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Abstract The search for new strategies for better understanding cardiovascular (CV) disease is a constant one, spanning
multitudinous types of observations and studies. A comprehensive characterization of each disease state and its biomolec-
ular underpinnings relies upon insights gleaned from extensive information collection of various types of data. Researchers
and clinicians in CV biomedicine repeatedly face questions regarding which types of data may best answer their questions,
how to integrate information from multiple datasets of various types, and how to adapt emerging advances in machine
learning and/or artificial intelligence to their needs in data processing. Frequently lauded as a field with great practical and
translational potential, the interface between biomedical informatics and CV medicine is challenged with staggeringly mas-
sive datasets. Successful application of computational approaches to decode these complex and gigantic amounts of infor-
mation becomes an essential step toward realizing the desired benefits. In this review, we examine recent efforts to adapt
informatics strategies to CV biomedical research: automated information extraction and unification of multifaceted -omics
data. We discuss how and why this interdisciplinary space of CV Informatics is particularly relevant to and supportive of
current experimental and clinical research. We describe in detail how open data sources and methods can drive discov-
ery while demanding few initial resources, an advantage afforded by widespread availability of cloud computing-driven plat-
forms. Subsequently, we provide examples of how interoperable computational systems facilitate exploration of data
from multiple sources, including both consistently formatted structured data and unstructured data. Taken together, these
approaches for achieving data harmony enable molecular phenotyping of CV diseases and unification of CV knowledge.

....................................................................................................................................................................................................
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1. Introduction

Answering biomedical questions through large-scale data analyses
has been explored for much of the past century1 and beyond. For
cardiovascular (CV) disease research in particular, ever-growing
sources of multi-level -omics data and observational data hold
promise as new reservoirs of mechanistic evidence. Bridging the
knowledge gap between genotype and phenotype has become a ma-
jor challenge and a tantalizing goal. The high incidence and impact of
CV disease, still the leading disease-related cause of mortality
worldwide,2 suggests more precise investigations and processing of
data are necessary. Existing approaches in this area have been help-
ful but likely insufficient, and therefore, despite a mounting collec-
tion of information in the field (see Figure 1), connecting numerous
observations and heterogeneous datasets remains imposing. Modern
informatics research creates new avenues and new answers with the
application of ever more powerful computational approaches.

Transformative progress driven by computation is now real and
rapidly attainable. In silico methods can now transform previously in-
tractable data into biomedically meaningful findings.3 These advances
are paired with efficient techniques for data acquisition and integra-
tion. A pressing need for cross-validated, generalizable, and standard-
ized predictive models remains,4 as does a need for a ‘universal
language’ of clinical data interoperability.5 In the meantime, new proj-
ects yield new tools, data, and infrastructure, collectively populating
the CV informatics commons.

CV biology and medicine stand to massively benefit from recent com-
putational advances. We may estimate the extent of research activity in
this space by measuring funding allocated to machine learning (ML) and
computational approaches through the NIH NHLBI. Using a previously
defined search strategy,6 we find that >$295 million in support has been
allocated to 540 different projects since 2017, all involving some variety
of ML methodology. In 2019, when NHLBI had an overall budget of
roughly $3.5 billion,7 funding for these ML projects comprised �3%.

Figure 1 Published reports on major disease categories. Counts of citations on PubMed from 1980 to 2018, per 5-year period, for each of three disease-
related categories, determined by Medical Subject Heading (MeSH) term assignment: (A) cancer (i.e. ‘Neoplasms’), (B) neurological disease (i.e.
‘Neurological Diseases’), and (C) cardiovascular diseases (CVD). Further categorization is determined by MeSH term assignment for each of the disease cat-
egories with and without the terms ‘Informatics’, ‘Artificial Intelligence’, or ‘Diagnostic Imaging’, including any of their child MeSH terms (e.g. ‘Machine
Learning’ or ‘Deep Learning’). Citation counts for 2020–25 are projections.

Cardiovascular informatics 733
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Though small in comparison to the full size of this funding source, just
700 projects incorporating ML received $334 million in NHLBI support
for the entire period between 1985 and 2016. We can therefore ob-
serve that the past several years have witnessed adoption of ML in par-
ticular as a practical (and crucially, fundable) component of CV research.

In the following sections, we review recent advancements in the appli-
cation of informatics and ML approaches to CV biology and medicine. As
image analysis and computational modeling in CV contexts are covered
comprehensively by other recent reviews,8–11 we instead focus on strat-
egies concerning particularly large or unwieldy data. Learning from large,
unstructured data collections poses particular challenges: most research
methods are designed to work with structured data of known formats
and discrete values, yet many data sources contain unpredictable con-
tents with variable systems of organization. Understanding and organiz-
ing unstructured data, particularly in CV biomedicine, requires extensive
knowledge of the domain itself.12 Similarly, -omics datasets vary in size
and structure, demanding intuitive, domain-sensitive methods to com-
pare them effectively.13 The goal of CV informatics is therefore to create
tools and resources for enhancing knowledge at scales far beyond any
single researcher or clinician’s capabilities while emulating the human ca-
pacity to integrate disparate pieces of knowledge.

2. Resources, methods, and
philosophies supporting
cardiovascular informatics

2.1 Why is cardiovascular informatics
relevant now?
CV informatics is the specific application of computational and data-
driven methods to studies of CV biology and disease. Informative gene
and protein expression studies yield massive, high-dimensional data,14 as
do investigations into epigenetics,15 requiring automated means for their
management and analysis. Meanwhile, clinical researchers seek to make
sense of vastly multifaceted observational data.16 Each study poses
unique challenges in how to manage, analyze, and validate results.
Researchers face yet further challenges in sharing their data, allowing
others to replicate their findings, and comparing observations against
those from other domains (e.g. does a pathway of interest have known
roles in cancer or neurological disease?). CV informatics focuses on solv-
ing analysis challenges imposed by the sheer size, complexity, or intracta-
bility of these data types. Its methods may also assist with identifying
connections that seasoned investigators may otherwise overlook.

