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ABSTRACT OF THE THESIS

Mass Spectrometry-based Proteomic Analysis of Oral Cancer Cells

by

Eoon Hye Ji

Master of Science in Oral Biology

University of California, Los Angeles, 2014

Professor Shen Hu, Chair

Mass spectrometry (MS), especially tandem mass spectrometry (MS/MS), is a powerful
tool for proteomic and metabolomics applications. Untargeted metabolomics results can be well
visualized and interpreted by using the cloud plot with XCMS Online software. The first objective
of this study is to perform a comprehensive metabolomics analysis of oral cancer cells and
identify metabolites altered by the knockdown of either adenylate kinase 2 (AK2) or
phosphorylate glycerol kinase 1 (PGK1). UM1 and UM2 oral cancer cells were treated with
SiRNA to knockdown AK2 or PGK1l. MS/MS and XCMS were performed to compare the
metabolite profiles between the cells with SIRNA knockdown and with scrambled siRNA control.
Our studies confirmed the utility of XCMS to interpret the metabolomic results from oral cancer
cells. When AK2 or PGK1 was knocked down in the UM1 or UM2 cells, more metabolites were

found to be down-regulated than up-regulated. Heat map analysis indicates that a common



group of metabolites were altered by AK2 knockdown between the UM1 and UM2 cells, and
similar finding was observed for the PGK1 knockdown study.

Tracer-based metabolomics, a subset of metabolomics with a labeled substrate, is a
new platform that would help researchers understand the metabolic phenotype of cancer cells.
The second objective of this study is to develop the novel methodology which combines the
tracer-based metabolomics, immunoprecipitation (IP), and MS-based proteomics to detect the
metabolic labeling of a specific protein from the entire protein complex in oral cancer cells. [U-
13C¢]-glucose was introduced into the UM1 and UM2 cells, and the labeled proteins were
analyzed by liquid chromatography (LC) with MS/MS. We found that UM1 and UM2 cells
displayed different types of *C labeled peptide mass isotopomer distribution patterns. Mass
isotopomer distribution pattern decayed faster and the intensities of each isotopic peak were
lower for the UM2 cells than those for the UM1 cells. We also demonstrated that a specific
labeled protein, e.g., 78kDa glucose-regulated protein (GRP 78), can be pulled down with IP
and analyzed by LC-MS/MS. Our results indicated that the UM1 cells utilize more glucose than
the UM2 cells possibly to maintain their invasive and metastatic phenotypes. Also, the
methodologies were able to identify any single **C-labeled protein from the whole cell lysate if
antibody is commercially available. Therefore, using XCMS and our newly developed tracer-
based metabolomics, we may have an improved understanding of the metabolic phenotype of

oral cancer cells.
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INTRODUCTION
A. Oral and Head and Neck Cancer

Head and neck tumors occur in the oral cavity, oropharynx, hypopharynx, larynx and
mouth. The most common type of head and neck tumor is called oral squamous cell carcinoma
(OSCC). OSCC occurs more frequently in male patients than female patients and in patients
who have been exposed to tobacco or alcohol usage [1]. In the US, there are approximately
7,900 OSCC deaths among the 39,400 diagnosed cases per year [2]. OSCC is considered as
the sixth most common cancer among men. In addition, it is usually detected in lymph nodes
due to the metastatic characteristic [3].

In this study, we primarily use two oral cancer cell lines, UM1 and UM2, for proteomic
and metabolomic analysis. UM1 and UM2 cell lines were originally established from a pre-
treatment patient who had a single tongue carcinoma. The UM1 cells have more invasive
potential and higher motility than the UM2 cells [4].

B. Proteomics

Proteomics is a powerful technology for identifying and studying the characteristics,
functions and structures of proteins [5]. Proteomics has been involved in many research fields
recently due to its ability to analyze protein expression at specific cellular responses both
guantitatively and qualitatively. Quantitative proteomics profiles the entire proteins in a sample
guantitatively to find the differences between samples, such as in healthy and in diseased
patients which help to understand the molecular mechanisms of diseases [6]. Through
proteomics, this study identified characteristics of protein from different oral cancer cells.

C. Mass Spectrometry and Tandem Mass Spectrometry

Mass spectrometry (MS), especially and tandem mass spectrometry (MS/MS), are

common proteomic tools for protein identification and quantification. MS measures protein mass

accurately and gives high resolution separation of fragment ions with a very small quantity of



sample. There are two proteomic approaches to profile protein peptides. ‘Top-down’ approach
allows a whole protein to be fragmented in the gas phase and can identify small proteins. A
limitation of this approach is in the difficulty in fragmentizing large proteins in the gas phase.
‘Bottom-up’ approach applies MS/MS to identify peptides of proteins digested in solution.
Peptides are initially ionized within an ionization chamber and fragmented for MS/MS analysis.
These fragments are measured to identify peptides and proteins, often with the aid of database
searching programs [7, 8]. In this study, MS or MS/MS is used for metabolomic or proteomic

analysis.

D. Mass Spectrometry-based Metabolomics

Metabolomics is a tool to study all metabolites which are extracted from cultured cells or
body fluid/tissue samples from patients [9], [10]. In addition, metabolic profiling is a platform to
analyze a set of metabolites in a biochemical pathway quantitatively [10]. There have been
many disease biomarkers which have been found by metabolomics [11]. MS is a powerful tool
for metabolomics analysis. Based on MS spectra, various small molecules such as lipids,
sugars and amino acids can be identified with MS. Since MS-based metabolomic analysis
provides global metabolic profiles which contain thousands of peaks, how to visualize and
interpret MS-based metabolomics data remains challenging. Recent studies have shown that
XCMS and METLIN metabolite database are valuable tools for analyzing MS-based
metabolomic data [12]. In the first chapter of my thesis, we have demonstrated LC-MS/MS and
XCMS for profiling the metabolites of oral cancer cells. This study was focused on developing

and confirming MS-based metabolomic methodologies for studying oral cancer cells.



CHAPTER 1: Metabolomic Analysis of Oral Cancer Cells with AK2 or PGK1 Knockdown
Specific Aim: To confirm a utility of LC-MS/MS with XCMS Online software for metabolic

profiling of oral cancer cells.

Sub Aim 1: To identify the altered metabolites in the UM1 or UM2 cells by AK2 or PGK1

knockdown.

Sub Aim 2: To investigate whether the UM1 and UM2 cells have common metabolites that are
altered by AK2 siRNA or PGK1 siRNA.

AK2 or PGK1 were knocked down by siRNA in the UM1 and UM2 oral cancer cells. Metabolites
were extracted and analyzed by LC-MS with XCMS Online software. Cloud plots and heat maps

were used to analyze the metabolomics data.

CHAPTER 2: A Novel Methodology to identify *C labeled proteins in Oral Cancer Cells
Specific Aim: To develop a novel methodology which combines tracer-based metabolomics, IP
with MS-based proteomics to detect metabolically labeled proteins from the entire protein

complex in oral cancer cells

Sub Aim 1: To identify differential **C labeled protein expression of the UM1 and UM2 oral
cancer cells.

