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ABSTRACT OF THE THESIS 

 

Mass Spectrometry-based Proteomic Analysis of Oral Cancer Cells 

 

by 

 

Eoon Hye Ji 

 

Master of Science in Oral Biology 

University of California, Los Angeles, 2014 

 

Professor Shen Hu, Chair 

 

Mass spectrometry (MS), especially tandem mass spectrometry (MS/MS), is a powerful 

tool for proteomic and metabolomics applications. Untargeted metabolomics results can be well 

visualized and interpreted by using the cloud plot with XCMS Online software. The first objective 

of this study is to perform a comprehensive metabolomics analysis of oral cancer cells and 

identify metabolites altered by the knockdown of either adenylate kinase 2 (AK2) or 

phosphorylate glycerol kinase 1 (PGK1). UM1 and UM2 oral cancer cells were treated with 

siRNA to knockdown AK2 or PGK1. MS/MS and XCMS were performed to compare the 

metabolite profiles between the cells with siRNA knockdown and with scrambled siRNA control. 

Our studies confirmed the utility of XCMS to interpret the metabolomic results from oral cancer 

cells. When AK2 or PGK1 was knocked down in the UM1 or UM2 cells, more metabolites were 

found to be down-regulated than up-regulated. Heat map analysis indicates that a common 
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group of metabolites were altered by AK2 knockdown between the UM1 and UM2 cells, and 

similar finding was observed for the PGK1 knockdown study.  

Tracer-based metabolomics, a subset of metabolomics with a labeled substrate, is a 

new platform that would help researchers understand the metabolic phenotype of cancer cells. 

The second objective of this study is to develop the novel methodology which combines the 

tracer-based metabolomics, immunoprecipitation (IP), and MS-based proteomics to detect the 

metabolic labeling of a specific protein from the entire protein complex in oral cancer cells. [U-

13C6]-glucose was introduced into the UM1 and UM2 cells, and the labeled proteins were 

analyzed by liquid chromatography (LC) with MS/MS. We found that UM1 and UM2 cells 

displayed different types of 13C labeled peptide mass isotopomer distribution patterns. Mass 

isotopomer distribution pattern decayed faster and the intensities of each isotopic peak were 

lower for the UM2 cells than those for the UM1 cells. We also demonstrated that a specific 

labeled protein, e.g., 78kDa glucose-regulated protein (GRP 78), can be pulled down with IP 

and analyzed by LC-MS/MS. Our results indicated that the UM1 cells utilize more glucose than 

the UM2 cells possibly to maintain their invasive and metastatic phenotypes. Also, the 

methodologies were able to identify any single 13C-labeled protein from the whole cell lysate if 

antibody is commercially available. Therefore, using XCMS and our newly developed tracer-

based metabolomics, we may have an improved understanding of the metabolic phenotype of 

oral cancer cells.  
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INTRODUCTION 

A. Oral and Head and Neck Cancer  

Head and neck tumors occur in the oral cavity, oropharynx, hypopharynx, larynx and 

mouth. The most common type of head and neck tumor is called oral squamous cell carcinoma 

(OSCC). OSCC occurs more frequently in male patients than female patients and in patients 

who have been exposed to tobacco or alcohol usage [1]. In the US, there are approximately 

7,900 OSCC deaths among the 39,400 diagnosed cases per year [2]. OSCC is considered as 

the sixth most common cancer among men. In addition, it is usually detected in lymph nodes 

due to the metastatic characteristic [3].  

In this study, we primarily use two oral cancer cell lines, UM1 and UM2, for proteomic 

and metabolomic analysis. UM1 and UM2 cell lines were originally established from a pre-

treatment patient who had a single tongue carcinoma. The UM1 cells have more invasive 

potential and higher motility than the UM2 cells [4].  

B. Proteomics  

Proteomics is a powerful technology for identifying and studying the characteristics, 

functions and structures of proteins [5]. Proteomics has been involved in many research fields 

recently due to its ability to analyze protein expression at specific cellular responses both 

quantitatively and qualitatively. Quantitative proteomics profiles the entire proteins in a sample 

quantitatively to find the differences between samples, such as in healthy and in diseased 

patients which help to understand the molecular mechanisms of diseases [6]. Through 

proteomics, this study identified characteristics of protein from different oral cancer cells.  

C. Mass Spectrometry and Tandem Mass Spectrometry  

Mass spectrometry (MS), especially and tandem mass spectrometry (MS/MS), are 

common proteomic tools for protein identification and quantification. MS measures protein mass 

accurately and gives high resolution separation of fragment ions with a very small quantity of 
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sample. There are two proteomic approaches to profile protein peptides. ‘Top-down’ approach 

allows a whole protein to be fragmented in the gas phase and can identify small proteins. A 

limitation of this approach is in the difficulty in fragmentizing large proteins in the gas phase. 

‘Bottom-up’ approach applies MS/MS to identify peptides of proteins digested in solution. 

Peptides are initially ionized within an ionization chamber and fragmented for MS/MS analysis. 

These fragments are measured to identify peptides and proteins, often with the aid of database 

searching programs [7, 8]. In this study, MS or MS/MS is used for metabolomic or proteomic 

analysis.   

D. Mass Spectrometry-based Metabolomics 

Metabolomics is a tool to study all metabolites which are extracted from cultured cells or  

body fluid/tissue samples from patients [9], [10]. In addition, metabolic profiling is a platform to 

analyze a set of metabolites in a biochemical pathway quantitatively [10]. There have been 

many disease biomarkers which have been found by metabolomics [11]. MS is a powerful tool 

for metabolomics analysis. Based on MS spectra, various small molecules such as lipids, 

sugars and amino acids can be identified with MS. Since MS-based metabolomic analysis 

provides global metabolic profiles which contain thousands of peaks, how to visualize and 

interpret MS-based metabolomics data remains challenging. Recent studies have shown that 

XCMS and METLIN metabolite database are valuable tools for analyzing MS-based 

metabolomic data [12]. In the first chapter of my thesis, we have demonstrated LC-MS/MS and 

XCMS for profiling the metabolites of oral cancer cells. This study was focused on developing 

and confirming MS-based metabolomic methodologies for studying oral cancer cells.   
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CHAPTER 1: Metabolomic Analysis of Oral Cancer Cells with AK2 or PGK1 Knockdown 

Specific Aim: To confirm a utility of LC-MS/MS with XCMS Online software for metabolic 

profiling of oral cancer cells.  

 

Sub Aim 1: To identify the altered metabolites in the UM1 or UM2 cells by AK2 or PGK1 

knockdown. 

 

Sub Aim 2:  To investigate whether the UM1 and UM2 cells have common metabolites that are 

altered by AK2 siRNA or PGK1 siRNA. 

AK2 or PGK1 were knocked down by siRNA in the UM1 and UM2 oral cancer cells. Metabolites 

were extracted and analyzed by LC-MS with XCMS Online software. Cloud plots and heat maps 

were used to analyze the metabolomics data.     