Even cursory analyses of biomedical data are increasingly common-
place in CV research. Out of the >3.3 million entries on PubMed con-
cerning CV phenomena or diseases (as of December 2020), >3000 also
involve applications of ML and >62 000 concern informatics approaches.
The adoption of computational approaches in CV research (Figure 1C) is
particularly striking over the past 5–10 years and is paralleled by growth
in publications in cancer (Figure 1A) and nervous system disease studies
(Figure 1B) (Shameer et al.4 made a similar comparison for cardiology and
ML in 2018, expecting near logarithmic growth). ML is a driving force in
CV informatics, as evidenced by >300% growth in CV ML papers since
2015. Reports on informatics approaches are not limited to bioinformat-
ics or medical informatics journals: in an analysis of just over 150 000
PubMed citations published since 2010 and concerning CV topics and in-
formatics (including ML and diagnostic imaging), we find that no single
journal contributes >2% of the total (�3000 citations). Each of the top

20 journals by publication count in this set have a CV focus (e.g. JACC)
with the exception of PLoS One.

2.2 New -omics and multi-omics
approaches are data rich
Innovations in comprehensive, high-throughput molecular biology have
been a boon for research in CV informatics. Two specific groups of
approaches have made particularly impactful contributions to this field in
recent years: methods exploring previously underexplored biological
scales and those integrating multiple data types. The first category
includes epigenomic approaches such as broad chromatin accessibility
studies and single-cell approaches (e.g. single-cell RNA-seq).
Consideration of the chromatin landscape may challenge assumptions
about the development of metabolic disease and heart failure17 while
RNA-seq of individual CV progenitor cells permits focused views into
the development of biologically necessary structures.18,19 Integrated,
multi-omics approaches are also of particular interest to research as
they may provide multiple sources of evidence for biomarker discovery,
e.g. for heart failure,20 arterial ischemic stroke,21 or calcific aortic valve
disease.22 In practice, a reliable biomarker of CV disease may incorpo-
rate a full panel of signals from multiple high-throughput biomolecular,
physiological, imaging, and even behavioral diagnostics, but integrating
varied data meaningfully requires novel computational approaches.23

New methods for producing large-scale data, whether from single cells
or from multiple scales of multi-omic observations, require purpose-
built analysis strategies to yield meaningful conclusions from their data.

Newly created -omics datasets span the various molecular domains of
the body, joining genomes, with epigenomes, transcriptomes, pro-
teomes, metabolomes, and beyond.23 Most tools used for multidimen-
sional data integration fall within one of the following five categories:
clustering/dimensionality reduction-based methodologies, predictive
modeling approaches, pairwise integration, network-based methodolo-
gies, and composite approaches.23 The selection of a proper integration
technique involves the consideration of data-driven statistical patterns
and biological interpretability, but the relative consideration of these
two aspects is dependent on the investigator’s specific applications. In
some cases, data may even contain spatial or temporal properties. We
have found that a specific clustering method, deep convolutional embed-
ded clustering (DCEC), is an effective way to join multi-omics data in a
time series.24 This method can cluster individual molecules from pro-
teomes and metabolomes using the visual similarity of their temporal
trends. As compared to other conventional clustering approaches,
DCEC identifies more clusters relevant to Reactome pathways in a
mammalian heart proteome, demonstrating its capacity as an effective
approach for integrative analysis of temporal multi-omics data. Further
exploration of this and other novel computational approaches will assist
in the process of selecting appropriate integration techniques for CV
omics data.

2.3 The advent of open data and AI
democratization
The concepts of open source methods, open data, and biomedical AI
have been enthusiastically adopted in biomedical data science research
and data driven applications.25–28 We define ‘open source’ as freely avail-
able, redistributable, and modifiable software and methods.29 Data that
are similarly ‘open’ are therefore highly compatible with open source as
it is freely accessible and redistributable with few limitations.30,31 AI,
whether it works through open source methods/data or not, may be

734 J.H. Caufield et al.
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defined as algorithmic simulation of human thought and decision-making
processes.30 Under ideal conditions, AI methods accomplish otherwise
manual tasks with computational efficiency and precision while requiring
minimal human oversight.32 Adoption of novel computational methods
in CV research may lead to previously unexpected avenues of impact,
e.g. an algorithm developed for identification of heart disease biomarkers
may rapidly stimulate research in other areas.

CV informatics is made feasible through the integration of open data,
open source tools, and modern AI approaches. Impactful computational
innovation can now happen far more rapidly and inexpensively (and,
with proper technical considerations, reproducibily33) than in previous
years.34 AI and ML approaches are frequently distributed through open
source code frameworks and made available through open distribution
platforms (e.g. Github; see section ‘Availability of open source methods’
below). Infrastructure for finding open data has also improved, e.g.
Google Dataset Search35 now supports searches across >25 million
datasets, including >100 open CV data resources. Cross-database search
platforms (such as DataMed,36 which indexes >3900 CV-relevant data-
sets) also enhance the findability of open data. We view the collective
open code, open data, and common platforms as a CV informatics com-
mons. Evaluating the components of the commons for their applicability
to CV research questions, however, requires very specific data unlikely

to be publicly available.37 Open data complement observational data to
support finding biologically meaningful connections.

2.4 General-purpose biomedical data sour-
ces relevant to cardiovascular disease
studies
Publicly accessible knowledgebases (KBs) are premier examples of
open data. A selection of biomolecular and disease KBs, along with ex-
ample contents, is provided in Table 1. Some KBs, such as UniprotKB,38

contain curated collections of entries linked to literature citations, while
resources such as dbGaP,39 are primarily intended as indices of large
biomolecular and/or clinical datasets. Still other resources, e.g. Disease
Ontology40 or SNOMED CT,41 support clearly delineated definitions
of concepts and relationships among them. These data resources are
generally open and accessible, with a few exceptions concerning licenc-
ing and secondary applications. This contrasts with closed, less easily
searchable data (e.g. access to data from large-scale clinical trials
may require a fee and/or license, depending on the data desired).
We also make the distinction between knowledgebases (Table 1A)
and metadata collections (Table 1B), the latter primarily serving to
index sets of data resources rather than individual data points.

..............................................................................................................................................................................................................................

