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Covariant Lagrangian Methods of

Relativistic Plasma Theory

Bruce M. Boghosian
University of California at Davis
Department of Applied Science
Livermore, California 94550

April 27, 1987

ABSTRACT

The relativistic electromagnetic projection operators discovered by Fradkin are
used to obtain a covariant decomposition of the motion of a relativistic charged
particle into parallel motion and perpendicular gyration. The Lagrangian Lie
transform method of Littlejohn is used to achieve a transformation to guiding-
center coordinates in which the rapid oscillatory motion is removed. The method
parallels the nonrelativistic guiding-center calculation of Littlejohn, and the four-
vector notation used throughout facilitates this comparison. The natural guiding-
center Poisson bracket structure and Hamiltonian are derived. The guiding-center
equations of motion are presented to one order higher than the usual drifts, and
the correction to the gyromomentum is given. Correspondence with the usual

noncovariant results, as given by Northrop, is demonstrated.
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It is possible to add one or more eikonal wave perturbations to the Lagrangian
action for a single particle before performing the guiding-center transformation.
It is shown that such perturbations can be written in a manifestly gauge-invariant
form in guiding-center coordinates; this observation allows us to develop an
oscillation-center theory to arbitrarily high order and be guaranteed of mani-
fest gauge invariance at every- step of the way. In this way, once again using
Lagrangian Lie transforms, we obtain the ponderomotive Hamiltonian.

By summing the guiding-center Lagrangian action over the full distribution
of guiding centers present in a plasma and adding the action of the Maxwell
field, one obtains the total action of a guiding-center plasma. Upon variation
of the total action, we find a self-consistént set of covariant relativistic kinetic
and field equations; from these we can identify the guiding-center current density
and the guiding-center magnetization. Upon application of Noether’s theorem,
the total action yields covariant conservation laws for the momentum-energy and
the angular momentum of a relativistic guiding-center plasma; from these we
can identify the guiding-center stress-energy tensor and the guiding-center spin
angular momentum tensor.'

If we sum the Lagrangian action for a guiding/oscillation center over the
full distribution and add the action of the Maxwell field, then variation yields
self-consistent relativistic kinetic and field equations for the plasma in the wave
field, including the dispersion relation for the wave; from these we can identify
the wave magnetization and the susceptibility, and thereby demonstrate the K-x
theorem. If we then apply Noether’s theorem, we get conservation laws for the
guiding-center plasma in the presence of a wave field; from these we can.identify

the wave contribution to the stress-energy and spin angular momentum tensors.
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‘Chapter 1
Intro d’uction

There was a time when a thorough working knowledge of geometry was consid-
ered an indispensible ingredient in the education of a natural philosopher. From
Euclid’s first systematization of the subject more than two thousand years ago to
well after the end of t>he Renaissance, the study of the Elements was considered
a critically important part of mathematical instruction. Indeed, when reading
Newton’s Principta or Opticks, one is struck by the prevalence of geometrical
arguments and descriptions.

Alas, the introduction of coordinate systems by Descartes and the concommi-
tant analyticization of geometry changed all this. Using coordinates, geometrical
problems could be reduced to algebraic problems. The perceived need for good
geometrical intuition gradually disappeared. By the time Whittaker’s Treatise
on the Analytical Dynamics of Particles and Rigid Bodies was first published in
1904, this attitude had taken hold to the extent that Whittaker apparently felt
no need to include illustrations in his nearly five-hundred-page-long (and other-

wise excellent) document. At present, one can obtain an undergraduate degree in
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physics or even applied mathematics with little more geometry background than

is found in a secondary school textbook.

That this trend is disastrous has been appreciated only for the past couple
of decades. This appreciation has been due, in large part, to modern develop-
ments in the general theory of relativity. The entire lesson of relativity theory
is that physical laws ought not to depend upon the coordinate system chosen to
describe them; that is, the meaning of physical laws transcends their coordinate
description. Conversely, coordinate descriptions can have a way of masking fun-
damental physical reality. Thus, a coordinate-free description of physical laws
can have the beneficial effect of allowing one more easily to glimpse the underly-
ing fundamental physical reality. Such coordinate-free mathematical language is
available, thanks in large part to the works of Cartan and Lie. Modern differential
geometry, including the exterior calculus and the theory of Lie groups, is capable
of providing a coordinate-free description of physical law. Please note that what
is being argued here is that such a coordinate-free description is far more than
just an alternative mathematical notation; the contention is that it yields an im-
proved understanding of the physics involved. A physicist who takes the time to
learn how, say, electromagnetic theory can be described in terms of differential
forms will have, as a result, an improved understanding of the electromagnetic

field.

There is an additional benefit to the geometrical point of view. Just as
Descartes found that algebra can be used as a tool for obtaining geometrical
results, likewise geomefry can be used as a tool for obtaining analytical results
that would be far more difficult to obtain any other way. Several examples of
this phenomenon will be pointed out in the course of this thesis.

Since the 1960’s it has been known that classical mechanics is describable
in terms of symplectic geometry. This observation paved the way for powerful

generalizations of some of the traditional methodologies of mechanics. For ex-
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ample, whereas Hamiltonian mechanics had been originally formulated in terms
of canonically conjugate pairs of coordinates, it was found that noncanonical
coordinates could be used instead, oftentimes to great advantage. Powerful nf;w
types of perturbétion theory, based on Lie transforms, were introduced; this made

higher-order perturbative treatments less laborious and more systematic.

Nowhere was the impact of this revolution more profound and beneficial than
in the field of plasma physics. Because the motion of charged particles in com-
plicated electromagnetic geometries and in wave fields requires a perturbative
treatment, it is not surprising that Lie transform perturbation theory was shown
to be a natural tool for systerﬁatizing, simplifying and better understanding many
of the calculations of plasma physics. Furthermore, it was shown that the most
natural treatment of the guiding-center problem (i.e. the ubiquitous problem of
computing the drifts of a charged particle gyrating in a slowly-varying electro-
magnetic field) involved the use of noncanonical coordinates and noncanonical

coordinate transformations. All of this will become more clear as we proceed.

During the late nineteen seventies, Dewar [1] introduced the idea of canonical
oscillation-center transformations. Johnston and Kaufman [2] and Johnston [3]
used canonical perturbation theory to perform oscillation-center and mode cou-
pling analyses for the Vlasov plasma. In Cary’s PhD thesis [4], Lie transforms
were shown to be a useful tool for ponderomotive theory, and the K-x theorem [5]
relating the ponderomotive Hamiltonian with the linear susceptibility was formu-
lated.

The extension of these techniques to magnetized plasma was made possible,
or at least greatly facilitated, by Littlejohn’s work on the guiding-center problem
in his PhD thesis [6]. Littlejohn made the key observation that the transfor-
mation from single-particle to guiding-center coordinates was best done using
noncanonical methods. This noncanonical transformation was done in his thesis

by using the Darboux theorem constructively, and it was followed by a canonical
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Lie transformation that averaged over the rapid gyromotion. Subsequently, Lit-
tlejohn [7] discovered that the entire transformation could be done by a single Lie
transform with a vector generator. This is the approach followed in this thesis.

Ponderomotive theory for a magnetized relativistic plasma was then done by
Grebogi and Littlejohn (8], who used canonical Lie transforms. They pointed out
that the oscillation-center transformation for a magnetized plasma might best be
handled by noncanonical Lie methods, but they did not do it this way. Their
result was subsequently simplified by Cary and Newberger_[g].'

Meanwhile, Dubin, Krommes, Oberman and Lee [10] showed how to use Lit-
tlejohn’s methods to derive self—éonsistent gyrokinetic equations for an electro-
static plasma, including the Poisson equation whose source term was written in
terms of the guiding-center distribution function. Kaufman and Boghosian [11]
showed that this calculation could be done by summing the guiding-center action
over the entire distribution and coupling it to the Maxwell action; variation with
respect to the coordinate fields (considered to be functions of their initial con-
ditions) then yields the gyrokinetic equation, and variation with respect to the
vector potential then yields the self-consistent field equaton. Finally, Similon [12]
showed that conservation laws for the guiding-center plasma could be obtained
by application of Noether’s theorem to this system action.

The above-mentioned work by Grebogi and Littlejohn was done for a rela-
tivistic plasma, but was not manifestly covariant in that it was done in “1 + 3”
notation. A manife;tly covariant treatment is made possible with t.hé help of
certain projection operators which were introduced by Fradkin [13] who obtained
the drifts for a relativistic guiding center (but did not use Lie methods), and by
Dumais [14].

The general plan of this thesis is as follows:

Chapter 2 will cover the mathematical preliminaries necessary to understand

the differential geometric arguments used in this thesis. It should be emphasized
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that this constitutes no more than a sketchy introduction, and is no substitute
for a good text on the subject; nevertheless it is probably sufficient to enable
a persistént person with an undergraduate background in physics to read and
understand this entire text. Chapter 2 also describes the application of these
techniques to Hamiltonian and Lagrangian mechanics; specifically, Lie transform
perturbation theory is introduced here and many simplé examples of its use are

presented.

Chapter 3 will treat the guiding-center problem for a relativistic charged par-
ticle. We shall begin by examining the geometry of the electromagnetic field in
four-dimensional spacetime, and we shall find that there is a covariant way to
isolate the rapidly-gyrating component of the particle’s four velocity. Lie trans-
form perturbation theory is then applied to the particle’s phase-space Lagrangian
in order to remove this rapidly-gyrating component and thus obtain the residualv
parallel and drift motion. The perturbative calculation is carried out to one order
higher than the usual drifts, the natural guidihg-center Poisson bracket structure
and Hamiltonian are presented, and the correction to the gyromomentum is given.
Finally, it is shown how to cast these results in a manifestly gyrogauge invariant

format.

In Chapter 4 we shall study the effects of eikonal wave perturbations on a
guiding center, once again using Lie tra.nsforrh perturbation theory. The result
is a complete ponderomotive description of the relativistic guiding center in an
eikonal wave field, and we show how to cast this in manifestly gauge-invariant
form. To achieve manifest gauge-invariance, we shall find it necessary to aban-
don the usual approach of expanding the eikonal wave perturbation in a series
of Bessel functions of &, p. Insteaci, we shall first perform a Lagxémgian gauge
transformation, and then we shall expand in a series of special functions that
are related to indefinite integrals of Bessel functions. The required Lagrangian

gauge transformation is not obvious, and it would never have been discovered
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without the use of differential geometric techniques. Finally, the ponderomotive
Hamiltonian is derived using Lie transforms.

In Chapter 5 we shall sum the resulting guiding-center Ldgrangian over the en-
tire distribution of particles present in a plasma, and couple with the Maxwell field
to obtain the total Lagrangian for a Vlasov plasma of relativistic guiding centers.
By varying this it is possible to derive a self-consistent gyrokinetic description
of such a plasma, including the magnetic moment tensor, in manifestly-covariant
format. Application of Noether’s theorem then yields conservation laws for the
guiding-center plasma, and these are also cast in manifestly covariant‘form. Fi-
nally, using the results of Chapter 4, the conservation laws are derived for a
guiding-center plasma in the presence of a wave field.

In Chapter 6 we discuss some of the unanswered questions raised by this
study. These could be topics for future research.

Appendix A is a glossary of the mathematical symbols and notation used in
this thesis.

Appendix B is a review of some of the more primitive mathematical concepts
used in this thesis, such as vector spaces, dual spaces, algebras, and modules.

Appendix C applies vector Lie transforms to the nonrelativistic guiding-center
problem in two dimensions, and derives the shift in gyrofrequency due to spatial
gradients in the magnetic and (perpendicular) electric fields. This is useful both
as a demonstration of the vector Lie transform technique, and as a comparison
to the techniques and results of Chapter 3.

Appendix D derives and discusses the properties of a pair of special functions
that were introduced in Chapter 4.

Appendix E is a short tutorial on how to derive Bessel function sum rules,

including (but not limited to) those that were useful in Chapter 4.



Chapter 2
M athematical Preliminaries

2.1 Discussion

This chapter divides naturally into three sections. The first covers the basic re-
sults of differential geometfy that are necessary to understand the rest of this
thesis. This includes the calculus of tensors and the exterior algebra. To reit-
erate, the exposition here is not intended to replace a good introductory book
on the subject (see, for example, the excellent introductory texts by Schutz [15],
Edelen [16], Singer and Thorpe [17], or Burke [18]), but it does present enough
material to make the thesis self-contained, and to establish notational conven-
tions. The theory of Lie groups has been omitted from this section because it
is not absolutely essential to the understé.nding of what follows, but the reader
with background in this area will be at a definite advantage.

Next, these tools are used to reformulate Hamiltonian and Lagrangian me-
chanics. The generalization to noncanonical coordinates is discussed, including
those with singular Poisson structures. Noether’s theorem is formulated, and

numerous worked examples are given. Mechanical systems with constraints are
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examined from this new point of view.

Finally, Lie transform perturbation theory is presented, and its use for non-
canonical coordinates is discussed. Because we shall use Lie transforms in a more
general context than that in which they are usually presented, I recommend that

this section be read even by those already familiar with the subject.

2.2 Differential Geometric Concepts

2.2.1 Manifolds, Vectors, and Covectors

In this subsection, we shall discuss the ideas that are necessary to reformulate
tensor calculus in a fashion that more directly illustrates the geometrical founda-
tions of the subject. Appendix B goes one level deeper, and gives set-theoretical
definitions for many of the primitive terms that we shall use here (such as vector
space and algebra). |

A manifold is a space that is locally Euclidean and in which there is a notion
of differentiation. This can be made more precise as follows: There must be a
differentiable one-to-one map, or diffeomorphism, from the neighborhood of any
point of a manifold to the points of R™, for some n. Such a map is called a chart,
and thé collection of all such maps for a given manifold is called an atlas. There
is an additional requirement that two maps in the same atlas that overlap must
do so smoothly; this means, among other things, that all charts in the same atlas
must map to R™ with the same n. The number n is thus characteristic of the
entire manifold, and is called the dimension of the manifold.

A chart is realized by (local) coordinates on the manifold. Since an n-
dimensional manifold, M, must map smoothly onto R™, it must be possible to

label the points of M, at least locally, by » numbers, say z2,..., z"*. Then the map

1 n

is given by expressing these numbers as functions of the coordinates, z!,...,z",

on R™. Specifically, we write z%(z?,...,z2"),fora=1,...,n.
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It is generally not possible to cover an entire manifold with one chart. For
example the surface of a sphere is a manifold called S?, and, as is well known,

coordinate charts on S? must break down somewhere. The chart

. 40
r = E; COS¢ : (2.1)
46
y = :-3—7; sin ¢, (22)

where & and ¢ are the usual spherical coordinates (colatitude and azimuthal
angles, respectively), maps the region 0 < 6 < 3m/4 onto the open unit disk in
R2. The chart

T =.4(%—6—) cos ¢ . (2.3)
y= ﬂ%—;——ez sin ¢ (2.4)

then maps the region 7/4 < 6 < 7 onto the open unit disk in R2. These two
charts are thus sufficient to cover all of $2, and therefore constitute an atlas.
Any atlas for S? must contain at least two charts. In general, the number of
charts needed to cover a manifold depends on its global topological properties.
A mapping from an m-dimensional manifold onto an n-dimensional manifold
is called an injection if m < n, a projection if m > n, and a bijection if m = n.
Consider a map from R to an n-dimensional manifold, M. That is, R — M. Note
that this is an injection if n > 1, and a bijection if n = 1. This map defines a
path through the manifold, M. The points in M that are on the path are those
in the rangé of the map. The realization of this mapping is given by expressing
each of the coordinates on M as functions of the coordinate, z, on . That is,
we write z%(z) for @ = 1,...,n. As = varies along R, the coordinates z trace
out the path in M. Note that although we keep writing down the coordinate
realizations of these things, the notion of a map from one manifold to another

has an intrinsic geometrical meaning as an association of members of one set of
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points with members of another set of points, consistent with local topological
properties of nearness, etc.

Now let P be a point on the above-mentioned path through the manifold,
M. Denote its coordinates by zp,...,z5.Since it lies along the path, there must
exist a coordinate, zg, of a point in R, such that z§ = 2%(z) for a = 1,...,n.
Now éonsider the derivatives of the functions, 2%(z), with respect to the path
parameter, z. Denote these by dz%/dz. Evaluate these at the point P. This gives

the n numbers,

ve = 2 (z), (2.5)

associated with the point, P.

It is clear that there are many different curves passing through point P that
will yield the same set of n numbers. Indeed, any curve whose coordinates near
P are given by

2% = 28 4+ Vez + O(627) (2.6)
where 6z = x — zq, Will do so. The identification of these n numbers thus gives us
a way to partition the set of all curves passing through point P into (an infinity’
of) equivalence classes; two curves are said to be equivalent if they yield the same
set of n numbers. That is, two curves are equivalent if they both have the form
given in the above equation (with the same V).

Consider the set of equivalence classes of curves thus obtained. We can define
addition and scalar multiplication among the elements of this set in the following
very natural way: The equivalence class of curves with the » numbers V< adds
to the equivalence class of curves with the n numbers U® to yield the equivalence
class of curves with the n numbers V® + U%. The scalar ¢ multiplies thé equiv-
alence class of curves with the n numbers V¢ to yield the equivalence class of
curves with the n numbers aV'®. With these operations, we have converted the
space of all equivalence classes of curves through the point P into a vector space.

This vector space will be called the tangent space at point P of the manifold. Its
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elements have béen introduced as equivalence classes of curves, but it will become
clear momentarily that these may be identified with the usual notion of vectors as
arrows with a certain magnitude and direction and with certain transformation
properties. Note, however, that the base of the arrow is not free to move around,
but rather is “pinned down” at the point P. There is a different tangent space at
each point of a manifold, and vectors in one tangent space may not be added to
vectors in another different tangent space. Note that the dimension of a tangent
space is equal to the dimension of the manifold (in the above case, the dimension
is n).

It is evident that the above-described n numbers V¢ associated with an equiv-
alence class of curves depend on our choice of coordinates for M. If our coordinates

on M had been z'“, then the n numbers would have been

dz'® | 8z'* dzP 8z'¢

V' = - (@0) = 55 7~ (z0) = = V*, (2.7)

where we have adopted the convention of summation over repeated indices. Read-
ers familiar with traditional presentations of tensor calculus will recognize this
as the transformation law for components of contravariant vectors. |

Recall that even though the components of a vector may vary from one coor-
dinate system to another, the vector itself, as an abstract mathematical object,
is an invariant geometrical concept. That is, given two sets of basis vectors, €,
and &, we can write the components of a vector V as V¢ in the first system and
as V'® in the second. Though these will, in general, be different, the abstract
vector V = V*é, = V'%&, retains its form under the change of basis.

So how can we introduce bases in our tangent spaces that will reflect this idea?
Despite the fact that the above-described n numbers are coordinate-dependent,

if we form a first-order linear differential operator by using them as coefficients

VEVQ—§—=V'Q &

e 2.8
0z« 8z'*’ (28)
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we see that this operator retains its form under a coordinate transformation.
This much is clear from the above equation. By analogy with the argument in
the preceeding paragraph, we can thus identify the operator V with the vector
V, and the n operators 3/0z% with basis vectors that span the tangent space.
Thus the idea of vectors as arrows, as equivalence classes of chrves, and as first

order linear differential operators are all valid descriptions of the same concept!

A word is in order concerning the basis vectors that we have used above. Note
that they were induced by the coordinate system that we used. The choice of |
a coordinate system z® on the manifold M gives rise to a natural basis 9/9z¢
in each tangent space at each point of the manifold (or, more precisely, at each
point of M where the chart 2% is operative). A change in coordinate system thus
gives rise to a change of basis; this is in accordance with the usual transformation
properties of contravariant vectors. A basi_s that is thus induced by a coordinate
system is called a coordinate basis. In the “arro§v” picture, the basis vectors lie
along the local coordinate axes. In the “equivalence class of curves” picture, they
are curves that are locally coincident with the coordinate axes. In the “operator”

picture, they are directional derivatives along the coordinate directions.

One might well ask if all possible bases are coordinate bases. The answer is
“no.” If we start from a coordinate basis and make a change of basis by taking
various linearly independent combinations of basis vectors in each tangent space,
where the combinations may vary from poiht to point in the manifold, we may
arrive at a new basis that is not the coordinate basis for any coordinate system
on M. Thus, starting from the coordinate basis, 3/8z%, we may define the new

basis

(2.9)

where (Aﬁa) is any nonsingular matrix. This new basis is perfectly good for
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resolving vectors into coordinates. For example, the vector V may be written

v=vel _(vep? )ég' (2.10)
0z« @

where the matrix (A? o) is the inverse of the matrix (A,%). So the components

of V in the new basis are V“Aﬁ o The only different thing about this new basis

is that there may not be any system of coordinates Z< such that é, = 9/ BZ .

In this case, such a basis is called a noncoordinate basis. This idea will become

more clear and examples will be given in Subsection 2.2.5.

Meanwhile, since we have now attached vector spaces to every point of a
manifold, we can go on to construct their dual spaces. The dual space to the
tangeht space of vectors at point P is called the cotangent space at point P. Its
elements are called coveciors or covariant vectors or one forms. Once again, the
cotangent space has the same dimension as the manifold. |

Once we have a set of basis vectors in the tangent space, say e,, there is
induced a preferred set of basis covectors in the cotangent space, call them &%,
such that (0%, é&g) = 63. Thus we can represent a covector at point P by n
numbers, say a,, where, as usual, @ can range from 1 to n. The abstract covector

is then a = a,&%. The covector a pairs with the vector V to yield
(8, V) = (aa@*,VPeg) = aa VP (0%, 85) = aa VP85 = an V. (2.11)

Note that even though there is a naturally induced covector basis correspond-
ing to a given vector basis, there is no natural correspondence between individual
vectors and individual covectors. That is, there is no natural map from the tan-
gent space.to the cotangent space. Later on, we shall see that if we endow our
manifold with a metric, such a map is established. The addition of a metric thus
gives the manifold much more structure than it would otherwise have. At this
point in our discussion, we are not assuming the existence of a metric on our
manifold. As we shall see, even without a metric, a manifold has lots of inter-

esting structure to study. The general philosophy of this discussion is to start
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simply and slowly add structure; thus a discussion of metrics is deferred to the
end of this section.

To make our discussion of covectors more concrete, let us suppose that we
have a coordinate system z® on our manifold, M. This induces the coordinate
basis vectors 8/0z% on each tangent space of M. If we transform coordinates
to another system Z<%, the components of the vectbr V transform according to
Eq. (2.7). Now say the covector a has components a4 in the first coordinate
system. The components of the covector must transform in such a way as to

leave the scalar (a, V) invariant. Thus

82 . :

agVP =d  V'® = a'aWVﬁ v (2.12)
so
8zP
ao = 5575 96" (2.13)

Once again, readers familiar with traditional presentations of tensor calculus will

recognize this as the transformation law for components of covariant vectors.
Now, how can we introduce bhases in our cotangent spaces that will reflect the

above ideas? Despite the fact that the n numbers a, are coordinate-dependent,

if we form the differential that has them as coefficients

A= aqdz® =d o d2'", (2.14)

we see that this retains its form under a coordinate transformation. This much
is clear from the above equation. We can thus identify the differential form a
with the covector a, and the n differentials d=® with basis covectors that span
the cotangent space.

Thus, just as contravariant vectors could be identified with first order linear
differential operators, we see that covectors can be identified with differential

forms. These descriptions are dual to each other, so

) . |
(d2", 575) = 6. (2.15)
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Finally we note that the same distinction between coordinate and noncoordi-
nate bases that applied to our discussion of tangent space bases also applies to
cotangent space bases. Up until now, we have restricted our attention to coordi-
nate cotangent bases, but we could define new basis one forms by taking linear
combinations of the dz® where the combinations may vary from point to poinf
in the manifold. In this way, we may arrive at a new basis that is not the coor-
dinate cotangent basis for any coordinate system on M. Thus, starting from the
coordinate cotangent space basis, dz%, we may define the new cotangent space
basis

P = AP_dz* (2.16)
where (A o) is any nonsingular matrix. This new basis is perfectly good for

resolving covectors into coordinates. For example, the covector a may be written
a=an,dz% = (aaABa)GJB (2.17)

where the matrix (A, %) is the inverse of the matrix (AP )+ So the components of
a in the new basis are a A Ba. The only different thing about this new basis is that
there may not be any system of coordinates Z* such that &* = dZ%. Once again,

this idea will become more clear and examples will be given in Subsection 2.2.5.

2.2.2 General Tensors and the Tensor Product

Now that we have a tangent space and a cotangent space associated with each
and every point of our manifold, we can create still bigger spaces at each point by
taking the Cartesian product of some number of tangent spaces and some number
of cotangent spaces. Suppose we define the space II. to be the Cartesian product
of s copies of the tangent space and r copies of the cotangent space at point P of
a manifold M. Consider a multilinear map II¢ — R. That is, we are considering
a map that takes s vectors and r covectors at point P and returns a real num-

ber. If the s vectors are denoted Vy,...,V,, and the r covectors are denoted
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al,...,a", then the real number will be denoted by T(al,...,a",Vy,...,V,).
By a “multilinear” map, we mean that T is linear in all of its arguments. Such
a map is said to be a tensor of type (r,s). Note that a vector is a tensor of type
(1,0), and a covector is a tensor of type (0,1); this is because a vector can take
a covector and return a real number (by the pairing), é.nd vice versa.

There is an obvious way to define addition among tensors: Given two tensors,

T; and T,, we can define a new tensor, T3, by the prescription
Ts(al,...,a",Vy,...,V,)
= Tl(al, .o .,a’,Vl, e ,V,) + Tz(al, oo ,a",Vl,. .o ,Vs), (2.18)

for all possible arguments. In this case, we write T3 = T; + T5. This operation
of addition makes the space of all tensors of type (r, s) a vector space.
Suppose we have two vectors, U; and Uz, and a covector, b!, at some point
of a manifold. Suppose we are given anew a pair of covectors, a' and a2, and a
vector, V; (at the same point of the manifold). Consider the following recipe for
obtaining a real number: Pair the two c;)vectors with U; and U,, respectively,
and pair the vector with b!. This gives us three real numbers. Multiply them
together to get a single real number. In this way, the presence of Uy, U,, and b?
provides us with a map from II1 to R. It is easily seen that this map is multilinear.
Thus, the presence of U;,U,, and b?! provides us with the following tensor of
type (2,1):
T(a',a%,V;) = (a',U;)(a?, Uz)(b', V). (2.19)
A tensor formed in this way is said to be the tensor product of Uy, Uz, and b'.
This is denoted
T=U,®U,;®bl. (2.20)

More generally, given r vectors, Ujy,...,U,, and s covectors, b?,...,b*, we

can form a tensor of type (r,s) by taking the tensor product

T=U;®...9U,@b'®...0b". (2.21)
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If we feed this tensor the r covectors, a;,...,a,, and the s vectors, V;,...,V,,

then we get the scalar
T(as,...,an Vi,...,V,) = (a1, U) ... (a,, U.)(by, Vi) ... (b,, V,). (2.22)

The space of all possible tensors (of any type) at some point in an n-
dimensional manifold may be thought of as an infinite dimensional vector space,
although it is somewhat strange in that two of its elements can be added if and |
only if they are tensors of the same type. In any event, the tensor product makes
this space an algebra.

It is straightforward to see that the vector space.of all tensors of type (7, s) is
n™*4-dimensional. That is, a tensor of type (r,s) has n"* independent compo-
nents. A moment’s thoughf convinces one that a basis for this space is given by

the n™** basis tensors
80, ®...084, RV ®...0 0%, | (2.23)

~ where the &’s and &’s are the basis vectors and basis covectors in the tangent and
| cotangent spaces, respectively, and where the a and 3 indices all range from 1 to

n. Thus, a general tensor may be written
T=T5 " "758,®...08, 0 ®...05"%. (2.24)

Finally, we consider the transformation properties of the components of these
~ general tensors. We know how vector and covector components transform, and
we know that a tensor of type (r, s) takes r covectors and s vectors and returns a
scalar invariant. Thus, by an argument identical to that which led to Eq. (2.13),
we find that for a transformation from one coordinate basis to another coordinate

basis
e 0T 02T 0 B2 L, (2.25)
azﬂ'l az#r aZ"Bl 32’6’ VieVs * '
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The usual distinction between coordinate and noncoordinate bases applies here
as well, so that for a transformation between general bases.the above equation

generalizes to

Vielg

T,g:::g: — Aat " e Aary,.A‘BI v .. Aﬁ‘ll. T;u...p.,.' (2.26)

2.2.3 The Lie Bracket

Given a vector field, V, the corresponding first-order linear differential opérator
is: .
8

V =V 5-2—‘;;' (227)

Notice that the ath component of the vector can be recovered by applying the

operator to z%:

Ve =Vze, - (2.28)

As has Been mentioned, it is possible to actually identify the vector with its
corresponding operator. Many mathematics texts actually do this, and it is per-
fectly permissible since there is an obvious one to one correspondence between
vectors and first-order linear differential operators by the above equations. In-
deed, there are numerous advantages to such identification, but we shall continue
to use the circumflex to distinguish the operator in order to avoid any ambiguity.

It is important to note that the operators corresponding to two different vector
fields do not, in general, commute. Indeed, the commutator of two first-order
linear differential operators is another first-order linear differential operator. At
first this may seem surprising because it is not obvious that this commutator is
a first order operator. By writing it in terms. of the components of V and U,

however, we see that the second order terms do indeed cancel:

- - a 6 a a
— 8 a -UB— a_ 7
[V’ U] =V 9zP (U Bz"‘) v 92h (V 32“)

a [+ a
= (VU5 - UPV?%) 5=

b}

(2.29)
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The vector whose operator is the commutator of the operators of two other
vectors, V and U, is said fo be the Lie bracket of those ;two vectors, and is
denoted by [V,U]. N oté that the Lie bracket operation makes the space of all
vector fields into a Lie algebra.

Using the Lie bracket, it is possible to give a simple test that will determine
whether or not any given set of basis vectors is a coordinate basis: A set of
n linearly independent vectors constitutes a coordinate basis if and only if the
Lie bracket of any two elements of the set vanishes. The “only if” part of this
theorem is obvious, since coordinate basis vectors are partial derivatives and
.these always commute with each other. The converse, however, is a special case
of sométhing called Frobenius’ theorem, and is somewhat harder to see. To prove
it algebraically, we must show that it is possible to actually construct a coor&inate
system (at least locally) given the n linearly independent commuting vectors. We
shall not follow this approach here (see Schutz [15] for details on how to prove it
this way). Instead, we shall follow a more geometrical line of reasoning that will
make the theorem almost obvious. To do this, however, we first need to learn

about the Lie derivative.

2.2.4 Lie Derivatives

The Lie derivative of a scalar field, f(z), with respect to the vector field, V, is a
new scalar field denoted by Lv f, and is given by:

vazx‘ff:va%;. (2.30)

This is recognized as the directional derivative of f along the vector field, V.
Along any given field line of V, it is possible to define a coordinate, A, such that:

_ dz*

Vi=x

(2.31)
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so
V= %, (2.32)
and so the Lie derivative of f with respect to V is simply df /d\. That is, we
evaluate the scalar field at the points z(\¢) and z(Ao + 6)) along the field line,
subtract the first value from the second, divide the result by 6\, and let 6\ go
to zero to get the Lie derivative. In Fig. 2.1, these two points of evaluation are
denoted by A and B.

A scalar field, f, whose Lie derivative with respect to V vanishes is said to
be a Lie dragged scalar field with respect to the vector field V. Intuitively, this
means that the scalar field is constant along the field lines of V. Alternatively
- stated, it means that the scalar field satisfies the first-order linear differential
equation V f = 0, whose characteristics are the field lines of V. Thus, if the value
of a Lie dragged scalar field is specified at any one point of a field line of V, its
value everywhere else on that same field line is determined (it’s the same value).
Using this concept, we can reword our definition of a Lie derivative: Begin by
evaluating the scalar field f at point A. Next, drag the scalar f at point B back
to point A to get the scalar f* at A (note f*(A4) = f(B)). Now at the point A
we subtract f from f*, divide the result by ), and let A go to zero to get Ly f.
This may sound like a fancy way of saying the same thing, but it will aid in our
efforts to generalize the Lie derivative to act on other things besides scalars.

Consider the problem of trying to define an analogous derivative that acts on
contravariant vectors. vWe could begin by evaluating a vector field, say U, at the
same two points, z(Ag) and 2(Xg + 6)), along a field line of V. Unfortunately,
however, we cannot subtract them because they live in two different vector spaces:
The first lives in the space of all vectors at the point z()g), while the second lives
in the space of all vectors at z(Ag+6A). We are dealing with spaces in which there
may be no notion of paralle] transport, so there is no natural way of comparing

vectors located at two different points.
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Field line of V

Z(Ag +67)

| XBL 876-3021 --

Figure 2.1: Lie Differentiation of a Scalar Field
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So we must be a little more clever. Refer to Fig. 2.2. Just as we have
coordinatized a given field line of V by )\, we shall use p to coordinatize a given
field line of U. The operator Uis then d/dpu. It acts on scalars by evaluating them
at z(uo) and z(po + éu), subtracting the first value from the second, dividing by
du, and letting éu go to zero. In Fig. 2.2, these two points of evaluation are
denoted by A and C; note that we have arranged things in this figure so that
point A is parametrized by both A¢ on the V field line, and po on the U field

line.

Now we can imagine sliding the points A and C along the V field lines for
an increment 6], to arrive at the new points B and D, respectively. These new
points define a new first-order linear differential operator based at the point B.
It acts on scalars by evaluating them at the points B and D, subtracting the first
value from the second, dividing by éu (it is clear that points B and D coincide
as 6u — 0), and letting éu go to zero. This first-order linear differential operator
at B corresponds to a vector at point B, and so we see that we have found a
natural way to drag the vector field U along the vector field V. If a vector field
U is unchanged by dragging it along V, then it is said to be a Lie. dragged vector
field with respect to V.

Armed with this insight, we are ready to define the Lie derivative of a vector
field, U with respect to another vector field, V. We begin by evaluating U at
point A. Next, we drag the vector U at point B back to point A to get the
vector U* at A. Now we can subtract U from U*, divide the result by 6, and let
6 go to zero to get Ly U. It should be clear from this description thatr the Lie

derivative of a Lie dragged vector field vanishes, just as was the case for scalars.

Now that we have the geometrical picture of what is happening, we need to

find an analytic exﬁression for Ly U. Refer to Fig. 2.3. It is clear that we may
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U (A) dragged to B

Field lines of V

Field line of U

. XBL 876-3022 --

Figure 2.2: Lie Dragging a Vector Field Along Another Vector Field
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L,U(A) u(s)

Field lines of V

w e
Field line of U

- XBL 876-3023 --

Figure 2.3: Lie Differentiation of a Vector Field
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write:

2 _

Ua A C A
( ) 6“—*0 6# ?

o - 2E — zg
U%(B) - 61;41,130 b O’

2% — 29

U*e — F A

(A) 5];190 6[1‘ )

and

(LyUY(4) = lim L2A) —U7(A)

§2—0 6\
Y . ZF T 20
- 61,\1510 513130 b’

25

(2.33)

where 2§ through z§ are the coordinates at the points A through F, respec-

tively. To find these coordinates, we use Taylor expansion. Thus, to express the

coordinates of point B in terms of quantities at point A, we write

zg = 2%(Ao + 6X)
dz® 1 d?z¢
a\ 2 dA? |,

Similarly, the coordinates of point C are given by:

z& = z%(po + by
dz®

_zA—i——-—

5 1 d%2%
du

B+
A 2 du?

B:.

o
zg =25+

dp

5 1 d?2¢
u
B 2d

and these in turn may be expressed in terms of qua.ntities at point A

dz*®

d\
dz®

T,
1 d%z*
2 du?

1 d22
6)\+—
2°dx3 |,
d2 [+

d\du

zp =z + —

N2 +

Sp +

U

op® +
A

5“2+...
A

I

(2.34)

(2.35)

Next, the coordinates of point E can be expressed in terms of quantities at point

(2.36)

(2.37)
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Finally, the coordinates of point F' can be expressed in terms of quantities at
pointl E, which in turn can be expressed in terms of quantities at point B, which

in turn can be expressed in terms of quantities at point A:

z}’;=zE—dEz;-E5/\+%(§/\z: E5A2+---
o« . d2° 1d%z2] _
~ =ZB.+EB li+§ dp.Z-Béu +oee
_‘?_:Bg)‘_ifi: 35~“6>‘—m
+-;—C§/\Z:BM2+--- |
=z§+%\a—A6A+%f:: A§A2+...
+-‘§‘§A5#+ ji;: A5A6u+---
e
-%Z;A&/\- ‘f;;: AW—.-.
2.,
_ :iipfi)\ Ag,us,\_...
+%‘§;‘: Aa,\2+---
=25+ (f;: Aé.u+—;—‘§:: A5“2+...
+ g;: B\ = é‘%} Aaua,\+... (2.38)
Thus, using Eqgs. (2.33), we find:
| ) Lo
U (A)=;7A,
and
a 2.,a a

and so
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d?z= d?z=
dM\du|, dudi

= (Vﬁ - fIV) z°

(LvU)*(4) =

A

A

- [V, fJ] 2° (2.39)

A

We have just demonstrated that the Lie derivative of U with respect to V is
simply the Lie bracket of V and U:

LyU=[V,U]. (2.40)
In .a coordinate basis, this i’esult ‘may be written

(LvU)* = VAU 5 - UPVe,. o (2.41)

Q

Note that this way of writing the result may be taken as valid for a noncoordinate
basis as well if we reinterpret the commas as meaﬁjng “operation by the basis
vector.” That is, f o denotes the result of applying to f the operator correspond-
ing to the basis vector &,. For a coordinate basis, the operators corresponding
to basis vectors are simply partial derivatives with respect to the coordinates, so
this reduces to the usual meaning of the comma. This generalization of what the
comma means will be useful in everything that follows.

Now that we know how to take the Lie derivative of a contravariant vector
field, we shall try to extend this process to covector fields. Recall that covectors
contract with contravariant vectors to give scalars. We define a Lie dragged
covector field to be one which when contracted with any Lie dragged contravariant
vector field yields a Lie dragged scalar field. To take the Lie derivative of a
covector field a with respect to V, we evaluate a at the points A and B in
Fig. 2.1, drag a(B) back to A to get a*(A), subtract a(A4) from a*(A4), divide by
62, and let 8 go to zero. The result is:

(Lva)e = VPaags + VP ag, (2.42)
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Once again, this result is valid for noncoordinate bases if we generalize the mean-
ing of the commas. | .

Next we consider the Lie derivative of a general tensor. We first define a Lie
dragged tensor of type (r,s) as oné which yields a Lie dragged scalar field when
fed r Lie dragged covectors and s Lie dragged vectors. To take the Lie d;arivative

.Qf a te’ﬁsor T of type (r, s) with respect to V, we evaluate T at the points A and
B in Fig. 2.1, drag T(B) back to A to get T*(A), subtract T(A) from T*(A4),
divide by §A, and let 6\ go to zero. The result is: )

(CyT)grmar = VT e

Bayy
- Val,vTﬂ?‘-z-B;a’ -
— Ve g
Q -*-V‘y Ts‘ﬁ‘z % Lt
+ V7’ T‘"1 ;:’ iy (2.43)

Note that the above geometrical picture for Lie derivatives of general tensors is
equivalent to the neat coordinate-free algebraic formula

Ly (T(ay,...,ar,Uy,...,U,)) = (LvT)ay,...,a,, Uy,...,U,)
T(Lvay,...,arUs,..., Ug) +---
T(a;,...,Lva,, U;p,...,Uy)
T(ai,...,ar, LyUy,..., Uy} + -
T(a1,...;ar, Us,...,LvU).  (2.44)

Finally, it is straightforward to show that Lie derivatives obey the Leibniz

rule over the tensor product. That is
Lv(T1®@T,) =(LyT)) QT+ T1 ®(LyvT2). , (2.45)

Before leaving this subsection, it is important to emphasize that the same

geometrical notions that led us to the Lie derivative of a vector field still apply
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for arbitrary tensors: The Lie derivative is the natural way to “drag” any tensorial
object along the field lines of a vector field. Just as we dragged the vector U
along the field line of the vector V for a parameter interval §\ to get the vector

U* = U + (LyU)6A (2.46)
(%ee Eq. (2.33)), so we can drag the tensor T in exactly the same way to get
T" =T + (LvT)6A. (2.47)

This geonietrica.l insight is crucial to the understanding of Lie transforms.

2.2.5 Examples of Coordinate and Noncoordinate Bases

We are now in a position to understand the theorem presented at the end of Sec-
tion 2.2.3 from a geometrical point of view. Fig. 2.3 and Eq. (2.33) make it clear
that the Lie bracket of two vector fields is related to the infinitesimal difference
in position resulting from the operation of moving along the first vector field for
a certain pé.rameter interval, then along the second vector field, then backwards
for the same parameter interval along the first, then backwards along the sec-
ond. Clearly, if the vector fields involved are basis elements of a coordinate basis,
this operation will simply take one around a square right back to the original
position. The sides of the square are the contours of constant values of the two
coordinates involved. Conversely, if two members of a set of n linearly indepen-
dent vectors have nonvanishing Lie bracket, then it is impossible to construct a
coordinate system that has those vectors as a basis because moving around the
above-described infinitesimal loop does not return one to the starting point; the
changing parameters do not “hook together” in the manner necessary for them
to be coordinates.

