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ABSTRACT 

The relativistic electromagnetic projection operators discovered by Fradkin are 

used to obtain a covariant decomposition of the motion of a relativistic charged 

particle into parallel motion and perpendicular gyration. The Lagrangian Lie 

transform method of Littlejohn is used to achieve a transformation to guiding­

center coordinates in which the rapid oscillatory motion is removed. The method 

parallels the nonrelativistic guiding-center calculation of Littlejohn, and the four­

vector notation used throughout facilitates this comparison. The natural guiding­

center Poisson bracket structure and Hamiltonian are derived. The guiding-center 

equations of motion are presented to one order higher than the usual drifts, and 

the correction to the gyromomentum is given. Correspondence with the usual 

noncovariant results, as given by N ort-hrop, is demonstrated. 
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It is possible to add one or more eikonal wave perturbations to the Lagrangian 

action for a single particle before performing the guiding-center transformation. 

It is shown that such perturbations can be written in a manifestly gauge-invariant 

form in guiding-center coordinates; this observation allows us to develop an 

oscillation-center theory to arbitrarily high order and be guaranteed of mani­

fest gauge invariance at every step of the way. In this way, once again usmg 

Lagrangian Lie transforms, we obtain the ponderomotive Hamiltonian. 

By summing the guiding-center Lagrangian action over the full distribution 

of guiding centers present in a plasma and adding the action of the Maxwell 

field, one obtains the total action of a guiding-center plasma. Upon variation 

of the total action, we find a self-consistent set of covariant relativistic kinetic 

and field equations; from these we can identify the guiding-center current density 

and the guiding-center magnetization. Upon application of Noether's theorem, 

the total action yields covariant conservation laws for the momentum-energy and 

the angular momentum of a relativistic guiding-center plasma; from these we 

can identify the guiding-center stress-energy tensor and the guiding-center spin 

angular moment urn tensor. 

If we sum the Lagrangian action for a guiding/oscillation center over the 

full distribution and add the action of the Maxwell field, then variation yields 

self-consistent relativistic kinetic and field equations for the plasma in the wave 

field, including the dispersion relation for the wave; from these we can identify 

the wave magnetization and the susceptibility, and thereby demonstrate the K-x 

theorem. If we then apply Noether's theorem, we get conservation laws for the 

guiding-center plasma in the presence of a wave field; from these we can. identify 

the wave contribution to the stress-energy and spin angular momentum tensors. 
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Chapter 1 

Introduction 

There was a time when a thorough working knowledge of geometry was consid­

ered an indispensible ingredient in the education of a natural philosopher. From 

Euclid's first systematization of the subject more than two thousand years ago to 

well after the end of the Renaissance, the study of the Elements was considered 

a critically important part of mathematical instruction. Indeed, when reading 

Newton's Principia or Opticks, one is struck by the prevalence of geometrical 

arguments and descriptions. 

Alas, the introduction of coordinate systems by Descartes and the concommi­

tant analyticizat.ion of geometry changed all this. Using coordinates, geometrical 

problems could be reduced t.o algebraic problems. The perceived need for good 

geometrical intuition gradually disappeared. By the time Whittaker's Treatise 

on the Analytical Dynamics of Particles and Rigid Bodies was first published in 

1904, t.his attitude had taken hold t.o the extent t.hat Whittaker apparently felt 

no need to include illustrations in his nearly five-hundred-page-Iong (and other­

wise excellent) document. At present, one can obtain an undergraduate degree in 
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physics or even applied mathematics with little more geometry background than 

is found in a secondary school text book. 

That this trend is disastrous has been appreciated only for the past couple 

of decades. This appreciation has been due, in large part, to modern develop­

ments in the general theory of relativity. The entire lesson of relativity theory 

is that physical laws ought not to depend upon the coordinate system chosen to 

describe them; that is, the meaning of physical laws transcends their coordinate 

description. Conversely, coordinate descriptions can have a way of masking fun­

damental physical reality. Thus, a coordinate-free description of physical laws 

can have the beneficial effect of allowing one more easily to glimpse the underly­

ing fundamental physical reality. Such coordinate-free mathematical language is 

available, thanks in large part to the works of Cart an and Lie. Modern differential 

geomet.ry, including the ext.erior calculus and the theory of Lie groups, is capable 

of providing a coordinat.e-free description of physical law. Please note that what 

is being argued here is that such a coordinate-free description is far more than 

just. an alternative mathematical notat.ion; the content.ion is that it yields an im­

proved understanding of the physics involved. A physicist who takes the time to 

learn how, say, electromagnetic theory can be described in terms of differential 

forms will have, as a result, an improved understanding of the elect.romagnetic 

field. 

There is an additional benefit t.o the geometrical point of view. Just as 

Descart.es found that algebra can be used as a tool for obtaining geomet.rical 

results, likewise geometry can be used as a t.ool for obtaining analytical results 

that would be far more difficult to obtain any other way. Several examples of 

this phenomenon will be pointed out in the course of this thesis. 

Since the 1960's it has been known that classical mechanics is describable 

in terms of symplectic geometry. This observation paved the way for powerful 

generalizations of some of the traditional methodologies of mechanics. For ex-

,. 

, . 

... 
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ample, whereas Hamiltonian mechanics had been originally formulated in terms 

of canonically conjugate pairs of coordinates, it was found that noncanonical 

coordinates could be used instead, oftentimes to great advantage. Powerful new 

types of perturbation theory, based on Lie transforms, were introduced; this made 

higher-order perturbative treatments less laborious and more systematic. 

Nowhere was the impact of thIs revolution more profound and beneficial than 

in the field of plasma physics. Because the motion of charged particles in com­

plicated electromagnetic geometries and in wave fields requires a perturbative 

treatment, it is not surprising that Lie transform perturbation theory was shown 

to be a natural tool for systematizing, simplifying and better understanding many 

of the calculations of plasma physics. Furthermore, it was shown that the most 

natural treatment of the guiding-center problem (i.e. the ubiquitous problem of 

computing the drifts of a charged particle gyrating in a slowly-varying electro­

magnetic field) involved the use of noncanonical coordinates and noncanonical 

coordinate transformations. All of this will become more clear as we proceed. 

During the late nineteen seventies, Dewar [1 J introduced the idea of canonical 

oscillation-center transformations. Jolmston and Kaufman [2J and Johnston [3] 

used canonical perturbation theory to perform oscillation-center and mode cou­

pling analyses for the Vlasov plasma. In Cary's PhD thesis [4], Lie transforms 

were shown to be a useful tool for ponderomotive theory, and the K-X theorem [5] 

relating the ponderomotive Hamiltonian with the linear susceptibility was formu­

lated. 

The ext.ension of these techniques to magnetized plasma was made possible, 

or at least greatly facilitated, by Littlejohn's work on the guiding-cent.er problem 

in his PhD thesis [6J. Lit.tlejohn made the key observation that the transfor­

mation from single-particle to guiding-center coordinates was best done using 

noncanonical methods. This noncanonical transformation was done in his thesis 

by using the Darboux theorem constructively, and it was followed by a canonical 
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Lie transformation that averaged over the rapid gyromotion. Subsequently, Lit­

tlejohn [7] discovered that the entire transformation could be done by a single Lie 

transform with a vector generator. This is the approach followed in this thesis. 

Ponderomotive theory for a magnetized relativistic plasma was then done by 

Grebogi and Littlejohn [8], who used canonical Lie transforms. They pointed out 

that the oscillation-center transformation for a magnetized plasma might best be 

handled by noncanonical Lie methods, but they did not do it this way. Their 

result was subsequently simplified by Cary and Newberger [9]. 

Meanwhile, Dubin, Krommes, Oberman and Lee [10] showed how to use Lit­

tlejohn's methods to derive self-consistent gyrokinetic equations for an electro­

static plasma, including the Poisson equation whose source term was written in 

terms of the guiding-center distrib~tion function. Kaufman and Boghosian [11] 

showed that this calculation could be done by summing the guiding-center action 

over the entire distribution and coupling it t.o t.he Maxwell action; variation with 

respect to the coordinate fields (considered to be functions of their initial con­

ditions) then yields the gyrokinetic equation, and variation with respect. t.o the 

vector potential then yields the self-consistent field equaton. Finally, Similon [12] 

showed that conservation laws for the guiding-center plasma could be obtained 

by application of Noet.her's theorem to this system action. 

The above-mentioned work by Grebogi and Littlejohn was done for a rela­

tivist.ic plasma, but. was not manifestly covariant in that. it was done in "1 + 3" . 
notation. A manifestly covariant treatment is made possible with t.he help of 

certain projection operators which were introduced by Fradkin [13] who obtained 

the drifts for a relativistic guiding center (but did not use Lie methods), and by 

Dumais [14]. 

The general plan of this thesis is as follows: 

Chapter 2 will cover the mathematical preliminaries necessary to understand 

the differential geometric arguments used in this thesis. It should be emphasized 

• 
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that this constitutes no more than a sketchy introduction, and is no substitute 

for a good text on the subject; nevertheless it is probably sufficient to enable 

a persistent person with an undergraduate background in physics to read and 

understand this entire text. Chapter 2 also describes the application of these 

techniques to Hamiltonian and Lagrangian mechanics; specifically, Lie transform 

perturbation theory is introduced here and many simple examples of its use are 

presented. 

Chapter 3 will treat the guiding-center problem for a relativistic charged par­

ticle. We shall begin by examining the geometry of the electromagnetic field in 

four-dimensional spacetime, and we shall find that there is a covariant way to 

isolate the rapidly-gyrating component of the particle's four velocity. Lie trans­

form perturbation theory is then applied to the particle's phase-space Lagrangian 

in order to remove this rapidly-gyrating component and thus obtain the residual 

parallel and drift motion. The perturbative calculation is carried out to one order 

higher than the usual drifts, the natural guiding-center Poisson bracket structure 

and Hamiltonian are presented, and the correction to the gyromomentum is given. 

Finally, it is shown how to cast these results in a manifestly gyrogauge invariant 

format. 

In Chapter 4 we shall study the effects of eikonal wave perturbations on a 

guiding center, once again using Lie transform perturbation theory. The result 

is a complete ponderomotive description of t.he relativistic guiding center in an 

eikonal wave field, and we show how to cast this in manifestly gauge-invariant 

form. To achieve manifest gauge-invariance, we shall find it necessary to aban­

don the usual approach of expanding the eikonal wave perturbation in a series 

of Bessel functions of k.l.p. Instead, we shall first perform a Lagrangian gauge 

transformation, and then we shall expand in a series of special functions that 

are related to indefinite integrals of Bessel functions. The required Lagrangian 

gauge transformation is not obvious, and it would never have been discovered 
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without the use of differential geometric techniques. Finally, the ponderomotive 

Hamiltonian is derived using Lie transforms. 

In Chapter 5 we shall sum the resulting guiding-center Lagrangian over the en­

tire distribution of particles present in a plasma, and couple with the Maxwell field 

to obtain the total Lagrangian for a Vlasov plasma of relativistic guiding centers. 

By varying this it is possible to derive a self-consistent gyrokinetic description 

of such a plasma, including the magnetic moment tensor, in manifestly-covariant 

fonnat. Application of Noether's theorem then yields conservation laws for the 

guiding-center plasma, and these are also cast in manifestly covariant fonn. Fi­

nally, using the results of Chapter 4, the conservation laws are derived for a 

guiding-center plasma in the presence of a wave field. 

In Chapter 6 we discuss some of the unanswered questions raised by this 

study. These could be topics for future research. 

A ppendix A is a glossary of the mathematical symbols and notation used in 

this thesis. 

Appendix B is a review of some of the more primitive mathematical concepts 

used in this thesis, such as vector spaces, dual spaces, algebras, and modules. 

Appendix C applies vector Lie transfonns t.o the nonrelativistic guiding-center 

problem in t.wo dimensions, and derives the shift in gyrofrequency due t.o spat.ial 

gradients in the magnetic and (perpendicular) electric fields. This is useful bot.h 

as a demonstration of the vector Lie transform technique, and as a comparison 

t.o t.he t.echniques and results of Chapt.er 3. 

Appendix D derives and discusses the propert.ies of a pair of special functions 

t.hat were int.roduced in Chapt.er 4. 

Appendix E is a short tut.orial on how to derive Bessel function sum rules, 

including (but not limited to) those that were useful in Chapter 4. 

• 
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Chapter 2 

Mathern atical Prelim inaries 

2.1 Discussion 

This chapter divides naturally into three sections. The first covers the basic re­

sults of differential geometry that are necessary to tmderstand the rest of this 

thesis. TIlls includes the calculus of tensors and the exterior algebra. To reit­

erate, the exposition here is not int.ended to replace a good introductory book 

on t.he subject (see, for example, the excellent introductory texts by Schutz [15], 

Edelen [16], Singer and Thorpe [17], or Burke [18]), but it does present enough 

material to make the thesis self-contained, and to establish notational conven­

tions. The theory of Lie groups has been omitted from this section because it 

is not absolutely essential to the understanding of what follows, but the reader 

with background in this area will be at a definite advantage. 

Next, these tools are used to reformulate Hamiltonian and Lagrangian me­

chanics. The generalization to noncanonical coordinates is discussed, including 

those with singular Poisson structures. Noether's theorem is formulated, and 

numerous worked examples are given. Mechanical systems with constraints are 
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examined from this new point of view. 

Finally, Lie transform perturbation theory is presented, and its use for non­

canonical coordinates is discussed. Because we shall use Lie transforms in a more 

general context than that in which they are usually presented, I recommend that 

this section be read even by those already familiar with the subject. 

2.2 Differential Geometric Concepts 

2.2.1 Manifolds, Vectors, and Covectors 

In this subsection, we shall discuss the ideas that are necessary to reformulate 

tensor calculus in a fashion that more directly illustrates the geometrical founda­

tions of the subject. Appendix B goes one level deeper, and gives set-theoretical 

definitions for many of the primitive terms that we shall use here (such as vector 

space an~ algebra). 

A manifold is a space that is locally Euclidean and in which there is a notion 

of differentiation. This can be made more precise as follows: There must be a 

differentiable one-to-one map, or diffeomorphism, from the neighborhood of any 

point of a manifold to the points of 31n , for some n. Such a map is called a chart, 

and t.he collection of all such maps for a given manifold is called an atlas. There 

is an additional requirement that two maps in the same atlas that overlap must 

do so smoothly; this means, among ot.her things, that all charts in the same atlas 

must map to ~n with the same n. The number n is thus characteristic of the 

entire manifold, and is called the dimension of the manifold. 

A chart is realized by (local) coordinates on the manifold. Since an n­

dimensional manifold, M, must map smoothly onto 31n
, it must be possible to 

label the points of M, at least locally, by n numbers, say zl, . .. ,zn. Then the map 

is given by expressing these numbers as functions of the coordinates, xl, . .. , x n , 

on Rn. Specifically, we write zCt(xl, ... , x n ), for Q: = 1, ... , n. 
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It is generally not possible to cover an entire manifold with one chart. For 

example the surface of a sphere is a manifold called S2, and, as is well known, 

coordinate charts on S2 must break down somewhere. The chart 

4B 
x = - cos¢ 

31T 

4B . A­
y = - SIn<p, 

31T 

(2.1) 

(2.2) 

where 8 and ¢ are the usual spherical coordinates (colatitude and azimuthal 

angles, respectively), maps the region 0 :::; 8 < 37r/4 onto the open unit disk in 

~2. The chart 

4( 7r - 8) A-
X = COS<P 

31T 
(2.3) 

4(7r - 8) . A-
Y = SIn <p 

37r 
(2.4) 

then maps the region 7r /4 < 8 :::; 7r onto the open unit disk in ~2. These two 

charts are thus sufficient to cover all of S2, and t.herefore const.itute an atlas. 

Any atlas for 52 must contain at least two charts. In general, the number of 

charts needed to cover a manifold depends on its global topological properties. 

A mapping from an m-dimensional manifold onto an n-dimensional manifold 

is called an injection if m < n, a projection if m > n, and a bijection if m = n. 

Consider a map from ~ to an n-dimensional manifold, 1\1. That. is, ~ ........ lvl. Note 

that this is an injection if n > 1, and a bijection if n = 1. This map defines a 

path through the manifold, M. The points in M that are on the path are those 

in the range of the map. The realization of this mapping is given by expressing 

each of the coordinates 011 M as functions of the coordinate, x, on ~. That is, 

we write zQ( x) for a: = 1, ... , n. As x varies along ~, the coordinates zC< trace 

out the path in M. Note that although we keep writing down the coordinate 

realizations of these things, the notion of a map from one manifold to another 

has an intrinsic geometrical meaning as an association of members of one set of 
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points with members of another set of points, consistent with local topological 

properties of nearness, etc. 

Now let P be a point on the above-mentioned path through the manifold, 

M. Denote its coordinates by z~, ... ,zp.Since it lies along the path, there must 

exist a coordinate, xo, of a point in R, such that zp = zQ(xo) for Q = 1, ... , n. 

Now consider the derivatives of the functions, za (x), with respect to the path 

parameter, x. Denote these by dz Q /dx. Evaluate these at the point P. This gives 

the n numbers, 

(2.5) 

associated with the point, P. 

It is clear that there are many different curves passing through point P that 

will y~eld the same set of n numbers. Indeed, any curve whose coordinates near 

P are given by 

(2.6) 

where ox = x - Xo, will do so. The identification of these n numbers thus gives us 

a way to partition the set of all curves passing through point Pinto (an infinity' 

of) equivalence classes; two curves are said to be equivalent if they yield the same 

set of n numbers. That is, two curves are equivalent if they both have the form 

given in the above equation (with the same va,s). 

Consider the set of equivalence classes of curves thus obtained. We can define 

addition and scalar multiplication among the elements of this set in the following 

very natural way: The equivalence class of curves with the n numbers VQ adds 

to the equivalence class of curves with the n numbers ua to yield the equivalence 

class of curves with the n numbers va + ua. The scalar a multiplies the equiv­

alence class of curves with the n numbers va to yield the equivalence class of . 
curves with the n numbers aVa . With these operations, we have converted the 

space of all equivalence classes of curves through the point P into a vector' space. 

This vector space will be called the tangent space at point P of the manifold. Its 

'\ 
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elements have been introduced as equivalence classes of curves, but it will become 

clear momentarily that these may be identified with the usual notion of vectors as 

arrows with a certain magnitude and direction and with certain transformation 

properties. Note, however, that the base of the arrow is not free to move around, 

but rather is "pinned down" at the point P. There is a different tangent space at 

each point of a manifold, and vectors in one tangent space may not be added to 

vectors in another different tangent space. Note that the dimension of a tangent 

space is equal to the dimension of the manifold (in the above case, the dimension 

is n). 

