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ARTICLE

A scalable and robust variance components method
reveals insights into the architecture of
gene-environment interactions underlying complex traits

Ali Pazokitoroudi,1,7,8,* Zhengtong Liu,1 Andrew Dahl,5 Noah Zaitlen,2,3,4 Saharon Rosset,6

and Sriram Sankararaman1,2,3,*
Summary
Understanding the contribution of gene-environment interactions (GxE) to complex trait variation can provide insights into disease

mechanisms, explain sources of heritability, and improve genetic risk prediction. While large biobanks with genetic and deep pheno-

typic data hold promise for obtaining novel insights into GxE, our understanding of GxE architecture in complex traits remains limited.

We introduce a method to estimate the proportion of trait variance explained by GxE (GxE heritability) and additive genetic effects (ad-

ditive heritability) across the genome and within specific genomic annotations.We show that ourmethod is accurate in simulations and

computationally efficient for biobank-scale datasets.

We applied our method to common array SNPs (MAF R 1%), fifty quantitative traits, and four environmental variables (smoking,

sex, age, and statin usage) in unrelated white British individuals in the UK Biobank. We found 68 trait-E pairs with significant

genome-wide GxE heritability (p < 0:05=200) with a ratio of GxE to additive heritability of z6:8% on average. Analyzing z 8

million imputed SNPs (MAF R0:1%), we documented an approximate 28% increase in genome-wide GxE heritability compared

to array SNPs. We partitioned GxE heritability across minor allele frequency (MAF) and local linkage disequilibrium (LD) values,

revealing that, like additive allelic effects, GxE allelic effects tend to increase with decreasing MAF and LD. Analyzing GxE

heritability near genes highly expressed in specific tissues, we find significant brain-specific enrichment for body mass index

(BMI) and basal metabolic rate in the context of smoking and adipose-specific enrichment for waist-hip ratio (WHR) in the context

of sex.
Introduction

Variation in a complex trait is modulated by an interplay

between genetic and environmental factors. Character-

izing the effects of gene-environment interactions (GxE)

on complex trait variation has the potential to shed light

on biological mechanisms underlying the trait,1–3 inform

public health measures,4 identify sources of missing her-

itability,5 and improve the accuracy and portability of

trait prediction.6,7 The growth of biobanks that collect

genetic and deep phenotypic data (that span disease out-

comes, clinical labs, lifestyle factors, and environmental

exposures) across large numbers of individuals offers

the possibility to gain novel insights into GxE.3,8 Never-

theless, characterizing GxE has proved challenging due,

in part, to the small effect sizes of individual genetic

variants.9,10

A potentially powerful methodological approach aims

to quantify GxE effects aggregated across a set of variants

without needing to pinpoint individual variants. In this

approach, the proportion of trait variation explained by

GxE (GxE heritability or h2
gxe) is estimated by fitting a class

of variance components models where the model param-
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eters, i.e., the variance components, are informative of

h2
gxe. Methods for estimating h2

gxe using this approach

include GCTA-GxE,11 multitrait GREML (MV-GREML),5

random regression GREML (RR-GREML),5,12 and whole-

genome reaction norm model (RNM) and its multitrait

version (MRNM).13 All of these methods (except RNM)

are able to account for differences in the noise or resid-

ual variance across environments (noise heterogeneity),

which is important to mitigate biases in GxE heritability

estimates.13,14 However, these methods work with dis-

crete-valued environmental variables, with RNM and

MRNM further restricted to fit bivariate and univariate en-

vironments, respectively. A more recent general frame-

work, GxEMM,14 can be applied to both discrete and

continuous environmental variables while modeling

noise heterogeneity. However, none of these methods

are practical for biobank-scale datasets with sample sizes

in the hundreds of thousands and genetic variants in

the millions. Two recent methods, GPLEMMA15 and

MEMMA,16 attempt to scale GxE heritability estimation

to large-scale datasets but do not model noise heterogene-

ity. A more recent method, MonsterLM,17 has been shown

to be feasible for biobank-scale datasets and to produce
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unbiased estimates in many scenarios. However, Mon-

sterLM requires SNPs to be filtered to common variants

with low levels of linkage disequilibrium (LD), which

may limit its application to discover GxE. As a result, cur-

rent methods for estimating GxE heritability either do not

scale to the biobank setting or are susceptible to biased

estimates. Additional insights into the architecture of

GxE can be gleaned if we can move beyond genome-

wide estimates of GxE heritability and estimate GxE heri-

tability across specific genomic annotations such as minor

allele frequency (MAF), LD, and functional genomic

annotations.

We propose a scalable and robust method, GENIE (gene-

environment interaction estimator) that can estimate the

proportion of trait variance explained by GxE and additive

genetic effects (additive heritability). Using extensive sim-

ulations and real data analysis, we show that GENIE accu-

rately estimates h2
gxe and provides calibrated tests of h2

gxe due

to its ability to account for noise that is heterogeneous

across environments. Importantly, GENIE is scalable: able

to estimate GxE on datasets with hundreds of thousands

of individuals, millions of SNPs, and tens of environmental

variables in several hours. The ability of GENIE to be

applied to large-scale datasets is important for power: we

show that GENIE has adequate power to detect h2
gxe as

low as 2% across a sample of z300;000 unrelated individ-

uals. Finally, GENIE is versatile: able to handle multiple

environmental variables (discrete or continuous) and to es-

timate not only genome-wide h2
gxe but also partition h2

gxe

across genomic annotations (both overlapping and non-

overlapping).

To demonstrate its utility, we first applied GENIE to esti-

mate the genome-wide h2
gxe on common SNPs (M ¼

454;207 SNPs with MAF > 1%) and four environmental

variables (smoking, sex, age, and statin usage) for fifty

quantitative phenotypes measured across 291;273 unre-

lated white British individuals in the UK Biobank (UKB).

Second, we leveraged the scalability of GENIE to partition

h2
gxe across common and low-frequency imputed SNPs

(M ¼ 7;774;235 with MAF > 0:1%) in UKB. We parti-

tioned h2
gxe into genomic annotations based on the MAF

and local LD score of each SNP to investigate the variation

in GxE effects with population genetic features and to esti-

mate genome-wide h2
gxe that includes the contribution of

both common and low-frequency SNPs. Finally, we applied

GENIE to assess whether h2
gxe shows tissue-specific enrich-

ment by analyzing each of 53 tissue-specific gene sets iden-

tified from the GTEx dataset.18
Material and methods

Generalized GxE linear mixed model
Let X denote a N3M genotype matrix, E denote a N3 L matrix of

environmental variables, C denote a N3P matrix of fixed-effect

covariates, and y denote an N-vector of phenotypes. We assume

the following linear mixed model:
The America
y ¼ Xbþ
XL
l¼1

ðX1E:lÞal þ
XL
l¼1

ðIN1E:lÞdl þCgþ e

b � D

 
0;

s2
g

M
IM

!

al � D

 
0;

s2
gxe;l

M
IM

!

dl � D
�
0; s2

nxe;lIN
�

e � D
�
0;s2

e IN
�

(Equation 1)

Here, Dðm;SÞ denotes an arbitrary distribution with mean m and

covariance S, E:l denotes l-th column of E, and 1 denotes row-

wise Kronecker product. b denotes the M-vector of SNP effect sizes,

g denotes the P-vector of fixed effects, al denotes theM-vector of ge-

netic effect sizes in the context of environment l (GxE effects)while dl
denotes theN-vectorofnoise-by-environmenteffect sizes forenviron-

ment l, and e denotes the N-vector of noise. s2e , s
2
g , s

2
gxe;l, and s2nxe;l

denote the residual variance, additive genetic, gene-by-environment,

andnoise-by-environment variance components, respectively. These

variance components can then be transformed into the additive her-

itabilityor theproportionof variance explainedbyadditive effects (h2
g

associatedwith s2g ) and theGxE heritability or the proportion of vari-

ance explained by interactions of genetics with a given environment

(h2
gxe;l associated with s2gxe;l). The noise-by-environment matrix for

environment l isobtainedas the row-wiseKroneckerproductbetween

the N3N identity matrix IN and the environment vector E:l so that

the vector of environment-specific noise for each individual i (due

toenvironment l)will begivenbyEildli. In thesimplest caseof abinary

environment that is coded as f0;1g, the phenotype of an individual

whose environmental variable is set to value 1will have an additional

contribution of noise (dli) relative to an individual whose environ-

mentvariable is set to0. Further, all individualswhose environmental

variable takes thevalue1willhaveanadditional termthat contributes

to their phenotypic variance, quantified by s2nxe;l, relative to individ-

uals with environmental variable 0. This formulation generalizes to

settings where the environment is coded as categorical (but with

valuesdifferent from f0;1g) and to continuous-valuedenvironments.

We now refer to the noise-by-environment (or heterogeneous noise)

component as the NxE component and the variance s2nxe as the NxE

variance in the following sections.