[U-*Cg]-glucose was introduced in oral cancer cells. *C labeled proteins of the UM1 and UM2
cells were analyzed with LC-MS/MS. Mass spectrum of **C labeled proteins in the UM1 and

UM2 cells were compared.



Sub Aim 2: To detect a single 13C labeled protein in the UM1, UM2, UM5 and UM®6 oral cancer
cells using IP and LC-MS/MS.

IP was conducted on a single 13C labeled protein, GRP 78, in UM1, UM2, UM5 and UM6 cells.
The *C labeled GRP 78 of the UM1 cells was analyzed with LC-MS/MS and protein database

search.



CHAPTER 1: Metabolomic Analysis of Oral Cancer Cells with AK2 or PGK1 Knockdown

INTRODUCTION

A. A Online Metabolite Database-METLIN

METLIN is a online metabolite database which consists of over 10,000 distinctive
metabolites and gives matching results by comparing its data with MS/MS data [11]. There are
two types of METLIN databases. The traditional METLIN database is involved in many steps to
analyze untargeted metabolites. Samples are analyzed by MS and bioinformatic software and
investigated to search for mass-to-charge (m/z) ratios of the peaks of interest in metabolites.
Samples, then, get putative identifications from MS/MS, and these putative identified samples
are compared with the METLIN database to get identified manually if they are in the online
library. This study uses the new version of METLIN database which automatically matches
MS/MS data to the METLIN database allowing for researchers to save time. If the MS/MS data
does not have matched identification from the METLIN database, this new version of METLIN
database can give characteristic fragments of MS/MS data, which can help to classify the

molecule[11].

B. XCMS Online Software

Identifying metabolites requires data visualization tools. Various forms (X) of
chromatography mass spectrometry (XCMS) Online software generates a cloud plot which is a
new visualization tool that covers the limitations of the other data visualization tools. There are
four different types of data visualization tools: principal component analysis (PCA), scatter plots,
volcano plots, and heat maps. These tools show data with mathematical variables, intensity of
each sample feature, or P-value and fold change [12]. In order to interpret untargeted
metabolomic results, a cloud plot can be a new visualization tool that can show various data

characteristics, including what the other four visualization tools have shown [11, 12]. In the
5



cloud plot, the retention time (minutes) of each eluted feature is plotted on the x-axis, and mass-
to-charge ratio (m/z) of feature lists are plotted on y-axis [6]. In this study, features were plugged
into the cloud plot as circles with different sizes based on the log fold changes of features
produced by the Welch t-test. This visualization tool informed a variety of information of features
depending on their retention time. XCMS helps to recognize and classify features between
samples depending on their relative intensities, which are used for calculating P-values and fold

changes [13].

C. Metabolomic Analysis of Oral/Head and Neck Cancer Cells

In our previous studies, the metabolites of oral cancer stem-like cells (CSCs) and non
stem cancer cells (NSCCs) were profiled using capillary ion chromatography (Cap IC) with
Orbitrap MS [14]. Between CSC and NSCC, Cap IC/MS analysis revealed different isomeric
compounds and their expression levels. It also aided in elucidating the relationship between the
isomers and glycolysis pathway in the CSCs. Due to the superior resolution and sensitivity of
Cap IC, they were able to analyze more than 4000 metabolites in oral/head and neck cancer

cells.

D. Metabolic Enzymes

AK2 is an adenylate kinase isoform. Functions of adenylate kinases (AK) include
motility, differentiation and mechano-electrical signal transduction of cells. When AK2 is mutated
in severe combined immunodeficiencies (SCID) patients, they may become deaf. When AK2 is
knocked down in drosophila or zebrafish, it will have aberrant leukocyte development or growth
suppression. AK interacts with and regulates glycolytic and glycogenolytic pathways which
generate adenosine triphosphate (ATP) [15]. PGK1 is an important glycolytic enzyme in the
glycolysis pathway[16]. PGK1 is a hypoxia-inducible factor-1a (HIF-1a) regulated enzyme which

plays an important role in tumor growth, progression, metastasis, and invasiveness in cancer



[17]. HIF-1a expression is down-regulated in HNSCC [3]. In oral cancer stem-like cells (CSCs),
both HIF-1a and PGK1 expression is down-regulated compared to non-CSCs [18].

An objective of this study is to investigate the role of metabolic enzymes, AK2 and
PGK1, in the metabolomes of UM1 and UM2 oral cancer cells, with LC-MS/MS and XCMS. We
predict that down-regulating AK2 and PGK1 would reflect the metabolic phenotype changes of
the UM1 and UM2 cells. LC-MS/MS and XCMS were performed on the UM1 and UM2 oral
cancer cells to identify the global metabolomics changes due to the siRNA knockdown of AK2 or

PGK1.

MATERIALS AND METHODS
A. Cell Culture

The OSCC cell lines, UM1 and UM2, were cultured in cell culture media, Dulbecco’s
modified eagle medium (DMEM) (Invitrogen Life Technologies, Carlsbad, CA), supplemented
with 10% Fetal Bovine Serum (FBS) (Gemini Bio-Products, CA) and 1% penicillin/streptomycin
(Invitrogen Life Technologies, Carlsbad, CA). The cells were incubated in a CO, incubator at
37°C with 5.0% CO,, and the medium was changed every two days until cells reached 90-95%
confluence. Cells were washed three times with Dulbecco’s Phosphate-Buffered Saline (DPBS)
(Invitrogen Life Technologies, Carlsbad, CA) and harvested.
B. siRNA Knockdown

Transfection with siRNA was performed on the UM1 and UM2 cells using Hilymax
transfection reagent (HilyMax, Rockville, MD, USA) for 48 hours in 6-well plates according to the
manufacturer’s instruction. Double-stranded siRNAs of PGK1 (SC-36215, Santa Cruz Biotech,
Santa Cruz, CA, USA), AK2 (SC-38906, Santa Cruz Biotech, Santa Cruz, CA, USA), and non-

target control scrambled siRNAs (Santa Cruz Biotech, Santa Cruz, CA, USA) were prepared



separately with a transfection reagent. Cells were transfected with siRNAs. After a 24 hours
treatment, the cells were maintained in fresh normal growth media for 48 hours.
C. Western Blotting

Western blotting was used to confirm siRNA transfection on level of proteins in the UM1
and UM2 cells. Equal amounts of each protein samples were separated in NUPAGE Novex 4-
12% Bis-Tris gels and transferred to nitrocellulose membrane (Bio-Rad). The membranes were
blocked with 5% non-fat milk (Santa Cruz Biotech, Santa Cruz, CA, USA) in Tris-buffered saline
and Tween 20 (TBST) for 1 hour. After the blocking step, the membranes were incubated with
anti-AK2 (H65, SC-28786, Santa Cruz Biotech, Santa Cruz, CA, USA) or anti-PGK1(Y-12, SC-
17943, Santa Cruz Biotech, Santa Cruz, CA, USA) primary antibodies in 2% non-fat milk
overnight at 4°C. The membranes were washed with TBST 3 times and were incubated with
secondary antibodies (GE Healthcare, Piscataway, NJ, USA) in 5% non-fat milk for 1 hour at
room temperature. The ECL Plus Detection Kit (GE Healthcare, Piscataway, NJ, USA) was
used to develop the films and detect the signal intensity of the proteins. All experiments were
performed in triplicates.
D. Extracted Metabolites