It is evident that the above-described n numbers VO associated with an equiv­

alence claSs of curves depend on our choice of coordinates for M. If our coordinates 

on 1'v! had been Zlo ,then the n numbers would have been 

d 10 8 1° d f3 8 10 

V,O = _z_( ) = _z_~( ) = _z_Vf3 
dx Xo 8 z f3 dx Xo 8z f3 ' 

(2.7) 

where we have adopted the convention of summation over repeated indices. Read­

ers familiar with traditional presentations of tensor calculus will recognize this 

as the transformation law for components of contravariant vectors. 

Recall that even though the component.s of a vector may vary from one coor­

dinate syst.em to another, the vector it.self, as an abstract mathemat.ical object, 

is an invariant geometrical concept. That is, given two set.s of basis vectors, eo 
and e~, we can writ.e the components of a vector V as VO in the first system and 

as V,O in the second. Though these will, in general, be different, the abstract 

vector V = VOe o = v:,oe~ ret.ains its forin under the change of basis. 

So how can we introduce bases in our tangent spaces that will reflect this idea? 

Despite the fact that the above-described n numbers are coordinate-dependent, 

if we form a first-order linear differential operator by using t.hem as coefficients 

(2.8) 
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we see that this operator retains its form under a coordinate transformation. 

This much is clear from the above equation. By analogy with the argument in 

the preceeding paragraph, we can thus identify the operator V with the vector 

V, and the n operators 81 8z CY. with basis vectors that span the tangent space. 

Thus the idea of vectors as arrows, as equivalence classes of curves, and as first 

order linear differential operators are all valid descriptions of the same concept! 

A word is in order concerning the basis vectors that we have used above. Note 

that they were induced by the coordinate system that we used. .The choice of 

a coordinate system zCY. on the manifold M gives rise to a natural basis 8/8z CY. 

in each tangent space at each point of the manifold (or, more precisely, at each 

point of M where the chart ZOI is operative). A change in coordinate system thus 

gives rise t.o a change of basis; this is in accordance with the usual transformation 

properties of cont.ravariant vectors. A basis that is thus induced by a coordinate 

system is called a coordinate basis. In the "arrow" picture, the basis vectors lie 

along the local coordinate axes. In the "equivalence class of curves" picture, they 

are curves that are locally coincident with the coordinate axes. In the "operat.or" 

picture, they are directional derivatives along the coordinate directions. 

One might well ask if all possible bases are coordinate bases. The answer is 

"no." If we start from a coordinate basis and make a change of basis by taking 

various linearly independent combinations of basis vectors in each tangent space, 

where the combinations may vary from point to ·point in the manifold, we may 

arrive at a new basis that is not the coordinate basis for any coordinat.e system 

on M. Thus, starting from the coordinate basis, BIBzOl, we may define the new 

basis 

(2.9) 

where (A,l3 CY.) IS any nonsingular matrix. This new basis IS perfectly good for 



, 

" 

CHAPTER 2. MATHEMATICAL PRELIMINARIES 13 

resolving vectors into coordinates. For example, the vector V may be written 

(-2.10) 

where the matrix (Af3 oJ is the inverse of the ma.trix (A-ya). So the components 

of V in the new basis are va Af3 a' The only different thing about this new basis 

is that there may not be any system of coordinates za such that eo = f:) / {J zo . 

In this case, such a basis is called a noncoordinate basis. This idea will become 

more clear and examples will be given in Subsection 2.2.5. 

Meanwhile, since we have now attached vector spaces to every point of a 

manifold, we can go on to construct their dual spaces. The dual space to the 

tangent space of vectors at point P is called the cotangent space at point P. Its 

elements are called covectors or covariant vectors or one forms. Once again, the 

cotangent space has the same dimension as the manifold. 

Once we have a set of basis vectors in the tangentspac~, say eo, there is 

induced a preferred set of basis covect9rs in t.he cotangent space, call them wa , 

such that (W O
, ef3) = 6$. Thus we can represent a covector at. point P by n 

numbers, say aa, where, as usual, a can range from 1 to n. The abstract covector 

is then a = aowo . The covector a pairs with the vector V to yield 

(2.11) 

Note that even though there is a naturally induced covect.or basis correspond­

ing to a given vector basis, t.here is no natural correspondence between individual 

vectors and individual covectors. That. is, there is no natural map from the tan­

gent space to the cot.angent space. Later on, we shall see that. if .we endow our 

manifold with a metric, such a map is established. The addition of a metric thus 

gives the manifold much more structure than it would othe~ise have. At this 

point in our discussion,. we are not assuming the existence of a metric on our 

manifold. As we shall see, even without a metric, a manifold has lots of inter­

esting structure to study. The general philosophy of this discussion is to start 
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simply and slowly add structure; thus a discussion of metrics is deferred to the 

end of this section. 

To make our discussion of covectors more concrete, let us suppose that we 

have a coordinate system zQ on our manifold, M. This induces the coordinate 

basis vectors 8/ 8zQ on each tangent space of M. If we transform coordinates 

to another system ZQ, the components of the vector V transform according to 

Eq. (2.7). Now say the covector a has components a Q in the first coordinate 

system. The components of the covector must transform in such a way as to 

leave the scalar (a, V) invariant. Thus 

so 

8 IQ 

V f3 - I V,Q _ I z Vf3 
af3 - a Q - a Q 8

z
f3 

I 
a Q = 8 Q af3. z' 

(2.12) 

(2.13) 

Once again, readers familiar with traditional presentations of tensor calculus will 

recognize this as the transformation law for components of covariant. vectors. 

Now, how can we introduce bases in our cotangent spaces that will reflect the 

above ideas? Despite the fact that the n numbers a Q are coordinate-dependent, 

if we form the differential that has them as coefficients 

- d Q I d IQ a = a Q z = a Q Z , (2.14) 

we see that. this retains its form under a coordinate transformation. This much 

is clear from the above equation. We can thus identify the differential form a 
with the covector a, and the n differentials dz Q with basis covectors that span 

the cotangent space. 

Thus, just as contravariant vectors could be identified with first order linear 

differential operators, we see that covectors can be identified with differential 

forms. These descriptions are dual to each other, so 

(2.15) 



.. 
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Finally we note that the same distinction between coordinate and noncoordi­

nate bases that applied to our discussion of tangent space bases also applies to 

cotangent space bases. Up until now, we have restricted our attention to coordi­

nate cotangent bases, but we could define new basis one forms by taking linear 

combinations of the dzex where the combinations may vary from point to point 

in the manifold. In this way, we may arrive at a new basis that is not the coor,.. 

dinate cotangent basis for any coordinate system on M. Thus, starting from the 

coordinate cotangent space basis, dz ex , we may define the new cotangent space 

basis 

(2.16) 

where (Ai3 ex) is any nonsingular matrix. This new basis is perfectly good for 

resolving covectors into coordinates. For example, the covector a may be written 

(2.17) 

where the matrix (A-y ex) is the i~verse of the matrix (A
f3 

ex)' So the components of 

a in the new basis are aex Af3 ex. The only different thing about this new basis is that 

there may not be any system of .coordinates zex such that (:;P = dZ ex . Once again, 

this idea will become more clear and examples will be given in Subsection 2.2.5. 

2.2.2 General Tensors and the Tensor Product 

Now that we have a tangent space and a cotangent space associated with each 

and every point of our manifold, we can create still bigger spaces at each point by 

taking the Cartesian product of some number of tangent spaces and some number 

of cotangent spaces. Suppose we define the space II: to be the Cartesian product 

of s copies of the tangent space and r copies of the cotangent space at point P of 

a manifold M. Consider a multilinear map II~ 1-+ ~. That is, we are considering 

a map that takes s vectors and r covectors at point P and returns a real num­

ber. If the s vectors are denoted VI,"" V ~, and the r covectors are denoted 



CHAPTER 2. MATHEMATICAL PRELIMINARIES 16 

al, ... ,ar , then the real number will be denoted by T(at, ... ,ar,VI, ... ,Vs). 

By a "multilinear" map, we mean that T is linear in all of its arguments. Such 

a map is said to be a tensor of type (1', s). Note that a vector is a tensor of type 

(1,0), and a covector is a tensor of type (0,1); this is because a vector can take 

a covector and return a real number (by the pairing), and vice versa. 

There is an obvious way to define addition among tensors: Given two tensors, 

T 1 and T 2, we can define a new tensor, T 3, by the prescription 

T 3 (a\ ... ,ar , VI, ... , Vs) 

= T 1(a\ ... ,ar , VI, ... , Vs) + T 2 (a1
, ••. ,ar , VI, ... , Vs), (2.18) 

for all possible arguments. In this case, we write T3 = Tl + T 2 • This operation 

of addition makes the space of all tensors of type (r,s) a vector space. 

Suppose we have two vectors, VI and V2, and a covector, hI, at some point 

of a manifold. Suppose we are given anew a pair of covectors, a 1 and a 2 , and a 

vector, VI (at the same point of the manifold). Consider the following recipe for 

obtaining a real number: Pair the two covectors with VIand V 2, respectively, 

and pair the vector with b 1 . This gives us three real numbers. Multiply them 

together to get a single real number. In this way, the presence of VI, V 2, and b 1 

provides us with a map from II~ to ~. It is easily seen that this map is multilinear. 

Thus, the presence of V 11 V 2 , and hI provides us with the following tensor of 

type (2,1): 

(2.19) 

A tensor formed in this way is said to be the tensor product of VI, V 2, and hI. 

This is denoted 

(2.20) 

More generally, given l' vectors, VI' ... ' Vr, and s covectors, b 1
, ••• , hS, we 

can form a tensor of type (1', s) by taking the tensor product 

T = VI ® ... ® V r ® b 1 ® ... ® h S
• (2.21) 

.. 
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IT we feed this tensor the l' covectors, al, ... , a r , and the s vectors, V 1 , ... , V s , 

then we get the scalar 

The space of all possible tensors (of any type) at some point· in an n­

dimensional manifold may be thought of as an infinite dimensional vector space, 

although it is somewhat strange in that two of its elements can be added if and 

only if they are tensors of the same type. In any event, the tensor product makes 

this space an algebra. 

It is straightforward to see that the vector space of all tensors of type (1', s) is 

nr+s-dimensionai. That is, a tensor of type (1', s) has n r+s independent compo­

nents. A moment's thought convinces one that a basis for this space is given by 

the n r+s basis tensors 

(2.23) 

where the e's and w'sare the basis vectors and basis covectors in the tangent and 

cotangent spaces, respectively, and where the a and j3 indices all range from 1 to 

n. Thus, a general tensor may be written 

(2.24) 

Finally, we consider the transformation properties of the components of these 

general tensors. We know how vector and covector components transform, and 

we know that a tensor of type (1', s) takes l' covectors and s vectors and returns a 

scalar invariant. Thus, by an argument identical to that which led to Eq. (2.13), 

we find that for a transformation from one coordinate basis to another coordinate 

basis 

(2.25) 
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The usual distinction between coordinate and noncoordinate bases applies here 

as well, so that for a transformation between general bases. the above equation 

generalizes to 

(2.26) 

2.2.3 The Lie Bracket 

Given a vector field, V, the corresponding first-order linear differential operator 

IS: 

~ a 
y= Vaa a; 

Z 
(2.27) 

Notice that the ath component of the vector can be recovered by applying the 

operator to za: 

(2.28) 

As has been mentioned, it is possible to actually identify the vector with its 

corresponding operator. Many mathematics texts actually do this, and it is per­

fectly permissible since there is an obvious one to one correspondence between 

vectors and first-order linear differential operators by the above equations. In~ 

deed, there are numerous advantages to such identification, but we shall continue 

to use the circumflex to distinguish the operator in order to avoid any ambiguity. 

It is important to note that the operators corresponding to two different vector 

fields do not, in general, commute. Indeed, the commutator of two first-order 

linear differential operators is another first-order linear differential operator. At 

first this may seem surprising because it is not obvious that this commutator is 

a first order operator. By writing it in terms of the components of V and U, 

however, we see that the second order terms do indeed cancel: 

(2.29) 
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The vector whose operator is the commutator of the operators of two other 

vectors, V and U, is said to be the Lie bracket of those .two vectors, and is 

denoted by [V, U]. Note that the Lie bracket operation makes the space of all 

vector fields into a Lie algebra. 

Using the Lie bra.cket, it is possible to give a simple test that will determine 

whether or not any given set of basis vectors is a coordinate basis: A set of 

n linearly independent vectors constitutes a coordinate basis if and only if the 

Lie bracket of any two elements of the, set vanishes. The "only if" part of this 

theorem is obvious,. since coordinate basis vectors are partial derivatives and 

these always commute with each other. The converse, however, is a special case 

of something called Frobenius' theorem, and is somewhat harder to see. To prove 

it algebraically, we must show that it is possible to actually construct a coordinate 

system (at least locally) given the n linearly independent commuting vectors. We 

shall not follow this approach here (see Schutz [15] for details on how to prove it 

this way). Instead, we shall follow a more geometrical line of reasoning that will 

make the theorem almost obvious. To do this, however, we first need to learn 

about the Lie derivative. 

2.2.4 Lie Derivatives 

The Lie derivative of a scalar field, J(z), with respect to the vector field, V, is a 

new scalar field denoted by £v J, and is given by: 

A 8J 
£vJ=VJ=VQ_. 

8zQ 
(2.30) 

This is recognized as the directional derivative of J along the vector field, V. 

Along any given field line of V, it is possible to define a coordinate, >., such that: 

(2.31) 
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so 
A d 
v= dA' (2.32) 

and so the Lie derivative of f with respect to V is simply dj / dA. That is, we 

evaluate the scalar field at the points Z(Ao) and Z(Ao + bA) along the field line, 

subtract the first,value from the second, divide the result by bA, and let bA go 

to zero to get the Lie derivative. In Fig. 2.1, these two points of evaluation are 

denoted by A and B. 

A scalar field, j, whose Lie derivative with respect to V vanishes is said to 

be a Lie dragged scalar field with respect to the vector field V. Intuitively, this 

means that the scalar field is constant along the field lines of V. Alternatively 

stated, it means that the scalar field satisfies the first-order linear differential 

equation V j = 0, whose characteristics are the field lines of V. Thus, if the value 

of a Lie dragged scalar field is specified at anyone point of a field line of V, its 

value everywhere else on that same field line is determined (it's the same value). 

U sing this concept, we can reword our definition of a Lie derivative: Begin by 

evaluating the scalar field f at point A. Next, drag the scalar f at point" B back 

to point A to get the scalar f* at A (note f*(A) = f(B)). Now at the point A 

we subtract j from f*, divide the result by bA, and let bA go to zero to get Lv f. 

This may sound like a fancy way of saying the same thing, but it will aid in our 

efforts to generalize the Lie derivative to act on other things besides scalars. 

Consider the problem of trying to define an analogous derivative that acts on 

contravariant vectors. We could begin by evaluating a vector field, say U, at the 

same two points, Z(Ao) and Z(Ao + bA), along a field line of V. Unfortunately, 

however, we cannot subtract them because they live in two different vector spaces: 

The first lives in the space of all vectors at the point Z(Ao), while the second lives 

in the space of all vectors at Z(Ao+bA). We are dealing with spaces in which there 

may be no notion of parallel transport, so there is no natural way of comparing 

vectors located at two different points. 

.. 
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Field line of V 

: XBL 876-3021 --

.. 

Figure 2.1: Lie Differentiation of a Scalar Field 
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So we must· be a little more clever. Refer to Fig. 2.2. Just as we have 

coordinatized a given field line of V by A, we shall use j.£ to coordinatize a given 

field line of U. The operator Vis then d/ dj.£. It acts on scalars by evaluating them 

at z(j.£o) and z(j.£o + bj.£), subtracting the first value from the second, dividing by 

b j.£, and letting b j.£ go· to zero. In Fig. 2.2, these two points of evaluation are 

denoted by A and Cj note that we have arranged things in this figure so that 

point A is parametrized by both Ao on the V field line, and fLo on the U field 

line. 

Now we can imagine sliding the points A and C along the V field lines for 

an increment bA, to arrive at the new points B and D, respectively. These new 

points define a new first-order linear differential operator based at the point B. 

It acts on scalars by evaluating them at the points B and D, subtracting the first 

value from the second, dividing by bj.£ (it is clear that points B and D coincide 

as bj.£ -jo 0), and letting bj.£ go to zero. This first-order linear differential operator 

at B corresponds to a vector at point B, and so we see that we have found a 

natural way to drag the vector field U along the vector field V. If a vector field 

U is unchanged by dragging it along V, then it is said to be a Lie. dragged vector 

field wi th respect to V. 

Armed with this insight, we are ready to define the Lie derivative of a vector 

field, U with respect to another vector field, V. We begin by evaluating U at 

point A. Next, we drag the vector U at point B back to point A to get the 

vector U· at A. Now we can subtract U from U·, divide the result by bA, and let 

b A go to zero to get .c V U. It should be clear from this description that the Lie 

derivative of a Lie dragged vector field vanishes, just as was the case for scalars. 

Now that we have the geometrical picture of what is happening, we need to 

find an analytic expression for .cv U. Refer to Fig. 2.3. It is clear that we may 
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U (A) dragged to B 

Field lines of V 

Field line of U 

, XBL 876-3022 --

Figure 2.2: Lie Dragging a Vector Field Along Another Vector Field 
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LyU(A) U(B) 

U* (A) 

Field lines of V 

---------------~---------------Field line of U 

XBL 876-3023 

Figure 2.3: Lie Differentiation of a Vector Field 
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write: 

Ct Ct 
UCt(A) = lim Zc - ZA, 

op,-o bl-£ 
Ct Ct 

UCt(B) = lim ZE - ZB , 
op,-o bl-£ 

Ct Ct 
U"'Ct(A) = lim ZF - ZA, 

op,-o bl-£ 

and 

(L:vut(A) = lim U*Ct(A) - UCt(A) 
0).-0 b)" 

" Ct Ct 
l ' Ii ZF - Zc = 1m m , 

o).-Oop,-O bl-£b).. 
(2.33) 

where zA through zp. are the coordinates at the points A through F, respec-

tively. To find these coordinates, we use Taylor expansion. Thus, to express the 

coordinates of point B in terms of quantities at point A, we write: 

ZB = zCt()..o + b)") 

=ZA+dZCtI b)..+~d2zCtI b)..2+, .. 
d)" A 2 d)..2 A 

(2.34) 

Similarly, the coordinates of point C are given by: 

Zc = zCt (1-£0 + bl-£) 

= zA + dz
Ct 
I bl-£ + ~ ~zCt I bl-£2 + ," 

dl-£ A 2 dJ.L2 A 
(2.35) 

Next, the coordinates of point E can be expressed in terms of quantities at point 

B: 

Ct Ct dz
Ct leI ~ zCt I c 2 ZE = ZB + - 01-£ + - --2 0J.L +"', 

dJ.L B" 2 dJ.L B 
(2.36) 

and these in turn may be expressed in terms of quantities at point A: 

Ct Ct dz
Ct I C\ I" ~ zCt Ie, 2 ZE=ZA+ - 0"+--- OA + ... 

d)" A 2 d)..2 A 

+ dz
Ct 
I b 1-£ + ~ zCt I b)"b J.L + ... 

dl-£ A d)"dl-£ A " 

+ - __ bl-£2 + ... 1 ~zCt I 
2 dl-£2 A 

(2.37) 
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Finally, the coordinates of point F can be expressed in terms of quantities at 

point E, which in t1lI'Il can be expresE1ed in terms of quantities at point B, which 

in turn can be expressed in terms of quantities at point A: 

(2.38) 

and 

and so 



'. 
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('v~)a(A) = ~~: fA - ~~: fA 

- (vir - irv) zolA 
- [v, ir] Zo I A • 
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(2.39) 

We have just de~onstrated that the Lie derivative of U with respect to V is 

simply the Lie bracket of V and U: 

.cvU = [V, U]. (2.40) 

In a coordinate basis, this result may be written 

(2.41) 

.. 
Note that this way of writing the result may be taken as valid for a noncoordinate 

basis as well if we reinterpret the commas as meaning "operation by the basis 

vector." That is, f,o denotes the result of applying to f the operator correspond­

ing to the basis vector eo. For a coordinate basis, the operators corresponding 

to basis vectors are simply partial derivatives with respect to the coordinates, so 

this reduces to the usual meaning of the comma. This generalization of what the 

comma means will be useful in everything that follows. 