Estimation in the GxE linear mixed model
We assume without loss of generality that y is centered, and the

columns of X and E are standardized. To estimate the variance

components of our linear mixed model (LMM), we use a

method-of-moments (MoM) estimator that searches for parameter

values so that the population moments are close to the sample

moments. Since E½y� ¼ 0, we derived the MoM estimates by

equating the population covariance to the empirical covariance.

For simplicity, we exclude the matrix of covariates C from the

model in the following derivation as the covariates can be effi-

ciently projected out of the phenotype, genotypes, and interac-

tion terms with minimal additional cost (Note S1).

For compactness, we denote Z0 ¼ X, Zl ¼ X1E:l for l ¼ 1;.;

L, Zl ¼ IN1E:l for l ¼ Lþ 1;.;2L, and Z2Lþ1 ¼ IN . The popu-

lation covariance is given by

covðyÞ ¼ E
�
yyT

� � E½y�E�yT
� ¼ X2Lþ1

l¼0

s2
l Kl (Equation 2)
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where

Kl ¼

8><>:
ZlZ

T
l

M
; l ¼ 0;.;L

ZlZ
T
l ; l ¼ Lþ 1;.;2Lþ 1

and

s2
l ¼

8>>>>>><>>>>>>:

s2
g ; l ¼ 0

s2
gxe;l; l ¼ 1;.;L

s2
nxe;l; l ¼ Lþ 1;.;2L

s2
e ; l ¼ 2Lþ 1

Using yyT as our estimate of the empirical covariance, we need

to solve the following least squares problem to find the variance

components.

~s2 ¼ argmins2kyyT �
X2Lþ1

l¼0

s2
l Klk

2

F

(Equation 3)

The MoM estimator satisfies the following normal equations:

Ts2 ¼ q (Equation 4)

where T is matrix with entries Tij ¼ tr
�
KiKj

�
; i; j˛ f0;.;2Lþ 1g,

and q and s2 are vectors with entries cl ¼ yTKly and s2l , respec-

tively, for l˛ f0;.;2Lþ 1g.
The heritability associated with component i for a component

that represents additivegeneticorGxEeffects (equivalently, thepro-

portion of variance explained by component i) is defined as follows:

h2
i ¼ s2

i trðKiÞP
ks

2
k trðKkÞ (Equation 5)

The aforementioned definition of heritability holds when the

columns of each of the Z matrices have zero means and N is large.

To explicitly ensure that the columns of GxE matrices also have

zero means, a column consisting of all ones is included in the co-

variate matrix. Consequently, when the covariates are projected

out of the GxE matrices (Note S1), it guarantees that all columns

have zero means.
Computational challenges
Computing the coefficients of the system of linear Equation 4

presents computational challenges. The main computational

bottleneck is the evaluation of the quantities Tij for i; j˛
f0;.;2Lþ1g; which requires O

�
N2ML

�
. Therefore, the total

time complexity for exact MoM is OðN2MLþL3Þ, imposing chal-

lenging memory or computation requirements for Biobank-scale

data (N in the hundreds of thousands, M in the millions, and L

in the hundreds or thousands).
Scalable estimation
Instead of computing the exact value of Tij, GENIE uses a random-

ized estimator of the trace.19 This estimator uses the fact that for a

given N3N matrix C, wTCw is an unbiased estimator of trðCÞ
(E½wTCw� ¼ tr½C� where w is a random vector with mean zero

and covariance IN). Hence, we can estimate the values Tij, i; j˛
f0;.;2Lþ1g as follows:

Tij ¼ tr
�
ZiZ

T
i Z jZ

T
j

�
zcTij ¼ 1

B

X
b

wT
bZiZ

T
i ZjZ

T
j wb (Equation 6)
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Here, w1;.;wB are B independent random vectors with zero

mean and covariance IN . In GENIE, we draw these random vectors

independently from a standard normal distribution. Note that

computing Tij by using the above estimator involvesmatrix-vector

multiplications, which are repeated B times. Therefore, the total

running time is OðLNMBÞ.
Moreover, we can leverage the structure of the genotype matrix,

which only contains entries in f0;1;2g. For a fixed genotype ma-

trix Xk, we can improve the per iteration time complexity of ma-

trix-vector multiplication from OðNMÞ to O
�

NM
maxðlog3ðNÞ;log3ðMÞÞ

�
by

using the Mailman algorithm.20 Solving the normal equa-

tions takes OðL3Þ time so that for a small number of compon-

ents (L), the overall time complexity of our algorithm is

O
�

LNMB
maxðlog3ðNÞ;log3ðMÞÞ þL2ðNBþLÞ

�
.

Standard errors of the estimates
We used a computationally efficient block jackknife21 to compute

standard errors of the estimates, which does not require any as-

sumptions on the distribution of the effect sizes. Each jackknife

subsample was created by removing a block of the genotype ma-

trix, and we approximated the true SE by the jackknife estimate.

Specifically, if we partition the genotype X into J non-overlapping

blocks ½Xð1Þ;.;XðJÞ�, cSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ �1Þ

J

P
j

ðh2ðjÞ � h2
jackÞ2

r
, where h2ðjÞ is

the heritability estimate based on Xð� jÞ (removing XðjÞ from X),

and h2
jack is the mean of estimates across J jackknife subsamples.

The jackknife estimator was implemented efficiently in GENIE to

compute the estimate in time O
�

LNMB
maxðlog3ðNÞ;log3ðMÞÞ þJL2ðNBþLÞ

�
.

In our analysis, we used J ¼ 100 blocks defined over SNPs to

compute the standard errors of the estimates.
Partitioning GxE heritability across the genome
Although the model defined in Equation 1 is beneficial in quanti-

fying genome-wide GxE effects for a given E, it is interesting to

identify and interpret the interaction of E with specific regions

of the genome, such as SNPs with a particular range of minor allele

frequencies or SNPs that lie within genes expressed specifically in a

tissue. Following our previous work,21 the genotype componentX

can be assigned to T (potentially overlapping) components with

respect to a set of annotations (such as MAF/LD or functional an-

notations). Thus, we extend our model as follows:

y ¼
XT
t ¼1

Xtbt þ
XT
t ¼1

XL
l¼1

ðXt1E:lÞatl þ
XL
l¼1

ðIN1E:lÞdl þCgþ e

bt � D

 
0;

s2
g;t

Mt

IMt

!

atl � D

 
0;

s2
gxe;tl

Mt

IMt

!

dl � D
�
0; s2

nxe;lIN
�

e � D
�
0; s2

e IN
�

(Equation 7)

Here, Xt is the genotype of annotation t with Mt SNPs, and atl

refers to the effect sizes of SNPs in annotation t in the context of

environment l. Analogously, s2gxe;tl refers to the variance compo-

nent for SNPs in annotation t in the context of environment l
11, 2024



while h2
gxe;tl refers to the GxE heritability associated with annota-

tion t in the context of environment l.

Given estimated GxE heritabilities under the above model, we

define the enrichment of genetic effects in annotation t in the

context of environment l (also termedGxE enrichment) as follows:

Enrichmentðgxe; t; lÞ ¼
h2
gxe;tl

.PT
t ¼1 h

2
gxe;tl

Mt=M
; t ˛ f1;.;Tg; l˛ f1;.;Lg

(Equation 8)

Estimating GxE in the UK Biobank
We applied GENIE to the UKB8 where we considered environ-

mental variables such as smoking status, sex, age, and statin medi-

cation. The analyses utilized the UKB Resource under application

331277, with participants’ informed consents verified by the

UKB.22 For every environmental variable, we applied GENIE to

estimate additive heritability (h2
g ) and GxE heritability (h2

gxe)

across 50 quantitative phenotypes (in a model that included the

environmental variable as a main effect and accounted for noise

heterogeneity) (Table S2). In this study, we restricted our analysis

to SNPs that were present in the UKB Axiom array used to geno-

type the UK Biobank. SNPs with greater than 1% missingness

and MAF smaller than 1% were removed. Moreover, SNPs that

failed the Hardy-Weinberg test at significance threshold 10�7

were removed. We restricted our study to self-reported British

white ancestry individuals who are > 3rd degree relatives that

are defined as pairs of individuals with kinship coefficient < 1=

2ð9=2Þ.8 Furthermore, we removed individuals who are outliers for

genotype heterozygosity and/or missingness. Finally, we obtained

a set of N ¼ 291;273 individuals and M ¼ 454;207 SNPs for real

data analyses. No LD pruning or filtering was required by GENIE

subsequently.

We included age, sex, age2, age3 sex, age2 3 sex, and the top 20

genetic principal components (PCs) as covariates in our analysis

for all traits. We always include the environmental variable as a co-

variate in these analyses. We used PCs precomputed by the UKB

from a superset of 488;295 individuals. Additional covariates

were used for waist-to-hip ratio (adjusted for body mass index

[BMI]) and diastolic/systolic blood pressure (adjusted for choles-

terol-lowering medication, blood pressure medication, insulin,

hormone replacement therapy, and oral contraceptives). We stan-

dardized environmental variables in our primary analyses. The

standardized coding for binary environmental variables has an

invariant property in the sense that the covariance matrix would

be the same regardless of flipping the 0=1 coding. We also consid-

ered the binary coding of environmental variables to be relevant.