UM1 and UM2 oral cancer cells were washed twice with DPBS and with Milli-Q water
once to remove all debris and media prior to quenching cells in liquid nitrogen and freezing at -
80°C. Subsequently, metabolites were extracted from cells using ice cold 90%
methanol:chloform solvent ratio with 9:1. Extracted metabolites were dried using speed vacuum
concentrator centrifuge at 38°C before sending to LC-MS analysis.
E. LC-MS/MS and Data Analysis

Sample analysis was performed by liquid chromatography (LC) using a reversed-phase
C18 column (Zorbax C18, Agilent, 5uM, 150 X 0.5 mm diameter column) with a flow rate of 20

pL/min. Electrospray ionization time-of-flight mass spectrometry (Agilent 6520 QTOF) was



performed in a positive mode with water/acetonitrile as mobile phases A/B, each containing
0.1% formic acid to analyze samples. Linear changes in mobile phase B composition with time
(0 min, 10% B; 5 min, 10% B; 10 min, 40% B; 65 min, 98 B; 70 min, 98% B) were components
of the chosen LC gradient. Samples were washed to reduce possible carryover before analysis.

Data analysis was performed using XCMS Online software with free access at

https://xcmsonline.scripps.edu/ using three steps: data upload, parameter selection, and result

interpretation (Figure 1). The metabolomics features are represented as ions with a unique m/z
and retention time. The metabolomics data resulting directly from XCMS generated the cloud
plot[13]. Data analysis was also performed using NetWalker 1.0, a desktop application, which

can be download for free from https://netwalkersuite.org/. The MS/MS analysis data of features

were quantified to generate heat maps. The heat maps were created with NetWalker 1.0 which
were composed of log 2 ratio feature/average condition data with a standard deviation greater

than 0.5. Log fold changes were produced by a Welch t-test.

RESULTS
A. Cloud plots of AK2 and PGK1 in the UM1 and UM2 Cells

MS/MS analysis data were uploaded to XCMS to generate the cloud plot, aka, mirror
plot. Figure 2 showed two different cloud plots: AK2 in the UML1 cells and PGK1 in UM1 cells. As
retention times passed, the numbers of eluted features were increased (Figures 2A and B). As
retention time reached 30 minutes, each group eluted about 100 to 160 features (P < 0.01; fold
change = 1.5).
B. Features of Metabolites in Different Oral Cancer Cell Lines

To investigate the numbers of metabolite features in oral cancer cells, the metabolites in
the UM1 and UM2 cells were analyzed by QTOF. We detected 4280 metabolic features in the

UM1 cells with AK2 knockdown, 3183 metabolic features in the UM2 cells with AK2 knockdown,


https://xcmsonline.scripps.edu/
https://netwalkersuite.org/

4736 metabolic features in the UM1 cells with PGK1 knockdown, and 4212 metabolic features
in the UM2 cells with PGK1 knockdown from QTOF with positive mode (Figure 3A). Among the
total number of features in each group, we also detected 448 metabolic features in the UM1
cells with AK2 knockdown, 369 metabolic features in the UM2 cells with AK2 knockdown, 585
metabolic features in the UM1 cells with PGK1 knockdown and 417 metabolic features in the
UM2 cells with PGK1 knockdown (P < 0.05) (Figure 3A). The UML1 cells contained more number
of features for both AK2 and PGK1 than the UM2 cells (Figure 3A).

In both the UM1 and UM2 cells, 85 metabolic features with AK2 knockdown were
presented (P < 0.05) (Figure 3B). In the UM1 cells, 18.97% metabolic features with AK2
knockdown (P < 0.05) were the same as 23.04% metabolic features in the UM2 cells with AK2
knockdown (P < 0.05). In both the UM1 and UM2 cells, 96 metabolic features with PGK1
knockdown were presented (P < 0.05) (Figure 3C). In the UML1 cells, 16.41% metabolic features
with PGK1 knockdown were the common metabolic features (P < 0.05) as 23.02% metabolic
features in the UM2 cells with PGK1 knockdown (P < 0.05). The common metabolic features
between the UM1 and UM2 cells with either AK2 or PGK1 knockdown were composed of a
higher percentage in the UM2 cells than the UM1 cells.

C. Metabolites Down-regulated in Different Knockdown Oral Cancer Cell Lines

To identify the role of the features in oral cancer cells with AK2 knockdown or PGK1
knockdown, fold changes in each knockdown cell line were analyzed after treatment with
SiRNA. Transfection of the UM1 and UM2 cells using siRNA was confirmed by western blotting.
AK2 and PGK1 displayed lower expression in the UM1 cells that were transfected with siRNA
knockdown (KD) compared to siRNA control (CTRL) (Figure 4A and B). Among the entire
feature list of siAK2 or siPGK1 in the UM1 or UM2 cells (P < 0.05), more than half of features
from each group were down-regulated after the siRNA treatment (Figure 5A). Both the UM1 and

UM2 cells showed more down-regulated common metabolic features with siAK2 and siPGK1

10



than up-regulated common metabolic features with siAK2 and siPGK1 (Figure 5B). In the UM1
or UM2 cells, 61 to 71 down-regulated common metabolic features with AK2 or PGK1 were
found after siRNA treatment (Figure 5B and Table 1). Up-regulated common metabolic features
in the UM1 and UM2 cells with siAK2 and siPGK1 were selected if log fold changes of the
metabolic features were greater than 1. Down-regulated common metabolic features in the UM1
and UM2 cells with siAK2 and siPGK1 were selected if log fold changes of the features were
less than 1. Additionally, the common metabolic features in the UM1 and UM2 cells with siAK2
and siPGK1 showed similar patterns of log fold changes values (data not shown).
D. Heat Maps of Common Metabolic Features between the UM1 and UM2 Cells

To investigate the common metabolic features between the UM1 and UM2 cells with
AK2 and PGK1 after siRNA treatment, metabolic features in the UM1 or UM2 cells with AK2 or
PGK1 intensities from MS/MS data were selected (P < 0.05) and were plugged into NetWalker
1.0, a desktop program. Each row represented a different metabolic feature among the control
and knockdown samples in the UM1 and UM2 cell lines. Green color represented a lower
expression of metabolic features in the cancer cell line, and red color represented a higher
expression of metabolic features in the cancer cell line. If the metabolic feature was not
expressed in the cancer cell line, it was represented as a black marker in the heat maps. In the
UM1 and UM2 cells, a majority of the metabolic features in the heat map displayed a lower
expression in the siAK2 treated cells as compared to the control siRNA (siCTRL) treated cells
(Figure 6A). Similarly, expression of siPGK1 metabolic features was lower than siCTRL in both

siRNA treated UM1 and UM2 cells (Figure 6B).

DISCUSSION
Identifying metabolites is a major step towards the biological interpretation of data in

metabolomic analysis. Due to the vast amount of metabolites present in a biological subject or

11



the wide dynamic concentration range of the compounds, characterizing the metabolome has
been a challenge in many research studies. In order to overcome the difficulties of
metabolomics, a MS-based metabolomics with XCMS Online software has been applied in this
study to determine metabolites of OSCC.