Now that we know how to take the Lie derivative of a contravariant vector 

field, we shall try to extend this process to covector fields. Recall that covectors 

contract with contravariant vectors to give scalars. We define a Lie dragged 

covector field to be one which when contracted with any Lie dragged contravariant 

vector field yields a Lie dragged scalar field. To take the Lie derivative of a 

covector field a with respect to V, we evaluate a at the points A and B in 

Fig. 2.1, drag a(B) back to A to get a*(A), subtract a(A) from a*(A), divide by 

oA, and let oA go to zero. The result is: 

(2.42) 
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Once again, this result is valid for noncoordinate bases if we generalize the mean­

ing of the commas. 

Next we consider the Lie derivative of a general tensor. We first define a Lie 

dragged tensor of type (1',8) as one which yields a Lie dragged scalar field when 

fed l' Lie dragged covectors and s Lie dragged vectors. To take the Lie derivative 

Qt a tensor T of type (1', s) with respect to V, we evaluate T at the points A and 

B in Fig. 2.1, drag T(B) back to A to get T*(A), subtract T(A) from T*(A), 

divide .by 6>", and let 6>" go to zero. The result is: 

.. 

(2.43) 

Note that the above geometrical picture for Lie derivatives of general tensors is 

equivalent to the neat coordinate-free algebraic formula 

Finally, it is straightforward to show that Lie derivatives obey the Leibniz 

rule over the tensor product. That is 

(2.45) 

Before leaving this subsection, it is important to emphasize that the same 

geometrical notions that led us to the Lie derivative of a vector field still apply 
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for arbitrary tensors: The Lie derivative is the natural way to "drag" any tensorial 

object along the field lines of a vector field. Just as we dragged the vector U 

along the field line of the vector V for a parameter interval 6 oX to get the vector 

U'" = U + (Cv U)6oX (2.46) 

. . 
{see Eq. (2.33)), so we can drag the tensor T in exactly the same way to get 

T'" = T + (Cv T)6oX. (2.47) 

This geometrical insight is crucial to the und~rstanding of Lie transforms. 

2.2.5 Examples of Coordinate and Noncoordinate Bases 

We are now in a position to understand the theorem presented at the end of Sec­

tion 2.2.3 from a geometrical point of view. Fig. 2.3 and Eq. (2.33) make it clear 

that the Lie bracket of two vector fields is related to the infinitesimal difference 

in position resulting from the operation of moving along the first vector field for 

a certain parameter interval, then along the second vector field, then backwards 

for the same parameter interval along the fi~st, then backwards along the sec­

ond. Clearly, if the vector fields involved are basis elements of a coordinate basis, 

this operation will simply take one around a square right back to the original 

position. The sides of the square are the contours of constant values of the two 

coordinates involved. Conversely, if two members of a set of n linearly indepen­

dent vectors have nonvanishing Lie bracket, then it is impossible to construct a 

coordinate system that has those vectors as a basis because moving around the 

above-described infinitesimal loop does not return one to the starting point; the 

changing parameters do not "hook together" in the manner necessary for them 

to be coordinates. 

Part of the reason that this concept of coordinate and noncoordinate bases 

is tricky is that there is no need for such a distinction in Cartesian coordinates. 
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There, the coordinate basis is identical to the usual orthonormal basis 

8 
-- =ea · 
8xa (2.48) 

A good example of a familiar situation for which the distinction is important is 

that of polar coordinates in two dimensions. The usual polar unit vectors, r and 

0, are not a coordinate basis since 

[r,8] o 
(2.49) 

l' 

On the other hand, 8181' and 8180 do constitute a valid coordinate basis, and 

these ~e rela~ed to the above orthonormal bas.is by 

and 

8 A 

-=r 
81' 

8 A 

80 = 1'0. (2.50) 

The important point is that there are no pair of coordinates, e and T], such 

that r = 818e and 8 = 81ary. Geometrically, this is because if we traverse an 

infinitesimal loop following first the r vector field and then the 8 vector field (and 

then returning along them, respectively) we will not arrive at our starting point 

(see Fig. 2.4). The factor of l' on the right hand side of the second of Eqs. (2.50) 

corrects for this and gives us a coordinate basis. 

As mentioned previously, the above distinction also holds for covectors. To 

pursue the above example, the covector basis consisting of d1' and dO is dual to 

the vector basis consisting of 8/81' and 8180. It follows that the covector basis 

r = d1' 

and 

o = 1'dO (2.51) 

is dual to the vector basis rand B. Once again, there is no pair of coordinates, e 
and T], such that r = de and 8 = dT]. 
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2.2.6 Differential Forms 

An s-form is defined as a tensor of type (0, s) that is antisymmetric in every pair 

of its s vector arguments. In particular, a zero form is a scalar and a one form is 

a covector; a two form, il, obeys 

O(U, V) = -O(V, U), (2.52) ~ 

etc. It follows that the components of an s-form are antisymmetric under inter­

change of any pair of indices. In particular, this means that the s indices must ' 

all be different, or else the component will vanish. Hence the requirement of anti­

symmetry means that there are no longer n 8 independent components. Instead, 

a standard combinatorial argument shows that only 

( n) n! 
s = s!(n-s)! 

(2.53) 

of the components "are truly independent. This means, among other things, that 

there are no nontrivial s-fonns in an n-dimensional space if s > n, that an n­

form has only one nontrivial component, etc. The total number of independent 

components of all forms in a space of dimension n is thus 

(2.54) 

Note that s-forms inherit some properties from the fact that they are tensors 

of type (0, s). In particular, two s-forms may be added to get a third s-form. Thus, 

the set of all forms at a point in an n-dimensional manifold may be thought of 

as a 2n-dimensional vector space, although it is somewhat strange in that its 

elements may be added if and only if they are both s-forms for some s. Note, 

however, that this space is not an algebra under the tensor product operation 

because it is not closed wider that operation: The tensor product of two forms 

is not necessarily a form. If we take the tensor product of an Sl-form with an 
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s2-form, we get a tensor of type (0, Sl + S2) that is clearly anti symmetric under 

interchange of any two of its first Sl or last S2 arguments, but is not necessarily 

antisymmetric under interchange of one of its first Sl components with one of its 

last S2 components. 

2.2.7 The Wedge Product, the Interior Product, Dual 

Tensors 

It would thus be nice to define a product under which the set of all forms becomes 

a closed algebra. Such a product is called the wedge product, and is denoted by 

the symbol 1\. We motivate its definition as follows: The wedge product of a scalar 

(zero form) with any s-form is the s-form obtained by simple multiplication by 

the scalar. The wedge product of two one forms, a 1 and a 2 , is the two form given 

by 

(2.55) 

It is clear that the two form thus obtained is anti symmet ric. For three or more 

one forms, we demand that the wedge product be associative, 50, for example 

a 1 1\ a2 1\ a 3 = a 1 1\ (a2 1\ a 3
) 

= (a1 1\ a 2
) 1\ a3 

(2.56) 

Recall that the total number of independent components of an s-form in a 

space of dimension n is given by ( : ) . A moment's thought convinces one 

that the vector space of all such s-forms is spanned by the independent 
( ns ) 

basis s-forms 

-i31 1\ 1\ -i3. w ... w , (2.57) 
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where the f3 indices range from 1 to n, and must all be different (else the above 

expression will vanish). It is then straightforward to see that an arbitrary s-form, 

0, is given by 

n 1 n -/31 -/3a 
H = ,H/31 ... /3.W 1\ ••• 1\ W • 

S. 
(2.58) 

Note that the factor of s! appears here because we did not put it into the definition 

of the wedge product; we could -have done it either way, and authors differ in this 

convention. 

Now that we know how the wedge product operates on scalars and one forms, 

we can extend its definition to arbitrary forms by writing them in terms of wedge 

products of basis one forms, as shown above. This makes the 2n -dimensional 

vector space of all forms into an algebra, called a Grassmann algebra. Note that 

it is not a commutative algebra: If 0 1 and 0 2 are 51 and 52-forms, respectively, 

then 

(2.59) 

If we contract the first index of an 5-form (where s > 1), 0, with a vector, V, 

then it is straightforward to see that we get an (s - I)-form. We call this new 

form the interior product of 0 with V, and we denote it by ivO. Thus 

. _ 1 /31 -/32 -/3. 
tvO - (s _ I)! V 0/31 ... /3.W 1\ •. . 1\ W • (2.60) 

If 0 1 and 0 2 are S1 and srforms, respectively, then it is straightforward to show 

(2.61) 

Also, the antisymmetry of forms makes it clear that 

ivivO = 0 (2.62) 

for any n-form 0 with n > 2. 

Recall that we defined an s-form as a completely antisymmetric tensor of type 

(0, s). Note that we could have done the same thing for completely antisymmetric 

J 
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tensors of type (s, 0). Next note that a completely antisymmetric tensor of type 

(0, s) has exactly the same number of components as a completely antisymmetric 

tensor of type (n - s, 0) in a space of dimension n > s. This is because 

(:) ens). (2.63) 

This suggests that there may be a one-to-one correspondence between s-forms 

and completely antisymmetric tensors of type (n - s, 0). 

For- example, note that there is only one independent component of a com­

pletely antisymmetric tensor of type (n,O). This is because the components of 

such a tensor must be proportional to those of the Levi-Civita symbol, E/31 ... /3". 

The proportionality constant is a scalar (zero form). Similarly, we can put any 

scalar (zero form) in front of the Levi-Civita symbol, and obtain the components 

of a completely antisymmetric tensor of type (n,O). Thus, there is a one-to-one 

correspondence between scalars (zero forms) and completely antisymmetric ten­

sors of type (n, 0). 

More generally, we can use the Levi-Civita symbol to obtain a one-to-one 

correspondence between s-forms and completely antisymmetric tensors of type 

(n - s, 0) as follows: 

(2.64) 

and 

n - 1 E T/31 ... /3" 
/3,..-.+1 ... /3,.. - (n _ s)! /31 ... /3" . (2.65) 

Here we have used the easily verified relation 

(2.66) 

Referring to Eq. (2.64), we say that T is dual to 0 with respect to E. This is often 

abbreviated T = ·0. Referring to Eq. (2.65), we say that n is dual to T with 

respect to E, or 0 = ·T. Note that for any form, 0, we have uo = (_l)s(n-s)n. 
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2.2.8 The Exterior Derivative and the Homotopy Formula 

We now define a differential operator, d, that converts s-forms into (s + 1 )-forms. 

This operator is defined as follows: When applied to a scalar (zero form), f, it 

yields the one form, df, such that 

df(V) = Vf. (2.67) 

Thus, in a coordinate basis, za, we have 

(2.68) 

Next, we demand that the operator be linear, so if 0 and A are two s-forms then 

d(O + A) = dO + dA. (2.69) 

Next, we demand that if 0 1 is an Sl-form and O 2 is an s2-form, 

(2.70) 

Finally, we demand that for any s-form, 0, we have 

ddO = o. (2.71) 

The above demands define the operator d uniquely and unambiguously. We can 

apply the exterior derivative to an arbitrary form by first expanding it in terms 

of wedge products of basis one forms, and then applying the above rules. 

In terms of components in a coordinate basis, the exterior derivative of a 

scalar is 

(df)a = f,co (2.72) 

and the exterior derivative of a one form is 

(2.73) 
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More generally, 

(2.74) 

A form whose exterior derivative vanishes is said to be closed. A form that is 

the exterior derivative of another form is said to be exact. Clearly, any exact form 

is closed. The interesting question is whether or not any closed form is exact. 

The answer to this depends on the global topology of the manifold on which the 

closed fonn lives. Locally, it is always true. 

There is a marvelous relationship between Lie derivatives, interior products, 

and exterior derivatives. It is possible to prove that 

.cvO = ivdO + divO (2.75) 

for any n-form, 0, with n 2: 1, and any vector field, V. This relationship is called 

the homotopy formula. The proof usually given (see for example Section 4.20 of 

Schutz [15]) proceeds by induction: It is first proved for a one-form, and then it 

is shown that it works for an n-form if it works for an (n - 1 )-form. 

The genemlized homotopy formula, 

(2.76) 

'for j 2: 1, is proved by induction as follows: First note that it reduces to the 

ordinary homotopy formula when j = 1. Next, assume that it is true for j = l. 
Then 

.c~10 = (iv d + div)[(ivd)IO + (div)IO] 

= (iVd)'+10 + (div)'+10, (2.77) 

where we have used the fact that application of dd or iviv causes any form to 

vanish. Note that the generalized homotopy formula is not true for j = O. 
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Finally, we can show that Lie derivatives commute with exterior derivatives. 

This is done as follows: 

dc'v = d( ivd + div) = divd = (ivd + div)d = Cvd, (2.78) 

where we have used the homotopy formula. 

2.2.9 Integration on Manifolds 

Differential s-forms can also be introduce~ as integrands of s-dimensional inte­

grals. See Flanders [19] for more on this approach. Adopting this point of view,' 

it is possible to prove the generalized Stokes' theorem 

r df) = r 0, 
lu l8U 

(2.79) 

where U is an (s + 1 )-dimensional volume, and au is the s-dimensional surface 

that bounds it. 

We shall not attempt to prove the generalized Stokes' theorem here (see 

Schutz [15] for a good presentation), but we shall make it plausible by show­

ing how it reduces to the familiar Stokes' theorem and divergence theorem of 

three dimensional vector calculus. In three dimensional Euclidean space; with 

Cartesian coordinates, the gradient is given in our notation by 

(2.80) 

the divergence is given by -\7·Y = *d*V, (2.81) 

and the curl is given by 

--\7 xV = *dv, :(2.82) 

where v is the one form whose Cartesian components are identical to those of 

the vector Y. Note that 

-- --\7 x \7 f = *ddf = 0 (2.83) 
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and 
--+ --+ 

V' '(V' xV) = "d""'dv = "ddv = 0 (2.84) 

both follow from dd = O. Then 

r V. V d:z: 3 = r d"V = r "V = r V· dcr, 
Ju Ju J8U .J8U (2.85) 

and 

r V xV· dcr = r dv = l v = r V· dL 
Ju Ju J8U J8U (2.86) 

Thus we see that our formalism is the natural generalization of three dimensional 

vector calculus to manifolds of arbitrary dimension. 

2.2.10 Metric Spaces 

The usual dot product of linear algebra is a rule for taking two vectors, say U and 

V, and associating with them a real number, denoted U· V. The result depends 

bilinearly on the two vectors involved, so we see that there is a tensor of type 

(0,2) at work here. Furthermore, the dot product is required to be commutative, 

so the tensor must be symmetric. Denoting this tensor by g, we have 

U . V = g(U, V). (2.87) 

This tensor is called the metric tensor. If we also demand that it have an inverse, 

then we can find a basis for which it has diagonal form with entries equal to ± 1 

(if all the diagonal entries can be made equal to +1, then we say that the metric 

is definite, otherwise we say that it is indefinite). The trace of the metric in this 

canonical diagonal form is called its signature. 

A metric tensor field is the association of such a type (0,2) symmetric tensor 

with every point of a manifold. It must have an inverse at every point. It follows 

that the signature is the same· at every point of the manifold. 

A manifold endowed with a metric has all sorts of new structure. For the 

. purposes of our discussion, its most important role is to provide a one-to-one 
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correspondence between vectors and covectors. For, given any vector, say V, we 

can form the covector, g(V, ). The components of this new covector are then 

gOt/3 V/3. Denote the inverse of gOt/3 by g/3'Y, so 

(2.88) 

Then, given any covector, say a, we can form the vector with components gOt/3a/3. 

Note that this is a one to one correspondence. 

Frequently we shall use the same symbol to denote a vector and its corre­

sponding covector in a metric space. That is, we may write 

(2.89) 

or 

(2.90) 

This process is called index roising or index lowering, as the case may be. It can 

be used to raise or lower the indices of any tensor of any type. 

We shall frequently abuse notation by using the dot product to denote the 

interior product of a vector with a covector. That is, we may write 

a . V = a(V) = aOt vot . (2.91) 

When this is done, it will be obvious from context, so no confusion should arise. 

We shall occasionally further abuse notation by using a "double dot" notation 

for two contracted indices. That is, given two tensors of type (0,2) and (2,0), 

respectively, we may write 

(2.92) 

Once again, things should be clear from context. 

A metric tensor field does far more than provide an invertible map from 

vectors to covectors. It also induces on the manifold something called an affine 
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connection. This makes it possible to compare vectors in nearby tangent spaces. 

Recall that Lie dragging gave us a way to do this, but there had to be a vector 

field present in the first place along which to drag, and we could drag only in the 

direction of that field. An affine connection allows us to parallel tronsport vectors 

from one tangent space to any other one nearby; that is, it gives us a notion of 

parallelism between vectors in different tangent spaces. Furthennore, it does not 

require the presence of any vector field there to begin with. One does not need 

a metric to have an affine connection, but the presence of a metric induces an 

affine connection in a natural way. 

Anned with an affine connection, it is possible to go on to define such things 

as curvature and torsion. While knowledge of this material is certainly helpful in 

understanding the material presented in this thesis (especially the curvature and 

polarization guiding-center drifts and the intimate relationship between torsion 

and spin angular momentum), it is not essential. Thus we shall not go on to 

discuss these topics; the interested reader is referred to Schutz [15] for a good 

introduction, and to Misner, Thorne and Wheeler [20] or Chandrasekhar [21] for 

a more detailed presentation. 