 

CHAPTER 2: A Novel Methodology to identify 13C labeled proteins in Oral Cancer Cells 

Specific Aim: To develop a novel methodology which combines tracer-based metabolomics, IP 

with MS-based proteomics to detect metabolically labeled proteins from the entire protein 

complex in oral cancer cells 

 

Sub Aim 1: To identify differential 13C labeled protein expression of the UM1 and UM2 oral 

cancer cells.  

[U-13C6]-glucose was introduced in oral cancer cells. 13C labeled proteins of the UM1 and UM2 

cells were analyzed with LC-MS/MS. Mass spectrum of 13C labeled proteins in the UM1 and 

UM2 cells were compared. 
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Sub Aim 2: To detect a single 13C labeled protein in the UM1, UM2, UM5 and UM6 oral cancer 

cells using IP and LC-MS/MS.  

IP was conducted on a single 13C labeled protein, GRP 78, in UM1, UM2, UM5 and UM6 cells. 

The 13C labeled GRP 78 of the UM1 cells was analyzed with LC-MS/MS and protein database 

search.   
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CHAPTER 1: Metabolomic Analysis of Oral Cancer Cells with AK2 or PGK1 Knockdown 

INTRODUCTION 

A. A Online Metabolite Database-METLIN 

 METLIN is a online metabolite database which consists of over 10,000 distinctive 

metabolites and gives matching results by comparing its data with MS/MS data [11]. There are 

two types of METLIN databases. The traditional METLIN database is involved in many steps to 

analyze untargeted metabolites. Samples are analyzed by MS and bioinformatic software and 

investigated to search for mass-to-charge (m/z) ratios of the peaks of interest in metabolites. 

Samples, then, get putative identifications from MS/MS, and these putative identified samples 

are compared with the METLIN database to get identified manually if they are in the online 

library. This study uses the new version of METLIN database which automatically matches 

MS/MS data to the METLIN database allowing for researchers to save time. If the MS/MS data 

does not have matched identification from the METLIN database, this new version of METLIN 

database can give characteristic fragments of MS/MS data, which can help to classify the 

molecule[11].  

B. XCMS Online Software 

Identifying metabolites requires data visualization tools. Various forms (X) of 

chromatography mass spectrometry (XCMS) Online software generates a cloud plot which is a 

new visualization tool that covers the limitations of the other data visualization tools. There are 

four different types of data visualization tools: principal component analysis (PCA), scatter plots, 

volcano plots, and heat maps. These tools show data with mathematical variables, intensity of 

each sample feature, or P-value and fold change [12]. In order to interpret untargeted 

metabolomic results, a cloud plot can be a new visualization tool that can show various data 

characteristics, including what the other four visualization tools have shown [11, 12]. In the 
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cloud plot, the retention time (minutes) of each eluted feature is plotted on the x-axis, and mass-

to-charge ratio (m/z) of feature lists are plotted on y-axis [6]. In this study, features were plugged 

into the cloud plot as circles with different sizes based on the log fold changes of features 

produced by the Welch t-test. This visualization tool informed a variety of information of features 

depending on their retention time. XCMS helps to recognize and classify features between 

samples depending on their relative intensities, which are used for calculating P-values and fold 

changes [13]. 

C. Metabolomic Analysis of Oral/Head and Neck Cancer Cells  

 In our previous studies, the metabolites of oral cancer stem-like cells (CSCs) and non 

stem cancer cells (NSCCs) were profiled using capillary ion chromatography (Cap IC) with 

Orbitrap MS [14]. Between CSC and NSCC, Cap IC/MS analysis revealed different isomeric 

compounds and their expression levels. It also aided in elucidating the relationship between the 

isomers and glycolysis pathway in the CSCs. Due to the superior resolution and sensitivity of 

Cap IC, they were able to analyze more than 4000 metabolites in oral/head and neck cancer 

cells.  

D. Metabolic Enzymes  

AK2 is an adenylate kinase isoform. Functions of adenylate kinases (AK) include 

motility, differentiation and mechano-electrical signal transduction of cells. When AK2 is mutated 

in severe combined immunodeficiencies (SCID) patients, they may become deaf. When AK2 is 

knocked down in drosophila or zebrafish, it will have aberrant leukocyte development or growth 

suppression. AK interacts with and regulates glycolytic and glycogenolytic pathways which 

generate adenosine triphosphate (ATP) [15]. PGK1 is an important glycolytic enzyme in the 

glycolysis pathway[16]. PGK1 is a hypoxia-inducible factor-1α (HIF-1α) regulated enzyme which 

plays an important role in tumor growth, progression, metastasis, and invasiveness in cancer 
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[17]. HIF-1α expression is down-regulated in HNSCC [3]. In oral cancer stem-like cells (CSCs), 

both HIF-1α and PGK1 expression is down-regulated compared to non-CSCs [18].  

An objective of this study is to investigate the role of metabolic enzymes, AK2 and 

PGK1, in the metabolomes of UM1 and UM2 oral cancer cells, with LC-MS/MS and XCMS. We 

predict that down-regulating AK2 and PGK1 would reflect the metabolic phenotype changes of 

the UM1 and UM2 cells. LC-MS/MS and XCMS were performed on the UM1 and UM2 oral 

cancer cells to identify the global metabolomics changes due to the siRNA knockdown of AK2 or 

PGK1.  

 

MATERIALS AND METHODS 

A. Cell Culture  

 The OSCC cell lines, UM1 and UM2, were cultured in cell culture media, Dulbecco’s 

modified eagle medium (DMEM) (Invitrogen Life Technologies, Carlsbad, CA), supplemented 

with 10% Fetal Bovine Serum (FBS) (Gemini Bio-Products, CA) and 1% penicillin/streptomycin 

(Invitrogen Life Technologies, Carlsbad, CA). The cells were incubated in a CO2 incubator at 

37°C with 5.0% CO2, and the medium was changed every two days until cells reached 90-95% 

confluence. Cells were washed three times with Dulbecco’s Phosphate-Buffered Saline (DPBS) 

(Invitrogen Life Technologies, Carlsbad, CA) and harvested.   

B. siRNA Knockdown 

Transfection with siRNA was performed on the UM1 and UM2 cells using Hilymax 

transfection reagent (HilyMax, Rockville, MD, USA) for 48 hours in 6-well plates according to the 

manufacturer’s instruction. Double-stranded siRNAs of PGK1 (SC-36215, Santa Cruz Biotech, 

Santa Cruz, CA, USA), AK2 (SC-38906, Santa Cruz Biotech, Santa Cruz, CA, USA), and non-

target control scrambled siRNAs (Santa Cruz Biotech, Santa Cruz, CA, USA) were prepared 
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separately with a transfection reagent. Cells were transfected with siRNAs. After a 24 hours 

treatment, the cells were maintained in fresh normal growth media for 48 hours.  