Oral carcinogenesis arises from benign hyperplasia to dysplasia to carcinoma followed
by invasive squamous cell carcinoma [16]. OSCC is developed in a multistep process with
genetic mutations and expression changes of many genes involved in oral carcinogenesis [16].
Nowadays, there are many proteomics analysis that focus on investigating gene and protein
expression in OSCC to understand pathways of proteins or discover potential biomarkers for
diagnosis of the disease. In metabolomic analysis, profiling metabolites of OSCC should allow
for the understanding of the characteristics of the OSCC.

To profile the metabolites of OSCC, MS/MS analysis data was utilized to generate cloud
plots with XCMS. The numbers of AK2 and PGK1 metabolic features in the UM1 cells had a
similar pattern in the UM2 cells. Comparing the numbers metabolic features in the UM1 and the
UM2 cells with of AK2 and PGK1, the UM1 cells contained the common metabolic features with
AK2 and PGK1 in greater amount than the UM2 cells to maintain invasive and metastatic
phenotypes. In the UM1 and UM2 cells, around 16% to 23% each cell shared the same
metabolic features with AK2 or PGK1 which indicated that the UM1 and UM2 cells possibly
share the common metabolic features with AK2 or PGK1.

After silencing AK2 and PGK1, heat maps were generated to present expression of
metabolic features in the UM1 and UM2 cells with AK2 and PGK1. Our studies have
demonstrated that about 70% of the common metabolic features were down-regulated after
treating the UM1 and UM2 cells with siRNA. This indicated that these common features
(p<0.05) associated with AK2 knockdown between the UM1 and UM2 cells or associated with

PGK1 knockdown between the UM1 and UM2 cells reflect the important metabolic phenotypes
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of theUM1 and UM2 cells. These down-regulated features in the UM1-AK2 knockdown or the
UM1-PGK1 knockdown may be the metabolites that contribute to the UM1 cells having invasive
and metastatic phenotypes.

As Rasola et al. stated, glucose uptake is important for cancer cell to maintain their
metabolism [19]. A previous study found that when AK2 was knocked down by siRNA,
knockdown AK2 resulted in increasing consumption of glucose and glutamine in UM1 and UM2
cells to maintain glycolysis [20]. In glycolysis, AK2 controls and maintains the balance between
adenosine monophosphate (AMP) and ATP[15]. AK2 favors binding tightly to AMP which allows
AMP to activate AMP-activated protein kinase (AMPK) and triggers glycolysis. Similarly, PGK1
was found to be over-expressed in breast, ovarian, pancreatic and gastric cancers [21].
Furthermore, over-expression of PGK1 promotes the metastasis in prostate cancer cell [22].
Like AK2, PGK1 plays an important role in glycolysis preventing angiogenesis [16].
Consequently, the common metabolic features of AK2 or PGK1 between the UM1 and UM2
cells may have a crucial role in regulating metabolism which helps increase glucose
consumption thereby promoting cell survival and differentiation in UM1 and UM2 oral cancer
cells.

As Schulze and Harris stated that profiling metabolites of cancer is difficult using MS
because some metabolites were present with overlapping spectral peaks. However, using
XCMS after LC-MS/MS data analysis, metabolites were separated more clearly without
overlapping metabolites because XCMS is more sensitive in detecting small molecules [23]. In
LC/MS data, single-quadrupole mass are often detected with wider peak than in XCMS data
which can produce a fraction of a mass unit as small as 0.1m/z wide. XCMS can be used to
align molecule peaks with retention time. The alignment procedure helps to eliminate
insignificant groups of peaks [24]. Eliminating these low resolution groups and incomplete

signals using retention time alignment step, samples are only selected with the highest intensity
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and have well-behaved peak groups which have potential chance to be matched into sample
groups more precisely than in LC-MS/MS analysis [24]. In this study, after silencing AK2 or
PGK1 in the UM1 and UM2 oral cancer cells, metabolites of the UM1 and UM2 cells were
analyzed and classified with different phenotypes on heat maps using XCMS with LC-MS/MS
data. Our data suggest that AK2 and PGK1 correspond to certain metabolic features of the UM1

and UM2 oral cancer cells.

CONCLUSION

Many research studies are conducted to detect thousands of metabolites using MS/MS
analysis; however, identifying these metabolites with many visualization tools can be difficult.
Profiling metabolites using LC-MS/MS with XCMS is a powerful methodology to combine the
benefits of all other visualization tools to identify these metabolites. We have confirmed the
utility of XCMS to interpret the metabolomic results from oral cancer cell lines. When AK2 or
PGK1 was knocked down in the UM1 or UM2 cells, more metabolites were found to be down-
regulated than up-regulated. Heat map analysis indicates that a common group of metabolites
were altered by AK2 knockdown between the UM1 and UM2 cells, and similar finding was

observed for the PGK1 knockdown study.
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CHAPTER 2: A Novel Methodology to identify *C labeled proteins in Oral Cancer Cells

INTRODUCTION

A. Glucose Metabolism in Healthy Cells and Cancer Cells

Glucose is a crucial element for many organisms to have normal physiological functions.
Glucose is used as the energy source for a variety of cellular processes. Normal cells or non-
proliferating cells consume glucose and generate pyruvate to produce about 36 adenosine
triphosphate (ATP) molecules when oxygen is present. In absence of oxygen, normal cells or
non-proliferating cells undergo anaerobic glycolysis in which pyruvate is converted into lactate
to produce 2 ATP. However, Otto Warburg discovered that cancer cells or proliferating cells
uptake glucose and produces only one pyruvate which generates about 4 ATP whether or not
oxygen is present. This glucose metabolism in cancer cells or proliferating cells is called aerobic
glycolysis or the Warburg effect [25]. Cancer cells favor uptaking more glucose than normal
cells to generate more ATP [26]. Due to a distinctive glucose consumption between normal and

cancer cells, we utilize [U-*Cg]-glucose as a tracer to study head and neck cancer cells.

B. Tracer-Based Metabolomics

Metabolomics determines small molecules in a biological system. Tracer-based
metabolomics, a subset of metabolomics with a labeled substrate, is often used to analyze small
molecules and characterize metabolic phenotypes of cells. Radioactive and non-radioactive
isotopes, such as *C from [U-**C]-glucose, have been used for metabolomics with chemical
degradation or purification of the product. However, recent studies focus on the use of stable
isotopes, such as [U-'*Cg]-glucose, for tracer-based metabolomics without degradation or
purification of the products. The distribution of *C from a labeled precursor among various
metabolic intermediates identifies quantitative relationship between precursor and product in

tracer-based metabolomics. The distribution of *C determines a metabolic phenotypic feature of
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the product and the metabolic pathways of the product [27]. The metabolic intermediates are
determined by stable isotope tracers and mass isotopomer analysis [28]. Since carbon, nitrogen
and hydrogen atoms are incorporated from their precursor substrates through exchanges during
the process of amino acid synthesis, a **C labeled substrate can be involved in metabolites and
protein synthesis. Amino acids that are incorporated with a **C labeled substrate are heavier
than “natural” amino acids because they contain more than one isotope. Protein synthesis with
a °C labeled substrate therefore results in a mass shift [29]. Previous studies have been used
[U-13C¢]-glucose as a single tracer to study on one-carbon metabolism in yeast and bacteria
[28]. In this study, the tracer-based metabolomics with a **C labeled substrate has been applied

to studying metabolic phenotypes of oral cancer cells.