Table 1 Select biomolecular knowledgebases and metadata collections

Data Type KBs Example

A. Knowledgebases

Drugs DrugBank,34 DrugCentral,35

PharmGKB,45 R

epoDB,48 RxNorm49

The small molecule N-(6-Aminohexyl)-5-Chloro-1-

Naphthalenesulfonamide (DrugBank ID DB04513) has Troponin I, cardiac

muscle as a target

Enzymes BRENDA41 5 substrates for human troponin I, including EC 3.4.22.16 (cathepsin H) in

BRENDA

Diseases Disease Ontology,39 ICD-10/11,37,

38 OMIM44

Cardiomyopathy has code I42 in ICD-10-CM

Genetic variants DisGeNET42 121 genetic variants associated with familial idiopathic cardiomyopathy in

DisGeNet

Metabolites Human Metabolome Database43 Troponin I, cardiac muscle is linked to the metabolite calcium, HMDB ID

HMDB0000464

Protein–protein interactions IntAct44 21 protein interactors for human troponin I in IntAct

Post-translational modifications iPTMNet45 29 modification sites on Troponin I, cardiac muscle in iPTMNet

Clinical procedures LOINC46 The diagnostic process of Hypertrophic cardiomyopathy gene targeted muta-

tion analysis in Blood or Tissue by Sequencing has LOINC code 81860-9

Model organisms and their genetics Model Organism Databases

(in the Alliance

of Genome Resources)47

The genotype of mouse strain C57BL/6J-b2b904.1Clo (MGI : 5431511) is

associated with dilated cardiomyopathy

Biochemical pathways Reactome,48 WikiPathways49 Troponin I participates in 4 reactions in the Muscle contraction (Homo sapi-

ens) pathway as per Reactome

Biomedical terminology and text NCBI Disease Corpus,43 SNOMED

CT,50 VASC54

Familial cardiomyopathy (disorder) is in SNOMED CT (SCTID: 35728003)

Proteins UniProtKB37 Troponin I, cardiac muscle has accession code P19429 in UniProtKB

B. Metadata collections

Clinical trials Clinicaltrials.gov50 24 studies concerning Cardiomyopathy, Familial

Genotype and phenotype studies dbGaP38 26 phenotype datasets involving cardiomyopathy in dbGaP

Proteomes ProteomeXchange (Peptide Atlas,

PRIDE, MassIVE)51

73 proteome datasets with ‘heart’ or ‘cardiac’ in their titles on

ProteomeXchange

Biomolecular and omics data TOPMed52 36 TOPMed study datasets are available through dbGaP

A selection of KBs and metadata collections relevant to specific data types are provided here.

Cardiovascular informatics 735
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..Methods may now be developed for real-world, public results be-
fore application to more focused datasets such as privately accessi-
ble electronic health records (EHRs).

Irrespective of their contents, KBs are most interoperable and accessi-
ble when paired with an application programming interface, or API. APIs
define the set of commands allowing one system to interact with an-
other, e.g. the specific command for a mass spectrometry data analysis
platform to look up protein identifiers from UniProt. For the CV re-
searcher, APIs are the way to obtain massive quantities of KB data reli-
ably without requiring knowledge of the KB’s internal structure or
technical operation. Rapid access to all participants in the Reactome
pathway (and UniProt accessions, where applicable), for example is avail-
able through just a single API call (specifically, the address https://reac
tome.org/ContentService/data/participants/R-HSA-5576891). For a clini-
cal investigator, APIs are the bridge between an EHR and an existing clin-
ical cohorts resource (e.g. Clinicaltrials.gov). APIs have become an
integral part of the biomedical informatics landscape.

2.5 Opportunities and challenges in
adopting open data and code
Infrastructure to support freely accessible distribution of data and com-
putational methods is a cornerstone of CV informatics. A code

repository made publicly available on the GitHub version control plat-
form (or similar services, including Bitbucket55 and GitLab56) serves as
an up-to-date, openly available version of software and methods docu-
mentation. Such resources may serve as the basis for new work or com-
ponents of larger projects, including as easily deployable components
hosted through cloud computing platforms. As of July 2020, projects and
code specifically concerning CV topics were common on GitHub
(Table 2).

Though repositories and code shared on GitHub are plentiful, the
vast majority are not indexed in biomedicine-specific manners or with
consistent vocabularies (e.g. Medical Subject Headings or MeSH). Such
an organizational framework is key to locating relevant digital resources:
e.g. a search for ‘Heart Diseases’, will return >923 000 potentially rele-
vant documents (Table 2A). For example, seeking ‘Cardiac Imaging
Techniques’ yields just one repository, whereas the child MeSH terms
(e.g. ‘Angiocardiography’ or ‘Echocardiography’) return >40 related
projects (Table 2B). These resources would have remained hidden and
unappreciated if investigators did not know specific keywords required.
We would hope to locate projects and code about ‘Heart Diseases’
rather than every document containing the phrase itself. Similarly, a
search for the term ‘Cardiac Imaging Techniques’ would ideally return all
relevant objects concerning any specific imaging techniques used with
the heart, beyond this generic phrase alone. Findability and accessibility

............................ .................................................................................................................................................................................................................................................................

Table 2 Open computational methods and related resources available through GitHub

Search term Repository Code Repository languages Code languages

A. Repositories and code involving cardiovascular diseases

Cardiovascular diseases 2056 (216) 1 801 877 (318 101) Jupyter Notebook (82),

R (24), Python (18)

Text (96 880), JSON (58 448), HTML

(36 884)

Cardiovascular abnormalities 2 95 794 Jupyter Notebook (1) Text (24 561), CSV (18 685), JSON

(14 430)

Cardiovascular infections 4 151 377 CSS (2) JSON (38 171), Text (36 994), CSV

(24 269)

Heart diseases 1806 923 661 Jupyter Notebook (853),

Python (321), R (120)

Text (339 113), JSON (131 006), HTML

(106 944)

Pregnancy complications,

cardiovascular

0 56 522 NA Text (19 952), JSON (7387), HTML (6957)

Vascular diseases 28 256 422 Jupyter Notebook (8),

Python (8), HTML (3)