Part of the reason that this concept of coordinate and noncoordinate bases

is tricky is that there is no need for such a distinction in Cartesian coordinates.
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There, the coordinate basis is identical to the usual orthonormal basis

0

8z

A good example of a familiar situation for which the distinction ¢s important is

= &a. (2.48)

that of polar coordinates in two dimensions. The usual polar unit vectors, # and

-~

0, are not a coordinate basis since

~

[ﬁ, é] __8 (2.49)

"
On the other hand, 8/8r and 3/86 do constitute a valid coordinate basis, and

these are related to the above orthonormal basis by
=~ =

and

— =1rb. - (2.50)

The important point is that there are no pair of coordinates, £ and 7, such
that r = 9/9¢ and 6 = a/n. Geometrica.liy, this is because if we traverse an
infinitesimal loop following first the # vector field and then the 8 vector field (and
then returning along them, respectively) we will not arrive at our starting point
(see Fig. 2.4). The factor of r on the right hand side of the second of Egs. (2.50)
corrects for this and gives us a coordinate basis.

As mentioned previously, the above distinction also holds for covectors. To
pursﬁe the above example, the covector basis consisting of dr and df is dual to

the vector basis consisting of 8/8r and §/86. It follows that the covector basis
r=dr

and

-~

§ =rdf ' (2.51)

is dual to the vector basis # and §. Once again, there is no pair of coordinates, £

and 7, such that ¥ = df and 8 = dn.
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Figure 2.4: Polar Coordinate Unit Vectors
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2.2.6 Differential Forms

An s-form is defined as a tensor of type (0, s) that is antisymmetric in every pair
of its s vector arguments. In particular, a zero form is a scalar and a one form is

a covector; a two form, £, obeys
AU, V) = -Q(V,U), (2.52) .

etc. It follows that the components of an s-form are antisymmetric under inter-
change of any pair of indices. In particular, this means that the s indices must °
all be different, or else the component will vanish. Hence the requirement of anti-
symmetry means that there are no longer n® independent components. Instead,

a standard combinatorial argument shows that only

n !
= (2.53)

s sl(n — s)!

of the components are truly independent. This means, among other things, that
there are no nontrivial s-forms in an n-dimensional space if s > n, that an n-
form has only one nontrivial component, etc. The total number of independent

components of all forms in a space of dimension n is thus

n

> "o+ =2m (2.54)

5=0 S

Note that s-forms inherit some properties from the fact that they are tensors
of type (0, s). In particular, two s-forms may be added to get a third s-form. Thus,
the set of all forms at a point in an n-dimensional manifold may be thought of
as a 2™-dimensional vector space, although it is somewhat strange in that its
elements may be added if and only if they are both s-forms for some s. Note,
however, that this space is not an algebra under the tensor product operation
because it is not closed under that operation: The tensor product of two forms

is not necessarily a form. If we take the tensor product of an s;-form with an
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so-form, we get a tensor of type (0, s; + s2) that is clearly antisymmetric under
interchange of any two of its first s; or last sy arguments, but is not necessarily
antisymmetric under interchange of one of its first s; components with one of its

last s2 components.

- 2.2.7 The Wedge Product, the Ivnteric')vr Product, Dual
Tensors
It would thus be nice to define a product under which the set of all forms becomes
a closed algebra. Such a product is called the wedge product, and is denoted by
the symbol A. We motivate its definition as follows: The wedge product of a scalar
(zero form) with any s-form is the s-form obtained by simple multiplication by
| the scalar. The wedge product of two one forms, a! and a?, is the two form given
by
| alrnal=al®a’-a’?®al. (2.55)
It is clear that the two form thus obtained is antisymmetric. For three or more
one forms, we demand that the wedge product be associative, so, for example
a' Aa? Aad =al A(a% Aad)
=(a’Aa?)ra’ |
= alpal®al+a’®a’®al +a’®al ®al
—a3®a2®a1—a1®a3®§2—a2®a1®a3. (2.56)
Recall that the total number of independent components of an s-form in a

space of dimension n is given by . A moment’s thought convinces one
s .

' n
that the vector space of all such s-forms is spanned by the independent

basis s-forms
GPALLAGP, (2.57)
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where the 3 indices range from 1 to n, and must all be different (else the above
expression will vanish). It is then straightforward to see that an arbitrary s-foﬁn,
2, is given by

1 - -
Q= Eﬂﬂl.../s,wﬁ’ A ADPe. (2.58)

Note that the factor of s! appears here because we did not put it into the definition
of the wedge product; we could have done it either way, and authors differ in this
convention. |
Now that we know how the wedge product operates on scalars and one forms,
we can extend its definition to arbitrary forms by writing them in terms of wedge
products of basis one forms, as shown above. This makes the 2"-dimensional
vector space of all forms into an algebra, called a Grassmann algebra. Note that
it is not a commutative algebra: If 2! and 22 are s, and s,-forms, respectively,
then | ‘
QAQ2 =(-1)"1"202 A Q. (2.59)

If we contract the first index of an s-form (where s > 1), Q, with a vector, V,
then it is straightforward to see that we get an (s — 1)-form. We call this new
form the interior product of  with V, and we denote it by ¢y 2. Thus

1
(s —-1)!

iy Q= VAQs 5.0 AL ADPe. (2.60)
If Q! and Q2 are s; and s2-forms, respectively, then it is straightforward to show

iv(Q' A Q%) = (v Q) A% + (—1)3.101 A (ivQ32). (2.61)
Also, the antisymmetry of forms makes it clear that

vty =0 (2.62)

for any n-form Q with n > 2.
Recall that we defined an s-form as a completely antisymmetric tensor of type
(0, s). Note that we could have done the same thing for completely antisymmetric
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tensors of type (s,0). Next note that a completely antisymmetric tensor of type
(0, s) has exactly the same number of components as a completely antisymmetric
tensor of type (n — s,0) in a space of dimension n > s. This is because

A P . (2.63)
This silggests that there may be a one-to-one correspondence between s-forms
and completely antisymmetric tensors of type (n — s,0).

For example, note that there is only one independent component of a com-
pletely antisymmetric tensor of type (n,0). This is because the components of .
such a tensor must be proportional to those of the Levi-Civita.symbol, PreBn,
The proportionality constant is a scalar (zero form). Similarly, we can put any
scalar (zero form) in front of the Levi-Civita symbol, and obtain the components
of a completely antisymmetric tensor of type (n,0). Thus,v there is a one-to-one
correspondence between scalars (zero forms) and completely antisymmetric ten-
sors of type (n,0).

More generally, we can use the Levi-Civita symbol to obtain a one-to-one
correspondence between s-forms and completely antisymmetric tensors of type

(n — s,0) as follows:

1 ,
e s (2.64)
and
1
Qﬁn—a-}-].mﬁn = -(—7;'-_—8)—!651_“3"11:31...571_ (2.65)
Here we have used the easily verified relation
fﬁl"'ﬂneﬁl...ﬂn =nl : (266)

Referring to Eq. (2.64), we say that T is dual to € with respect to e. This is often
abbreviated T = *€Q. Referring to Eq. (2.65), we say that Q is dual to T with
respect to ¢, or £2 = *T. Note that for any form, €2, we have **Q = (—1)’(”")0.
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2.2.8 The Exterior Derivative and the Homotopy Formula

We now define a differential operator, d, that converts s-forms into (s + 1)-forms.
This operator is defined as follows: When applied to a scalar (zero form), f, it
yields the one form, df, such that |

df(V) = V. (2.67)
Thus, in a coordinate basis, 2%, we have

df = ﬁd;:‘". (2.68)
9z«

Next, we demand that the operator be linear, so if £ and A are two's-forms then
d(©2 + A) =dQ2 + dA. ' (2.69)
Next, we demand that if 2, is an s;-form and €2, is an s;-form,
d(Q21 A 22) =dS2 A Q2 + (—1)"1 21 A dQ2,. | ~(2.70)
Finally, we demand that for any s-form, €2, we have
ddf2 = 0. : (2.71)

The above demands define the operator d uniquely and unambiguously. We can
apply the exterior derivative to an arbitrary form by first expanding it in terms
of wedge products of basis one forms, and then applying the above rules.

In terms of components in a coordinate basis, the exterior derivative of a

scalar is

(df)a = fia (2.72)

and the exterior derivative of a one form is

(da)ap =dag,a — Qq,gG- (2.73)
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More generally,

(-1)°
(dﬂ)al---aa+1 = s! 6ﬁ1---ﬁa+1ﬂa;31...a,g,,a,gs_'_l . (274)

A form whose exterior derivative vanishes is said to be closed. A form fha.t is
the exterior derivative of a.r_lother form is said to be ezact. Clearly, any exact form
is closed. The interesting question is whether or not any closed form is exact.
The answer to this depends on the global topoiogy of the manifold on which the
closed form lives. Locally, it is always true.

There is a marvelous relationship between Lie derivatives, interior products,

and exterior derivatives. It is possible to prove that
Lyl =iydQ +diy (2.75)

for any n-form, 2, with n > 1, and any vector field, V. This relationship is called
the homotopy formula. The proof usually given (see for example Section 4.20 of
Schutz [15]) proceeds by induction: It is first proved for a one-form, and then it
is shown that it works for an n-form if it works for an (n — 1)-form. |

The genemliz.ed homotopy formula,
L0 = (ivd) Q+ (div)'Q (2.76)

for 7 > 1, is proved by induction as follows: First note that it reduces to the
ordinary homotopy formula when 7 = 1. Next, assume that it is true for j = l.

Then

L0 = (ivd + div)[(ivd)'Q + (div)'Q)
= (ivd)Q + (div)' 1, (2.77)

where we have used the fact that application of dd or ¢yiy causes any form to

vanish. Note that the generahzed homotopy formula is not true for j = 0.
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Finally, we can show that Lie derivatives commute with exterior derivatives.

This is done as follows:
dly = d(ivd + div) =diyd = (ivd + div)d = Lvyd, (2.78)

where we have used the homotopy formula.

2.2.9 Integration on Manifolds

Differential s-forms can also be introduced as integrands of s-dimensional inte-
grals. See Flanders [19] for more on this approach. Adopting this point of view,
it is possible to prove the generalized Stokes’ theorem

/Ud_n=fwn, | (2.79)_

where U is an (s + 1)-dimensional volume, and 8U is the s-dimensional surface
that bounds it.

We shall not attempt to prove the generalized Stokes’ theorem here (see
Schutz [15] for a good presentation), but we shall make it plausible by s}_low—
ing how it reduces to the familiar Stokes’ theorem and divergence theorem of
three dimensional vector calculus. In three dimensional Euclidean space, with

Cartesian coordinates, the gradient is given in our notation by

(V )i = (df)s, (2-80)
the divergence is given by

V-V ="d"V, (2.81)
and the curl is given by

V xV = *dv, (2.82)

where v is the one form whose Cartesian components are identical to those of
the vector V. Note that
VXV f="ddf =0 (2.83)
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and

V(V xV)=*d"*dv="ddv=0 (2.84)
both follow from dd = 0. Then

/ V -Vdz® = / d*V = V= V.do, (2.85)
U U 8U Jou

/;7XV-d0'=/dV=‘/ V=/ V. de. (2.86)
U U U 19

Thus we see that our formalism is the natural generalization of three dimensional

* vector calculus to manifolds of arbitrary dimension.

2.2.10 Metric Spaces

The usual dot product of linear algebra is a rule for taking two vectors, say U and
V, a.ﬁd associating with them a real number, denoted U -V, The result depends l
bilinearly on the two vectors involved, so we see that there is a tensor of type
(0,2) at work here. Furthermore, the dot pfoduct is required to be commutative,

so the tensor must be symmetric. Denoting this tensor by g, we have
U.V =g(U,V). (2.87)

This tensor is called the metric tensor. If we also demand that it have an inverse,
then we can find a basis for which it has diagonal form with entries equal to +1
(if all the diagonal entries can be made equal to +1, then we say that the metric
is definite, otherwise we say that it is indefinite). The trace of the metric in this
canonical diagonal form is called its signature.

A metric tensor field is the association of such a type (0,2) symmetric tensor
with every point of a manifold. It must have an inverse at every point. It follows
that the signature is the same at every point of the manifold.

A manifold endowed with a metric has all sorts of new structure. For the

_purposes of our discussion, its most important role is to provide a one-to-one
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correspondence between vectors and covectors. For, given any vector, say V, we
can form the covector, g(V, ). The components of this new covector are then

gasVP. Denote the inverse of gos by ¢°7, so
9agg® = 61, (2.88)

Then, given any covector, say a, we can form the vector with components g8 ag.
Note that this is a one to one correspondence.
Frequently we shall use the same symbol to denote a vector and its corre-

sponding covector in a metric space. That is, we may write
Vo = gagV?, (2.89)

or

Ve = g*fV;. (2.90)

This process is called index raising or indezx lowering, as the case may be. It can
be used to raise or lower the indices of any tensor of any type.
We shall frequently abuse notation by using the dot product to denote the

interior product of a vector with a covector. That is, we may write
a-V=a(V)=aqa,V°. (2.91)

When this is done, it will be obvious from context, so no confusion should arise.
We shall occasionally further abuse notation by using a “double dot” notation
for two contracted indices. That is, given two tensors of type (0,2) and (2,0),
respectively, we may write

F:G=F,G*. (2.92)

Once again, things should be clear from context.
A metric tensor field does far more than provide an invertible map from

vectors to covectors. It also induces on the manifold something called an affine
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connection. This makes it possible to compare vectors in nearby tangent spaces.
Recall that Lie dragging gave us a way to do this, but there had to be a vector
field present in the first place along which to drag, and we could drag only in the
direction of that field. An affine connection allows us to parallel transport vectors
from one tangent space to any other one nearby; that is, it gives us a notion of
pa;ra.llelism between vectors in different tangent spaces. Furthermore, it does not
require the presence of any vector field there to begin with. One does not need
a metric to have an affine connection, but the presence of a metric induces an
affine connection in a natural way.

Armed with an affine connection, it is possible to go on to define such things
as curvature and torsion. While knowledge of this material is certainly helpful in
understanding the material presented in this thesis (especially the curvature and
polarization guiding-center drifts and the intimate relationship between torsion
and spin angular momentum), it is not essential. Thus we shall not go on to
discuss these topics; the interested reader is referred to Schutz [15] for a good
introduction, and to Misner, Thorne and Wheeler [20] or Chandrasekhar [21] for

a more detailed presentation.

2.3 Noncanonical Hamiltonian and Lagrangian

Mechanics

2.3.1 Canonical Versus Noncanonical Coordinates

In elementary classical mechanics courses, Hamiltonian mechanics is derived by
application of a Legendre transformation to the system Lagrangian. This pro-
cess gives rise to canonical coordinates in a very natural way. When it becomes
necessary to change coordinates on phase space, the student is taught to restrict

attention to the limited class of transformations that will maintain this separa-
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tion of the cwordinates into canonically conjugate pairs; these are the so-called
canonical transformations.

The Pomson bracket of two scalar phase functions, A and B, is then intro-
duced by definingit in terms of partial derivatives with respect to the canoﬁically '
conjugate pairs of coordinates, ¢' and p; (the index i ranges over all the degrees |
of freedom}:

(2.93)

where we have adopted the convention of summation over repeated indices. It is

then shown thrat this bracket is bilinear:
{z4 +yB,C} = 2{4,C} +y{B,C} (2.94)
where = and y are constants, that it is antisymmetric:
{A,B} = —{B, A}, | (2.95)
that it obeys the Jacobi identity:
{4,{B,C}} +{C,{A,B}} +{B,{C,A}} =0, (2.96-)
and that it obeys the chain rule:
{f(4),C} = f'(4){a,C} (2.97)
or, equivalently, the Leibniz product rule:

{AB,C} = A{B,C} + B{A,C}. (2.98)

Mathematicians have a different way of looking at all of this. In mathematics
courses on Hamiltonian mechanics, one is more likely to define the Poisson bracket
as any rule for taking a pair of scalar phase functions and associating with them
a third scalar phase function consistent with the properties listed in Egs. (2.94)
through (2.98) above. Now it is manifest that any Poisson bracket given by the
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physicists’ definition is also a Poisson bracket according to the mathematicians’
definition. The converse, however, is not true; that is, there exist Poisson brackets
that obey all of the above-listed properties, but are not givén by Eq. (2.93) for
any set of canonical coordinates, g and p. Thus, by adopting the mathematicians’
definition, we can generalize what is meant by a Poisson bré.cket in a very powerful
way.

To see how this comes about, let us take the mathematicians’ viewpoint and
suppose that we have a phase space with coordinates, z%, where o ranges from
1 to N. For canonical coordinates, N is twice the number of dégrees of freedom
and the z® are the ¢’s and p’s, but let us not restrict ourselves to tiﬁs special
~case in any way; in particular, N could be an odd number, and there need not
~ be any natural pairing amongst the coordinates.

Denote the Poisson bracket of coordinate 2* with coordinate z? by:
JoB = {z* P} | (2.99)

Suppose that we changed our phase spacé coordinates, z — 2'. Then, using
the chain rule, Eq. (2.97), we see that the Poisson bracket of two of the new

coordinates is given by:

O 18
T8 = £ Y = ‘2“2 (st ,z”}%z i (2.100)
or 3
1af 8z'* 82 én
P = e I, (2.101)

This makes it clear that the J*? are the components of a second rank contravari-
ant tensor. This tensor will henceforth be called the Potsson tensor. Using the
chain rule once again, we see that the Poisson bracket of any two phase functions,
A and B, may be written in terms of the Poisson tensor as follows:

a_A]aﬁzB;

527 5 (2.102)

{A,B}:
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The general form of the bracket given by Eq. (2.102) is clearly hilinear and
obeys the chain rule (or, equivalently, the Leibniz product rule). Now, the other
two defining properties of the Poisson bracket may be expressed as properties of
the Poisson tensor. It is easily seen that antisymmetry of the bracket implies and
is Tmplied by antisymmetry of the Poisson tensor:

JeB = _ ghe | © (2.103)

Somewhat more algebra shows that the Jacobi property of the bracket implies
and is implied by the following properfy of the Poisson tensor:

TTET 4 TR IR =0, (2.104)

where the cofmnas denote pa.rtiai differentiation. Thus, our philosophy shall
be that any tensor that has these two properties defines a perfectly legitimate
Poisson bracket according to Eq. (2.102).

Let us see how this works for canonical coordinates, ¢* and p;, where i ranges
from 1 to the number of degrees of freedom, I. Write z® = ¢® for o = 1,...,1,
and z® = po—y fora = I +1,..., N where N = 2]. Now canonical coordinates
have the bracket relations, {¢’,¢’} = {pi,p;} = 0 and {¢*,p;} = —{pj,¢'} = 6;-,

so the matrix of components of the Poisson tensor is:

0 1
J={z,z} = , (2.105)
-1 0

where 0 and 1 are the I x I null and .unit matrices, respectively.

Using this Poisson tensor in Eq. (2.102), we easily recover the usual expression
for the canonical bracket, Eq. (2.93). Furthermore, this Poisson tensor is obvi-
ously antisymmetric, and it obeys Eq. (2.104) since its components are constants
so their derivatives are all zero.

If we start with canonical coordinates, then a canonical transformation is

any transformation that leaves the Poisson tensor unchanged. If we denote the
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Jacobian matrix of the transformation by:

M = 8z'/ 0z, ' ' (2.106)
theﬁ thlS condition may be written as the matrix equation:

J= MJMTz-‘ (2.107)

where the superscript “T” denotes “transpose,” and J is the canonical Poisson
tensor given by Eq. (2.105). In what follows, we shall generalize the term canon-
teal tmnsforrﬁation to mean any bracket-preserving transformation, regardless of
whether or not we started from canonical coordinates.

Thus far, we have said nothing about the equations of motion. For canonical

coordinates these are well known to be:

. OH

and
' 0H »
'iz"_—T’ .108

where H is the Hamiltonian. These may be written in terms of the Poisson

bracket as follows:

¢ ={d' H},
and

pi ={p:;,H}. (2.109)
If we use z to refer to the ¢’s and p’s, this becomes even simpler to write:

5% = {2 H}. (2.110)
Alternatively, this may be written in terms of the Poisson tensor:

OH :
ca __ 1afB
=%, (2.111)
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Since this last equation is in tensor form, and since it is known to hold for canon-
ical coordinates, it must be the correct generalization of the equétion of motion
for noncanonical coordinates. Thus, the complete specification of a Hamiltonian
system in this new generalized sense requires the specification of both a Poisson
tensor and a scalar Hamiltonian.

Any dynamical system on phase space can be expressed in the form ¢ = V“;
where V is some vector field on the phase space. Eq. (2.111) for a Hamiltonian
dynamical system has this form. Note, however, that in order to qualify as
“Hamiltonian,” the vector field on the right cannot be just ‘any vector field; it
must be given by the Poisson tensor contracted with the gradient of some scalar
function. A vector field on phase space is called a Hamailtonian vector field if there
exists some scalar field for which this is true. Thus, if a manifold is endowed with

a Poisson tensor, then scalar fields generate Hamiltonian vector fields.

2.3.2 An Example of a Noncanonical Poisson Structure

There are several ways that noncanonical Poisson structures can arise in a prob-
lem. The first and most obvious way is to start with canonical coordinates and
make a noncanonical transformation. The canonical Poisson tensor is known to
obey Eqgs. (2.103) and (2.104), and since these are tensorial equations they will
hold in all frames if they hold in any one frame. So the result of a noncanonical
transformation will be a new bracket that obeys all the required properties.

A particularly beautiful example of this has been given by Littlejohn [22] for
the problem of a charged particle in a magnetic field. For canonical coordinates,
q and p, the Hamiltonian is well known to be:

H= % <p _ EA(q))z, (2.112)

where A(q) is the vector potential. Make the noncanonical transformation to
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new coordinates,r and v, where:

]
{]
Ko

and

v=2 (p - —A(q)) | (2.113)

The bracket relations among the new coordinates are easily calculated:

{I‘,I‘} =0,
{r,v} = l1
_ m

~and

{v,v}= %9, (2.114)

where we have defined the ma.trix Q with components:

€
ij = — (Aji — 4ij) = — fukB (2.115)

and where the B* are the components of the ordinary magnetic field pseudovector.
Thus the bracket of any two scalar phase functions, R and S, is given by:
{R,S}=_1_<_8_}§.—8_§_8_R.§) +‘LB.(8_RX8_S>_ (2.116)

m m2c v 8v
This bracket is easily seen to be antisymmetric. That it satisfies the Jacobi
identity is less obvious; we know that it must from the arguments given above,
but a direct proof involves some tedious algebra. The new Hamiltonian is simply:

H(r,v) = 227, L (2.117)

and it is readily verified that this Hamiltonian, together with the bracket given in
Eq. (2.116) yield the correct equations of motion. Note that the vector potential
is absent from the new formulation; this is construed as an advantage, since the
vector potential is a gauge-dependent quantity. The above Hamiltonian system

was the starting point for Littlejohn’s work on guiding-center theory [22].
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Now that we have seen how noncanonical Poisson structures can arise from
noncanonical transformations of a canonical system, it is natural to ask the op-
posite question: Givén a noncanonical Hamiltonian system, is it always possible
to find a transformation to.canonical coordinates? For noncanonical Hamiltonian
systems with a nonsingular Poisson tensor (that is, systems for which the matﬁx
of components of the Poisson tensor is nonsingular), there is an important theo-
rem, called Darboux’s theorem, that tells us that the answer is “yes.” A proof of
Darboux’s theorem is given by Littlejohn [22] and is constructive; that is, it gives
a prescription for actually finding the transformation to canonical coordinates.
For Hamiltonian systems with singular Poisson structures, the situation is more

complicated, and will be discussed shortly.

2.3.3 Reduction
Reduction and Noether’s Theorem

Noncanonical transformations from canonical coordinates is only one of many
ways that interesting Poisson structures can arise naturally. The process of “re-
~duction” of a Hamiltonian system with symmetry is another. Work in this area
has been pioneered by Marsden and Weinstein (see, for example, reference [23]).

A detailed discussion of reduction would be out of place in this work, but the
general idea is this: Suppose that we have a canonical Hamiltonian system With
a configuration space symmetry (e.g. spatial translation, rotation, etc.). Make
the configuration space symmetry group parameter one of the generalized coor-
dinates. Noether’s theorem then tells us that the corresponding momentum is
conserved. It is then possible to eliminate this degree of freedom from the system,
thus reducing the dimensionality of the phase space by two. This much is famil-
iar from elementary courses in classical mechanics. Reduction is an important

generalization of Noether’s theorem that allows us to similarly “mod out” by a
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symmetry group that acts on all of phase space rather than just configuration
space. After reduction is performed, the resulting Hamiltonian system may very
well bé noncanonical.

The set of all phase functions together with the Poisson bracket operation
constitutes a Lie 'a.lgebra. From a computational pointv of view, in order to perform
reduction we must find a representation for which this Lie algebra has a closed
Lie subalgebra. Furthermore, the Hamiltonian must depend only on the elements
of this subalgebra. The elements of the subalgebra then constitute coordinates

for a reduced description of the problem. This is. best illustrated by example.

The Free Rigid Body

One of the most elementary (but nontrivial) examples of this process is the Hamil-
tonian system for a free rigid body. The usual generalized coordinates for this
problem are the Eulerian angles, 8, ¢, and ¥, .with respect to some fixed space
frame. By introducing their canonically conjugate momenta, pg, ps, and py, it is
possible to write the equations of motion in a canonical Hamiltonian format with
a six-dimensional phase space. | If we choose a body frame for which the inertia

tensor is diagonalized, then the Hamiltonian for the free rigid body problem is

2
1
H= épIia + A [(pg csc 8 — py, cot 8) cos i ——pgsinz[;]z
+ % [(pg csc@ — py, cot 8) sinp + pg cos ], (2.118)
1

where I, I, and I3 are the three diagonal elements of the inertia tensor.
Consider the three components of the angular momentum resolved in the body
frame. These can be expressed in terms of our canonical phase space coordinates

as follows:

my = (pg csc  — py, cot 6) sinyp + py cos ¥,

mz = (pg csc @ — py cot 6) cosp — pg siny,
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and

™m3 = Py. (2.119)

(See Goldstein [24] for details. Only the result is needed here.)
By direct calculation with the canonical bracket, we can verify the following

relations
{ml,mZ} = —mg3
{mz, ms} = —m, |
{ms,m1} = ~ma. 0 (2.120)

Thus, the three components of the angular momentum in the body frame consti-
tute a closed Lie subalgebra under the operation of the canonical Poisson bracket.
This means that the subset of functions on the canonical phase space that are
functions of the m’s alone (that is, those functions that depend on 8, ¢, ¥, ps, py,
and py only through their dependence on the m’s) conétitut‘es a Lie subalgebra
of the Lie algebra of all canonical phase functibﬁs.

We thus adopt the m’s as generaiized cboxzdina.tes on a reduced phase space of
three dimensions. The Poisson tensor on this reduced phase space is then given

by JoB = —e“ﬁ"m” or:

0 —mg3 mo
J = ms 0 —my , (2121)
—mMa2 mi 0

so that the Poisson bracket of any two functions of m, say A and B, is given by:

6A 08B -
AB}=-m.[ 22 x22), 2.122
(4B =-m (22 < 22) (2122)
This bracket must satisfy all the required properties of a Poisson bracket, since
it was derived by specializing the domain of a canonical bracket; nevertheless, it

is straightforward and instructive to verify this by direct calculation.
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It is possible to perform reduction only if the Hamiltonian is expressible in

terms of the reduced coordinate set. For the free rigid body, we have

m2 m2 | m2
H =24 2,3 2.123
(m) o1, T 21, T 3L, (2.123)

As usual, the equations of motion are given by m = {m, H}, or:
m 1 ! |
== ——|mym
1 A A 2M3

. 1 1
my=|-———|mgm
2 L T 3ma
1 1

m3 = (T; — I—l) mims. (2.124)

As expected, these are indeed Euler’s equations for the free rigid body. If the
rigid body were not free (say, if it were in a gravitational field), then a potential
energy term would have been present in the Hamiltonian, and that term would
not have been expressible in terms of the m’s. Thus, the reduction process would
have failed. This is bécause the gravitational field breaks the SO(3) symmetry
that makes the reduction possible.

As we shall see later on in this thesis, the passage from particle coordinates
to guiding-center coordinates is another example of reduction. The symmetry
involved is the group of rotations by the gyroangle, SO(2), and the reduction
eliminétes the corresponding degree of freedom from the system. If this gyrosym-
metry is somehow broken (say, by a variation in the background field configura-
tion whose length scale is on the order of a gyroradius), then the guiding-center

description is invalidated.

Euler’s Fluid Equations

Our next example is a Hamiltonian field theory for Euler’s equations for the
flow of an inviscid, incompressible fluid. Let us adopt a Lagrangian description

for such a fluid wherein each fluid particle is labelled by a reference position,

~

e NN
P
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Xo. Then the configuration of the fluid at time ¢ may be specified by giving the
particle’s current position, x as a function of xo and t. Thus, our dynamical field

variable is x(xo,?). The system Lagrangian consists solely of the kinetic energy
L= /dsz:oga':z(xo,t), (2.125)

where p is the constant uniform mass density. The canonical momentum field is

then given by
(x0,%) = d = px(xo,1) (2.126)
P{xo, _6'( O,t)—.pxxo, ) .

where the §’s denote functional differentiation. Performing the Legendre trans-

formation, we see that the system Hamiltonian is
3. 1 2
H = d .’L‘oz—-p (XO,t). (2127)
0

The canonical bracket of two functionals of x and p, say A and B, is then

8A 6B 6A 6B
{4,8} = /d3x0 (6x(x0,t) " 6p(x0,t)  6p(xXo,t) 6x(xo,t)) ' (2.128)

Now suppose that the fluid particles are identical. In that case, specification
of x(xp,t) is far more information than is really necessary to determine the con-
figuration of the fluid. This is because x(xo,t) effectively keeps track of particle
labels; two configurations that differ only by swapping identical particles will
actually have different x(xg,t). For a fluid of identical particles, an Eulerian de-
scription, wherein the flow velocity is given as a function of spatial position and
time, say v(§,t), suffices to determine the fluid configuration. The Lagrangian
description just keeps track of too much information. Thus, in passing from the
Lagrangian to the Eulerian description, we are effectively reducing by the group
of identical particle interchanges. The Eulerian description is therefore the re-
duced description. The reduced phase space is the (smaller, though still infinite

dimensional) space of all divergenceless vector fields, v, that satisfy the boundary
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conditions (v tangential to the boundary). The requirement that divv =0 stenis
- from the fact that we ére considering only incompressible flows.

So, from a computational point of view, how do we perform this reduction?
Note that the Eulerian velocity field may be written in terms of the Lagrangian

fields as follows:
v(E,0) = 2p(x 7€ 1)) (2.129)

This may be interpreted as follows: If we want the Eulerian velocity at spatial
poiﬁt ¢, first take x71(£,t) to get the reference position of the fluid element
currently at £, then evaluate the momentum p of the fluid element with this
reference position, then divide the result by p to get the desired answer. Now the

above equation may be written
1 .
V(e ) = o [ doplxa, 6(x(xt) - €), (2130)

where we have used the fact that the Jacobian, |8x/8%¢l, is equal to unity becéuse
the flow is incompressible. Thus we have succeeded in expressing the reduced field
variable, v, in terms of the canonical field variables, x and p. In t‘hjs respect,
Eq. (2.130) is the exact analog of Egs. (2.119) for the free rigid body problem.
Thus, we can take the Poisson bracket of the Eulerian field with itself uéing

the canonical bracket. This is straightforward, and the result is

{v(f,t),v(ﬁ', t)} = (V(f',t)5'(f' - f) - 5'(6 - f')v(ﬁ,t)), (2°131)

Q-

where ¢’ denotes the gradient of the delta function. Note that we have been able
to express this bracket in terms of the Eulerian (reduced) field variables alone.
This equation is thus the analog of Eqgs. (2.120) for the free rigid body problem.

So we see that the functionals of the Eulerian field variables constitute a
closed Lie subalgebra of the Lie algebra of all phase functionals. We thus adopt
the Eulerian field variables as coordinates on a reduced phase space. The Poisson

bracket of any two functionals of v, say A and B, is then calculated by the Leibniz
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rule
_ 3 3 o1 6A Civ(E. ! . —-———5B
{4,B} = /d §/d e VENVED} s
1 Sev(f.t) . 6A 6B ]
-_— P /d 6 (6, t) [6V(€,t), 6V(€,t)_j ’ (2132)

where the square brackets are Lie brackets, and where §4/6v(¢,t) and 6 B/6v(£, 1)
are regarded as vector fields.

Note that Eq. (2.132) is the analog of Eq. (2.122) for the free rigid body
problem. ' |

We must also check that the Hamilsonian may be expressed in terms of the
reduced variables. Fortunately, this is not difficult. A change of variables in
Eq. (2.127) gives
| H= g / Bevi(£,t), (2.133)

where we have again made use of the fact that the Jacobian, |0x/0%y/, is equal
to unaty.

It remains to check that the Hamiltonian in Eq. (2.133) together with the
bracket in Eq. (2.132) actually yield -Euler’s fluid equations. This is slightly

tricky. Consider a functional A(v). Its =quation of motion is

%t‘il = {A,H}. (2.134)

We insert Eq. (2.133) for the Hamiltonian. After some straightforward manipu-
lation, including an integration by parts where the surface term vanishes due to
the boundary condition, we get

6A [8v - - [v?
0= /435-5‘—,- [E +V-VV+ VY (%)} : (2.135)

At this point, we might be tempted to set the expression in square brackets
above equal to zero on the grounds that A is an arbitrary functional. This would,

however, be incorrect because § A/8V is not really arbitrary. Recall that our phase
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space consists only of those vector fields that have zero divergence. This causes
an ambiguity in the usual definition of the functional derivative which is such

that the equation

A(v +.5v) = A(v) + f d*¢bv - %’é + O(6v?) (2.136)

is satisfied. If v and v + 6v are both divergenceless, it follows that év is di-
vergenceless. This means that the gradient of an arbitrary function, ¢, may be

added to §A4/6v, since
/d3§6v- v o= —/d3£¢ v (6v) = 0. (2.137)

We can make the definition of the functional derivative unique by demanding

that ¥ (6A/év) = 0. This giveé a well-posed problem for the determination of
9. | .

Now, in order to incorporate this constraint that v -(6A/6v) = 0, note that if
we were to add the gradient of any scalar function, 3, to the expression in square

brackets in Eq. (2.135), the equation would still hold because
£ 5p = —/d3§¢ v (4 o (2.138)
ov ov

So the most that we can write is

ov — — (2
v i hal = 0. 2.139
at+" Vv+v(2+¢) 0 (2.139)

We now identify the pressure

v? '
pEp<—2‘l+”¢/’) ) (2.140)
so we finally arrive at Euler’s fluid equation
¥ v Tv=-1%, (2.141)

ot p
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Finally, we note that the pressure is not really arbitrary, but is rather determined

by taking the divergence of both sides of Eq. (2.141) to get
Vip= -V (v-VV), (2.142)

and by dotting both sides of Eq. (2.141) with the unit normal to the boundary
surface, 10, to get , v

dp -

P A (v VV). 2.143

% h (v YY) (2143)
This constitutes a well-posed Neumann problem for p as a functional of v. Thus,
Eq. (2.141), coupled with the constraint of incompressibility, determines both v
and p.

It is intriguing that the equations of motion for both examples considered thus

far are named after Euler; one wonders if he knew about the beautiful analogy
between them. In fact, the first published reference to this analogy seems to be

a 1966 paper of Arnold [25].

The Poisson-Vlasov System

Our final example of reduction is also a Hamiltonian field theory, this time for the
Poisson-Vlasov equations of plasma physics. For simplicity, we consider a one-
dimensional plasma (the methods are trivially generalized to three dimensions).
Once again, we label particles by their initial conditions. This time, however,
the flow is in phase space, so the initial conditions are rq and pg, and the present
phase space position is » and p. The dynamical fields are thus r(ro,po,t) and
(70, po,t). We shall use z to refer to the set of coordinates, » and p, and z¢ to
refer to the set of iﬁjtial conditions, 7o and pg. The fields may thus be abbreviated
z(zg,1).

~ — The Lagrangian for this system that includes the electrostatic potential energy
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of interaction was first written down by Low [26]. It is
m.z e ' ! '
= /dzof(zo') 25" (z0) — ?/dzof(zo)g(r(zo),r(zo)) . (2.144)

Here we have ignored species labels for simplicity. Also, f(zp) is the distribution
of initial conditions on phase space, and g(r,r') is the Coulomb potential kernel.
The canonical momentum field is then

oL

(z0) = f(zo)m7(2p). (2.145)

m(z0) =

The Hamiltonian is obtained by Legendre transformation
H = /d 20— m(20) /dzo/dzof(zo (25)9(r(20), (zo)) (2.146)
2mf (Zo)
The bracket is canonical, with » and 7 canonically conjugate.
Now suppose that the particles are identical. Just as with Euler’s fluid equa-
tions, it turns out that we can reduce to an Eulerian description. This time, the
Eulerian field variable is the usual distribufion function on phase space, f(Z).

This may be expressed in terms of the Lagrangian field variables as follows:

f(R, P,t) = /dzof(zo)é(R —7(20,1)) & (P'-— 1}5—&;—)) . (2.147)

This is the analog of Egs. (2.119) and (2.130).
Now we can take the canonical bracket of f(Z) with f(Z'). We get

(#(2),42)) = [ dz"s(2")(8(2 - 2"),8(2' - 2"}, (2.148)

where {a,b}; denotes the single-particle Poisson bracket of a(R",P" ) with
b(R", P"). Note that we have been able to express the bracket of the Eulerian
field variables in terms of the canonical field variables; thus we have achieved the
desired reduction. The bracket of any two functionals of f is found by application
of the Leibniz rule. The result is

{4, B} = def(Z) {% %}0. (2.149)
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This form for the bracket was first given by Iwinski and Turski [27], by Morrison
who credits it to Kaufman [28], and by Gibbons [29]. A derivation similiar to
that above can be found in a paper by Kaufman and Dewar [30].

Finally, we see that the Hamiltonian can be expressed in terms of f as follows
H = /de(Z — +‘ — /dZ/dZ f(Z)f(Z")g(R, R'). (2.150)

It is now readily verified that the above brackets and Hamiltonian yield the

Poisson-Vlasov equations of motion,

& Pof 0 of

9% oF _ 5.
5t mar ¢3RaP - (2.151)

where

#(R) =e / dz'f(2')g(R, R) (2.152)

is the electrostatic potential.

"Note the similarity in structure of the brackets for all three of the above
examples. For example, all three have a Poisson tensor that is linear in the
coordinates used. All are examples of what are called Lie-Poisson brackets, and
there is a rich mathematical literature on brackets of this sort (see, for example,

Marsden [23]).

2.3.4 Singular Poisson Structures

There are a few very important observations to be made about the above examples
before we go on to talk about perturbation theory. First consider the free rigid
body problem. Note that the matrix in Eq. (2.121) is singular with rank two for -
m # 0, and rank zero for m = 0. Indeed, any odd dimensional phase space must
have a singular Poisson structure, because antisymmetric matrices always have
even rank. For these systems, Darboux’s theorem does not apply and it is not

possible to find a transformation to canonical coordinates; of course, this should
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have been obvious beéauSe canonical coordinates always come in pairs and you
vcan’t pair an odd number of things.

When a system has a singular Poisson strucfu’re, the Poisson tensor will have
at least one null eigenvector. Let’s say it has n of them; note that n is equal to
the dimenéionality of the phase space, N, minus the rank of the Poisson tensor,
r. In this case, it has been shown by Littlejohn [31] that it is always possible*
to find a set of n = N ~— r scalar phase functions whose gradients are those
null eigenvectors. This is not at all obvious and requires an application of the
Frobenius theorem of differential geometry, where use is made of the fact that
the Poisson tensor satisfies the Jacobi identity.

These n scalar phase functions are very special in thé,t their bracket with any
other scalar phase function must vanish. This is obvious from Eq. (2.102). Scalar
phase functions with this property are called Casimir functions. In particular,
their bracket with any Hamiltonian is zero, so they are always conserved quan-
tities; note that their conservation follows directly from the bracket structure,
independent of the particular Ha.milténia.n under consideration. |

For the free rigid body problem presented above, the null eigenvector of the |

Poisson tensor is any multiple of m itself. The function:
C(m) = m? + m3 + m? (2.153)

is then a Casimir function since its gradient is in the direction of m, and we recog-
nize it as the total angular momentum squared. Of course, any other scalar phase
function that is functionally dependent upon C could have been used equally well.
The pathology at the point m = 0 where thé rank of J changes is called a sym-
plectic bone, and is discussed at length by Weinstein [32].

If we were to choose C to be one of our generalized coordinates, say the third
.coordinate in place of m3, then it is clear that the third row and column of J

would be zero. The two by two submatrix consisting of rows and columns. one
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and two would be nonsingular, and Darboux’s theorem could be applied to that
subsystem. Thus, the correct generalization of Darboux’s theorem for singular
 Poisson structures is to say that it is always possible to find a transformation to
a coordinate system for which the matrix of components of the Poisson tensor
has'an r by r submatrix in canonical form with the rest of the entries vanishing.