C. Western Blotting 

Western blotting was used to confirm siRNA transfection on level of proteins in the UM1 

and UM2 cells. Equal amounts of each protein samples were separated in NUPAGE Novex 4-

12% Bis-Tris gels and transferred to nitrocellulose membrane (Bio-Rad). The membranes were 

blocked with 5% non-fat milk (Santa Cruz Biotech, Santa Cruz, CA, USA) in Tris-buffered saline 

and Tween 20 (TBST) for 1 hour. After the blocking step, the membranes were incubated with 

anti-AK2 (H65, SC-28786, Santa Cruz Biotech, Santa Cruz, CA, USA) or anti-PGK1(Y-12, SC-

17943, Santa Cruz Biotech, Santa Cruz, CA, USA) primary antibodies in 2% non-fat milk 

overnight at 4°C. The membranes were washed with TBST 3 times and were incubated with 

secondary antibodies (GE Healthcare, Piscataway, NJ, USA) in 5% non-fat milk for 1 hour at 

room temperature. The ECL Plus Detection Kit (GE Healthcare, Piscataway, NJ, USA) was 

used to develop the films and detect the signal intensity of the proteins. All experiments were 

performed in triplicates. 

D. Extracted Metabolites  

 UM1 and UM2 oral cancer cells were washed twice with DPBS and with Milli-Q water 

once to remove all debris and media prior to quenching cells in liquid nitrogen and freezing at -

80oC. Subsequently, metabolites were extracted from cells using ice cold 90% 

methanol:chloform solvent ratio with 9:1. Extracted metabolites were dried using speed vacuum 

concentrator centrifuge at 38oC before sending to LC-MS analysis. 

E. LC-MS/MS and Data Analysis 

Sample analysis was performed by liquid chromatography (LC) using a reversed-phase 

C18 column (Zorbax C18, Agilent, 5µM, 150 X 0.5 mm diameter column) with a flow rate of 20 

µL/min. Electrospray ionization time-of-flight mass spectrometry (Agilent 6520 QTOF) was 
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performed in a positive mode with water/acetonitrile as mobile phases A/B, each containing 

0.1% formic acid to analyze samples. Linear changes in mobile phase B composition with time 

(0 min, 10% B; 5 min, 10% B; 10 min, 40% B; 65 min, 98 B; 70 min, 98% B) were components 

of the chosen LC gradient. Samples were washed to reduce possible carryover before analysis.  

Data analysis was performed using XCMS Online software with free access at 

https://xcmsonline.scripps.edu/ using three steps: data upload, parameter selection, and result 

interpretation (Figure 1). The metabolomics features are represented as ions with a unique m/z 

and retention time. The metabolomics data resulting directly from XCMS generated the cloud 

plot[13]. Data analysis was also performed using NetWalker 1.0, a desktop application, which 

can be download for free from https://netwalkersuite.org/. The MS/MS analysis data of features 

were quantified to generate heat maps. The heat maps were created with NetWalker 1.0 which 

were composed of log 2 ratio feature/average condition data with a standard deviation greater 

than 0.5. Log fold changes were produced by a Welch t-test.   

 

RESULTS 

A. Cloud plots of AK2 and PGK1 in the UM1 and UM2 Cells 

MS/MS analysis data were uploaded to XCMS to generate the cloud plot, aka, mirror 

plot. Figure 2 showed two different cloud plots: AK2 in the UM1 cells and PGK1 in UM1 cells. As 

retention times passed, the numbers of eluted features were increased (Figures 2A and B). As 

retention time reached 30 minutes, each group eluted about 100 to 160 features (P ≤ 0.01; fold 

change ≥ 1.5).  

B. Features of Metabolites in Different Oral Cancer Cell Lines 

To investigate the numbers of metabolite features in oral cancer cells, the metabolites in 

the UM1 and UM2 cells were analyzed by QTOF. We detected 4280 metabolic features in the 

UM1 cells with AK2 knockdown, 3183 metabolic features in the UM2 cells with AK2 knockdown, 

https://xcmsonline.scripps.edu/
https://netwalkersuite.org/
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4736 metabolic features in the UM1 cells with PGK1 knockdown, and 4212 metabolic features 

in the UM2 cells with PGK1 knockdown from QTOF with positive mode (Figure 3A). Among the 

total number of features in each group, we also detected 448 metabolic features in the UM1 

cells with AK2 knockdown, 369 metabolic features in the UM2 cells with AK2 knockdown, 585 

metabolic features in the UM1 cells with PGK1 knockdown and 417 metabolic features in the 

UM2 cells with PGK1 knockdown (P < 0.05) (Figure 3A). The UM1 cells contained more number 

of features for both AK2 and PGK1 than the UM2 cells (Figure 3A).  

 In both the UM1 and UM2 cells, 85 metabolic features with AK2 knockdown were 

presented (P < 0.05) (Figure 3B). In the UM1 cells, 18.97% metabolic features with AK2 

knockdown (P < 0.05) were the same as 23.04% metabolic features in the UM2 cells with AK2 

knockdown (P < 0.05). In both the UM1 and UM2 cells, 96 metabolic features with PGK1 

knockdown were presented (P < 0.05) (Figure 3C). In the UM1 cells, 16.41% metabolic features 

with PGK1 knockdown  were the common metabolic features (P < 0.05) as 23.02% metabolic 

features in the UM2 cells with PGK1 knockdown  (P < 0.05). The common metabolic features 

between the UM1 and UM2 cells with either AK2 or PGK1 knockdown were composed of a 

higher percentage in the UM2 cells than the UM1 cells.  

C. Metabolites Down-regulated in Different Knockdown Oral Cancer Cell Lines 

 To identify the role of the features in oral cancer cells with AK2 knockdown or PGK1 

knockdown, fold changes in each knockdown cell line were analyzed after treatment with 

siRNA. Transfection of the UM1 and UM2 cells using siRNA was confirmed by western blotting. 

AK2 and PGK1 displayed lower expression in the UM1 cells that were transfected with siRNA 

knockdown (KD) compared to siRNA control (CTRL) (Figure 4A and B). Among the entire 

feature list of siAK2 or siPGK1 in the UM1 or UM2 cells (P < 0.05), more than half of features 

from each group were down-regulated after the siRNA treatment (Figure 5A). Both the UM1 and 

UM2 cells showed more down-regulated common metabolic features with siAK2 and siPGK1 
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than up-regulated common metabolic features with siAK2 and siPGK1 (Figure 5B). In the UM1 

or UM2 cells, 61 to 71 down-regulated common metabolic features with AK2 or PGK1 were 

found after siRNA treatment (Figure 5B and Table 1). Up-regulated common metabolic features 

in the UM1 and UM2 cells with siAK2 and siPGK1 were selected if log fold changes of the 

metabolic features were greater than 1. Down-regulated common metabolic features in the UM1 

and UM2 cells with siAK2 and siPGK1 were selected if log fold changes of the features were 

less than 1. Additionally, the common metabolic features in the UM1 and UM2 cells with siAK2 

and siPGK1 showed similar patterns of log fold changes values (data not shown).  