Text (79 191), JSON (56 656), CSV

(29 415)

B. Repositories and code involving cardiovascular imaging

Diagnostic imaging 158 (109) 643 404 (404 974) Python (25),

Jupyter Notebook

(15), Dockerfile (8)

Text (129 333), JSON (60 187), XML

(44 811)

Cardiac imaging techniques 1 74 131 NA Text (38 724), JSON (8496), XML (4964)

Angiocardiography 0 6422 NA CSV (3961), Text (1091), JSON (337)

Cardiac-gated imaging

techniques

0 100 NA XML (24), Text (22), JSON (13)

Coronary angiography 8 45 988 Python (3), MATLAB (2),

SAS (1)

Text (13 506), XML (7421), CSV (5681)

Echocardiography 38 84 874 Jupyter Notebook (7),

Python (6), Java (4)

Text (30 994), XML (12 909), JSON (8901)

Myocardial perfusion imaging 2 21 125 MATLAB (1), Python (1) CSV (4903), Text (4706), JSON (2662)

Radionuclide ventriculography 0 5790 NA CSV (3843), Text (416), JSON (342)

Counts are approximate as of July 2020. Estimates have been provided where exact counts are not available. Search terms correspond to MeSH headings; parent heading (e.g.
‘Cardiovascular Diseases’) counts include counts of the child headings shown (e.g. ‘Heart Diseases’) and results for the heading itself, shown in parentheses. Repository Languages
and Code Languages include the top three coding languages or formats of the Repository or Code count, as indexed by Github, respectively.
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of open-source methods appropriate for CV informatics tasks thus re-
main challenging.

Though repository creators tag their resources with self-selected key
words rather than those corresponding to a standard structure of con-
cepts and technologies, without tags corresponding to a controlled vo-
cabulary or ontology, this metadata is of limited interoperability. In
addition, most searches starting with MeSH terms, as Table 2 illustrates,
find either a small set of repositories in varied programming languages or
numerous documents in general text or high-level data formats (e.g.
CSV or JSON). These results provide no further aggregation of metadata
properties such as value types (e.g. as is tracked by a database such as
dbGaP). As with inconsistent tagging, the limitation on this front may be
a lack of broadly accepted and adhered-to standards and of GitHub’s
general purpose: this infrastructure is not specifically designed for bio-
medical informatics use cases. A lack of hierarchical topic-based indexing
limits findability of open source resources.

2.6 Cloud computing infrastructure
supporting cardiovascular informatics
Given the existence of open data and methods, where and how can
computation be performed? Purchasing access to distributed resources
is a clear and popular option. These services generally provide infrastruc-
ture (IaaS), a full platform (PaaS), software (SaaS), and/or data (DaaS) as
a service.57,58 IaaS includes virtual computational resources (e.g. Amazon
Elastic Compute Cloud, EC2; or Google Cloud’s Compute Engine) while
PaaS offers access to complex hardware and software platforms (e.g.
Amazon Software Development Kit or Google App Engine). SaaS assists
creation of computational pipelines by leasing or providing cost-per-use
access to established software applications, e.g. health record software.
DaaS provides access to managed datasets, such as the 100 public data-
sets provided through Amazon Web Services.59

Performing -omics data analysis or information extraction in CV re-
search is increasing the domain of cloud computing as numerous users
may desire access to data and processes. Tools implemented through
common platforms like the American Heart Association Precision
Medicine Platform60 can alleviate technical barriers to entry by providing
purpose-build, readily usable infrastructure. Researchers can access and
work with -omics data through HeartBioPortal,61 or when working with
private data, can run analyses on local computing clusters running the
Galaxy platform.62

3. Emerging informatics approaches
in structured and unstructured
cardiovascular data analysis

3.1 Recent accomplishments in
cardiovascular multi-omics data
integration
Continual analyses of genomes, proteomes, and other -omes can reveal
novel associations, particularly after integrating different data sources.
Schlotter et al.22 performed such a study to explore regulatory networks
in calcific aortic valve disease, while Lalowski et al.63 used multi-omics to
identify pathways crucial to regeneration of the fetal heart. Our group
has also proposed a statistical method for handling multi-omics data con-
cerning cardiac remodeling.24 These results and methods collectively
highlight an ongoing informatics challenge: large datasets require

extensive data normalization efforts and careful design to ensure result-
ing models are broadly applicable. One strategy for unifying multiple ob-
servation types is network medicine, a set of methods with profound
implications for CV disease prognosis, diagnosis, and therapy.64 Such
approaches enable searching complex, interconnected collections of
biomedical entities (e.g. proteins, genes, drugs, and pathways) to investi-
gate the pathophysiology of CV disease, drug discovery (or, in some
cases, repurposing), and understanding the molecular phenotypes of
rare diseases.65–68 Considering each patient’s personalized network of
biomedical entities and interactions opens further opportunities to learn
from complex network analysis.5,64,69 In one recent application,
researchers constructed a network of CV diseases and non-coding
RNAs, assisting in the identification of miRNA biomarkers.70 Integrated
multi-omics may soon become the default in CV research rather than a
convenient path toward novel insights.

Linking phenotype with clinical observations requires extensive data
engineering but can yield improved interoperability and reusability of
data resources. The final product may be a polygenic risk score (PRS),
though scope varies: Khera et al.71 developed PRSs for coronary artery
disease and atrial fibrillation while Cirulli et al.72 compared thousands of
phenotypes using >70 000 exome sequences. An observational study by
Elliot et al.73 found that incorporation of polygenic risk scores could
moderately assist risk stratification with regard to coronary artery dis-
ease. Jamal et al.74 used publicly-available KBs to build models for predict-
ing adverse CV drug reactions: in a comparison of >500 models for 36
different adverse reactions (e.g. tachycardia), the researchers predicted
novel reactions, such as those for the anti-malarial drug mefloquine.