For the free rigid body problem Poisson structure given:above, this has the form:

010
J={ -1 0 0 (2.154)
0 00

form#0,and J =0 for m = 0.
It is worth repeating that Casimir functions are conserved for any Hamilto-

nian. For example, the Hamiltonian:
H(m) = pmg, (2.155)

where p is a constant, together with the same bracket used above for the free rigid
body problem, yields the equations of motion for a classical spin gyrating in a
uniform magnetic field. That is, m; and m2 undergo simple harmonic oscillations,
while m3 is conserved because it commutes with the Hamiltonian. Note that C
is a conserved quantity for this system as well, because the bracket is the same.
In general, the Poisson structure is considered to be a more fundamental entity
than the Hamiltonian.

The other two examples presented in the last subsection also have singular
Poisson structures. It is readily verified that the bracket for Euler’s fluid equations

has the Casimir functional

C = / d3ev(E,t) - [6 xv(g,t)] (2.156)

(the integrand here is called the helicity), and that the bracket for the Poisson-
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Vlasov equations has the Casimir functionals
Ce = /dZ@(f(Z)) (2.157)

where & is an arbitrary function of its argument.

2.3.5 Phase-Space Lagrangian Techniques

In this section, we review the phase space Lagrangian formalism; for more details
on this subject see Littlejohn [33] and Littlejohn and Cary [34]. For a system
with canonical coordinates, ¢ and p, and time-independent Hamiltonian, H(q, p),

the phase space Lagrangian is given by
L(¢,p,4,p) =p-4— H(g,p), . © (2.188)

where a dot denotes differentiation with respect to time, t. Note that L may
depend upon all the phase space coordinates and their time derivatives, unlike

ordinary configuration space Lagrangians, L(qg, ¢). The associated action is

A= [dtLig.p.dp) (2.159)

the variation of which yields the Euler-Lagrange equé.tions_

d (8L oL OH OH
G (oY __ . _(_°H)\_,, %% 2.160
and
d (0L oL OH O0H
- —_— —_——— — ] — — =—' ——— 2.161
dt(ap) 5 O ( 8p> T (2261)

these are recognized as the canonical equations of motion.
We denote by z#, where u = 1,..., N, (where N = 2I) the coordinates of

phase space. The phase space Lagrangian may then be written

L(z,3) = v.5* — H(2), (2.162)
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where the covector whose components are v, will be called the action one-form.

For the canonical coordinate system used above, these components are

= p, fpu=1,...,1 (2.163)
0 ifpu=I+1,...,N.

The fajét that I of these components are zero is a manifestation of the fact that
the coordinate system is canonical. For more general coordinate systems this
will not be true, as we shall see shortly. Note that phase space Lagrangié,ns
are always linear in 2. Also note that knowledge of the action one-form and the
_ Hamiltonian is completely equivalent to knowledge of the phase space Lagrangian
by Eq. (2.162).

The equations of motion may be written in this notation as follows:

g d (SLY_OL
T dt \ 9z Oz#

ar .. OH
T a e T
., OH
= (Yo = Tou) &+ 55 (2.164)
or
., OH
w,“,z = @, (2165)
. where we have defined the Lagrangian two-form
Wyy = Yoo = Yuw (2166)
or
w = dy. (2.167)

For z = (¢,p), where ¢ and p are canonically conjugate, it is easily verified that
Eq. (2.165) is equivalent to Eqgs. (2.160) and (2.161).
We can recover the more familiar Hamiltonian formalism in the following

manner: Assuming that [w,,] is a nonsingular matrix, we denote its inverse by
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J#Y | so

T*Pw ,, = &, - (2.168)
Then Eq. (2.165) becomes
, 8H

TN [y :

e o (2.169)

These are recognized as Hamilton’s equations if we identify J*¥ as the Poisson
tensor. That the Poisson tensor is antisymmetric and obeys the Jacobi identity
is easily verified. In particular, the Jacobi identity follows directiy from dw =
ddy = 0.

Under a (possibly noncanonical) transformation of phase space coordinates,
z Z, the action one-form transforms in the usual fashion of a covariant vector

to give
' - 82¢
Tw= 5z

Y. (2.170)

Similarly, the Lagrangian two-form transforms like a second rank covariant tensor

,325 9z"
vy = bﬁgz*uwfn = P,,,“ - Fu,y, (2.171)

where the commas in Eq. (2.171) denote partial differentiation with respect to
Z. The Hamiltonian, of course, transforms as a scalar, K(Z) = H(z). The new
equation of motion is then

0K

02" = 5=, (2.172)

which may be compared to Eq. (2.165).

Note that all of the above considerations assume a time-independent Hamil-
tonian. This restriction is not important for two reasons: First, we could always
work in extended phase space to treat a time-dependent system; this is the ap-
proach taken by Littlejohn and Cary [34]. Second, all of our relativistic equations
of motion will have the single-particle proper time as the independent variable,

and nothing depends explicitly on this.
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The transformation

" 8S
Ye > Ye + pyr (2.173)

where S is an arbitrary scalar field on extended phase space, is called a Lagrangian
gauge transformation. Though it alters the action one-form, it is easily seen to
have no effect on the Lagrangian two-form, and so it does not change the equation

of motion, Eq. (2.165).

It is clear that if L is iﬁdependent of one of the extended phase space coordi-
nates, say z*, then the associated momentum, 8L/3z#, is conserved by Noether’s
theorem. Note, however, that a gauge transformation, -like Eq. (2.173), using a
scalar field, S, that depends upon the ignorable coordinate, could destroy the
Noether symmetry, even though the associated momentum would still be con-
served. The same is true for coordinate transformations like Eq. (2.170). .Con-
versely, we see that it may be necessary to perform gauge or coordinate transfor-
mations in order to uncover Noether symmetries and, hence, to discover conserved

quantities.

The strategy for our treatment of the guiding-center problem will be to start
with the phase space Légrangian for a single relativistic charged particle in an
electro_magnetic field, aﬁd, via a sequence.of gauge and coordinate tranéforma—
tions, find a representation in which the gyroangle, 8, is ignorable. This is the
Noether symmetry for the gyromomentum. ‘When this is achieved, the gyroangle
will no longer appear in the equations of motion for the other variables, and the
magnetic moment will appear only as a constant parameter like the rest mass.
Thus, in this system of “gyrocoordinates,” the rapid oscillatory motion is effec-
tively decoupled from the slower guiding-center motion, and the dimensionality

of our phase space is reduced by two.
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2.3.6 Constrained Systems

Egs. (2.162) and (2.159) may be interpreted as follows: The variation of the
action one form must vanish, subject to the constraint that the Hamiltonian is
constant. By including other 'constra,ints, besides the fact that the Hamiltonian is
constant, we can discover new and interesting Poisson structures that have those
other constraints “built in.” :.

For example, consider a particle that is constrained to move on the surface

of a sphere of radius r. To model this system, we take the canonical action one

form,

vy =p-dr=p,,‘d:v + pydy + p.dz, (2.174)

and vary it subject to the constraints that the Hamiltonian, H, be constant, that
the particle position be on the sphere

r|? = 2% + 4% + 22 = r?, (2.175)
and that the particle momentum be tangent to the sphere

r-p=zp; +ypy + zp. = 0. - (2.176)

The constrained variation may be done in any one of a number of ways; e.g.

by use of Lagrange multipliers. Thus we write
: 1
L=p-1f‘—§)\1|r|2—/\2r-p.—H, ' (2177)

and form the Euler-Lagrange equations

oOH
S _ et 2.178
P Ar — A2p or ( )
53]
O0=r—Ar — Ff){ (2.179)

Dot the first of these equations with r to get-

: 8H
r-p=-Mf-r.—, (2.180)
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from which it follows that

1 . OH
Then dot the second with r to get
| | 8H
O=r-f—Ajr?—r. B’ (2.182)
from which it follows that
1 8H .
= —r. (-2 183
Az =T (r op ) (2.183)

Note that Eqs. (2.181) and (2.183) may be written in the form

>‘1 - _L -l‘*({p,l‘}-{*—l) _r'{pap} ) BH/BI‘ .
Az r2 r-{r,r} —r-({r,p} - 1) 8H /9p
(2.184)

To get the Poisson brackets, first substitute the Lagrange multipliers, (2.181)
and (2.183), back into the equations of motion, (2.178) and (2.179). We get

(1- :—5) -i~=v(1— g) : %Ig- (2.185)
and '
(1—%)-p:-(l-%)-%?-—%pr(f—%). (2.186)

Note that these two equations do not determine the motion completely; they give
only the projection of the motion on the'sp'here. To fully determine r and p, we

need to employ the derivatives of the constraints,

r-r=0 (2.187)
and
r-p+i-p=0. | (2.188)
Using these, we finally get‘
) rr\ OH
P = (1 - r—2) il (2.189)

dp
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and
1 OH

. rr\ OH
p——(l—r—2>-—é—£—+r—2~(pr—rp)~%. (2.190)

These equations of motion are Hamiltonian with the quadratic Poisson structure

{ri, 77} =0
, i 7‘i7"
{rl?p]'} = 5] - rzj
ripi = Tipj
{pi,p;} = ]—rz"“‘]‘ (2.191)

Note that the constraints, Eqgs. (2.175) and (2.176), are Casimir functions of this

Poisson structure. This means that the Hamiltonian equations of motion will

yield dynamics that respect these constraints for dny Hamiltoman whatsoever.
There is another approach to deriving the above set of brackets. We could

have adopted the spherical coordinates,

r=+y/z?+y*+ 22 (2.192)

6 = arctan(v/z2 + y?/z2) : (2.193)
¢ = arctan(y/z), (2.194)

on R3. These have the canonically conjugate momenta

pr = (zp: +ypy + 2p.)/ V2% +y? + 22 (2.195)
pe = z(zpz + ypy)/ VT2 + y? (2.196)
P¢ = TPy — YPz, (2.197)

as is easily verified.- The advantage to using these spherical coordinates is that
the constraint surface in phase space is simply described by setting p, equal to

zero, and r equal to a constant.
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Now we can write

r=zX+yy + 22

= cos 0z + sin § cos ¢X + sin § sin gy (2.198)

P =P:X +pyy +p.2
= (prcos — ZEsinO)i
, ro.
+ (prsinfcos ¢ + Egcos@coscb— Z—jicscesin¢)5c
r T

+ (prsin@sin ¢ + P cos@sin ®+ Pe cscBcos P)y. (2.199)
T T

Egs. (2.198) and (2.199) and the Leibniz rule allow us to compute the brackets
for the system of coordinates (r,p) in terms of the brackets. for the system of
coordinates (r, 0, ¢, pr, pg,py). If we ignore the constraint, then the latter system

is canonical, and it follows that the former system is also canonical. If, on the |
other hand, we incorporate the constraint by dictating that r and p, are Casimir

functions and that p, = 0, then the brackets (2.191) follow immediately.

It is interesting to contrast these two methods for obtaining the brackets
(2.191). We shall use these methods when we cast our guiding-center equations
of rﬁotion in gyrogauge and boostgauge invariant format, towards the end of
the Chapter 3. Our guiding-center Poisson brackets will also have a quadratic
Poisson structure, similar to that of the above set of brackets. Such quadratic -
Poisson structures seem to arise naturally from this type of manipulation. The
reader who is interested in pursuing this topic further is encouraged to read about

Dirac’s theory of constraints [35).
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AN

2.4 Lie Transform Perturbation Theory

2.4.1 General Discussion of Lie Transforms

Recall that we first introduced coordinétes on manifolds using the concepts of
charts and atlases. A chart is a one-to-one map from a region of R™ to a region
of an n-dimensional manifold. Each coordinate, z®, may thus be thought of
as a function on the manifold. When we change coordinates, we are effectively
transforming these functions.

Consider an infinitesimal transformation of coordinates given by
Z% = 2% + h(Lyz)* = z% + hg*(2), - (2.200)

where h is an infinitesimal, g is a vector field, and the Lie derivative acts on
the coordinates as though they were scalar functions. From our geometrical
interpretation of the Lie derivative, we see that we are effectively taking the
functions that define the coordinates, and sliding them an infinitesimal parameter

interval, h, along the field lines of g. The inverse transformation is
29 =27%-h(LyZ)* = Z% — hg®(2). (2.201)

Of course, since h is an infinitesimal, we are scrupulously ignoring anything of
order hZ.
Now we ask how basis vector components behave under the above transfor-

mation. Assume a coordinate basis for simplicity. We have

8 8 8 9 _,04° 8

= = - . 2.202
8Z« B8Zx8zB 0z~ Oz« 92P ( )
Similarly, basis covector components transform as follows:
0zZ¢ ag®
a __ B _ j,a B
dZ® = 55 dzP = dz% + hazﬂ dz". (2.203)

Now suppose that t is some tensor field on the manifold. We can ask how

the components of t behave under the above transformation. Use a prime to
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distinguish the components of t in the new coordinate system. We demand

QY. 5] o
t's,. . (Z)Ez_a_f @ 370 RdZP @ ... @ dZP:

®...®

azl“l az#r

=t (2)

®dz"* ®--- ®dz". (2.204)

Now expand in h, retaining only first order terms. We find

tlﬂ-l...ur — ty,l...p,,. _ h(t;;llu.,. ga

Vi.oVy V1. Vs Vg,
Y e T S 1 C DRV 2 S e 7
tu1...u, g , tul...u, g ,Q
Blfie O v Bieefir o
+ tallz...ll,g W1 + + tV1...V;_1ag ,V,) * (2"205)

Suppose that we define a new tensor field, T, whose components in the old
system are the same as those of t in the new system. Then, by comparison with
Eq. (2.43), we may write

T = t — h(L,t), (2.206)

where comparison with Eq. (2.43) is helpful. Furthermore, since this last equation
is in coordinate-free form, it is true for coordinate bases and noncoordinate bases
alike.

Compare the signs of the second terms on the right-hand sides of Eqs. (2.206)
and (2.200). Despite the algebra that went into proving the above result, it
has a marvelously simple geometric interpretation. If we slide the values of the
coordinates one way along a field line of g, then we must slide the tensor field in
the other direction. In case this 1s not obvious, a trivial example is afforded by
a scalar field on R, call it f(z). If we transform coordinates to X = z + h, then
F(X) = f1(X) = f(2) = f(X — h) = F(X) — h(df /dX)(X) = (f — hLS)(X).

Suppose that our tensor field is the tensor product of two tensor fields, say
t =t; ® t,. Thén, since Lie derivatives obey the Leibniz rule over the tensor

product, we have

T =t — h(L,t)
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=t @ty — hLly(t; ®t2)
=t @ty — h(Lyt1) @tz — Aty ® (L,t2)
= [t; — h(Lgt1)] ® [t?— h(Lgt2)], (2.207)

where, as always, we neglect O(h?). This result indicates that the infinitesimal
transformation commutes with the tensor product. .

Next suppose that the tensor field is obtained by starting with a tensor of
higher rank and applying to it some number of vectors and/or covectors. For
example, say t = s(a, U) where a is a covector field and U is a vector field; we
could have let s have more than one of each type of argument or other unﬁiled slots
without affecting the following reasoning in any way. Apply the transformation,

and use Eq. (2.44) to write

T=t- h(Lg4t)
= s(a,U) — hLy[s(a, U)]
= s(a, U) — h(L,s)(a, U) — hs(L,a, U) — hs(a, £, U)
= (s — hL;s)(a— hLya, U - hL,U). - (2.208)

This result indicates that the trémsformation commutes with the application of
the vectors and/or covectors.

Next suppose that the tensor field is an exact form. That is, say t = df2.
Since Lie derivatives commute with exterior derivatives, it follows that the trans-
formation commutes with the application of the exterior derivative.

The above results indicate that any tensorial relationship, including those
with differential operators, retains its form under a transformation of the form
given in Eq. (2.200). This crucial point makes the Lie transform method possible.

Now suppose that we wish to comsider finite (rather than infinitesimal)
changes of coordinates. That is, suppose we wish to slide the coordinate val-

ues a finite parameter interval, ¢, along the field lines of g. The easiest approach
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is to divide the finite interval into a large number of infinitesimal intervals by
writing

Z= lim (1+ %LQ)Nz = exp(eL,)z. (2.209)
The ﬁlﬁte transformation of the tensor, t, is then

‘ ¢ ; _
T= lim (1- —A—rcg)Nt = exp(—eL,)t. (2.210)

The transformation given by the above equations is called a Lie transform gen-
erated by the vector field, g.

Because the infinitesimal transformations of the form given in Eq. (2.200) are
known to preserve tensorial relationships, and because a Lie transform is com-
posed of nothing more than a large number of these infinitesimal transformations,

it follows that Lie transforms preserve tensorial relationships. That is
exp(—€Ly)(t; ® t2) = (exp(—€Ly)t:) @ (exp(—eLy)t2), (2.211)

and

exp(—eLy)[s(a, U)] = [exp(—eL,)s] (exp(—eLy)a,exp(—€L,)U),  (2.212)

and

exp(—eLy)(dS?) = d(exp(—€Ly)R). (2.213)

We now have a way of making finite coordinate transformations of any tensorial
equation that is guaranteed to preserve its tensorial form.

By Taylor expanding the exponential in Eq. (2.209) and using Eq. (2.30) for
the Lie derivative, it is possible to develop the transformation to arbitrarily high
order in e. In practice, we want to be able to control the transformation order
by order in €. There are two ways to do this. The first, due to Deprit [36], is to
order the generator,‘g, in e. The second, due to Dragt and Finn [37], is to make

a succession of transformations like Eq. (2.209), as follows:

Z = exp(eLy,) exp(€2L,, ) exp(e2Ly,) - - - 2. o (2.214)
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In this work, we adopt the second procedure, as it was shown by Cary [38] to
involve fewer terms in the perturbation series at each ordcr. Expanding the above

~equation in € and using Eq. (2.30), we get
2 1.2 3 1.3
Z =z + €£1Z + € ([«2 -+ -2-£1)Z + € (£3 -+ £1E2 -+ gﬁl)z -+ --- ’ (2215)
Here we have used L, to abbreviate £, . The inverse transformation is then
z = ...exp(—€>L3) exp(—€*L;) exp(—eL;)Z. (2.216)

Developing this order by order, we get

z2=2—€L,Z —€*(Ly ~ %E?)Z — (L3 — Loy + %D;’)Z — e (2.217)
The transformation of the tensor t is then
T =.-.exp(—€>L3) exp(—€*L;) exp(—eL, )t. (2.218)

Let us suppose that t is given as a power series in the expansion parameter, ¢, so
t=to+et; + ety + St -, (2.219)

Then Eq. (2.218) yields

T=To+eT; +2T,+ T3 +---, (2.220)
where
To = to, (2.221)
T; = t, — Lto, (2.222)
Ty =ty — Latg — L1ty + %Efto, (2.223)
T3 =tz — Latg — Loty + LoL,tg — Lyt + %citl ~ %L‘;’to, (2.224)

etc.
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Given any equation written in tensor form, we can now make near-identity
coordinate transformations to perform perturbation analyses. That is, if the
equation has the form of a solvable equation plus a small perturbation, we can
make a Lie transform to coordinates for which the perturbation is removed or
at least simplified. The form of the generator, g, required to achieve this sim-
plification depends on the specific problem, and is chosen order by order in the
perturbation series.

Once this process has been carried out to first order, we could continue on
to second and higher order, or we could regard the first-order problem as a
new solvable problem and renormalize the perturbation series accordingly before
proceeding to higher order. The latter strategy is called the superconvergent Lie
transform procedure; superconvergent pérturbation series were first investigated
by Kolmogorov [39]. All this will be made clear by selected examples in the next

few subsections.

2.4.2 Lie Transforming a Scalar Field
Consider the scalar equation
f(z) = ez® + 22 — 2¢ = 0, (2.225)

where ¢ is a constant and € is our expansion parameter. Let’s pretend for a
moment that we do not know how to solve a quadratic equation. The scalar

field, f, is ordered in € as follows:
folz) = 2z — 2, (2.226)
fi(z) = 22, (2:227)

and f,(z) =0forn > 2.
We wish to perform a Lie transform to a new coordinate, X, for which the

transformed scalar will be denoted by F. Since we are working in R, the generator,
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g, has only one component. At order zero, use Eq. (2.221),
Fy = fo. (2.228)
At order one, use Eq. (2.222),
Fi = fi—gi1fy = 2% - 29:. (2-229)

Thus, we see that we can make F vanish by choosing g; = z2/2. Movingvon to

second order, we use Eq. (2.223),

.~

23
Fy = —2g2 — —. (2.230)
So we can make F, vanish by .choosing g2 = —x3/4. Thus, to order €2, we have
the Lie transformed scalar equation
F(X)=2X-2c=0. (2.231)

This has solution, X = ¢. Now z is given in terms of X by Eq. (2.217) which

becomes

1
z=X —eg1— €(g2— zq1d1) — -+

2
-T2 2°
2
=c—§c2+%c3—~'-- (2.232)

This matches the Taylor expansion of the exact solution to the quadratic equation
1
z=>(-14V1+2e), (2.233)
e .

to O(€?), as is easily-verified.

Note that there is another solution to the quadratic equation

z = % (=1 = V1 +2ec), (2.234)

of leading order ¢~! that our technique does not give. This is because it is not
continuously connected to the solution of the unperturbed problem as ¢ goes to

zero. Lie transforms are useful only for near-identity coordinate transformations.
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2.4.3 Lie Transforming a Vector Field
Now consider the following dynamical system:

=y

i/ = —z—ex? (2.235)
If we use z to denote (z,y), then this may be written

Z = Vg + €V, (2.236)

where we have defined the vectors, vo = (y, —z) and v; = (0, —z?). We now try
to Lie transform to new coordinates, Z = (X,Y’), in an attempt to get rid of the
order € term. The transformed vector field is V = Vg + €V, where Vi = v,,

and V), is given from Eq. (2.222),
Vi =vi—Lyvo. (2.237)

Using the formula for the Lie derivative of a vector, the demand that V; = 0 is

seen to be equivalent to the following pair of equations:
13/ a\ . v
(ya z 8y> 91 =5

5 8 . |
<y5; - m6—y> gl = —gf +z*. (2.238)

These may be solved by the method of characteristics to yield

and

z 1
g1 = 5(3’2 + 2y%)

and

2
g = —3%Y- (2.239)

Note that the characteristic equations for this system are the unperturbed equa-
tions of motion. This “integration along unperturbed orbits” is a generic feature

of problems of this sort.



CHAPTER 2. MATHEMATICAL PRELIMINARIES 7

Now then, the new coordinates are given in terms of the old by

X=a:+-;—(a:2+2y2)

2
Y=y—- -ge:cy. - (2.240)

The inverse transformation is then
z=X— §(X2 +2Y?)

y=Y + %fXY. ‘ (2.241)

Note that we are ignoring terms of order €? or higher. Now the equations of

motion for Z are

X=Y
/= —X. (2.242)

These have solution

X =Xgcost+ Yysint

Y =Y,cost — Xysint. (2.243)

Thus, the solution for z(t) is given by Eqgs. (2.241) and (2.243). If desired, the
initial conditions for Z can be expressed in terms of the initial conditions for z
using Eq. (2.240).

Frequently, in physical applications of this formalism, it happens that the new
coordinates have physical significance. For example, in guiding-center theory, we
shall find a Lie transform that takes us from the phase space coordinates of a
particle to those of a guiding center. In such a circumstance, very little is gained
by expressing the initial conditions of the transformed problem in terms of those
of the original problem. Instead, the new coordinates acquire their own physical

. significance, and we can speak of “the equations of motion of a guiding center”
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and “the initial conditions of a guiding center,” and forget all about the original
single-particle coordinates.

For a less trivial example of the vector Lie transform technique, see Ap-
pendix C where the method is used to calculate the gyrofrequency shift for
two-dimensional nonrelativistic guiding-center motion in a spatially nonuniform

electromagnetic field.

2.4.4 Canonical Lie Transforms of a Hamiltonian System

When using perturbation theory to study a Hamiltonian dynamical system, the
above technique of Lie transforming the dynamical vector field could be used,
but there is a serious problem with this approach: There is no guarantee that the
Lie transform of a Hamiltonian vector field will be another Hamiltonian vector
field.

Recall that a Hamiltonian vector field is given by contracting the Poisson
tensor with the gradient of a scalar function. This suggests the following solution
to the above problem: Instead of Lie transforming the Hamiltonian vector field,
Lie transform the Poisson tensor and Hamiltonian separately. This will insure

that the transformed equations of motion are still in Hamiltonian form.

Let us examine a little more closely why this should work. Hamiltonian

equations of motion are given by Eq. (2.111). If we write

Z = exp(eL)z,
J' = exp(—eL)d,
and
H' = exp(—eL)H, (2.244)

then since our equations of motion are in tensor form, we are guaranteed that
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the new equations of motion will be

OH'

Furthermore, we are guaranteed that J' is antisymmetric and obeys the Jacobi
identity because these requirements can also be written as tensorial equations
(see Egs. (2.103) and (2.104), respectively). Thus, Eq. (2.245) qualifies as a bona
fide Hamiltonian system.

We can now prove a marvelous theorem that considerably simplifies the work
- involved in making canonical (bracket-preserving) Lie transformations of a Hamil-
tonian system, and is probably responsible for the popularity of the Lie transform
technique: A Poisson tensor is a Lie-dragged tensor along any vector field that is |
Hamiltonian with resl:;ect to it. Suppose the Poisson tensor is denoted by J. Let

V be given by

ow
« = Job 2.
Ve =g (2.246)
for some (any) scalar field, W. Then the theorem states
LyJ=0. (2.247)

This is easily proved using the formula for the Lie derivative of a second rank

contravariant tensor. We write

(LyI)*P =VEgol  —ve, JiB _yP jet
— __(J&EJﬁ"/'E + J1£J03,5 + JﬂfJ‘*/a,E)Wn

— JETW e (JEP + TR, o (2.248)

where we have used Eq. (2.246) for V. The first term vanishes by the Jacobi
identity, the second term vanishes by antisymmetry, and the theorem is proved.
It immediately follows that a Lie transform along the vector field V leaves

J unchanged. This is because.a Lie transform is the exponentiation of a Lie
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derivative (set L,nt, = 0 in Egs. (2.221) through (2.224) to recover T = t). Thus,
Lie transforms generated by Hamiltonian vector fields are always canonical. Now
Hamiltonian vector fields are in one-to-one correspondence with scalar phase
functions, W, by Eq. (2.246), so we have found a way to generate canonical
transformations with scalars.

Thus, to perform a canonical Lie transform of a Hamiltonian system, we need
only to transform the Hamiltonian. Now the Lie derivative of a scalar with

respect to a Hamiltonian vector field is given by
LvH=V°H,=J*WgzH, =—{W,H}. (2.249)

Thus, for a canonical Lie transform of a Hamiltonian, we may rewrite Egs. (2.221)

through (2.224) as follows:

Ky = H,, ' (2.250)
K, = Hy + {W1H}, (2.251)
1
Ky = Hy + {Wy, Ho} + {Wy,H, } + ‘2-{W1,{W1,H0}} (2.252)

K3 = H3 +{W3,Ho} + {W2, H } + {W,, {W1, Ho}} + {W1, H2}
+ %{Wl,{Wl,Hl}} + S (W, (W, (W, Hol 3, (2.253)

etc. Here we have denoted the new Hamiltonian by K.
To see how this is used, consider the following example: We perturb a har-
monic oscillator Hamiltonian by the addition of a nonlinear term,

1 6 .
H= 5(q2 +p%) - §p4. (2.254)

Note that the unperturbed motion oscillates with unit frequency. We can intro-

duce action-angle variables for the unperturbed Hamiltonian,

' 1
J = E(q2 +p°) (2.255)
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6 = arctan(q/p), _ (2.256)
so that
H=7-:7 (1 + % cos(26) + -13: cos(40)) . (2.257)
Thus we have |
Ho=1J (2.258)
and
1, 4 1
H, = —EJ 1+ 3 cos(26) + 3 cos(46) | . (2.259)

We now try to remove H; by a canonical Lie transform generated by the scalar,
W; (we shall work only to order one in €¢). We have Ko = Hy, and

oW,

K, = H1+{W1,Ho}=H1+{W1,J}=H1+ 50

(2.260)

Note that we cannot demand that K; = 0 since that would cause W, to be
multivalued (that is, secular terms would appear in W;). The best that we can

hope for is to make K; equal to the #-average of H;. That is,

K, = —%J"’. (2.261)
Then
ow
L = lJz [4 cos(26) + cos(46)], (2.262)
a0 6
and this integrates to give
W, = %ﬂ [8 sin(26) + sin(46)] . (2.263)

Using this generator we can work out the transformation equations, and hence
completely solve the problem (to order €). For now we note that the perturbed
frequency is given by

=22 1 264
37 1—eJ (2.264)

Note how the Lie transform has taken us to a new set of coordinates in which

the perturbation is averaged; that is, independent of the angle variable. Since
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the resulting Hamiltonian depends only on the action variable, it is integrable
by definition. Furthermore, secular terms were avoided by this absorbing of the
a.‘vera.ged part of the perturbation into the new Hamiltonian.

Aforementioned problems of resonant perturbations occur when the unper-
turbed motion has characteristic fréquencies that vary with the action (this is
true generically, but not in our above example). When this happens, 0W;/96
can equal a quantity that is oscillatory but whose frequency passes through zero
on some set of measure zero in phase space. Thus, in some neighborhood of this
region, problems of secular behavior ca.n-develop. Various techniques exist for
dealing with this problem, but we shall not consider such problematic regions of

phase space in this thesis.

2.4.5 Noncanonical Lie Transforms of a Hamiltonian Sys-

tem

It sometimes happens that a canonical transformation is not the best way to
solve a particular problem in perturbation theory. This may be because it is
best to express the unperturbed problem in noncanonical coordinates for which
the perturbation alters not only the Hamiltonian but also the Poisson structure.
This is the case for both the guiding-center and oscillation-center problems whose
solution forms the core of this thesis. In this case, we must resort to noncanonical
transformations, but we demand that they preserve the Hamiltonian nature of the
equations of motion. As has already been pointed out, this can be accomplished
by Lie transforming the Poisson tensor along with the Hamiltonian; this means
that the vector generator of the Lie transform should not be a Hamiltonian vector
field.

Consider once again the harmonic oscillator Hamiltonian,

1
- H= -2-(q2 + p°). (2.265)
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This time, we introduce a perturbation not in the Hamiltonian but rather in the

Poisson structure. Suppose that the perturbed brackets are

{g:p} =1—ep”. | (2.266)

Thus we have J = Jo+€J;, where Jy is the canonical Poisson tensor. We wish to
- perform a Lie transform that will réstofe the bracket to its canonical form. We
demand .

0=J) =J;, - LyJo. (2.267)
Straightforward computation shows that this imposes only .one independent re-
quirement on the generating vector field, g, namely

o 0 _

50 By = \ (2:268)
It is easy enough to solve this equation; for example, we could take
g° = %—3 (2.269)
and
g? =0. | (2.270)

This effectively restores the bracket to canonical form, but it alters the Hamilto-

nian as follows:

K=H-¢e£,H= %(q2 + p?) - §p4. (2.271)

Note that this transformed problem is coincidentally the same one that we treated
in the last subsection. Thus, we could now apply a second (this time canonical)
Lie transform to finally solve it. Once again, we would find the perturbed fre-
quency, ! =1 — eJ.

The important thing to note here is that g is not a Hamiltonian vector field.
If it were, there would have to exist a scalar functibn W such that 0 = 6W/8p
and p®/3 = —8W/8q. Examination of the mixed second derivatives shows these

to be incompatible requirements.
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2.4.6 Lie Transforming the Phase-Space Lagrangian

There is another way to go about making noncanonical transformations of a
Hamiltonian system that is guaranteed to keep it Hamiltonian. Recall that spec-
ifying the action one form is equivalent to specifying the Poisson tensor (assuming
that everything is nonsingular). We can simply take the exterior derivative of ¥
to' get w, and then invert ;w to get J. These are all tensorial relationships, so we
could just as well Lie transform v and H instead of J and H.

Indeed, there are several advantages to this approach. First, it is easier to
take Lie derivatives of one forms than of second rank contravariant tensors; there
is one less term to worry about, and, more importantly, we can use the homotopy
formula to help us Lie differentiate one forms. Second, when we Lie transform
the Poisson tensor, we are guaranteed that the resulting tensor will be a valid
Poisson structure only to the order we are keeping. When Wé Lie transform the
action one form on the other hand, its exterior derivative is still going to be closed
even if we truncate it. Thus w is exactly closed, so J = w™! will obey the Jacobi
identity exactly. |

Consider a Lie transformation of the original action one form, «, into a new

action one form, I'. Using the homotopy formula, Egs. (2.221) through (2.224)

become
I's = Y0, (2.272)
Fl =71 — iIWO + dS], . (2.273)
. 1,
rg = Y2 — Wy — 521(0)1 + Ql) + ng, (2.274)
. . . 1 . 1
I3 = 93 — t3wo — 128 — 41wz — §d11(wl + Eﬂl)] + dSs, (2.275)

etc. Here, we have defined w,, = dv,,, and Q,, = dI',,. Note that in these equations,
we have also made near-identity gauge transformations by adding dS,, at order

n for all n > 1. In fact, any other one-forms in these equations that were given
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by the exterior derivative of a scalar (typically arising from the second term on
the right of Egs. (2.75) and (2.76)), were a.bsorbéd in the definitions of the S,.

Thus, these last transformation equations are capable of dealing with any
near-identity coordinate or gauge transformations, and so it is these that we
shall use in the sections to follow. The vectors g, and the scalars S,, will be
détermined by certain desiderata? We want the transformation to average away
the rapidly oscillating terms of the Hamiltonian and action one-form, and we
want to avoid secular terms. For the guiding-center problem, we shall also want
the action one-form to be iﬁva.ria.nt with respect to certain transformations called
gyrogauge and boostgauge transformations. This will be explained in more detail
later.

For now, we consider another simple example. Consider once again the har-

monic oscillator Hamiltonian, and perturb the canonical action one form as fol-

lows:
v = pdq + §p3dq. (2.276)
We have _
w=dy=(1+ep’)dp A dq. (2.277)

This inverts to give (1 + ep?)~! times the canonical Poisson tensor, and to order
€ this is the same as the perturbation that was examined in the last subsection’
(which is why we chose it). We can now compare the two methods of doing the

~ problem.

Demand that I'; = 0, s6 Eq. (2.273) gives
. 1
0=T1 =9 —tiwp +dS; = (§p3 — gP)dq — g%dp + dS;. (2.278)

Thus we can-take S; = 0, and
.3
g = % (2.279)

and
g7 = 0. | (2.280)
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These are precisely the same generators that we discovered in the last subsection,
they have precisely the same effect on the Hamiltonian, and the rest of the prob-
lem follows in identical fashion. That is, a second canonical Lie transformation

is necessary to get to averaged coordinates.
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Chapter 3

Relativistic Guiding-Center

Theory

3.1 Discussion

Relativistic guiding-center motion occurs in many applications of plasma physics,
including controlled fusion, free-electron lasers, and astrophysics. The tandem
mirror and bumpy torus plasma confinement devices, for example, utilize pop-
ulations of magnetized electrons at relativistic energies in complicated field-line
geometries. In free-electron lasers, relativistic electron beams travel along strong
magnetic fields with superposed wiggler fields. Near a neutron star, relativistic
plasma can be confined in strong elgctromagnetic and gravitational fields.

All these examples point out the need for a formalism that is able to treat gen-
eral electromagnetic field geometries. Particle simulation codes used for studying
the properties of guiding-center plasmas in controlled fusion confinement devices
sometimes require the guiding-center equations of motion to one order higher

than the usual drifts; this indicates the need for a simplified and systematic per-
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turbative treatment, such as that afforded by the use of Lie transforms. The
free-electron laser problem has no obvious preferred frame of reference, and this
suggests that a manifestly covariant description would best reveal the essence of
the physical processes involved. The neutron star problem involves coupling to
a general relativistic gravitational field, and this absolutely requires a manifestly

covariant formulation. All these desiderata will be satisfied by our theory.

Nonrelativistic theories of guidjﬁg—center motion in arbitrary magnetic geom-
etry frequently make use of orthonormal triads of unit vectors at each point of
three-dimensional physical space. One member of each such triad is required
to lie in the direction of the magnetic field at that point. Such a basis affords
great clarity and relative ease in the computation and exposition of the results
of guiding-center theory.

One of the first problems to be addressed in any relativistic formulation of
guiding-center theory is thus that of finding the relativistic analogs of these basis
triads. Fortunately, this problem has been solved by Fradkin [13], who gives a
straightforward method for finding orthonormal tetrads of unit vectors at each
point of four-dimensional spacetime. In a frame for which the perpendicular
electric field vanishes, one pair of unit vectors in these tetrads lies perpendicular
to the magnetic field, while the other pair spans the two-dimensional subspace
determined by the direction of the magnetic field and the direction of time.

Fradkin shows that these two two-dimensional subspaces are covariantly de-
fined, and that the rapid gyration takes placé in the first of these, while the slower
parallel motion takes place in the second. This formalism is therefore useful for
isolating the oscillatory motion so that it can be effectively averaged to obtain
the guiding-center equations of motion. It is described from first principles in
Sections 3.2, 3.3, and 3.4.

Lie transform perturbation theory is used to perform the averaging. Though

this technique has been known for some time [40], its use for the guiding-center
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problem poses special difficulties which were first overcome by Littlejohn [22].
The difficulties are due to the fact that the Poisson structure as well as the
Hamiltonian depends upon the rapidly gyrating variables, so that the transfor-

mation required to gyroaverage the system of equations is not canonical.

A Lie transform in its most general sense is a coordinate transformation gen-
erated by a vector field on phase space. If this vector field generator is a Hamil-
~ tonian vector field (that is, a vector field that is the flow generated by some
scalar Hamiltonian-like function) then the transformation it indupes is canonical;
in this case one often simply speaks of the transformation as being generated by
the corresponding scalar function. For the guiding-center problem, however, the
vector generator of the averagin‘g transformation cannot be a Hamiltonian vector

field, since it must generate a noncanonical transformation.

In the nonrelativistic guiding-center problem, it was found by Littlejohn [7] to
be easiest to apply the general Lie transform to the action one form. This is the .

approach that is followed here; it was described from first principles in Chapter 2.

In any calculation that goes beyond the lowest order drifts, it was found
by Littlejohn [41] to be necessary to worry about maintaining a certain gauge
invariance property of the action one form which for the nonrelativistic case is
known as gyrogauge invariance. If the averaging transformation does not preserve
this invariance property, then the final guiding-center equations of motion will
depend unavoidabiy on the arbitrarily chosen basis vectors used to set up the
problefn, as was noted by Haga.n and Frieman [42]. In Section 3.6, we work out
the relativistic generalization of this invariance property, and we find that the
relativistic case admits another similar gaﬁge invariance property which we call
boostgauge invariance.

The Lie transforms are carried out in Sections 3.7, 3.8 and 3.9, and the
guiding-center Lagrangian and Hamiltonian are presented. The Poisson bracket

structure is then given in Section 3.10 and the equations of motion are pre-
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sented and discussed in Section 3.11. In Section 3.12, a complete summary of the
transformation equations is given for reference and the correction to the gyromo-
mentum is derived. In Section 3.13, we show how to write our results in “1 + 3”
notation, and we compare our results to those of Northrop [43]. In Section 3.14

we cast all our results in manifestly gyrogauge and boostgauge invariant format.

3.2 Conventions and Notation

In this work, we adopt the following conventions: The particle space-time co-
ordinate will be denoted by r#, where ,u, = 0,...,3. The Minkowski metric,
guy = diag(—1,+1,+1,+1), is used throughout our derivation of the guiding-
center equations, but the results will be written in manifestly covariant form so
that this assﬁmption can be relaxed. T.he four potential‘is given by A* = (¢, A),

so the antisymmetric field tensor is F = dA, or

0 -E, -E, -E.

E, 0 B, -B
FI-“" = Au,p. - Ay,,u = y B (3.281)

(3.282)

where €,,3 is the completely antisymmetric fourth rank Levi-Civita tensor with

€0123 = +1. Note carefully that €123 = —1, thanks to the Minkowski metric.

It is often convenient to use “1+3” notation. Then, the matrix of components
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of the mixed field tensor, F*,, may be written

0 E
F = : (3.283)

E 1xB

and that of the mixed dual field tensor, F*,, may be written

0 -B
F= . (3.284)

-B 1xE
Note that we have used the notation (1 xB);; = €ri0ji B1 = €;;.B;. Also note that
the mixed field tensors are neither symmetric nor .a.ntisymmetric. The advantage
to dealing with the mixed tensors is that one may contract them with other
tensors using ordinary matrix multiplication. Of course, we could equally well do
this with the completely covariant or contravariant forms, but we would have to
remember to use the Minkowski metric when multiplying a row by a column.