C. IP with MS

IP is a common technique for verifying protein-protein interactions of a target protein. In
order to identify and purify the target protein from the entire protein complex, a specific antibody
is required to bind to the target protein with IP. Studying a single protein can help with
understanding of the role of a protein in cellular function and the relationship with the protein
and other proteins in a signaling network [30].

In this study, we have developed a novel methodology which introduces [U-**Cg]-glucose
into oral cancer cells prior to performing IP and MS analysis in order to detect a specific labeled
protein. This study aims to demonstrate the following results. First, due to the different
characteristics between the UM1 and the UM2 oral cancer cells, *C labeled peptide mass
isotopomer distribution patterns would be different. Second, enrichment of **C labeled peptides
might be higher in the UM1 cells than the UM2 cells. Third, by employing the new protocol,
purified **C labeled 78k Da glucose-regulated protein (GRP 78) would be able to be pulled
down by IP and subsequently analyzed by MS. Thus, this new methodology allows researchers

to study the biosynthesis of any individual proteins if an antibody is commercially available.
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MATERIALS AND METHODS
A. Cell Culture

The OSCC cell lines, UM1 and UM2 were cultured in cell culture media, Dulbecco’s
modified eagle medium (DMEM) (Invitrogen Life Technologies, Carlsbad, CA), supplemented
with 4.5g/L [U-*Cs 99%] D-glucose (Cambridage Isotope Laboratories, Inc. ), 10% Fetal Bovine
Serum (FBS) (Gemini Bio-Products, CA) and 1% penicillin/streptomycin (Invitrogen Life
Technologies, Carlsbad, CA). The cells were incubated in a CO, incubator at 37°C with 5.0%
CO,, and the medium was changed every two days for 5 days. When the cells reached 90-95%
confluence, the cells were washed three times with Dulbecco’s Phosphate-Buffered Saline
(DPBS) (Invitrogen Life Technologies, Carlsbad, CA) and harvested.
B. In-solution Trypsin Digestion

Cells were lysed with 8M urea. Each cell lysate obtained equal amounts of total proteins
were treated with 200 mM dithiothreitol (DTT) for an hour at room temperature to hydrolyze
disulfide bonds. After DTT treatment, protein samples were incubated an hour at room
temperature in dark with 150 mM iodoacetamide (IAA) in 200mM ammonium bicarbonate
(NH4HCO3) to stabilize the broken disulfide bonds. Samples were, then, incubated with 13.3%
wi/v solution of trichloroacetic acid (TCA) in acetone to precipitate most proteins at -20°C for 24
hours. The protein pellets were incubated with 10 ng/ul enzyme-grade trypsin (Promega,
Madison, WI) in 200mM NH4HCO3 at 37°C for 24 hours to digest proteins. After protein
digestion, samples were dried using a speed vacuum concentrator centrifuge at 38°C to remove
organic solvents and dissolved in 0.1% of formic acid.
C.IP

Sulfo-NHSDb-SS-Biotin (Thermo Scientific, Rockford, IL, USA) with 10mM was incubated
with GRP 78 (GTX 62592, GeneTex, Irvine, CA, USA) antibody for 2 hours at room temperature

to prepare biotinylated antibody. In order to couple the antibody to the beads, 1 mg/ml of
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Dynabeads Myone Strepavidin T1 (Invitrogen Life Technologies, Carlsbad, CA) were incubated
with the biotinylated antibody and Dulbecco’s Phosphate-Buffered Saline (DPBS) (Invitrogen
Life Technologies, Carlsbad, CA) for 30 minutes at room temperature. After incubation, the
coated beads were washed twice with DPBS (Invitrogen Life Technologies, Carlsbad, CA) and
washed once with 0.01% of bovine serum albumin (BSA). The coated beads were incubated in
0.01% of BSA for 15 minutes at room temperature and washed three times with DPBS.
Samples were added into the coated beads and washed with DPBS for three times.
Supernatant was removed from the coated beads and 30uL of 0.1M citric acid (pH 2.9) were
added into the coated beads to elute the proteins from the coated beads.
D. LC-MS/MS and Database Search

Sample analysis was performed by liquid chromatography (LC) using a reversed-phase
C18 column (Zorbax C18, Agilent, 5uM, 150 X 0.5 mm diameter column) with a flow rate of 20
pL/min. Electrospray ionization time-of-flight mass spectrometry (Agilent 6520 QTOF) was
performed in a positive mode with water/acetonitrile as mobile phases A/B, each containing
0.1% formic acid to analyze samples. Linear changes in mobile phase B composition with time
(0 min, 10% B; 5 min, 10% B; 10 min, 40% B; 65 min, 98 B; 70 min, 98% B) were components
of the chosen LC gradient. Samples were run at 180 minute gradient. Samples were washed to
reduce possible carryover before analysis. Database searching was performed using Mascot
database search engine. Peptide mass isotopomer distribution patterns were manually selected
for data analysis.
E. Data Analysis of *C Labeled Peptides

Xcalibur 2.1 software (Thermo Scientific, Rockford, IL, USA) was used to verify the
MS/MS spectra of *C labeled peptides manually within 380.00-1800.00 m/z range. The highest
peak among other isotopic peaks in a mass isotopomer distribution was selected for identifying

the sequence of the *C labeled protein. Peptide fragment b and y ions were used to verify
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sequence of protein through SwissProt, a freely accessible resource database of protein

sequence.

RESULTS
A. ldentification of *C Labeling in Oral Cancer Cells

In order to test the new methodology to identify *3C labeled protein in oral cancer cells,
[U-*Cg]-glucose was introduced in the oral cancer cells, UM1 and UM2, through cell culture.
The labeled proteins were then collected for LC-MS/MS analysis. From MS1 full scan (380.00-
1800.00 m/z), *C labeled peptide mass isotopomer distribution patterns were manually selected
(Figures 7-1A&B, 7-2A&B, 7-3A&B, 8-1A&B, 8-2A&B, 8-3A&B, 9-1A&B, 9-2A&B, 9-3A&B, 10-
1A&B, 10-2A&B). As can be seen from the mass spectra, *C labeled peptide isotopomer
distributions displayed decay patterns. The decay patterns were depicted by mass shift which
was determined between two isotopic peaks of peptide as 1 dalton (Da).

There were different *C labeled peptide mass isotopomer distribution patterns, which
were constantly observed in many proteins of both the UM1 and UM2 cells. As shown in Figures
7-1C, 7-2C, 7-3C, the first isotopic peak (monoisotopic-base peak, M0, **C) of the peptide had
the highest intensities (relative abundance) among the other peaks. The second isotopic peak
(*3C labeled peak, M1, **C) and the third isotopic peak (M2) of peptide displayed lower relative
abundance than the first isotopic peak. Between the first and fourth isotopic peaks of peptide,
the mass shift was 3 Da. At the fourth isotopic peak of peptide (M3), there was a spike followed
by the decay pattern with more than 6 peaks (M4, M5, M6, M7, M8, M9).

