auditory feedback perturbation 

studies that demonstrate clear evidence for a state estimate correction process, which drives 

compensatory motor behavioral responses. While there is compelling support for cortical 

computations in the SFC model, there are still several outstanding questions that await resolution 

by future neural investigations.

INTRODUCTION

When we speak we also hear ourselves. This auditory feedback is not only critical for 

speech learning and maintenance, but also for the online control of everyday speech. When 

sensory feedback is altered, we make immediate corrective adjustments to our speech to 

compensate for those changes. A speaker moves the articulators of his/her vocal tract (i.e., 

the lungs, larynx, tongue, jaw, and lips) so that an acoustic output is generated that is 

interpreted by a listener as the words the speaker intended to convey. In this review, we will 

focus on the prominent role of auditory feedback in speaking. For a number of years, we 

have explained this role using a model of speech motor control based on state feedback 

control (SFC) [1–11]

The SFC model explains a range of behavioral phenomena concerning speaking [9, 12], and 

other proposed models of speech production [13–20] can be described as special cases of 

SFC [21, 22]. Since its development, considerable new discoveries have been made about 

the neural substrate of auditory feedback processing during speaking. In this article, we 

consider how the findings from these recent studies impact our model.
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In our model (Fig 1), when a speaker is prompted to produce a speech sound, higher frontal 

cortex (IFG) responds by activating several speech control networks, including activating a 

speech motor control network (blue arrow in fig 1). This cortical network operates via state 

feedback control (SFC): During articulation, vPMC maintains a running estimate of the 

current articulatory state (orange in fig 1); this state carries multimodal information about 

current lip position, tongue body position, formant 1 (F1), formant 2 (F2), and any other 

parameter the CNS has learned is important to monitor for achieving correct production of 

the speech sound. M1 generates articulatory controls based on this state estimate, using a 

state feedback control law (state fb ctrl law in fig 1) that keeps the vocal tract tracking a 

desired state trajectory (e.g., one that produces the desired speech sound). The estimate of 

articulatory state is continually refined as articulation proceeds, with incoming sensory 

feedback from the vocal tract (both somatosensory and auditory feedback) being compared 

with feedforward sensory predictions (green arrows), generating feedback corrections (red 

arrows) to the state estimate. In turn, M1 makes use of the updated state estimate to generate 

further controls that move the estimated state closer to the desired articulatory state 

trajectory. This process continues until state trajectory generating the speech sound has been 

fully produced.

Our SFC model is derived from the general state feedback control framework used in 

optimal feedback control (OFC) models of motor behavior [5, 6, 10, 23, 24]. In this 

framework, control relies on state estimates furnished by recursive Bayesian filtering: motor 

efference copy and the previous state estimate determine a prior distribution of predicted 

next states, and this prior is then updated via Bayes rule using the likelihood of the current 

sensory feedback. This general form of Bayesian filtering lacks a direct comparison between 

incoming and predicted sensory feedback, which is notable because feedback comparison is 

the part of our SFC model’s state correction process that allows our model to account for 

many of our empirical findings. Under linear Gaussian assumptions, however, the Bayesian 

filtering process reduces to exactly the feedback-comparison-based state correction process 

found in our SFC model [25].

In the sections that follow we consider what recent neural investigations tell us about how 

speaking is controlled, and how they impact our SFC model of speaking. We will conclude 

with brief discussion of some questions about our model that remain unresolved.

Neural evidence for auditory feedback processing during speaking

A crucial window onto the control of speaking (or indeed any motor task) is found in 

examinations of the role of sensory feedback in the process. For speaking, the processing of 

auditory feedback is particularly important, because the most proximal goal of speaking is to 

create sounds. If done correctly, a listener will interpret meaning from these sounds. Thus, 

the feedback that a speaker can use to most directly monitor the correctness of his/her 

speech output comes via auditory input. It is not surprising, therefore, that studies have 

found a variety of neural phenomena indicating that speakers actively monitor their auditory 

feedback and modulate their ongoing speech motor output based on this feedback [26–43].
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Speaking-Induced Suppression (SIS)—One of the first of the neurophysiological 

phenomena found associated with auditory feedback processing during speech was the 

phenomenon of Speaking-induced suppression (SIS): the response of a subject’s auditory 

cortices to his/her own self-produced speech is significantly smaller than the response seen 

when the subject passively re-listens to playback of the same speech (see Figure 2). This 

effect, which we call speaking-induced suppression (SIS), has been seen using positron 

emission tomography (PET) [44–46], electroencephalography (EEG) [47, 48], and 

magnetoencephalography (MEG) [49–54]. An analog of the SIS effect has also been seen in 

non-human primates [55–57]. MEG experiments have shown that the SIS effect is only 

minimally explained by a general suppression of auditory cortex during speaking and that 

this suppression is not happening in the more peripheral parts of the CNS [52]. They have 

also shown that the observed suppression goes away if the subject’s feedback is altered to 

mismatch his/her expectations [52, 53], as is consistent with some of the PET study findings.