Thus, when the field tensor is applied to an arbitrary four-vector, the result

a E-a . _
F. = . (3.285)
a aE+axB

The analogous equation for the dual field tensor is

() (a2
F. = . (3.286)
a —aB+axE

This “1 + 3” notation will prove to be useful and convenient thrdughout the

may be written

remainder of this thesis.
The two familiar Lorentz scalars can be expressed in terms of these tensors
by
M =oF, F* = F:F=B? 'EZ 3.287
1= 5 p,uF - 5 . - - ’ ( . )

and
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1 , 1
do= [ FuF* = F:F=E-B.

Note carefully that F' : F = F,, F¥¥ = —F, , F** = —Te(F . F).

The Lorentz equation of motion may then be written

du
m; = EF(T') u,
where
_ dr
w= dr

92

(3.288)

(3.289)

(3.290)

is the four-velocitAy, T is the proper time, m is the rest mass and e is the charge.

Equation (3.289) makes it clear that if the field is independent of space-

time position, then the frequencies of the motion are the eigenvalues of F' times

—te/mec. Now the-characteristic equation for the matrix F' is

det(F - A1) =X+ A2 - X2 =0.

(3.291)

This biquadratic in A is easily solved to give A = £Ag, or A = i)\p, where we

have defined the Lorentz scalars

1 7/
AE ESgn(Az)\/—z’( A§+4A§—A1),
1 -

We can write A; and \; in terms of Ag and A as follows:

and

A = /\23 - )\fg,
and

A2 = ABAg.

We can now define the two Lorentz scalars

6)\5'
Qp = —=,
mc

(3.202)

(3.293)

(3.294)

(3.295)

(3.296)
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and

Qp = —=. - (3.297)

The first of these is the inverse of the characteristic proper time required to
accelerate to relativistic velocities along field lines, while the second is the gy-

_rofrequency with respect to proper time.

3.3 The Electromagnetic Projection Operators

In this section, we summarize the work of Fradkin [13] that is relevent to this

study. It is straightforward to verify the following identities:

F? - F? = -\, | ‘(3.298)

F.-F=F -F=-)1. (3.299)
Premultiplying the first of these by F), and eniploying the second gives
F?®=-XF ~\F (3.300)
.Premultiplying by F' once again gives
F*4+ \FP-)1=0. (3.301)

Comparing this with Eq. (3.291), we see that we have proven that F' obeys its
own characteristic equation, as it must by the Hamilton-Cayley theorem. Now it

is clear that Eq. (3.301) may be written as follows:
(F=Agl)-(F+Agl)-(F—iXgl)- (F +i\gl) =0, (3.302)

and the four factors in this expression commute, so any of them could have been

written first. Thus, if ¥ is an arbitrary column four-vector, then

(F=2gl)- |(F+3g1)- (F—idgl)- (F +i\pl)- \1:] =0, (3.303)
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so that (F + Agl)-(F —¢Apl)-(F +:iApgl)- V¥ is an (unnormalized) eigenvector
of F with eigenvalue Ag. Thus, the operator (F + Agl)-(F —iAgl)-(F +iAgl)
is a (unnormalized) projection operator that projects arbitrary four-vectors onto
the vector subspace spanned by the zeroth eigenvector of F. Proceeding in this
manner, it is easy to see that the projection operator

F?2 + )31
P = =25 (3.304)
AL+ 2%
projects arbitrary four-vectors onto the vector subspace spanned by the eigen-
vectors of F with eigenvalues =Ag, while the projection operator
-F? 4231

P =
BERD YRRV

(3.305)

projects arbitrary four-vectors onto the vector subspace spanned by the eigen-
vectors of F' with eigenvalues +:Ag. The normalization constants were chosen to

make the projection operators idempotent; that is

PPy =B, (3.306)
P, -P, =P, | (3.307)
P -P. =P, -P =0, (3.308)
and |
Pj+P =1 (3.309)

We have thus decomposed the tangent space at each point of space-time into
the Cartesian product of two two-dimensional “two-flats.” The rapid gyromotion
takes place in the perpendicular two-flat since it is spanned by the eigenvectors
corresponding to the imaginary eigenvalues, while the parallel motion takes place
in the parallel two-flat since it is spanned by the eigenvectors corresponding to
the real eigenvalues. These two-flats will play an indispensible role in our theory.
We shall use them to isolate the gyrational components of the particle velocity

in preparation for the guiding-center Lie transform.
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In Section 3.7, we shall order the fields in an expansion parameter and, for
reasons that will be explaihed at that time, we shall demand that our lowest-
order field have Ag = 0. Furthermore, the two-flats that we shall use will always
be defined in terms of the zero-order field; that is, the field tensor that appears
on the right hand side of Egs. (3.304) and (3.305) is é.lways the lowest-order field

tensor with Az = 0. Thus, these equations can be simplified to read

P p
Pi=1+4 2 =2 (3.310)
TR TR
and
F2 f-2 . .
Pl=-"r=1-". (3.311)
A5 ¥

In “1 4 3” notation, Egs. (3.310) and (3.311) become

P 1 B ~ExB | (3.312)
""B*-E2\ ExB BB+EE-E1 | '

and

P ! —E ExB (3.313)
_L = eet— - . .
B?-FE?’\ _ExB -BB-EE+ B%1

Henceforth, all our results concerning the nature of the two-flats and the unit
vectors that span them will contain this assumption that the underlying field

tensor has Ag = 0.

3.4 The Orthonormal Bésis Tetrad

We wish to show how to construct a tetrad of unit vectors such that one pair spans
the parallel two-flat while the other pair spans the perpendicular two-flat. Clearly
such a tetrad is not unique; it is defined only to within an arbitrary rotation in
the perpendicular two-flat, and an arbitrary hyperbolic rotation (boost) in the

parallel two-flat. We shall have much more to say about this nonuniqueness later;

-for now we are simply looking for a way to construct any such tetrad.
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From the arguments presented in the last section, we know that 6ne way to
do this is to examine the eigenvectors of the field tensor. Here we shall take a
different approach that is perhaps more physically motivated. Recall that we are
dealing with fields for which Ej = 0 (if this is true in any one frame, it will be
true in all frames because E - B is a Lorentz scalar). There exist a set of local
“preferred” reference frames for whjch.E 1 also vanishes; hence thereAis no electric
field at all in these preferred frames. Thus, in a preferred frame, the field tensors

may be written in “1 + 3” notation as follows:

0 0 '
F= (3.314)
0 1xB /.
' 0 -B
= | (3.315)
-B ©
Also, in a preferred frame, the projection operators have the form

1 0\
P = ( I ) (3.316)

0o 0
P = , (3.317)
0 1-bb

b=B/|B|. (3.318)

and

and

where

The above forms for the projection operators in a preferred frame make it

clear that we can choose the following orthonormal basis tetrad for a preferred

(o) =)
€g = , €1 = y (3319)
0 b

frame:
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X 0 . 0 o
€2 = , €3 = s (3320)
T1 T2

where 7, and T, are unit three-vectors perpendicular to b, such that {b, ™, 7>}
conétitutes an orthonormal triad in three-dimensional space. We reiterate that
the above choice 1s not unique. |

Of course, we would like to be able to construct an orthonormal basis tetrad
in an arbitrary Lorentz frame. To see how to do this, we consider a Lorentz
boost from the above-described preferred frame to a new frame. The Lorentz

transformation matrix for a boost is

O —B : (3.321).

-8 1+ (y—-1)87260

where the three-vector 3 is the generator of the Lorentz boost (it is the relative
velocity of the two reference frames divided by ¢), and where v = (1 — 3%)%/2.
This matrix is an element of the Lorentz group because it satisfies A=! = g-AT g
(here we have used a superscripted “T” to denote the transpose operation). See

Jackson [44] for more details on the Lorentz group and its generators.

The new field tensor components>a.re then

Fl=A-F.A™! 0 W6 x B
FreAF.A = . (3.322)
B xB 1x[yB-(y-1)57263B]

In writing this result, we have made use of t-he vector identity,
BxB3-88xB=1x(8°B-33-B). (3.323)

From this result for the field tensor, we see that we can identify the electric and

magnetic fields in the new frame as

E =v3xB (3.324)
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and
B' =4B - (y - 1)57288B. (3.325)
At this point, there are a number of interesting observations to be made.
First note that if 3 is parallel to B then E' = 0, so the transformation takes us
to another preferred frame. Next note that if 3 is perpendicular to B then B
is parallel to B'. Next note that it is possible to arrive at any desired E' by a
transformation with 3 perpendicular to B. Specifically, if we take

B =Bz, | (3.326)
where
E' x B’
:BE = B,z ’ (3327)

then it is easy to see that the new electric field is E'. Conversely, if we begin with
a frame in which the (perpendicular) electric field is E', then a Lorentz boost
with 3 = B gets us to a preferred frame.

The orthonormal tetrad in the new frame is then

ar . [0
& =A-& = : (3.328)
b

= A8, = ‘)’E,BE""’l
2=A-ex= _

71+ (v& — 1)B5°BEBr - 1
‘YE,BE * T2

e, =A-e3= ,
’ ’ ( 7‘2+(’)’E—1),3£~2ﬁE,3E'7'2 )

-1/2,

and

(3.329)

where vg = (1 — 5%)
At this point we note that we can choose 7; to lie along the direction of 3

without any loss of generality. We can now write the results for the unit tetrad
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in the general frame, droppihg the primes which are no longer needed because all

quantities will refer to the general frame. Thus

. E . 0
€ = T , €1 = , (3330)
‘)’E,BE b
and .
. E . 0
= ), 6= ° ). (3.331)
6B b x B
where )
ExB

and vg = (1-8%)" Y2 Here we have also introduced the notation B for a unit
vector in the direction of B if B # 0. If 35 = 0, one may choose BE to be any
unit three-vector perpendicular to b. V

Using Egs. (3.285) and (3.286), the following useful identities are readily

demonstrated: _
F.eg=0, F-&;,=0, (3.333)
F.é;=—)\pé3, F-é&;=+Apeéy, (3.334)
and
F-& = —Apé&;, F- & =—Apéo, (3.335)
F.é,=0, F-é5=0. o (3.336)

Thus, the field tensor and its dual have the effect of rotating these unit vectors
within their respective two-flats.

Using Eqgs. (3.310) and (3.311), it is easy to verify that P, leaves €, and e,
unchanged and annihilates é; and €3, while P, annihilates &, and &; and leaves
é; and e3 unchanged. It is also easy to verify that this tetrad is orthonormal

with respect to the Minkowski metric; that is, that

&, 8, = gu. (3.337)
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So &p and €; span the parallel two-flat, and €> and é3 span the perpendicular
two-flat, as asserted. The geometrical situation is illustrated schematically in

Fig. 3.1.

In terms of the €., the projection operators may be written
13” = —éoéo + élél (3.338)
and
P, = éjé; + ézés. (3.339)

This should be clear from the geometrical picture, but may also be verified by
direct algebra. ‘

When applied to the particle four-velocity, these projection operators will
allow us to-isolate the rapid gyrational motion in the perpendicular two-flat from

the nongyrational motion in the parallel two flat. Thus
u = ute,, | (3.340)

or, if we introduce polar coordinates (w, ) for the perpendicular four-velocity
components and hyperbolic polar coordinates (k,3) for the parallel velocity com-

ponents, then we may write
u = €gkcosh 3 + é,ksinh 8 — é;wsinf — ézwcosd (3.341)

or

u = kt + wé, ' (3.342)
where we have defined

t

I

€ycosh3+ é;sinh 3, ) (3.343)
and

¢

—&5sin 8 — &3 cos 6. (3.344)

If we also define
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\ Parallel

two-flat

Perpendicular
two-flat

-- XBL 876-3016 --

Figure 3.1: The Orthonormal Basis Tetrad
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b

€o sinh 3 + &; cosh 3, (3.345)
and

a = ézcosfd — ezsind, (3.346)

then ({:, 5, ¢,a) form a new velocity-dependent basis tetrad that is also orthonor-
mal with respect to the Minkowski metric. Please do not confuse the basis fouf—
vector b with the basis three-vector b, and do not confuse the hyperbolic polar
_ coordinate 8 with the Lorentz transformation generator 3.

Some useful relations among the elements of this new basis tetrad are

-

8 —b, o= (3.347)
9 = —a, 22=y¢g, (3.348)

and
F-t=0, F-b= 0, (3.349)
F.¢é= —Aga, F-a= +\pgc, (3.350)

and
- F-t= -Agb, F.-b= -—\gt, (3.351)
F.&=0, F-a= 0. (3.352)

Also, the projection operators may now be written

Py = —tt +bb (3.353)

and
P =cc+ aa. (3.354)

It is useful to compare the above description of the four-velocity in terms of

(k,B,w,8) with the more conventional “1 + 3” representation, u = ¢{(v»,%:85,),
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where 3, = v/c. We shall do this using the unit tetrad that we constructed

above. Combining Egs. (3.330), (3.331) and (3.341‘), we find
¢v» = vg(kcosh 8 — Bgw sin §) (3.355)
and
c¥.8, = 75(Bgk cosh B — Bgwsinf) — b x BEwc?§ 6 + bksinh 3. (3.356)

From these equations, it follows that

ksinh 8

Pr1 =P, b= ve(kcosh B — Bpwsin ) (3:357)
o 5 _ Bpkcoshf —wsind
Bz =B, - B = kcosh 3 — Bgwsin @ (3.358)
- . —w cos §
/Bv3=ﬁv',(bxﬁE)- 7E(kcoshﬂ—ﬁgwsin9) (3359)
and - '
k= ovgvoy/1 - B2 — 288By2 + B35 + B206% (3.360)
. -1 :3-01 )
f = tanh (‘YE(1 — BEBy2) (3.361)
w = cvE72y/B2 + B2 — 28882 + 5% — BE6% (3.362)
6 = arg (—Bvs — 17E(Bs2 — PE)) (3.363)

Note that the four coordinates (k,3,w, 8) obey the constraint £ — w? = ¢?, and
this is why they can be determined by the three components of 3,. Naturally,
the above transformation equations depend upon the choice we made for the
unit tetrad. This arbitrariness will be discussed further in Section 3.6. These
transformation equations will be most useful when we want to compare our results
to those of other authors who have used “1 + 3” notation; this will be done in

Section 3.13.
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3.5 Phase Space Lagrangian for a Charged Par-
ticle in an Electromagnetic Field

For a relativistic charged particle in an electromagnetic field, one possible choice

for the Hamiltonian, H, in canonical coordinates, (g, p), is given by [44]

H(q;,p) = 2L ( - EA(q))z, (3.364)

m c

and the action one form for canonical coordinates is, by Eq. (2.163)
~y=p-dg. (3.365)

Note that the independent variable is the particle’s proper time; the equations
of motion are thus of the form of Eq. (2.165), but the dot in that equation now
denotes differentiation with respect to proper time.

We begin by making a noncanonical transformation to the new coordinates

(r,u), where .
| { "1 (3.366)

Thus we have eliminated the unphysical canonical momentum, p, in favor of the

particle v.elocity, u. The new Hamiltonian is
H'(r,u) = %ﬂ - (3.367)
and the new action one form is
¥ = (mu + -Z-A(r)) . dr. (3.368)

If we now use Eq. (3.342) to eliminate the four components of u in favor of
(k,B,w,8), then the new Hamiltonian is

H"(r,k,B,w,6) = %(—kz + w?) (3.369)
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and the new action one form is
" __ : A €
' = (mkt + mwé + —A(r)) - dr. (3.370)
c

It is important to remember that t and b are functions of » and 3, and & and
a are functions of » and #. Thus, the second term in the parenthesis on the
right hand side of Eq. (3.370) is rapidly oscillating due to its dependence on 6
(this will be made more precise shortly). We are now ready to apply the Lie
transform procedure that will effectively average H'' and 4" by transforming to

gyrocoordinates in which 6§ is ignorable.

3.6 Gyrogauge and Boostgauge Transforma-
tions |

We now discuss the afore-mentioned arbitrariness in choosing the orthonormal
unit vectors, &,. A boostgauge transformation replaces our choices for €y and €,

as follows:

&, = &g cosh ®(r) — é; sinh ®(r), - (3.371) -

&, = &; cosh ®(r) — ép sinh’®(r), (3.372)

while a gyrogauge transformation replaces our choices for é; and €3 as follows:

é, = éxcos U(r) + é3sin ¥(r), (3.373)
é, = é3cos ¥(r) — &, sin ¥(r). (3.374)

Note that the new unit vectors are still orthonormal, that &, and &; still span
the parallel two-flat, and that &, and &3 still span the perpendicular two-flat.
The gyrogauge and boostgauge transformations have simply given each of these

two pairs of unit vectors a rotation within its respective two-flat. The amount of
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rotation is measured by ® in the parallel two-flat, and by ¥ in the perpendicular
two-flat. Note that these can be functions of the par'gicle’s spacetimé position, 7.
Recall that we used the unit tetrad to decompose the particle velocity into
parallel and perpendicular parts, and to coordinatize these by (k,3) and (w, ),
respectively. It is fairly easy to see that the transformation given by Egs. (3.371)
through (3.374) will have no effect on k and w, but will shift 8 and 6. Hence, we

add
B =8+ &(r) (3.375)

to our boostgauge transformation equations, and

6 =6+ ¥(r) : (3.376)
to our gyrogauge transformation equatons. None of the other phase space coor-
dinates are affected by-th-e transformations.

Equations (3.371) through (3.376) constitute the full gyrogauge and boost-
gauge transformation equations. A quantity that is left unchanged by these
transformation equations will be said to be gyrogauge or boostgauge invariant,
respectively. The concept of gyrogauge invariance has a nonrelativistic analog
which was first discussed by Littlejohn {41]. In the remainder of this section, we
shall extend his methods to our relativistic problem.

To begin with, we note that the unit vectors (t, b, &, a) are all gyrogauge and

boostgauge invariant. This is demonstrated for t as follows:
t' = &, cosh §' + &) sinh 3’
= (& cosh ® — &, sinh ®) cosh( + ®) + (&, cosh ® — &g sinh @) sinh(B + ®)
= €o[cosh ® cosh(B + ®) — sinh ® sinh(8 + )]
+ €;[— sinh ® cosh(8 + ®) + cosh ® sinh(8 + ®)]
= égcoshfB + &, sinh,B ‘

(3.377)

~ &
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the demonstration for the other three unit vectors follows similarly. Because the
parallel and perpendicular projection operators may be written in the form bf
Egs. (3.353) and (3.354), their gyrogauge and boostgauge invariance is manifest.

The fact that the quantities above are gyrogauge and boostgauge invariant
means that they may be expressed in terms of purely physical tensor quantities;
more precisely, they may be expressed in terms of quantities that are completely
independent of our choice of the'orientation of the basis tetrad, €., at each point
in spacetime. For example, Py and P, can be expressed in terms of the field
tensor, as was done in Eqgs. (3.304) and (3.305). The gyrogauge a;nd boostgauge
invariant quantities k and w can be written in terms of the projection operators

and the particle. four-velocity with the help of Eq. (3.342)

k=,/-u- P“ - u, (3.378)

w=+/u-P -u. (3.379)

Finally, the members of the tetrad (t,b,&,4) can all be expressed in terms of the

and

field tensor and the particle four-velocity, with the help of Eqgs. (3.342), (3.350),
and (3.351) |

t= EP” u, (3.380)
b= ——}—}'-f, - (3.381)
AB
&= lPJ_ ‘u, (3.382)
w
1
a=~-—F-¢& (3.383)
AB

Now consider the pair of one-forms:

b, (3.384)

!
s

Q= (V&) ég=—(Vé) & =(Vh) - t= —
and

R=(Vé&) és=—(Vés) & =(Ve)-a= —(VA)-& (3.385)
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where V is a shorthand for the spacetime gradient. It is a straightforward exercise
to show that Q is not boostgauge invariant, and that R is not gyrogauge invariant;
this is essentially because the spacetime derivatives are taken at constant 3 and
8, and these latter two quantities are obviously not boostgauge and gyrogauge
invariant, respectively. First note that V transforms under a general boostgauge

and gyrogauge transformation as follows:

-

—! — — 6 —_ a
=V - — - = 3.386)
VvV =V (V‘P)aﬂ (V‘I’)ae, ( 6)
where we have made use of Eqs. (37375) and (3.376). Thus we have
-l n — A — n ” —
Q' =(V b)t=[Vb—- (V] -t= 9+ V 3, (3.387)
and
—! — — —
R'=(v é&)-a=[ve+(VvV¥)a]-a= R+ V V. (3.388)

Here we have used Egs. (3.347) and (3.348). The one-forms .Q and R will be
useful to us momentarily. Furthermore, they have great geometrical significance
as will become clear later when we discuss the guiding-center equations of motion.

We now ask what it means for a general one-form in our phase space to
be boostgauge and gyrogauge invariant. Using Eq. (2.170), we find that the r

component of the one-form transforms as follows:

I“—-_(?L +a_’3 +_a_0
T 31"7r 37"7'6 87"79

=1 = (V@)1 — (V V), (3.389)

while all of the other components (k, 3, w, and ) are unchanged. Thus it is clear
that the charged particle Hamiltonian and action one form given by Egs. (3.369)
and (3.370) are boostgauge and gyrogauge invariant, since they have no 3 or 6
components.

Now we demand that our Lie transformations, when applied to gauge invari-
ant quantities, preserve their gauge invariance. This, coupled with the estab-

lished boostgauge and gyrogauge invariance of the particle action one-form, will
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guarantee the boostgauge and gyrogauge invariance of the guiding-center action
one-form. Suppose that we have a boostgauge and gyrogauge invariant scalar
field, f. Applying the Lie derivative operator, £,, we find from Eq. (2.30)

— AT, _’_ k f 8 f f af \ v
Lf =gV f 4o+ s+ o+ (33%0)

If we now subject this to a general boostgauge and gyrogauge transformation, we

find

SNt i = lk?_f_ lﬁ_ai . Iwﬁ ro?_f_

- - Of
+(g Ve 4 )ﬂ (3.391)

86’

where we have made use of the assumed gauge invariance of f. Thus, £, f will be
gauge invariant if all the components of g are gauge invariant, with the exception

of g° and ¢° which must transform as follows:
gP=gf+ve.gm, (3.392)

and

g =g+ ve.g". (3.393)

Thus, if we use a subscripted “0” to denote a gauge invariant quantity, we see

that the components of the vector ¢ must be of the form

9" =(9")o

9" =(g")o

9#=("lo+Q- (970
=(9)o

, - =@t R (3.394)



CHAPTER-3. RELATIVISTIC GUIDING-CENTER THEORY 110

Using the hométopy formula, it is a straightforward exercise to show that this
result is valid not only for gauge invariant scalars, but also for any gauge invariant
n-form. In particular, this restriction on the form of g is necessary to guarantee
the gauge invariance of the Lie transformed action one-form, so we shall demand

that it hold in the sections to follow.

3.7 The Zero-Order Problem

We order the particle Hamiltonian and action one-form with the prescription
e — e/¢€; equivalently, we could say that we are ordering the electromagnetic field
at order 1. The electromagnetic contribution to the canonical momentum thus
dominates the kinetic contribution. This ordering procedure has been discussed
at length by Kruskal [45] and by Littlejohn [41].

We shall also order the four potential of the electromagnetic field in the pa-

rameter ¢, so
o
A=) €A, (3.395)
=0

Clearly, this induces an ordering of the field iitself

F=)Y ¢F, (3.396)
i=0
where
F; = dA;. (3.397)

Henceforthz when we refer to the Lorentz scalars (A, A2, Ag and Ag) or to the
unit basis tetrads or to the projection operators, it is to be understood that they
are calculated on the basis of the zero order field tensor, Fj.

The Hamiltonian, Eq. (3.369), is thus an order unity scalar. The particle

action one-form, Eq. (3.370), may be written

o0

1 1
v== ; €, (3.398)
1=
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where 4o has the component

Yo, = = Ao(r), ” (3.399)
41 has the component
Y, = SAl(r) + mkt 4+ mwé, . (3.400) |
and v; has the cbmponenf
v, = EAi(r) (3.401)

for i > 2. All cémponents not listed above are zero.

Suppose that we now write the equations of motion to lowest order as wg-z = 0,
where wg = dvp. This turns out to be an instructive exercise even though, as we
shall see in a moment, it is somewhat misleading. We see that the only surviving

component of wy is

Wopm = SFO, (3.402)

so we get the following equation of motion:
Fp-7=0. - (3.403)

Now we know that £ is never zero, so Fy must have at least one null eigenvector
with nonzero time component. In particular, this must be true in a preferred
frame, for which Bz = 0. Thus the parallel two-flat must be the nullspace of Fp.

So we demand that

Agp =0, (3.404)

where we again emphasize that Ag is computed from Eqgs. (3.282), (3.287), (3.288)
and (3.292) using Fp in place of F. This is a restriction on the allowed zero order
fields. It is the relativistic analog of the usual nonrelativistic restriction that
E) = 0 to lowest order. Recall that we used this assumption in Section 3.4 when

we-first discussed the basis tetrads.
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Thus, when we order the four potential in €, we must keep in mind that the
field derived from Ag should have no Ej. If we have a problem in which there
is nonzero Ej, then it must be included in A, where n > 1. In particular, it
could all be put into A;. The only reason for keeping A, where n > 2 in our
theory is that sometimes a problem admits another expansion parameter in the
field geometry (the stellarator expansion parameter and the long-thin parameter
in mirrors are examples), and in some asymptotic theories that other expansion
parameter may be taken vto be equal to the guiding-center expansion parameter.
In such cases, one might want to expand the field in a general power series in ¢,

rather than just restrict oneself to the use of 4y and A;.

Thus, Eq. (3.403) constitutes only two independent conditions on the four
components of #. Dotting it with ¢ and & and using Eq. (3.350) gives ¢ - * =
a-r=0,so0r7r must lie in the parallel two-flat; that is, the particle motion is
constrained to lie along the field lines like that of a bead sliding along a wire. |
The rapid oscillatory motion is then considered to be a modification to this motion
along the field lines, to be transformed away except for the residual perpendicular

drifting motion.

What is perhaps m;)st disturbing about Eq. (3.403) is that it gives only two
dynamical equations of motion when there are really eight independent phase
space coordinates. It gives us no descﬁption of the motion along the field lines,
and no description of the rate of change of the velocity components. This is
because the matrix of components of the zero order Lagrangjan two-form is a
eight by eight matrix whose rank is only two. This is thus an example of a
problem in asymptotics with no well-defined limit problem; this phenomenon is

by no means rare and has been discussed in a general context by Kruskal [46].

To get a better idea of what is going on here, we should consider the full

particle equations of motion, retaining the lowest order nonzero contributions to
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each component of w = dv, even if some are higher order than others. We find

W = ;‘ZFO +0(1), (3.405)
wr = —mi, | | (3.406)
wpg = —mkb, S (3.407)
Wpy = —ME, (3.408)
wrg = +mwa, ' (3.409)

with all other components vanishing. Forming the equations of motion, w - z =
OH /9z, we find that
7 = kt + wé, (3.410)

so there is no longer any ambiguity in the parallel motion. Similarly we can now

find the equations of motion for the velocity components. We get

k=0@1), (3.411)
8 =0(1), (3.412)
w = 0(1), ' (3.413) -
6 = %QB + O(1). (3.414)

This makes it clear that the dominant motion at lowest order is the gyration, in
accordance with our intuition. Thus, as € — 0, we have the rate of change of 6
dominating that of all the other dynamical variables, including r. Hence, averages
over the unperturbed motion will simply be averages over 6.

Note that in order to get this zero order equation of motion, we needed ~,
only to order ¢!, while all the other components of v were needed to order unity.
This peculiar mixing of orders persists to higher order; so to obtain the n-th order
guiding-center equations of motion, we will need 4, only to order n — 1, while all

the other components of 4 will be needed to order n.
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3.8 The Preparatory Lie Transform

All treatments of guiding-center motion share one feature in common: In the
transformation from particle position, r, to guiding-center position, R, they all
include the term, —wa/Qpg. This is the gyroradius vector, and it is the most in-
tuitive term in the entire guiding-center transformation (indeed, one rmght argue
that it is the only intuitive term in the entire guiding-center transformation).
We shall make this transformation before we do anything else, as this was found:
to facilitate the remainder of the calculation in Littlejohn’s nonrelativiétic treat-
ment [7]. - : ,

From Egs. (2.30) and (2.215), we see that, to first order, the difference between
z and Z is simply given by the components of the generator vector, g. So since

we want to have R = r — wa/flp, we see that we should choose

r w .
gp = —h;a, A (3415)

where the subscript “p” denotes “preparatory.”

Now g is clearly boostgauge and gyrogauge inva.ria.nf, blllt from Eq. (3.394)
we see that a Lie transform generated by this vector alone would not preserve
the gauge invariance of the action one-form. Consequently, we must append the

following additional components to g,:

w . ’
9 = e (3.416)
and
w |
M Rt R. (3.417)

First note that the Hamiltonian, Eq. (3.369), is unaffected by the preparatory
Lie transform because it is independent of r, 8 and 6 (so £L,H" = 0). Next, using
Eqgs. (2.272) through (2.275), we calculate the new action one-form resulting from

the transformation generated by this vector. This transformation takes place at
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' first order only, so we may set g; = g, and g2 = g3 = 0 in those equations. Also,
since we are interested in calculating the guiding-center equations of motion to
third order (this turns out to be one order higher than the usual perpendicular
drifts), we do not need I's...

At zero order, we have the obvious
Lo =o. ‘. (3.418)

This has the single nonzero component,

To, = EAO. |  (3.419)

The corresponding Lagrangian two-form, wg, was given in Eq. (3.402).
Moving on to first order, it is readily found that i,wo (where, in keeping with

past convention, ¢, = i) has only one nonzero component,
(ipwo)r = mwc. (3.420)
We take S; = 0, so Eq. (2.273) éives the following nonzero component for I';:
Iy, = -:iAl + mki. (3.421)

Note that the aforementioned rapidly oscillating term, mwé, has been removed
from 71, by the transformation.
Before proceeding to second order, we need to calculate w; = dy; and 2; =
dl’;. The first of these has the following nonzero components:
[ ’ — . ~ —
Wyppr = zFl +mk(V t—t V)

+ mw(e ¢—¢ ;7), (3.4

22)

wipe = —mt, ' (3.423)
wipg = —mkb, (3.424)
Wipy = —Me, S  (3.425)
)

w19 = +Mmwa. (3.426
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The second has the following nonzero components:

O, = -ZF,, +mk(VE-1V), (3.427)
Q1,1 = —mt, (3.428)
Q.5 = —mkb. (3.429)

" Note that we have introduced the notation t V for the transpose of V t.
We are now ready to proceed to second order. First note that 3ipw; has the

following nonzero components:

1, 1w e = .=
(Firr)r = 5 5o [-F1 +mk(Vi-PL—1V)
+ mw(V &P -2 v)]  (3.430)
and
1. muw?
(ipw1)e = — 55 (3.431)
Next note that %_ipﬂl has the single nonzero component,
1, 1w . re - . . —
(3if)r = —5 54 [ZF1+mk(Vt-PL—tV)], (3.432)

Now, using Eq. (2.274) and choosing S; = 0, we can write down the nonzero

components of I';,

Iy, = SA2+—1‘D—5. [EFl +mk(§szJ_—f;“§_7)
c Qp c A
+ %“’&% &P —¢ v)], (3.433)
and
Ly = T (3.434)
28 — 2QB . .

Note that I';, has rapidly oscillating terms; these will be removed by subse-
quent Lie transforms. Also note the appearance of the gyromomentum as the 6

component of I's.
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Moving on to third order, we recall that we do not need I's,.. Referring to
Eq. (2.275), it is easily seen that v; and %,w, both have only an r-component, so
we do not bother with these terms. Then 3i,di,w; has a nonzero r-component
which we shall not calculate, and it also has a nonzero § component given by

1 muw? _ w?

.. = . [e - . =7 .
(3ipdipwr)e = ~3ara ¥V M = 355 ¢- [zFl +mk(VE-t v)] .4 (3.435)

Similarly, %ipdipﬂl has a nonzero r-component which we shall not calculate, and
it also has a nonzero 6 component given by

2 -~
way

1, . i
(Gipdipla)o = ~Z—F1 +mk(VE-t v)] .a. (3.436)

Taking S3 = 0, we see that the nonzero components of I'3 are I'3,. and
3 2

mw- ., w
.VQB_

Tap = — e il
3¢ 303 a 20%

¢ [CR+mk(VE-t9)|-a (348

Note that this has rapidly oscillating terms which will have to be removed by

subsequent Lie transforms. This completes the preparatory transformation.

3.9 The Averaging Lie Transforms

We now perform the averaging Lie transformations that will take us to the
guiding-center action one-form. These are somewhat more difficult than the
preparatory transformation, since we do not know the generators in advance.
For economy of notation, we reset our variables as follows: We shall henceforth
refer to the Hamiltonian and action one-form that resulted from the preparatory
transformation as H' and «, respectively, and these new Lie transforms will take
us to H" and I'. |

First consider the action one form. Once again, nothing changes at order zero,

Lo = 70, (3.438)
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and the only nonzero component of this is

To, = SAO., (3.439)

The corresponding Lagrangian two-form, wo, was given in Eq. (3.402); its bnly
nonzero component was wgp. |
At order one, we take g7 = 0 and S; = 0 because we have already succeeded
in averaging I';,. by the preparatory transformation, and we don’t want to ruin
this. It follows that z;we = 0, and so I'; = ;. The only nonvanishing component
of 'y is then )
Iy, = ZA.I + mkd. (3.440)

Note that we have not yet had to specify g7, gf ,g¥, or g2, since it is clear that
these have no effect on I';. These components of g; will be useful in the averaging
of T';. Also note that £2; = w; is given by Egs. (3.427) through (3.429).

A word of caution is in order concerning the coordinate 7. It is not altered
in any Way by the transformation. This means that after we complete the trans-
formation to guiding-center coordinates, 7 will still be the single-particle proper
time; it will not be the guiding-center proper time. So g,,dr#dr¥ = —dr?, but
9udR*dRY # —dr?. Thus, throughout the remainder of this calculation, it is best
to regard T as simply an orbit parameter, devoid of relevant physical significance.

Now we proceed to second order. Note that i;wq has only an r-component,
. e .
(t2wo)r = ~92° Fo. (3.441)

Next note that %ilﬂl = %ilwl has the following nonzero component:

1, 1 Y
(Fhw1), = 5(mkgfb + mgt), (3.442)

We then take S; = 0 because we have already succeeded in averaging I';4 by the

preparatory transformation, and we don’t want to ruin this. Equation (2.274)
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then gives the following nonzero components for I';:

T, = Sd,+ —a. [EF1+mk(_V'E-P¢—E§)
c QB LC

+ 22T e P -e V)| - S Fo— mkefb - mgit, (3.443)

and

mw2

2Qp "

Ty = (3.444)

We now proceed to third order, and once again we do not need the r-
corﬁponent of I's. Referring to Eq. (2.275), it is easily seen that izwo has only
an r-component, so we do not bother with this term. Then 2,0; = i2w; has a
nonzero r-component which we shall not calculate; its other nonzero components-

are

-

(t2w1)r = —myg; - 1, ' (3.445)
and

~

(iqw1)g = —mkg3 - b. (3.446)

Next, Zjw2 has a nonzero r-component which we shall not calculate; its other
nonzero components are

mw 4

(’ilwg)w = —ﬁg“gl, (3447)
and
. mw
(i1w2)e = +E91 - (3.448)

Next, %i]di.l(wl + %Ql) = %ildilwl has a nonzero r-component which we shall
not calculate; it has no other nonzero components. From Eq. (2.275) we see that

the nonzero components of I'; are '3, and the following: |

S

B

T3 = mgl -t + ==, 3.449

3k = Mgy + ok ( )
.~ 08

T35 = mkg-b+ —2, | (3.450)
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3, = 9—3'91 + v
and
w? | re - . .= .
I‘39 = _55_2;(: . [—C.Fl +mk(V t -t V)] a
mw3 — muw oS3
Tag VTR, % Y e

120

(3.451)

(3.452)

Now we apply the Lie transform to the Hamiltonian. This is straightforward,

and we get
Hm — Hm + (:‘H"' +0(62),
where
Hi" =H" = m(—-lc2 + wz)/2,
and

HY' = mkg¥ — mwg?.

(3.453)

(3.454)

(3.455)

Thus, the Hémiltonian, which emerged unscathed from the preparatory Lie trans-

form, may indeed be modified by the averaging Lie transform.

We must now choose the vector generator components, gf, gf ,gv,g%,and g3,

and the scalar gauge transformation generator, S3, in order to average and max-
imally simplify T'y,, H3',T'34, 35, '3,, and I'sp. These are given by Eqgs. (3.443),
(3.455), (3.449), (3.450), (3.451), and (3.452), respectively. We proceed by taking

the averaged parts of these equations,

e mw? /. 2. .2=.

P2r=; 2 — ZQB [R—§ (a-Vc—c-Va) .P“J

- S % - Fo — mght — mkg?h, (3.456)
H) = mkg—ic — mwg?, (3.457)

8S;
F3k. = m92 t + = ok N (3458)
88

T3 = mkgh - b+ — (3.459)

o8’
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Paw = =97+ 3.5 | (3.460)
=32 () - [(2) 7o (56

mw .  0S3

gt + (3.461)

+2% (ave+eva) A
405 & [
- 29'5 . Fy — mght — mkgl'b, C O (3.462)
0 = mkg* — mwg?, (3.463)
- S |
=mgs -t + -2, (3.464)
. - . 88
0 = mkg; - b + EBE’ (3.465)
mw 85.:3
0=——gf + —— 3.466
\ .
0= W _ T, 95 (3.467)

308 s T e

where we have demanded that the Hamiltonian and one-form components them-
selves be purely averaged. In the above equations, an overbar denotes the aver-

aged part of a quantity, while an overtilde denotes the fluctuating part.

Solve Eq. (3.467) for 8S3/86 in terms of g. Then use Eq. (3.463) to get g¥
in terms of g.{‘. Then dot Eq. (3.462) with t in order to get g}. The result is

8S; mwd. - krw re, -
T =3 v %8 o {qy [ Ao mbita)]
2
mw
ct 3.468
L CORICE)) A (3.468)

where the abbreviation (act) is shorthand for a. v ¢ - t, etc. Now this equation
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is easily integrated to give

-  mw — wk
S3 = ————¢ :
T A

[(ata) + (ctc)]. (3.469)

We can now back substitute to get the oscillatory parts of the vector generator

components,
k= LR -a+ kw(tt ) —zi[( t) + (cat)] (3.470)
gr=ry_t Fi-a QB YT ang N T o
-~ w A 2
=2 a.F-b- (b 3.47
7 = pgh Fieb - g (bta) + g ((och) + (cab)] (3.471)
. ko k2 kw
g =3t F - +—(tta)— 5 [(act) + (cat)], (3.472)
o_ Y e vns— k & F, . §
gl_QzBC VQB wABC F]_ t
+ 5 (tte) - £ [(ata) - (cte) (3.473)
o c 105 ata cl|, .
and
~ w w2 - -
L P - P F > — | A a — ¢ C P
g2 ABQB ( Il .L) 1 ¢+ 8QZB (a Va C VC> Ii
kwry/. = .
+oz|(eVEPL-PL Vi)
- (¢ ve-R-P-ve i) (3.474)

Next we consider the equations for the averaged parts of the generators,
Eqgs. (3.456) through (3.461). These constitute nine equations (Eq. (3.456) is
really four equations) in seventeen unknowns (the nine components of I, and the

eight components of §). Thus, we can choose eight unknowns at will. So we

demand
2
e mw
', = -4, -~ ——R 3.475
I3, =0, (3.476)

T35 =0, ' (3.477)
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I3, =0, | (3.478)

and

T3¢ = 0. (3.479)

Here we have retained the term involving R in I';,. in order to preserve boostgauge
and gyrogauge invariance, according to Eq. (3.389). Taking S3 = 0, we can novj

solve for §. We get

g =0, | (3.480)

gt = oo (cat) = (act)], (3481)

P = w? [(cab) — (ach)] | (3.482)
1 4kQp ’

w . W . . kw : :

I =52 Fy-e+ T [(ate) — (cta)], (3.483)
¢ =0 | . (3.484)

We can now solve for H)' using Eq. (3.457) to get

: 2 2
m __mwt .A_mkw B
Hy = 3 a-Fy-c 305 [(atc) — (cta)]
mw? [ e e k=, .=
=T (—mc) Fy: {(-—-—mc) i+ (vi-t V)J . (3.485)

This completes the averaging transformation.

Henceforth, we shall write transformed quantities as functions of the guiding-
center variables (R, K, B, W, ) instead of their lower-case counterparts. Note
that this has no mathematical significance, and is done only to emphasize the
physical interpretation of the various quantities that emérge from the. theory. We
regard functions in the mathematicians’ sense of the word: functional arguments
are nothing more than dummy placeholders. ‘

We may now write out the full guiding-center Hamiltonian and action one

form to the above-described order. We have

=B B ()5 ()R




CHAPTER 3. RELATIVISTIC GUIDING-CENTER THEORY 124

+ % (vi-tv)]+o0(). | (3.486)
and
I= [i (Ao + €Ay + €43) + mKt — mWe e+ 0(62)] .dR
. €c 20p
™ o O(e3). | (3.487)
20p ;

Note that 6 is an ignorable coordinate, so that its canonically conjugate momen-
tum, u = mW?/2Qp, is conserved. This can now be identified as the gyromo-
mentum, and it is useful to eliminate the coordinate W in favor of u. The results

will be denoted

and

Tye = [sz +mKt— euR + 0(62)] .dR + udO®. (3.489)

- This is the form of the guiding-center Hamiltonian and action one form that will
be used in subsequent sections. Note that the order ¢ term in the Hamiltonian
may be neglected if only the classical drifts (usual gradient, polarization and

curvature drifts) are desired.