D. Heat Maps of Common Metabolic Features between the UM1 and UM2 Cells 

 To investigate the common metabolic features between the UM1 and UM2 cells with  

AK2 and PGK1 after siRNA treatment, metabolic features in the UM1 or UM2 cells with AK2 or 

PGK1 intensities from MS/MS data were selected (P < 0.05) and were plugged into NetWalker 

1.0, a desktop program. Each row represented a different metabolic feature among the control 

and knockdown samples in the UM1 and UM2 cell lines. Green color represented a lower 

expression of metabolic features in the cancer cell line, and red color represented a higher 

expression of metabolic features in the cancer cell line. If the metabolic feature was not 

expressed in the cancer cell line, it was represented as a black marker in the heat maps. In the 

UM1 and UM2 cells, a majority of the metabolic features in the heat map displayed a lower 

expression in the siAK2 treated cells as compared to the control siRNA (siCTRL) treated cells 

(Figure 6A). Similarly, expression of siPGK1 metabolic features was lower than siCTRL in both 

siRNA treated UM1 and UM2 cells (Figure 6B).      

DISCUSSION 

Identifying metabolites is a major step towards the biological interpretation of data in 

metabolomic analysis. Due to the vast amount of metabolites present in a biological subject or 
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the wide dynamic concentration range of the compounds, characterizing the metabolome has 

been a challenge in many research studies. In order to overcome the difficulties of 

metabolomics, a MS-based metabolomics with XCMS Online software has been applied in this 

study to determine metabolites of OSCC. 

Oral carcinogenesis arises from benign hyperplasia to dysplasia to carcinoma followed 

by invasive squamous cell carcinoma [16]. OSCC is developed in a multistep process with 

genetic mutations and expression changes of many genes involved in oral carcinogenesis [16]. 

Nowadays, there are many proteomics analysis that focus on investigating gene and protein 

expression in OSCC to understand pathways of proteins or discover potential biomarkers for 

diagnosis of the disease. In metabolomic analysis, profiling metabolites of OSCC should allow 

for the understanding of the characteristics of the OSCC.   

To profile the metabolites of OSCC, MS/MS analysis data was utilized to generate cloud 

plots with XCMS. The numbers of AK2 and PGK1 metabolic features in the UM1 cells had a 

similar pattern in the UM2 cells. Comparing the numbers metabolic features in the UM1 and the 

UM2 cells with of AK2 and PGK1, the UM1 cells contained the common metabolic features with 

AK2 and PGK1 in greater amount than the UM2 cells to maintain invasive and metastatic 

phenotypes. In the UM1 and UM2 cells, around 16% to 23% each cell shared the same 

metabolic features with AK2 or PGK1 which indicated that the UM1 and UM2 cells possibly 

share the common metabolic features with AK2 or PGK1. 

After silencing AK2 and PGK1, heat maps were generated to present expression of 

metabolic features in the UM1 and UM2 cells with AK2 and PGK1. Our studies have 

demonstrated that about 70% of the common metabolic features were down-regulated after 

treating the UM1 and UM2 cells with siRNA. This indicated that these common features 

(p<0.05) associated with AK2 knockdown between the UM1 and UM2 cells or associated with 

PGK1 knockdown between the UM1 and UM2 cells reflect the important metabolic phenotypes 
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of  theUM1 and UM2 cells. These down-regulated features in the UM1-AK2 knockdown or the 

UM1-PGK1 knockdown may be the metabolites that contribute to the UM1 cells having invasive 

and metastatic phenotypes.   

As Rasola et al. stated, glucose uptake is important for cancer cell to maintain their 

metabolism [19]. A previous study found that when AK2 was knocked down by siRNA, 

knockdown AK2 resulted in increasing consumption of glucose and glutamine in UM1 and UM2 

cells to maintain glycolysis [20]. In glycolysis, AK2 controls and maintains the balance between 

adenosine monophosphate (AMP) and ATP[15]. AK2 favors binding tightly to AMP which allows 

AMP to activate AMP-activated protein kinase (AMPK) and triggers glycolysis. Similarly, PGK1 

was found to be over-expressed in breast, ovarian, pancreatic and gastric cancers [21]. 

Furthermore, over-expression of PGK1 promotes the metastasis in prostate cancer cell [22]. 

Like AK2, PGK1 plays an important role in glycolysis preventing angiogenesis [16]. 

Consequently, the common metabolic features of AK2 or PGK1 between the UM1 and UM2 

cells may have a crucial role in regulating metabolism which helps increase glucose 

consumption thereby promoting cell survival and differentiation in UM1 and UM2 oral cancer 

cells.  

As Schulze and Harris stated that profiling metabolites of cancer is difficult using MS 

because some metabolites were present with overlapping spectral peaks. However, using 

XCMS after LC-MS/MS data analysis, metabolites were separated more clearly without 

overlapping metabolites because XCMS is more sensitive in detecting small molecules [23]. In 

LC/MS data, single-quadrupole mass are often detected with wider peak than in XCMS data 

which can produce a fraction of a mass unit as small as 0.1m/z wide. XCMS can be used to 

align molecule peaks with retention time. The alignment procedure helps to eliminate 

insignificant groups of peaks [24]. Eliminating these low resolution groups and incomplete 

signals using retention time alignment step, samples are only selected with the highest intensity 
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and have well-behaved peak groups which have potential chance to be matched into sample 

groups more precisely than in LC-MS/MS analysis [24]. In this study, after silencing AK2 or 

PGK1 in the UM1 and UM2 oral cancer cells, metabolites of the UM1 and UM2 cells were 

analyzed and classified with different phenotypes on heat maps using XCMS with LC-MS/MS 

data. Our data suggest that AK2 and PGK1 correspond to certain metabolic features of the UM1 

and UM2 oral cancer cells. 

 

CONCLUSION 

Many research studies are conducted to detect thousands of metabolites using MS/MS 

analysis; however, identifying these metabolites with many visualization tools can be difficult. 

Profiling metabolites using LC-MS/MS with XCMS is a powerful methodology to combine the 

benefits of all other visualization tools to identify these metabolites. We have confirmed the 

utility of XCMS to interpret the metabolomic results from oral cancer cell lines. When AK2 or 

PGK1 was knocked down in the UM1 or UM2 cells, more metabolites were found to be down-

regulated than up-regulated. Heat map analysis indicates that a common group of metabolites 

were altered by AK2 knockdown between the UM1 and UM2 cells, and similar finding was 

observed for the PGK1 knockdown study. 
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CHAPTER 2: A Novel Methodology to identify 13C labeled proteins in Oral Cancer Cells 

INTRODUCTION 

A. Glucose Metabolism in Healthy Cells and Cancer Cells 

Glucose is a crucial element for many organisms to have normal physiological functions. 