These results are well accounted for by the hypothesized feedback comparison operation at 

the heart of our SFC model. The onset of speech is predicted from efference copy of motor 

output in the speaking condition, generating small prediction errors and a small auditory 

response. On the other hand, in the absence of an onset prediction, the same speech onset 

generates a large prediction error and a large auditory response during passive listening.

Subsequent to these initial studies, more recent studies have refined this SFC account of SIS. 

First, studies examining high-gamma responses using direct recordings with 

electrocorticography (ECoG) have found that SIS is not seen across areas of auditory cortex, 

but instead is localized to specific subsets of auditory responsive electrodes [58–60]. This 

cortical response heterogeneity contrasts greatly with the clear SIS effects seen in the M100 

evoked response. These results suggest the reasonable possibility that not all areas of 

auditory cortex are devoted to processing auditory feedback for guiding speech motor 

control, or, equivalently, that SIS may be a marker of what specific areas of auditory cortex 

do process feedback for speech motor control.

Second, SIS varies with the natural trial-to-trial variability in repeated vowel 

productions[61]. Vowel productions whose initial formants deviated most from the median 

production showed the least SIS and those closest to the median production showed the most 

SIS. This pattern of “SIS falloff” was consistent with a feedback prediction representing the 

median production but not variations around this median. This suggested there are limits on 

the precision of the efference copy-derived predictions hypothesized in SFC to account for 

SIS, either because the mapping from motor commands to auditory expectations is 

imprecise, or because the sources of the noise generating the observed production variability 

are further downstream of the motor cortical outputs presumed to drive efference copy-

based sensory predictions. Results of another recent study based on ECoG are consistent 

with this last point. Bouchard et al. found that, after coarticulatory effects were removed 

from the audio data, activity in sensorimotor cortex was able to predict a significant fraction 

of the trial-to-trial variance in vowel productions, but this fraction was modest, suggesting 

that cortical activity variation is not the only influence on vowel production variability [62].
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The results of the Niziolek et al. study also provided indirect evidence for the action of 

auditory feedback control during speaking. In addition to being associated with less SIS, it 

was also found that those vowel productions deviating most from the median production 

underwent a process of “centering” after speech onset. That is, after speech onset, the 

formant tracks of these productions converged towards the formant tracks of the median 

production. Furthermore, it was found that, across subjects, this centering of deviating 

productions was significantly related to those productions’ reduced SIS [61].

Speech Perturbation Response Enhancement (SPRE)—More direct evidence of a 

role for auditory feedback processing in speaking can be seen in behavioral experiments 

where speakers compensate for artificial perturbations in their auditory feedback during 

speaking. Such compensatory responses have been seen in response to perturbations of 

speech amplitude [30, 31], and vowel formants [32, 33, 63], but the compensatory responses 

to perturbations of pitch (the so-called “pitch perturbation reflex”) have been the most 

thoroughly studied, both behaviorally [29, 42, 64–66] as well as in neurophysiological 

investigations [58, 67–70]. Like the studies of SIS, many of the neural investigations of 

pitch compensation have been based on evoked responses. In these studies, subjects 

phonated a steady pitch, and at some point in this phonation, the pitch of their audio 

feedback was suddenly shifted up or down. Using either EEG [67] or MEG [69], the 

auditory cortical response to this sudden pitch perturbation was recorded and compared with 

the auditory response recorded during passive listening to playback of the pitch-perturbed 

feedback. These studies found that, compared with passive listening, the auditory response 

to the perturbation during active phonation (speaking) was enhanced, which we call Speech 

Perturbation Response Enhancement (SPRE) (see Figure 2). This effect differed from SIS in 

several important ways. It had the opposite polarity of the SIS response (i.e., it was a 

response enhancement, not a response suppression), and it was principally seen not in the 

100ms post onset peak of the evoked response (M100/N1), but instead in the later part of the 

response (M200/P2).

These characteristics can be accounted for in the SFC model. First, the model posits that 

SPRE does not arise from any speak/listen difference in the generation of auditory 

prediction errors. The model assumes that during speaking, the CNS predicts what it will 

hear based on efference copy of vocal motor commands which, in this case, are maintaining 

a steady pitch. The model assumes that during passive listening, the CNS predicts it will 

continue to hear what it has been hearing: a steady pitch. Thus, in both the speak and listen 

conditions, the prediction is the same (a steady pitch). As a result, onset of the perturbation 

generates the same size auditory prediction error in both conditions.