3.10 The Guiding-Center Poisson Brackets

As a first step towards writing down the guiding-center equations of motion, we

form the guiding-center Lagrangian two-form. The nonzero components are

Qrr = —(Fo +eF') +mK(VE-1 V), (3.490)

_ €
€c
Qrx = —mt, (3.491)

Qrs = —-mKb, (3.492)
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| 0 (classical order) -
Qr, =
¢R (higherorder),

Q”@ = E,
where
R = B | (classical order)
" Fy+eF; — <uN  (higherorder),
and

N =dR.

125

(3.493)

(3.494)

(3.495) |

(3.496)

Here we have drawn a distinction between two cases, just as we did with the

Hamiltonian. Terms of classical order are all that are necessary to retain if only

the usual gradient, curvature and polarization drifts are desired. If one would

like the equations of motion to one order higher than that, one must also retain

the terms labelled higher order. This makes a difference only in g, and in the

definition of F'.

Now we can get the Poisson brackets using Eq. (2.168). We do _this by in-

verting the eight by eight matrix consisting of the components of Q2. This is a

tedious but straightforward exercise, and the nonvanishing results are presented

below. We have performed this matrix inversion for both the classical-order and

the higher-order cases separately.

EFo

(RK}=-L .3

m

b _
{R,B} = mK
(R0} = 0 (classical order)

e{R,R}-R (higherorder),

{K,B} = ~———%.5.F" . b,

(3.497)
(3.498)

(3.499)
(3.500)

(3.501)
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0 lassical ord
(K,0} = (classical order) (3.502)
e{K,R}-R (higherorder),
0 lassical ord
(B,0} = (classical order) (3.503)
e{B,R} R (higherorder), ‘ )
and -
{©,u} =€, (3.504)
where we have defined the scalar
eFo ' '
= —_— D
T=l+ 05— (3.505)
and the tensors
GF” . Fo
== 3.506
1+ T ( )
and
] I. mCK -3 g
F'=F + (Vi-tw), C(3.507)
. ,

and where F' is given by Eq. (3.495). Note carefully that the bracket of R with
R is nonzero because R is réa.lly four coordinates; thus {R, R} is a four by four
antisymmetric matrix and, consequently, its diagonal elements vanish but the
rest of it may be nonzero.

Note that ® and u are decoupled from the other dynamical variables at the
classical order, but that © is not decoupled at higher order. The reason for
this will be clarified shortly, but for now we note that this coui)li'ng is not at all
problematic. The important point is that the set of functions of R, K and B form
a subset of the set of all phase functions that is a closed Lie subalgebra under the
operation of these Poisson brackets. Theﬁ, since our Hamiltonian is independent
of ©, we can eliminate that degree of freedom and still have a valid Hamiltonian
system for guiding centers. This is an example of the reduction of a Hamiltonian

system, discussed in Chapter 2.
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Next note that we could have expanded all of the above expressions in pure
power.series in €. For example, T appears in the denominators of several brackets,
and consists of an order one term and an order ¢ term. One might argue that,
since our expressions are valid only to a certain power of ¢ anyway, we ought
to expand this in powers of e. There is, however, a compelling reason not to
do this: The above brackets are guaranteed to obey the Jacobi identity exactly
because they are elements of the inverse matrix of the matrix of components of the
Lagrange tensor which obeys d2 = ddT" = 0. If we were to expand the brackets in
€, and retain € only to a certain power, then the Jacobi identity would be satisfied
only to that power of . Now one might counter that in an asymptotic theory of
this naturé, that is all we have a right to demand. In practice, however, guiding-
center equations of motion are often integrated numerically, and violations of
the Jacobi identity invalidate Liouville’s theorem which guarantees phase space
area preservation. This, in turn, can lead to an observed ‘“fuzziness” of KAM
tori which might cause one to draw erroneous conclusions about the presence of

stochasticity.

To elaborate on this last point, in studies 6f mirror-confined plasmas, for
example, one might integrate the guiding-center equations numerically Aand pro-
duce a “puncture plot” of the places where the trajectory of the guiding center
intersects the midplane of the device. If such a plot exhibits stochasticity, one
might well expect the radial transport of the plasma to be enhanced significantly
as compared to a case for which the plot is a smooth KAM surface. Thus, in a
study of mirror-plasma radial transport, one might vary some parameter to see
for what value this transition from regular to stochastic motion takes place. The
decision might be made by comparing the numerically-generated puncture-plots
for several different parameter values in some range. Yet if one uses guiding-
center equations of motion that do not satisfy Liouville’s theorem ezactly, one

runs the risk of misinterpreting “fuzziness” in plots that is due only to violations
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of Liouville’s theorem (which is, after all, the only reason that KAM tori exist in
the first place) as the presence of true stochasticity.

This is why we inverted the Lagrange tensor for the classical and the higher-
order cases separately, rather than do a single inversion for the higher-order case
and truncate to get the classical case. As things stand, the brackets for both

cases presented above are guaranteed to satisfy the Jacobi identity ezactly.

3.11 Guiding-Center Equations of Motion

These brackets together with the Hamiltonian, Eq. (3.488), give the guiding-
center equations of motion according to Eq. (2.169). First consider the equation

for R. To the classical order, this may be written

R={R,R}-uV Q5 —{R, K}mK

Kb+ £ (ki F' 2 . 0s)- |
=K+ 5y (Kt F +e“VQB) Fo. (3.508)

The first term contains the usual parallel motion and the E x B drift. The order
e contribution consists of two parts: The first contains the relativistic analog
of the curvature and polarization drifts (they are in F 'i), and the second is the
relativistic analog of the grad-B drift; these statements will be clarified when
we cast these results in “1 + 3” notation. Of course, the above apparatus is
sufficient to get R to one order higher than this, but the expression itself is
rather unenlightening to look at, so we shall not bother to write it down.

The equations for K and B are then

K={K,R} pVQ5p
=i =vag (3.509)
m

and

B={B,R} -1V Qp— {B,K}mK
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—__F .= —- —t.=. 5",
=-—2b EVOp-—i . 2.F'".b (3.510)

The terms contajﬁng v O B contain the mirroring force, and the contribution of
F3 contains the force due to the parallel electric field; once again, these statements
will be clarified when we cast these results in “1 + 3” notation.

Next note that g is exactly zero, even at the higher order; this, of course, was

our aim all along. The higher order equation of motion for @ is

@:%QB+6R-R+§§;FO: [(%)Fﬁ%(?%—%%}}. (3.511)

The first term is the lowest-order gyromotion. The second term arises from
the bracket stfucture, and corrects for the possibility that as the guiding-center
moves in R, the perpendicular unit vectors upon which the definition of © is based
may rotate within the perpendicular two-flat. This term arose from our demand
of boostgauge and gyrogauge invariance, and it is the reason that the Poisson
bracket of @ with R, K, and B cannot vanish at higher order. The necessity of
this has been discussed by Littlejohn [41] and by Hagan and Frieman [42].

‘The third term on the right side of Eq. (3.511) arises from the first-order piece
of the Hamiltonian and consists of two subterms in the square brackets. The first
of these subterms is the correction to the gyrofrequency due to Fy. To see this,
define the total gyrofrequency due to both Fy and F by Qg1 = eAgr/mc, where
ApT is given by Eq. (3.293). We quickly find

e 1 \
Qpr = m_c\/§(Fo +eF1): (Fo + eF) + O(€%)

e
= R; AzB + €F0 H F1 +0(€2)
€

= —_— | — : . 3.512
s (D)Ronsee e
The second subterm of the third term on the right of Eq. (3.511) is the gy-
rofrequency shift due to gradients of the perpendicular electric field. This is not

expected to_be obvious, and will be discussed further in Section 3.13, when we

cast our results in “1 4+ 3” notation.
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The geometrical significance of the second term in Eq. (3.511) is illustrated
in Fig. 3.2 (here we temporarily revert to using lower-case r and 6). In order
to compare the unit tetrad at one point in spacetime, r, with that at another
point, r + ér, (to see how much it rotated) we need some way of transporting
the unit vectors from one point to another. The correct way of doing this was
elucidated by Littlejohn [41]. Since we have a.ssuﬁled flat spacetime throughout
this calculation, we can simply translate the unit vector &2 from r to r + ér in
the usual manner of Euclidean geometry. Of course, when we arrive at r + ér,
the translated uﬁit vector, called &3, will not be the same as the unit vector e..
Furthermore, it need not even lie in the perpendicular two-flat. To remedy this,
we project it onto the perpendicular two-flat and normalize the result to get a
new unit vector, called €3*.The angle between €, and &3* at the point> T+ 6r is

defined to be 66. The calculation goes as follows:

&3(r +ér) = éx(r)
= &(r + ér — ér)
= &y(r + 6r) — ér- V &o(r + 6r)+

%67‘57‘ 'UV &x(r + 67) + -+ . (3.513)

Henceforth, all quantities are evaluated at the point r + ér so this will not be

noted explicitly. Continuing,

w_ Pi-&
|Py - &3]

&

- — R N N 1 s — n -~ N
=@ — ér- V &, - e3é3 + 567'61- :VV e, - ezé3

1 = . . \2.
-3 (57" Vez"ea) e +-- . (3.514)
Thus
62
cos¢50=1—6—-—+---
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/ =1- —;('R-ér)z—lw--, : (3.515)

so we identify X .

§0 =R - 6r. (3.516)

This is the change in 6 due to the rotation of the unit vectors alone, and it
explains the second term on the right of Eq. (3.511). A similar term, Q - R,

would appear in the equation of motion of B if we went to higher order.

It was noted by Littlejohn [41] that the one-form, R is the potential for the
gauge field N' = dR which obéys the field equation dV = ddR = 0. In the
relativistic problem, we-also have the gauge field M = dQ, and this also obeys
dM = ddQ = 0. These are the gauge fields corresponding to the boostgauge and
gyrogauge gauge groups. Note that M and N are gauge invariant even though Q
and R are not. Thus, they can be expressed in terms of the field tensor directly;

in index notation

1 (= ]
My = = F 5P Plyay, (3.517)
and
1 x ~¥8 . .
N/“'V = —A;'F BP-L ’uP_L‘ya’y- (3-518)

The R term of the guiding-center Lagrangian, Eq. (3.489), thus couples the two

gauge potentials, A and R, and the coupling constant is the gyromomentum.
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éz(x)=e§(x)

é3(x + 6x)

== XBL 876-3017 -=

H
i

Figure 3.2: Change in Gyroangle due to Rotation of Basis Tetrad as Guiding

Center Moves in Spacetime
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3.12 Summary of Guiding-Center Transforma-
tion

The entire transformation that we have made from the particle coordinates may

be written in the form of Eq. (2.214) as follows:
Z= exp(eL, ) exp(eLy, ) exp(e’Ly, ) exp(€’Ly,) - - - 2. (3.519)

It is possible to expan& these equations in €, and plug in our expréssions for
the generators to get the coordinate transformation equations. For reference, we

present these here:

- %(ttc)f + —=[(ata) — (ctc)] t
B B
[(btc) + (tbe)] b — 81:223 [(aba) — (cbe)] b
+ g—z [(cta) — (atc)] a} +0(e%), (3:520)
K=k+ e[gl; (tta) — -é%;(act) |
+ A—t -Fy -é] + O(€?), (3.521)
B=g+ e[ S (o<b) - i[(bta) _ (atb)]
-~ pob Fi-a] +0(@), | (3.522)
2
W=w+ G[SI;B (tta) — %—[3(act) ~ (cat)]
+ xk;t Fi-a+5iaFi-g+0(), (3.523)

and
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2 w
©=0+ e[ ,;23 (tte) — L[(ata) — (cte)] - E(aca)
Qz = &V Qp+ —I;—t F - ] + O(€?). (3.524)

In the above equations, the capitalized variables are the guiding-center coordi-
nates and the lower case variables are the particle coordinates; it is emphasized
that all quantities on the right hand sides of these equations (e.g. unit vectors,
field tensor, etc.) are evaluated at the particle coordinates. The inverse transfor-
mation is given by

Wa w2~/ a W
- R 2\ _P-F &
rERt S, T {mB aV (QB> pag I~ Pu)-F-e

2KW
2%

[ (o) %[(ata) - (cto)]

~ 2
+b [svng [(aba) — (cbe)] - I;ZV (bte) + (tbe)]

w2 - . K?
el——&. v CF 8 — ——
+c[ Q%c v B+)‘BQBt F,-¢ Q,‘_,(ttc)
KW w?2
+ Zﬁg[(ata) - (CtC)] + W(aca)]

. w . . K . .
— . C e — t.F .
+a[ 2/\BQBa Fy.c Y Fi-a

IS; (tta) + fﬂvf [3(cat) - (act)]]} + O(€), (3.525)
k=K - e[KW(tta) - LV—-z-(act)
+3gteFia] +0(@) 3.520
8 =B~ e[ 30— (ach) - o_[(bta) - (ath)
- va\;b Fy- ] +0(€%), (3.527)
w=W - [gB (tta) — KQIZ [3(act)_—— (cat)]
+ :\%fc-lﬁ La+ %V;é-ﬂ ~é] +0(e?), (3.528)
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and
K? K W
6=0 - G[WQB (tte) — Z@[(ata) — (cte)] —»—ﬁ;(aca)
W K
Q2 C V QB + Wt F1 ] +O( ) _ ' (3529)

In the above equations, everything on the right is evaluated at the guiding-center
position. '
Recall that the gyromomentum in guiding-center coordinates is given by

mW?2/2Qpg. In particle coordinates, this may be written
' 2 w?

mw m w
Ierart-zQB'f'G 2Q38VQB+—Q';'[ma Fy-c
+Ebm a2 () - 2 3 (aet) — (cat)]]} + O(%]3.530)
Y 05 405

This expression is useful because it gives the conserved quantity in terms of

particle coordinates.

3.13 Comparison with Three-Vector Formula-
tions

In order to compare our results with the three-vector formulation given by
Northrop [43], we must be able to cast our results into “1 + 3” notation. We
learned how to do this for the particle coordinates back at the end of Sec-
tion 3.4 where we gave the explicit transformation equations, Egs. (3.357) fhrough
(3.363). These are scalar equations in phase space, and so they will retain their
form under the guiding-center Lie transform. We need only to replace (k, 3, w, 6)
by (K,B,W,®), and to reinterpret 3, as the guiding-center three-velocity (di-
vided by ¢). Then we can write down the equations of motion for 3, by dif-
ferentiating Egs. (3.357) through (3.359) with respect to proper time, using the
known equations of motion for the guiding-center coordinates, and expressing the

results back in terms-of 3, by using Eqgs. (3.360) through (3.363).



CHAPTER 3. RELATIVISTIC GUIDING-CENTER THEORY 136

The above-described program seems rather tedious. Fortunately, there are
two things that we can do to simplify the task. First, we need only check our
results to the order of the classical drifts. This is the order given in the text by
Northrop [43]. Second, we can check our results in one of the “preferred” frames
of reference, as were described back in Section 3.4. If they hold there, they have
to hold in all other *frames as well because our results are in manifestly covariant
format. These two simplifications make the problem straightforward.

First note that in a preferred frame 85 = 0, so Egs. (3.357) through (3.363)

become
By1 = tanh B (3.531)
W sin ©
_——— 3.532
Poz . K cosh B ( )
W cos © .
Buz = “Kcosh B (3.533)
and ._
K =cyy/1-8% (3.534)
B =tanh™!3,, (3.535)
W = vy /6%, + O | (3.536)
@ = arg(—,B,,3 - iﬂvg), (3.537)

where, as noted in the last paragraph, all variables are now guiding-center vari-

ables. In particular, the equations

K cosh B = ¢, (3.538)

and

KsinhB = C’Yv,Bvl = Yu Vi (3.539)

where v = ¢f8,;, will turn out to be particularly useful. The quantity B is

sometimes called the rapidity.
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Next note that, in a preferred frame, the unit vectors that we constructed in

Egs. (3.330) and (3.331) can be inserted into Egs. (3.343) and (3.345) to yield
. cosh B [ sinhB
t= , b= . (3.540)
b sinh B b cosh B

These will also be useful in what follows.
Now examine Eq. (3.508). We can consider the terms individually. First

i=( '(3.541)
Yov) b

o

N

follows immediately. Next

£'F'I=E;F1+mCK£.GE
e
. K 1 R
=t-F1+mc (coshB—g—f-sinth-V)t
e c ot
=t-Fy + mcv”72 0
= . 1 —_— v
' eK %lt—)+v”b~Vb
0
+ 22 : (3.542)
K7\ B2 +yb-vug |
where
ExB
ug =c—pr—, (3.543)

also follows after a short computation. Note that ug vanishes in a preferred
frame, but its derivatives may not; thus we had to apply the derivative to t-
before specializing to a preferred frame.

Next we write the components of F; as follows

0 E |
F=| ! . (3.544)
E1 1x B1

Recall that E; must contain all of the parallel electric field.
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It now follows from Eq. (3.508) that

ct = ¢y + O(€) (3.545)
and
: € me , 8br ‘
= —_— — — . v
R ’)’v‘U”bT + BbT X { - Yo [v” ( 5t -I-v“bT bT)
+ <§E + v b - VuE):l + i.L—VB} + 0(62), (3.546)
ot m .
where
B + €B1
br= ———.- 3.547
7 "= B+ By ( )
Now take the perpendicular part of R by dotting it with 1 — brbr, then divide
by £ to get -
dR € obr
= — — v
T O by x {’Yv l:v” ( Y + v”bT bT)
8
+ (—-u—E + v br - VuE)J + £ VQB} +O(%). (3.548)
ot myy

This is identical to Eq. (1.76) in the text by Northrop [43] in a preferred frame.
Recall that Ap = B in a preferred frame, so that 2p in the above equation
is simply eB/mec. The classical curvature, gradient and polarization drifts are
readily visible in the ébove equation. If we had instead done the calculation for
a general frame of reference, the E x B drift would appear as well. The reader is
referred to Northrop [43] for a good discussion of these results.

Next differentiate v,v; = K sinh B to get

;—t(%v”) = —l—(K sinh B + K Bcosh B). (3.549)
Yo

Insert Egs. (3.509) and (3.510) for K and B, respectively, and after a little algebra
we find

d 1 7 e . -
= () = - <_;sz Vg~ Syt F .b) + O(e). (3.550)
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Now it follows from Eq. (3.544) that

t-Fi-b=-b.E, = —E|, (3.551)
So we finally have
d o) = —Lbr Vs SE 1O (3552)
Y - my, T BT m . .

This is identical to Eq. (1.77) in the text by Northrop [43] in a preferred frame.

The terms on the right are the mirroring force and the force due to the parallel

electric field, respectively.

Northrop’s Eq. (1.78) is immediately seen to be equivalent to the fact that our
gyromoméntum u is a constant of the motion. Note that Northrop’s magnetic
moment M, is related to our u as follows: M, = eu/me.

Next, we know from Eq. (3.538) that ¢y, = K cosh B, so

= (mcPy,) = =

K cosh B + K sinh BB). (3.553)
dt Yo .

Now use Egs. (3.509), (3.510) and (3.551) to get

d a0
—(me*y,) = _7’1 7%—3 + ev B + O(e) (3.554)

after a short calculation. This is identical to Eq. (1.79) in the text by
Northrop [43] in a preferred frame.

Finally, as promised, we discuss the nonrelativistic limit of the second sub-
term of the third term on the right side of Eq. (3.511). This term is given by
(K/4AB)Fy : (e t—t 6) To simplify the evaluation of this term, we specialize
to a px;eferred frame where the perpendicular electric field vanishes (though we
shall be careful to retain its gradient). We also specialize to the case of time-
independent fields, spatially uniform magnetic field, and zero parallel velocity.
These assumptions are not at all necessary; they serve only to simplify an other-

wise tedious calculation, to aid the reader in seeing an effect that would otherwise
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be masked by lots of other less interesting terms, and to facilitate comparison

with Appendix C. Under these circumstances, we find that

- . 0 0
V Kt =cv, : (3.555)
: 0 V3g
and
0 0
Fy = . (3.556)
0 1xb

It then follows after a short calculation that

-2 2= v €Yy
———Fo:(Vt.—tv)zgBB~(VxﬂE)=—2m7QBVL-EJ_. (3.557)

Except for the factor «,, which is clearly a relaﬁvistic effect, this is identical
to the gyrofrequency shift due to perpendicular electric fields that is derived in
Appendix C. This shift was discovered by Kaufman [47] in 1960, who also showed
that it gives rise to the phenomenon of gyroviscosity.

The reader is urged to consult the text by Northrop [43] as well as a paper
by Vandervoort [48] for a further discussion and alternative presentation of the

above results.

3.14 Manifestly Boostgauge and Gyrogauge In-
variant Format

The guiding-center equations of motion presented above contain expressions, such
as v t, that are not boostgauge or gyrogauge invariant. Of course, the equations
as a whole are guaranteed to be gauge invariant by our method of derivation; but
they a.ré not manifestly so. This is due to the fact that our chosen coordinates,
namely (R, K,B, u,®), are themselves not gaﬁge invariant, thanks to the inclu-

sion of B and ©. This observation suggests that if we were to transform to a new
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set of gauge invariant coordinates, we could write our results in manifestly gauge
invariant format; that is, without any mention of the unit vectors, &,. In this
section, we shall derive two new versions of the Poisson brackets: The first will
be manifestly boostgauge invariant, but it will not be manifestly gyrogauge in-
variant. The second will be both manifestly boostgauge invariant and manifestly

gyrogauge invariant.

3.14.1 Manifest Boostgauge Invariance

To get manifestly boostgauge invariant results, we would like to replace K and

B by the new boostgauge invariant coordinate

~

U = Kt. (3.558)

The inverse transformation would then be
K=+v-U? (3.559)

and

B = tanh™! (—%) : (3.560)

Alas, there is a problem with this approach. Since the new coordinate U is a '
four vector, it contains four degrees of freedom, whereas K and B represent only
two degrees of freedom. This discrepency stems from the fact that U is not an
arbitrary four vector because it is constra.ined to lie in the parallel two flat; that

is, it obeys the constraint equation
P.(R)-U =0. (3.561)

This constraint restricts U to two degrees of freedom, but it also means that
the coordinates R and U are no longer independent variables. The coordinate
transformation is not a diffeomorphism (it is injective rather than bijective) and

so we cannot proceed in the usual manner.
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We can remedy this difficulty by temporarily relaxing the constraint in
Eq. (3.561). We make the following coordinate transformation (where, for clarity,

we use primes to distinguish the new coordinates):

R =R
rrt : Cla ~ -
“U' = Ki(R, B) + &(R,©) + Cisa(R, ©)
: AB(R)

po=p

e =e. . (3.562)

The reason for including Ap in the second term on the right hand side of the equa-
tion for U' will become clear in the next subsection. The inverse transformation

is then
R=R
K=\/-U" B(R) U

(U -él(R’))
=t vy _—Z IV .
B = tanh ( U7 ao(R)

p=p
0=0
Cie = Ag(R)U' - &(R', ©')
Cw=U"-a(R,0". (3.563)

Here, U ! is no longer constrained to lie in the parallel two-flat, and its perpendic-
ular components are called Cy,/Ap and Cy;. In order to have the same nﬁmber
of variables before and after the transformation, we have appended Cy, a.nd_ Cis
to our usual set of variables before making the transformation.

We now have a diffeomorphism, but we still have to decide how to deal with
these two new variables in the unprimed system. Our strategy will be to demand
that they are Casimir functions. That way, the dynamics is constrained to lie

on hypersurfaces for which they both are constant. If we start the phase space
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trajectory on the hypersurface for which they are both zero, it will remain on
that hypersurface. Of course, the equations of motion that we end up with will
also be capable of describing dynamics on other hypersurfaces for which they are
nonzero, but we ignore these othe: orbits as physically irrelevent.

So our phase space coordinates before this transformation are now taken to
be (R, K,B,u,0,Ci.,C1s). The bracket relations among these coordinates are
given by Eqgs. (3.497) through (3.504) for the brackets not involving C;, and Cj;.
Then, following the strategy discussed in the last paragraph, we simply say that
‘the bracket of Cy, or Cy, with any of the other coordinates is zero. We now
have dynamics in a ten dimensional phase space, but we are interested in what
is going on only in the eight dimensional subspace defined by Ci, = C1; = 0.
We have simply imbedded the guiding-center dynamics in a higher dimensional
phase space. It is clear that the Poisson bracket still obeys antisymmetry and
the Jacobi identity.

It is now straightforward to write the Poisson bracket relations among the
new set of coordinates, (R',U’,u',®'). Once we are finished doing this, it will
be alright to set Cy, and C;, equal to zero, but not until we have taken every
derivative that needs to be taken in the process; derivatives get messed up by
coordinate transformations that are not diffeomorphisms.

We illustrate this calculation for the {R',U'} bracket as follows:

{R,U'} = {R, Kt} +{R,C1.¢/25(R)} + {R, C1;a}
= {R,Kt}+{R,C1.}¢/X5(R) + {R,Ci;}a
+{R,&/A(R)}C1a + {R,a}C1s
= {R, K}t + K{R,R}- V £ + K{R,B}b. (3.564)
Note that all quantities on the right hand side in the above equation are expressed

in the old coordinate system. Note also that all terms involving C,, or Cy; have

vanished, either because they are bracketed with somethihg (recall that they are
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Casimir functions), or because they a.ppéa.r in a term outside of all derivatives
and so we have set them to zero.

Eqgs. (3.49'%) through (3.499) can now be substituted into the right hand side
of Eq. (3.564). The result will still contain objects such as v £ and V b. Eliminate

these by means of the easily verified relations
vVi=(VP) -t-0gb (3.565)
vhb=(vR) b-ot (3.566)

Because our results are guaranteed to be boostgauge invariant, all terms involving
Q will cancel, leaving a manifestly boostgauge invariant result. This being the
case, the result can be expreéssed in terms of the new coordinates.

Before presenting these results, a word of warning is in order. When the term

K( v Py - t is expressed in the new coordinates, the result is easily found to be
— . —!
K@ P i= (VY A(R)) B(R)- V" (3.567)

Upon applying the constraint, Pj(R') - U' can be replaced by simply U’. One

might thus be tempted to pull the following dubious maneuver:

(6' P”(R’)) .P(RY-U' = (6' P“(R')> U=V (Py(R)-U") =V U' =0.

(3.568)

This is incorrect because after the constraint is applied, R' and U' are no longer

independent variables. We thus had no right to pull U’ inside the 6' operator,

nor did we have a right to say that 6, U' = 0. This is subtle but important, as

the brackets below are full of things that look like <§, P”(R')) - U', and they
are definitely not zero.

We now present the full set of brackets in the new coordinate system (omitting

the primes since ambiguity should no longer result from doing so). We find

EFO

RR}=——"0
{ ’R} mABQB-r,)

(3.569)
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lp  mlmp @R
{RU}= P+ oo [F" P = "(V By D) (3.570)
0 (classical order)
{R,0} = (3.571)
¢{R,R}-R (higherorder),
§lB =
- _ S (F". :IT
1 - — _ — T
- [(P“ B (V P” . U)) — (P” = (V P” . U)) J
€ — p—
e U Fy- (VP -U 3.572
gt TL R UMM L (V I ) (3.572)
0 lassical ord
(.6} = (classical order) (3.573)
e{U,R}-R (higherorder),
and
{@,,u} = 6_17 : (3.574)

where we have defined

eFy : F'

T =1 3.575)
. eF'" . F,
==14 3.576
1+ T (3.576)
F"=F+ ’% (VA -v)- (VR U)T), (3.577)

where F' was defined in Eq. (3.495), and where the superscripted T means “trans-
pose.” Note that Y’', Z' and F' are the boostgauge invariant portions of Y, =

and F"; that is, they are related by

T=", | A (3.578)
—_ oy ek -
=z Y bO. 3.579
T e o (3.579)
and
F'=F" 4 EZ—K—(BQ - Qb). (3.580)

These new brackets may be compared to those for the old coordinates, given in

Eqgs. (3.497) to (3.504).
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This Poisson structure has the Casimir function, P, - U, so the constraint
Eq. (3.561) is guaranteed to hold for all times if it holds initially. The physical
motion takes place on the hypersurface for which this Casimir function has the
value zero.

The guiding-center Hamiltonian, Eq. (3.488), can now be expressed in the
new boostéa.uge invariant coordinates:

Hyo(R,U,u) = pflp + 5 U% + o
x [(—e—) Fy:F +P.: ((5 P -U)- Fo>] . (3.581)

mc

Note that this Hamiltonian is also gyrogauge invariant, since it does not involve
o.

There is another way to derive the above manifestly boostgauge invariant
Poisson brackets. We can write the phase space Lagrangian corresponding to

Eq. (3.489) in manifestly boostgauge invariant form as follows:

L,o(RU, 1, ©,R,0) = [-E-EA +mU — euR + 0(62)] R+ eud
— AU - &(R,©) = AuU - &(R, ©)
— H,o(R,U,p). (3.582)

The action associated with this Lagrangian may be varied to yield the same
equations of motion given by the manifestly boostgauge invariant brackets and
Hamiltonian, but the variation of the action must be performed subject to the
constraint, Eq. (3.561). Hence we have introduced the Lagrange multipliers, A;,
and Aj,. Note that varying an action subject to a constraint causes the constraint
to appear as a Casimir of the resulting Poisson structure; recall the example of
this phenomenon given in Subsection 2.3.6.

The equations of motion in this coordinate system are then easily found either

by using the Poisson brackets given in Egs. (3.569) through (3.574) with the
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Hamiltonian given in Eq. (3.581), or by finding the Euler-Lagrange equations
from the phase space Lagrangian given in Eq. (3.582). The results are

- epuFy- ;7 i
R=U AT’ |
mc , —
+ Az ah (- R-Z@p-0) U (3.583)
. C - T —
U= R V% + s (F" P = (T P-U)) Py 98
QB T ~
—Wf (Fm'-:' ).FoU
LEACAE U)-(VRU)T-ET-B|-U
€ = '
T Ye0sT [(V P-U)-F-(VPU )] U (3.584)
i=0 (3.585)

9—9—+6’R R+§—X;[( )Fo F1+PL:((§P¢-U)-F0)]. (3.586)

These equations of motion may be compareci term for term with Eqgs. (3.508)
through (3.511). In the equation for R, note that the parallel motion is given
simply by U. The second term contains the grad-B drift, and the third term
contains the curvature and polarization drifts. The first term of U contains the
mirroring force, and the force due to the parallel electric field arises from the
terms that contain Fy (via their dependence on F''). Of course, f still vanishes,
and the equation for © compares term for term with Eq. (3.511) in an obvious

way.

3.14.2 Manifest Boostgauge and Gyrogauge Invariance

Now we can use the same techniques to make our results gyrogauge invariant as

well. To do this, we would like to replace the coordinate ©® by the new coordinate

_ | &

a(R,0). (3.587)
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The inverse transformation would then be

© = arctan (-%%) . | (3.588)

Note that &, like ©, has only one degree of freedom, even though it is a four

vector. This is because it is subject to the constraints
P(R)-&=0, (3.589)

and .
&-&=1. | (3.590)

In order to deal with this in a proper fashion, we have to use the same tech-
niques that we used above to get boostgauge invariant brackets. Write the coor-

dinate transformation

R =R

R 1 C
U'= Kt(R,B) + ( e _&(R,0)+C éR,G)>
po=p
&' = /C3a(R,0) + i -C. E(R B) + C2s B(R B) (3.591)
3 b K 2a ) )\B(R) bl .
The inverse transformation is then
R=R
K =,/-U"P(R)-U
_ U'-é(R')
. —t 1 Y et
B = tanh ( U'-éom'))
p=p ‘
_ &' - é3(R')
© = arctan ( i éz(R'))

Cie =U'-Fy(R')-&'
Cp=U-P (R)-&
Coo =U' - PY(R')- &'
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Cap=U'-F(R) &
Cs=&'-P(R) &  (3.592)

We demand that Cq,, C1p, Ca24, C2p and C3 are Casimir functions, and that the
physmal motion ta.kes place on the submanifold defined by Cla =Cyp = Cza =
Cy =0 and C; = 1. ’

We can now write the Poisson bracket relations among the new coordinates.

We use the easily verified relations

vi=(vP)-t+0b (3.593)
vVh=(VP) b-gt (3.594)
Vé=(VP) é+Ra (3.595)
Va=(VP) a—Re (3.596)

- Note that, because our results are guaranteed to be both boostgauge and gyro-
gauge invariant, all terms involving @ and R will cancel, leaving a manifestly
boostgauge and gyrogauge invariant result. Also note that the Hamiltonian
Hy.(R,U,pu), given by Eq. (3.581), is already manifestly gyrogauge invariant (this
is because it is ©-independent). The new manifestly boostgauge and gyrogauge

invariant brackets are then

' eF |
, mc =
{R, U}-—Pu+ vy T,F ’[F”"PII“T(VPII'U)]’ (3.598)
U0} = B Fy (P 2T)F,

2mAy
1 - - = T =T
-~ (A-2-(VA-U)-(VRU)T-ET-R)

€
—— 3.599
m/\BQBT'(V PII U) (V Py U) ( )
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0 (classica.l order) (3.600)
(

e{R,R}- V P, -& (higherorder),

. 0 (classical order)
v,ay=1{ - (3.601)
e{U,R}- V P, -& (higherorder),

1 :
{,p} = —Fy - &, _' (3.602)
6)\3 -

o €

{a’a}. - _mABQBT ‘

This Poisson structure has the Casimir functions, P, - U, P, - &, and & - &. This
insures that the constraint Egs. (3.561), (3.589) and (3.590) will hold at all times

(VP.-&)T-Fy-(VP.-4). (3.603)

if they hold initially. The physical motion takes place on the hypersurface for
which the first two of these Casimir functions have the value zero and the third
has the value one.

Note that &, like ©, has nonvanishing brackets with R and U at higher order.
Once again, however, the set of functions of R and U form a subset of the set of
all possible phase functions that is closed under the operation of these Poisson
brackets; also, Hy. is independent of &. So we can still reduce to the guiding-
center description. .

Next, we note that these results could have been derived by varying the action
corresponding to the phase space Lagrangian obtained by rewriting Eq. (3.489)
in manifestly boostgauge and gyrogauge invariant format,

Ly = [SA+mU+0()] R- ;—’;d-Fo-é
—AMU-Fop-a—-2ApU- Py -6
—XoU - Pj-a= U -Fo-é
— A& P -a—Hy(R,Uyp). (3.604)
This must be varied subject to the constraints, Eqs. (3.561), (3.589) and (3.590).

We have enforced these constraints by introducing the scalar Lagrange multi-
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pliers, A1q, A1, A2, A2n, and A3. Note that the term involving R has disap-
peared from I';. when written in these coordinates, because —uR - R+ 0 =
_ué-Fy-&/2s.

We are going to need these Lagrange multipliers in Chapter 5, so we compute
them here for reference. They are rather easy to calculate, especially since we |
already know the Poisson brackets. The Euler-Lagrange equations for coordjnateé

U and & are

8H,.

0=mR—-AoFo-&—ApP -&— 3.6
mR —AaFo-&—AnPL &~ 55 (3.605)
and

d : H,.

= (6—“&-F0) &4 daal - Py + AU - Fo+20aPL - 64+ 25 (3.606)
dr \ 25 s T ea

respectivély. Upon multiplication by & - Fy and &, the first of these yields

Mo = —éa . Fy- (mR - 8(,%‘) (3.607)

and
A = & - (mR - %{ﬁgi) , (3.608)

respectively. Upon multiplication by U, U - Fy and &, the second yields

Aza = -Ul—zv. [epa. <:€°;) v.-R- 8{%°J (3.609)

and
Agp = %;;EU Fo - [ep,d- (f—;) v-B- a—afif—"J (3.610)

and
/\3=;—’:—3-&~F0-d+%d- [eua. (f_;) G.R—B;{;‘}, (3.611)

respectively. Note that, in perfect analogy with Eq. (2.184), these results can be

cast in the form

A, = €2 OHe

' 3.61
= aZa ’ ( 2)
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where the label v runs over all the constraints present (1a, 1b, 2a, 2b, 3), and

where

and

and

and

m

R = “XQ—& - Fy - {R, R}
. 2B

m 1
= —gza-Fo- ((RU}- 1)
£1. =0

N m R N

ﬁlaa = —FCI . Fo . {R,a}

B

el =ma- ({RU} - 1)
€15 =10

Efb =ma - {Ra &}

R 1 [ . FO —_
&0 = mU . _e,ua . (3‘; V -{R, R}
1 [ (R =

¢ = —U—2U~ €pc - (/\—;-) v -{R,U}]
§2. =0

& 1 [ . (Fo\ = R
o= oo (B) ¥ty
R_ "l W ELAR-

€3 = U2U Fo [fﬂa (AB VvV {R, R}
¢ = 72U Fo [eua- (-}%) v o{R,U}]
&2 =0

& -1 - Fo hand -
£ = @—EU Fo [eua (—;) Vv {R,&} - IJ
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& = -ta R (U + 3o lwa- (52) T (R,
: B

A
T .
& = —=a- Fo-{au}
[l
X €u . . 1. . [ Fo)\ = -
5 =——a-Fy-{a,a}+zé- |eua- | — ) V-{R,a} —1|. (3.613)

Finally, we note that the equations of motion in thesev coordinates ;'a.,re easily
found either by using the Poisson brackets given in Egs. (3.597) through (3.603)
with the Hamiltonian given in Eq. (3.581), or by finding the Euler—Lagrange
equations from the phase space Lagrangian given in Eq. (3.604). The results are

: €MFO'VQB
R=U—- ———
m/\BQBT’
mc¢
+ o v b (F"-R-==(VR-0) U (3.614)
. ) mc — T o=
U=——Pu v Qs+ ,\’f‘r' (F"-P -5V R-D)) - Fo Vs
- é—gfo !-(F'" '.:.' )fo U
-[p-=-@R-0)-(FRU)T-ET-p]U
€ — —
T 3e05T [(V P - U)T Fo- (VP -U )] U (3.615)
p=0 - (3.616)

. e A — . e —_
a=——F0-a+a-(P_L V)R ) SV aFo [( )F02F1+P_1_2 ((V PJ'U)F(J)]
eme 2)\ me

(3.617)
Note that Eqgs. (3.614) through (3.616) are identical to the corresponding equa-
tions in the last subsection. These were gyrogauge invariant anyway, and so were
unaffected by the manipulations carried out in this subsection. The equation for
© has been replaced by an equation for &; the two may, however, be compared

term for term in an obvious way.
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Chapter 4

Relativistic

O scillation-C enter Theory

4.1 Discussion

In this chapter, we shall consider the perturbation of a guiding center due to the
présence of an electromagnetic wave of eikonal form. In doing so, we shall take
as our unperturbed problem the guiding-center equations of motion, as derived
in Chapter 3. Thus we are effectively using the superconvergent Lie transform
pfocedure as described in Subsection 2.4.1.

We are interested in understanding the response of the guiding center to the
presence of the wave. Towards this end, we seek a transformation to a new system
of coordinates in which the wave perturbation is removed. Neglecting resonant
phenomena, it turns out that it is possible to do this to first order, but not to
second order. At second order, there remains an averaged residual perturbation
to the Hamiltonian that gives rise to the ponderomotive force exerted by the wave

on the guiding center. Thus, after we transform away the rapid fluctuations in
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the guiding-center motion, we are left with the slower ponderomotive effects.

An analogy with the guiding-center problem may be helpful here. In that
calculation, we averaged over the rapid gyromotion to find the slower drift motion.
The thing that is drifting is then called a “guiding center.” A guiding center is
a fictitious object whose position and momentum are the gyroaverage of the
particle position and momentum, respectively. Furthermore, a guiding center
may be thought of as having an intrinsic or spin angular momentum equal to the
orbital angular momentum of the underlying gyrating particle. Thus, by finding
the averaging transformation that eliminates the fast degree of freedom, we have
discovered a new “macroparticle” that lives on the slow time scale, but whose
properties derive from those of the original charged particle gyrating on the fast
time scale.

Similarly, when a perturbing wave is present and we transform away the
associated rapid fluctuations, the residual ponderomotive forces may be thought
of as acting on a new “macroparticle” that is averaged over a wave oscillation
time scale. We call this new object an “oscillation center.” Whereas an individual
charged particle feels wavé fluctuations on a rapid time scale, an oscillation center
feels only the slower ponderomotive effects; it also feels resonant effects (since
these are also slow and do not average away), but we shall ignore these in our
treatment. Thus, a kinetic equation for a plasma of oscillation centers would

contain only ponderomotive forces and resonant effects.