Statin usage is defined as a binary environmental variable based on

C10AA (the American Therapeutic Chemical [ATC] code of statin),

which corresponds to taking any subtype of statin medications.

Smoking status is defined as a categorical variable with three

possible values (never, previous, and current).

We considered an additional analysis of genotypes at high-qual-

ity imputed SNPs (with a hard call threshold of 0.2 and an INFO

score R0:8) with MAF R0:1% in the N ¼ 291;273 unrelated

white British individuals. We further restricted our analyses to

SNPs that are under Hardy-Weinberg equilibrium (p < 10�7)

and are confidently imputed in more than 99% of the individuals.

Additionally, we excluded SNPs in the MHC region, resulting in a

total of M ¼ 7;774;235 SNPs.

In our analysis of heritability partitioned based on MAF-LD an-

notations (primarily for the imputed SNPs), we divided SNPs into
The America
eight annotations based on quartiles of the LD scores (computed

in-sample using GCTA) and two MAF bins (MAF < 5% and MAF

R5%). In our analyses of heritability partitioned based on tis-

sue-specific gene expression annotations, we used the annotations

for the 53 tissue-specific genes generated by Finucane et al.18 using

amatrix of normalized gene expression values from the Genotype-

Tissue Expression (GTEx) database, which included samples from

various tissues, including the focal tissue. The authors calculated a

t statistic for each gene to determine its specific expression in the

focal tissue and ranked all genes based on their t-statistics. They

defined the top 10% of genes with the highest t statistic as the

set of specifically expressed genes for the focal tissue. To improve

the accuracy of the gene set construction, 100-kb windows are

added on either side of the transcribed region of each gene in

the set of specifically expressed genes to generate a genome anno-

tation that corresponds to the focal tissue.
Results

Calibration and power

We assessed the false positive rate of tests of GxE heritabil-

ity based on GENIE in simulations under different genetic

architectures with no GxE heritability. For each archi-

tecture, we simulated 100 phenotype replicates across

N ¼ 291;273 unrelated white British individuals in the

UKB and M ¼ 454;207 SNPs with MAF > 1% genotyped

on the UKB genotyping array. We chose statin usage in

the UKB as the environmental variable. We varied the per-

centage of causal SNPs while fixing the additive heritability

at h2
g ¼ 0:25. We ran GENIE with B ¼ 10 random vectors

(see the following section on the choice of the number of

random vectors).

Across all simulations, the false positive rate of rejecting

the null hypothesis of no GxE heritability is controlled

at levels 0.05 and 0:05=200 (we consider this thresh-

old, which controls for the number of trait-environme-

ntal variable [trait-E] pairs that we test in UKB): the average

Pðrejection at p < tÞ is 7:5% and 0% for t ¼ 0:05 and t ¼
0:05=200, respectively (Figure 1A).

To measure the power of GENIE to detect GxE heritabil-

ity, we simulated phenotypes with a non-zero GxE

heritability. Across genetic architectures, we varied the

GxE heritability with no noise heterogeneity while fixing

the additive heritability at 0.25 and the percentage of

causal SNPs at 10% (these are default values of additive her-

itability and causal ratio across our simulations unless

otherwise specified). We also tested GENIE by varying the

sample size from 30;000 to 300; 000. We simulated 100

replicates for every genetic architecture. Let h2
gxeðiÞ be the

estimate of h2
gxe and SEi be the jackknife estimate of the

standard error on the i-the replicate for i˛ f1;.;100g.
We computed the p value of a test of the null hypothesis

of no h2
gxe on the i-th replicate from the Z score defined

as h2
gxeðiÞ=SEi for i˛ f1;.;100g. We reported the percentage

of replicates with p value < t as the power of GENIE on a

given genetic architecture for a p value threshold of t.
n Journal of Human Genetics 111, 1462–1480, July 11, 2024 1465
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Figure 1. Calibration and power of GENIE in simulations (N ¼ 291;273 unrelated individuals, M ¼ 454;207 SNPs)
(A) Q-Q plot of p values (of a test of the null hypothesis of zero GxE heritability) when GENIE is applied to phenotypes simulated in the

absence of GxE effects. Each panel contains 100 replicates of phenotypes simulated with additive heritability h2
g ¼ 0:25 and varying

proportions of causal variants. The causal ratios are the same for the G and GxE components (10%), and the causal SNPs for the GxE
component are independently sampled to those for the additive genetic component. Across all architectures, the mean of Pðrejection
at p < tÞ is 7:5% and 0% for t ¼ 0:05 and t ¼ 0:05

200, respectively (7:5% is not significantly different from the nominal rate of 5%).

(B) The power of GENIE across genetic architectures as a function of GxE heritability. We report power for p value thresholds of t ˛	
0:05; 0:05200
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(C) The accuracy of h2
gxe estimates obtained byGENIE. Across all simulations, statin usage in UKBwas used as the environmental variable.
GENIE has adequate power to detect GxE effects with

h2
gxe R0:005 in a sample of 300;000 unrelated individuals

at p < 0:05 (Figure 1B). The power increases from around

20% to 100% as the sample size grows from 30;000 to

300;000 when h2
gxe ¼ 0:01 at p < 0:05 and remains almost

100% for h2
gxe R0:05 as the sample size reaches 50;000

(Figure S2A). Additionally, GENIE yields unbiased esti-

mates of GxE heritability (Figure 1C), and the SEs esti-

mated by GENIE were concordant with the true SEs

(Figure S3).

Next, we assessed the accuracy of GENIE in a setting with

multiple environmental variables. We simulated pheno-

types from a sub-sampled set of UKB genotypes, choosing

a subset of N ¼ 10; 000 individuals and 20; 000 SNPs on

chromosome 1 of the UKB Axiom array. We considered a

setting with L ¼ 10 environmental variables with s2g ¼
0:2, five environmental variables with s2gxe ¼ 0, three

environmental variables with s2gxe ¼ 0:1, and two with

s2gxe ¼ 0:01. We generated 100 replicates of simulated phe-

notypes for each set of parameters. We find that GENIE ob-
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tains estimates of h2
gxe that are accurate across the environ-

mental variables (Figure S1; Table S1).
Impact of randomization on GxE estimates

We investigated the impact of randomization on the esti-

mates obtained by GENIE by comparing it to the exact

MoM. Since exact MoM is computationally infeasible for

large sample sizes,we choose to experiment on a small-scale

dataset consisting of N ¼ 10;000 unrelated white British

individuals and M ¼ 60;000 SNPs selected from the UK

Biobank array SNPs on chromosome 1. We generated 100

replicates of phenotypes with no noise heterogeneity,

h2
g ¼ 0:1, and varying h2

gxe with standardized smoking sta-

tus as the environment variable. We ran GENIE using the

G þ GxE þ NxE model with B ¼ 10 random vectors and

compared the estimatedG andGxE heritability with the re-

sults from GCTA-HE regression11 (exact MoM) on G and

GxE GRM matrices. We see that exact MoM has a slightly

higher statistical power thanGENIE (with an increase inpo-

wer of 2% to 8% across the values tested; Figure S4A).

Further, the relative contribution of randomization to the
11, 2024
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Figure 2. Comparisons of false positive
rates with existingmethodswith the pres-
ence of noise heterogeneity
False positive rates of tests for GxE heri-
tability across GENIE, MEMMA, and
MonsterLM using (A) continuous and (B)
discrete environment exposures. We per-
formed simulationswith noGxE heritabili-
ty but with varyingmagnitudes of the vari-
ance of the NxE effect. We computed the
false positive rate as the fraction of rejec-
tions (p value of a test of thenullhypothesis
of zero GxE heritability < 0:05) over 100
replicates of phenotypes. The phenotypes
were simulated from N ¼ 40;000 individ-
uals and M ¼ 223;591 SNPs filtered from
M ¼ 454;207 SNPs with the genotype
QC steps in MonsterLM: SNPs that failed
theHardy-Weinberg test at the significance
threshold 10�10 were excluded, and highly
correlated SNPs with LD r2 > 0:9 and SNPs
with MAF< 0:05 were removed. Error bars
correspond to the estimated 95% CI of the
rejection rate.
SE of GENIE remains around 30% despite the variation of

power difference across simulations (Figure S4B).

Confirming that randomization makes a modest differ-

ence on the power of GENIE, we quantified the effect of

the number of random vectors. We explored the choice

of the number of random vectors in two ways. First, we

quantified the contribution of randomization to the SE

of the GxE estimator in GENIE. We simulated 100 pheno-

types where h2
gxe ¼ 0. We compared the SE of GxE esti-

mates with B ¼ 10 random vectors run 100 times over

one of the replicates (the contribution of the randomiza-

tion to the SE) to the SE of GxE estimates across 100 repli-

cates to determine that, with B ¼ 10, randomization con-

tributes to about 30% of the total SE across various sample

sizes (Figure S5). Second, we verified that our GxE estimates

are highly correlated for the choice of random vectors B ¼
10 vs. B ¼ 100 (Pearson’s correlation r ¼ 0:99; Figure S6).