2.3 Noncanonical Hamiltonian and Lagrangian 

Mechanics 

2.3.1 Canonical Versus Noncanonical Coordinates 

In elementary classical mechanics courses, Hamiltonian mechanics is derived by 

application of a Legendre transfonnation to the system Lagrangian. This pro­

cess gives rise to canonical coordinates in a very natural way. When it becomes 

necessary to change coordinates on phase space, the student is taught to restrict 

attention to the limited class of transformations that will maintain this separa-
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tion of the CID:ontinates into canonically conjugate pairs; these are the so-called 

canonical transfOImations. 

The Poisson bracket of two sca~ar phase functions, A and B, is then intro­

duced by definingit in terms of partial derivatives with respect to the canonically 

conjugate pBirs.of coordinates, qi and Pi (the index i ranges over all the degrees 

of freedom):: 

(2.93) 

where we have adopted the convention of summation over repeated indices. It is 

then shown 1tfuat this bracket is bilinear: 

{zA + yB, C} = a:{A, C} + y{B, C} . (2.94) 

where a: and yare constants, that it is antisymmetric: 

{A,B} = -{B,A}, (2.95) 

that it obeys the Jacobi identity: 

{A,{B,C}} + {C,{A, B}} + {B,{C,A}} = 0, (2.96) 

and that it obeys the chain rule: 

{f(A),C} = f'(A){A, C} (2.97) 

or,equivalentl'y<, the Leibniz product rule: 

{AB,C} = A{B, C} + B{A, C}. (2.98) 

Mathematicians have a different way of looking at all of this. In mathematics 

courses on Hamiltonian mechanics, one is more likely to define the Poisson bracket 

as any rule for taking a pair of scalar phase functions and associating with them 

a third scalar ph~e function consistent with the properties listed in Eqs. (2.94) 

through (2.98) above. Now it is manifest that any Poisson bracket given by the 
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physicists' definition is also a Poisson bracket according to the mathematicians' 

definition. The converse, however, is not true; that is, there exist Poisson brackets 

that obey all of the above-listed properties, but are not given by Eq. (2.93) for 

any set of canonical coordinates, q and p. Thus, by adopting the mathematicians' 

definition, we can generalize what is meant by a Poisson bracket in a very powerful 

way. 

To see how this comes about, let us take the mathematicians' viewpoint and 

suppose that we have a phase space with coordinates, za, where Q ranges from 

1 to N. For canonical coordinates, N is twice the number of degrees of freedom 

and the za are the q's and p's, but let us not restrict ourselves to this special 

case in any way; in particular, N could be an odd number, and there need not 

be any natural pairing amongst the coordinates. 

Denote the Poisson bracket of coordinate za with coordinate z{3 by: 

(2.99) 

Suppose that we changed our phase space coordinates, z t--+ z'. Then, using 

the chain rule, Eq. (2.97), we see that the Poisson bracket of two of the new 

coordinates is given by: 

8 ,a 8 ,{3 
J ,a/3 = {,a ,{3} = ~{e TJ}_z_ 

- Z ,z 8ze z, z 8zTJ (2.100) 

or 

(2.101) 

This makes it clear that the Ja{3 are the components of a second rank contravari­

ant tensor. This tensor will henceforth be called the Poisson tensor. Using the 

chain rule once again, we see that the Poisson bracket of any two phase functions, 

A and B, may be written in terms of the Poisson tensor as follows: 

(2.102) 
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The general fonn of the bracket given by Eq. (2.102) is clearly hili near and 

obeys the chain rule (or, equivalently, the Leibniz product rule). Now, the other 

two defining properties of the Poisson bracket may be expressed as properties of 

the Poisson tensor. It is easily seen that antisymmetry of the bracket implies and 

is implied by antisymmetry of the Poisson tensor: 

(2.103) 

Somewhat more algebra shows that the Jacobi property of the bracket implies 

and is implied by the following property of the Poisson tensor: 

(2.104) 

where t.he commas denote partial differentiation. Thus, our philosoplry shall 

be that any tensor that has these two properties defines a perfectly legitimate 

Poisson bracket according to Eq. (2.102). 

Let us see how this works for canonical coordinates, qi and Pi, where i ranges 

from 1 to the number of degrees of freedom, I. ·Writ.e Zo = qO for Q = 1, ... , I, 

'and ZO = po-I for Q = 1+ 1, ... , N where N = 21. Now canonical coordinates 

have the bracket relations, {qi, qi} = {pi, Pi} = 0 and {qi, Pi} = -{Ph qi} = b}, 
so the matrix of components of the Poisson tensor is: 

J={z,z}= ( 0 1), 
-1 0 

where 0 and 1 are the I x I null and .unit matrices, respectively. 

(2.105) 

Using this Poisson tensor in Eq. (2.102), we easily recover the usual expression 

for the canonical bracket, Eq. (2.93). Furthennore, this Poisson tensor is obvi­

ouslyantisymmetric, and it obeys Eq. (2.104) since its components are constants 

so their derivatives are all zero. 

IT we start with canonical coordinates, then a canonical transformation is 

any transfonnation that leaves the Poisson tensor unchanged. IT we denote the 

D' 
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Jacobian matrix of the transformation by: 

M = 8z'/8z, (2.106) 

then this condition may be written as the matrix equation: 

(2.107) 

where the superscript "T" denotes "transpose," and J is the canonical Poisson 

tensor given by Eq. (2.105). In what follows, we shall generalize the term canon­

ical tronsformation to mean any bracket-preserving transformation, regardless of 

whether or not we started from canonical coordinates. 

Thus far, we have said nothing about the equations of motion. For canonical 

coordinates these are well known to be: 

and 

. 8H 
q~-­

- 8Pi' 

(2.108) 

where H is the Hamiltonian. These may be written in terms of the Poisson 

bracket as follows: 

and 

(2.109) 

If we use z to refer to the q's and p's, this becomes even simpler to write: 

(2.110) 

Alternatively, this may be written in terms of the Poisson tensor: 

'0 _ JO/3 8H 
Z - 8z/3' (2.111) 
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Since this last equation is in tensor fonn, and since it is known to hold for canon­

ical c,!ordinates, it must be the correct generalization of the equation of motion 

for noncanonical coordinates. Thus, the complete specification of a Hamiltonian 

system in this new generalized sense requires the specification of both a Poisson 

tensor and a scalar Hamiltonian. 

Any dynamical system on phase space can be expressed in the fonn iQ = va, 
where V is some vector field on the phase space. Eq. (2.111) for a Hamiltonian 

dynamical system has this fonn. Note, however, that in order to qualify as 

"Hamiltonian," the vector field on the right cannot be just any vector field; it 

must be given by the Poisson tensor contracted with the gradient of some scalar 

function. A vector field on phase space is called a Hamiltonian vector field if there 

exists some scalar field for which this is true. Thus, if a manifold is endowed with 

a Poisson tensor, then scalar fields generate Hamiltonian vector fields. 

2.3.2 An Example of a Noncanonical Poisson Structure 

There are several ways that noncanonical Poisson structures can arise in a prob­

lem. The first and most obvious way is to start with canonical coordinates and 

make a non canonical transfonnation. The canonical Poisson tensor is known to 

obey Eqs. (2.103) and (2.104), and since these are tensorial equations they will 

hold in all frames if they hold in anyone frame. So the result of a noncanonical 

transformation will be a new bracket that obeys all the required properties. 

A particularly beautiful example of this has been given by Littlejohn [22] for 

the problem of a charged particle in a magnetic field. For canonical coordinates, 

q and p, the Hamiltonian is well known to be: 

1 ( e )2 H = - p - -A(q) , 
2m c 

(2.112) 

where A( q) is the vector potential. Make the noncanonical transformation to 
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new coordinates,r and v, where: 

and 

The bracket relations among the new coordinates are easily calculated: 

and 

{r,r} = 0, 

1 
{r,v}=-l, 

m 

1 
{v,v} = -0, 

m 

where we have defined the matrix 0 with components: 

47 

(2.113) 

(2.114) 

(2.115) 

and where the Bk are the components of the ordinary magnetic field pseudovector. 

Thus the bracket of any two scalar phase functions, R and S, is given by: 

{R, S} = ~ (8R . 8S _ 8R . 8S) + _e_ B . (8R x 8S) . 
m 8r 8v 8v 8r m 2 c 8v 8v 

(2.116) 

This bracket is easily seen to be antisymmetric. That it satisfies the Jacobi 

identity is less obvious; we know that it must from the argum~nts given above, 

but a direct proof involves some tedious algebra. The new Hamiltonian is simply: 

m 2 
H(r, v) = 2 v , (2.117) 

and it is readily verified that this Hamiltonian, together with the bracket given in 

Eq. (2.116) yield the correct equations of motion. Note that the vector potential 

is absent from the new formulation; this is construed as an advantage, since the 

vector potential is a gauge-dependent quantity. The above Hamiltonian system 

was the starting point for Littlejohn's work on guiding-center theory [22]. 
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Now that we have seen how noncanonical Poisson structures can arise from 

noncanonical transformations of a canonical system, it is natural to ask the op­

posite question: Given a noncanonical Hamiltonian system, is it always possible 

to find a transformation to,canonical coordinates? For noncanonical Hamiltonian 

systems with a nonsingular Poisson tensor (that is, systems for which the matrix 

of components of the Poisson teilsor is nonsingular), there is an important theo­

rem, called Darboux's theorem, that tells us that the answer is "yes." A proof of 

Darboux's theorem is given by Littlejohn [22] and is constructive; that is, it gives 

a prescription for actually finding t~le transformation to canonical coordinates. 

For Hamiltonian systems with singular Poisson structures, the situation is more 

complicated, and will be discussed shortly. 

2.3.3 Reduction. 

Reduction and Noether's Theorem 

N oncanonical transformations from canonical coordinates is only one of many 

ways that interesting Poisson structures can arise naturally. The process of "re­

duction" of a Hamiltonian system with symmetry is another. Work in this area 

has been pioneered by Marsden ,and Weinstein (see, for example, reference [23]). 

A detailed discussion of reduction wocld be out of place in this work, but the 

general idea is this: Suppose that we have a canonical Hamiltonian system with 

a configuration space symmetry (e.g. spatial translation, rotation, etc.). Make 

the configuration space symmetry group parameter one of the generalized coor­

dinates. Noether's theorem then tells us that the corresponding momentum is 

conserved. It is then possible to eliminate this degree of freedom from the system, 

thus reducing the dimensionality of the phase space by two. This much is famil­

iar from elementary courses in classical mechanics. Reduction is an important 

generalization of Noether's theorem that allows us to similarly "mod out" by a 
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symmetry group that acts on all of phase space rather than just configuration 

space. After reduction is performed, the resulting Hamiltonian system may very 

well be noncanonical. 

The set of all phase functions together with the Poisson bracket operation 

constitutes a Lie algebra. From a computational point of view, in order to perform 

reduction we must find a representation for which this Lie algebra has a closed 

Lie subalgebra. Furthermore, the Hamiltonian must depend only on the elements 

of this subalgebra. The elements of the subalgebra then constitute coordinates 

for a reduced description of the problem. This is. best illustrated by example. 

The Free Rigid Body 

One of the most elementary (but nontrivial) examples of this process is the Hamil­

tonian system for a free rigid body. The usual generalized coordinates for this 

problem are the Eulerian angles, 8, cjJ, and "p, with respect to some fixed space 

frame. By introducing their canonically conjugate momenta, Pe, P</J, and P1/J, it is 

possible to write the equations of motion in a canonical Hamiltonian format with 

a six-dimensional phase space. If we choose a body frame for which the inertia 

tensor is diagonalized, then the Hamiltonian for the free rigid body problem is 

2 
P1/J 1 [ . 2 H = -1 + -1 (P</J csc 8 - P1/J cot 8) cos"p - Pe sm"p] 
2 3 2 2 

+ II [(P</J csc 8 - P1/J cot 8) sin"p + Pe cos "p]2 , 
2 1 

where II, 12 , and 13 are the three diagonal elements of the inertia tensor. 

(2.118) 

Consider the three components of the angular momentum resolved in the body 

frame. These can be expressed in terms of our canonical phase space coordinates 

as follows: 

ml = (PIP csc 8 - P1/J cot 8) sin"p + Pe cos "p, 

m2 = (PIP csc 8 - P1/J cot 8) cos"p - Pe sin "p, 
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and 

(2.119) 

(See Goldstein [24] for details. Only the result is needed here.) 

By direct calculation with the canonical bracket, we can verify the following 

relations 

{ml,m2} = -m3 

{m2,mS} = -ml 

{m3,ml} = -m2. (2.120) 

Thus, the three components of the angular momentum in the body frame consti­

tute a dosed Lie subalgebra under the operation of the canonical Poisson bracket. 

This means that the subset of functions on the canonical phase space that are 

functions of the m's alone (that is, those functions that depend on 0, ¢, 1/J, Pe, Pt/J, 

and P.,p only through their dependence on the m's) constitutes a Lie subalgebra 

of the Lie algebra .of all canonical phase functions. 

We thus adopt the m's as generalized coordinates on a reduced phase space of 

three dimensions. The Poisson tensor on this reduced phase space is then given 

by JOt{3 = _€Ot{3-Ym-y, or: 

o 

J= (2.121) 

o 

so that the Poisson bracket of any two functions of m, say A and B, is given by: 

{A,B}=-m. -x- . (
8A 8B) 
8m 8m 

(2.122) 

This bracket must satisfy all the required properties of a Poisson bracket, since 

it was derived by specializing the domain of a canonical bracket; nevertheless, it 

is straightforward and instructive to verify this by direct calculation. 
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It is possible to perfonn reduction only if the Hamiltonian is expressible in 

tenns of the reduced coordinate set. For the free rigid body, we have 

(2.123) 

As usual, the equations of motion are given by m = {m, H}, or: 

(2.124) 

. . 
As expected, these are indeed Euler's equations for the free rigid body. If the 

rigid body were not free (say, if it were in a gravitational field), then a potential 

energy term would have been present in the Hamiltonian, and that tenn would 

not have been expressible in terms of the m's. Thus, the reduction process would 

have failed. This is because the gravitational field breaks the SO(3) symmetry 

that makes the reduction possible. 

As we shall see later on in this thesis, the passage from particle coordinates 

to guiding-center coordinates is another example of reduction. The symmetry 

involved is the' group of rotations by the gyro angle , SO(2), and the reduction 

eliminates the corresponding degree of freedom from the system. If this gyrosym­

metry is somehow broken (say, by a variation in the background field configura­

tion whose length scale is on the order of a gyroradius), then the guiding-center 

description is invalidated. 

Euler's Fluid Equations 

Our next example is a Hamiltonian field theory for Euler's equations for the 

flow of an inviscid, incompressible fluid. Let us adopt a Lagrangian description 

for such a fluid wherein each fluid particle is labelled by a reference position, 

~,.:.; . 
I : 
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xo. Then the configuration of the fluid at time t may be specified by giving the 

particle's current position, x as a function of Xo and t. Thus, our dynamical field 

variable is x(xo, t). The system Lagrangian consists solely of the kinetic energy 

(2.125) 

where p is the constant uniform mass density. The canonical momentum field is 

then given by 

p(Xo, t) = 8' tL ) = px(xo, t), 
x xo, t 

(2.126) 

where the 8's denote functional differentiation. Performing the Legendre trans­

formation, we see that the system Hamiltonian is 

J 3 1 2 H = d xo-p (Xo, t). 
2p 

(2.127) 

The canonical bracket of two functionals of x and p, say A and B, is then 

{A B} = J d3 Xo ( 8A . 8 B _ 8A . 8 B ) 
, 8x(xo, t) 8p(xo, t) 8p(xo, t) 8x(xo, t) . 

(2.128) 

Now suppose that the fluid particles are identical. In that case, specification 

of x(xo, t) is far more information than is really necessary to determine the con­

figuration of the fluid. This is because x(xo, t) effectively keeps track of particle 

labels; t.wo configurations that differ only by swapping identical particles will 

actually have different x(xo, t). For a fluid of identical particles, an Eulerian de­

scription, wherein t.he flow velocity is given as a function of spatial position and 

time, say v(e, t), suffices to det.ermine the fluid configurat.ion. The Lagrangian 

description just keeps track of too much information. Thus, in passing from the 

Lagrangian to the Eulerian description, we are effectively reducing by the group 

of identical particle interchanges. The Eulerian description is therefore the re­

duced description. The reduced phase space is the (smaller, though still infinite 

dimensional) space of all divergenceless vector fields, v, that satisfy the boundary 
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conditions (v tangential to the boundary). The requirement that divv = 0 stems 

from the fact that we are considering only incompressible flows. 

So, from a computational point of view, how do we perform this reduction? 

Note that the Eulerian velocity field may be written in terms of the Lagrangian 

fields as follows: 
1 -1 

v(e, t) = -p(x (e, t), t). 
p 

(2.129) 

This may be interpreted as follows: If we want the Eulerian velocity at spatial 

point e, first take x- 1(e, t) to get the reference position of the fluid element 

currently at e, then evaluate the momentum p of the fluid element with this 

reference position, then divide the result by p to get the desired answer. Now the 

above equation may be written 

1 J 3 v(e, t) = p d xop(xo, t)b(x(xo, t) - e), (2.130) 

where we have used the fact that the Jacobian, lax/axol, is equal to unity because 

the flow is incompressible. Thus we have succeeded in expressing the reduced field 

variable, v, in terms of the canonical field variables, x and p. In this respect, 

Eq. (2.130) is the exact analog of Eqs. (2.119) for the free rigid body problem. 

Thus, we can take the Poisson bracket of the Eulerian field with itself using 

the canonical bracket. This is straightforward, and the result is 

{v(e, t), v(e', t)} = ~ (v(e', t)5'(e' - e) - b'(e - e')v(e, t)), 
p 

(2.131) 

where 5' denotes the gradient of the delta function. Note that we have been able 

to express this bracket in terms of the Eulerian (reduced) field variables alone . . . 
This equation is thus the analog of Eqs. (2.120) for the free rigid body problem. 

So we see that the functionals of the Eulerian field variables constitute a 

closed Lie subalgebra of the Lie algebra of all phase functionals. We thus adopt 

the Eulerian field variables as coordinates on a reduced phase space. The Poisson 

bracket of any two functionals o.f v, say A and B, is then calculated by the Lei bniz 
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rule 

{ } J 3 J 3' 8A r ( ) (')} 8B A,B = de dt. 8v(e,t)·tV e,t"v e ,t, '6v(e',t) 

_ 1 J 3 ' [8A hB 1 - -p d ev(f, t). hv(e)t)' c5v(e, t) j , (2.132) 

where the square brackets are Lie brackets, and where 8A/8v(e,.t) and 8B /hv(e, t) 

are regarded as vector fields. 

Note that Eq. (2.132) is the analog of Eq. (2.122) for the free rigid body 

problem. 

We must also check that the Hamil:onian may be expressed in terms of the 

reduced variables. Fortunately, this is not difficult. A change of variables in 

Eq. (2.127) gives 

(2.133) 

where we have again made use of the fact that the Jacobian, 18x/8xol, is equal 

to unity. 