Glucose is used as the energy source for a variety of cellular processes. Normal cells or non-

proliferating cells consume glucose and generate pyruvate to produce about 36 adenosine 

triphosphate (ATP) molecules when oxygen is present. In absence of oxygen, normal cells or 

non-proliferating cells undergo anaerobic glycolysis in which pyruvate is converted into lactate 

to produce 2 ATP. However, Otto Warburg discovered that cancer cells or proliferating cells 

uptake glucose and produces only one pyruvate which generates about 4 ATP whether or not 

oxygen is present. This glucose metabolism in cancer cells or proliferating cells is called aerobic 

glycolysis or the Warburg effect [25]. Cancer cells favor uptaking more glucose than normal 

cells to generate more ATP [26]. Due to a distinctive glucose consumption between normal and 

cancer cells, we utilize [U-13C6]-glucose as a tracer to study head and neck cancer cells.  

B. Tracer-Based Metabolomics 

Metabolomics determines small molecules in a biological system. Tracer-based 

metabolomics, a subset of metabolomics with a labeled substrate, is often used to analyze small 

molecules and characterize metabolic phenotypes of cells. Radioactive and non-radioactive 

isotopes, such as 14C from [U-14C]-glucose, have been used for metabolomics with chemical 

degradation or purification of the product. However, recent studies focus on the use of stable 

isotopes, such as [U-13C6]-glucose, for tracer-based metabolomics without degradation or 

purification of the products. The distribution of 13C from a labeled precursor among various 

metabolic intermediates identifies quantitative relationship between precursor and product in 

tracer-based metabolomics. The distribution of 13C determines a metabolic phenotypic feature of 
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the product and the metabolic pathways of the product [27]. The metabolic intermediates are 

determined by stable isotope tracers and mass isotopomer analysis [28]. Since carbon, nitrogen 

and hydrogen atoms are incorporated from their precursor substrates through exchanges during 

the process of amino acid synthesis, a 13C labeled substrate can be involved in metabolites and 

protein synthesis. Amino acids that are incorporated with a 13C labeled substrate are heavier 

than “natural” amino acids because they contain more than one isotope. Protein synthesis with 

a 13C labeled substrate therefore results in a mass shift [29]. Previous studies have been used 

[U-13C6]-glucose as a single tracer to study on one-carbon metabolism in yeast and bacteria 

[28]. In this study, the tracer-based metabolomics with a 13C labeled substrate has been applied 

to studying metabolic phenotypes of oral cancer cells.  

C. IP with MS 

IP is a common technique for verifying protein-protein interactions of a target protein. In 

order to identify and purify the target protein from the entire protein complex, a specific antibody 

is required to bind to the target protein with IP. Studying a single protein can help with 

understanding of the role of a protein in cellular function and the relationship with the protein 

and other proteins in a signaling network [30].  

In this study, we have developed a novel methodology which introduces [U-13C6]-glucose 

into oral cancer cells prior to performing IP and MS analysis in order to detect a specific labeled 

protein. This study aims to demonstrate the following results. First, due to the different 

characteristics between the UM1 and the UM2 oral cancer cells, 13C labeled peptide mass 

isotopomer distribution patterns would be different. Second, enrichment of 13C labeled peptides 

might be higher in the UM1 cells than the UM2 cells. Third, by employing the new protocol, 

purified 13C labeled 78k Da glucose-regulated protein (GRP 78) would be able to be pulled 

down by IP and subsequently analyzed by MS. Thus, this new methodology allows researchers 

to study the biosynthesis of any individual proteins if an antibody is commercially available.  
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MATERIALS AND METHODS 

A. Cell Culture 

           The OSCC cell lines, UM1 and UM2 were cultured in cell culture media, Dulbecco’s 

modified eagle medium (DMEM) (Invitrogen Life Technologies, Carlsbad, CA), supplemented 

with 4.5g/L [U-13C6, 99%] D-glucose (Cambridage Isotope Laboratories, Inc. ), 10% Fetal Bovine 

Serum (FBS) (Gemini Bio-Products, CA) and 1% penicillin/streptomycin (Invitrogen Life 

Technologies, Carlsbad, CA). The cells were incubated in a CO2 incubator at 37°C with 5.0% 

CO2, and the medium was changed every two days for 5 days. When the cells reached 90-95% 

confluence, the cells were washed three times with Dulbecco’s Phosphate-Buffered Saline 

(DPBS) (Invitrogen Life Technologies, Carlsbad, CA) and harvested.   

B. In-solution Trypsin Digestion 

 Cells were lysed with 8M urea. Each cell lysate obtained equal amounts of total proteins 

were treated with 200 mM dithiothreitol (DTT) for an hour at room temperature to hydrolyze 

disulfide bonds. After DTT treatment, protein samples were incubated an hour at room 

temperature in dark with 150 mM iodoacetamide (IAA) in 200mM ammonium bicarbonate 

(NH4HCO3) to stabilize the broken disulfide bonds. Samples were, then, incubated with 13.3% 

w/v solution of trichloroacetic acid (TCA) in acetone to precipitate most proteins at -20°C for 24 

hours. The protein pellets were incubated with 10 ng/ul enzyme-grade trypsin (Promega, 

Madison, WI) in 200mM NH4HCO3 at 37°C for 24 hours to digest proteins. After protein 

digestion, samples were dried using a speed vacuum concentrator centrifuge at 38°C to remove 

organic solvents and dissolved in 0.1% of formic acid.  

C. IP 

Sulfo-NHSb-SS-Biotin (Thermo Scientific, Rockford, IL, USA) with 10mM was incubated 

with GRP 78 (GTX 62592, GeneTex, Irvine, CA, USA) antibody for 2 hours at room temperature 

to prepare biotinylated antibody. In order to couple the antibody to the beads, 1 mg/ml of 

http://cshprotocols.cshlp.org/content/2006/1/pdb.rec10513.full?text_only=true
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Dynabeads Myone Strepavidin T1 (Invitrogen Life Technologies, Carlsbad, CA) were incubated 

with the biotinylated antibody and Dulbecco’s Phosphate-Buffered Saline (DPBS) (Invitrogen 

Life Technologies, Carlsbad, CA) for 30 minutes at room temperature. After incubation, the 

coated beads were washed twice with DPBS (Invitrogen Life Technologies, Carlsbad, CA) and 

washed once with 0.01% of bovine serum albumin (BSA). The coated beads were incubated in 

0.01% of BSA for 15 minutes at room temperature and washed three times with DPBS. 

Samples were added into the coated beads and washed with DPBS for three times. 

Supernatant was removed from the coated beads and 30uL of 0.1M citric acid (pH 2.9) were 

added into the coated beads to elute the proteins from the coated beads. 

D. LC-MS/MS and Database Search 

Sample analysis was performed by liquid chromatography (LC) using a reversed-phase 

C18 column (Zorbax C18, Agilent, 5µM, 150 X 0.5 mm diameter column) with a flow rate of 20 

µL/min. Electrospray ionization time-of-flight mass spectrometry (Agilent 6520 QTOF) was 

performed in a positive mode with water/acetonitrile as mobile phases A/B, each containing 

0.1% formic acid to analyze samples. Linear changes in mobile phase B composition with time 

(0 min, 10% B; 5 min, 10% B; 10 min, 40% B; 65 min, 98 B; 70 min, 98% B) were components 

of the chosen LC gradient. Samples were run at 180 minute gradient. Samples were washed to 

reduce possible carryover before analysis. Database searching was performed using Mascot 

database search engine. Peptide mass isotopomer distribution patterns were manually selected 

for data analysis. 