The averaged nth-order part of the ponderomotive Hamiltonian is called K,
and we shall derive this for a relativistic guiding center. As has already been
noted, K; vanishes if we neglect resonant effects. It was discovered by Cary and
Kaufman that there exists an intimate connection between the ponderomotive
Hamiltonian and the.pla.sma’s response to a wave. Specifically, K, is a quadratic
form in the amplitude of the perturbing wave, and the kernel of this quadratic

form is the functional derivative of the linear susceptibility with respect to the
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distribution function. Subsequently, it was found by Kaufman that this relation-
ship persists to higher order; that is, nonlinear corrections to the susceptibility

are related to K3, etc.

In the traditional approach to studying plasma response to a wave, one begins
with the field equations and the kinetic equation, and studies perturbations in the
fields and the distribution function about an equilibrium. Though this approach
_is not as systematic as ours, it has at least one advantage: The vector potential

néver appears, so all results obtained by such an analysis are guaranteed to be
manifestly gauge invariant. In contra.'st, Hamiltonian or Lagrangian approaches
to ponderomotivé theory seem to require the use of the vector poténtial, so past
‘attempts along these lines have produced results whose gauge invariance was

either not established, or established only by laborious calculation after the fact.

In this chapter, we shall find that eikonal wave perturbations to the La-
grangian action for a relativistic charged particle in the guiding-center represen-
tation can be written in manifestly gauge-invariant form. To do this, it is neces-
sary to abandon the usual approach of expanding the eikonal wave perturbation
in a series of Bessel functions of k 1p. Instead, we first perform a Lagrangian
gauge transformation, and then we expand in a series of functions that are re-
lated to indefinite integrals of Bessel functions. This allows us to develop an
oscillation-center theory to arbitrarily high order in the wave amplitude expan-
sion parameter, and be guaranteed of manifest gauge invariance at every step of
the way. Thus, we can enjoy the benefits of the systematic Lie transform approach

to ponderomotive theory without fear of losing manifest gauge invariance.
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4.2 Eikonal Wave Perturbation

In single-particle phase space coordinates, an eikonal wave has a four potential
of the form _
Au(r) = A(r)exp (Zzﬁ(r)) +cc, (4.618)

where A is the amplitude and ¥ is the phase, and where c.c. denotes the expres-
sion’s complex conjugate. The derivative of i) with respect to spacetime position

is the four wavevector, k:

k =V ¥(r). (4.619)

Both A and k are slowly varying functions of ». That is, an eikonal wave is locally
a plane wave. To reflect this, we have placed 1/¢ in front of the phase. Thus,
the derivative of A, with respect to r is tkA,, /¢ plus terms of order unity that
involve derivatives of A or of k.

Furthermore, in this work, we shall take this eikonal expansion parameter to
be equal to the guiding-center expansion parameter (hence, it is no coincidence
that we are calling it €). This means that we are considering waves whose char-
acteristic wavelengths are on the order of a gyroradius, and whose characteristic
frequencies are on the order of a gyrofrequency.

We shall now consider the effect of such a wave on the single particle action

one form in Eq. (3.370). Replacing A in that equation by A + AA,,, we write
v ="+ Muw, (4.620)

where 7, is the perturbation in the action one form due to the wave, or

Olm

Yw = ~A(r) - drexp (zdl(r)) +c.c. - (4.621)

Note that we have introduced a new expansion parameter, )\, to order the wave
amplitude. For the time being, we shall not compare A and ¢, though more will

be said about this later.
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As was remarked earlier, our starting point for the oscillation center Lie trans-
form will be the guiding-center equations of motion. Hence, it is necessary to
write v,, in guiding-center coordinates (the above form for +,, is in particle coor-
dinates). We apply the guiding-center Lie transform to the above equation for v
to get 4

=T, +Al,, (4.622)

where Iy, is the guiding-center action one form, calculated in Chapter 3. Then,
I',, is given by ,
'y = exp(—€Lg)Vw, (4.623)

where g is the generator for the guiding-center transformation.

Note that we are working only to first order in e. To this order we can take
g™ = —pa, where p = w/Qp. All other components of g are unnecessary, and may
be ignored. We shall use the boostgauge invariant set of coordinates (R, U, u, 9)
described in Section 3.14.

4.3 Manifest Gauge Invariance

At this point in the calculation, the usual approach is to apply the Lie trans-
form in Eq. (4.623) by simply substituting R + pa for r in Eq. (4.621). This is
straightforward, and the result is
r,= S (/i -dR + %’f + €pA - éd@) exp (E'gb) exp(ipa - k) + c.c., (4.624)
where we have retained the leading nonvénishing order for each component of the
one form, and where it is understood that all quantities on the right (such as A
and €) are now evaluated at R. Since a- k is oscillatory, the second exponential
in the above expression gives rise to a series of Bessel functions of k| p. |
Unfortunately, the above expression for I',, does not possess manifest gauge

invariance. To understand why this is, we must qualify what we mean by “man-
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ifest gauge invariance.” A term in fhe action one form is gauge invariant if it is
unchanged to within a Lagrangian gauge tra.nsforma.tion when A is replaced by
A + tkA, where A is any slowly varying scalar function of position. Thus, the
quantity '

F =i(kA - Ak) | (4.625)
is gauge invariant since it is unchanged by this transformation. The quantity

A-dRexp(it/¢) is also gauge invariant since it transforms to itself plus the term
tAk - dRexp (zzb) =d [e_A exp (E¢)} (4.626)
€ _ € ‘

(where we have neglected higher-order terms in €), and this can be removed by a

Lagrangian gauge transformation. We shall say that a term is manifestly gauge

invariant if it has the form A - dR exp(iy/e), or if it depends on A only through
its dependence on F." }

Thus the first term on the right hand side of Eq. (4.624) is manifestly gauge

invariant, but the other two terms are not. They are gauge invariant (as they

must be), since to leading order in € we have

. (eAk-édu

: . T, .
1 ——ow + epAk - cd0> exp (Ez,b) exp(ipa - k)

=d [eszk -aexp (Egb) exp(zpa - k)} (4.627)
and this can be removed by'a Lagrangian gauge transformation, but they are not
manifestly gauge invariant.

If we were to use Eq. (4.624) as the starting point for our ponderomotive the-
ory, we would obtain results for K,, that are not manifestly gauge invariant. We
could get around this problem if there were some way of manipulating Eq. (4.624)
into manifestly gauge-invariant form. It turns out that this can be done by mak-
ing a particular Lagrangian gauge transformation, but this transformation is far

from obvious and needs to be motivated. As we shall now see, this motivation

comes from the homotopy formula.
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Return to Eq. (4.623), and expand the exponential in a series of Lie derivatives

Ty = Z( ,f) LI (4.628)
=0 7

Applying the generalized homotopy formula, Eq. (2.76), we get
2 (—€) T A
Tu =0+ =i [God) + (dig)'] Yoo- (4.629)
. 71=1

Note that we have split off the j = 0 term from the sum because Eq. (2.76) is
valid only for 7 > 1. The above may now be written in the suggestive form

ig(dig) "1y | - (4.630)

NN = ()
Tw= 7w+ Z (i) | +d Z i

j=1 j=1
Note that the second term in square brackets is an exact one form, and may
therefore be removed by a Lagrangian gauge transformation. The first term in.
square brackets has two pieces: The first is ~,, itself, which we know is manifestly
gauge invariant. The second is a series of terms all of which have the operator
14d, raised to some power, operating on %,,. Thus, in all these terms, the vefy
first operator to be applied to v, is the exterior derivative. Now

e = : 1 |
dvy, = 2_ecF dr A drexp (;1,&(7‘)) + c.c. (4.631)

(plus higher-order terms), and this is manifestly gauge invariant. Subsequent
applications of 7, and d préserve this manifest gauge invariance. Thus the term
in the first square brackets on the right hand side of Eq. (4.630) is manifestly
gauge invariant. Thus, Eq. (4.630) gives us the Lagrangian gauge transformation
that leaves I',, in manifestly gauge invariant form.

At this point, one may wonder why we have bothered to keep all the terms
in the above series when we have said that we are interested in only the lowest
nonvanishing order in e. Note that when we apply differential operators to v,,, as

given by Eq. (4.621), we pull out factors of 1/¢. This means that even terms with
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very high j can make order unity contributions. Thus, it is important to keep all
the terms of the series as given above. This situation arises as a consequence of
the nonanalyticity of v, in €. It will become more clear momentarily.

To proceed, we néed expressions for (i;d)?v,, and i4(dig) vy, for j > 1. To
get such expressions, we simply evaluate them for the first few values of j, notice

the pattern, and prove it by mathematical induction. The results are
o RN A N i 1
[(zgd)J'yw]r:—z . (9" k) "'g" - Fexp Ezb + 0 + c.c.
- i=2 o n .
. N _ €. tg" -k 89" - t 1
‘[(zgd) Yol, = —0 1)( - ) on TP ¥)+O(G5=) tee

(Godyra], = (5 = 1) (igr'k)j_z Pyt #)+0( 5 >+cc
and

ig(dig) e = S (é)%(gf K)ig - Aexp (L0 ( ) ( ) +c.c. (4.632)

Note that the components of (igzd)’~, are manifestly gauge invariant, as

(LRI

promised. Then i4(dig)’7, is not manifestly gauge invariant, but this is the term
that will be removed by the Lagrangian gauge transformation. Thus, everything
is going as planned.

Now we must plug the above results into Eq. (4.630), and sum the series over

7. This is straightforward, and the result is

Pu =+ [y P (R L) o (1) o0 an

3

o
o[ (BB ) o]

o (B 82 (). ]
—d [izfgr A (e"p(_,gifr. i{k) — 1) exp <£¢) + O(ez)} +c.c. (4.633)

At this point, we can check the above result by actually applying the exterior

derivative to the last term in square brackets. There is extensive cancellation,
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and we are left with Eq. (4.624), as expected. We can now make the Lagrangian

gauge transformation,

I, =Ty, +dSr (4.634)
.Where
St = z_e_eg,, A (exp(—-zg k) - 1) exp (Ez,b) + c.c., (4.635)
c gr-k €

thereby removing the last term of Eq. (4.633) to get a manifestly gauge invariant
one form, as desired.

Now g" = —pa, and we can substitute this into Eq. (4.633). Note that the
u component of I, vanishes because g" and d¢”/3u are both in the a direction,
and they are both dotted into the antisymmetric two form, F. The 6 component

does not vanish, however, because 8g” /80 is in the & direction. We finally have

I, = < [A'%-pé- F (exp(z.pahl- k) - 1) + O(G)J -dR exp (Lp)
c pa-k €
2 . ~ . -~ . . .
€ep & ((1—ipa-k)exp(ipa-k)—1 1
- [%AB For B ( (pa- k)2 +O() | doexp v
+ O(})du + O(?) - dU + c.c. (4.636)

To proceed, we must Fourier analyze the above expression in preparation for the

oscillation-center Lie transformation.

4.4 Fourier Expansion in Gyroangle

We now write the components of k in the €, basis, introduced back in Chapter 3,

as follows:

k =k -k, (ésina + é;cosa), (4.637)

where k| lies entirely within the parallel two-flat. The geometrical situation is

illustrated schematically in Fig. 4.1. Then, using Eq. (3.346), we find

a-k =k, sin(0 - a). (4.638)
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.== XBL 876-3018 --

Figure 4.1: Components of the Four Wavevector
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Now we may Fourier Expand the quantities
exp(ipé ] k) — eik_q_psin(e—-a)
=" Je(kpp)et ™, (4.639)
¢
exp(ipa-k) —1 eikLpsin(6-c) _ 1
ipa-k " ikypsin(f — @)
| = 3 Qulkip)e 0= (4640)
—
and
(1 —ipa-k)exp(ipa-k) -1 (1—ik psin(6 — a)) elkLpsin(6—c) _ 1
(pa - k)2 B - k2p?sin®(0 - a)
1 (-
= 5 3 Rekp)ei ), (4.641)
¢
where the J, are Bessel functions,
= — tizsmé—1 4.6
K@) =5 | dee , (4642)
where we have defined the special functions
1 27 etTsing _ 1 »”
= — —_—}e? 4.643
Qe(z) 27r/0 d€( wzsin§ ) ¢ ( )
and :
27 Sl izsiné _ ]
Re(z) = = / de ((1 izsiné)e 1) emitE, (4.644)
o ,

T z2?sin? ¢

and where the summations over ¢ extend from minus infinity to infinity. The

properties of the Q@ and R functions will be explored in detail in Appendix D.
Now, along with the expressions in Eqgs. (4.639), (4.640) and (4.641), I, and

I!, also contains the #-dependent (and hence oscillatory) quantities, & and a.

Thus we need to know how to Fourier expand these as well. Using Eq. (3.346),

we may write

(4.645)
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and
5 1 . 6, . —io
a= —(éje’” +e_e "), 4.646
where we have defined :
1
é:t = —(ég + iés). ] (4.647)
V2

Note that these are éomplex unit \;ectors that obey €} = é, é,-&, =0, and
e, -é4 = 1. Because they contain éiie, when we multiply them by the series
in Eqgs. (4.639), (4.6{10) and (4.641), they will .genera.te terms with e!(‘+1¢ By
defining new summation variables we can restore these to the form €**?, but then
these terms will be.lef-t with special functions that have indices £ & 1.

Now then, we may write I, as follows:

‘Fw = E (FZR . dR + GF(“dp + Erggde) exp <E‘I’1) +O(€2) + C.C., (4648)
€ :
4 ' . ) :

where .
Ter = <J/A, (4.649)
c
Tpp= ———JF A © (4.650)
“= V2o .
and
ep __ = .
T=—J -4, 4.651
£6 \/icjg . ( )
and where we have defined '
¥,(R,0) = Y(R) + el(8 — a(R)) (4.652)
and
JE=e,e 1 té_e " Jp,. (4.653)

Similarly, we may write I, as follows:

! ! ’ ] i
Iy = Z(Fm - dR + €eI'ypdb) exp (E‘I’e> + O(€®) + c.c., (4.654)
l .
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where
b= 2 |bpd + L0} F 4 Oe) (4.655)
(R ¢ ﬁ I ’ |
and
' ep2 o= 2
0= "1 RyFy : F 4+ O(€°), | (4.656)
and where we have defined
| Qf = e,e®Qu1+6_e7Qpy1. (4.657)

In the above expressions, it is understood that J;, Q; and R, are evaluated at
k 1P

Finally, note that St, as defined by Eq. (4.635), has the Fourier decomposi-
tion, | |

St = ez St¢ exp (%‘I’[) + c.c. (4.658)
- _

where

Sre= ——20F - A (4.659)

V2¢

Using Eqgs. (4.648), (4.654) and (4.658), it is possible to check that I', = ', +dS7.

4.5 The Oscillation-Center Lie Transform

Our aim is to perform a Lie transform that will remove all the effects of the wave
from the Poisson structure, and put them into the Hamiltonian. Thus, when we
have completed this task, our Poisson brackets will be identical to those for a
guiding center with no wave present (through order A\2). The effect of the wave
will be pushed into a term of order A? in the Hamiltonian. We shall do this both
for I'y, and for I', in order to verify that we get the same answer either way.
We now reset our variables, so that I',, (as given by Eq. (4.648)) and I",
* (as given by Eq. (4.654)) will henceforth be called ~,, and «.,, respectively. The

oscillation-center transform will take us to I'y, and I',, but we want these to
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vanish by the above argument. Thus, in Eqgs. (2.273) and (2.274) we demand that
I’y and I'; vanish. This is the step at which we are negleéting resonant effects.
Furthermore, in Eq. (2.274) we have v, = 0 because our wave perturbation is at
first order in A only, and Q; = 0 because I'; = 0.

First consider the oscillation-center transform of ~,,. We have
0 =1y — i1wge + dSy, (4.660)

and

0= —izwgc — iilww -+ dSz ) (4.661)

Meanwhile, the Hamiltonian transforms according to Egs. (2.221) through (2.224)

to give
Ko=Hg, (4.662)
K, = fﬁngc = —1;dHy, (4.663)
and
K, =—LyH, + %cfﬂgc. (4.664)
Now we demand that K; = —i;dHy. = 0. Let iy denote interior multiplication

by 2 (the unperturbed flow), so fgwgc = —dHy. (our unperturbed problem is the

guiding-center problem). Then, applying ¢ to Eq. (4.660) gives
S1 = —ioYw + t1dH e = —ioVu, (4.665)

where the last step follows as a result of our demé.nd that K3 = 0. We can
integrate this last equation along unperturbed orbits to get S;. Then g; is given
by Eq. (4.660)

91 = (Yw+dS51)  Jge. (4.666)

At second order, we can solve Eq. (4.661) for g, as follows:

1.
g2 = (=5t +dS2) - Jge. (4.667)
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Now then, we can insert these generators into Eq. (4.664) to get K>, as follows:

1
KZ = —Ezch + Echgc

= —L;H,.
1,

= (Ezlww - ng) ° ch . ngc
1 .

= Eioilww — 52. (4668)

Now we can choose S, to remove the oscillatory part of the first term. Note
that we cannot remove the averaged part of the first termn, because that would

introduce secular terms in S2. So the best that we can do is to take
1. .
K2 = <~2-2021ww> . (4669)

This is the ponderomotive Hamiltonian. _
Now suppose that we had started with v,, = v, + dSt instead of . Instead
of Eqgs. (4.660) and (4.661), we would have written

0=+, —iywge +dS!, (4.670)

and

1
0 = —tpwge — §i1:ww + dS;, (4.671)

where 7,/ 1s an obvious shorthand for gt and where we are adhering to the
convention of using primes to denote quantities arising from the Lagrangian gauge
transformed action one form. Of course, we still would have taken K} = K, =
Hy. and we still would have demanded that K; = —t;:dHye = 0 = K. From
this it follows that K = —iy dH,.. Thus, if we could show that g, = g3, it would
immediately follow that K} = K3; that is, it would follow that the ponderomotive
Hamiltonian is invariant under the Lagrangian gauge transformation.

From Eq. (4.670), we have

S} = 10dS} = —ioyl, + ivvdHge = =07}, = —io(yw + dST) = $1 — S1, (4.672)
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SO
. 8'=58, - Sy. | (4.673)
Then

91 = (Y +d51)-Jge = (Yo +dST+dS1—dST) Jge = (Y0 +dS1)-Jge = g1, (4.674)

So g1 is invariant under the Lagrangian gauge transformation. Next, from
Eq. (4.671) we have | _
.1, )
g,2 = (—Ezllww + dS;) . ch, . (4.675)

o)
1 1 . ) ' 1 .. ] 1 . . ~I ;
K, = Ezlrww —dS; | - Jge -dHy = Ezozyww -5 = Ezozlww - 5,. (4.676)

Thus we have

$h = %ioilww _ <%ioz‘1ww> = $,, (4.677)
SO
S5 =82, (4.678)
a'nd so
gh = go. - (4.679)

It immediately follows that

1
Ké = <§i0i1ww> = Kz, (4.680)

so the ponderomotive Hamiltonian is indeed invariant under the Lagrangian
gauge transformation. Note that g;, g2, and S, are also thus invariant, but that
vw and S; are not. The latter two quantities transform under the Lagrangian

gauge transformation as follows:

Y = Yw + dST (4.681)
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and

S! = §; - St, (4.682)

so that the combination v,, + dS; is invaria.nt.-

Though we have just shown that we would gét the same answer for the pon-
deromotive Hamiltonian either way, it bears repeating that the advantage of
starting with v} is its manifest gauge invariance. In the next section, we shall
further discuss the relative merits of each of the two ways of calculating K».

While the above expression, Eq. (4.669), for the ponderomotive Hamiltonian
is wonderfully compact, it is also very formal. We need to plug in Eq. (4.648)
and/or Eq. (4.654), and work it out in detail. This is done in the next section.

4.6 The Ponderomotive Hamiltonian

Our unperturbed equations of motion are

R:U.-{—eUd

U=0(1)
p=0
and
|
f=-Qp, (4.683)

€
where U; denotes the guiding-center drift motion, and where we do not need
to know anything about U other than the fact that it is order unity in e. Then
Eq. (4.665) for S; becomes

5‘1 = — Z [ver - (U + €Ug) + ve6§2B ] exp (-Z‘I’z) + c.c., (4.684)
4

and Eq. (4.672) for S} becomes

Sy = - Z (ver - (U + €Ua) + vp0B] exp (Z‘I’Z) +c.c. (4.685)
- :
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Integrating over unperturbed orbits, we get
exp (i\II g)

S, = iez [em - (U + €Uyg) + 70008] D, +c.c., (4.686)
£ .

and ‘
iy
exp ((¥e) |

D, c.c., (4.687)

Sy =€) [Yor - (U + €Ua) + 706928
) £
respectively. Here we have defined the resonant denominator

Di=¥,=k- (U +eU;) +£95. (4.688)

Using Eqgs.(4.658), (4.686) and (4.687), it is possible to verify Eq. (4.673); that
1s, it is possible to show explicitly that S =81 —Sr.
Now we use Eq. (4.666) to get the components of the generator g;,

. FRD, . Ly
g7 = _;ne_z (Hlek+ EJzDeA) . ( o 2 +1P||> M
- , .

ABlB D?
+c.c. + O(), (4.689)
1 ‘ e . exp (L ¥,)
Uu _ -~ € ) p
of = — Z:‘ (Hick + ZJeDeA) - Py e et 0, (4690)
1 e . exp (10,) ,
b e . p
91 = 05 § : (Huk + chDeA) U—-——-—~De +c.c. + O(e), (4.691)

4

e .- Zk n
gf=Z[_ ok For AJe+ = (Jo1 = Je-1)U - A

- mcAg 2pAB
1 - exp (1 ¥,)
- A- Ttk -U|—/—/==—2 t c.c. + Ofe), 4.692
et s (¢) (4.692)
where we have defined
__ € inB - ~

If we had instead used the the first of Egs. (4.674), we would have obtained the

following results for the components of g;:

'R l€€ 1082 __ ~
= — UJ 'F
5 me & ( ¢+ \/5 ~7e )
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!
(1

u
91

and

9

kD, . €Xp ( )
. (/\BQB t 2PII) — D? +c.c.+ O(e),

e 1p§lB

uv_ _ "™ - LB
= e (UJ@-{- \/Qje) F

exp (£¥)
D,

_ iy
LRSI @i_é_ee_fl +e.c.+ O(e),
L

- By + c.c. + O(e),

v

! = g [ (s aw)| 2

+ c.c. + 0(6).

172

(4.694)

(4.695)

(4.696)

(4.697)

By straightforward calculation, it is possible to directly verify that ¢) = ¢1, as
required by Eq. (4.674). To do this, simply substitute F = i(kA — Ak) into
Egs. (4.694) through (4.697); upon simplification, the results will be Eqgs. (4.689)

through (4.692).

If we had not made the Lagrangian gauge transformation,

and had instead started with only v, and S;, we might have had difficulty

casting Eqgs. (4.689) through (4.692) in the manifestly gauge-invariant form of
Eqs. (4.694) through (4.697).

Next we compute the components of w,, = d~,,. Direct calculation gives

where

)
Wy = E Wyt €EXP (;‘I’g) + c.c.,
14

e -~ -
WweRR = ;Jz(kA - Ak),

WwiRU = 0(62),

k -
|:k‘7£ ;LJ;(J£+1-JZ 1) les

2
ﬁze.}el) . A’
P

w p—
wlR/.L \/— AB

w == k
WweR \/é (Je

(4.698)

(2.699)
(4.700)

(4.701)

(4.702)
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Wiy = O(e?), (4.703)
Wi, = O(€2), (4.704)
WytUe = (’)(62), _ (4.705)
and '
Wweus = —%k . Fy - AJ,. (4.706)
If we had instead used w,, = dy,,, we would have obtained the following results: -
wy, = Zw;e ejcp (-:.-\I!e). + c.c., (4.707)
¢
where
Wiern = —JeF, (4.708)
wiepy = O(€), (4.709)
WytRy = \/‘.7./1))\3 F.g;, (4.710)
Wi,eRo = \i/eépcﬁ,. I . (4.711)
Wyewy = O(€?), : (4.712)
w:”w“ = O(€?), (4.713)
Wyeve = O(€%), | (4.714)
and
Wetuo = —E;_%FO : FJ,. (4.715)

By direct caléulation, it is once again possible to verify that w!, = d'y; = d(yw +
dST) = dvy = w,, by simply substituting F' = i(kA — Ak) into the results for
the components of w!, and simplifying to get the components of w,,.

Before using the above results to calculate K, we digress for one last discus-
sion about the relative merits of starting with v, and «! . First note that all of

the components of g; and w,, are indeed manifestly gauge invariant. If we had
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started the calculation with «,,, this would not be a surprise since «,, is itself
manifestly gauge invariant; if however we had started the calculation with =,,
the manifest gauge invariance of the result would seem fortuitous. In the latter
event, we would have had results in terms of /i, and only through some tedious
algebraic manipulations would we have discovered that their dependence on‘ A
arose only through a dependence on F. On the other hand, note that the only
special functions that appear in the components of g1 and w,, are the Bessel func-
tions, Jp. The Q, and R, functions have all disappea.red in favor of -the J,. If we
had started the calculation with +,,, this would not be a surprise since +,, itself
depends only on the J;, and not on the Q,; and Ry; if however we had started the
calculation with v, the disappearance of the @, and R, functions would seem
fortuitous. In the latter event, we would have had results in terms of the @,
and R, functions, and only through some tedious algebraic manipulations would
we have discovered that the recursion relations and derivative formulas could be
used to cast them in terms of J; alone. There is thus a peculiar duality between
the presence of special functions and of manifest gauge invariance.

We now insert the above formulas into our expression for K;. The averaging

is carried out as follows:

<exp (E‘I’[) exp (E\IJ@:>> = bgpr. (4.716)

We get
Ky = -5 (A" Pl A+ ——k-UA"-Fp- 4 )+ Y K 4.717
2——2mc2 { o5 . «fp-A+cc.)+ . 245 (- )
where
' eH? - tk-Ur &k U
Kop=—!x.p .AJ, - = (T —
2t mcDg{k I ¢ Plp [ 2Qp (Je 1 Jet1)
k-U .
- 72-6—.7;‘ + X’-’;Fo -ng] ~A}
B
|Hael? |
+ k- Pj-k+cc +Oe), (4.718)

2me :
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where c.c. denotes the complex conjugate, and where H, is defined in Eq. (4.693).
If we had instead computed K}, according to Eq. (4.676), we would have obtained

the result,

Ky =) Ky, | (4.719)
e .

where

s

| o  FoD
K = [ 1pflg oL/ ,
7 2mc2D? (J‘U+ V2 Je AsQp 4By

o 1pQlp " e’p
B U __cPr
( U+ \/— \72 ) + 2\/—mc2De (je )

P [iFO. <1Jg V2 —J; ) } e +O%).  (4.720)
AB P _

Once again, by substituting F = i(kA — Ak) into Eq. (4.720) and simplifying,

it is possible to reduce the expression to Eq. (4.718), thus directly verifying that

K, =K. In .t.he' course of this calculation, some of the sum rules of Appendix E

are useful. Henceforth we shall drop the prime in our notation, and refer to

the ponderomotive Hamiltonian only as K5, whether or not it is in manifestly

gauge-invariant form.

Note that K is a function of thé phase space coordinates, R, U, u and 6; in
particular, it depends on R through its dependence on the background fields,
Fo(R) and F;(R), and through its dependence on the eikonal wave field param-
eters, F(R) and k(R). Thus we write K2(Z; F;(R), F(R),k(R)), where i = 0, 1.

The ponderomotive Hamiltonian will be used extensively in the next chap-
ter where we shall study the self-consistent dynamics of magnetized relativistic

plasma in an eikonal wave field.
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4.7 Obtaining the Ponderomotive Hamiltonian

Using Canonical Lie Transforms

Grebogi and Littlejohn (8] have obtained the ponderomotive Hamiltonian by
first performing a single noncanonical coordinate transformation to remove the
perturbation from the action one form, and then using canonical Lie transforms
on the Hamiltonian. We shall use that procedure in this section in order to check

our above result for K.

Let us return tcs the point at which the wave perturbation was first added -
to the single-particle action one form in Eq. (4.620). Recall the definition of the
single-particle velocity u in Eq. (3.366). Suppose that we change this definition
to absorb the wave perturbation; that is, we adopt the following new definition

for u:

1

U= —
m

(p-S4@) + Zd@em (26(0) +ee.  (@72)

This has the effect of returning the action one form to the functional form that it
had before the wave was introduced. Of course, the definitions of the quantities
that appear in the one form will be different; that is, u and anything that depends
on u {e.g. k, B, w, and 8) will be defined differently in terms of the single-particle
position and velocity. Nevertheless, the action one form is retﬁrned to the form
that it had when no wave was present, and now we can apply the usual guiding-
center transformation to take it to the guiding-center action one form I',,, given

implicitly in Eq. (3.582), with no remaining perturbation due to the wave.

Whereas the action one form has thus been simplified by this transforma-
tion, the Hamiltonian, Eq. (3.367), now becomes considerably more complicated.

Using the new definition of u in Eq. (3.364), we have

H'(r,u) = Hy(r,u) + AH;(r,u) + N2 Hy(r, u), (4.722)
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where
Hy(r,u) = ?uz (4.723)
Hi(r,u) = -Zeu ~A(r) exp <£¢ (r)) +c.c. (4.724)
and |
, .62 - ;* e - ~ 2i; |
Hy(r,u) = 2mc2A(r) < A*(r) + 2mc2A(r) - A(r)exp (:zﬁ (r)) +c.c. (4.725)

At this point we can apply the guiding-center transformation, (r,u)
(R, U, u1,®), which may be taken to be simply R = r — ¢p to the order to which
we are working. The result may be Fourier expanded in the gyroaﬁgle usihg the

..usual Bessel function identities. The result is
H = Hy + MH; + A2 H,, - (4.726)

where

Hy = -2"3U2 + uQs o (4727)

is the usual guiding-center Hamiltonian (to lowest order), where -
H, = Z Hy,exp (E‘Ilg) + c.c. | (4.728)
¢ ¢ '

with Hjy, given by Eq. (4.693), and where
2

H, = e—é/i - A* + oscillatory terms. (4.729)
me

To recap, we have applied a noncanonical transformation to remove the per-
turbation from the Poisson structure and deposit it in the Hamiltonian. We
can now use a canonical Lie transform to remove H; (neglecting resonances)
and average H, to get K,. Note that this method does not preserve manifest
gauge invariance; that was lost in the very first step when we redefined v in a

gauge-dependent way.
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Applying canonical Lie transform perturbation theory, at first order we have

from Eq. (2.251) _
0= K, = H, +{W, Ho}, (4.730)

{WI,HQ} = —H1 = — ZHle €xp (31’{) + c.c. (4731)
€
. z

Integrate this along unperturbed orbits to get the scalar generator

o .
Wy =ieY —exp (E‘I’e> +c.c. (4.732)
7 Dz €

Proceediﬁg to second order, we have from Eq. (2.252)
K2 =H2+{W2,H0}+ '2—{W1,H1}. (4733)

Now W, is chosen to average the result, so without having to explicitly calculate

it, we can write

1
K, = <H2 + E{WI’H1}> . : (4.734)
After a short calculation, this reduces to the result
e? - -, 1 |H1o|? .
K, = 2mc2A AT — 5;{\113, D, } +cc
e - ., 1 1 o] 8\ |Hyl?

= LAt - ke b ) 2 Ll (4735
2m(:2A 4 2%:(m I 3U+€3,u) D, Fee | )

That this answer is equal to our previous result for K, may be proved by expand-
ing the derivatives in Eq. (4.735), replacing ¢ by [D¢~k-(U +¢U,)] /05, and using
the sum rules of Appendix E to sum the terms with no resonant denominator.
The result is Eqs. (4.717) and (4.718).

Note that this is by far the easiest way to get K. Furthermore, it yields the
result in a considerably more compact form than the Lagrangian Lie transform
approach does. On the other hand, as has already been noted, it does not yield

the result in manifestly gauge invariant form.
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This result may be compared with that of Grebogi and Littlejohn (8] who
‘used “1 + 3” notation and whose result was gaﬁge invariant but not manifestly
so. To make this comparison, use the technique for translating our results into
“1 + 3” notation that was introduced back in Section 3.13. It is then a straight-
forward exercise to show that our ponderomotive Hamiltonian gives rise to the
same eq’ﬁations of motion as that of Littléjohn and Grebogi, though the two are
not numerically equal. The reason that the two results for K5 are not numer-
ically equal can be traced back to the fact.v that the corresponding unperturbed
Hamiltonians are not numerically equal. This is because Littlejohn and Grebogi -
started with the Hamiltonian (written in terms of three-vector coordinates and
velocities), |

Hpg = (’yv - 1)mc2 + €¢, (4.736) _

which is not numerically equal to the Hamiltonian that we started with, though
it does yield the same equations of motion.

It is easier to compare our result with that of Achterberg [49] who used a
four-vector approach, but who did not worry about manifest gauge invariance
and who used essentially the same method outlined in this. section. His result is

identical to our Eq. (4.735), outside of some minor notational differences.
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Chapter 5

The Relativistic

Guiding-Center Plasma

5.1 Discussion

The reason that a Vlasov plasma is a nonlinear medium is that the plasma cur-
rents generate fields which in turn drive the motion of the plasma. Up until now
in this thesis, we have dealt only with single particles (or single guiding centers
or single guiding/oscillation centers) moving in fields that are known in advance
as fixed functions of spacetime. In this final chapter, we show how to pass from
this single particle description to a self-consistent description of the dynamics of
the guiding-center plasma; this includes the dynamics of the fields as well as that
of the particles. We shall do this by imbedding the single particle action in a
system action, and coupling it to the Maxwell field.

In Section 5.2, we prove Liouville’s theorem, and show how to write the Vlasov
equation in any desired coordinate system. In Section 5.3, we sum the guiding-

center Lagrangian action over a full distribution of guiding centers and couple to
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the Maxwell field in order to obtain the Lagré,ngién action of the full guiding-
center Vlasov plasma. The variation of this with respect to the guiding-center
coordinates yields the relativistic kinetic equation for guiding centers, while the
variation with respect to the four potential yields the self-consistent field equatioﬁ

including the guiding-center magnetization and current densities.

In Section 5.4, Noether’s theorem is applied constructively to obtain covari-
ant conservation laws for the momentum-energy and the angular momentum of
a guiding-center plasma. That is, we obtain the stress-energy and angular mo-
" mentum tensors of the guiding-center plasma, including the contribution to the

angular momentum due to guiding-center spin.

Finally, in Section 5.5, we employ the results of Chapter 4 to generalize the
results of Sections 5.3 and 5.4 to the case of a guiding-center plasma in an eikonal
wave field. We begin by forming a system action, this time including the Maxwell
action of the eikonal wave field, and the ponderomotive Hamiltonian of‘ the guid-
ing/oscillation centers. Variation with respect to the coordinates again yields the
kinetic equation, which now includes a term due to the ponderomotive effects
caused by the wave field. Variation with respect to the four potential of the back-
ground field again yields the self-consistent field equation, which now includes a
modification in the magnetization density due to the presence of the wave. There
are then two new additional variations: Variation with respect to the eikonal wave
field amplitude yields the linear dispersion relation for the wave, and variation
with respect to the eikonal wave phase yields the conservation law for wave ac-
tion. Constructive application of Noether’s theorem to this new system action
yields the laws of conservation of energy-momentum and angular rﬁomentum for
the combined system of plasma, background field, and wave field. Specifically,
the modification to the stress-energy and angular momentum tensors due to the

presence of the wave field is presented and discussed.
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5.2 Liouville’s Theorem

5.2.1 Lagrangian and Eulerian Descriptions of Relativis-

tic Plasma

In this section, we present a version of Liouville’s theorem that is valid for rel-
ativistic Hamiltonian systems with noncanonical coordinates. We begin by ex-
amining the difference between the Lagrangian and Eulerian descriptions of rel-
ativistic kinetic theory.

Recall that a Lagrangian description keeps track of the trajectory of each par-
ticle of the system, whereas an Eulerian description uses a distribution function
to specify the phase-space density of particles (we discussed this briefly in Sec-
tion 2.3.3). Thus, a Lagrangian description for a system of relativistic particles
ﬁﬁght be the speciﬁcation of z(n, ), where z denotes a set of n-dimensional phase
space coordinates, 7 is a continuous particle lébel, and 7(n) is an orbit parameter
along the world liﬁe- of the particle with label 7. Specifying z as a function of 7
and 7 is equivalent to specifying the phase space orbit of every particle in the

system. The corresponding Eulerian distribution is

fulZ) = f dN (n) / dr(m)§™(Z — =(n, 7). (5.737)

Here dN(n) is some measure describing the number of particles with labels be-
tween n and n + dn. This measure appears when we pass from the discrete to the
continuum description; that is
> - / dN(n). . (5.738)
particles ;
In what follows, we shail frequently not bother to write the explicit n dependence
of 7, but it should be kept in mind that each particle has its own proper time.
Note that f(Z) has support only on a space of dimension smaller than that of

the full n-dimensional phase space. This is because there are constraints that
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must be satisfied by the various coordinates involved. For example, single-
particle dynamics must remain on the mass shell, since v -u = —c?. Upon
making the guiding-center transformation, this requirement is easily seen to be-
come H,. = —mc?/2 (the guiding-center transformation is a diffeomorphism, so
the mass shell is distorted but not topologically altered). So, when using the
(R, K, B, 1, ©) coordinates, f has support on a seven ﬁmensiond submanifold in
an eight dimensional phase space. When we use the (R, U, u, ©) coordinates the
phase space is ten dimensional, and when we use the (R, U, u, &) coordinates the
phase space is thirteén dimensional; in all cases, however, f has support only on

a manifold of seven dimensions thanks to the constraints on these coordinates.

The Lagfaﬁgian description keeps track of the dynamics of all the particles in
the system as though they were distinguishable, and so it includes more degrees
of freedom than the Eulerian description. That is why it is possible tov write the
Eulerian distribution f(Z) in terms of the Lagrangian description z(n, 7), but it is
impossible to do the reverse. There are many different functional forms for z(n, 7)
that yield the same f(Z). Nevertheless, for a plasma of indistinguishable particles
(we are not going to bother about species labelling in this thesis) it is clear
that any physically relevant quantity can be expressed in terms of the Eulerian
dfsfribution, f(Z). This is because any physically relevant quantity should not
depend on the identity of the individual particles in the system:.

This is really a gauge invariance issue. The gauge group is the group of
identicaln particle interchangesv. The Lagrangian description keeps track of extra
nonphysical gauge degrees of freedom. A physically relevant quantity can be
written in terms of the Eulerian distribution since it is gauge invariant in this

regard.

Consider for example the value of some phase function, ®(z), summed over
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all the particles in the system and integrated along world lines

Ng = /dN(n)/dr‘Ii'(z(n,r)). (5.739)

This object is invariant under the gauge group of identical particle interchanges

because it can be written in terms of the Eulerian distribution as follows:

Nq,_/d" /dN n)/dr&n(Z—z(n,r)) Z)
/ d"Zf.(2)%(Z) (5.740)

Though we shall frequently work with the Lagrangian description of things, we
must be able to show that our results can be expressed in terms of the Eulerian
distribution. Fortunately, this will pose no problem.

The Lagrangian description of the dynamics of the system is then given.by
:"(77’ T) = V([z],z(n,T)), (5741)

where the dot denotes differentiation with respect to 7, and where V is the
dynamical vector field expressed as a function of z(n, ) and as a functional of z
(since the dynamics of one particle may depend on the phase space positions of
all the other particles in the system). The corresponding Eulerian description of

the dynamics is then found as follows:
d
0= —/dN(n)/dr;&n(Z—z(n,r))
. 9 .
=/dN(n)/d7‘z(77, T) - ﬁé (Z— z(n, 1))

= %. r/azN /dr~ (n,7)6"(2 Z(TI,T))}
— (_9% : -‘/dN(n)/dTV([Z],Z(ﬂ,T))sn(Z - Z(U,T))J

= % - TV([fn],Z) f dN () f dr§™(2 —_z(w))]

ol

= 57 V£l 2)a(2)). (5.742)
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The first line above follows from the fact that at any finite time 7 is finite, so the
- delta function vanishes at the limits of integration T — Fo00. Note that we had to
assume that the functional dependence of V on z could be réplaced by a functional
dependence on fy; this is just a statement of the very reasonable condition that
the dynamics cannot depend on particle labels. The resulting kinetic equation for
fa(Z )1s called the continuity equation, and it expresses conservation of particles.
It is true for any relativistic system of particles, regardless of the nature of the

forces involved (they could even be dissipative in nature).

5.2.2 Conservation of Phase Space Volume

One thing that distinguishes Hamilton\ian systems from other dynamical systems
is the property that phase space volume is conserved by a Hamiltonian flow. This
means that if we take a volume element in phase space and drag each point of its
boundary surface along a Hamiltonian vector field for some parameter increment,
the volume enclosed will be unchanged. As we shall now see, this property follows
from the Jacobi identity; this fact was used in Section 3.10 as an argument for
using brackets that satisfy the Jacobi identity ezactly (as opposed to satisfying
it only to some order in an expansion parameter).