3.2 Adaptation of text mining and
information extraction tools
Publicly available biomedical manuscripts contain abundant experimental
and clinical observations. Though writing and reading individual papers
has long been the cornerstone of scholarly communication, informatics
approaches enable comprehensive analyses of voluminous document
collections. Working with biomedical text in this manner requires ren-
dering unstructured data sources searchable. Recent research from the
NIH National Library of Medicine has resulted in the tools PubTator
Central75 and LitSense,76 both of which extend traditional literature
search to sentence-level context. These new approaches enable curious
researchers to reduce the trial-and-error necessary in usual phrase or
keyword-based search,77,78 and instead enable comparison of results for
specific claims such as ‘cardiac arrest is treated with hypothermia’ (for
reference, LitSense finds >60 instances of this statement).

Our group has found that text mining strategies can drive creation of
novel insights. Working with data mining engineers, we applied a novel
Context-aware Semantic Online Analytical Processing platform
(CaseOLAP) to an exploration of how proteins of the extracellular ma-
trix relate to subtypes of CV disease in the biomedical literature.79 We
have empowered text mining approaches to accomplish information ex-
traction, or IE: in this set of processes, unstructured text is translated
into structured data, concepts, and relationships. The methods to do so
may be manual or automated. We have developed standardized meth-
ods for IE in CV biomedicine through identification of metadata from
clinical case reports.80,81

Information extraction need not be completely unguided: it can bene-
fit from existing approaches to enforcing structure on observations.
Structured reporting can help to ensure that clinical observations fit a
standardized template and are consistently interpretable through text
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mining.82 A study based on cardiac magnetic resonance imaging (such as
the reporting described by Johnson et al.,83 for example) may be driven
by a text mining system for comparing findings extracted from standard-
ized diagnostic reports. Checklists for the contents of observational
studies, such as that described by the STROBE Statement,84 can also as-
sist in pre-defining the types of content in each document. Data mining
becomes far more efficient and accurate with the expectation of consis-
tency in each report.

3.3 Graph-based data integration and
exploration
Assembling heterogeneous observations in a way conducive to highlight-
ing novel, mechanistically-relevant relationships is a non-trivial task but
well-suited to graph methods. Much like traditional databases, these
approaches assign each data point or concept to a unique record, yet
the basic unit of each graph is a relationship between at least two
records. Focusing on two proteins with potential contributions to dis-
ease risk, we may rapidly identify relevant pathways and drug therapies
with potential for repurposing. A rigorous search of the full graph
encompassing a wide variety of data types allows quantification of the
strength of each relationship as well as the basis for new relationship pre-
dictions. This approach offers particular potential in combination with
data curated from health records, such that individual patients are repre-
sented as graphs of their medical histories and relevant experimental
observations, all in a format compatible with segments of other clinical
cohorts.85

4. Informatics approaches in clinical
research and investigations of
cardiovascular disease phenotypes

4.1 Development of large clinical data
sources
The goal of a ‘learning health system’ in which the contents of EHRs
seamlessly flow between health systems, government agencies, research-
ers, and epidemiologists86 appears more attainable each year.
Worldwide efforts to implement and learn from EHRs vary but are con-
stantly improving, from a Swiss law mandating interoperable EHR adop-
tion as of April 201787 to major efforts toward establishing
interoperable health information systems in China.88 About 86% of US
physicians were using electronic medical records or EHR systems by
2017.89 Though these data resources are, in theory, readily available for
addressing investigations into CV disease, they are by no means the only
sources of clinical observations.

Studies of patient presentation features have leveraged large-scale
longitudinal studies not originally conceived as foundations for modern
informatics strategies. Both the Framingham Heart Study90 and the
Cardiovascular Health Study91 (initiated in 1948 and in 1989, respec-
tively, both well before the modern resurgence of ML) remain valuable
resources. The Multi-Ethnic Study of Atherosclerosis (MESA), initiated in
2000, serves as another source of longitudinal clinical observations.92

These datasets offer the benefit of providing both demographic and clini-
cal features along with more focused research observations, with recent
study cycles including genetic analyses. One characteristic challenge in
working with these long-running studies is their population bias. With
the exception of MESA, the largely white cohorts in these studies have

limited their efficacy in the development of new predictive models for
non-white patient populations.93

4.2 Data mining, deep representation, and
information extraction
The data associated with biomedical documents include both document
contents and their metadata. Metadata can result from the process of as-
sembling a document (e.g. the period of time described within a case re-
port) and from description of its contents (e.g. the report describes a
case of heart failure in a male patient with Kawasaki disease). This latter
type of concept-level metadata is commonly described through key-
words and controlled vocabularies, such as MeSH.94 Clinical concepts
and phenotypes are popularly represented through coding systems such
as International Classification of Diseases (ICD).95 The newly released
ICD-1196 system has reframed how it categorizes CV conditions, partic-
ularly regarding cerebrovascular disorders.97,98 Though some efforts,
such as the Cardiovascular Disease Ontology (CVDO),99 have been pro-
duced to enable CV-focused metadata creation, such resources remain
rare. We have made efforts to define the general types of metadata in
clinical case reports, with the objective of supporting both manual and
automated information extraction from documents describing clinical
cases.80

One of the central challenges in biomedical information extraction is
the enforcement of a consistent structure upon otherwise noisy, loosely
arranged data. Any single pathological phenotype or diagnosis may be
expressed through text or numerical data in a variety of ways. A case of
‘heart failure with preserved ejection fraction’ may be accurately de-
scribed as ‘HFpEF’, heart failure with an ejection fraction above 50%, or
even cardiac dysfunction with no explicit ‘HFpEF’ diagnosis.
Nevertheless, we must fit these similar events into a consistent data
model, or a set of categories and rules defining the objects or events in
our data and how they relate to each other. Traditionally a job for rela-
tional databases where one object corresponds to one database entry—
often visualized as a table or spreadsheet—models now also fit data into
graph structures. The resulting heterogeneous graphs are known as
knowledge graphs85,100 (KGs), or collections of relationships between
different types of concepts and entities. One such graph-based project
combines >2 million relationships with the goal of identifying candidates
for drug repurposing.101