The second C labeled peptide mass isotopomer distribution pattern displayed a
constant isotopic decay pattern (Figures 8-1C, 8-2C, 8-3). This pattern started with the first
isotopic peak of peptide as the highest intensities and contained more than five peaks. The third

13C labeled peptide mass isotopomer distribution pattern (Figure 9-1C, 9-2C, 9-3C) was a
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similar decay pattern as the first pattern except fourth istotopic peak was the highest isotopic
peak among other isotopic peaks. Typically, this type of mass isotopomer distribution pattern
consisted of more than 12 consecutive isotopic peaks. Since this type of mass isotopomer
distribution pattern had a greater amount of isotopic peaks, more isotopic peaks with high
values of intensities than other types of mass isotopomer distribution patterns were observed.
The fourth type of *C labeled peptide mass isotopomer distribution pattern was observed with a
greater number of isotopic peaks (Figures 10-1C, 10-2C). The decay pattern contained a spike
at the sixth or seventh isotopic peaks and had a concave down decay pattern with numerous
consecutive isotopic peaks of consecutive isotopic peaks.

Overall, most of the peptide mass isotopomer distribution patterns displayed higher
intensities of isotopic peaks with the UM1 cells when compared to the UM2 cells, and isotopic
patterns decayed in a more rapid fashion in the UM2 cells than in the UM1 cells.

B. Confirmation of Purified *C Labeled 78k Da Glucose-Regulated Protein in Oral
Cancer Cells

Western blot analysis was performed to confirm that purified **C labeled GRP 78 was
eluted by IP and purified from unspecific protein in all four oral cancer cells, UM1, UM2, UM5,
and UM6 (Figure 11). The expression of *C labeled GRP 78 in the UM1, UM2, UM5, and UM6
cells were observed with different levels. In the UM1 and UMS5 cells, *C labeled GRP 78 was
detected less than in the UM2 and UMG cells.

C. Identification of **C Labeled 78k Da Glucose-Regulated Protein in Oral Cancer Cells
13C labeled GRP 78 eluted by IP was analyzed using LC-MS/MS to test whether the new
protocol can identify a specific labeled protein. A peptide isotopomer distribution pattern was
observed in **C labeled GRP 78 (Figure 12-1). In *C labeled GRP 78 mass spectrum, a double
envelope pattern containing two peptide isotopomer distribution patterns was detected. The first

peptide isotopomer distribution pattern contained a higher spike at the fourth isotopic peak
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compared to the first isotopic peak to reflect the double envelope pattern for peptide sequence
K.TFAPEEISAMVLTK.M of GRP 78 in the UMl cells (Figure 12-2). The second peptide
isotopomer distribution pattern displayed a consistently decaying pattern with peptide sequence

R.ITPSYVAFTPEGER.L of GRP 78 in the UM1 cells (Figure 12-2).

DISCUSSION

Proteins are essential biomolecules for tumor cells to proliferate. There are many studies
that identified and analyzed proteins in cancer cells globally using various proteomic tools.
Isotopic labeling of protein samples is a common methodology to quantify proteins. Chemical
labeling and metabolic labeling are two well-known types of isotopic labeling techniques that
most researchers have used. However, these two types of techniques have some limitations.
Chemical labeling techniques are often inaccurate and cause errors in peptide modifications.
Metabolic labeling technologies employ a stable isotope labeled amino acids which are used for
cell culture medium. There are three disadvantages of metabolic labeling: at least two weeks
are required for cell culturing with isotope labeling media, cells have a low tolerance to the
isotope labeling media, and isotope labeling chemicals are expensive [30].

In this study, we have demonstrated a tracer-based metabolomics methodology for
studying oral cancer cells by using [U-*Cg]-glucose as a tracer. With this tracer, **C labeled
peptides were replaced with **C labeled peptides, which may reflect the metabolic path of
glucose in the oral cancer cells. Because™C from glucose was converted into the amino acids
of proteins in the cells, mass shifts of the peptides derived from proteins were observed in the
mass spectra obtained by MS [29]. Since high enrichment of **C labeling (99%) was used for
this LC-MS/MS analysis, all the mass isotopomer distribution patterns should contain **C
labeled peptides in each isotopic peak. Even though a natural abundance of *C atom is 1.1%,

the intensities of many second isotopic peaks (**C) were as high as the first peak (the
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monoisotopic peak with ?C because the peptides were labeled with 99% enrichment of **C.
Consequently, each isotopic peak represented the amount of **C enrichment of each peptide. .

To validate the new methodology, we compared the mass spectra of *C labeled
peptides of the UM1 cells were compared with those of the UM2 cells. Both **C labeled protein
peptides of the UM1 cells and UM2 cells displayed different types of *C labeled peptide mass
isotopomer distribution patterns. Mass isotopomer distribution pattern decayed faster and the
intensities of each isotopic peak were lower for the UM2 cells when compared to the UM1 cells.
The quantitation of the intensity of each isotopic peak implied that the UM1 cells, which had
greater amounts and higher intensities of isotopic peaks than the UM2 cells, consumed more
[U-*Cg]-glucose than the UM2 cells. In a previous study, the UM1 cells were shown to uptake
more glucose for cell proliferation than the UM2 cells based on a glucose uptake assay [20].

On the mass spectra of *C labeled peptides of the UM1 and UM2 cells, all peptide mass
isotopomer distribution patterns displayed with a decay pattern. Each isotopic peak represents
relative abundance and **C enrichment. When an isotopic peak has a higher intensity or relative
abundance than other isotopic peaks, that isotopic peak is labeled with **C more than lower
intensity isotopic peak. As m/z increases heavy isotopes occur in the same ionic fragment.
Having all heavy isotopes in the same ionic fragment is extremely low probability. Thus, as m/z
increases, the peptide has less chance to have all heavy isotope molecules to be labeled and
display decay pattern of isotopomer distribution. We also observed many isotopomer patterns
had a spike in the fourth isotopic peak. The spike in the fourth peak represents an abundance of
13C incorporated in the isomer. From first peak to fourth peak, there is a 3 Da mass shift. As
glucose is utilized by the cell, it is converted into a 3 carbon molecule named pyruvate. Pyruvate
is then processed into 3 carbon amino acids such as alanine or serine. As the cell utilizes these

newly synthesized amino acids, certain proteins will have a 3 Da shift corresponding to the
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heavier amino acids, resulting in a spike on the fourth peak. This may suggest labeling of a 3

carbon amino acid such as alanine or serine in this type of peptide distribution pattern [31].

Relative glucose consumption was correlated with invasive and metastatic phenotype of
cancer cells since glucose uptake is used for cell proliferation. Glucose uptake may contribute to
the more invasive and metastatic phenotype of UM1 cells than the UM2 cells. Therefore, our
study has led to a novel tracer-based metabolomics methodology which can be used to explore
the relationship between glucose uptake and the characteristics of cancer cells. This
methodology may be also used for identifying the role of a specific labeled amino acid in protein
synthesis of oral cancer cells. In a previous study, **C labeled glucose was used to label
multiple positions (C;, C,, Cs, C4, Cs, Cg) of the same molecule to determine its roles of the
molecule in glycogen synthesis, gluconeogenesis and tricarboxylic acid (TCA) cycle metabolism
[28]. In oral cancer studies, **C labeled anthrocyanin was used to focus on its synthetic route
[32]. Our methodology may also be used to elucidate the role of each amino acid in protein
synthesis of oral cancer cells.