Suppose that we have a set of canonical coordinates Z,, and that the Eulerian
distribution function in these coordinates is f.(Z.). Now ﬁnder a (possibly non-
canonical) coordinate transformation, Z. — Z, a distribution function transforms
in such a way as to keep the number of particles in a fixed phase space volkum_e

element constant. That is
f(Z)an = fc(Zc)anc’ - (5'743)

where n is the number of dimensions in phase space. Thus, f transforms like a

pseudoscalar,

f(2) = fe(Z.)D, (5.744)
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where we have defined the Jacobian of the transformation

o"Z,
orz’

D(Z) = (5.745)

Alternatively, we can define a scalar distribution function, f(Z), which transforms

as follows:

f(Z) = f.(Z.). (5.746)

It follows that in any coordinate system we have
f(Z)=1(Z)D(Z). (5.747)

Note that f(Z) = f(Z) in any canonical coordinate system, since the Jacobian of
a canonical transformation is unity. In noncanonical coordinates, however, f(Z)
and f(Z) are different.

The Lagrangian two-form in coordinate systém Z is given by

8z 878 _,

0, = —< QF .,
# azwzvﬂaﬁ

(5.748)

where (1€ is the canonical Lagrangian two-form. Taking the determinant of both

sides, we find .

detQ = D> . (5.749)

We now no longer need to make reference to the canonical coordinate system,
Z.. Egs. (5.747) and (5.749) tell us all we need to know, and they are written
entirely in the general coordinates, Z.

Take the gradient of both sides of Eq. (5.749) to get

i

2DD , = (detQ) ,

= D?*JPQ ;5 4, (5.750)
where we used the formula for the derivative of a determinant,

(detA) o = (detA)(A™ NP7 4,5.4- (5.751)
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We are now ready to prove Liouville’s theorem. We have

D(ZQD),Q = 'D(J“BH,ﬁD).a
- D*Hp(J*  + %J"ﬁﬂyavw) N
= %_DZH,ﬁJﬁ“Ja"(QVW + Qe + Qav,)
N (5.752)

where we used the above formula for DD ,, and where we used the Jacobi identity

in the last step. Thus, since D is never zero, we have proved Liouville’s theorem,

g

57 (Z’D) = 0. (5.753)

Now Eq. (5.742) may be written for a Hamiltonian system as follows:

0

0= 3z (Zf)
5] . v
= — - (2Df) (5.754)

Applying Liouville’s-theorem, we get the Vlasov equation,
. of ' .
0=2- 5. | (5.755)
Our proof of this result has been quite general, and so in the future we can simply
write down the Vlasov equation for any Hamiltonian equations of motion.

The careful reader will have noticed that we assumedl invertibility of
the Poisson tensor in the above proof, whereas our Poisson tensors in the
(R,U,u,®) and (R,U,u,&) coordinate systems are definitely singular. Re-
call, however, that we showed in Section 3.14 how thesé constrained coqrdj-
nate systems could be imbedded in larger unconstrained coordinate systems.
That is, we can obtain the (R,U,u,®) coordinates by a smooth coordinate
transformation from the (R, K,B,u,©,C1,,C1s) coordinates, and we can ob-

tain the (R,U,u,&) coordinates by a smooth coordinate transformation from
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the (R, K, B, i, 0,C14,C1p,C2a,C2,C3) coordinates. In both cases, the physi-
cal motion takes place on the subspace for which Cy, = Cqp = Cap = Cpp = 0
and C3 = 1; if the initial conditions are on this subspace, the dynamics will
keep them there. From this point of view, there is nothing singular about the
transformation that led to these cobrdinate systems, and the only reason that
their Poisson tensors are singular is that we enforced the constraints by sétting |
Cia = C1p = Cyp = Cop = 0 and C3 = 1 at the very end of the calculation that
led to them.

Armed with this insight, it is easy fo compute the Jacobian D for these
coordinate systems. First we consider the guiding-center transformation that led
to the (R, K,B, u,®) coordinates from canonical coordinates. The Jacobian of

this transformation is
D = \/dewey,., (5.756)

where . is the Lagrangian two-form given in Egs. (3.490) through (3.494). The

result is
3

D; = mT'KQBr. (5.757)

The coordinates (Ciq,C1p, C24, Cap, C3), which can be thought of as describing

directions transverse to those described by the (R, K, B, u, ®) coordinates, are
unaffected by the above transformation.

We now transform to either the (R,U, u,©) system or the (R,U, u, &) sys-

tem. This transformation will involve the coordinates (C1ayC1py C2q, Cap, Cs3).

Its Jacobian is given by

8(R,U,u,®) '
D, = .758
g a(R’K—aB’/% G’Claaclb) (5 )
or
O(R,U, pu,a
Dz — (R, 1”7a) (5.759)

i a(R’K’B,/-‘aeyclaaClb’C2a,CZbaCS),
respectively. We can use the transformation equations, Egs. (3.562) or (3.591),

to calculate the above expressions. The important thing is that we take all of the
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derivatives involved in calculating the Jacobian before enforcing the constraints
by setting Cy, = Cyp = Ca, = Cqp = 0 and C3 = 1. The calculation is straightfor-
ward, and we find that for either the (R,U, y, ©) or the (R,U,pu, &) coordinates

we get
1
The overall Jacobian of the above transformation is thus
2
em ,
— - =" 5.7
D =D,D, 2echg (B) T~(R)., (5.761)

where Y' is given by Eq. (3.575). Note that this same expression may be used for
the guiding/oscillation-center problem, since it has exactly the same brackets as
the guiding-center problem with no wave present. This is because our oscillation-
center Lie transform took the wave perturbation out of the brackets and put it
into the Hamiltonian (which is how we got K3).

Thus by imbedding our singular coordinate systems in larger nonsingular ones,
Qe are able to validate the above derivation of the Vlasov equation for our coordi-
nates. Because we had to introduce the coordinates (Ciq, C1p, C24, C2p, C3), how-
ever, we should ask what the distribution function looks like, and whether or not
the kinetic equation that we have started with makes sense. Consider Eq. (5.737),
written for the coordinate system Z = (R, K,B,u,0,Ci4,C1p,Caq,C2,C3).
We adopt the shorthand notation Z = (Y,C) where Y = (R, K,B,u,®) and
C = (C1a,C1,C24,C2,C3). Then we have

fu(2)= [anen) [ dr8® (Y —y(n,7)) 8 (C - c(n,7), (5.762)

}ffhere y(n,7) and ¢(n, ) give the dynamics of ¥ and C, respectively. Note,
however, that since the integral, [ dN(n), includes only particles that obey the
constraints Cy, = Cyp = Czs = C3p = 0 and C3 = 1, and since the dynamics is
known to keep such particles on the constraint surface, it must be that ¢(n,7) =

(0,0,0,0,1). Thus the delta functions involving C can be pulled out of the integral
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to finally yield

fa(2) = 8(C1a)S(Cu)6(Cau)S(Cr)5(Ca = 1) [ () [ ard (¥ —y (7).

(5.763)
The proportionality of f;3 to delta func;cions in the C is simply a mathematical
restatement of our earligr observation that it has support only on a space of
dimension less than tha.t‘ coordinatized by Z. In fact, it has support only on
a space of seven dimensions (there is another delta function still hiding in the
integral on the right hand side of the above equation due to the fact that the
Hamiltonian is a constant of the motion). The Vlasov equation written in these

coordinates is then

oYy’

where f13 = f13/D; and where the terms C . Of13/0C are not present because

0=Y (5.764)

C = 0. We can now integrate the above Vlasov equation over the C coordinates

to get
0=Y. a;g,y), (5.765)
where
f¥) = [@cha(2)
- / dN(n) / dr6% (Y —y(n,7)), (5.766)
and fg = f3/D;. This is obviously the same Vlasov equation that v§e would

have obtained if we had used only the clearly nonpathological (R, K, B, 11,0©)
coordinates from the start. |

It turns out to be easier (for reasons that will become clear shortly) to write
the Vlasov equation in terms of f and easier to write the field equation in terms
of f. Since we know what D is, however, there is clearly no problem involved in
writing both equations in terms of either f or f (recall that f and f are related

by Eq. (5.747) with D given by Eq. (5.761)).
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5.3 Self-Consistent Kihetic and Field Equations

5.3.1 Constructing the System Action

We begin by considering the case in which there is no eikonal wave field present.
Our action one-form and Hamiltonian for a single guiding-center are thus given
by Eqgs. (3.604) and (3.581), respectively. In Section 5.5, we generalize our results
to the case in which the plasma is bathed in an eikonal wave field. For now we
construct the action for the coupled system of guiding-centér plasma and Maxwell
field. This has the form

S=S.+Sm o (5.767)

where S, is the total action of the guiding centers, and where S,, is the action
of the Maxwell field.
Now the action of the guiding centers is found by simply summing that for a -

single guiding center over the full distribution. Thus we write
Sgc [Z, Az] = /dN(T’) /d'f [Fgc (Z(T), T); Ai(R(T’a T))’ E(R(Th T))) ’ Z(U, T)

- Z A (n,7)C (Z(n,7); Fy(R(n, 7))

— Hyo(Z(n, ); F:(R(n, T)))]- o (5.768)

Here we have written Z for the full set of boostgauge and gyrogauge invari-
ant guiding-center coordinates, (R, U, u, &). We have enforced the constraints by
means of Lagrange multipliers, using A, to denote the multiplier for constraint
C,, where the index v runs over all the constraints present as usual. Finally, we
have indicated separately the functional dependence of the various terms on the
four potential A; and the background field F; (here i denotes the ordering of the
field as discussed in Section 3.7).

Now Eq. (5.768) may be written in the form

Sge = / d*zL,e, (5.769)
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where z denotes spacetime position, and where we have defined the Lagrangian

density for the guiding centers,

£gc(w) = /dN(n)/dT54(w - R(’?,T)) [Fgc(z(n7r);Ai,Fi) : Z(U,T)

=Y A T)Co(Z(n,7); Fi) — Hoe(Z(n,7); F)] (5.770)

Here we have adopted the convention that A; and F; denote A4;(z) and Fi(z),
respectively.

The Maxwell action is well known to be (see, for example, Jackson [44])
Sm = /d4m£m(a:), (5.771)
;vvhere the Lagrangian density for the Maxwell field is
Ly, = _l—fli_w(F0+6Fl +-):(Fo+€Fy + ). (5.772)
In this study, we shall retain terms in £,, only to order ¢; thus we write

1
L:m = —1—6-;(F0 : Fo + 26F0 : Fl) (5773)

5.3.2 The Vlasov Equation for Guiding Centers

We first vary the system action with respect to the particle field, Z(n, 7). After
a short calculation, we find

6S
0= 6Z(n,7) -
= Q4c(Z(n,7); Ai(R(n, 7)), Fi(R(n,7))) - Z(n,7)

~ S A0, S (20,7 Fi(R(, 7))

8H,,
8z

(Z(n,7); Fi(R(n,7))). (5.774)
where 4. = dI'y.. This equation, coupled with the constraints

C.(Z(n,7); Fi(R(n,7))) = b.a | (5.775)
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(which are needed to determine the Lagrange multipliers), shows clearly that the
fields, Z(n,T), obey the usual equations of motion for a single guiding center.
Knowing this, and using the ideas developed in the previous section, it is now

possible to write down the Vlasov equation,

0=2- %, (5.776)
using the equations of motion for a single guiding center.
In particular, if we use the (R, U, K, @) coordinates, this becomes
0=R.,%+U.Zf&° +;1%f;°+égfg’. - (s7T)
We can now define the guiding-center distribution function,
27 .
fo(R,U,pu) = /0 dOfio(R,U, u, ©). - (5.778)

This is nothing more than 27 times the ©-average of the full distribution function
fi0. Now because Zis independent of © (thanks to our guiding-center transfor-
mation) and because 4 = 0, taking the ©@-average of the above kinetic equation
yields _

0=R - —+U-— (5.779)

This is the reduced kinetic equation for the guiding-center distribution function.

5.3.3 The Field Equations

Generally speaking, the idea is now to vary the above action with respect to the
four potential to get the dynamical equations for the fields. This must be done
carefully, however, as there are two additional constraints that such variation
must respect. Recall that in our derivation of the guiding-center action we as-
sumed that the background field scale lengths were large in comparison to the

gyroradius, and we assumed that the zero-order fields have A\g = 0. We must
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| make certain that the dynamics of the fields do not evolve them into a configura-
tion for which either of these assumptions are violated. In order to get dynamical
equations for the fields that respect these constraints, our variation of the action
with respect to the four potential must be a constrained variation; that is, ar-
bitrary variations of the four potential are not allowed. Only those variations
of the four potential that preserve the vanishing of Ag to lowest orde'x" and the -
smallness of the ratio of gyroradius to scale length are allowed.

We thus begin our derivation of the field equations By examining the.variation
of the action due to variations of the.Ai, Withbut assuming in any way that the
variations of the A; are arbitrary. Recall that we have indicated separately the
functional dependence of the various terms in the action on the four potential
A; and the background field F;. Of course, F; = dA;, sd when we vary with
respect to the A; we must take into account the F; dependence. To do this, it
is convenient to distinguish between total and partial functional derivatives with
respect to A;. We use the chain rule to write

R . 65 6F,,(2")
— diz' ey . 5.780
6Aip(z) + / ¥ 5F‘i/_1,u(wl) 5A;p(:l:) ( )

6S
6A;,(x)

total

To proceed, note that

= /d4:13 {A4; 6%z —2")], — A, [8%=z—=")] .}, (5.781)
so that
6F;,,(2')
5Aip(a:)
. Using this in Eq. (5.780), we get

=6,,[6%(x —2")], — 6,,[6%*(z — z')] - (5.782)

6S| _5S
6A; |0 OA

(5.783)

N
4l
(=N
5|5
N————
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This formula is very useful in what follows.

Using Eq. (5.783) to vary the action with respect to the four potential, we

arrive straightférwardly at the following result:
6S = /d“a: [(Jo(z)-6A0 (z) + T1 () - §A1 ()], (5.784)
where we have defined
Tolz) = 17 L S.¢ 5.785
- Jo(z) = ~J(2) + = V -Go(z) (5.785)
and .
Ji(z) = ZJ(:::) + 4% v -Gi(z), |  (5.786)

where in turn we have defined the guiding-center current density

J(z) = c/dN(T])/d‘r64(;z - R(n,r))grz:(Z(n,r);Ai,Fi) . Z(n,r)

= E/dN(n)/dra‘l(:c - R(U,T))ZI‘:;:(Z(U,T);Ai,E) - Z(n, )

=< [ant) [ ars*(a - Rr, ) Rln,7)
= S/dR/dU/d,u/d@fm(R, U,p, ©)6*(z — R)R(R,U, )

= E / dR / dU / dufe(R,U, 1n)6%*x — R)R(R,U, 1), (5.787)
and the macroscopic field tensors
Go(z) = Fo(z) + eFy(z) = dnMo(z) (5.788)
Gi(z) = Fy(z) - 4n M, (), | (5.789)
and where in turn we have defined the guiding-center magnetization densities
(o) = 4 ar .
Mo(z) =2 [ dN(n) [ dré%(z - R(n,r))[gl?o(Z(n, r); Ai, Fy) - Z(n, 7)

ocC, 6H,.
—ZU:AV(U,T)-EF_’O(Z(",T);E)—. aFZ (Z(7777-);E)]
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=2/dR/dU/dp/déf10(R, U,u,©)6*(z - R) [g—é(Z;Ai,Fi)

OH e
oF,

Z(R,U,pu) — ZA (z F)— 252z, F)]

_2/dR/dU/duf9(R U,u)é“(a:—R)[ ~(Z; 4i, F) - (R, U, )

‘_Z AQ%(Z;E’) - 6ch(Z;Fi)} ~ (5.790)

OFy

M(z) = %/dN(n)/dré‘%m — R(n, 1)) [%(Z(n,r);Ai,E) . Z(n, T)

= XM G (A7 B) = G (2 )

—Z/dR/dU/dp/dem(R U,u, )64(:c—R)[§;l(Z 4, Fy)

BHgC .
Z(R,U ) — Z/\ S (2 F) — (2, )
- . T
=2 [dR [ dU [ duFo(R,U, ) (w—R)[aF (Z; Ai, Fy) - Z(R, U, )
1
_ 8H,.
- 23 F). 7
Z,\ aF, = (Z,Fl)} (5.791)

Note that the magnetization came from the second term on the right of
Eq. (5.783). Also note that the only thing that depends explicitly on F; is the
first-order piece of the Hamiltonian, so that only the last term in square brackets
in the above expression for M; survives; of course, F} also appears in the brack-
ets due to the A; dependence of I'y.. Finally note that we were able to write
the current and the magnetizations in terms of the reduced Eulerian distribution
function, fg.

Now because the 6 A; are not arbitrary, we cannot simply set J, = J; = 0.
Instead, as discussed above, we must restrict the variation so that it respects
the constraints that \g = 0 to lowest order and that the ratio of gyroradius
to scale length is small. To deal with the first of these constraints, let us tem-

porarily introduce Clebsch variables for the fields. We define four scalar fields,
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a(z),B(z), k(z), o(z), such that in terms of these fields the four potential is given
by
Ao = ad,@ ) (5.792)

Al = I‘&da‘, (5.793)

and consequently the field tensor is given by
Fo =dAg = d(adﬂ) =da N df (5.794)

Fi = dA; = d(rdo) = dr A do. (5.795)

. That such scalar fields exist is guaranteed by the Darboux theorem. That is,
because F' is a closed two-form, it can be written in the form F = dq A dB +
" €dk N do, where we are guaranteed enough freedom to choose o and B such that
Py - (da AdB) = 0. |

It is clear that the above construction insures that
P Fy =0.. _ (5.796)

Note that we are ignoring F; for 7 > 2, and that the parallel electric field must lie
entirely within Fj. Thus, the specification of the four functions a(z),3(z), <(z),
and o(z) is a coordinatization of the function space of all electromagnetic fields
that automatically ensures the satisfaction of the constraint that Ag = 0 to lowest

order.

The variation of the action with respect to the four potentials may now be

written
55:/0,% [Jo.a(a?wprjl .5(,&0)]
= /d“:c(éajo- v B+ aJy: v 8 + 6Ty Vot ~~71; v bo)

= /d“a: [5ajo- VB-688Y (ads)+6kTi Vo —60V -(n]l)] (5.797)
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We still cannot set the coefficients of the variations equal to zero, however, be-
cause of the remaining constraint that the fields remain sufficiently slowly varying
for the guiding-center approximation to remain valid. This point requires some

discussion.

Consider a general Fourier decomposition of the electromagnetic field in and
around a plasma. We can divide the Fourier space into three regions. The first
consists of élowly varying fields for which the guiding-center approximation is
clearly valid; we call these background fields. The second consists of rapidly
varying fields that are due to collective motion of the plasma; we call these wave
fields, and their effect on a single guiding center was the subject of Chapter 4.
Note that wave fields violate the guiding-center approximation, and the only
reason that we were able to treat them perturbatively was our assumption that
their amplitudes are small. The third consists of the extremely rapid fluctuations

associated with collisions and higher correlations.

Now fields belonging to the third region of Fourier space are clearly outside
of the scope of th_is thesis; our Vlasov kinetic description of fhé plasma neglects
correlations. Wave fields were studied in a single particle context in Chapter 4,
and their self-consistent evolution will be studied in Section 5.5. For now we are
interested in the dynamics of the background fields. We thus define a projection
operator, P, that, when applied to an arbitrary field, projects out the part that is
slowly varying. We shall not be specific about the nature of this operator except
to say that, since it is a projection operator, we expect it to be idempotent. A
moment’s thought convinces one that this means that it must be a convolution
of the field with a filter function whose Fourier transform is piecewise constant,
having a value of either zero or one everywhere in Fourier space. Specifically,
it has a value of one in the first of the above-described three regions of Fourier
space, and a value of zero in the other two regions. Exactly how one draws these

boundaries is what we are leaving unspecified.
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Thus, although we cannot set the coefficients of a(z), 63(z), éx(z), and b (z)
equal to zero in Eq. (5.797), we can enforce the constraint that the fields are slowly

varying by requiring that their variations be slowly varying; thus
ba(z) = Pba(z) (5.798)

(and similarly for the other three variations). We can also decompose the coeffi-

cients of the variations into slowly varying and rapidly varying parts; thus

Jo-V B="P(Jo- V B) + (1= P)(Jo- V B) (5.799)

(and similarly for the other three coefﬁéients). Thus, upon multiplying éa(z) and
Jo- v B3, we get the product of the slowly varying terms and a cross term. Now
the cross term is clearly oscillatory and vanishes upon integration over z. It is
then legal to set the coefficients of the slowly varying parts of the variations equal
to zero. This essentially means that we can set the projef:tion of the coeflicients

of the variations in Eq. (5.797) equal to zero.

Thus, we get
PlJo-V B8] =0 (5.800)
PIV (aTo)] = 0 (5.801)
PlJy Vo] =0 (5.802)
PV (xJ1)] = 0. (5.803)

Now note that from Eq. (5.787), we have

e ez — 7))
sy = [ant [arZ 220 gy,

e Ozx#

=2 [ann) [ar2 2 RO pugy oy

=-< / dN(n) / ape 9= ;RR;(’?’TD

=0, | . (5.804)
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where the last step follows from the fact that the delta function vanishes at the
limits of integration for finite z. This result expresses conservation of particles.

From this it follows that

S a=15m=150-0 (5505
So our field equations become
PlJo- V a] = P[Jo- V B] =0 (5.806)
Pl V k] = p[j;. Vo] =0. (5.807)
Thus it follows that
Pl (FaTo-ThTal=0 . (5808
PlJ, (VEVo-VoVk)=0, (5.809)
or
PlFo-Jo]=0 (5.810)
P[F, - J1] =0. (5.811)

Note that the Clebsch potentials have disappeared from our final result; this was
essential since they have a gauge freedom and we expect our result to be gauge
invariant. We simply used the Clebsch potentials to enforce our constraints, and

then we got rid of them.

The final results for the field equations are thus
PlFy - (— ¥ -Go+ ~J)] = 0 (5.812)
© Y4r °T e - T

1 — 1
PR (- V-Gi+-T)=0. (5.813)

Note that the first describes field evolution due to perpendicular four current,

while the second describes field evolution due to parallel four current.



&

CHAPTER 5. THE RELATIVISTIC GUIDING-CENTER PLASMA 201

5.3.4 Summary of Self-Consistent Kinetic and Field

Equations

To summarize the results of this section, we present the complete set of kinetic

and field equations for the guid.ing-center plasma. The kinetic equation is

0=R. Qf—g—ﬂ)' &

55 i (5.814)

where R = {R,H,.} and U = {U, H,.}, and where in turn the Poisson brack-
ets are given in Eqs. (3.569) through (3.574) and the Hamiltonian is given in

" Eq. (3.581). The field equations are then

1 - 1
PlF, - (Z;r-. vV -Go + Z.I)] =0 (5.815)
PR - (= ¥-Ci 41 =0 (5.816)
1' 4m 1Tt AT ' '

where the current is given by
= E / dR / dU / dufe(R, U, n)6%(z — R)R(R, U, 1) (5.817)
and the macroscopic field tensors are given by
Go(z) = Fo(z) + eFi(z) — 47 Mo(z) (5.818)
Gi(z) = Fyo(z) — 4 My(z), ’ (5.819)
and where in turn the magnetization densities are given by

) —2/dR/dU/duf9(R U,,u)é“(m—R)[ (Z; Ai, F)- 2(R, U, )

%I;?C,(z; F,-)] (5.820)
Mi(z )_2/dR/dU/dpf9 (R, U,N)a‘*(w—R)[aP (Z; 4i, F) - (R, U, p)

ach
- s By 821
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Of course, these must be supplemented by the homogeneous field equations,
VFp =0 (5.822)

v.F, =0. | (5.823)

Note that fo(R,U, ) and fo(R, U, 1) are related by
79(R1 U, /J’) = D(R)?Q(R’ U7 iu)’ (5824)

where the Jacobian D is given by

em?

D= 2ecAp(R)

T'(R), (5.825)

and where in turn Y'(R) is given by Eq. (3.575).

5.4 Conservation Laws for the Guiding;Center

- Plasma

5.4.1 The Noether Method

We now employ Noether’s theorem to deduce conservation laws for the energy-
momentum and the angular momentum of the guiding-center plasma. The tech-
nique has been described by Similon [12], and we shall compare our results to
his. We begin by considering the variation in the Lagrangian density due to the
variation of all the fields. We start with £ = £4c + L, and apply the variation.
Whenever terms involving the derivative of a variation appear, we replace them
by a pure divergence minus a term for which the variation is not differentiated;
this is almost like integration by parts, but since there is no integral sign, we
must keep the pure divergence terms. When we are done, we shall find that 6L is
equal to a pure divergence minus terms, for each field present, that consist of the

variation of that field times the corresponding equation of motion. Thus, if we
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then use the equations of motion, we can reduce 6L to a pure divergence. The

algebra is tedious but very straightforward, and we get
5(a) =9 -{ Zl;sAo G+ =641 Gy + Toabf + Tusba
+ [ ) [ ard (@ — Ren, )[R, 0Cac( 20, 75 A F) - 62, 7)
— 6R(n,7)(Tgc(Z(n,7); As, Fi) - Z(n, T)
= > A ,7)C(Z(n,7)i 4, F) — H(Z(,T) F)] ). (5.826)

5.4.2 Conservation of Energy-Momentum

To derive the conservation law for energy-momentum, we consider variations in
the coordinates that effectively translate in spacetime all the particles of the
plasma, the fields in the plasma, the external coils that generate the fields, etc.

Following Similon [12], we write these as follows:

§R=¢ T (5.827)
50 =0 - (5.828)
§u=0 (5.829)
86 = 0, (5.830)

where £ is a constant vector. Thus, the particles’ position coordinates are pushed
forward without altering any of their other phase space coordinates. The fields

translate according to the prescription

pu—y

ba=-€Va (5.831)
B=—6VE (5.832)
br=—6Vr (5.833)

bo = —¢- v a, (5.834)
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o)

5§40 = 6(c V B)
—_—6a$ﬂ+ aeéﬁ
=—£VavVpB—atVV P
=—£-(VaVB+aVVvp)

=-£&V (e v B)
= —£V Ao, ) (5.835)
and similarly :
§A; = —& V A | (5.836)

Finally note that the Lagrangian densities transform like scalar fields so
§Lge = —& V Lye (5.837)

6L = =&V L. (5.838)

v -T=0, (5.839)
where we have introduced the stress-energy tensor
1 o
T(2) = = 3-Go(2) - Fo(e) - iGl(m) . Fi(z) + Lol
+ / dN(n) / dr6%(z — R(n,7))R(n, 7)mU(n,)
1
= —=Co(2) - Fola) = 1=G1(@) - Fi(2) + £m1
+ / dR / dU / du / 40 f10(R, U, 1, 0)6%(z — R)R(mU)
1 €
= —Z‘;Go(:l!) . Fo(a:) - 4—7rG1(.'l!) . Fl(:c) —+ £m1

+ / dR / dU / dufo(R,U, u)6%(z — R)R(mU) (5.840)
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Eq. (5.839) expresses conservation of energy-niomentum in the guiding-center
plasma. Note that the last form for the stress-energy tensor given in Eq. (5.840)
‘expresses the result in terms of the reduced Eulerian distribution function, f,.

S

5.4.3 Conservation of Angular Momentum

To derive the conservation law for angular momentum, we consider variations
in the coordinates that effectively rotate about the origin of spacetime all the
~ particles of the plasma, the fields in the plasma, the external coils that generate

the fields, etc. Following Similon [12], we write these as follows: .

§R=0-R O (5.841)
§U=0Q.U (5.842)
b =0 (5.843)
fa=0-a, | (5.844)

where (2 is a constant antisymmetric second rank tensor. Thus, the particles’
coordinates, R, U, and &, transform like vectors undergoing an infinitesimal ro-

tation. The fields rotate according to the prescription

Cba=—(0- ) ;7 a (5.845)
68 =—(0-z) v J¢; | (5.846)‘
Sk =—(0-z) V& | (5.847)
§o0=—(0-2) Vo, (5.848)

§Ao = 8(a V B)
—6aV B+ aVl
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!

=—(Q-:c)-Vaeﬁ—l-ae[—(ﬂ-w)'eﬂ]
=—(Q-w)~(6a§ﬁ+a€€ﬂ)+aﬂ'€ﬂ
=—(Q-m)-e(a§ﬁ)+ﬂ'(a§5)
= —(Q-w)~€Ao+Q°A0, (5.849)
and similarly

§A; = —(Q-z)- V A1 + Q- 4. (5.850)

Finally note that the Lagrangian densities transform like scalar fields so
8Ly = —(R-2) V Lye (5.851)
§Lm = —(Q --z)- V Lom.  (5.852)
Inserting these into Eq. (5.826), a éhort manipulation yields

v [T -z + [dNG) [ dr6*(e = Rl )R, e (200, 7)i 40, F) -0
=0, (5.853)

where T is the stress-energy tensor given by Eq. (5.840). Since 2 is the generator
of an arbitrary rotation, this becomes

—

V(L +5)=0. (5.854)
Here we have defined the third rank orbital angular momentum tensor
LoPY = TP gy _ TV, (5.855)
and the third rank spin angular momentum tensor
587 = f dN (n) / dr6%(z — R(n,))

R*(n,)[T3(Z(n,7); Ai, F)&" = TL(Z(n, 7); A;, F3)&P]

— / dN(n) / dr6%(z — R(n,r))x%i—ﬁfza(n,T)F(?*(R(n,r))
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B.

= [dr [0 [4ufo(R U w6 - BERRUWED.  (5856)

= [4r [av [du [ d0si(R U 0, 0)8% (= ~ R (R, U, w)EET

Eq. (5.854) expresses conservation of angular momentum in the guiding-center
plasma. . -

We pause to iﬁterpret our result for the guiding-center spin, Eq. (5.856). In

a pfeferred frame, Fg Y = 0 if either B = 0 or ¥ = 0, so we need consider only |
those components of S for which neither 3 nor « is zero, as all the rest vanish.

Using Eq. (3.314) for Fj in a preferred frame, we quickly find that
S — / dR / du / dufe(R,U, u)6%(z — R)epR*(R,U, n)e ' by,  (5.857)

where Latin indices run from one to three, as usual. Now in three dimensions
one must take the fhree-dua.l of the angular momentum tensor to get the angular
momentum vector. We can now do this for the last two indices of $%¥. The first
index is present because the relativistically covariant object is not the angular

‘momentum itself, but rather its four flux. Taking the three dual, we find
1 y : - .

§€kij5a” = e/dR/dedufg(R, U,p)é%(x — R)R*(R,U, u)ubr. (5.858)
Thus, to lowest order in ¢, when a = 0 we get ¢ times the spin density, which is
the sum over the distribution of guiding centers of the vector with magnitude v, p
that points in the direction of b. Thus the spin angular momentum for a single
guiding center in a preferred frame may be thought of as having magnitude v, u
and pointing in the direction of the magnetic field. For a =1 # 0, it is clear that
we get the flux of this quantity, as the integrand has an additonal factor of v‘l’ (to
lowest order). This makes plausible our interpretation of S as the spin.

Note that

Laﬂ‘v’a — (Taﬁz‘v - T‘”:cﬂ),a

= Ta'a'aa:" - T"'y’amﬁ + T8 — B
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= T8 _ T8, (5.859)

where we have used Eq. (5.839). Using this result, we can write the angular

momentum conservation law in the following form:
T-TT+V-5=0, (5.860)

where the superscripted T means “transpose.” Note that the antisymmetric part

of the stress-energy tensor is equal to the divergence of the spin tensor.

5.5 The Guiding-center Plasma in the Presence

of an Eikonal Wave Field

5.5.1 Constructing the System Action

We are now ready to extend the above analysis to the situation for which the

plasma is bathed in an eikonal wave ﬁgld. The full four potential is now

A(z) = Ao(z) + €Aq(z) + XA, (), (5.861)
where the eikonal wave four potential

Ay (z) = A(z) exp (-Ed)(m)> + c.c. (5.862)
was introduced back in Eq. (4.618) of Section 4.2. The corresponding field is then

F(m) = Fo(z) + eFi(z) + AFy(z), (5.863)

where

Fy(z) = %F(w)exp (E;b(m)) +c.c. (5.864)

and

F(z) = i(kA - Ak) + (VA - A V) (5.865)
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(the O(e) term in Fis usually neglected in the eikonal approximation). Note
that Fy and F; are slowly varying background fields, while F, is the rapidly
varying wave field. We must now construct the system action_' for a plasma of
guiding/oscillation centers immersed in this field. The presence of the wave field
has two effects on the systemvactio_n: It means that the Hamiltonian must now
include the ponderomotive contribution, K>, and it means that the Ma.xwe_ll
action must now include the vwave field.

We first consider the effect on the Maxwell action. We form —F : F/16m,
and note that it contains the product of the slowly ;/arying terms, the product of
the rapidiy varying terms, and cross terms. The cross tefms are oscillatory and

vanish upon integration over z. The remaining Maxwell action is then

Sm = (Sm)o + M35, (5.866)

where (S,,)o is the functional form of the Maxwell action with no wave present
(given by Egs. (5.771) and (5.773)), and

- 1 - . : '
= —— | d*zF™: .867
S o 2 F (5.867)

is the contribution due to the wave. Thus the effective (averaged) Lagrangian
density is |

L = (Lm)o + N Lom, (5.868)

where (L )o is the functional form of the Lagrangian density with no wave present

(given by Eq. (5.773)), and

- -~

1 - .
Lm=—gF*: F (5.869)

is the contribution due to the wave. Note that L,, is quadratic in the field
‘amplitude.
We now consider the modification of the action due to the presence of the

ponderomotive Hamiltonian. Replacing H by H + A2K, in Eq. (5.768), we see
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that
Sge = (Sge)o + A2 5., (5.870)

where (Syc)o is the functional form of the guiding-center action with no wave

present, and

Sge = —/d4;v/dN(n)/d754(z:—R(n, T’)ng (5.871)

is the contribution due to the wave. Also note that the Lagrange multipliers are
altered by the introduction of K, (recall that the Lagrangé multipliers depend
on the Hamiltonian). Thus A, = (X, )0 + /.\,,, where

Ao=&, - ?;Z—z, (5.872)

and where the vectors £, were given in Eq. (3.613) at the end of Chapter 3.

Now K, can be expressed as a real function of the wave field amplitude, F,
thanks to its manifest gauge invariance. Specifically, examination of Eq. (4.719)
shows that it is a real quadratic form in the wave field amplitude. Thus it can

be written

Ka(Z: Fi, B k) = %Fgﬁ;caﬂf"(z; Fo, k) Fyo, (5.873)

where the antisymmetry of the field tensor imparts the following symmetry prop-
erties to K:
| JCoBEN — _fcBekn _ jcBant — _jceBnt (5.874)

and the reality of K, implies
KCHBEN = (KcEnehy., (5.875)

It is clear that a kernel, K, with the above properties is defined implicitly by
Eq. (4.719). Thus we can write ‘

Sp = =3 [ % [dN() [ arsd(e - Rin,m) 2k, Ry W Fey. (5870
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If we now define the fourth rank generalized susceptibility tensor
x*P¢(z,(Z, F;,K]) = /dN(n) /dr54(z — R(n,7))K*¥(Z; Fi, k),  (5.877)

(note that this differs from the more conventional definition of susceptibility by

a minus sign) then we can put this in still more compact form,

Sge = —% /d“:cls“" :x(z,[2,F,k]) : F. (5.878)
Alternatively, we could write K, as a quadratic form in the wave potential
" amplitude. Using F' = i(kA — Ak), we find

K(Z; F;, Ak) = 2A%K>¢ 4, (5.879)
where the kernel
K¢ = kgk, KP4 ~ (5.880)

is a second rank tensor. Note that we denote it by the same symbol (K) that
we use for the fourth rank kernel; which is meant should be clear from either the

context or the number of indices adorning it. The guiding-center action is then
Sge = —2 / d*z / dN(n) / dré*(z — R(n,T))ALK®¢(Z; Fi,k)A¢.  (5.881)
We can then define the second rank susceptibility tensor

x*¢(z,[Z, F;, K]) _=_'2/dN(n)‘/‘dr54(a:— R(n,7))K*(Z; F,, k)

— 2kpknx°ﬁf", (5.882)

so that we may write

Sge = — / dzA* . x - A. (5.883)

Once again note that we have used the same symbol to denote the fourth order
and second order versions of the susceptibility.

The guiding-center Lagrangian density is then clearly

Lye(2) = (Lge)o(x) + N2Lge (), (5.884)



CHAPTER 5. THE RELATIVISTIC GUIDING-CENTER PLASMA 212

where (L4c)o(z) is the functional form of the Lagrangian density when no wave

is present, and

£yol) = —%F* : x(z,[2, i K]) : F (5.885)

is the contribution due to the wave.

The total action is thus

S =(S8)o + N?S, (5.886)
where
(S)o = (Sm)o + (Sge)o (5.887)
and .
5= Sm 4 Sge = —51; /d‘lwﬁ'* :e(z, [Z, Fi,K]) : F, (5.888)
and where in turn we have defined the fourth rank generalized dielectric tensor
eh = 5% 8% +amx*P .. . (5.889)

Alternatively, in terms of the wave potential amplitude, we have
5= —;1-1; / $zd* - D(z, (2, F, X)) - 4, (5.890)
where we have defined the second rank dispersion tensor
D% = k26°‘$ ~ k%k¢ +4mx . (5.891)

Similarly, the total Lagrangian density is thus

L= (L)+ ML, (5.892)
where
(L)o = (Lm)o + (Lge)o (5.893)
and
L=CLp+ Ly

1 -, _
=5 F"ie(,[2,F ) F

= —Zl;fi* : D(z,[2,F,K]): A (5.894)
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The above action must be varied with respect to the particle coordinates and
the fields as before, but now we must also vary it with respect to the wave fields,
A(z) and ¢(z). Note that the action depends on A only through its dependence
on F, thanks to the manifest gauge invariance of K»; variation with respect to
A will yield the dispersion relation for linear plasma waves. Note also that the
action depends on ¥ only through its dependence on k  =€7 v, thanks to the
averaging out of oscillating terms; thus i is an ignorable field coordinate, and
variation with respect to it will yield the consefvation law for wave action.

Just as we found it useful to denote the dependence of a functional on A;
- and F; separately, we shall also find it useful to denote dependence on Aand F
| separately. Using Eq. (5.865), the analog of Eq. (5.783) is easily found to be

(in the eikonal approximation, the third term on the right hand side is usually
. neglected). Similarly, we shall also find it useful to denote dependence on i and
F separately (note that F contains k which is the gradient of ). Once again,
we use Eq. (5.865) to write | v

85 =5_5__2_"".</1~.5_5)
Y liora 0% € §F)°

These results are very helpful in deriving what follows.

(5.896)

5.5.2 The Vlasov Equation for .Guiding/ Oscillation Cen-

ters

It is straightforward to see that

6ij, N <6vai r))o

B(A"(Z;"; 52 (2, )i R0, ),

F(R(n,7)),k(R(n,7))), (5.897)

— )2




CHAPTER 5. THE RELATIVISTIC GUIDING-CENTER PLASMA. 214

where, as usual, we have used a subscﬁpted 0 to denote the functioﬁal form of
a quantity when no wave is present. The above result yields the correction in
the equations of motion due to the presence of the ponderomotive Hamiltonian.
Thus, the only modification to the kinetic equation due to the wave field is the
inclusion of the ponderomotive effects of the wave field on the guiding J/oscillation

centers of the plasma.

5.5.3 The Field Equations

Next, we use Eq. (5.783) to take the functional derivative of S with respect to
the A; to get '

55—2 = (:-i)o L2y [/ dN (n) /dr&"(z: — R(n, 7))
%F*’ aK(Z(’g;i)’E’k) F] (5.898)
Thus our field equation still follows from
/ dz(Jo 640+ Ty -64,) =0, (5.899)
but now:
7i= (0o + 2827 [ [ aN(n) [ drs*(e - Rin,7)
%F* i a’C(Z('g;i)’F"’k) F] (5.900)

Note that K has no explicit dependence on F; (the only effect of F; is to alter
the Poisson brackets), so only Jo is modified. This may be interpreted as a
modification to the guiding-center magnetization density due to the presence of
the wave field. That is, our field equations are still given by Eqgs. (5.812) and
(5.813), but now

M = () 237 [ an(o) [ arsi(e - Rinv)

113’* :0K(Z(n,7), F;, k) 1:_,

5 5T (5.901)
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Note that the guiding-center current density is unaffected by the presence of the

wave; this is due to our neglect of resonant effects.

5.5.4 The Linear Susceptibility

We now have two additional equations of motion due to the variations with
respect to A and . First we consider the variation with respect to A. We use
Eq. (5.895), and in keeping with the eikonal approximation, we neglect the third
term on the right. We immediately get

58 iN? ] |
0= i P <Ek -e(z,[Z, F;,k]) : F) ) (5.902)
P (k &(2,(2, F, V 9(a))]) F(m)) = 0.  (5.903)

This is the eikonal equation for linear plasma waves. To see it in a somewhat more
familiar form, write F' = i(kA — Ak), so after some straightforward manipulation

we arrive at

P(D-A)=0, (5.904) |

where we have used the dispersion tensor defined back in Eq. (5.891),

Dﬁ,E = kakj’(so‘ﬁﬂs - aaﬁﬁ)
= k%6, — kPke + 8k k"X,

= k26, — kPk¢ +4mx’, (5.905)

The dispersion rela.t';on for linear plasma waves is found by setting the eigen-
values of the dispersion tensor equal to zero. In “three-plus-one” x;totation, the
dispersion tensor is three by three and so it has only three eigenvalues that can
be set to zero. It seems that we are finding an extra branch to the dispersion re-
lation, and one might wonder why this should be so. By multiplying Eq. (5.9Q5)

by kg, however, it is easy to see that k is a null eigenvector of D. Thus, the extra
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eigenvalue is null, so setting it equal to zero does not yield any new information.