These results lead us to conclude that B ¼ 10 random vec-

tors provide stable estimates, and we use this setting in our

remaining analyses.

Noise heterogeneity

Previous studies have shown that accounting for noise het-

erogeneity (NxE component) is essential to avoid false pos-

itives and inflation in estimates of GxE effects.13,14,23 To

demonstrate the importance of modeling NxE, we simu-

lated phenotypes in the presence of NxE effect such that

h2
gxe ¼ s2nxe ˛ f0;0:04;0:08; 0:10g (we set s2nxe to 0.04

when h2
gxe ¼ 0). We ran GENIE, in turn, with and without

the NxE component. Across all simulations, themodel that

does not account for the NxE component (G þ GxE) yields

statistically significant upward bias in its GxE estimates

(relative bias ranges from 2:5% to 69% across genetic archi-

tectures) while the model that fits a noise heterogeneity

component (G þ GxE þ NxE) achieves unbiased estimates

of GxE (Figure S7).
The America
Comparison with existing methods in simulations

We compared the calibration of tests of GxE from GENIE

with MEMMA16 and MonsterLM.17 GPLEMMA15 was

excluded due to its focus on multiple environmental vari-

ables. We conducted the benchmark experiments on

M ¼ 454;207 SNPs from a subset of N ¼ 40; 000 unre-

lated white British individuals. To ensure a fair comparison

with MonsterLM, which requires genotype QC steps, we

filtered SNPs by removing those with high LD (r2 > 0:9)

and low MAF (MAF < 0:05), resulting in 223;591 SNPs

(we report results for GENIE and MEMMA on unfiltered

SNPs in Figure S8). We then simulated phenotypes with

both continuous (cystatin-C) and discrete (statin usage)

environmental variables on the filtered SNPs. In simula-

tions with no GxE or NxE effects, MEMMA had inflated

false positive rates while GENIE and MonsterLM were cali-

brated (Figure 2). The inflated false positive rate for

MEMMA in the absence of the NxE effect can be explained

by a bias in their estimates of the SE of the variance compo-

nents (Figure S9). Under scenarios with noise heterogene-

ity, GENIE remained calibrated while MonsterLM dis-

played inflation in its false positive rate with increasing

NxE variance for both continuous and discrete environ-

ment variables. MEMMA showed elevated false positive

rates with discrete environment variables, and lower but

still inflated false positives with continuous environmental

variables (Figure 2).
Robustness of GENIE in simulations

We tested the robustness of GENIE by varying the correla-

tion between the phenotype (Y) and the environment (E),

simulating heritable E, imposing that the causal SNPs are

the same for the G and GxE components, simulating Y

that has the same causal SNPs with the heritable E, and

simulating a collider bias scenario. In addition, we also

considered a scenario where the environment noise is
n Journal of Human Genetics 111, 1462–1480, July 11, 2024 1467
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Figure 3. Estimation of G and GxE heritability in six simulated scenarios
We investigated the performance of GENIE in estimating G and GxE heritability under six simulated scenarios. (1) Correlated Y: the phe-
notypes were correlated with the continuous environment exposure, with Pearson’s correlation r ¼ 0:5; (2) heritable E: the environ-
ment exposure E was simulated from the same set of genotype data as in the phenotype simulation, with an additive genetic heritability
of 0.1; (3) same causal SNPs: additive genetic causal SNPs completely overlap with GxE causal SNPs; (4) same causal SNPs for additive and
heritable E: additive genetic causal SNPs completely overlap with the causal SNPs explaining heritability in E, where E is the same as in
scenario (2); (5) collider bias: the phenotype Yand environment exposure E are correlated through an unobserved confounder; we simu-
lated a heritable environment variable with a genetic heritability of 0.1. The phenotypes were then generated to have a Pearson’s cor-
relation r ¼ 0:2 with the heritable E. We assumed that the correlation was due to an unobserved confounder.17 (6) Heavy-tailed noise:
we drew the environment noise component from the Student’s t-distribution with degrees of freedom¼ 4. In all scenarios, we simulated
100 replicates of phenotypes with NxE and varying magnitude of GxE effects across N ¼ 291;273 individuals genotyped at 454;207
SNPs. The ground truth GxE heritability was 0, 0.04, and 0.1, with corresponding NxE variance of 0.04, 0.04, and 0.1. The additive ge-
netic heritability was fixed at 0.25. The x and y axes denote the true GxE heritability and the estimated G andGxE heritability. Points and
error bars represent themean and estimated 95%CI, respectively. Across all simulations where there is noGxE, themean of P(rejection at
p < t) are 5:5% and 0% for t ¼ 0:05 and t ¼ 0:05=200, respectively (5:5% is not significantly different from the nominal rate of 5%).
drawn from a heavy-tailed distribution (see Note S3 for

details). In these simulations, we use a continuous envi-

ronmental exposure (to complement our previous set of

simulations that used a discrete environmental exposure,

i.e., statin usage). In scenarios where the environmental

exposure is heritable, we simulated continuous environ-

mental exposure with specific genetic architecture. In sim-

ulations where the environment exposure is not heritable,

we use a continuous exposure measured in UKB (cysta-

tin-C). In all simulations, we simulated phenotypes with

NxE and varying GxE effects across N ¼ 291;273 individ-

uals genotyped at 454;207 SNPs for 100 replicates. The re-

sults summarized in Figure 3 indicate that GENIE obtains

accurate estimates across these scenarios.

Computational efficiency

We evaluated the runtime ofGENIE,MonsterLM,MEMMA,

and GCTA(HE) (which implements an exact MoM esti-

mator) with increasing sample size (N ˛ f10000;50000;
100000;290000g) for a fixed number of SNPs (M ¼ 454;

207) and a single environmental variable. All methods

were run on an Intel(R) Xeon(R) Gold 6140 CPU 2.30GHz,
1468 The American Journal of Human Genetics 111, 1462–1480, July
with 187GB RAM. Ten random vectors are used by GENIE

and MEMMA. For GENIE, runtime measurements were ob-

tained for the single component and eightMAF/LD compo-

nents. All other methods fit a single G and GxE variance

component. The runtime of GCTA(HE) includes the

computation of the GRM matrix. Our comparison used

the CPU implementation of MonsterLM, with runtime cal-

culations excluding the preprocessing step for genotype

filtering required by MonsterLM. GENIE is highly scalable

and can estimate GxE on about 300; 000 individuals and

roughly 500;000 SNPs within an hour, with the eight-

component model nearly as efficient as the single-compo-

nent model (Figure S11).

Estimating GxE in the UKB

We applied GENIE to estimate additive heritability (h2
g ) and

GxE heritability (h2
gxe) for 50 quantitative phenotypes

measured in UKB across unrelated white British individ-

uals. These 50 phenotypes fall into eight broader pheno-

typic categories (blood biochemistry, kidney biomarkers,

anthropometry, lipid metabolism biomarkers, blood pres-

sure, liver biomarkers, lung, and glucose metabolism
11, 2024



biomarkers) that have been analyzed in prior works.24–26

Following these studies, we applied a rank-based inverse

normal transformation to all phenotypes. For certain phe-

notypes affected by medication usage (systolic/diastolic

blood pressure, LDL direct, and total cholesterol), we adop-

ted heuristic adjustments for medication variables.24,27 We

then reevaluated the GxE heritability estimates using

GENIE (see Note S4 for details). We considered, in turn,

smoking status, sex, age, and statin usage as environ-

mental variables. We included each environmental vari-

able as a fixed effect in the relevant analyses. First, we

explored the importance of modeling NxE in real data

(building on our simulation results). We then analyzed,

in turn, common SNPs genotyped on the UKB array

(MAF > 1%) and then common and low-frequency

imputed SNPs (MAF R0:1%). For selected combinations

of phenotypes and environmental variables, we also

applied GENIE to partition GxE heritability across func-

tional annotations to estimate GxE heritability in genes ex-

pressed in specific tissues.

We note that individuals with missing environmental or

phenotype data were removed in the implementation of

GENIE instead of being imputed by the mean value. We

observed that the application of mean imputation to the

phenotype results in underestimation of h2
g and h2

gxe while

mean imputation of the environment variables affected

the estimation of h2
gxe but not h

2
g (Figure S12). We therefore

recommend that users leave missing exposure and

outcome data as it is when applying GENIE in their anal-

ysis based on the simulation results.
Robustness of GENIE in the UKB

We first assessed the robustness of GENIE by estimating h2
g

under three different models: G, G þ GxE, and G þ GxE þ
NxE, where each model is named by the set of variance

components fitted jointly. The additive heritability esti-

mates were highly correlated across the models (Pearson’s

correlation rR0:98 for every pair of models), leading us

to conclude that GENIE provides robust estimates of addi-

tive heritability across different models (Figure S13). We

observed a significant difference in h2
g for a handful of

trait-E pairs when estimated with G þ GxE and G þ
GxE þ NxE that include alcohol frequency intake and

overall health with smoking status, sex, or age as the envi-

ronmental variable. In previous work,21 we compared the

additive h2
g estimates from RHE with S-LDSC,28 GRE,29

SumHer,30 and LDSC31 to find that RHE estimates of

additive heritability for 22 complex traits are consistent

with the existing methods. We additionally compared

the additive heritability estimates from GENIE with those

obtained using LDSC (run with in-sample LD scores esti-

mated from a subset of 50 K unrelated white British indi-

viduals in UKB). The estimates of additive h2
g from LDSC

were compared against those from GENIE with environ-

mental exposures of smoking status, sex, age, and statin.
The America
The estimates across 50 traits were consistently correlated

for the two methods, with Pearson’s correlations ranging

from 0.87 to 0.93 (Figure S14).