It remains to check that the Hamiltonian in Eq. (2.133) together with the 

bracket in Eq. (2.132) actually yield -Euler's fluid equations. This is slightly 

tricky. Consider a functional A(v). Its ~quation of motion is 

8A at = {A,H}. (2.134) 

We insert Eq. (2.133) for the Hamiltonian. After some straightforward manipu­

lation, including an integration by parts where the surface term vanishes due to 

the boundary condition, we get 

J 3 8A [BY -> - (v2)] o = d e 8v' 8t + v· V v+ V 2" . (2.135) 

At this point, we might be tempted to set the expression in square brackets 

above equal to zero on the grounds that A is an arbitrary functional. This would, 

however, be incorrect because 8A/8v is not really arbitrary. Recall that our phase 
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space consists only of those vector fields that have zero divergence. This causes 

an ambiguity in the usual definition of the functional derivative which is such 

that the equation 

(2.136) 

is satisfied. If v and v + bv are both divergenceless, it follows that bv is di­

vergenceless. This means that the gradient of an arbitrary function, 1>, may be 

add~d to bA/bv, since 

(2.137) 

We can make the definition of the functional derivative unique by demanding - ' 
that \7 ·(bA/bv) = O. This gives a well-posed problem for the determination of 

¢. 

-Now, in order to incorporate this constraint that \7 ·(bA/bv) = 0, note that if 

we were to add the gradient of any scalar function, 1/J, to the expression in square 

brackets in Eq. (2.135), the equation would still hold because 

J 3 bA - J 3 - (5A) d ~ 5v . \7 1/J = - d ~1/J V'. 5v = o. (2.138) 

So the most that we can write is 

8v - - (v2 ) at + V· V' v+ \7 2 + 1/J = o. (2.139) 

We now identify the pressure 

(2.140) 

so we finally arrive at Euler's fluid equation 

8v l-
et + V· \7 v = - P \7 p. (2.141) 
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Finally, we note that the pressure is not really arbitrary, but is rather determined 

by taking the divergence of both sides of Eq. (2.141) to get 

2 -+ -+ 

V' P = - V' .(v. V'V), (2.142) 

and by dotting both sides of Eq. (2.141) with the unit normal to the boundary 

surface, n, to get 

8p -+ an = -no (v. V'v). (2.143) 

This constitutes a well-posed Neumann problem for p as a functional of v. Thus, 

Eq. (2.141), coupled with the constraint of incompressibility, determines both v 

and p. 

It is intriguing that the equations of motion for both examples considered thus 

far are named after Euler; one wonders if he knew about the beautiful analogy 

between them. In fact, the first published reference to this analogy seems to be 

a 1966 paper of Arnold [25]. 

The Poisson-Vlasov System 

Our final example of reduction is also a Hamiltonian field theory, this time for the 

Poisson-Vlasov equations of plasma physics. For simplicity, we consider a one­

dimensional plasma (the methods are trivially generalized to three dimensions). 

Once again, we label particles by their initial conditions. This time, however, 

the flow is in phase space, so the initial conditions are 1'0 and Po, and the present 

phase space position is l' and p. The dynamical fields are thus 1'(1'0, po, t) and 

p(1'o,PO, t). We shall use z to refer to the set of coordinates, l' and p, and Zo to 

refer to the set of initial conditions, 7'0 and Po. The fields may thus be abbreviated 

z( Zo, t). 

The Lagrangian for this system that includes the electrostatic potential energy 
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of interaction was first written down by Low [26]. It is 

L = J dzoj(zo) [;r2(zo) -~ J dZ~j(z~)g(r(zo),r(z~))l· (2.144) 

Here we have ignored species labels for simplicity. Also, j(zo) is the distribution 

of initial conditions on phase space, and g(r, r') is the Coulomb potential kernel. 

The canonical momentum field is then 

(2.145) 

The Hamiltonian is obtained by Legendre transformation 

(2.146) 

The bracket is canonical, with r and 1T' canonically conjugate. 

Now suppose that the particles are identical. Just as with Euler's fluid equa­

tions, it turns out that we can reduce to an Eulerian description. This time, the 

Eulerian field variable is the usual distribution function on phase space, f(Z). 

This may be expressed in terms of the Lagrangian field variables as follows: 

( ) J )) ( 1T'(zo,t)) 
f R,P,t = dZoj(zo)b(R-r(zo,t b P- j(zo) . (2.147) 

This is the analog of Eqs. (2.119) and (2.130). 

Now we can take the canonical bracket of j(Z) with j(Z'). We get 

{f(Z), f(Z')} = J dZlf(Z"){b(Z - Z"), b(Z' - Z")}~, (2.148) 

where {a, b}~ denotes the single-particle Poisson bracket of a(R", P") with 

b(R",P"). Note that we have been able to express the bracket of the Eulerian 

field variables in terms of the canonical field variables; thus we have achieved the 

desired reduction. The bracket of any two functionalsof f is found by application 

of the Leibniz rule. The result is 

J { bA bB} 
{A, B} = . dZf(Z) M(Z)' M(Z) o' (2.149) 
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This form for the bracket was first given by Iwinski and Turski [27], by Morrison 

who credits it to Kaufman [28], and by Gibbons [29]. A derivation similiar to 

that above can be found in a paper by Kaufman and Dewar [30]. 

Finally, we see that the Hamiltonian can be expressed in terms of f as follows 

H = J dZf(Z):~ + e; J dZ J dZ'f{Z)f(Z')g{R,R'). (2.150) 

It is now readily verified that the above brackets and Hamiltonian yield the 

Poisson-Vlasov equations of motion, 

8f P 8f 8¢ 8f 
at + m 8R - e 8R 8P = 0, (2.151) 

where 

¢(R) = e J dZ'f(Z')g(R,R') (2.152) 

is the electrostatic potential . 

. Note the similarity in structure of the brackets for all three of the above 

examples. For example, all three have a Poisson tensor that is linear in the 

coordinates u~ed. All are examples of what are called Lie-Poisson brackets, and 

there is a rich mathematical literature on brackets of this sort (see, for example, 

Marsden [23]). 

2.3.4 Singular Poisson Structures 

There are a few very important observations to be made about the above examples 

before we go on to talk about perturbation theory. First consider the free rigid 

body problem. Note that the matrix in Eq. (2.121) is singular with rank two for 

m =1= 0, and rank zero for m = O. Indeed, any odd dimensional phase space must 

have a singular Poisson structure, because antisymmetric matrices always have 

even rank. For these systems, Darboux's theorem does not apply and it is not 

possible to find a transformation to canonical coordinates; of course, this should 
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have been obvious because canonical coordinates always come in pairs and you 

can't pair an odd number of things. 

When a system has a singular Poisson structure, the Poisson tensor will have 

at least one null eigenvector. Let's say it has n of them; note that n is equal to 

the dimensionality of the phase space, N, minus the rank of the Poisson tensor, 

r. In this case, it has been shown by Littlejohn [31] that it is always possible" 

to find a set of n = N - r scalar phase functions whose gradients are those 

null eigenvectors. This is not at all obvious and requires an application of the, 

Frobenius theorem of differential geometry, where use is made of the fact that 

the Poisson tensor satisfies the Jacobi identity. 

These n scalar phase functions are very special in that their bracket with any 

other scalar phase function must vanish. This is obvious from Eq. (2.102). Scalar 

phase functions with this property are called Casimir functions. In particular, 

their bracket with any Hamiltonian is zero, so they are always conserved quan­

tities; note that their conservation follows directly from the bracket structure, 

independent of the particular Hamiltonian under consideration. 

For the free rigid body problem presented above, the null eigenvector of the 

Poisson tensor is any multiple of m itself. The function: 

(2.153) 

is then a Casimir function since its gradient is in the direction of m, and we recog­

nize it as the total angular momentum squared. Of course, any other scalar phase 

function that is functionally dependent upon C could have been used equally well. 

The pathology at the point m = 0 where the rank of J changes is called a sym­

plectic bone, and is discussed at length by Weinstein [32]. 

If we were to choose C to be one of our generalized coordinates, say the third 

coordinate in place, of m3, then it is clear that the third row and column of J 

would be zero. The two by two submatrix consisting of rows and columns one 
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and two would be nonsingular, and Darboux's theorem could be applied to that 

subsystem. Thus, the correct generalization of Darboux's theorem for singular 

Poisson structures is to say that it is always possible to find a transformation to 

a coordinate system for which the matrix of components of the Poisson tensor 

has an l' by l' submatrix in canonical form with the rest of the entries vanishing. 

For the free rigid body problem Poisson structure given:-above, this has the form: 

J= 

for m =1= 0, and J = 0 for m = o. 

010 

-1 0 0 

000 

(2.154) 

It is worth repeating that Casimir functions are conserved for any Hamilto­

man. For example, the Hamiltonian: 

(2.155) 

where J.l is a constant, together with the same bracket used above for the free rigid 

body problem, yields the equations of motion for a classical spin gyrating in a 

uniform magnetic field. That is, ml and m2 undergo simple harmonic oscillations, 

while m3 is conserved because it commutes with the Hamiltonian. Note that C 

is a conserved quantity for this system as well, because the bracket is the same. 

In general, the Poisson structure is considered to be a more fundamental entity 

than the Hamiltonian. 

The other two examples presented in the last subsection also have singular 

Poisson structures. It is readily verified that the bracket for Euler's fluid equations 

has the Casimir functional 

(2.156) 

(the integrand here is called the helicity), and that the bracket for the Poisson-

.. 
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Vlasov equations has the Casimir functionals 

c'" = J dZ~(f(Z)) (2.157) 

where ~ is an arbitrary function of its argument . 

2.3.5 Phase-Space Lagrangian Techniques 

In this section, we review the phase space Lagrangian formalism; for more details 

on this subject see Littlejohn [33] and Littlejohn and Cary [34]. For a system 

with canonical coordinates, q and p, and time-independent Hamiltonian, H(q,p), 

the phase space Lagrangian is given by 

L(q,p, q,p) = p' q - H(q,p), (2.158) 

where a dot denotes differentiation with respect to time, t. Note that L may 

depend upon all the phase space coordinates and their time derivatives, unlike 

ordinary configuration space Lagrangians, L(q, q). The associated action is 

A = J dtL(q,p, q,p), (2.159) 

the variation of which yields the Euler-Lagrange equations. 

o = ~ (8~) _ 8L = P _ (_ 8H) = P + 8H, 
dt 8q 8q 8q 8q 

(2.160) 

and 

o = ~ (~~) - ~~ = 0 - (q - ~~) = -q + ~~ ; (2.161) 

these are recognized as the canonical equations of motion. 

We denote by zJ.L, where f.L = 1, ... , N, (where N . 21) the coordinates of 

phase space. The phase space Lagrangian may then be written 

L(z,i) . "YJ.LzJ.L - H(z), (2.162) 
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where the covector whose components are IJL will be called the action one-form. 

For the canonical coordinate system used above, these components are 

if f.1, = 1, ... , I 
(2.163) 

if f.1, = I + 1, ... , N. 

The fa.ct that I of these components are zero is a manifestation of the fact that 

the coordinate system is canonical. For more general coordinate systems this 

will not be true, as we shall see shortly. Note that phase space Lagrangians 

are always linear in z. Also note that knowledge of the action one-form and the 

Hamiltonian is completely equivalent to knowledge of the phase space Lagrangian 

by Eq. (2.162). 

The equations of motion may be written in this notation as follows: 

or 

d (8L) 8L 
o = dt 8z'JL - 8zJL 

d'JL .v 8H 
= Tt- IV,JL Z + 8zJL 

( )
.v 8H 

= I JL,V - IV,JL Z + 8zJL 

'V 8H 
wJLV z = -8 ' zJL 

. where we have defined the Lagrangian two-form 

or 

(2.164) 

(2.165) 

(2.166) 

(2.167) 

For z = (q,p), where q and p are canonically conjugate, it is easily verified that 

Eq. (2.165) is equivalent to Eqs. (2.160) and (2.161). 

We can recover the more familiar Hamiltonian formalism in the following 

manner: Assuming that [wJLv] is a nonsingular matrix, we denote its inverse by 

.. 
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JJ.l.V, so 

J J.l.Pw - CJ.l. 
pV - 0V· (2.168) 

Then Eq. (2.165) becomes 

'J.I. _ JJ.l.v 8H 
Z - . 

8z V 
(2.169) 

These are recognized as Hamilton's equations if we identify JILV as the Poisson 

tensor. That the Poisson tensor is anti symmetric and obeys the Jacobi identity 

is easily verified. In particular, the Jacobi identity follows directly from dw = 

dd, = o. 
Under a (possibly noncanonical) transformation of phase space coordinates, 

z f--lo Z; the action one-form transforms in the usual fashion of a covariant vector 

to give 

(2.170) 

Similarly, the Lagrangian two-form transforms like a second rank covariant tensor 

(2.171) 

where the commas in Eq. (2.171) denote partial differentiation with respect to 

z. The Hamiltonian, of course, transforms as a scalar, K(Z) = H(z). The new 

equation of motion is then 

(2.172) 

which may be compared to Eq. (2.165). 

Note that all of the above considerations assume a time-independent Hamil­

tonian. This restriction is not important for two reasons: First, we could always 

work in extended phase space to treat a time-dependent system; this is the ap­

proach taken by Littlejohn and Cary [34]. Second, all of our relativistic equations 

of motion will have the single-particle proper time as the independent variable, 

and nothing depends explicitly on this. 
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The transformation 

. 8S 
Ie ~ Ie + 8ze' 

64 

(2.173) 

where S is an arbitrary scalar field on extended phase space, is called a Lagrangian 

gauge transformation. Though it alters the action one-form, it is easily seen to 

have no effeCt on the Lagrangian two-form, and so it does not change the equation 

of motion, Eq. (2.165). 

It is clear that if L is independent of one of the extended phase space coordi­

nates, say ziJ., then the associated momentum, 8Lj8iiJ., is conserved by Noether's 

theorem. Note, however, that a gauge transformation, like Eq. (2.173), using a 

scalar field, S, that depends upon the ignorable coordinate, could destroy the 

Noether symmetry, even though the associated momentum would still be con­

served. The same is true for coordinate transformations like Eq. (2.170) .. Con­

versely, we see that it may be necessary to perform gauge or coordinate transfor­

mations in order to uncover N oether symmetries and, hence, to discover c~:ms~rved 

quantities. 

The strategy for our treatment of the guiding-center problem will be to start 

with the phase space Lagrangian for a single relativistic charged particle in an 

electromagnetic field, and, via a sequence of gauge and coordinate transforma­

tions, find a rep:esentation in which the gyroangle, B, is ignorable. This is the 

Noether symmetry for the gyromomentum. When this is achieved, the gyro angle 

will no longer appear in the equations of motion for the other variables, and the 

magnetic moment will appear only as a constant parameter like the rest mass. 

Thus, in this system of "gyrocoordinates," the. rapid oscillatory motion is effec­

tively decoupled from the slower guiding-center motion, and the dimensionality 

of our phase space is reduced by two. 

.. 
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2!3.6 Constrained Systems 

Eqs. (2.162) and (2.159) may be interpreted as follows: The variation of the 

action one form must vanish, subject to the constraint that the Hamiltonian is 

constant. By including other constraints, besides the fact that the Hamiltonian is 

constant, we can discover new and interesting Poisson structures that have those 

other constraints "built in." 

For example, consider a particle that is constrained to move on the surface 

of a sphere of radius r. To model this sys.tem, we take the canonical action one 

form, 

, = p. dr = pzdx + pydy + Pzdz, (2.174) 

and vary it subject to the constraints that the Hamiltonian, H, be constant, that 

the particle position be on the sphere 

(2.175) 

and that the particle momentum be tangent to the sphere 

r . p = xpz + YPy + ZPz = o. (2.176) 

The constrained variation may be done in anyone of a number of ways; e.g. 

by use of Lagrange multipliers. Thus we write 

and form the Euler-Lagrange equations 

. , , 8H 
p = -AIr - A2P - -

8r 

., 8H 
0= r- A2r--. 

8p 

Dot the first of these equations with r to get·· 

. 8H 
r· p = -AIlr12 - r· -, 

8r 

(2.177) 

(2.178) 

(2.179) 

(2.180) 
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from which it follows that 

, 1 (. 8H) 
Al = - 7'2 r· p + 8r . 

Then dot the second with r to get 

from which it follows that 

.. 'I 12 8H o = r· r - A2 r -r' a' 
.p 

A2 = ~r. (r _ 8H)_. 
7'2 8p 

Note that Eqs. (2.181) and (2.183) may be written in the form 
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(2.181) 

(2.182) 

(2.183) 

(
AI) = ~ ( -r,({p,r}+l) 

A2 7'2 r . {r, r} 
-r· {p,p} ) (8Hjar) 

-r·({r,p}-l) . 8Hj8p . 

(2.184) 

To get the Poisson brackets, first substitute the Lagrange multipliers, (2.181) 

and (2.183), back into the equations of motion, (2.178) and (2.179). We get 

(1 _ ~) . r = (1 _ rr) . 8H 
7'2 7'2 8p 

(2.185) 

and 

(1 _ rr) . p = _ (1 _ rr) . 8H _ ~pr. (r _ 8H) . 
7'2 7'2 8r 7'2 8p 

(2.186) 

Note that these two equations do not determine the motion completely; they give 

only the projection of the motion on the sphere. To fully determine r and p, we 

need to employ the derivatives of the constraints, 

(2.187) 

and 

r· p + r· p = o. (2.188) 

U sing these, w~ finally get 

r = (1 _ rr) . 8H 
7'2 8p 

(2.189) 
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and 

. ( rr) 8H J ( ) 8H p=- 1-- ._+- pr-rp '-. 
1'2 8r 1'2 8p 

(2.190) 

These equations of motion are Hamiltonian with the quadratic Poisson structure 

i 

{
i } ci l' rj 

l' ,Pj = OJ --2 
l' 

{ } 
1'jPi - riPj 

Pi,pj = 2 . 
l' 

(2.191) 

Note that the constraints, Eqs. (2.175) and (2.176), ar~ Casimir functions of this 

Poisson structure. This means that the Hamiltonian equations of motion will 

yield dynamics that respect these constraints for any Hamiltonian whatsoever. 