In a previous study, a similar methodology combined tracer-based metabolomics and
MS-based proteomics was demonstrated for analysis of cancer cells. Although this methodology
was feasible for the global analysis of proteins, it was not suitable for targeted protein analysis.
In order to overcome the limitation to study on a single protein, we have demonstrated a new
methodology by combining IP with LC-MS/MS for targeted analysis of GRP 78 protein.

In this methodology, IP was used to pull down **C labeled GRP 78 in oral cancer cells to
allow for detection by MS. Western blot analysis confirmed that **C labeled GRP 78 in the UM1,
UM2, UMS5, and UM6 cells was purified through IP. In the UM1 and UM5 cells, **C labeled GRP
78 expression was lower than in the UM2 and UM6 cells. Further investigation may address the
relationship between GRP 78 and the UM1 or UM5 cells which have more invasive and

metastatic phenotypes than the UM2 and UM6 cells. Due to such a small amount of purified *C
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labeled GRP 78 eluted from IP, micro BCA protein assay was not able to measure the GRP 78
concentration in the cells.

Afterwards, LC-MS/MS was used to analyze the peptide isotopomers derived from the
eluted GRP 78. Based on database searching against the SwissProt protein database, the
peptide sequences were matched and identified and the peptide isotopomer patterns were
revealed. Also, comparison of the *3C labeled GRP 78 mass spectra with those of natural GRP
78 indicates that the methodology is valid to isolate and analyze individual *C labeled protein
[20].

Despite successfully proving the global and targeted analysis of proteins in cancer cells
with these novel methodologies, there still remain potential limitations. We will be able to study a
target protein with this new targeted methodology, only when commercial antibody is available.
Tracer-based metabolomics with [U-*C4] glucose can only be applied to studying certain
proteins that utilize glucose for their synthesis. In order to study the synthesis and metabolism of

other proteins, we will have to use other labeled substrate.

CONCLUSION

We have demonstrated tracer-based metabolomics methodology for global and targeted
analysis of proteins in oral cancer cells. Overall, the results from this study suggest that stable
isotope tracers can help to elucidate the metabolism of oral cancers related with glucose uptake
and protein synthesis. We also found highly invasive UML1 cells utilize more glucose than low
invasive UM2 cells possibly to maintain their invasive and metastatic phenotypes. Employing
these new methodologies to study proteomics and metabolomics can help discover potential
biomarkers in human disease for clinical and diagnostic applications. Moreover, studying protein

metabolisms with these methodologies may help reveal targets for therapeutic interventions.
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FIGURES

Upload Data ]

Select Parameters ‘

View/Download Results |

Data is compressed and encrypted on the client side and
uploaded through a secure SSL connection.

Predefined parameter sets for different instrument setups
are available and can be customized.

An email notification is sent once the job is complete.
Results can be browsed online, shared with other users, or
downloaded for import into other programs (e.g. Excel).

*Figure adopted from Tautenhahn et al., 2012

Figure 1. XCMS Online software Workflow: MS/MS data is analyzed through XCMS with three
steps; uploading data, selecting parameters, and viewing/downloading results.
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Figure 2. Cloud plots of the metabolites in the UM1 and UM2 cells with siAK2 or siPGK1
knockdown. (A) Cloud plot of the metabolites in the UM1 oral cancer cells with SiAK2
knockdown. (B) Cloud plot of the metabolites in the UM1 oral cancer cells with siPGK1
knockdown. The retention times (minutes) of each eluted feature was plotted on the x-axis, and
mass-to-charge ratio (m/z) of feature lists were plotted on y-axis[13]. Features were plugged
into the cloud plot as circles with different sizes based on the log fold changes of features
produced by the Welch t-test. When any of the features had database hits in the METLIN
database, the surface of features were displayed with black outlines.
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Figure 3. Metabolic features in different oral cancer cell lines. (A) Number of metabolic features
detected in the UM1 or UM2 oral cancer cells with either siAK2 or siPGK1 knockdown (entire list
or P-value < 0.05. (B) Common metabolic features between the UM1 and UM2 oral cancer cells
when AK2 was knocked down. (C) Common metabolic features between UM1 and UM2 oral
cancer cells when PGK1 was knocked down.
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Figure 4. AK2 and PGK1 protein expression in the UM1 and UM2 oral cancer cells with siRNA
knockdown. (A) Western blot data of AK2 and PGK1 protein expression in UM1cells transfected
with siRNA control (CTRL) or siRNA knockdown (siAK2 or siPGK1). (B) Western blot data of
AK2 and PGK1 protein expression in the UM2 cells transfected with siCTRL, siAK2 or siPGK1.

28



m Downregulation m Upregulation

g
=
5
(5
[T
(=]
T
=
E
=
=
UM1 siAKZ among UM2 siAKZ among UM1 siPGK1 among  UMZ2 siPGK1 among
entire p<0.05 entire p=0.05 entire p<0.05 entire p=0.05
B
mDownregulation m Upregulation
g
2
3
[T 8
[T
(=]
T
=
E
-
=

LUM1 siAKZ2 among UM2 siAKZ among UM1 siPGK1 among UM2 siPGK1 among
Common List Common List Common List Common List

Figure 5. Metabolic features down-regulated in UM1 or UM2 oral cancer cells when AK2 or
PGK1 was knocked down. (A) Up or down-regulated metabolic features (P < 0.05) in the UM1
or UM2 oral cancer cells when AK2 or PGK1 was knocked down. (B) Up or down-regulated
metabolic features (P < 0.05) which are common between UM1 and UM2 oral cancer cells when
AK2 or PGK1 was knocked down.
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Figure 6. Heat maps with common metabolic features between UM1 and UM2 oral cancer cells.
(A) Expression of common metabolites between UM1-siAK2 and UM2-siAK2 cells. (B)
Expression of common metabolites between UM1-siPGK1 and UM2-siPGK1 cells.
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Figure 7- 1. LC-MS analysis of **C labeled peptide isotopomers in the UM1 and UM2 oral
cancer cells (A) *C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B)
13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of
relative abundance for **C labeled peptide mass isotopomer distribution in UM1 and UM2 oral

cancer cells.
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Figure 7- 2. LC-MS analysis of *C labeled peptide isotopomers in the UM1 and UM2 oral
cancer cells (A) *C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B)
3C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of
relative abundance for **C labeled peptide mass isotopomer distribution in UM1 and UM2 oral
cancer cells.
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Figure 7- 3. LC-MS analysis of **C labeled peptide isotopomers in the UM1 and UM2 oral
cancer cells (A) *C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B)
3C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of
relative abundance for **C labeled peptide mass isotopomer distribution in UM1 and UM2 oral

cancer cells.