E. Data Analysis of 13C Labeled Peptides 

Xcalibur 2.1 software (Thermo Scientific, Rockford, IL, USA) was used to verify the 

MS/MS spectra of 13C labeled peptides manually within 380.00-1800.00 m/z range. The highest 

peak among other isotopic peaks in a mass isotopomer distribution was selected for identifying 

the sequence of the 13C labeled protein. Peptide fragment b and y ions were used to verify 
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sequence of protein through SwissProt, a freely accessible resource database of protein 

sequence. 

 

RESULTS 

A. Identification of 13C Labeling in Oral Cancer Cells 

In order to test the new methodology to identify 13C labeled protein in oral cancer cells, 

[U-13C6]-glucose was introduced in the oral cancer cells, UM1 and UM2, through cell culture. 

The labeled proteins were then collected for LC-MS/MS analysis. From MS1 full scan (380.00-

1800.00 m/z), 13C labeled peptide mass isotopomer distribution patterns were manually selected 

(Figures 7-1A&B, 7-2A&B, 7-3A&B, 8-1A&B, 8-2A&B, 8-3A&B, 9-1A&B, 9-2A&B, 9-3A&B, 10-

1A&B, 10-2A&B). As can be seen from the mass spectra, 13C labeled peptide isotopomer 

distributions displayed decay patterns. The decay patterns were depicted by mass shift which 

was determined between two isotopic peaks of peptide as 1 dalton (Da).  

There were different 13C labeled peptide mass isotopomer distribution patterns, which 

were constantly observed in many proteins of both the UM1 and UM2 cells. As shown in Figures 

7-1C, 7-2C, 7-3C, the first isotopic peak (monoisotopic-base peak, M0, 12C) of the peptide had 

the highest intensities (relative abundance) among the other peaks. The second isotopic peak 

(13C labeled peak, M1, 13C) and the third isotopic peak (M2) of peptide displayed lower relative 

abundance than the first isotopic peak. Between the first and fourth isotopic peaks of peptide, 

the mass shift was 3 Da. At the fourth isotopic peak of peptide (M3), there was a spike followed 

by the decay pattern with more than 6 peaks (M4, M5, M6, M7, M8, M9).  

The second 13C labeled peptide mass isotopomer distribution pattern displayed a 

constant isotopic decay pattern (Figures 8-1C, 8-2C, 8-3). This pattern started with the first 

isotopic peak of peptide as the highest intensities and contained more than five peaks. The third 

13C labeled peptide mass isotopomer distribution pattern (Figure 9-1C, 9-2C, 9-3C) was a 
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similar decay pattern as the first pattern except fourth istotopic peak was the highest isotopic 

peak among other isotopic peaks. Typically, this type of mass isotopomer distribution pattern 

consisted of more than 12 consecutive isotopic peaks. Since this type of mass isotopomer 

distribution pattern had a greater amount of isotopic peaks, more isotopic peaks with high 

values of intensities than other types of mass isotopomer distribution patterns were observed. 

The fourth type of 13C labeled peptide mass isotopomer distribution pattern was observed with a 

greater number of isotopic peaks (Figures 10-1C, 10-2C). The decay pattern contained a spike 

at the sixth or seventh isotopic peaks and had a concave down decay pattern with numerous 

consecutive isotopic peaks of consecutive isotopic peaks.  

Overall, most of the peptide mass isotopomer distribution patterns displayed higher 

intensities of isotopic peaks with the UM1 cells when compared to the UM2 cells, and isotopic 

patterns decayed in a more rapid fashion in the UM2 cells than in the UM1 cells.      

B. Confirmation of Purified 13C Labeled 78k Da Glucose-Regulated Protein in Oral 

Cancer Cells 

Western blot analysis was performed to confirm that purified 13C labeled GRP 78 was 

eluted by IP and purified from unspecific protein in all four oral cancer cells, UM1, UM2, UM5, 

and UM6 (Figure 11). The expression of 13C labeled GRP 78 in the UM1, UM2, UM5, and UM6 

cells were observed with different levels. In the UM1 and UM5 cells, 13C labeled GRP 78 was 

detected less than in the UM2 and UM6 cells.  

C. Identification of 13C Labeled 78k Da Glucose-Regulated Protein in Oral Cancer Cells 

13C labeled GRP 78 eluted by IP was analyzed using LC-MS/MS to test whether the new 

protocol can identify a specific labeled protein. A peptide isotopomer distribution pattern was 

observed in 13C labeled GRP 78 (Figure 12-1). In 13C labeled GRP 78 mass spectrum, a double 

envelope pattern containing two peptide isotopomer distribution patterns was detected. The first 

peptide isotopomer distribution pattern contained a higher spike at the fourth isotopic peak 
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compared to the first isotopic peak to reflect the double envelope pattern for peptide sequence 

K.TFAPEEISAMVLTK.M of GRP 78 in the UM1 cells (Figure 12-2). The second peptide 

isotopomer distribution pattern displayed a consistently decaying pattern with peptide sequence 

R.ITPSYVAFTPEGER.L of GRP 78 in the UM1 cells (Figure 12-2).   

 

DISCUSSION 

Proteins are essential biomolecules for tumor cells to proliferate. There are many studies 

that identified and analyzed proteins in cancer cells globally using various proteomic tools. 

Isotopic labeling of protein samples is a common methodology to quantify proteins. Chemical 

labeling and metabolic labeling are two well-known types of isotopic labeling techniques that 

most researchers have used. However, these two types of techniques have some limitations. 

Chemical labeling techniques are often inaccurate and cause errors in peptide modifications. 

Metabolic labeling technologies employ a stable isotope labeled amino acids which are used for 

cell culture medium. There are three disadvantages of metabolic labeling: at least two weeks 

are required for cell culturing with isotope labeling media, cells have a low tolerance to the 

isotope labeling media, and isotope labeling chemicals are expensive [30].             

In this study, we have demonstrated a tracer-based metabolomics methodology for 

studying oral cancer cells by using [U-13C6]-glucose as a tracer. With this tracer, 12C labeled 

peptides were replaced with 13C labeled peptides, which may reflect the metabolic path of 

glucose in the oral cancer cells. Because13C from glucose was converted into the amino acids 

of proteins in the cells, mass shifts of the peptides derived from proteins were observed in the 

mass spectra obtained by MS [29]. Since high enrichment of 13C labeling (99%) was used for 

this LC-MS/MS analysis, all the mass isotopomer distribution patterns should contain 13C 

labeled peptides in each isotopic peak. Even though a natural abundance of 13C atom is 1.1%, 

the intensities of many second isotopic peaks (13C) were as high as the first peak (the 
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monoisotopic peak with 12C because the peptides were labeled with 99% enrichment of 13C. 