There is another approach to deriving the above set of brackets. We could 

have adopted the spherical coordinates, 

(2.192) 

B = arctan( y' x2 + y2 / z) (2.193) 

1> = arctan(y / x), (2.194) 

on R3. These have the canonically conjugate momenta 

(2.195) 

(2.196) 

(2.197) 

as is easily verified.·· The advantage to using these spherical coordinates is that 

the constraint surface in phase space is simply described by setting Pr equal to 

zero, and r equal to a constant. 
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and 

Now we can write 

= cos 8z + sin 8 cos 4>x + sin 8 sin 4>y 

p = P;z:x + pyY + pzz 

= (Pr cos 8 - Po sin 8)z 
r 

+ (Pr sin 8 cos 4> + Po cos 8 cos 4> - PI/> csc 8 sin 4> )x 
r r 

+ (Pr sin 8 sin 4> + Po cos 8 sin 4> + PI/> csc 8 cos 4»Y. 
r r 
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(2.198) 

(2.199) 

Eqs. (2.198) and (2.199) and the Leibniz rule allow us to comput.e the brackets 

for the system of coordinates (r, p) in terms of the brackets for the system of . 
coordinates (r,8,4>,Pr,P(J,PI/»' If we ignore the constraint, then the lat.ter system 

is canonical, and it follows that the former system is also canonical. If, on t.he 

other hand, we incorporat.e the constraint by dictating that r and Pr are Casimir 

functions and that pr = 0, then the brackets (2.191) follow immediately. 

It is interesting to contrast these two methods for obt.aining the bracket.s 

(2.191). We shall use these methods when we cast our guiding-center equations 

of motion in gyrogauge and boost gauge invariant format, towards the end of 

the Chapter 3. Our guiding-center Poisson brackets will also have a quadratic 

Poisson structure, similar to that of the above set of brackets. Such quadratic 

Poisson structures seem to arise naturally from this type of manipulation. The 

reader who is interested in pursuing this topic further is encouraged to read about 

Dirac's theory of constraints [35]. 
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2.4 Lie Transform Perturbation Theory 

2.4.1 General Discussion of Lie Transforms 

Recall that we first introduced coordinates on manifolds. using the concepts of 

charts and atlases. A chart is a one-to"':one map from a region of ~n to a region 

of an n-dimensional manifold. Each coordinate, z"', may thus be thought of 

as a function on the manifold. When we change coordinates, we are effectively 

transforming these functions. 

Consider an infinitesimal transformation of coordinates given by 

(2.200) 

where h is an infinitesimal, 9 is a vector field, and the Lie derivative acts on 

the coordinates as though they were scalar functions. From our geomet.rical 

interpretation of the Lie derivative, we see that we are effectively taking the 

functions that define the coordinates, and sliding them an infinit.esimal parameter 

interval, h, along the field lines of g. The inverse t.ransformation is 

(2.201) 

Of course, since h is an infinitesimal, we are scrupulously ignoring anything of 

order h2 • 

Now we ask how basis vector components behave under the above transfor­

mation. Assume a coordinate basis for simplicity. We have 

8 _ 8zf3 8 _ 8 h 8gf3 8 
8Z'" - 8Z'" 8 z f3 - 8zOl. - 8z'" 8 z f3 • 

Similarly, basis covector components transform as follows: 

(2.202) 

(2.203) 

Now suppose that t is some tensor field on the manifold. We can ask how 

the components of t behave under the above transformation. Use a prime to 
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distinguish the components of t in the new coordinate system. We demand 

Now expand in h, retaining only first order terms. We find 

(20205) 

Suppose that we define a new tensor field, T, whose components in the old 

system are the same as those of t in the new system. Then, by comparison with 

Eqo (2.43), we may write 

T = t - h(Cgt), (20206) 

where comparison with Eq. (2.43) is helpful. Furthermore, since this last equation 

is in coordinate-free form, it is true for coordinate bases and noncoordinate bases 

alike. 

Compare the signs of the second terms on the right-hand sides of Eqs. (20206) 

and (2.200)0 Despite the algebra that went into proving the above result, it 

has a marvelously simple geometric interpretation. If we slide the values of the 

coordinates one way along a field line of g, then we must slide the tensor field in 

the other direction. In case this is not obvious, a trivial example is afforded by 

a scalar field on ~, call it f ( x ). If we transform coordinates to X = x + h, then 

F(X) = f'(X) = f(x) = f(X - h) = f(X) - h(df/dX)(X) = (f - ht.:f)(X). 

Suppose that our tensor field is the tensor product of two tensor fields, say 

t = t 1 ® t 2 • Then, since Lie derivatives obey the Leibniz rule over the tensor 

product, we have 

T = t - h(t.:gt) 
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= tl ® t2 - hCg(tl ® t 2) 

= tl ® t2 - h(Cg t 1) ® t2 - htl ® (.cgt2) 

= [tl - h(Cgtd] ® [t2 - h(Cgt 2 )], 
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(2.207) 

where, as always, we neglect O( h2 ). This result indicates that the infinitesimal 

transformation commutes with the tensor product. 

Next suppose that the tensor field is obtained by starting with a tensor of 

higher rank and applying to it some number of vectors and/or covec.tors. For 

example, say t = s( a, U) where a is a covector field and U is a vector field; we 

could have let s have more than one of each type of argument or other unfilled slots 

without affecting the following reasoning in any way. Apply the transformation, 

and use Eq. (2.44) to write 

T = t - h(Cgt) 

= s(a, U) - hCg[s(a, U)] 

= s(a, U) - h(Cgs)(a, U) - hs(Cga, U) - hs(a, Cg U) 

= (s - hCgs)(a - hCga, U - hCg U). (2.208) 

This result indicates that the transformation commutes with the application of 

the vectors and/or covectors. 

Next suppose that the tensor field is an exact form. That is, say t = dO. 

Since Lie derivatives commute with exterior derivatives, it follows that the trans­

formation commutes with the application of the exterior derivative. 

The above results indicate that any tensorial relationship, including those 

with differential operators, retains i~s form under a transformation of the form 

given in Eq. (2.200). This crucial point makes the Lie transform method possible. 

Now suppose that we· wish to consider finite (rather than infinitesimal) 

changes of coordinates. That is, suppose we wish to slide the coordinate val­

ues a finite parameter interval, €, along the field lines of g. The easiest approach 
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is to divide the finite interval into a large number of infinitesimal intervals by 

writing 

(2.209) 

The finite transformation of the tensor, t, is then 

T = lim (1 - ~c'g)Nt. exp( -Ec'g)t. 
N-oo N .. 

(2.210) 

The transformation given by the above equations is called a Lie transform gen­

erated by the vector field, g. 

Because the infinitesimal transformations of the form given in Eq. (2.200) are 

known to preserve tensorial relationships, and because a Lie transform is com­

posed of nothing more than a large number of these infinitesimal transformations, 

it follows that Lie transforms preserve tensorial relationships. That is 

(2.211) 

and 

(2.212) 

and 

(2.213) 

We now have a way of making finite coordinate transformations of any tensorial 

equation that is guaranteed to preserve its tensorial form. 

By Taylor expanding the exponential in Eq. (2.209) and using Eq. (2.30) for 

the Lie derivative, it is possible to develop the transformation to arbitrarily high 

order in E. In practice, we want to be able to control the transformation order 

by order in E. There are two ways to do this. The first, due to Deprit [36], is to 

order the generator, g, in E. The second, due to Dragt and Finn [37], is to make 

a succession of transformations like Eq. (2.209), as follows: 

. (2.214) 

• 



.. 
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In this work, we adopt the second procedure, as it was shown by Cary [38] to 

involve fewer terms in the perturbation series at each order. Expanding the a:bove 

equation in € and using Eq. (2.30), we get 

(2.215) 

Here we have used c'n to abbreviate £g",. The inverse transformation is then 

(2.216) 

Developing this order by order, we get 

(2.217) 

The transformation of the tensor t is then 

(2.218) 

Let us suppose that t is given as a power series in the expansion parameter, €, so 

Then Eq. (2.218) yields 

where 

etc. 

(2.219) 

(2.220) 

(2.221 ) 

(2.222) 

(2.223) 

(2.224) 
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Given any equation written in tensor form, we can now make near-identity 

coordinate transformations to perform perturbation analyses. That is, if the 

equation has the form of a solvable equation plus a small perturbation, we can 

make a Lie transform to coordinates for which the perturbation is removed or 

at least simplified. The form of the generator, g, required to achieve this sim­

plification depends on the specific problem, and is chosen order by order in the 

perturbation series. 

Once this process has been carried out to first order, we could continue on 

to second and higher order, or we could regard the first-order problem as a 

new solvable problem and renormalize the perturbation series accordingly before 

proceeding to higher order. The latter strategy is called the superconvergent Lie 

transform procedure; superconvergent perturbation series were first investigated 

by Kolmogorov [39]. All this will be made clear by selected examples in the next 

few subsections. 

204.2 Lie Transforming a Scalar Field 

Consider the scalar equation 

f(:x) = €:x 2 + 2:x - 2c = 0, (2.225) 

where c is a constant and € is our expansion parameter. Let's pretend for a 

moment that we do not know how to solve a quadratic equation. The scalar 

field, f, is ordered in € as follows: 

and fn(:X) = 0 for n > 2. 

fo(:x) = 2:x - 2c, 

II ( :x) = :x2
, 

(2.226) 

(2.227) 

We wish to perform a Lie transform to a new coordinate, X, for which the 

transformed scalar will be denoted by F. Since we are working in ~, the generator, 
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9, has only one component. At order zero, use Eq. (2.221), 

Fo = fo· (2.228) 

At order one, use Eq. (2.222), 

(2.229) 

Thus, we see that we can make Fl vanish by choosing 91 = x 2 /2. Moving on to 

second order, we use Eq. (2.223), 
, x 3 

F2 = -292 --. 
2 

(2.230) 

So we can make F2 vanish by choosing 92 = _x3 /4. Thus, to order €2, we have 

the Lie transformed scalar equation 

F(X) = 2X - 2c = O. (2.231) 

This has solution, X = c. Now x is given in terms of X by Eq. (2.217) which 

becomes 

2( 1 , ) x = X - €91- € 92 - -9191 - .... 
2 

2 
= X - ':X 2 + ~X3 - ... 

2 2 
2 

€ 2 € 3 = c- -c + -c - .... 
2 2 

(2.232) 

This matches the Taylor expansion of the exact solution to the quadratic equation 

1 
x = - (-1 + VI + 2€c) , 

€ 
(2.233) 

to O(€2), as is easily' verified. 

Note that there is another solution to the quadratic equation 

1 
x = - (-1 - VI + 2€c) , 

€ 
(2.234) 

of leading order €-1 that our technique does not give. This is because it is not 

continuously connected to the solution of the unperturbed problem as € goes to 

zero .. Lie transforms are useful only for near-identity coordinate transformations. 
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204.3 Lie Transforming a Vector Field 

Now consider the foliowing dynamical system: 

x=y 

(2.235) 

If we use z to denote (x, y), then this may be written 

z = Vo + €VI, (2.236) 

where we have defined the vectors, Vo = (y, -x) and VI = (0, _x2
). We now try 

to Lie transform to new coordinates, Z = (X, Y), in an attempt to get rid of the 

order € term. The transformed vector field is V = Vo + €V b where Vo = Vo, 

and VI is given from Eq. (2.222), 

(2.237) 

Using the formula for the Lie derivative of a vector, the demand that VI = 0 is 

seen to be equivalent to the following pair of equations: 

and 

( a a) y_ :z: 2 
y ax - x By 91 - -91 + X • (2.238) 

These may be solved by the method of characteristics to yield 

and 

(2.239) 

Note that the characteristic equations for this system are the unperturbed equa­

tions of motion. This "integration along unperturbed orbits" is a generic feature 

of problems of this sort. 



• 
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Now then, the new coordinates are given in terms of the old by 

€ 
X = X + 3(X2 + 2y2) 

2€ 
Y = y- 3"xy . 

The inverse transfonnation is then 

x = X - ~(X2 + 2y2) 

2€ 
y'=Y+'3 XY. 
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(2.240) 

(2.241 ) 

Note that we are ignoring terms of order €2 or higher. Now the equations of 

motion for Z are 

These have solution 

X=Y 

y=-X. 

X = X 0 cos t + Yo sin t 

Y = Yo cos t - X 0 sin t. 

(2.242) 

(2.243) 

Thus, the solution for z(t) is given by Eqs. (2.241) and (2.243). If desired, the 

initial conditions for Z can be expressed in terms of the initial conditions for z 

using Eq. (2.240). 

Frequently, in physical applications of this fonnalism, it happens that the new 

coordinates have physical significance. For example, in guiding-center theory, we 

shall find a Lie transform that takes us from the phase space coordinates of a 

particle to those of a guiding center. In such a circumstance, very little is gained 

by expressing the initial conditions of the transfonned problem in tenns of those 

of the original problem. Instead, the new coordinates acquire their own physical 

_ significance, and we can speak of "the equations of motion of a guiding center" 
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and "the initial conditions of a guiding center," and forget all about the original 

single-particle coordinates. 

For a less trivial example of the vector Lie transform technique, see A p­

pendix C where the method is used to calculate the gyrofrequency shift for 

two-dimensional nonrelativistic guiding-center motion in a spatially nonuniform 

electromagnetic field. 

-
2.4.4 Canonical Lie Transforms of a Hamiltonian System 

When using perturbation theory to study a Hamiltonian dynamical system, the 

above technique of Lie transforming the dynamical vector field could be used, 

but there is a serious problem with this approach: There is no guarantee that the 

Lie transform of a Hamiltonian vector field will be another Hamiltonian vector 

field. 

Recall that a Hamiltonian vector field is given by contracting the Poisson 

tensor with the gradient of a scalar function. This suggests the following solution 

to the above problem: Instead of Lie transforming the Hamiltonian vector field, 

Lie transform the Poisson tensor and Hamiltonian separately. This will insure 

that the transformed equations of motion are still in Hamiltonian form. 

Let us examine a little more closely why this should work. Hamiltonian 

equations of motion are given by Eq. (2.111). If we write 

and 

Z = exp( €.c)z, 

J' = exp( -€.c)J, 

H' = exp( -€.c)H, (2.244) 

then since our equations of motion are in tensor form, we are guaranteed that 
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the new equations of motion will be 

Z· =J'. aH' 
az' 
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(2.245) 

Furthennore, we are guaranteed that J' is antisymmetric and obeys the Jacobi 

identity because these requirements can also be written as tensorial equations 

(see E'qs. (2.103) and (2.104), respectively). Thus, Eq. (2.245) qualifies as a bona 

fide Hamiltonian system. 

We can now prove a marvelous theorem that considerably simplifies the work 

. involved in making canonical (bracket-preserving) Lie transfonnations of a Hamil.;. 

tonian system, and is probably responsible for the popularity of the Lie transfonn 

technique: A Poisson tensor is a Lie-dragged tensor along any vector field that is 

Hamiltonian with respect to it. Suppose the Poisson tensor is denoted by J. Let 

V be given by 

(2.246) 

for some (any) scalar field, W. Then the theorem states 

.cvJ = o. (2.247) 

This is easily proved using the formula for the Lie derivative of a second rank 

contravariant tensor. We write 

= _ ( JOte J!3'Y + J'Ye J Ott3 + Jt3e J'YOt ) W 
.e .e .e·'Y 

- J Ot'Yw.e'Y(Je!3 + Jt3e), (2.248) 

where we have used Eq. (2.246) for V. The first tenn vanishes by the Jacobi 

identity, the second tenn vanishes by antisymmetry, and the theorem is proved. 

It immediately follows that a Lie transfonn along the vector field V leaves 

J unchanged. This is because._a Lie transfonn is the exponentiation of a Lie 
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derivative (set .cmtn = 0 in Eqs. (2.221) through (2.224) to recover T = t). Thus, 

Lie transforms generated by Hamiltonian vector fields are always canonical. Now 

Hamiltonian vector fields are in one-to-one correspondence with scalar phase 

functions, W, by Eq. (2.246), so we have found a way to generate canonical 

transformations with scalars. 

Thus, to perform a canonical Lie transform of a Hamiltonian system, we need 

only to transform the Hamiltonian. Now the Lie derivative of a scalar with 

respect to a Hamiltonian vector field is given by 

.cvH = VaH,a = J a{3W,{3H,a = -{W,H}. (2.249) 

Thus, for a canonical Lie transform of a Hamiltonian, we may rewrite Eqs. (2.221) 

through (2.224) as follows: 

Ko = Ho, (2.250) 

KI = HI + {WIHo}, (2.251) 

1 
K2 = H2 + {W2,Ho} + {WllHI} + 2{W1 ,{WI,Ho}} (2.252) 

K3 = H3 + {W3' Ho} + {W2, HI} + {W2, {"TI, Ho}} + {WI, H2 } 

1 1 + 2{WI ,{W1 ,Ht}} + 6 {WI, {WI, {WI, Ho}}}, (2.253) 

etc. Here we have denoted the new Hamiltonian by K. 

To see how this is used, consider the following example: We perturb a har­

monic oscillator Hamiltonian by the addition of a nonlinear term, 

(2.254) 

Note that the unperturbed motion oscillates with unit frequency. We can intro­

duce action-angle variables for the unperturbed Hamiltonian, 

(2.255) 

.. 
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8 = arctan(q/p), (2.256) 

so that 

e (4 1 ) H = J - 2J2 1 + "3 cos(28) + "3 cos( 48) . (2.257) 

Thus we have 

Ho = J (2.258) 

and 

HI = __ J 2 1 + - cos(28) + - cos( 48) . 1 (4 1 ) 
233 

(2.259) 

We now try to remove HI by a canonical Lie transform generated by the scalar, 

WI (we shall work only to order one in e). We have Ko = Ho, and 

(2.260) 

Note that we cannot demand that KI = 0 since that would cause WI to be 

multivalued (that is, secular terms would appear in WI). The best that we can 

hope for is to make K 1 equal to the 8-average of HI. That is, 

Then 

1 2 K I = --J . 
2 

aWl 1 2 Be = 6J [4 cos(28) + cos( 4B)] , 

and this integrates to give 

WI = ~J2 [8sin(28) + sin(48)]. 
24 

(2.261) 

(2.262) 

(2.263) 

Using this generator we can work out the transformation equations, and hence 

completely solve t~e problem (to order e). For now we note that the perturbed 

frequency is given by 
aK 

n = aJ = 1- eJ. (2.264) 

Note how the Lie transform has taken us to a new set of coordinates in which 

the perturbation is averaged; that is, independent of the angle variable. Since 
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the resulting Hamiltonian depends only on the action variable, it is integrable 

by definition. Furthermore, secular terms were avoided by this absorbing of the 

averaged part of the perturbation into the new Hamiltonian. 

Aforementioned problems of resonant perturbations occur when the unper­

turbed motion has characteristic frequencies that vary with the action (this is 

true generically, but not in our above example). When this happens, 8Wt/88 

can equal a quantity that is oscillatory but whose frequency passes through zero 

on some set of measure zero in phase space. Thus, in some neighborhood of this 

region, problems of secular behavior can develop. Various techniques exist for 

dealing with this problem, but we shall not consider such problematic regions of 

phase space in this thesis. 

2e4.5 N oncanonical Lie Transforms of a Hamiltonian Sys­

tem 

It sometimes happens that a canonical transformation is not the best way to 

solve a particular problem in perturbation theory. This may be because it is 

best to express the unperturbed problem in noncanonical coordinates for which 

the perturbation alters not only the Hamiltonian but also the Poisson structure. 