Our simulations in the previous section revealed the

importance of modeling noise heterogeneity (Figure S7).

To investigate the consequences of modeling NxE in real

data, we fitted, in turn, models without and with NxE (in

addition to G and GxE components). The number of

trait-E pairs with significant h2
gxe (p < 0:05=200) decreased

from 135 under the G þ GxE model to 68 under the G þ
GxE þ NxE model: changing from 40 to 21 for smoking

(Figure 4B), 27 to 28 for sex (Figure S15B), 28 to 12 for

age (Figure S16B), and 40 to 7 for statin usage (Figure

S17B). For traits with significant h2
gxe, the magnitudes of

the estimates varied across the two models: the ratios of

h2
gxe estimates under the G þ GxE þ NxE to the G þ GxE

model were 137% on average (range: 43% � 350%),

110% (70% � 224%), 131% (99% � 166%), and 42%

(21% � 72%) for smoking (Figure 4A), sex (Figure S15A),

age (Figure S16A), and statin (Figure S17A), respectively.

The magnitude of noise heterogeneity across trait-E pairs

can be substantial: 0:05%, 164%, 10%, and 14% of the ad-

ditive heritability on average for smoking, sex, age, and

statin, respectively (Figures S18–S21). To further investi-

gate the effect of modeling NxE, we performed permuta-

tion analyses by randomly shuffling the genotypes while

preserving the trait-E relationship (a setting where there

is expected to be no GxE by construction while the rela-

tionship between phenotype and E is preserved). We

applied GENIE under the G þ GxE and G þ GxE þ NxE

models to each trait-E pair. The false positive rate of reject-

ing the null hypothesis of no GxE across the trait-E pairs is

substantially inflated under the G þ GxE model while be-

ing controlled under the G þ GxE þ NxE model (Figures

4C, S15C, S16C, and S17C for smoking, sex, age, and statin

respectively). These results indicate that modeling NxE is

critical to avoid spurious findings of GxE.
Gene-by-smoking interaction

We applied GENIE to estimate the proportion of phe-

notypic variance explained by gene-by-smoking interac-

tions (h2
gxSmoking) for 50 quantitative phenotypes. We find

21 traits showing statistically significant evidence for

h2
gxSmoking (p < 0:05=200) with h2

gxSmoking about 6:1% of h2
g

on average (Figures 5A and 6A). Two of the traits with

the largest h2
gxSmoking were basal metabolic rate and BMI

with estimates of 2:4% and 2:3%, respectively (estimates

remained significant when we used the binary coding of

the smoking status variable obtained by merging the cate-

gories of never and previous; Figures S25 and S28C). Our

estimates are consistent with a previous study that

analyzed BMI and lifestyle factors in the UKB to find signif-

icant GxE for smoking behavior.5 The h2
gxSmoking estimates

for basal metabolic rate and BMI are about 11% and 7%

of their respective h2
g estimates.
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Figure 4. Effect of noise heterogeneity (NxE) on estimates of heritability associated with GxSmoking across 50 quantitative pheno-
types in UKB
Model G þ GxE refers to a model with additive and gene-by-environment interaction components where the environmental variable is
smoking status. Model G þ GxE þ NxE refers to a model with additive, gene-by-environment interaction, and noise heterogeneity
(noise-by-environment interaction) components.
(A) We ran GENIE under G þ GxE and G þ GxE þ NxEmodels to assess the effect of fitting an NxE component on the additive and GxE
heritability estimates.
(B) Comparison of GxE heritability estimates obtained from GENIE under a G þ GxE þ NxE model (x axis) to a G þ GxE model (y axis).
Black error bars mark 5 standard errors centered on the estimated GxE heritability. The color of the dots indicates whether estimates of
GxE heritability are significant under each model.
(C) We performed permutation analyses by randomly shuffling the genotypes while preserving the trait-E relationship and applied
GENIE in each setting under G þ GxE and G þ GxE þ NxE models. We report the fraction of rejections P(p value of a test of the null

hypothesis of zero GxE heritability < 0:05
200 that accounts for the number of phenotypes tested) over 50 UKB phenotypes.
Gene-by-sex interaction

We find 28 traits with statistically significant h2
gxSex (p <

0:05=200) with h2
gxSex=h

2
g observed to be 8:7% on average

(Figures 5B and 6B). Serum testosterone levels showed

the largest h2
gxSex of 11% with the h2

gxSex nearly as large

as h2
g consistent with prior work showing differences

in genetic associations32,33 and heritability34 across

males and females. Beyond testosterone, we observe sig-

nificant h2
gxSex for several anthropometric traits, such as

waist-hip-ratio (WHR) adjusted for BMI (h2
gxSex ¼ 4:3%

and
h2
gxSex

h2g
¼ 20%), and lipid measures (results consistent

for binary encoding; Figures S26 and S28B) consistent

with previous work documenting sex-specific differences

in the genetic architecture of anthropometric traits.34–39

Consistent with prior GWAS that identified genetic var-

iants with sex-dependent effects,40,41 our analyses of

serum urate levels show substantial point estimates of
1470 The American Journal of Human Genetics 111, 1462–1480, July
h2
gxSex, although these estimates are not statistically

significant.
Gene-by-age interaction

We find 12 traits with statistically significant h2
gxAge

(p < 0:05=200) with h2
gxAge=h

2
g observed to be 4:3% on

average (Figures 5C and 6C). Lipid and blood pressuremea-

sures show some of the largest h2
gxAge (about 2:5% for LDL

and total cholesterol and 1:9% for diastolic blood pres-

sure). Previous studies have found genetic variants in

SORT1 to have age-dependent effects on LDL cholesterol42

and nominal evidence for age-dependent genetic effects

on blood pressure regulation.43 We find that BMI shows

evidence for significant h2
gxAge while WHR does not, exp-

anding on prior work that identified age-dependent ge-

netic variants for BMI but not forWHR in genome-wide as-

sociation studies (GWASs).36 Interestingly, we used a
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Figure 5. Estimates of GxE heritability across phenotypes in UKB
Estimates of (A) GxSmoking, (B) GxSex, (C) GxAge, and (D) GxStatin heritability across 50 UKB phenotypes. We applied GENIE to N ¼
291;273 unrelated white British individuals andM ¼ 454;207 array SNPs (MAFR1%). Our model includes the environmental variable
as a fixed effect and accounts for noise heterogeneity. The environmental variable is standardized in these analyses. Error bars mark5 2
standard errors centered on the point estimates. The asterisk and double asterisk correspond to the nominal p < 0:05 and p < 0:05= 200,
respectively.
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Figure 6. Estimates of the ratio of GxE to additive heritability across phenotypes in UKB
Estimates of the ratio of (A) GxSmoking, (B) GxSex, (C) GxAge, and (D) GxStatin to additive heritability across 50 UKB phenotypes. Error
bars mark52 standard errors centered on the point estimates. The asterisk and double asterisk correspond to the nominal p < 0:05 and
p < 0:05=200, respectively.
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standardized encoding of age so that GxAge effects capture

the interaction of genetic effects on the phenotype as a

function of deviation from themean age in UKB while pre-

vious studies typically focus on changes in genetic effects

in bins of age. It is plausible that other codings of age,

e.g., coding age to measure interactions as a function of

older vs. younger individuals, could yield differing results.
Gene-by-statin interaction

We find seven traits that show statistically significant evi-

dence for h2
gxStatin (p < 0:05=200) with an average ratio of

h2
gxStatin to h2

g across traits of 5:2% (Figures 5D and 6D).