Consequently, each isotopic peak represented the amount of 13C enrichment of each peptide. . 

To validate the new methodology, we compared the mass spectra of 13C labeled 

peptides of the UM1 cells were compared with those of the UM2 cells. Both 13C labeled protein 

peptides of the UM1 cells and UM2 cells displayed different types of 13C labeled peptide mass 

isotopomer distribution patterns. Mass isotopomer distribution pattern decayed faster and the 

intensities of each isotopic peak were lower for the UM2 cells when compared to the UM1 cells. 

The quantitation of the intensity of each isotopic peak implied that the UM1 cells, which had 

greater amounts and higher intensities of isotopic peaks than the UM2 cells, consumed more 

[U-13C6]-glucose than the UM2 cells. In a previous study, the UM1 cells were shown to uptake 

more glucose for cell proliferation than the UM2 cells based on a glucose uptake assay [20].    

On the mass spectra of 13C labeled peptides of the UM1 and UM2 cells, all peptide mass 

isotopomer distribution patterns displayed with a decay pattern. Each isotopic peak represents 

relative abundance and 13C enrichment. When an isotopic peak has a higher intensity or relative 

abundance than other isotopic peaks, that isotopic peak is labeled with 13C more than lower 

intensity isotopic peak. As m/z increases heavy isotopes occur in the same ionic fragment. 

Having all heavy isotopes in the same ionic fragment is extremely low probability. Thus, as m/z 

increases, the peptide has less chance to have all heavy isotope molecules to be labeled and 

display decay pattern of isotopomer distribution. We also observed many isotopomer patterns 

had a spike in the fourth isotopic peak. The spike in the fourth peak represents an abundance of 

13C incorporated in the isomer. From first peak to fourth peak, there is a 3 Da mass shift. As 

glucose is utilized by the cell, it is converted into a 3 carbon molecule named pyruvate. Pyruvate 

is then processed into 3 carbon amino acids such as alanine or serine. As the cell utilizes these 

newly synthesized amino acids, certain proteins will have a 3 Da shift corresponding to the 



23 
 

heavier amino acids, resulting in a spike on the fourth peak. This may suggest labeling of a 3 

carbon amino acid such as alanine or serine in this type of peptide distribution pattern [31]. 

Relative glucose consumption was correlated with invasive and metastatic phenotype of 

cancer cells since glucose uptake is used for cell proliferation. Glucose uptake may contribute to 

the more invasive and metastatic phenotype of UM1 cells than the UM2 cells. Therefore, our 

study has led to a novel tracer-based metabolomics methodology which can be used to explore 

the relationship between glucose uptake and the characteristics of cancer cells. This 

methodology may be also used for identifying the role of a specific labeled amino acid in protein 

synthesis of oral cancer cells. In a previous study, 13C labeled glucose was used to label 

multiple positions (C1, C2, C3, C4, C5, C6) of the same molecule to determine its roles of the 

molecule in glycogen synthesis, gluconeogenesis and tricarboxylic acid (TCA) cycle metabolism 

[28]. In oral cancer studies, 13C labeled anthrocyanin was used to focus on its synthetic route 

[32]. Our methodology may also be used to elucidate the role of each amino acid in protein 

synthesis of oral cancer cells.     

In a previous study, a similar methodology combined tracer-based metabolomics and 

MS-based proteomics was demonstrated for analysis of cancer cells. Although this methodology 

was feasible for the global analysis of proteins, it was not suitable for targeted protein analysis. 

In order to overcome the limitation to study on a single protein, we have demonstrated a new 

methodology by combining IP with LC-MS/MS for targeted analysis of GRP 78 protein.          

In this methodology, IP was used to pull down 13C labeled GRP 78 in oral cancer cells to 

allow for detection by MS. Western blot analysis confirmed that 13C labeled GRP 78 in the UM1, 

UM2, UM5, and UM6 cells was purified through IP. In the UM1 and UM5 cells, 13C labeled GRP 

78 expression was lower than in the UM2 and UM6 cells. Further investigation may address the 

relationship between GRP 78 and the UM1 or UM5 cells which have more invasive and 

metastatic phenotypes than the UM2 and UM6 cells. Due to such a small amount of purified 13C 
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labeled GRP 78 eluted from IP, micro BCA protein assay was not able to measure the GRP 78 

concentration in the cells.  

Afterwards, LC-MS/MS was used to analyze the peptide isotopomers derived from the 

eluted GRP 78. Based on database searching against the SwissProt protein database, the 

peptide sequences were matched and identified and the peptide isotopomer patterns were 

revealed. Also, comparison of the 13C labeled GRP 78 mass spectra with those of natural GRP 

78 indicates that the methodology is valid to isolate and analyze individual 13C labeled protein 

[20].  

Despite successfully proving the global and targeted analysis of proteins in cancer cells 

with these novel methodologies, there still remain potential limitations. We will be able to study a 

target protein with this new targeted methodology, only when commercial antibody is available. 

Tracer-based metabolomics with [U-13C6] glucose can only be applied to studying certain 

proteins that utilize glucose for their synthesis. In order to study the synthesis and metabolism of 

other proteins, we will have to use other labeled substrate.  

 

CONCLUSION 

We have demonstrated tracer-based metabolomics methodology for global and targeted 

analysis of proteins in oral cancer cells. Overall, the results from this study suggest that stable 

isotope tracers can help to elucidate the metabolism of oral cancers related with glucose uptake 

and protein synthesis. We also found highly invasive UM1 cells utilize more glucose than low 

invasive UM2 cells possibly to maintain their invasive and metastatic phenotypes. Employing 

these new methodologies to study proteomics and metabolomics can help discover potential 

biomarkers in human disease for clinical and diagnostic applications. Moreover, studying protein 

metabolisms with these methodologies may help reveal targets for therapeutic interventions.  
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FIGURES 

 
*Figure adopted from Tautenhahn et al., 2012  

 

Figure 1. XCMS Online software Workflow: MS/MS data is analyzed through XCMS with three 
steps; uploading data, selecting parameters, and viewing/downloading results. 
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Figure 2. Cloud plots of the metabolites in the UM1 and UM2 cells with siAK2 or siPGK1 
knockdown. (A) Cloud plot of the metabolites in the UM1 oral cancer cells with siAK2 
knockdown. (B) Cloud plot of the metabolites in the UM1 oral cancer cells with siPGK1 
knockdown. The retention times (minutes) of each eluted feature was plotted on the x-axis, and 
mass-to-charge ratio (m/z) of feature lists were plotted on y-axis[13]. Features were plugged 
into the cloud plot as circles with different sizes based on the log fold changes of features 
produced by the Welch t-test. When any of the features had database hits in the METLIN 
database, the surface of features were displayed with black outlines.  
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Figure 3. Metabolic features in different oral cancer cell lines. (A) Number of metabolic features 
detected in the UM1 or UM2 oral cancer cells with either siAK2 or siPGK1 knockdown (entire list 
or P-value < 0.05. (B) Common metabolic features between the UM1 and UM2 oral cancer cells 
when AK2 was knocked down. (C) Common metabolic features between UM1 and UM2 oral 
cancer cells when PGK1 was knocked down. 
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*Figure4 B (AK2) adopted from Chai., 2013.  