This is the case for both the guiding-center and oscillation-center problems whose 

solution forms the core of this thesis. In this case, we must resort to noncanonical 

transformations, but we demand that they preserve the Hamiltonian nature of the 

equations of motion. As has already been pointed out, this can be accomplished 

by Lie transforming the Poisson tensor along with the Hamiltonian; this means 

that the vector generator of the Lie transform should not be a Hamiltonian vector 

field. 

Consider once again the harmonic oscillator Hamiltonian, 

(2.265) 

• 
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This time, we introduce a perturbation not in the Hamiltonian but rather in the 

Poisson structure. Suppose that the perturbed brackets are 

(2.266) 

Thus we have J = J 0 + €J b where J 0 is the canonical Poisson tensor. We wish to 

perform a Lie transform that will restore the bracket to its canonical form. We 

demand 

(2.267) 

Straightforward computation shows that this imposes only one independent re­

quirement on the generating vector field, g, namely 

8gq 8gP 2 
-+-=p. 
8q 8p 

(2.268) 

It is easy enough to solve this equation; for example, we could take 

p3 
(2.269) gP= -

3 

and 

gq = o. (2.270) 

This effectively restores the bracket to canonical form, but it alters the Hamilto­

nian as follows: 

(2.271) 

Note that this transformed problem is coincidentally the same one that we treated 

in the last subsection. Thus, we could now apply a second (this time canonical) 

Lie transform to finally solve it. Once again, we would find the perturbed fre­

quency, n = 1 - €J. 

The important thing to note here is that 9 is not a Hamiltonian vector field. 

If it were, there would have to exist a scalar function W such that 0 = 8W / 8p 

and p3/3 = -8W /8q. Examination of the mixed second derivatives shows these 

to be incompatible requirements. 
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2.4.6 Lie Transforming the Phase-Space Lagrangian 

There is another way to go about making noncanonical transformations of a 

Hamiltonian system that is guaranteed to keep it Hamiltonian. Recall that spec­

ifying the action one form is equivalent to specifying the Poisson tensor (assuming 

that everything is nonsingular). We can simply take the exterior derivative of "Y 

to get w, and then invert w to get J. These are all tensorial relationships, so we 

could just as well Lie transform "Y and H instead of J and H. 

Indeed, there are several advantages to this approach. First, it is easier to 

take Lie derivatives of one forms than of second rank contravariant tensors; there 

is one less term to worry about, and, more importantly, we can use the homotopy 

formula to help us Lie differentiate one forms. Second, when we Lie transform 

the Poisson tensor, we are guaranteed that the resulting tensor will be a valid 

Poisson structure only to the order we are keeping. When we Lie transform the 

action one form on the other hand, its exterior derivative is still going to be closed 

even if we truncate it. Thus w is exactly closed, so J = w- 1 will obey the Jacobi 

identity exactly. 

Consider a Lie transformation of the original action one form, "Y, into a new 

action one form, r. Using the homotopy formula, Eqs. (2.221) through (2.224) 

become 

ro = "Yo, 

r 1 = "Yl - ilWO + dSll 

r2 = "Y2 - i2W O - ~il(Wl + Od + dS2 , 

r3 = ~3 - i3W O - i 2!11 - i 1[W2 - ~dil(Wl + ~!11)] + dS3 , 

(2.272) 

(2.273) 

(2.274) 

(2.275) 

etc. Here, we have defined Wn = d"Yn, and On = elI' n' Note that in these equations, 

we have also made near-identity gauge transformations by adding dSn at order 

n for all n 2: 1. In fact, any other one-forms in these equations that were given 
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by the exterior derivative of a scalar (typically arising from the second term on 

the right of Eqs. (2.75) and (2.76», were absorbed in the definitions of the 5n . 

Thus, these last transformation equations are capable of dealing with any 

near-identity coordinate or gauge transformations, and so it is these that we 

shall use in the sections to follow. The vectors gn and the scalars 5 n will be 
~ 

determined by certain desiderata: We want the transformation to average away 

the rapidly oscillating terms of the Hamiltonian and action one-form, and we 

want to avoid secular terms. For the guiding-center problem, we shall also want 

the action one-form to be invariant with respect to certain transformations called 

gyrogauge and boostgauge transformations. This will be explained in more detail 

later. 

For now, we consider another simple example. Consider once again the har­

monic oscillator Hamiltonian, and perturb the canonical action one form as fol­

lows: 

(2.276) 

We have 

w = d, = (1 + €p2)dpA dq. (2.277) 

This inverts to give (1 + €p2)-1 times the canonical Poisson tensor, and to order 

€ this is the same as the perturbation that was examined in the last subsection· 

(which is why we chose it). We can now compare the two methods of doing the 

problem. 

Demand that r l = 0, s6 Eq. (2.273) gives 

0= r 1 = ,1 - ilWO + dS l = (~p3 - gP)dq - gqdp + dS l . 

Thus we can -take 51 = 0, and 

and 

. 3 
P gP=-
3 

(2.278) 

(2.279) 

(2.280) 
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These are precisely the same generators that we discovered in the last subsection, 

they have precisely the same effect on the Hamiltonian, and the rest of the prob­

lem follows in identical fashion. That is, a second canonical Lie transformation 

is necessary to get to averaged coordinates. 
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C,hapter 3 

Relativistic G uiding-C enter 

Theory 

3 .. 1 Discussion 

Relativistic guiding-center motion occurs in many applications of plasma physics, 

including controlled fusion, free-electron lasers, and astrophysics. The tandem 

mirror and bumpy torus plasma confinement devices, for example, utilize pop­

ulations of magnetized electrons at relativistic energies in complicated field-line 

geometries. In free-electron lasers, relativistic electron beams travel along strong 

magnetic fields with superposed wiggler fields. Near a neutron star, relativistic 

plasma can be confined in strong electromagnetic and gravitational fields. 

All these examples point out the need for a formalism that is able to treat gen­

eral electromagnetic field geometries. Particle simulation codes used for studying 

the properties of guiding-center plasmas in controlled fusion confinement devices 

sometimes require the guiding-center equations of motion to one order higher 

than the usual drifts; this indicates the need for a simplified and systematic per-
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turbative treatment, such as that afforded by the use of Lie transforms. The 

free-electron laser problem has no obvious preferred frame of reference, and this 

suggests that a manifestly covariant description would best reveal the essence of 

the physical processes involved. The neutron star problem involves coupling to 

a general relativistic gravitational field, and this absolutely requires a manifestly 

covariant formulation. All these desiderata will be satisfied by our theory. 

Nonrelativistic theories of guiding-center motion in arbitrary magnetic geom­

etry frequently make use of orthonormal triads of unit vectors at each point of 

three-dimensional physical space. One member of each such triad is required 

to lie in the direction of the magnetic field at that point. Such a basis affords 

great clarity and relative ease in the computation and exposition of the results 

of guiding-center theory. 

One of the first problems to be addressed in any ·relativistic formulation of 

guiding-center theory is t.hus that of finding the relativistic analogs of these basis 

triads. Fortunately, this problem has been solved by Fradkin [13], who gives a 

straightforward method for finding orthonormal tetrads of unit vectors at each 

point of four-dimensional spacetime. In a frame for which the perpendicular 

electric field vanishes, one pair of unit vectors in these tetrads lies perpendicular 

to the magnetic field, while the other pair spans the two-dimensional subspace 

determined by the direction of the magnetic field and the direction of time. 

Fradkin shows that these two two-dimensional sU,bspaces are covariantly de­

fined, and that the rapid gyration takes place in the first of these, while the slower 

parallel motion takes place in the second. This formalism is therefore useful for 

isolating the oscillatory motion so that it can be effectively averaged to obtain 

the guiding-center equations of motion. It is described from first principles in 

Sections 3.2, 3.3, and 3.4. 

Lie transform perturbation theory is used to perform the averaging. Though 

this technique has been known for some time [40], its use for the guiding-center 
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problem poses special difficulties which were first overcome by Littlejohn [22]. 

The difficulties are due to the fact that the Poisson structure as well as the 

Hamiltonian depends upon the rapidly gyrating variables, so that the transfor­

mation required to gyroaverage the system of equations is not canonical. 

A Lie transform in its most general sense is a coordinate transformation gen­

erated by a vector field on phase space. If this vector field generator is a Hamil­

tonian vector field (that is, a vector field that is the flow generated by some 

scalar Hamiltonian-like function) then the transformation it induces is canonical; 

in this case one often simply speaks of the transformation as being generated by 

the corresponding scalar function. For the guiding-center problem, however, the 

vector generator of the averaging transformation cannot be a Hamiltonian vector 

field, since it must generate a noncanonical. transformation. 

In the nonrelativistic guiding-center problem, it was found by Littlejohn [7] to 

be easiest to apply the general Lie transform to the action one form. This is the 

approach that is followed here; it was described from first principles in Chapter 2. 

In any calculation that goes beyond the lowest order drifts, it was found 

by Littlejohn [41] to be necessary to worry about maintaining a certain gauge 

invariance property of the action one form which for the nonrelativistic case is 

known as gyrogauge inv-ariance. If the averaging transformation does not preserve 

this invariance property, then the final guiding-center equations of motion will 

depend unavoidably on the arbitrarily chosen basis vectors used to set up the 

problem, as was noted by Hagan and Frieman [42]. In Section 3.6, we work out 

the relativistic generalization of this invariance property, and we find that the 

relativistic case admits another similar gauge invariance property. which we call 

boostgauge invariance. 

The Lie transforms are carried out in Sections 3.7, 3.8 and 3.9, and the 

guiding-center Lagrangian and Hamiltonian are presented. The Poisson bracket 

structure is then given in Section 3.10 and the equations of motion ar~ pre-
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sented and discussed in Section 3.11. In Section 3.12, a complete summary of the 

transformation equations is given for reference and the correction to the gyromo­

mentum is derived. In Section 3.13, we show how to write our results in "1 + 3" 

notation, and we compare our results to those of Northrop [43J. In Section 3.14 

we cast all our results in manifestly gyrogauge and boost gauge invariant format. 

3.2 Conventions and Notation 

In this work, we adopt the following conventions: The particle space-time co­

ordinate will be denoted by ".1-', where J.L = 0, ... ,3. The Minkowski metric, 

91-'v = diag( -1, +1, +1, +1), is used throughout our derivation of the guiding­

center equations, but the res~ts will be written in manifestly covariant form so 

that this assumption can be relaXed. The four potential is given by AI-' = (4), A), 

so the antisymmetric field tensor is F = dA, or 

0 -Ez -Ey -Ez 

Ez 0 Bz -By 
FI-'/.I = A/.I,I-' - AI-',/.I = (3.281) 

Ey -Bz 0 B'J! 

Ez By -Bz 0 

The dual field tensor, ;: = .. F, is given by 

0 -Bz -By -Bz 

;:1-'/.1 - !€I-'/.IQ,B F. - Bz 0 Ez -Ey 
- Q,B -

2 By -Ez 0 Ez 
(3.282) 

Bz Ey -Ez 0 

where €I-'/.IQ,B is the completely antisymmetric fourth rank Levi-Civita tensor with 

€0123 = +1. Note carefully that €0123 = -1, thanks to the Minkowski metric. 

It is often convenient to use "1 + 3" notation. Then, the matrix of components 

" 
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of the mixed field tensor, FJl-J.l' may be written 

E 
(3.283) 

1 x B 

and that of the mixed dual field tensor, FJl-J.l' may be written 

( .") o -B 

F= -B 1 x E . 
(3.284) 

Note that we have used the notation (1 XB)ij = tikZhjlcBz = tijzBz• Also note that 

the mixed field tensors are neither symmetric nor antisymmetric. The advantage 

to dealing with the mixed tensors is that one may contract them with other 

tensors using ordinary matrix multiplication. Of course, we could equally well do 

this with the completely covariant or contravariant forms, but we would have to 

remember to use the Minkowski metric when multiplying a row by a column. 

Thus, when the field tensor is applied to an arbitrary four-vector, the result 

may be written 

F.(:) ( E·a 

aE+ax B 

The analogous equation for the dual field tensor is 

F· ( : ) ( 
-B·a 

-aB+ax E 

(3.285) 

(3.286) 

This "1 + 3" notation will prove to be useful and convenient throughout the 

remainder of this thesis. 

The two familiar Lorentz scalars can be expressed in terms of these tensors 

by 

(3.287) 

and 
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Note carefully that F : F = FJLIIFIJ.II = -FIJ.IIFIIJL = -Tr(F. F). 

The Lorentz equation of motion may then be written 

where 

du e 
m- = -F(r). u, 

dT e 

dr 
u=-

dT 

92 

(3.288) 

(3.289) 

(3.290) 

is the four-velocity, T is the proper time, m is the rest mass and e is the charge. 

Equation (3.289) makes it clear that if the field is independent of space­

time position, then the frequencies of the motion are the eigenvalues of F times 

-ie/me. Now the' characteristic equation for the matrix F is 

(3.291) 

This biquadratic in A is easily solved to give A = ±AE, or A = ±iAB, where we 

have defined the Lorentz scalars 

and 

We can write Al and A2 in tenns of AE and AB as follows: 

and 

We can now define the two Lorentz scalars 

n - eAE 
E=--, 

me 

(3.292) 

(3.293) 

(3.294) 

(3.295) 

(3.296) 
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and 
l"\ _ eAB 
HB = --. 

me 

93 

(3.297) 

The first of these is the inverse of the characteristic proper time required to 

accelerate to relativistic velocities along field lines, while the second is the gy­

.rofrequency with respect to proper time. 

3.3 The Electromagnetic Projection Operators 

In this section, we summarize the work of Fradkin [13] that is relevent to this 

study. It is straightforward to verify the following identities: 

(3.298) 

and 

(3.299) 

Premultiplying the first of these by F, and employing the second gives 

(3.300) 

. Premultiplying by F once again gives 

(3.301) 

Comparing this with Eq. (3.291), we see that we have proven that F obeys its 

own characteristic equation, as it must by the Hamilton-Cayley theorem. Now it 

is clear that Eq. (3.301) may be written as follows: 

.. 
(F - AEl) . (F + AEl)· (F - iABl) . (F + iABl) = 0, (3.302) 

and the four factors in this expression commute, so any of them could have been 

written first. Thus, if W is an arbitrary colwnn four-vector, then 

(3.303) 
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so that (F + AEl) . (F - iABl) . (F + iABl)· 'II is an (unnormalized) eigenvector 

of F with eigenvalue AE. Thus, the operator (F + AEl)· (F - iABl)· (F +iABl) 

is a (unnormalized) projection operator that projects arbitrary four-vectors onto 

the vector subspace spanned by the zeroth eigenvector of F. Proceeding in this 

manner, it is easy to see that the projection operator 

_F2+A~1 
P" - A2 + A2 

B E 
(3.304) 

projects arbitrary four-vectors onto the" vector subspace spanned by the eigen-

vectors of F with eigenvalues ±AE, while the projection operator 

_F2 + A~l 
PJ.. = A2 + A2 

B E 
(3.305) 

projects arbitrary four-vectors onto the vector subspace spanned by the eigen-

vectors of F with eigenvalues ±iAB. The normalization constants were chosen to 

make the projection operators idempotent; that is 

p".p" =P", (3.306) 

PJ.. . PJ.. = PJ.., (3.307) 

P" . PJ.. = PJ.. . P" = 0, (3.308) 

and 

P,,+PJ..=1. (3.309) 

We have thus decomposed the tangent space at each point of space-time into 

the Cartesian product of two two-dimensional "two-fiats." The rapid gyromotion 

takes place in the perpendicular two-flat since it is spanned by the eigenvectors 

corresponding to the imaginary eigenvalues, while the parallel motion takes place 

in the parallel two-flat since it is spanned by the eigenvectors corresponding to 

the real eigenvalues. These two-flats will play an indispensible role in our theory. 

We shall use them to isolate the gyrational components of the particle velocity 

in preparation for the guiding-center Lie transform. 
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In Section 3.7, we shall order the fields in an expansion parameter and, for 

reasons that will be explained at that time, we shall demand that our lowest­

order field have )..E = O. Furthermore, the two-flats that we shall use will always 

be defined in terms of the zero-order field; that is, the field tensor that appears 

on the right hand side of Eqs. (3.304) and (3.305) is always the lowest-order field 

tensor with )..E = O. Thus, these equations can be simplified to read 

and 

F2 P 
PII =l+ I2 =I2 

B B 

F2 P 
PJ. = -2 = 1 - 2' 

)..B )..B 

In "1 + 3" notation, Eqso (3.310) and (3.311) become 

1 ( B2 -ExB 
PII = B2 - E2 BB+EE-E21 ExB 

and 

1 _E2 ExB 

), 

PJ. = B2 _ E2 ( -ExB -BB -EE+B21 )-

(3.310) 

(3.311) 

(3.312) 

(3.313) 

Henceforth, all our results concerning the nature of the two-flats and the unit 

vectors that span them will contain this aSsumption that the underlying field 

tensor has)..E . O. 

3.4 The Orthonormal Basis Tetrad 

We wish to show how to construct a tetrad of unit vectors such that one pair spans 

the parallel two-flat while the other pair Spa:z1S the perpendicular two-fiat. Clearly 

such a tetrad is not unique; it is defined only to within an arbitrary rotation in 

the perpendicular two-flat, and an arbitrary hyperbolic rotation (boost) in the 

parallel two-flat. We shall have much more to say about this nonuniqueness later; 

. for now we are simply looking for a way to construct any such tetrad. 



CHAPTER 3. RELATIVISTIC GUIDING-CENTER THEORY 96 

From the arguments presented in the last section, we know that one way to 

do this is to examine the eigenvectors of the field tensor. Here we shall take a 

different approach that is perhaps more physically motivated. Recall that we are 

dealing with fields for which Ell = 0 (if this is true in anyone frame, it will be 

true in all frames because E . B is a Lorentz scalar). There exist a set of -local 

"preferred" reference frames for which E.l. also vanishes; hence there is no electric 

field at all in these preferred frames. Thus, in a preferred frame, the field tensors 

may be written in "1 + 3" notation' as follows: 

(3.314) 

and 

- _ (0 -B) F- . 
-B 0 

(3.315) 

Also, in a preferred frame, the projection operators have the form 

PII = (1 0) 
o bb 

(3.316) 

and 

(3.317) 

where 

b = BI IBI· (3.318) 

The above forms for the projection operators in a preferred frame make it 

clear that we can choose the following orthonormal basis tetrad for a preferred 

frame: 

(3.319) 
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and 

(3.320) 

where T1 and T2 are unit three-vectors perpendicular to b, such that {b, T1, T2} 

constitutes an orthonormal triad in three-dimensional space. We reiterate that 

the above choice is not unique. 

Of course, we would like to be able to construct an orthonormal basis tetrad 

in an arbitrary Lorentz frame. To see how to do this, we consider a Lorentz 

boost from the above-described preferred frame to a new frame. The Lorentz 

transformation -matrix for a boost is 

A=( (3.321) 

where the three-vector /3 is the generator of the Lorentz boost (it is the relative 

velocity of the two reference frames divided by c), and where, = (1 - (32)-1/2. 