Categorizing and processing clinical reports can transform these mas-
sive record collections into rich data sources. Digesting cardiology
reports in particular has been explored for >40 years, with an early ap-
proach proposed by Gabrieli and Merrill in 1980.102 More recent efforts
allow cardiology reports to be automatically distinguished from those of
other specialties103 and can identify patients with trileaflet aortic stenosis
and coronary artery disease from free-text echocardiography and car-
diac catheterization reports with much higher predictive power than bill-
ing codes alone.104 Another system for processing echocardiography
reports, ‘EchoInfer’, can consistently extract quantitative and qualitative
values describing CV structure and function.105

Mining the observations described within text data is most informative
when merged with large-scale experimental observations. We present a
general framework for data mining in Figure 2, showing how a processing
pipeline can incorporate methods for text processing (i.e. named entity
recognition and relationship extraction) and those for data integration
(here, in the form of a graph or network). We note areas where cloud
computing infrastructure offers particular benefits; training models is an
ideal use case, for example as resources may be shut off when training is
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..complete. A complete end-to-end pipeline may be implemented in the
cloud in practice. Regardless of the computational infrastructure, the
resulting collection of concepts and relationships may then be assembled
into a KG, with each part resembling that in Figure 3.

Application of data mining to biomedical text continues to face chal-
lenges in broader application. A survey of methods for processing pa-
thology records found that insufficient validation and the absence of
shared datasets limited the extent to which methods could be com-
pared, though most manuscripts reported high accuracy.106 Adapting
successful approaches from one healthcare setting or clinical domain
poses challenges in resolving data structures (in some cases, even minor
differences in EHR software can cause data to vary structurally).107

Specific resources supporting development of text mining tools for
phenotype-level analysis may help, e.g. the PhenoCHF set contains 300
annotated discharge summaries for congestive heart failure patients.108

Disease-focused resources such as these allow methods to be adapted
to a condition’s unique context and presentation features. Isolating spe-
cific values defining the features of a large dataset (i.e. a representation)

may also be a viable long-term strategy for aggregating large quantities of
clinical observations. Recent work has prepared representations of EHR
contents from hundreds of thousands109 (and in one case, >1 million)
patients.110

4.3 Machine learning-driven models for
disease risk prediction and identification
Intensive algorithmic studies of numerous CV disease presentations yield
powerful predictive models. A recent example can be seen in a project
by Williams et al.111 concerning connections between plasma protein ex-
pression and 11 different phenotypes used as health indicators, including
metrics such as lean body mass and values such as primary CV event risk.
Protein measurements from >16 800 patients support accurate infer-
ence of a subset of phenotypes, primarily those concerning body fat. In a
much larger study, an analysis of >3.3 million percutaneous coronary in-
tervention procedures found that a combination of ML approaches
could predict periprocedural bleeding with high accuracy.112 A study of

Figure 2 An example workflow for biomedical data mining and integration. A process for combining unstructured data (e.g. contents of biomedical text
documents), structured data from -omics studies, and KB contents requires three components: information extraction, molecular signature extraction, and
assembly of data into a unified structure. Here, the unified structure is a graph, referred to as a Knowledge Graph or KG. After the preparation of computa-
tional models for named entity recognition (NER) and relationship extraction (RE), these models are applied to a set of standardized text documents to yield
sets of standardized relationships (i.e. one for each document). Molecular signature extraction from omics data follows a similar procedure: training and test
data are used to assemble a model capable of identifying molecular signatures of one or more experimental conditions. All signatures and relationships are
combined into a single KG. The KG must be evaluated by domain experts, but each round of evaluation and identification of specific biomedical relationships
is used to improve and optimize the KG. Cloud icons represent tasks ideal for implementation through cloud computing (e.g. training, testing, and validation
of text processing modules is computationally intensive and therefore a good candidate for accomplishing through cloud infrastructure).
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>24 970 adverse CV incidents was used to build a neural network-
driven model capable of accurately predicting over 7% (�350) more
incidents than established methods (i.e. American College of Cardiology
evaluation guidelines).113 Work conducted through the TOPCAT
(Treatment of Preserved Cardiac Function Heart Failure with an
Aldosterone Agonist) trial specifically investigated HFpEF, finding that a
random forest model could anticipate mortality and hospitalization with
fairly reliable accuracy but likely requires further adaptation for use out-
side the trial cohort.114 Some model-driven efforts seek to identify and
discover CV risk factors: the RFMiner framework,115 a phenome-wide
association study reported by Hyppönen et al.,116 and a project by
Pickhardt et al.117 (in this case, with metrics originally from abdominal
CT scans not intended as CV diagnostics) have all found associations and
potential biomarkers for adverse CV events.

Integrating numerous data sources can empower models with collec-
tions of metrics that may have limited statistical value when considered
alone. Samad et al.118 assembled models of patient outcome based on in-
tegrated ECG results and EHRs from >171 000 patients, obtaining solid
accuracy in its survival estimations from just 10 features. A 2016 analysis
by Motwani et al.119 examined how validating a mortality model with a 5-
year follow-up could work for coronary artery disease cases. In this case,
the ML-driven model was more accurate than baseline metrics, including
using coronary computed tomographic angiography alone. A separate
model assembled by Commandeur et al.120 was used to estimate likeli-
hood of myocardial infarction and cardiac death. The model is capable of
more predictive ability than any single metric. Work by Suchard et al.121

sought to compare the efficacy and safety of drug therapies for hyperten-
sion. They then developed hazard ratios for several drug classes based
on claims and EHRs from >4.9 million patients across multiple countries,
finding support for use of thiazide diuretics. Though compelling and in-
formative, the results of each of these efforts will require extensive vali-
dation before translation to clinical practice.