We find that LDL and total cholesterol show significant

h2
gxStatin (1:7% and 1:6% respectively) while HDL choles-

terol with a point estimate of h2
gxStatin of 0:4% does not (re-

sults consistent for binary encoding; Figures S27 and

S28A). We observe the largest estimates of h2
gxStatin for

HbA1c and blood glucose measurements (2% and 1:2%

respectively), which are interesting in light of statin usage

being shown to be associated with a small increase in risk

for type 2 diabetes.44
GxE heritability estimates stratified by sex

Quantitative measurements like testosterone concentra-

tions are strongly determined by sex, and therefore, one

might be concerned with the possibility of collider bias

in h2
gxe estimates on the whole population for these sex-

determined traits. To address this issue, we repeated our

previous analyses to estimate GxSmoking, GxAge, and

GxStatin in females and males separately across the 50

traits. The results show that the sex-specific GxE heritabil-

ity estimates are overall consistent with the results on all

individuals (Pearson’s correlations ranging from 0.67 to

0.80). By comparing GxE heritability estimates between fe-

male andmale individuals, we noted Pearson’s correlations

of 0.50, 0.61, and 0.40 for GxSmoking, GxAge, and GxSta-

tin, respectively (Figures S22–S24). In terms of the GxE her-

itability of testosterone specifically, we see that
h2
gxSmoking

h2
g

is no

longer significant for testosterone in female and male indi-

viduals (Figure S22) while estimates of h2
gxSmoking overlap

with the previous results: ð�0:82%; 0:97%Þ and

ð�0:71%;1:37%Þ in females and males, respectively, and

ð0:58%;1:47%Þ in the whole population. Hence, the atten-

uation of our estimates could be explained by the possibil-

ity of collider bias or a reduction in power. In general, the

phenotypes that have the most significant GxE interac-

tions are in the categories of anthropometry and blood

biochemistry for GxSmoking, blood pressure and glucose

metabolism for GxAge, and glucose metabolism and lipid

metabolism for GxStatin in the sex-stratified analyses. In

particular, GxSmoking estimates on BMI, basal metabolic

rate, and white blood cell count remain significant for

both males and females under p < 0:05=200. The differ-

ences in the GxE estimates between males and females
The America
could suggest the presence of sex-specific GxE interaction

effects.
Comparison with existing methods on significant trait-E

pairs

We compared GxE heritability estimates of MEMMA,

MonsterLM, and GENIE on real UKB phenotypes. While

the consistency of GxE estimates from methods based on

different model assumptions can enhance our confidence

in the results, such comparisons have inherent limita-

tions—our simulations have revealed variations in false

positive rates among different methods. With these ca-

veats, we evaluated GxE heritability using MonsterLM

and MEMMA on 68 significant trait-E pairs detected by

GENIE (p < 0:05=200). We noted Pearson’s correlation

r ¼ 0:91 between the point estimates of GENIE and

MonsterLM and 0.24 between GENIE and MEMMA across

the 68 trait-E pairs (Figure S10). The closer alignment be-

tween the point estimates by GENIE and MonsterLM can

be attributed to the shared consideration of noise heteroge-

neity within both models.
Estimating GxE heritability from imputed SNPs

We applied GENIE to estimate h2
gxSmoking , h

2
gxSex, h

2
gxAge, and

h2
gxStatin attributable to M ¼ 7;774;235 imputed SNPs

with MAF R0:1%. Prior work has shown that analyzing

common and low-frequency variants with a single vari-

ance component can result in biased estimates of additive

heritability.45,46 A solution to this problem involves fitting

multiple variance components obtained by partitioning

SNPs based on their frequency and local LD scores (as

quantified by the LD scores31 or the LDAK scores45).30,46–48

We follow this approach by partitioning SNPs into eight

annotations based on quartiles of the LD scores and two

MAF annotations (MAF < 5% and MAF > 5%; material

and methods).

We performed simulations to show that GENIE applied

with SNPs partitioned based on MAF and LD scores can

accurately estimate h2
gxe across varying MAF and LD-depen-

dent genetic architectures while using a single component

for all SNPs can lead to substantial biases (Note S2,

Figure S29). We applied GENIE using MAF-LD partitions

to jointly estimate h2
g and h2

gxe (Figures S30–S33). While es-

timates of h2
gxe from imputed SNPs are largely concordant

with the estimates obtained from array SNPs, we identify

nine trait-E pairs for which the h2
gxe estimates are signifi-

cantly different (p < 0:05=200). In all these cases, h2
gxe esti-

mates from imputed SNPs are higher than those from

array SNPs. For example, we estimated h2
gxSmoking for BMI

¼ 6:550:5%, which is larger than our estimate based on

array SNPs as well as a previous estimate of 4:050:8%

based on common HapMap3 SNPs.5 Across all trait-E pairs,

we observed that the average ratio (
h2gxeðimputedÞ
h2gxeðarrayÞ ) is 1.17 (1.66,

1.23, 0.71, and 1.17, respectively, for GxSmoking, GxSex,
n Journal of Human Genetics 111, 1462–1480, July 11, 2024 1473
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Figure 7. Per-allele squared GxE and additive effect sizes as a function of MAF and LD
(A) The squared per-allele GxE effect size for four selected pairs of trait and environment (trait-E pairs).
(B) The squared per-allele additive effect size for the same trait-E pairs. The x axis corresponds to MAF-LD annotations where annotation
i:j includes SNPs in MAF bin i and LD quartile j where MAF bin 1 and MAF bin 2 correspond to SNPs with MAF %5% and MAF > 5%,
respectively, while the first quartile of LD scores correspond to SNPs with the lowest LD scores respectively). The y axis shows the per-

allele GxE (or additive) effect size squared defined as
h2
k

2Mkfkð1� fkÞ where h2
k is the GxE (or additive) heritability attributed to bin k, Mk is the

number of SNPs in bin k, and fk is the mean MAF in bin k. Error bars mark 52 standard errors centered on the estimated effect sizes.
GxAge, and GxStatin; Figure S34). Across trait-E pairs with

significant h2
gxe, the average h2

gxe is 2:8% on the imputed

data compared to 1:5% on array data while the ratio of
h2
gxe

h2
g
is 14:3% on the imputed data compared to 6:8% on

the array data (averaged across trait-E pairs, we estimated

h2
gxe ¼ 0:9% on imputed vs. 0:7% on array data).

We explored the impact of fitting multiple variance com-

ponents based on MAF and LD by applying GENIE to fit a

singleGxEandadditive variance componentusing smoking

status as the environmental variable. While ten traits

showed significant h2
gxSmoking in both analyses, five traits

were exclusively significant in the MAF-LD model while

one was exclusively significant in the single-component

model. Restricting to traits with significant GxSmoking in

both models, h2
gxSmoking estimates in the MAF-LD model

were about three times those from the single-component

modelonaverage (FigureS35).Wealso investigatedwhether

MAF-LD partitioning affected estimates of h2
gxSmoking ob-

tained from array SNPs. We find that h2
gxSmoking estimates

are largely concordant whether obtained from a single

component or an MAF-LD partitioned model (ratio of 0.99

on average) consistent with the array SNPs being relatively

common (MAF> 1%). Our analysis suggests that partition-

ing by MAF and LD is helpful for estimating h2
gxe from both

commonand low-frequencySNPsandthe inclusion low-fre-

quency SNPs can increase estimates of h2
gxe for specific traits.
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Partitioning GxE heritability across MAF and LD

annotations

Previous studies have shown that the additive SNP effects

increase with decreasing MAF and local levels of

LD21,49–51 likely due to the effects of negative selection.

Similar to previous analyses,15,17 we explored the MAF-

LD dependence of SNP effects in the context of specific

environmental factors. Our analyses in the preceding sec-

tion, showing differences in the genome-wide h2
gxe esti-

mates when partitioning byMAF and LD vs. fitting a single

variance component, suggest that GxE effects are expected

to vary by MAF and LD in a pattern that is distinct from

what would be expected when fitting a single variance

component, which assumes that the effect size at a SNP

varies with its allele frequency f as 1
f ð1� f Þ while not varying

with local LD (for a fixed value of the allele frequency f). To

explore the MAF-LD dependence of GxE effects, we used

GENIE to partition h2
gxe across MAF and LD annotations

(while simultaneously partitioning additive heritability)

ofM ¼ 7; 774; 235 imputed SNPs divided into eight anno-

tations based on quartiles of LD-scores and two MAF bins

(low-frequency bins with MAF < 5% and high-freque-

ncy bins with MAF R5%). Within each of these eight

bins, we defined the per-allele squared effect size as

b2k ¼ h2
k

2Mkfkð1� fkÞ where h2
k is the GxE (or additive) heritabil-

ity attributed to bin k, Mk is the number of SNPs in bin k,

and fk is the mean MAF in bin k.
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For the sake of presentation, we selected one phenotype

with high genome-wide GxE heritability for each of the

four environmental variables analyzed (Figure 7; see

Table S4 for results on all trait-E pairs). Across bins of MAF

and LD, the magnitude of additive allelic effects tends to

be larger than those of the GxE effects consistent with the

genome-wide results. We observed that the per-allele

squared GxE effect size b2gxe tends to increase with lower

MAF within a given quartile of LD score and to increase

with lower bins of LD score for a fixed MAF bin

(Figure 7A). These trends are analogous to the relationship

observed for additive per-allele effect sizes (Figure 7B).

Across the trait-E pairs, restricting to the lowest quartile of

LDscores, low-frequencySNPs tendtohavehigherper-allele

GxE effect sizes compared to high-frequency SNPs: the ratio

of b2gxe in low vs. high MAF bins is 8:2511:2, 24:65 19:7,

3:452:1, and 3:751:2 for HbA1c-statin, BMI-smoking,

LDL-age, and testosterone-sex, respectively. In the highest

quartile of LD scores, we found no statistically significant

differences in b2gxe across low and high MAF SNPs in any of

the four trait-Epairs (wealsoplot theper-standardized geno-

type additive and GxE heritability,
h2
k

Mk
, in Figure S36).
Partitioning GxE heritability across tissue-specific genes

The ability of GENIE to simultaneously estimate multiple,

potentially overlapping, additive and GxE variance com-

ponents enables us to explore how h2
gxe is localized across

the genome. Specifically, we set to answer the question of

whether h2
gxe is enriched in genes specifically expressed in

a given tissue as a means to identify tissues that are rele-

vant to a trait in a specific environmental context.