33



TEEm
100
80
H
H 57879
2 &
H 5729
F 51779
N
£ a
H 51829
i
* &7879
]
57845 51929 =
8L\ 7633 57653 76 STETS )‘57@93 ;o3 585 | \Ema 5781 51105 g7 Rl 57828 |\ g 57881 57878 e py  TRE /\37_932 51962 A %
L e e e S e e S B ) B B B S B S e B B BB B B B B B e L B s B B e B B e B s B B B B B B B B
5760 5782 5764 5768 5788 5770 5772 574 5778 5778 5780 572 54 T 578 5780 5782 5784 5788 5753
mz
57629
1004
20
H
H 57873
2 a0
E 51729
E“” 57779
22‘]7 §78.29
§78.78 e
578,25 | | £78.32 57681 57675 | | 57682 57684 577.25 || 577.32 57761 57778 | | 57182 57134 578,20 || 57632 57881 57870 || 47883 £73.56 I g TN gy
—_——— 77—
§76.0 578.2 5784 576.6 5768 5770 5712 5774 5716 5778 578.0 8782 5134 5786 5788 579.0 §79.2 5784 5798 §79.8 £80.0
mz

C.

Relative Abundance

120

100

80

60

40

20

mUM1 Relative abundance
mUM?2 Relative abundance

moO m1 m2 m3 m4 m5 mé m7

m/z

Figure 8- 1. LC-MS analysis of *C labeled peptide isotopomers in the UM1 and UM2 oral
cancer cells (A) **C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B)
3C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of
relative abundance for **C labeled peptide mass isotopomer distribution in UM1 and UM2 oral
cancer cells.
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Figure 8- 2. LC-MS analysis of **C labeled peptide isotopomers in the UM1 and UM2 oral
cancer cells (A) *C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B)
3C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of
relative abundance for **C labeled peptide mass isotopomer distribution in UM1 and UM2 oral

cancer cells.
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Figure 8- 3. LC-MS analysis of *C labeled peptide isotopomers in the UM1 and UM2 oral
cancer cells (A) **C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B)
3C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of
relative abundance for **C labeled peptide mass isotopomer distribution in UM1 and UM2 oral

cancer cells.
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Figure 9- 2. LC-MS analysis of *C labeled peptide isotopomers in the UM1 and UM2 oral
cancer cells (A) **C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B)
13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of
relative abundance for **C labeled peptide mass isotopomer distribution in UM1 and UM2 oral
cancer cells.
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Figure 9- 3. LC-MS analysis of *C labeled peptide isotopomers in the UM1 and UM2 oral
cancer cells (A) **C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B)
13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of
relative abundance for **C labeled peptide mass isotopomer distribution in UM1 and UM2 oral

cancer cells.
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Figure 10- 1. LC-MS analysis of *C labeled peptide isotopomers in the UM1 and UM2 oral
cancer cells (A) *C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B)
3C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of
relative abundance for **C labeled peptide mass isotopomer distribution in UM1 and UM2 oral
cancer cells.
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Figure 10- 2. LC-MS analysis of *C labeled peptide isotopomers in the UM1 and UM2 oral
cancer cells (A) *C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B)
13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of
relative abundance for **C labeled peptide mass isotopomer distribution in UM1 and UM2 oral

cancer cells.
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Figure 1 1. *3C labeled 78kDa glucose related protein (GRP78) expression in UM1, UM2, UM5
and UM6 oral cancer cells.
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Figure 12- 1. LC- MS analysis of of *C labeled 78kDa glucose related protein (GRP78)
isotopomers in UML1 oral cancer cells.
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peptide mass isotopomer distribution in UM1 oral cancer cells.
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TABLE

M766T17
M183TO
M618T20
M654T29 1
M249T19 1
M707T26
M587T15
M802T29
M586T15
M519T29
M604T15
M709T29
M412T19
M537T29
M602T14
M893T26
M783T29_2
M648T15
M709T25
M706T27

M631T15

M707T26
M802T29
M172T1
M783T29_2
M249T19_1
M709T29
M587T15
M586T15
M630T15
M604T15
M648T15
M709T25
M766T17
M602T14
M631T15
M706T27
M183T0
M519T29
M398T19 1
M385T19

M412T19

M629T19
M670T29
M742T29
M616T14

M767T29_1
M766T17

M249T19 1
M918T29

M901T29 2
M368T19
M367T19

M903T29_2

M708T29 2
M321T19

M707T29_2
M604T15

M384T19 1
M385T19

M772T9_1

M728T29 1

M771T9_1
43

M1265T29 1
M629T19
M742T29
M616T14

M707T29_2
M604T15

M767T29_1

M709T29_2
M766T17

M708T29_2

M1265T29 2
M710T29
M412T19
M586T15

M902T29 1

M901T29 2
M670T29
M602T14
M918T29

M249T19 1

M274T29 1



M321T19
M343T25
M367T19

M398T19_1

M172T1
M385T19
M630T15
M389T23
M406T19
M405T19
M705T25
M390T19
M264T16
M389T19

M425T19 2
M101T19

M279T21_2
M364T27
M268T17

M292T24 1
M697T17
M218T17
M390T23

M183T1_2

M183T1_1

M343T25
M893T26
M406T19
M537T29
M367T19
M292T24 1
M389T23
M405T19
M321T19
M390T19
M389T19
M279T21_2
M289T17_2
M268T17
M183T1_2
M425T19 2
M183T1_1
M101T19
M390T23
M289T17_1
M533T21_1
M140T17
M426T17
M264T16

M291T17

M709T29 2
M406T19
M425T19

M398T19 1
M389T23
M710T29
M412T19

M391T19

M1265T29_2

M586T15
M405T19
M455T19 2
M902T29 1
M841T29 2
M389T19
M390T19
M390T23
M158T19
M697T17
M602T14
M201T17_1
M238T20
M252T19 1
M289T17_2

M290T17

44

M367T19
M321T19
M389T23
M384T19 1
M728T29 1
M398T19 1
M385T19
M391T19
M406T19
M158T19
M664T30
M405T19
M425T19
M390T23
M455T19 2
M390T19
M389T19
M771T9_1
M368T19
M630T15
M793T9_1
M697T17
M772T9_1
M201T17_1

M252T19 1



M291T17 M697T17 M696T17 M238T20
M289T17_2 M218T17 M386T9_2 M290T17
M533T21_1 M555T21 M269T17 M289T17_2

M140T17 M556T21_2 M312T21 M269T17

M555T21 M197T20 M533T21 M255T17
M556T21_2 M155T21 M297T20 M696T17

M426T17 M298T21_1 M267T21_2 M297T20

M701T17 M269T21 M267T21_3 M533T21

M155T21 M701T17 M555T21 M312T21
M158T17_1 M158T17_1 M255T17 M267T21_3
M211T21 1 M354T21_1 M268T21_3 M555T21

M269T21 M311T18 M99T21_1 M267T21_2
M298T21_1 M211T21 1 M211T21 1 M158T17_1

M311T18 M326T21_2 M298T21 1 M268T21_3
M354T21 1 M325T21 2 M267T21_1 M211T21 1

M197T20 M354T21 1 M267T21_1
M325T21_2 M311T18 M99T21_1
M326T21_2 M158T17_1 M311T18

M355T21 M354T21 1
M298T21_1
M355T21

Table 1. Down-regulated siAK2 and PGK1 feature list among common features of metabolites
between UM1 and UM2 oral cancer cells.
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