Figure 4. AK2 and PGK1 protein expression in the UM1 and UM2 oral cancer cells with siRNA 
knockdown. (A) Western blot data of AK2 and PGK1 protein expression in UM1cells transfected 
with siRNA control (CTRL) or siRNA knockdown (siAK2 or siPGK1).  (B) Western blot data of 
AK2 and PGK1 protein expression in the UM2 cells transfected with siCTRL, siAK2 or siPGK1.  
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Figure 5. Metabolic features down-regulated in UM1 or UM2 oral cancer cells when AK2 or 
PGK1 was knocked down. (A) Up or down-regulated metabolic features (P < 0.05) in the UM1 
or UM2 oral cancer cells when AK2 or PGK1 was knocked down. (B) Up or down-regulated 
metabolic features (P < 0.05) which are common between UM1 and UM2 oral cancer cells when 
AK2 or PGK1 was knocked down.  
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Figure 6. Heat maps with common metabolic features between UM1 and UM2 oral cancer cells. 
(A) Expression of common metabolites between UM1-siAK2 and UM2-siAK2 cells. (B) 
Expression of common metabolites between UM1-siPGK1 and UM2-siPGK1 cells.    
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Figure 7- 1. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells.     
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Figure 7- 2. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells.     
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Figure 7- 3. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells.     
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Figure 8- 1. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells. 
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Figure 8- 2. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells.     
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Figure 8- 3. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells.     
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Figure 9- 1. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells.     
 
 
 
 
 
 
 
 
 



38 
 

A. 

 
B. 

 
C. 

 
 
Figure 9- 2. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells.     
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Figure 9- 3. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells. 
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Figure 10- 1. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells. 
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Figure 10- 2. LC-MS analysis of 13C labeled peptide isotopomers in the UM1 and UM2 oral 
cancer cells (A) 13C labeled peptide mass isotopomer distribution in UM1 oral cancer cells. (B) 

13C labeled peptide mass isotopomer distribution in UM2 oral cancer cells. (C) Comparison of 
relative abundance for 13C labeled peptide mass isotopomer distribution in UM1 and UM2 oral 
cancer cells.     
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Figure 1 1. 13C labeled 78kDa glucose related protein (GRP78) expression in UM1, UM2, UM5 
and UM6 oral cancer cells. 
 

 
Figure 12- 1.  LC- MS analysis of of 13C labeled 78kDa glucose related protein (GRP78)    
isotopomers in UM1 oral cancer cells. 
 
 

 
 
Figure 12- 2. Relative abundance for 13C labeled 78kDa glucose related protein (GRP78) 
peptide mass isotopomer distribution in UM1 oral cancer cells. 
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TABLE 
 

UM1 siAK2  UM2 siAK2  UM1 siPGK1  UM2 siPGK1  

M766T17  M707T26  M629T19  M1265T29_1  

M183T0  M802T29  M670T29  M629T19  

M618T20  M172T1  M742T29  M742T29  

M654T29_1  M783T29_2  M616T14  M616T14  

M249T19_1  M249T19_1  M767T29_1  M707T29_2  

M707T26  M709T29  M766T17  M604T15  

M587T15  M587T15  M249T19_1  M767T29_1  

M802T29  M586T15  M918T29  M709T29_2  

M586T15  M630T15  M901T29_2  M766T17  

M519T29  M604T15  M368T19  M708T29_2  

M604T15  M648T15  M367T19  M1265T29_2  

M709T29  M709T25  M903T29_2  M710T29  

M412T19  M766T17  M708T29_2  M412T19  

M537T29  M602T14  M321T19  M586T15  

M602T14  M631T15  M707T29_2  M902T29_1  

M893T26  M706T27  M604T15  M901T29_2  

M783T29_2  M183T0  M384T19_1  M670T29  

M648T15  M519T29  M385T19  M602T14  

M709T25  M398T19_1  M772T9_1  M918T29  

M706T27  M385T19  M728T29_1  M249T19_1  

M631T15  M412T19  M771T9_1  M274T29_1  
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M321T19  M343T25  M709T29_2  M367T19  

M343T25  M893T26  M406T19  M321T19  

M367T19  M406T19  M425T19  M389T23  

M398T19_1  M537T29  M398T19_1  M384T19_1  

M172T1  M367T19  M389T23  M728T29_1  

M385T19  M292T24_1  M710T29  M398T19_1  

M630T15  M389T23  M412T19  M385T19  

M389T23  M405T19  M391T19  M391T19  

M406T19  M321T19  M1265T29_2  M406T19  

M405T19  M390T19  M586T15  M158T19  

M705T25  M389T19  M405T19  M664T30  

M390T19  M279T21_2  M455T19_2  M405T19  

M264T16  M289T17_2  M902T29_1  M425T19  

M389T19  M268T17  M841T29_2  M390T23  

M425T19_2  M183T1_2  M389T19  M455T19_2  

M101T19  M425T19_2  M390T19  M390T19  

M279T21_2  M183T1_1  M390T23  M389T19  

M364T27  M101T19  M158T19  M771T9_1  

M268T17  M390T23  M697T17  M368T19  

M292T24_1  M289T17_1  M602T14  M630T15  

M697T17  M533T21_1  M201T17_1  M793T9_1  

M218T17  M140T17  M238T20  M697T17  

M390T23  M426T17  M252T19_1  M772T9_1  

M183T1_2  M264T16  M289T17_2  M201T17_1  

M183T1_1  M291T17  M290T17  M252T19_1  
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M291T17  M697T17  M696T17  M238T20  

M289T17_2  M218T17  M386T9_2  M290T17  

M533T21_1  M555T21  M269T17  M289T17_2  

M140T17  M556T21_2  M312T21  M269T17  

M555T21  M197T20  M533T21  M255T17  

M556T21_2  M155T21  M297T20  M696T17  

M426T17  M298T21_1  M267T21_2  M297T20  

M701T17  M269T21  M267T21_3  M533T21  

M155T21  M701T17  M555T21  M312T21  

M158T17_1  M158T17_1  M255T17  M267T21_3  

M211T21_1  M354T21_1  M268T21_3  M555T21  

M269T21  M311T18  M99T21_1  M267T21_2  

M298T21_1  M211T21_1  M211T21_1  M158T17_1  

M311T18  M326T21_2  M298T21_1  M268T21_3  

M354T21_1  M325T21_2  M267T21_1  M211T21_1  

M197T20  
 

M354T21_1  M267T21_1  

M325T21_2  
 

M311T18  M99T21_1  

M326T21_2  
 

M158T17_1  M311T18  

  
M355T21  M354T21_1  

   
M298T21_1  

   
M355T21  

Table 1. Down-regulated siAK2 and PGK1 feature list among common features of metabolites 
between UM1 and UM2 oral cancer cells.   
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