The other three roots yield the more interesting information about plasma waves.

5.5.5 Conservation of Wave Action

We next consider the equation of motion obtained by varying . Using .
Eq. (5.896), we immediately find :'
6S =

= 5.906
0= 3=V T, (5.906)
-~ where we have defined the wave action four ﬂu:c
A% . \? - :0e: ~
J=P (27[‘6 ce: F+ é;r—F 3k F) . (5.907)

Our equation of motion thus expresses the conservation of this wave action.
The wave action takes on a much simpler form when written in terms of the
dispersion tensor, defined in Eq. (5.905). We find

X2 . .8D.
J=7P (BWA -(-9—1;—/1) (5.908)

Finally note that the wave action is gauge invariant, although this is not
manifest in either of the two forms presented above. To prove this, we replace
A* by A* —ikA* in Eq. (5.907). Using the dispersion relation, Eq. (5.903), it is

easy to see that the term involving A vanishes, leaving J unchanged.

5.5.6 Applying the Noether Method

We now consider what happens to the conservation laws obtained by the Noether
method when we include the effects of the wave field. In this case, Eq. (5.826) is

altered in the following way:

2

6L = (8£)o— V -(69T) - 2’\—# V (e : F)- A*]+ N2 v (M - 64,)

+ 6 .{/dN(n)/dT5R(n,T)54(€B — R(n,7))



CHAPTER 5. THE RELATIVISTIC GUIDING-CENTER PLASMA 217
22
2

To derive this equation, we applied the variation to the full Lagrangian density

F*: K(Z(n,7); F,k) : F} (5.909)

for the guiding/oscillation-center plasma in the presence of the wave field. We
noted that .
F= Ekfi-{- VA- (tranépoée), (5.910)
so A
§F = zk&/i + 2(6 51&)/1 + (Y_’7 §A) — (transpose). (5.911)
Finally, we used the eqﬁations of motion to simplify the result, just as we did for
the case in which there was no wave field present.

Note that the second term on the right hand side of Eq. (5.910) and the third .
term on the right of Eq. (5.911) are usually neglected in the eikonal approxima-
tion. They are similar in this respect to the third term on the right of Eq. (5.895),
and the O(¢) terms of Eq. (5.865) (which also must be included in the analysis
leading to Eq. (5.909)). Up until now, we have consistently neglected these terms
in our analysis. It will turn out that they are also unneccessary in deriving the
conservation law for energy-momentum, but they are necessary in the derivation
of the conservation law for angular momentum in order to obtain the correct
expression for the modification of the guiding-center spin due to the presence of

the wave.

5.5.7 Conservation of Energy-Momentum

We now use the same translational variation of the system that we did in the
case for which no wave was present, but now we add the variations of the wave
quantities,

& (5.912)

and

I

|
Iy

Lo

Il

|
I

=

§A=—¢VA. (5.913)
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There are five terms on the right hand side of Eq. (5.909). The fifth term
cancels the portion of 6L, = —¢- 6 Lg. (on the left hand side) that is due to
K,. The fourth term is the correction to the magnetization density due to the
wave, as defined in Eq. (5.790). It will simply cause the magnetization density
that appears in the conservation laws to be corrected for the presence of the wave.
The third term is of the sort discussed above that may be neglected in the usual
eikonal approximation. The new stuff comes from the second term, v (Jk - &),
and from the portion of §£,, = ~¢&- 6 L., (on the left hand side) that is due to
the wave. '

The new stress-energy tensor is then
T = (T)o + \°T, - (5.914)

where (T)o is the result with no wave field present (see Eq. (5.840)), and T is the

modification due to the wave,
T=M-Fo+Ln1+Jk . (5.915)

To recap, the first term on the right hand side above simply insures that the
magnetization that appears in the stress-energy tensor is that corrected for the
presence of the wave. The second term on the right hand side above similarly
insures that the term £,,1 that appears in the stress-energy tensor is also cor-
rected for the presence of the wave. The third term is the stress-energy due to
the wave itself. Note that it is the tensor product of the wave action with the
four wavevector. This is sensible since the wave action may be interpreted as the
number flux of wave quanta times some unit of action, and the unit of action

times the four wavevector is the energy-momentum per quantum.

5.5.8 Conservation of Angular Momentum.

Finally, we examine the law of conservation of angular momentum. We use the

same rotational variation of the system that we did in the case for which no wave
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was present, but now we add the variations of the wave quantities,
S =—(Q-2)Ve=—(Q-z)-k (5.916)

and
§A=-(0-z)VA+Q-A ‘ (5.917)
~ Once again, we examine the five terms on the right hand side of Eq. (5.909).
Now 6L = —(Q-z)- VL=-V -[(f2-z)L], so once again the fifth term will cancel
with the portion of §C,. (on the left hand side) that is due to K. Similarly, it is
straightforwardly shown that the fourth term causes the magnetization density
that appears in the angular momentum tensor to be corrected for the presence
of the wave, just as it did in the stress-energy tensor. The second term is v
[Tk - - z], and this contributes a new term in the orbital angular momentum

tensor; so

L = (L)o + ML, (5.918)

where

LoBY = FoByy _ favgh, (5.919)

Clearly, this is the orbital angular momentum due to the wave.

This time we retain the third term on the right hand side of Eq. (5.909). It is

A2 - - . - -
= VA{l-(Q2) VA +0. A7) e F). (5.920)
™

We shall still ignore the first term in square braci(ets, as it contains a gradient of
the wave field amplitude, but we retain the second term. After some manipula-
tion, it becomes

A2 ~w Ba  E =3 ~

st » [=§ * (24

4—#[037@47 % LFH — AP PR oL (5.921)

From this we can identify a correction to the spin angular momentum tensor. We

write .

S = (8) + A28, (5.922)
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where
§oPY = Avefe  Frv — AP P (5.923)

This is the correction to the spin angular momentum tensor of a
guiding/oscillation-center plasma due to the presence of an eikonal wave field.
This quantity is given by Soper [50] for oscillations in an electromagnetic field in
a vacuum. He writes ;
Gosy _ o fha _ jAe e (5.924)
(see his Equation (9.3.14)). If we set the susceptibility in Eq. (5.889) equal to
zero, and plug the resulting vacuum dielectric into Eq. (5.923), it is clear that
our result will reduce to Soper’s. Thus, our result may be considered to be an
extension of his result to the case of dielectric media.
The lack of gauge invariance of our result for S is disturbing and will be

discussed further in Chapter 6.
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Chapter 6

Questions for Future Study

In this chapter, we discuss some questions raised by this study that could be

- topics for future research. These are in no particular order.

e The neglect of resonant effects is probably the most glaring omission of this
thesis, and probably that most likely to limit its utility. There are several
schools of thought on how to deal with resonant effects, but they break

down into two major categories:

First, there are attempts to simply “patch up” the nonresonant treatment:
For example, since our nonresonant treatment has successfully given us
the hermitian part of the susceptibility tensor, we could use the Kramers-
Kronig relations to get the antihermitian part. Alternatively, we could
simply dictate that all resonant denominators are to be treated according
to the Landau prescription. These methods, while successful in describing
resonant particle effects on plasma waves, fall far short of a unified descrip-
tion of the eflects of resonant particles. Furthermore, there is something

aesthetically displeasing about tricks of this sort.
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Second, there are attempts to go back and redo the single particle analyses
to include resonant effects. The general idea is that we first went astray
when we said that we could transform away the first order part of the action
due to the eikonal wave field. While we can certainly do this far away from -
the resonant regions of phase space, we certainly canﬁot do this at (or even'
near) the resonance itself. So we should go back and retain the first order
part of the action in the region of phase space near the resonance. Like the
first technique, this approach explains certain things nicely, but falls short
of a unified description of resonant particles. For example, the first order
action that we retain will depend on the four potential of the wave, and this
will yield a modification to the current density of a guiding-center plasma
that is immersed in a wave field; this is the current drive due to a wave field
that tokamak researchers study. On the other hand, a good description of
how this residual piece of the first order action gives rise to Landau damping
does not seem to exist. Furthermore, there is a great deal of arbitrariness
connected with how to decide just how much of this first order action to
keep. One approach uses “window functions” of some characteristic width,
but there is a great deal of freedom in just how these window functions
should look (square windows, gaussian windows, etc.); Dewar [51] gives a
variational principle for determining optimal window shape, but then we
have to worry about just what we mean by “6ptimal.” There is also a
great deal of freedom in choosing the width of such windows. If we try to
transform away the first order action too close to the resonance, problems
develop due to the presence of the trapped particles, and the transformation
ceases to be a near-identity diﬁ'eomorphism. Unfortunately, it is hard to
quantify what we mean by “too close” in this regard. Perhaps the window
width should itself be treated as a dynamical variable whose dynamics are

given by some variational principle (like that of Dewar); this might be a
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useful tool for the study of “resonance broadening” effects, where the width

of the resonant region varies in time.

o Pursuing the oscillation-center Lie transforms to higher order is a natural
and obvious extension of this thesis. In this way, one could study induced
scattering and three-wave phenomena. Past attempts to study these have
either not used systematic perturbation theory .(e.g. Lie transforms), or
have used Hamiltonian methods without manifest gauge invariance. This
thesis should provide the tools needed to combine the desiderata of sys-
tematic perturbation theory and m'a.nifest gauge invariance. Central to this
effort has been the use of the homotopy formula, and the introduction of

the pair of special functions, Q, and R,.

It is interesting to note that this same program could have been carried out
for the nonrelativistic problem. One must simply take the perturbation to
the action due to the wave (for which there now would be both a vector
and a scalar potential), and apply to it the guiding-center Lie transform,

using the homotopy formula in the same way that we did here.

e The inclusion of dissipative effects (collisions, correlations, etc.) would
be an important generalization of the work presented here. This is un-
doubtedly related to the problems associated with the inclusion of resonant
effects. A unified treatment of correlations would yield the appropriate col-
lision operator in the kinetic equation, and modify the energy-momentum

conservation law to describe the flow of energy into heat.

One way to approach this subject might be through the extended use of
projection operators. We employed this technique in Chapter 5 to show that
it was possible for energy-momentum and angular momentum to flow from
one relevent region of Fourier space to another irrelevent one, and thereby

to effectively appear as a source term in the conservation laws. We did not



CHAPTER 6. QUESTIONS FOR FUTURE STUDY 224

pursue this idea of partitioning Fourier space into one zone for background
fields, one zone for wave fields, and one zone for effects of collisions (for
example, we never introduced a second projection operator for the wave
fields, or a third one for fields arising in collisions). This approach may
prove useful, but it quickiy leads to great complication in the procedure,

and it is not clear how it might give rise to collision operators, etc.

e When we applied the Noether method to the action to obtain the guiding-
center spin angular momenturn; we used the version of the action that was
both boostgauge and gyrogauge invariant. There is a good reason why we
did this. Other versions contain the quantity R that was introduced back
in Chapter 3. If we had tried to apply Noether’s theorem to an action
containing R, we would at some point have been faced with the question

~ of how to vary R with respect to the four potential. It seems that R is not
independent of the four potential since it was defined in terms of the unit

vectors, €4, and these, in turn, depend upon the background field.

We dodged the issue by going to the boostgauge and gyrogauge invariant
coordinates for which R does not appear in the action, but it is interesting
to contemplate the alternatives. If we were to simply ignore this term,
we would not get guiding-center spin, and that would be unacceptable.
Though we had to go to higher order to find this term in our first derivation
of the gﬁiding-center action, it has the same order as the pudf term which
is obviously critically important. Indeed, now that we have the benefit
of hindsight, we see that we could have avoided the higher order guiding-
center Lie transform altogether by examining the action at classical order
and asking what we would have to add to it to make the udf term gyrogauge
invariant. The answer would have been —uR - dR, and this was really the

only important term we found at higher order. Thus, the clever application
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of a gauge invariance requirement can save one from going to higher order

in a perturbation calculation!

So, since we can’t ignore this term, how else could we have dealt with
it? There are a couple of possible avenues of approach. First, recall the .
well known result that the stress-energy tensor is given by the derivative -
of the Lagrangian density with respect to the metric tensor (this is true
at least for spinless systems). There seems to be an analogous theorem
(or, at least, a conjecture) enunciated by Hehl [52], that the spin angular
momentum tensor is the derivative of the Lagrangian density with respect
to torsion. Torsion is the result of an asymmetric affine connection, and the
affine connection that we had to introduce in Section 3.11 to explain the
R-R term in © is indeed asymmetric. Now it is not clear to me that R is a
tofsion, but these remarks do make it clear that R has at least something to
do with torsion. In any event, R appears in our guiding-center action with
a u in front of it, so it is possible that we could apply the above theorem
~ (conjecture?) and derive guiding-center spin directly (without recourse to
Noether’s theorem). I suspect that, if this were possible, it would be of
more interest to researchers in quantum gravity (wh.ich is the community
to whom reference [52] was aimed) than it would be to researchers in plasma
physics. It may be that guiding-center motion provides a unique classical
forum within which this topic of current research in the field of quantum

gravity may be applied, tested, and better understood.

Another possible approach to the spin problem is yet more speculative. It is
suggested by the minimal coupling idea of gauge field theory. Recall that R
is the gauge potential associated with the gyrogauge group. In Section 3.11,
we even went one step further and derived the corresponding gauge field,
N. Using the techniques of gauge field theory, it might be possible to use

R to define a gauge covariant derivative. We could then add something like
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N : N to the Lagrangian density, and treat A and R as independent gauge
fields. Though these ideas are suggested by the analogy with gauge field
theories, they would all have to be rigorously justified. Furthermore, it is

not obvious how guiding-center spin would arise from these considerations.

e Another mystery that should be mentioned is the apparant lack of gauge
invariance of tI;e wave modification to guiding-center spin. Our result
is clearly the extension to dielectric media of Soper’s result for the vac-
uum [50]. The lack of gauge invariance did not seem to bother him, except
for a cryptic footnote that indicates that the result is invariant with respect
to a certain subgroup of the full gauge group. One possible explanation
might be that the division of angular momentum into orbital and spin con-
tributions is not a gauge-invariant division. If this were the case, however,
one would expect that neither the orbital nor the spin angular momentum
should be gauge invariant by itself, but that their sum should be gauge
invariant. Alas, the orbital angular momentum seems to be gauge invariant

all by itself, so the issue remains a mystery.

e It would be nice to find a Hamiltonian field theoretical formulation of the ki-
netic and field equations for the guiding-center and the guiding/oscillation-
center plasma. Manifestly covariant Hamiltonian field theories are, how-
ever, tricky to formulate. We cannot give preference to the time variable,
and the proper time is not uniquely defined (every particle in the system has
its own proper time). There may be ways of getting around this difficulty
by generalizing the form of Hamiltonian equations of motion for such sys-
tems. If this could be done, it might be possible to use the energy-casimir

method to study plasma stability to nonlinear perturbations.

e We have developed conservation laws for energy-momentum and angular

momentum for the guiding/oscillation-center plasma. In most studies of
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plasma dynamics, use is made of energy conservation, but not of momentum
or angular momentum conservation (of course, in a covariant relativistic
treatment energy and momentum are inseparable). It is p.ossible that these
conserved quantities could play a far greater role in the study of, say, plasma
stability theory thé;n they have until now. For example, the Lyapunov
method for assessing stability rests heavily on the discov‘éry of conserved

quantities. Just how to go about doing this is not immediately clear.
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Appendix A

Glossary of Notation

In this appendix, we list all the important symbols used in this thesis, giving the
number of the equation where they were first used (if appropriate) and a brief

description (if appropriate).

SYMBOL EQUATION DESCRIPTION

a(z) (5.794) Clebsch potential for field

a (3.591) Gyrogauge-invariant coordinatization of gyroan-
gle

¢} (3.341) Angular hyperbolic polar coordinate for parallel

part of particle four velocity

B(z) (5.794) Clebsch potential for field

Bg (3.330) E x B/B?

B, (3.357) v/c

| A (3.489) Gﬁiding-center action one form

¥ : Action one-form

Yo Relativistic gamma factor: v, = 1/ m

¢ ) ' - Kronecker delta
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€ A Guiding-center expansion parameter

er1n - Levi-Civita tensor in n dimensions

e*P € (5.889) ‘Generalized dielectric tensor

n (5.737) Continuous particle label ‘

] (3.485) Angular polar coordinate for perpendicular part
of guiding-center four velocity

6 (3.341) Angular polar coordinate for perpendicular part
of particle four velocity

w(z) (5.795) Clebsch potential for field

A (4.620) Oscillation-center expansion parameter

A1 (3.287) Lorentz scalar for electromagnetic field

A2 (3.288) Lorentz pseudoscalar for electromagnetic field

Ay (3.604) Lagrange multiplier

AB (3.293) Related to eigenvalues of F’

AE (3.292) Related to eigenvalues of F'

n (3.488) Gyromomentum

v Constraint label

= (3.506)

= (3.576)

'3 (5.827) Generator of infinitesimal translation in space-
time

a (3.613)

o(z) (5.795) Clebsch potential for field

T Proper time

T (3.505)

T (3.575)

x*? € (5.877) Generalized susceptibility tensor

¥, (4.652)
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ST R T

P (4.618) Phase of eikonal wave
2 (5.841) Generator of infinitesimal rotation in spacetime
Qp (3.297) Gyrofrequency with respect to proper time
Qe (3.490) Guiding-center_'Lagra.ngia.n' two form
w Lagrangian two-form
A (3.281) Four-vector potential
Ao Zero-order four-vector potential
Ay First-order four-vector potential
Ay (4.618) " Eikonal wave potential
A v(4.618) : Amplitude of eikonal wave potential
A (3.281) Thfee-vector potential
(3.346) Member of orthonormal basis tetrad
(3.281) Magnetic field pseudovector
(3.485) Angular hyperbolic polar coordinate for parallel
part of guiding-center four velocity
b Unit three-vector in direction of magnetic field
b (3.345) Member of orthonormal basis tetrad
C, (3.592) Constraints
c Speed of light
c (3.344) Member of orthonormal basis tetrad
D (5.749) Jacobian
D24 (5.905) Dispersion Tensor
D, (4.688) Resonant denominator
e Charge
E 3.281) Electric field vector

3.281) Field tensor
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F" (3.577)
Fy Zero-order field tensor
F; _ First-order field tensor
F, (5.865) Eikonal wave field
F (5.865) Amplitude of eikonal wave field
F (3.282) Dual field tensor '
fa (5.737) Pseudoscalar Eulerian particle distribution func-
. tion ;
fn (5.747) Scalar Eulerian particle distribution function
fa (5.737) Pseudoscalar Eulerian guiding—center distribu-
o tion function o
fn (5.747) ~ Scalar Eulerian guiding-center distribution func-
. tion
Guv Metric tensor
Go (5.788.) Macroscopic field tensor for perpendicular cur-
rent
G, (5.789) Macroscopic field tensor for parallel current
H Hamiltonian
H,. (3.488) Guiding-center Hamiltonian
J V-1
ig (2.60) Interior product with respect to vector field g
(5.787) Four-current density
Jge Guiding-center poisson tensor
Jo (5.785)
Ju (5.786)
T (4.653)
k - Wave four vector
K | (3.341) Radial hyperbolic polar coordinate for parallel

part of guiding-center four velocity
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K, (4.669) Ponderomotive Hamiltonian

K : (5.873) Kernel of ponderomotive Hamiltonian

k (3.485) Radial hyperbolic polar coordinate for parallel
' part of particle four velocity

L (5.855) Guiding-center orbital angular momentum ten-

i : sor

L (5.919) ' Wave contribution to guiding-center orbital an-

‘ gular momentum tensor

Lge (3.582) Guiding-center Lagrangian

L, (2.43) : Lie derivative with respect to vector field ¢

Lm (5.773) Lagrangian density of Maxwell field-

Lm (5.869) Lagrangian density of eikonal wave field

¢ (4.639) Index for Fourier expansion in gyroangle

My (5.790) Magnetization density tensor for perpendicular

current

M, (5.791) Magnetization density tensor for parallel current

M (3.517) Boostgauge field

m Mass

dN(n) (5.737) Measure of particles with labels between n and

n+dn

N (3.518) Gyrogauge field

B (3.304) Parallel projection operator

P, (3.305) Perpendicular projection operator

P (5.798) Smoothing projection operator

Q: (4.643) Special Function

Q (3.384)

r Particle spacetime position

R, (4.644) Special function
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R The set of real numbers

S (5.856) Guiding-center spin angular momentum tensor

S (5.923) Wave contribution to guiding-center spin angular
momentum tensor

Sge (5.768) Guiding-center action

Sm (5.771) Maxwell action

S (5.867) Maxwell action due to eikonal wave

T (5.840) Guiding-center stress-energy tensor

T (5.915) Wave contribution to guiding-center stress-

. energy tensor

t (3.343) Member of orthonormal basis tetrad

U (3.562) Boostgauge-invariant coordinatization of
guiding-center parallel velocity

u (3.289) Particle four-velocity

v Three-velocity

(3.485) Radial polar coordinate for perpendicular part of

guiding-center four velocity

w (3.341) Radjial polar coordinate for perpendicular part of
particle four velocity

z Spacetime coordinates

Z Generic coordinates

Double index contraction: A: B = A4,, B*¥.
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Appendix B

Vector Spaces, Dual Spac.es,

Algebras, and Modules

This appendix is included to establish the set-theoretical foundations of tensor
calculus and exterior algebra, as these ideas are used extensively in this thesis. It
is intended to provide a review for people already familiar with these topic;s, and
to establish notation. The reader is expected to be familiar with linear algebra
and with the topology of the real numbers. If anything herein is unfamiliar, the
reader is urged to consult one of the above-mentioned introductory references.

We begin with some set-theoretical notation: Given two sets, A and B, we
define the Cartesian product, A x B, to be the set of all ordered pairs, (a,b), such
that a € A and b € B. The symbol V is read “for all,” and the symbol 3 is read
“there exists.” A set is said to be paftitioned if there exist subsets such that each
and every element of the set is a member of one and only one subset. A map
that associates an element of a set, B, to each element of a set, A, is denoted by
A— B.

A relation, R, among the elements of a set, A, is defined to be a subset of
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A x A; we write R C A X A. Two elements of A, say a; and ap, are then said
to be related if (a;,a;) € R. In this case, we may write a; ~ ap. A relation is
reflezive if a ~ a for all a € A. A relation is symmetric if a ~ b implies b ~ a
for all a,b € A. A relation is transitive if a ~ b and b ~ ¢ implies a ~ ¢ for
all a,b,c € A. A relation that is reflexive, symmetric and transitive is called
an equtvalence relation. An equivalence relation naturally partitions a set into
subsets called equivalence classes. Any two members of the same equivalence class
are related to each other by the equivalence relation, and members of different
equivalence classes are not related by the equivalen;:e relation. For example,
the equivalence relation of “similarity” partitions the set of all triangles into an
infinity of equivalence classes, and the equivalence relation of “equality modulo
three” partitions the set of integers into three classes. The relation “is the same
height or taller than” is not an equivalence relation on the set of all trees, because,
although it is reflexive and transitive, it is not symmetric, etc.

The set of all real numbers will be denoted by R. The set of all n-tuples of
real numbers will be denoted by R", and the reader is assumed to have some
familiarity with its usual topology. In particular, by using, say, the Euclidean
norm, it is possible to define open sets as neighborhoods, and thus to have a
concept of nearness, continuity, convergence, etc.

Let V be a set with U,V,W,... € V, and let a,b,c,... € R. Let + denote
an operation that takes two elements of V and returns a third one; that is, + is
amap V x V — V. Let - denote an operation that takes an element of ® and
an element of V and returns an element of V; that is, - is a map R x V — V.
Then V is a vector space over the field of real numbers if and only if the following

conditions hold:

Condition B.0.8.1 VU,V,W € V: U+ (V+ W)= (U+V) + W.

Condition B.0.8.2 YU,V e V:U+V =V +U.
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Condition B.0.8.3 30 V:VWeV:V+0=V.

Condition B.0.8.4 VU € V:3IV €V :U+V =0.

Condition B.O.Sv.5 Va,be R, U €V :(ab)-U=a-(b-U).
Condition B.0.8.86 Va,be R, UcV:(a+b)-U=a-U+b-U.
Condition B.0.8.7 YVa e R,U,VeV:a- (U+V)=4a.-U +a:'- V.
Condition B.0.8.8 VU € V:1-U =U.

A set of vectors, Uy,...,Up, is said to be linearly independent if and only if

the only real numbers, ¢y, ..., c,, satisfying
C1'U1+"'Cn'Un=0 (B925)
are ¢; = --- = ¢, = 0. Otherwise, the vectors are said to be linearly dependent.

The number of elements in the largest possible set of linearly independent vectors
is called the dimension of the vector space. If a vector space has dimension n,
then any set of n linearly independent vectors constitutes a basis for that vector

space. If V4,...,V, is a basis for V, then any vector, U, in ¥V can be expressed
U=a, -V, +--a, -V, (B.926)

where the real constants, a, are uniquely determined by U, and can be computed
by standard techniques of linear algebra. In this case, we say that the basis spans
the vector space. A vector subspace of a vector space, V, is a subset of V that is
itself a vector space closed under - and +. The dimension of the vector subspace
1s the minimal number of basis vectors needed to span it.

Vector spaces can be finite or infinite dimensional. An example of an infinite
dimensional vector space is the space of all infinitely differentiable (C'*°) real-

valued functions on R. The addition and multiplication operations are then

(f +9)(z) = f(z) + g() ‘ (B.927)
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and

(a- f)(z) =a- f(=). (B.928)

This very important space will be called A(R). A basis for this vector space
would have to contain an infinite number of elements; the theory of Fourier series
provides an example of how to go abogif constructing and using such bases. The
set of all polynomial functions of a real argument is a vector subspace of A(R).
A functional, U*, operating on a vector space, V, is a map V — R. Equiva-
lently, we can think of functionals as objects which pair with vectors to yield real
numbers. The notation for this pairing is (U*,V) € R. Note that we frequently
denote functionals with superscripted stars. It is possible to define operations of

addition and real number multiplication on the space of functionals as follows:
(U + VW) =(U* W) +(V*, W) (B.929)

and

(a-U*,\ W) = a(U", W). | (B.930)

It is readily verified that these operations make the space of all functionals oper-
ating on V into a vector space which we shall denote by V*, and which we shall
call the dual space to the vector space, V. Furthermore, it is also readily verified
that the dimensions of V and V* are equal. An example of this from linear al-
gebra may be instructive: The dual space to the vector si)ace of column vectors
may be identified with the vector space of row vectors, since a row vector and a
column vector pair to yield a real number under matrix multiplication.

If a vector space, V is endowed with a further.bilinear operation that maps
YV x V +— V, then it is called an algebra. Since this operation pairs vectors with

other vectors, it can be written in the form (U, V) € V. By “bilinear,” we mean

(@ U+b-V,W)=a-(U,W)+b-(V,W) (B.931)
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and

U,a-V+b-W)=a-(UV)+b-(U,W). = (B.932)

An algebra is commutative if VU,V € V : (U,V) = (V,U). An algebra is asso-
ciative if VU, VW € V : (U,(V,W)) = ((U,V),W). The set of real numbers,
R, becomes a commutative, associative algebra when equipped with thé opera-
tion of multipl{cation of real numbers. The space A(R) described above is also a

commutative, associative algebra if we equip it with the multiplication

(fo)(z) = F(z)g(=)- (B.933)

In linear algebra, the set of all n by n square matrices is a vector space of

dimension n? with the usual definitions of matrix addition and multiplication
by real numbers; it becomes an associative (but not commutative) algebra when
equipped with matrix multiplication.

An algebra, V, is called a Lie algebra if and only if it is anticommutative
YU,V eV:(UV)=—-(V,U), (B.934)
and satisfies the Jacob: identity
| VU, VW eV : (U, (V,W)) + (V,(W,U)) + (W, (U, V)) =0; (B.935)

The space of vectors in i3 becomes a Lie algebra when equipped with the usual
cross product.

A vector subspace of an algebra is called a subalgebra if it is closed under the
algebra’s multiplication rule. For example, the space of all polynomial functions
of a real argument is a subalgebra of A(§R‘) A subalgebra of a Lie algebra is called
a Lie subalgebra.

We can generalize the concept of a vector field somewhat by relaxing the

requirement that a and b in Conditions B.0.8.5 through B.0.8.8 above are real

numbers. Suppose instead that they are members of any associative algebra, A.
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Then Conditions B.0.8.5 through B.0.8.8 still make sense, though the number 1
that appears in Condition B.0.8.8 must be reinterpreted to refer to the identity
element of the algebra, A. In this case, V is said to be a module over the algebra,
A. For example, in linear algebra, the space of column vectors is a module over
the above-described algebra of square matrices. |

Given an algebra, V, with subspace, U, we say that & is an ideal of V if and
only if (U,V) e U and (V,U) €U for all U € U, and V.e V. For example, let V
be the f/ector space of all polynomial functions of a real argument, z; Recall that
this is a subalgebra of A(R). Then, the subspace, i C V, of all polynomials with
zeros at some particular location(s) is an ideal of V.

Throughout this thesis, when a scalar multiplies a vector, the dot is sup-
pressed; that is, a - V is written simply aV. The dot notation is used for other
things. Also, boldface type is used to denote a vector, though its compénents in
a given coordinate system are denoted by the same letter in ordinary typeface

(with a superscripted index to label components).
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Appendix C

G yrofrequency Shift'for
Two-Dimensional
Nonrelativistic

Guiding-Center M otion

As a straightforward but nontrivial example of the vector Lie transform technique,
we consider two-dimensional nonrelativistic guiding-center motion in a magnetic

field of the form _
B = B(z,vy)z, (C.936)

and a perpendicular electric field of the form
E= E,(z,y)fc + Ey(:l:, y)S' : (0'937)

To lowest order, the gyrofrequency is given by 2 = eB/mc. We shall address the
problem of computing the correction to this quantity due to the spatial depen-
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dence of B and E.

The single-particle equations of motion are

T=u
y=v
w=—FE, 4+ Qv
@:%Ey—nu.

Introduce the perpendicular velocity and the gyroangle,
w = Vu? +v?
0 = arg(—v — tu),

so that
u=—wsinb

v = —w cosf.

In terms of w and € the equations of motion are found to be

= —wsinf
Yy = —wcosb
) e
W= ——

~ (E;sin@ + E, cos )

6 = lﬂ - (E; cos8 — E, sin#8)

€ mw
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(C.938)

(C.939)

(C.940)

(C.941)

Here we have introduced the formal ordering parameter ¢, and have ordered the

equations of motion by the prescription e — e/e and E — €E.

Though it is most useful and quite elegant to treat this problem with Hamil-

tonian perturbation theory, we shall instead use Lie transforms directly on the

dynamical vector field. We do this for the purposes of illustration. In Chapter 3 of

this thesis, we treat the much more general problem of relativistic guiding-center

motion in arbitrary electromagnetic field geometry in space-time (including per-

pendicular electric fields that may be order unity in the guiding-center expansion
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parameter, ¢), and there we make full use of the Hamiltonian nature of the equa-
tions of motion and we spend a great deal of time studying the associated Poisson
structure. It is useful to compare the two approaches.

We denote the phase-space coordinates by z = (z, y,w, ), and the equations

of motion by |
=1V 4V, | (C.942)
€

where the dynamical vector field is described by

Ve =0
Vi=o0
V=0 o
V=0 (C.943)
and
| Vi = —wsin#
VY = ~wcos¥é

V¥ = —~:—L (Ezsinf + E, cos 0)

Ve = _m%; (E, cosf — E, sin6). (C.944)

The unperturbed problem, z = V; /¢, thus has the solution

T =2
Y=Yo

W = Wy

6 = 6y + Qt/e, (C.945)

so that averages over the unperturbed motion are equivalent to averages over 6.

At first order, Eq. (2.222) tells us that

Vi =V, — £V, (C.946)
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where V denotes the Lie transformed dynamical vector field at first order. The
separate components of the above equation are then
a T z :
95591 = Vl + w Sln9
3
0 — Y
561

0 w w € :
Q-éégl =] +;(E=sm0+Eycose)

o e ‘ .
Qgégf = Vf + % (E;cos6 — Eysinf) + giQ, +g70Q,. (C.947)

=V1y + wcosb

We demand that the generator vector g; be purely oscillatory (single-valued in

8). Thus, averaging the above equations immediately yields
V; =0. (C.948)

Then, we can solve Eqs. (C.947) for the components of g;. We get

g‘f=—%cos€
. gi’z—gsine

w e S

g1 = m(—EzCOSO-FEy sin §)

O~ _° (B, sinf+E,cos8) — “2zgng— Ly ocg (C.049)
91 = —o (Eesi y €O RE oz cosd- .

Thus we have completely removed the perturbation in the dynamical vector field
at first order. The guiding-center equations of motion will appear at the next
order, as will the desired correction to the gyrofrequency.

At second order, Eq. (2.223) tells us that
1 1
V2 = —£2V0 it £1V1 + éL:?Vo = —£2V0 - §£1V1. (0950)

The generator g; must be chosen so that V, is purely averaged. Thus, without

having to actually compute gz, we can deduce

Vy = <—%z:1v1> . (C.951)
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To get the shift in gyrofréquency, we need only V2. Because both V; and g;
contain oscillatory terms, the Lie derivative of one with respect to the other will
contain products of oscilla.to;'y terms, and some of these will not average to zero.
After some tedious algebra, we find

o_ g (BN wiy (VO -
V=5V (Qz)+ =V (m : (C.952)

This is the gyrofrequency shift. The first term is the shift due to the spatial
dependence of the perpendicular electric field, and the second term is the shift
due to the spatial dependence of the magnetic field. The first of these terms was .
discovered by Kaufman [47] in 1960, who also showed that it gives rise to the
phenomenon of gyroviscosity. |
It is interesting to note that, when the results of Chapter 3 are cast into
“] + 3" notation and the nonrelativistic limit is taken, the first of the above pair
of terms is present but the second is not. This is because the ordering scheme
used is quite different. In this appendix, we treated the perpendicular electric
field as an order e quantity, whereas in Chapter 3 we took it to be order unity.
Thus both terms appéa.r at the same order above (the first term has a spatial
gradient and an electric field, and the second term has two spatial gradients),
whereas in Chapter 3 the second term would appear at one higher order than
the first term (and we did not calculate to high enough order there to see it). It
is also interesting to note that the term involving R in Eq. (3.511) of Chapter 3
is a three (or higher) dimensional effect, and has no analog in two-dimensional

guiding-center motion.
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Appendix D

Properties of the Special

Functions

The following is a list of properties of the @, and R, functions that follow directly

from their definitions given in Section 4.4.

D.0.9 The Q Functions -

Property D.0.9.1 (Defining Integral)

_ 1 27 ei®siné _ 1 _ite
oo =g [ (e )

Property D.0.9.2 (Relationship with Bessel Functions)

Q@) = J()



APPENDIX D. PROPERTIES OF THE SPECIAL FUNCTIONS 251

Property D.0.9.3 (Power Series)

= 1) (z/2)%+ (2/2)
JZ 2;+/3+1 W+ (L+1)

Property D.0.9.4 (Asymptotic Behavior for Large Argument)

| 1 /2 . T o
Qe(m)~;+ ﬁan(w—Ef—Z)_F...

Property D.0.9.5 (Recursion Relations)

Je(y)
Yy

Qe 1(z) + Qeta(z) = ?f-/o

Qe-1(z) — Qe+a(z) = %Jé(w)

Property D.0.9.6 (Formula for Derivative)

Qi(z) = [ t(z) — Qu()]

Graphs of the Q functions are presented in Fig. D.1.

D.0.10 The R Functions |
Property D.0.10.1 (Defining Integral)

Ri(z) = = /02" de ((1 —izsing)e Rt - 1) emite

z2sin® ¢
Property D.0.10.2 (Relationship with Bessel Functions)
d

T (2 Re(z)] = 22J4(z)
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Property D.0.10.3 (Power Series)

- 1) (z/2)5* 2(2/2)
; 2]+z+z 0+7)  (£+2)2

Property D.0.10.4 (Asymptotic Behavior for Large Argument)

2 T i
Rz(a:)~‘/—?sm(w-—gé—z)_{_...

Property D.0.10.5 (Recursion Relations)

Res(2) + Bena(2) = 2Qu(a)

Re-s(@) = Resa(z) = - [Jel) = Qe()]

Property D.0.10.8 (Formula for Derivative)

Ry(z) = = [Ju(2) = Ru(=)]

Graphs of the R functions are presented in Fig. D.2.
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Appendix E

Useful B essel' Function

Sums

All of the Bessel function summation formulas used in Chapter 4 can be derived

from the following theorems:
Z Jerr(2)e—r(2) = bro (E.953)

and

Z Jg+k+1 Jg k(Z) = 0, (E.954)

the usual Bessel function recursion relatlons

Jeo1(2) + Josa(2) = Z—ZJZ( 2) (E.955)

and

Jg._l(z) - Je+1(Z) = ZJQ(Z), (E956)

and the parity rule. ‘
J-e(2) = (=1)'J(2). . (E.957)
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To verify Eq. (E.953), let us define
2) = Jep(2)Te-i(2), (E.958)
e

and differentiate with respect to z to get

fi(z) = Z (Jisnde—k + ik Ti_s)

—

= Z (Jewk=1 — Jottt1) Jo—t + Jowk (Jo—k—1 — Jo—t+1))

[ &)

N

= Z Jesr—1Je—k = Jerkride—k + Jerer1de—k — Jepr-1Je- k)
7

Il
k=)

(E.959)

where we have used Eq. (E.956) in the second line and have redefined the sum-
mation variable in the third line (we have also omitted explicit indication of the
functional dependence of J; on z since no ambiguity can result from doing so).
This means that fi(z) cannot depend on z, so it is a constant for each value of
k. To find the value of this constant, set z equal to zero in Eq. (E.953). Recalling
- that J¢(0) = 40, we see that fr(z) = éxo, and the theorem is proved.

To verify Eq. (E.954), use the parity rule, Eq. (E.957). We have

1 .
ZJ£+k+1J£—k =3 Z (Jerrt1e—k + Jot——1J-04k)
Z ¢

1
=3 Z (Jerkrde—k + (=1)* T TegrqaJes)
¢

1

1
3 ZZ: (Jerkt1Te—k = Jerkt1Je-k)

=0, (E.960)
where we have redefined the summation variable in the first line (¢ — —¢ in the
second term), and used the parity rule in the second line.

These theorems can be used to derive sum rules with summands that are

quadratic in the Bessel functions. To do this, note first that setting £ = 0 in
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Egs. (E.953) and (E.954) immediately yields
Y Ji=1 (E.961)
¢

and

Sdeade=Y Jidpy=0. (E.962)
I4 14

To derive a sum rule that includes £ raised to some power, first use Eq. (E.955) to
get rid of the power of ¢. To derive a sum rule that includes a derivative of a Bessel
function, first use Eq. (E.956) to express the Bessel function derivative in terms
of undifferentiated Bessel functions; alternatively, if a sum rule that includes
a Bessel function derivative can be expressed as the derivative of another sum
rule with undifferentiated Bessel functions, then this is usually a better way to

proceed.
As an example of some generality, consider the sum over £ of ¢*J,J;. This can

be expressed as follows:
> BJd = 1d > B (E.963)
= t7 2dz ; ¢ -
Now note

GBI = 2 (J,)?

0222

= (i +2Je-1des1 + Ii4y)
22 '

= 2 {le-v2+20-1+1] 2,

+2[(L-1)(€+1)+1])Jp—1Je+1

+ e+ 1) =200+ 1) +1] 2 |

22 ([22

2
= Z—{ Ii—4—— (Jg_g + Jg)z =+ 2—2‘ (Jg_g + Jg) JZ—-l + J?—l:l

2
(Je—2 + Je) (Je + Jeg2) + Je-1-fe+1}

T2
+ [ (Je+ Jer2)® — 2% (Je + Jeg2) Jega + J12+1J }, (E.964)
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so that application of our theorems to this last equation yields

22 22
Ze‘*JE=Z{[z(1+2-0+1)+z(0+0)+1}
£

22
+2{Z(0+0+1+0)+°J

+l:i;(1+2'0+1)——z(0+0)+1:l}

2 3 4
= 32- + %. (E.965)

Thus, we finally get -
, z 323
Y £5g;= 5t | (E.966)
¢

The following is a list of useful results that can be established in the above

manner:
Y nTF =0 (E.967)
- |
0T = ——2—Fy -k E.968
}; Ti == gk (E.968)
ZJ[-*J;- = 'E—Fo (E969)
¢ AB
Y egr gt =P, (E.970)
14
2
Y (Jeer=Je) I = - V2 F -k (E.971)
kilB

£
These sum rules are needed in the proof that the results for K> in Egs. (4.717),
(4.719) and (4.735) are indeed the same.
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