We applied GENIE to estimate h2
g and h2

gxe across each of

53 sets of genomic annotations defined as regions around

genes that are highly expressed in a specific tissue in the

GTEx dataset18 (Table S3). For each of the four environ-

mental variables, we analyzed only traits with genome-

wide significant h2
gxe based on our prior analyses of the

array SNPs. For every set of tissue-specific genes, we fol-

lowed prior work18 by jointly modeling the tissue-specific

gene annotation as well as 28 genomic annotations that

are part of the baseline LDSC annotations that include

genic regions, enhancer regions, and conserved regions.28

Specifically, our model has 29 additive variance compo-

nents and 29 GxE variance components and estimates

the additive and GxE heritability that can be attributed

to genes specifically expressed in a tissue while controlling

for the effects of the background annotations. A positive

h2
g;tissue represents a positive contribution of genetic effects

in a tissue to additive heritability.18 Analogously, a positive

h2
gxe;tissue represents a positive contribution of genetic effects

in this tissue to trait heritability in the context of the

specific environment. We test estimates of
h2
gxe;tissue

=h2
gxe;total

Mtissue=Mtotal�
h2
g;tissue

=h2
g;total

Mtissue=Mtotal

�
to answer whether a tissue of interest is en-
The America
riched for GxE (additive) heritability conditional on the re-

maining genomic annotations included in the model.

We first verified that our approach is able to detect previ-

ously reported enrichments for additive effects such as

brain-specific enrichment for BMI and adipose-specific

enrichment for WHR (Figure 8).18 Across 68 trait-E pairs

with significant genome-wide GxE that we tested, we

observed significant enrichment of h2
gxe;tissue (FDR < 0:10)

for at least one tissue in five trait-E pairs (we plot four of

these pairs in Figure 8 since the results from the fifth

LDL-age are highly correlated with cholesterol-age). Across

these trait-E pairs, we documented differential patterns of

enrichments for GxE effects compared to additive effects.

BMI exhibits brain-specific enrichment of h2
gxSmoking and

h2
g while WHR exhibits enrichment of h2

gxSex and h2
g in adi-

pose and breast tissue (in addition to the enrichment of h2
g

in the uterus and cardiovascular tissues). The adipose-tis-

sue-specific enrichment of h2
gxSex in WHR is notable in light

of known instances of genes associated with WHR in adi-

pose tissue in a sex-dependent manner. ADAMTS9, a

gene involved in insulin sensitivity,35 is specifically ex-

pressed in adipose tissue and has been shown to be located

near GWAS hits forWHR that are specific to females.35,36,52

The transcription factor, KLF14, is located near a sex-

dependent GWAS variant for WHR, type 2 diabetes, and

multiple other metabolic and anthropometric traits.53

Further, the expression level of this gene is associated

with the GWAS variant in adipose but not with other tis-

sues.53 We also found instances where tissues that are en-

riched for h2
gxe are distinct from those that are enriched

for h2
g. We observed that the enrichment of h2

gxSex for basal

metabolic rate in brain and adipose tissues is distinct from

the tissues that are enriched in h2
g for the same trait (cardio-

vascular and digestive tissues) (Figure 8). Finally, we find

suggestive evidence that the liver is the most enriched tis-

sue for h2
gxStatin in HbA1c (p ¼ 0:02) as well as for h2

gxSex in

testosterone (p ¼ 0:005), although neither enrichment is

significant at FDR of 0.10. These enrichments recapitulate

known biology: the liver-specific enrichment of GxStatin

effects for HbA1c reflect the tissues in which the target of

statins (HMG-CoA-reductase) is expressed54 while the

liver-specific enrichment of GxSex for testosterone is

consistent with previous findings implicating CYP3A7, a

gene involved in testosterone metabolism that is specif-

ically expressed in the liver and lies within a locus that

contains one of the strongest GWAS signals for serum

testosterone in females.32
Discussion

We have described GENIE, a method that can jointly esti-

mate the proportion of variation in a complex trait that

can be attributed to GxE and additive genetic effects.

GENIE can also partition GxE heritability across the
n Journal of Human Genetics 111, 1462–1480, July 11, 2024 1475
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Figure 8. Partitioning GxE heritability across 53 tissue-specific genes

We plot� log10ðpÞwhere p is the corresponding p value of the tissue-specific GxE enrichment defined as
h2
gxe;tissue

=h2
gxe;total

Mtissue=Mtotal
. For every tissue-spe-

cific annotation, we use GENIE to test whether this annotation is significantly enriched for per-SNP heritability, conditional on 28 func-
tional annotations that are part of the baseline LDSC annotations. The dashed and solid lines correspond to the nominal p < 0:05 and
FDR < 0:1 threshold, respectively. We have labeled two tissues with the most significant p values for each figure.
genome with respect to annotations such as functional

and tissue-specific annotations or annotations defined

based on the MAF and local LD score of each SNP to

localize signals of GxE. GENIE provides well-calibrated

tests for the existence of a GxE effect and has high power

to detect GxE effects while being scalable to large datasets.

Our simulations and real data analysis results confirm

the importance of including noise heterogeneity in GxE

models. Simulations comparing the calibration of GENIE

to MEMMA and MonsterLM suggest that modeling NxE
1476 The American Journal of Human Genetics 111, 1462–1480, July
does not introduce biases in scenarios without noise

heterogeneity. Furthermore, it aids in controlling false pos-

itive rates when noise heterogeneity exists. In UKB data

analyses, we observed that about half of trait-E pairs with

significant h2
gxe under the GþGxEmodel are no longer sig-

nificant under the G þGxE þNxE model. Consistent with

this observation, we estimated a substantial contribution

of noise heterogeneity to trait variation. While our results

demonstrated the importance of integrating noise hetero-

geneity for a more reliable and accurate estimation of GxE
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heritability, alternative methods—adjusting the pheno-

type values of individuals in different quantile bins of

the environment variable separately as proposed in Di Sci-

pio et al.17—can prove effective under moderate levels of

noise heterogeneity.

After accounting for noise heterogeneity, we observe sig-

nificant genome-wide h2
gxe across more than a quarter of

the trait-E pairs analyzed. Our finding has implications

for understanding trait heritability by moving beyond

the definition of narrow-sense heritability that only in-

cludes additive genetic effects. Based on our analyses, it is

conceivable that approaches that can jointly model the

hundreds of environmental variables measured in bio-

bank-scale datasets will further increase estimates of h2
gxe.

Additionally, our recovery of additional h2
gxe from low-fre-

quency SNPs (0:1%% MAF < 1%) point to traits where

an understanding of GxE effects can benefit from whole-

exome and whole-genome studies. Our analyses of com-

mon and low-frequency SNPs lead us to recommend that

SNPs should be partitioned based on MAF and LD when

estimating GxE heritability (while such partitioning does

not qualitatively affect results for common SNPs). Further,

our results point to traits where GxE has the potential to

improve genome-wide polygenic scores (GPSs) of complex

traits (since h2
gxe quantifies the maximum predictive accu-

racy that is achievable by a linear predictor based on GxE

effects). In the context of sex as an environmental variable,

sex-specific GPS has been shown to provide improved ac-

curacy over agnostic scores.34,39,55,56 GxE has also been

recently proposed as a possible explanation for why GPS

may not generalize beyond the cohort on which these pre-

dictors were trained6 so that modeling GxE in relevant

traits could improve their transferability. Our finding that

allelic effects for GxE increase with decreasing MAF and

LD analogous to the relationship observed for additive

allelic effects motivates an evolutionary understanding of

these trends and can inform what we expect to learn

from studies of rare genetic variation. Finally, our identifi-

cation of sets of genes that are enriched for GxE can offer

clues on trait-relevant tissues and pathways and has the

potential to inform functional genomic studies.57,58

We discuss the limitations of our work as well as direc-

tions for future research. First, GENIE does not explicitly

model G-E correlations.13 While such correlations can

lead to biases in estimates of GxE in the fixed-effect

setting,59 it has been shown that, in the polygenic setting,

the GxE variance component estimates remain unbiased

when G-E correlations are independent of the polygenic

GxE effects.14 Further, our simulations suggest that

GENIE is robust in the presence of G-E correlations. Never-

theless, there are plausible settings, where such correla-

tions can lead to false positive or biased estimates of GxE,

e.g., where the phenotype directly affects the environ-

mental variable. Developing scalable methods that are ac-

curate in these settings is an important direction for future

work. Second, estimates of GxE heritability are sensitive to

the scale on which traits and environmental variables are
The America
measured and how environmental variables are encoded.