Text mining and NLP methods are practical components of the CV in-
formatics toolbox and have been successfully employed for estimating
disease risk. A novel system developed by Patterson et al.122 analyzes
text descriptions from echocardiogram and radiology reports from the
Veterans Aging Cohort Study to extract measurements most relevant to
disease. The system appears to effectively extract values for concepts

including ejection fraction or mitral valve regurgitation. A project by
Diller et al.123 applied a deep learning model to >40 000 EHRs to catego-
rize adult congenital heart disease and pulmonary hypertension cases by
diagnosis, New York Heart Association class, potential treatments, and
other outputs. Their models suggest deep learning on multifaceted data
is a viable strategy for these tasks, e.g. accuracy of their diagnosis classifi-
cation model exceeded 91%, as compared to the 96% accuracy achieved
by cardiologists performing classification manually. NLP has also been ap-
plied to such diverse applications as comparisons of CV disease presen-
tations between dental and medical records,124 triaging transient
ischemic attack cases,125 and collaborative efforts between computers
and medical domain experts.126 Additional projects, including those pre-
dicting hypertension and arterial disease risk, have been systematically
reviewed by Sheikhalishahi et al.127

5. Major challenges and limitations
of informatics approaches

Application of informatics approaches to any area of biomedicine
presents major challenges on technical and conceptual fronts. As a com-
prehensive assessment of these issues is sufficient material for its own re-
view (or, indeed, its own field of study) we list both obstacles and
limitations as we see most pertinent to applications of them to CV re-
search. Modern CV research requires integration of data from disparate
sources: multiple -omics data types, unstructured data, imaging, observa-
tional results, and signal data may play roles, among numerous others.
No automated way yet exists to reliably ensure that all data formats are
interoperable, and even a single method (e.g. mass spectrometry used
for proteomics) must use an array of data formats,128 depending on the
laboratory or its data processing pipeline. Similarly, informatics
approaches are largely limited by their interoperability; successful infor-
matic applications require users to gain considerable technical experi-
ence (much of them were rarely offered through training in molecular
and CV biology). Implementing and testing ML-driven methods also
requires understanding and/or knowledge of programming. Long-term
longitudinal studies present an especially thorny issue: a model trained
on data today may be obsolete in a few years in the future and its

Figure 3 Segments of a knowledge graph containing relationships in metabolic and CV disease. (A) An example is shown using a knowledge graph to il-
lustrate five types of concepts (colored shapes) along with their relationships (lines denoting their relationships). A knowledge graph is constructed
through information extraction from biomedical literature available in PubMed and from established knowledgebases (e.g. protein–protein interactions
from IntAct and tissue-specific SNPs from the GTEx database). Relationships are data type specific, e.g. a protein connected to a pathway (here, from the
Reactome knowledgebase) indicates the protein participates in the pathway. (B) A more complex KG, consisting of >5700 aggregated concepts and
>21 000 relationships with respect to SNPs, proteins, and pathways.

740 J.H. Caufield et al.
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foundational infrastructure may not be available for the duration of the
entire study.

AI or ML methods are clearly not universally optimal choices for in-
vestigating or predicting CV phenomena. Regression may remain a per-
fectly acceptable model for some situations, as Loring et al.129 found with
predicting atrial fibrillation outcomes. Li et al.130 found for predicting CV
disease risk in a large cohort, and Frizzell et al.131 observed for heart fail-
ure hospital readmission prediction. Increasingly complicated computa-
tional models are also accompanied by commensurate challenges in
interpretability, potentially without meaningful benefits in accuracy.
Minimally interpretable models may yield meaningless patterns with few
opportunities to derive their provenance.132 Model interpretability
remains an open research area, including with predictive models for hy-
pertension.133 ML methods should therefore be considered one set of
tools among many in a researcher’s tool chest, to be deployed when ap-
propriate and tested against alternatives. Intensive computational
approaches may support data processing tasks contributing to a rigorous
analysis, as shown in Figure 2, rather than serving as complete predictive
models.

The value of any informatics method depends upon the quality of its
data source and the machine readability of the data format; CV informat-
ics faces a major challenge in this regard. Data processing to minimize
the likelihood of misleading conclusions due to a lack of statistical power
or the presence of confounding factors is a critical prerequisite. Noisy,
complicated observational datasets rich in confounding variables are
prohibitive when a naive computational method (or, at times, a new in-
vestigator) arrives at interpretations as causal.12 Algorithmic approaches
capable of finding hidden connections in data may also find spurious cor-
relations. Investigations toward using wearable heart sensor data to infer
disease risk found that patient age, sex, and medication usage were all
potential confounders,134 for example. In some settings, data may lack
impactful factors: large epidemiological studies based on medical records
may be unexpectedly impacted by difficult-to-quantify socioeconomic
factors135 or underlying differences between control and test cohorts.136

Unfortunately, there are no available solutions to these challenges at the
present time. Nevertheless, as an increasing number of our data analyses
are automated, domain knowledge and expert guidance remain indis-
pensable in evaluating results of all informatic approaches.

The onset of intelligent data processing machines has brought along
with it a pressing question of how new knowledge can be maximized
whilst maintaining patient data privacy and integrity. Groups intending to
use these novel sources of biomedical data analysis must walk a fine line
between respecting a patient’s desire to oversee access to their personal
information and the inclination to incorporate these data in generating
new discoveries.137 Just as patients worry that these data repositories
storing their data can become the target of an attack and leave sensitive
information exposed, those in possession of the data face reputational
losses and violations if this were to occur. The decreased accessibility of
this data for researchers presents the opportunity for centralized, con-
trolled data analysis platforms (e.g. the AHA Precision Medicine
Platform60), and the foundation of the CV informatics commons.
Regulation of AI in the United States and in the EU depends on whether
the AI system is classified as a medical device in either territory (i.e. by
the US Federal Food, Drug, and Cosmetic Act or the EU Medical Device
Regulation and the Regulation on in vitro diagnostic medical devices, re-
spectively) as well as by the US Cybersecurity and Infrastructure
Security Act of 2018 and the EU Cybersecurity Act of 2019. There is, at
this time, no one-size-fits-all solution to biomedical data privacy nor a
regulation covering all instances of data protection.