But the model also posits that auditory prediction errors are then passed back to higher 

auditory cortex (red arrow from A1 to vSMG/pSTS in Figure 1), where they are used to 

correct the current state estimate (red box labeled “state corr auditory” in Figure 1). Here is 

where the model posits a speak/listen difference. There is a gain associated with this state 

correction process (called the Kalman gain [1, 2, 71, 72]) that determines how strongly 

auditory prediction errors drive state corrections. This gain is set to reflect how correlated 

auditory feedback variations are with changes in the true articulatory state. During speaking, 

the CNS can indirectly estimate this correlation from the correlation between auditory 
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feedback and somatosensory feedback (i.e., it can use somatosensory feedback as a noisy 

measure of the true articulatory state). The CNS then sets the state correction gain using this 

estimate. But during passive listening, there is no measure of the true articulatory state to 

correlate with auditory input. In this case, we posit that, without any way to estimate it, the 

CNS conservatively assumes a low value for the correlation, and sets the state correction 

gain correspondingly low. This lower gain means that, for the same size auditory prediction 

error, smaller state corrections are generated during listening than during speaking. In other 

words, during speaking, there is an enhanced state correction response to the perturbation 

(SPRE), which we would see reflected not in early (100ms post-perturbation) activity related 

to auditory prediction errors, but instead in the later activity of higher auditory cortex where 

state corrections are generated. It is therefore not surprising that the SPRE effect is seen not 

in M100/N1 responses, but instead in the later M200/P2 responses [67, 69]. Also consistent 

with this is evidence from the MEG study of SPRE showing that the effect is strongest in 

higher levels of temporal cortex [69].

In these initial investigations of SPRE, the effect is seen as a dominant feature of the evoked 

response to the pitch perturbation, but in subsequent investigations based on ECoG [58, 70], 

the reflection of the effect in high gamma power changes was seen to be more complicated. 

Not all electrode sites exhibited SPRE, and of those sites that did exhibit SPRE, many of 

them did not express SIS. In addition, several of the sites expressing SIS did not also express 

SPRE. The fact that not all sites showed SPRE is easily explained as reflecting the fact that 

not all areas of auditory cortex are devoted to feedback control of speaking, and the sites 

showing SIS but not SPRE can also be accounted for in the SFC model where the feedback 

comparison operation that generates SIS is separate from the state correction operation that 

generates SPRE. However, the model does predict that since the feedback comparison 

operation feeds into the state correction operation, all sites expressing SPRE should also 

express SIS. That this is not the case is a challenge for our original SFC formulation (and for 

the many models that are variants of SFC), and suggests the possibility that some state 

corrections could be based on feedback comparison operations that use predictions not 

derived from efference copy, thus don’t express SIS.

Regardless of these variations of SPRE/SIS characteristics, our SFC model predicts that the 

SPRE should be most directly associated with feedback control of speaking, and indeed the 

Chang et al. study found evidence that this is the case. SPRE (as measured by the difference 

between speaking and listening responses to the pitch perturbation) was correlated with 

compensation across trials and SPRE significantly predicted the amount of compensation, 

whereas SIS did not [58]. SFC model predicts this: The SPRE expressing part of the model 

(state correction) is dependent on the state correction gain, while the SIS part (feedback 

comparison) is not. The state correction gain is postulated to be dynamically estimated on-

line, so it varies a bit from trial to trial in the experiment. That trial-to-trial variability is 

expressed not in the SIS part of the model, but instead in the activity of the SPRE-expressing 

part, as well as in the downstream compensatory motor responses driven by the state 

correction.

More recent studies have elaborated our picture of the neural correlates of the pitch 

perturbation reflex, and these have, in turn, helped to elaborate further the details of our SFC 
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model. A recent study used magnetoencephalographic imaging (MEGI) to look at the high 

gamma responses to the pitch perturbation, and found that the dominant response to the 

perturbation was in the right hemisphere, in premotor cortex and the supramarginal gyrus 

[73]. Further, the study found that this right hemisphere activity was linked to the left via a 

dynamically changing pattern of functional connectivity. This result is consistent with that 

seen in a prior study of responses to formant perturbations [33] that also found right 

hemisphere involvement in perturbation responses. Taken together, these results imply that 

our SFC model has a neural substrate that is distributed between the two hemispheres, with 

the MEGI data suggesting that the early responding left hemisphere primarily detects 

feedback prediction mismatches, while the later responding right hemisphere is more 

involved in generating state corrections from the feedback prediction errors.