In this work, we analyze quantile-normalized traits (follo-

wing prior studies) and encode discrete environmental var-

iables using a univariate parameterization (either as a 0–1

vector for each environmental variable or as a standardized

version). It might be preferable to work with traits mea-

sured on their original scale and to encode each level of

discrete environmental variables by a separate 0–1 covari-

ate (leading to k environmental covariates for a k-valued

environmental variable). While such choices would neces-

sarily be guided by domain knowledge and interpretability,

GENIE supports easy-to-use and rapid exploration of the

consequences of these choices and can aid in assessing

the robustness of these choices (we have explored a limited

space of these choices here). Third, the environmental var-

iable relevant for GxE may not be measured directly or

accurately, so the environmental variable that is measured

in a dataset is best viewed as a proxy for the relevant latent

environmental covariate. It is essential to acknowledge

that the missingness patterns of phenotypes in biobanks

frequently display structure that is more intricate than

random missingness.60,61 Consequently, removing indi-

viduals with missing data on Es can potentially affect

GxE and other heritability estimates. One approach to

tackle this complexity involves accurate imputation of

missing data while mitigating the introduction of addi-

tional biases as observed in the mean imputation simula-

tions (Figure S12). We view this as an important direction

for future work. Fourth, the model underlying GENIE is

not applicable to binary traits (either with or without ascer-

tainment). GENIE can be extended to be applicable to bi-

nary traits (e.g., disease status) along the lines proposed

in the context of additive62,63 and GxE estimation.14

Apart from the constraints inherent to the GENIE

model, we stress the need for cautious interpretations of

the results of this study due to several limitations. While

GENIE can model the impact of heterogeneous noise re-

sulting from observed environmental variables by intro-

ducing NxE components, it is important to note that the

heterogeneous noise may also arise due to non-observed

environmental variables. Several recent works have tried

to test for GxE when the environmental variables are not

observed.10,64 These issues along with the possibility of

reverse causality, i.e., where the phenotype affects the

environmental variable, warrant caution in any causal

interpretation of our results (although it might be possible

to overcome some of these limitations in specific analyses

such as GxSex). Moreover, while the primary focus of our

work is on the methodological aspects of GxE heritability

estimation, our application of GENIE to medication-sensi-

tive traits highlights the complexities arising in this setting

that warrant care in interpreting the results. To explore

these issues, we repeated our previous analyses after per-

forming heuristic adjustments of phenotypes for relevant

medications. Our additional analyses of GxE estimates on

measurements adjusted for medication usage suggest

that, while most of our results are robust to these issues
n Journal of Human Genetics 111, 1462–1480, July 11, 2024 1477



(e.g., GxE for systolic and diastolic blood pressure, GxSta-

tin on HbA1c), some are less so (e.g., GxAge on LDL and

cholesterol) (see Note S4 for details). Finally, while analyses

in this work were based on a cohort of self-identified white

British individuals, it is valuable to investigate GxE effects

using GENIE across a broader range of populations for

stronger and more comprehensive results.
Data and code availability

GENIE software is an open-source software freely available

athttps://github.com/sriramlab/GENIE. The software requ-

ires gþ þ , cmake, andmake to compile theCþ þ code on

a Linux machine. Please see the documentation in the

GitHub repository for further information.
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40. Döring, A., Gieger, C., Mehta, D., Gohlke, H., Prokisch, H.,

Coassin, S., Fischer, G., Henke, K., Klopp, N., Kronenberg, F.,

et al. (2008). SLC2A9 influences uric acid concentrations

with pronounced sex-specific effects. Nat. Genet. 40, 430–436.

41. Kolz, M., Johnson, T., Sanna, S., Teumer, A., Vitart, V., Perola,

M., Mangino, M., Albrecht, E., Wallace, C., Farrall, M., et al.

(2009). Meta-analysis of 28,141 individuals identifies com-

mon variants within five new loci that influence uric acid con-

centrations. PLoS Genet. 5, e1000504.

42. Shirts, B.H., Hasstedt, S.J., Hopkins, P.N., and Hunt, S.C.

(2011). Evaluation of the gene–age interactions in HDL

cholesterol, LDL cholesterol, and triglyceride levels: the

impact of the SORT1 polymorphism on ldl cholesterol levels

is age dependent. Atherosclerosis 217, 139–141.

43. Simino, J., Shi, G., Bis, J.C., Chasman, D.I., Ehret, G.B., Gu, X.,

Guo, X., Hwang, S.-J., Sijbrands, E., Smith, A.V., et al. (2014).

Gene-age interactions in blood pressure regulation: a large-

scale investigation with the CHARGE, Global BPgen, and

ICBP consortia. Am. J. Hum. Genet. 95, 24–38.

44. Sattar, N., Preiss, D., Murray, H.M.,Welsh, P., Buckley, B.M., de

Craen, A.J.M., Seshasai, S.R.K., McMurray, J.J., Freeman, D.J.,

Jukema, J.W., et al. (2010). Statins and risk of incident dia-

betes: a collaborative meta-analysis of randomised statin tri-

als. Lancet 375, 735–742.

45. Speed, D., Hemani, G., Johnson, M.R., and Balding, D.J.

(2012). Improved heritability estimation from genome-wide

snps. Am. J. Hum. Genet. 91, 1011–1021.

46. Evans, L.M., Tahmasbi, R., Vrieze, S.I., Abecasis, G.R., Das, S.,

Gazal, S., Bjelland, D.W., de Candia, T.R., Haplotype Reference

Consortium, and Goddard, M.E., et al. (2018). Comparison of

methods that use whole genome data to estimate the
n Journal of Human Genetics 111, 1462–1480, July 11, 2024 1479

http://refhub.elsevier.com/S0002-9297(24)00178-2/sref18
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref18
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref18
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref19
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref19
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref19
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref20
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref20
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref20
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref21
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref21
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref21
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref21
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref22
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref22
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref22
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref22
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref22
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref23
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref23
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref23
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref23
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref23
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref24
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref24
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref24
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref24
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref25
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref25
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref25
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref25
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref26
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref26
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref26
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref26
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref27
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref27
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref27
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref27
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref27
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref28
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref28
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref28
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref28
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref28
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref29
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref29
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref29
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref29
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref30
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref30
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref30
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref31
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref31
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref31
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref31
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref31
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref31
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref32
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref32
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref32
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref32
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref33
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref33
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref33
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref33
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref33
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref34
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref34
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref34
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref34
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref35
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref35
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref35
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref35
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref35
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref36
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref36
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref36
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref36
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref36
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref37
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref37
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref37
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref37
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref37
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref38
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref38
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref38
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref38
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref39
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref39
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref39
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref40
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref40
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref40
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref40
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref41
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref41
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref41
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref41
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref41
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref42
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref42
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref42
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref42
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref42
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref43
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref43
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref43
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref43
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref43
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref44
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref44
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref44
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref44
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref44
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref45
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref45
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref45
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref46
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref46
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref46
http://refhub.elsevier.com/S0002-9297(24)00178-2/sref46


heritability and genetic architecture of complex traits. Nat.

Genet. 50, 737–745.

47. Speed, D., Cai, N., UCLEB Consortium, Johnson, M.R., Ne-

jentsev, S., Balding, D.J., et al. (2017). Reevaluation of SNP

heritability in complex human traits. Nat. Genet. 49,

986–992.

48. Gazal, S., Loh, P.-R., Finucane, H.K., Ganna, A., Schoech, A.,

Sunyaev, S., and Price, A.L. (2018). Functional architecture

of low-frequency variants highlights strength of negative se-

lection across coding and non-coding annotations. Nat.

Genet. 50, 1600–1607.

49. Gazal, S., Finucane, H.K., Furlotte, N.A., Loh, P.-R., Palamara,

P.F., Liu, X., Schoech, A., Bulik-Sullivan, B., Neale, B.M., Gusev,

A., and Price, A.L. (2017). Linkage disequilibrium–dependent

architecture of human complex traits shows action of nega-

tive selection. Nat. Genet. 49, 1421–1427.

50. Schoech, A.P., Jordan, D.M., Loh, P.-R., Gazal, S., O’Connor,

L.J., Balick, D.J., Palamara, P.F., Finucane, H.K., Sunyaev, S.R.,

and Price, A.L. (2019). Quantification of frequency-dependent

genetic architectures in 25 UK Biobank traits reveals action of

negative selection. Nat. Commun. 10, 790.

51. Zeng, J., De Vlaming, R., Wu, Y., Robinson, M.R., Lloyd-

Jones, L.R., Yengo, L., Yap, C.X., Xue, A., Sidorenko, J.,

McRae, A.F., et al. (2018). Signatures of negative selection

in the genetic architecture of human complex traits. Nat.

Genet. 50, 746–753.

52. Shungin, D., Winkler, T.W., Croteau-Chonka, D.C., Ferreira,
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