Pressing questions remain about the future of CV informatics. Who
should benefit from advances? CV disease incidence is not consistently
distributed across populations.138,139 At times, research metrics may be
out of alignment with project goals: in the course of building a risk pre-
diction model for atherosclerotic disease, Pfohl et al.140 concluded that
maximizing model performance is incompatible with the goal of develop-
ing a ‘fair’ model, i.e. a model equivalently effective across cohorts of
varying demographic features. Computational approaches designed to
be applicable to large populations—or based on data from representa-
tive cohorts—must take these considerations into account or risk exac-
erbation of disease correlated with cultural, ethnic, social, and economic
factors.141

6. Concluding remarks

Widespread adoption of established, standardized biomedical indexing
systems by open source repositories could rapidly provide a foundation
for the CV informatics commons. This scenario represents an ideal op-
portunity for the application of interoperable metadata standards. One
clear example of standardized metadata is employed by Figshare: this
data-sharing repository includes a controlled system of categories along
with user-generated keywords. In addition, items in Figshare are fre-
quently linked to published, peer-reviewed manuscripts, enhancing their
findability. Second, collaboration among repository builders and biomed-
ical scientists would offer significant benefits to ensure real-world use
cases being faithfully represented in the open source. For example,
Synapse was developed as an open source platform specific for biomedi-
cal research needs, e.g. indexing by each research community.142

Similarly, the Reactome KB indexes its entries with multiple, interopera-
ble identifiers corresponding to cellular processes and pathways, inte-
grated and facilitated by a common interface.49 Conveniently, any
creator of a new repository can contribute to better standardization to-
day by indexing their projects with multiple MeSH terms or terms from
other ontologies (see Table 1) as keywords. Finally, detailed documenta-
tion accompanying a project can increase its findability (or simply allow
you to find its components and data in the future).143 Future efforts in
metadata creation and standardization therefore stand to noticeably im-
prove the FAIRness of resources central to CV informatics.

We see CV informatics as both a necessary confluence of interdisci-
plinary strategies and the means by which CV investigators can access
previously inconceivable reaches of disease-relevant knowledge. Much
of the pressure to implement advanced computational methods arises
directly from the increasing size and complexity of biomolecular data: a
single -omics screen holds a wealth of information, unobtainable without
comprehensive, automated analysis. Meanwhile, the much-celebrated
advent of EHRs promises to increase efficiency and reduce the chance of
errors, yet these documents do not inherently support development of
reasoning or narrative.144 While no single ML or data processing ap-
proach will effectively extract meaning from noisy data across all of bio-
medicine,145 adoption of open data, open science, and cloud computing
practices enables a CV informatics commons to empower a global CV
research community. Future advancements in this field must address the
unique benefits of both human and computational thought processes.
Together, we will illuminate new areas of the multi-dimensional, systemic
phenomena driving CV disease.

Data availability
The data underlying this article are available in the article.
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43. Pi~nero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno
E, Garcı́a-Garcı́a J, Sanz F, Furlong LI. DisGeNET: a comprehensive platform inte-
grating information on human disease-associated genes and variants. Nucleic Acids
Res 2017;45:D833–D839.

44. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T,
Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S,
Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V,
Pon A, Knox C, Wilson M, Manach C, Scalbert A. HMDB 4.0: the human metabo-
lome database for 2018. Nucleic Acids Res 2018;46:D608–D617.

45. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell
NH, Chavali G, Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz
U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering
RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath
A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G,
Hermjakob H. The MIntAct project—IntAct as a common curation platform for 11
molecular interaction databases. Nucleic Acids Res 2014;42:D358–D363.

46. Ross KE, Huang H, Ren J, Arighi CN, Li G, Tudor CO, Lv M, Lee J-Y, Chen S-C,
Vijay-Shanker K, Wu CH. iPTMnet: integrative bioinformatics for studying PTM net-
works. Methods Mol Biol 2017; 333–353.

47. McDonald CJ, Huff SM, Suico JG, Hill G, Leavelle D, Aller R, Forrey A, Mercer K,
DeMoor G, Hook J, Williams W, Case J, Maloney P. LOINC, a universal standard
for identifying laboratory observations: a 5-year update. Clin Chem 2003;49:
624–633.

48. Ruzicka L, Howe DG, Ramachandran S, Toro S, Van Slyke CE, Bradford YM, Eagle
A, Fashena D, Frazer K, Kalita P, Mani P, Martin R, Moxon ST, Paddock H, Pich C,
Schaper K, Shao X, Singer A, Westerfield M. The Zebrafish Information Network:
new support for non-coding genes, richer Gene Ontology annotations and the
Alliance of Genome Resources. Nucleic Acids Res 2019;47:D867–D873.

49. Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, Sidiropoulos K, Cook
J, Gillespie M, Haw R, Loney F, May B, Milacic M, Rothfels K, Sevilla C, Shamovsky V,
Shorser S, Varusai T, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P. The
reactome pathway knowledgebase. Nucleic Acids Res 2019;gkz1031.

50. Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N, Mélius J, Cirillo
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Lange LA, Lasky-Su J, Levy D, Lin X, Lin K-H, Liu C, Loos RJF, Garman L, Gerszten
R, Lubitz SA, Lunetta KL, Mak ACY, Manichaikul A, Manning AK, Mathias RA,
McManus DD, McGarvey ST, Meigs JB, Meyers DA, Mikulla JL, Minear MA, Mitchell
BD, Mohanty S, Montasser ME, Montgomery C, Morrison AC, Murabito JM, Natale
A, Natarajan P, Nelson SC, North KE, O’Connell JR, Palmer ND, Pankratz N,
Peloso GM, Peyser PA, Pleiness J, Post WS, Psaty BM, Rao DC, Redline S, Reiner
AP, Roden D, Rotter JI, Ruczinski I, Sarnowski C, Schoenherr S, Schwartz DA, Seo
J-S, Seshadri S, Sheehan VA, Sheu WH, Shoemaker MB, Smith NL, Smith JA,
Sotoodehnia N, Stilp AM, Tang W, Taylor KD, Telen M, Thornton TA, Tracy RP,
Van Den Berg DJ, Vasan RS, Viaud-Martinez KA, Vrieze S, Weeks DE, Weir BS,
Weiss ST, Weng L-C, Willer CJ, Zhang Y, Zhao X, Arnett DK, Ashley-Koch AE,
Barnes KC, Boerwinkle E, Gabriel S, Gibbs R, Rice KM, Rich SS, Silverman EK,
Qasba P, Gan W, Papanicolaou GJ, Nickerson DA, Browning SR, Zody MC, Zöllner
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