Unresolved questions about the SFC model—In sum, our SFC model accounts for 

much of what has been recently learned about the neural substrate of auditory feedback 

processing in speaking. Nevertheless, there remain several unresolved issues concerning the 

structure of the model and its neural instantiation. Central to the model are the motor-to-

sensory mappings used to generate feedback predictions from speech motor activity. 

However little is known about the nature or neural substrate of these mappings, or the neural 

mechanisms by which their outputs are compared with incoming feedback. Are the 

mappings represented in frontal areas like vPMC, or instead in sensory areas like pSTG and 

SII? For each sense modality, is there a single mapping that’s shared in the production of all 

speech sounds, or are there separate mappings for each speech sound’s production? Recent 

ECoG studies show great differences in how speech features are organized in sensorimotor 

cortex [74] and auditory cortex [75] which may be difficult to reconcile with a single shared 

mapping. There are also studies showing that altering the audiomotor mapping in one 

word’s production doesn’t generalize to other words [39], suggesting individual mappings. 

If this were the case, then different words’ productions might be controlled by separate SFC-

based speech motor control networks (see Fig 1). Another issue concerns the structure of the 

SFC model. Recent ECoG studies and stimulation studies have also found a blurring of the 

distinction between primary motor (M1) and sensory (S1) areas around the central sulcus 

[74], suggesting a tight coupling between the two areas. This suggests the possibility of a 

control hierarchy, where M1 and S1 function as a low-level controller of articulatory 

movements, which in turn is controlled by a higher level SFC-based speech motor control 

network integrating both somatosensory and auditory feedback [20, 76]. These issues must 

be resolved in future investigations of the neural substrate of speech motor control.
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BOX 1-MAIN CONCEPTS

1. In the state feedback control (SFC) model, speaking is controlled using a 

running estimate of the current vocal tract state; this estimate is updated by 

comparing incoming sensory feedback with feedback predictions derived from 

motor efference copy.

2. The SFC model explains why auditory cortex is suppressed when listening to 

one’s own speech (speaking-induced suppression, or SIS) but enhanced when a 

feedback perturbation is perceived during speaking (speech perturbation 

response enhancement, or SPRE).

3. The degree of suppression in SIS is reduced in utterance productions that 

deviate from the median production, implying that the accuracy of feedback 

predictions derived from motor efference copy is limited.

4. When auditory feedback is perturbed, the activity of areas in auditory cortex that 

express SPRE is more correlated with behavioral compensation than activity in 

other auditory areas; this result is predicted by the SFC model.
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UNRESOLVED QUESTIONS

1. What are the neural mechanisms by which incoming sensory feedback is 

compared with feedback predictions?

2. What is the nature and neural substrate of the motor-to-sensory mappings 

required for SFC?

3. Is there neural evidence for a hierarchical organization of the speech motor 

control networks postulated by SFC?
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HIGHLIGHTS (Houde and Chang)

1. State feedback control (SFC) model is described for speech motor control.

2. SFC explains auditory suppression/enhancement depending on motor 

predictions.

3. SFC confirmed by auditory-driven vocal compensation during feedback 

pertubation.
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Figure 1. 
A model of speech motor control based on state feedback control (SFC). In the model, 

articulatory controls sent to the vocal tract from M1 are based on an estimate of the current 

vocal tract state (orange arrows) that is maintained by an interaction between vPMC and the 

sensory cortices. In this interaction, feedback predictions (green arrows) are compared with 

incoming feedback (black arrows), generating corrections to the state estimate (red arrows). 

See text for details.
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Figure 2. 
Examples of SIS and SPRE during pitch perturbation of vocalization. (a) A DSP shifted the 

pitch of subjects’ vocalizations (green line) and delivered this auditory feedback (yellow 

line) to subjects’ earphones. (b) Pitch track of an example trial. The green line shows the 

pitch recorded by the microphone (produced) and the yellow line shows the pitch delivered 

to the earphones (heard). Shaded region shows time interval when DSP shifted pitch by 200 

cents (1/6 octave). (c) Location of three electrodes on the cortical surface. (d) High-gamma 

line plots for each electrode in the speak (red) and listen (blue) conditions, with vertical lines 

in the left column of plots representing speech onset (where SIS [speak response < listen 

response] is observed) and shaded regions in the right column of plots representing 

perturbation onset and offset (where SPRE [speak response > listen response] is observed). 

Adapted from Chang et al., PNAS 2011.
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