This matrix is an element of the Lorentz group because it satisfies A-I = goAT. 9 

(here we have used a superscripted"T" to denote the transpose operation). See 

Jackson [44] for more details on the Lorentz group and its generators. 

The new field tensor components are then 

F' = A . F . A -1 = (-Y{3: B 
,/3 x B 

1 x bB - (r - 1)(3-2/3/3 . B] 
). (3.322) 

In writing this result, we have made use of the vector identity, 

/3 x B/3 - f3/3 x B = 1 x ((32B - /3/3. B). (3.323) 

From this result for the field tensor, we see that we can identify the electric and 

magnetic fields in the new frame as 

E' = ,/3 x B (3.324) 
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and 

B' = ,B - b - 1)13-2(3(3' B. (3.325) 

At this point, there are a number of interesting observations to be made. 

First note that if (3 is parallel to B then E' = 0, so the transformation takes us 

to another preferred frame. Next note that if (3 is perpendicular to B then B 

is parallel to B'. Next note that it is possible to arrive at any desired E' by a 

transformation with (3 perpendicular to B. Specifically, if we take 

(3.326) 

where 

(3.327) 

then it is easy to see that the new electric field is E'. Conversely, if we begin with 

a frame in which the (perpendicular) electric field is E', then a Lorentz boost 

with (3 = (3 E gets us to a preferred frame. 

The orthonormal tetrad in the new frame is then 

and 

where ,E = (1 - f3~ )-1/2. 

) 
), 

(3.328) 

(3.329) 

At this point we note that we can choose 'Tl to lie along the direction of (3 E 

without any loss of generality. We can now write the results for the unit tetrad 

.. 
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in the general frame, dropping the primes which are no longer needed because all 

quantities will refer to the general frame. Thus 

. (~E) A (:) , eo = "'IE{3E ' 
e1 = (3.330) 

and 

CE~E ), ( 0 ), e2 = e3 = 
"'IE{3E h X {3E 

(3.331 ) 

where 

{3E = ExB 
B2 ' 

(3.332) 

and "'IE = (1 -: f3~) -1/2. Here we have also introduced the notation /3 E for a unit 

vector in the direction of {3 E if {3 E =I- O. If {3 E = 0, one may choose {3 E to be any 

unit three-vector perpendicular to h. 

Using Eqs. (3.285) and (3.286), the following useful identities are readily 

demonstrated: 

F . eo = 0, F· el = 0, 

and 

(3.333) 

(3.334) 

(3.335) 

(3.336) 

Thus, the field tensor and its dual have the effect of rotating these unit vectors 

within their respective two-fiats. 

Using Eqs. (3.310) and (3.311), it is easy to verify that PII leaves eo and el 

unchanged and annihilates e2 and e3, while P.l. annihilates eo and el and leaves 

e2 and e3 unchanged. It is also easy to verify that this tetrad is orthonormal 

with respect to the Minkowski metric; that is, that 

(3.337) 
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So eo and el span the parallel two-fiat, and e2 and e3 span the perpendicular 

two-fiat, as asserted. The geometrical situation is illustrated schematically in 

Fig. 3.1. 

In terms of the eO!, the projection operators may be written 

(3.338) 

and 

(3.339) 

This should be clear from the geometrical picture, but may also be verified by 

direct algebra. 

When applied to the particle four-velocity, these projection operators will 

allow us t<Yisolate the rapid gyrational motion in the perpendicular two-fiat from 

the nongyrational motion in the parallel two fiat. Thus 

(3.340) 

or, if we introduce polar coordinates (w, B) for the perpendicular four-velocity 

components and hyperbolic polar coordinates (k,/3) for the parallel velocity com­

ponents, then we may write 

(3.341) 

or 

u = kt +wc, (3.342) 

where we have defined 

t = eo cosh /3 + el sinh /3 , (3.343) 

and 

(3.344) 

If we also define 
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b = eo sinh,B + el cosh,B, (3.345) 

and 

(3.346) 

then (t, b, c, a) form a new velocity-dependent basis tetrad that is also orthonor­

mal with respect to the Minkowski metric. Please do not confuse the basis four­

vector b with the basis three-vector b, and do not confuse the hyperbolic polar 

coordinate,B with the Lorentz transformation generator (3. 

Some useful relations among the elements of this new basis tetrad are 

at A 

8f3 = b, 
all A 

8f3 = t, (3.347) 

8e A 

89 = -a, 
8il A 

89 = c, (3.348) 

and 

p·t= 0, P·b= 0, (3.349) 

p·c= -ABa, p·a= +ABC, (3.350) 

and 

F·t= -ABb, F·h= -ABt, (3.351) 

F·c= 0, F·a= 0. (3.352) 

Also, the projection operators may now be written 

PII = -tt + hh (3.353) 

and 

(3.354) 

It is useful to compare the above description of the four-velocity in terms of 

(k,,B,w,B) with the more conventional "1 + 3" representation, u = c(-Yv"v{3v), 
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where f3v = v / c. We shall do this using the unit tetrad that we constructed 

above. Combining Eqs. (3.330), (3.331) and (3.341), we find 

. C"Yv = "YE ( k cosh /3 - /3 EW sin 0) 

and 

From these equations, it follows that 

and 

/3 = f3 . b =k sinh/3 
vI - v . "YE(kcosh/3 -/3EwsinO) 

'/3 = f3 . {3 = /3Ek cosh /3 - w sin B 
v2 - v E kcosh/3 - /3EwsinB 

~ -wcosO 
/3v3 = f3v . (b x f3E) = (k h/3 /3 . 0) . FE cos - Ewsm 

k = C"'fEFvV1 - /3;1 - 2/3E/3v2 + /3~/3;1 + /3~/3;2 

/3 = tanh -1 ( FE (1 ~v~E/3v2)) 
w = C"'fEFVV /3;2 + /3;3 - 2!3E{3v2 + {3~ - {3~/3;3 
0= arg (-{3v3 - i"YE({3v2 - (3E)) 

(3.355) 

(3.357) 

(3.358) 

(3.359) 

(3.360) 

(3.361) 

(3.362) 

(3.363) 

Note that. the four coordinates (k, (3, w, B) obey the constraint k2 - w 2 = c2 , and 

this is why they can be determined by the three components of f3 v' Naturally, 

the above transformation eq~ations depend upon the choice we made for the 

unit tetrad. This arbitrariness will be discussed further in Section 3.6. These 

transformation equations will be most useful when we want to compare our results 

to those of other authors who have used "1 + 3" notation; this will be done in 

Section 3.13. 
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3.5 Phase Space Lagrangian for a Charged Par­

ticle in an Electromagnetic Field 

For a relativistic charged particle in an electromagnetic field, one possible choice 

for the Hamiltonian, H, in canonical coordinates, (q, p), is given by [44] 

. 1 ( e )2 
H(q,p) = 2m p - ~A(q) , (3.364) 

and the action one form for canonical coordinates is, by Eq. (2.163) 

,=p·dq. (3.365) 

Note that the independent variable is the partiCle's proper time; the equations 

of motion are thus of the form of Eq. (2.165), but the dot in that equation now 

denotes differentiation with respect to proper time. 

\Ve begin by making a noncanonical transformation to the new coordinates 

(1', u), where 

{ 

r = q 

u = ~ (p- ~A(q)). 
(3.366) 

Thus we have eliminated the unphysical canonical momentum, p, in favor of the 

particle velocity, u. The new Hamiltonian is . 

and the new action one form is 

, m 2 
H (r,u) =-u 

2 

,~= (mu + ~A(r)) . dr. 

(3.367) 

(3.368) 

If we now use Eq. (3.342) to eliminate the four components of u in favor of 

(k, /3, w, 8), then the new Hamilt.onianis 

(3.369) 
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and the new action one fonn is 

(3.370) 

It is important to remember that t and b are functions of r and f3, and c and 

it are functions of r and fi. Thus, the second term in the parenthesis on the 

right" hand side of Eq. (3.370) is rapidly oscillating due to its dependence on () 

(this will be made more precise shortly). We are now ready to apply the Lie 

transform procedure that will effectively average H" and '1" by transfonning to 

gyrocoordinates in which () is ignorable. 

3.6 Gyrogauge and Boostgauge Transforma ... 

tions 

We now discuss the afore-mentioned arbitrariness in choosing the orthonormal 

unit vectors, ea. A boostgauge transformation replaces our choices for eo and el 
as follows: 

e~ = eo cosh 4>( r) - el sinh 4>( r), 

e~ = el cosh 4>(r) - eo sinh'4>(r), 

(3.371) 

(3.372) 

while a gyrogauge transfonnation replaces our choices for e2 and e3 as follows: 

e~ = 4h cos 'l1( r) + e3 sin 'l1(r), 

e; = e3 cos 'l1 (r) - e2 sin 'l1 (r ). 

(3.373) 

(3.374) 

Note that the new unit vectors are still orthonormal, that eo and el still span 

the parallel two-fiat, and that e2 and es still span the perpendicular two-fiat. 

The gyrogauge and boost gauge transformations have simply given each of these 

two pairs of unit vectors a rotation within its respective two-fiat. The amount of 
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rotation is measured by ~ in the parallel two-fiat, and by W in the perpendicular 

two-fiat. Note that these can be functions of the particle's spacetime position, r. 

Recall that we used the unit tetrad to decompose the particle velocity into 

parallel and perpendicular parts, and to coordinatize these by (k, (3) and (w, B), 

respectively. It is fairly easy to see that the transformation given by Eqs. (3.371) 

through (3.374) will have no effect on k and w, but will shift f3 and B. Hence, we 

add 

f3' = f3 + ~(r) (3.375) 

to our boostgauge transformation equations, and 

B' -:- B + w( r) (3.376) 

to our gyrogauge transformation equatons. None of the other phase space coor­

dinates are affected by the transformations. 

Equations (3.371) through (3.376) constitute the full gyrogauge and boost­

gauge transformation equations. A quantity that is left unchanged by these 

transformation equations will be said to be gyrogauge or boost gauge invariant, 

respectively. The concept of gyrogauge invariance has a nonrelativistic analog 

which was first discussed by Littlejohn [41]. In the remainder of this section, we 

shall extend his methods to our relativistic problem .. 

To begin with, we note that the unit vectors (t, b, c, a) are all gyrogauge and 

boost gauge invariant. This is demonstrated for i as follows: 

t-' - , h f3' -, . h 13' = eo cos + e 1 SIn 

= (eo cosh <P - el sinh <p) cosh(f3 + ~) + (el cosh <P - eo sinh <p) sinh(f3 + <p) 

= eo [cosh <P cosh(f3 + <p) - sinh <P sinh(f3 + <p)] 

+ el [- sinh <P cosh(f3 + ~) + cosh <P sinh(f3 + <p)] 

= eo coshf3 + el sinh 13 

- t-· - , (3.377) 

.. 
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the demonstration for the other three unit vectors follows similarly. Because the 

parallel and perpendicular projection operators may be written in the form of 

Eqs. (3.353) and (3.354), their gyrogauge and boost gauge invariance is manifest. 

The fact that the quantities above are gyrogauge and boost gauge invariant 

means that they may be expressed in terms of purely physical tensor quantities; 

more precisely, they may be expressed in terms of quantities that are completely 

independent of our choice of the orientation of the basis tetrad, eo, at each point 

in spacetime. For example, P II and P.l. can be expressed in terms of the field 

tensor, as was done in Eqs. (3.304) and (3.305). The gyrogauge and boostgauge 

invariant quantities k and w can be written in terms of the projection operators 

and the particle four-velocity with the help of Eq. (3.342) 

k = J -u . PII . u, (3.378) 

and 

w=y'u'P.l.'u. (3.379) 

Finally, the members of the tetrad (i, h, c, a) can all be expressed in terms of the 

field tensor and the particle four-velocity, with the help of Eqs. (3.342), (3.350), 

and (3.351) 

~ 1 
t = kPII ·U, 
~ 1 ~ 
b=--F·t, 

AB 
~ 1 P c = - .1.' U, 

W 

~ 1 F ~ a= -- ·c. 
AB 

Now consider the pair of one-forms: 

and 
-+ -.. -+ 

'R == (V e2) . e3 = -(V e3) . e2 =-(V c) . a= -(Va)' c, 

(3.380) 

(3.381) 

(3.382) 

(3.383) 

(3.384) 

(3.385) 
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--where \7 is a shorthand for the spacetime gradient. It is a straightforward exercise 

to show that Q is not boost gauge invariant, and that R is not gyrogauge invariant; 

thil? is essentially because the spacetime derivatives are taken at constant (3 and 

(), and these latter two quantities are obviously not boostgauge and gyrogauge 

--invariant, respectively. First note that V' transforms under a general boost gauge 

and gyrogauge transformation as follows: 

--, -- -- 8 -- 8 
V' =V' -(\7 \f» 8(3 - (V' 'l1) 8()' {3.386} 

where we have made use of Eqs. (3:375) and (3.376). Thus we have 

~/.... A ~ A --+ .... A --+ 

Q' = (\7 b/). t' = [\7 b - {\7 \f»t] . t= Q+ V' -P, (3.387) 

and 
--+ I --+ --+ -+ 

R' = (\7 C'). il' = [\7 C + (\7 'l1)a] . a= R+ V' 'l1. (3.388) 

Here we have used Eqs. (3.347) and (3.348). The one-forms Q and R will be 

useful to us momentarily. Furthermore, they have great geometrical significance 

as will become clear later when we discuss the guiding-center equations of motion. 

We now ask what it means for a general one-form in our phase space to 

be boost gauge and gyrogauge invariant. Using Eq. (2.170), we find that the r 

component of the one-form transforms as follows: 

-- --=;r - (V' -P)-y,s - {\7 'l1)-Ye, (3.389) 

while all of the other components {k, (3, w, and ()) are unchanged. Thus it is clear 

that the charged particle Hamiltonian and action one form given by Eqs. (3.369) 

and (3.370) are boostgauge and gyrogauge invariant, since they have no f3 or () 

components. 

Now we demand that our Lie transformations, when applied to gauge invari­

ant quantities, preserve their gauge invariance. This, coupled with the estab­

lished boost gauge and gyrogauge invariance of the particle action one-form, will 

• 
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guarantee the boost gauge and gyrogauge invariance of the guiding-center action 

one-form. Suppose that we have a boostgauge and gyrogauge invariant scalar 

field, f. Applying the Lie derivative operator, c'g, we find from Eq. (2.30) 

(3.390) 

If we now subject this to a general boostgauge and gyrogauge transformation, we 

find 

.(C f" )' = Ir. ~' f + Ik 8f + If3 8f +' Iw 8f + 19 8f 
g 9 9 8k 9 8{3 9 8w 9 80 

-- 8f - 8f" 8f 
Ir t"7 f + I k + ( I f3 t"7..:F.. Ir) + Iw " = 9 . v 9 - 9 - v ~. 9 - 9 -

8k 8{3 8w 

+ (g'9 _ ~ 'l1. g'r) ~~ , (3.391 ) 

where we have made use of the assumed gauge invariance of f. Thus, Cgf will be 

gauge invariant if all the components of 9 are gauge invariant, with the exception 

of gf3 and g9 which must transform as follows: 

(3.392) 

and 

(3.393) 

Thus, if we use a subscripted "0" to denote a gauge invariant quantity, we see 

that the components of the vector 9 must be of the form 

gr = (gr)o 

l = (gk)o 

gf3 = (gf3)o + Q . (gr)o 

gW = (gW)o 

l = (g9)o + n . (gr)o (3.394) 
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Using the homotopy formula, it is a straightforward exercise to show that this 

result is valid not only for gauge invariant scalars, but alSo for any gauge invariant 

n-form. In particular, this restriction on the form of 9 is necessary to guarantee 

the gauge invariance of the Lie transformed action one-form, so we shall demand 

that it hold in the sections to. follow. 

3.7 The Zero-Order Problem 

We order the particle Hamiltonian and action one-form with the pres'Cription 

e 1-+ e/ €j equivalently~ we could say that we are ordering the electromagnetic field 

at order €-l. The electromagnetic contribution to the canonical momentum thus 

dominates the kinetic contribution. This ordering procedure has been discussed 

at length by Kruskal [45] and by Littlejohn [41]. 

We shall also order the four pot.ential of the electromagnetic field in the pa-

rameter €, so 
00 

i=O 

Clearly, this induces an ordering of the field it.self 

where 

00 

F=L€iFi, 
i=O 

(3.395) 

(3.396) 

(3.397) 

Henceforth! when we refer to the Lorentz scalars (All A2, AE and AB) or to the 

unit basis tetrads or to the projection operators, it is to be understood that they 

are calculated on the basis of the zero order field tensor, Fo. 

The Hamiltonian, Eq. (3.369), is thus an order unity scalar. The particle 

action one-form, Eq. (3.370), may be written 

1 00 . ,= -L€l/i' 
€ . 

1=0 

(3.398) 

.. ' 
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where '"'fo has the component 

'"'fI has the component 

e 
'"'fOr = -Ao(r), 

c 

e ~ 

'"'fIr = -Al(r) + mkt + mwc, 
c 

and '"'fi has the component 

for i > 2. All components not listed above are zero. 

111 

(3.399) 

(3.400) 

(3.401) 

Suppose that we now write the equations of motion to lowest order as WO' Z = 0, 

where Wo == d'"'fo. This turns out to be an instructive exercise even though, as we 

shall see in a moment, it is somewhat misleading. We see that the only surviving 

component of Wo is 
e 

WOrr = -Fo, 
c 

so we get the following equation of motion: 

Fo' r = o. 

(3.402) 

(3.403) 

Now we know that i is never zero, so Fo must have at least one null eigenvector 

with nonzero time component. In particular, this must be true in a preferred 

frame, for which {3E = O. Thus the parallel two-fiat must be the nullspace of Fo. 

So we demand that 

(3.404) 

where we again emphasize that AE is computed from Eqs. (3.282), (3.287), (3.288) 

and (3.292) using Fo in place of F. This is a restriction on the allowed zero order 

"fields. It is the relativistic analog of the usual nonrelativistic restriction that 

Ell = 0 to lowest order. Recall that we used this assumption in Section 3.4 when 

we-first discussed the basis tetrads. 
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Thus, when we order the four potential in €, we must keep in mind that the 

field derived from Ao should have no Ell' If we have a problem in which there 

is nonzero Ell' then it must be included in An where n 2: 1. In particular, it 

could all be put into AI' The only reason for keeping An where n 2: 2 in our 

theory is that sometimes a problem admits another expansion parameter in the 

field geometry (the stellarator expansion parameter and the long-thin parameter 

in mirrors are examples), and in some asymptotic theories that other expansion 

parameter may be taken to be equal to the guiding-center expansion parameter. 

In such cases, one might want to expand the field in a general power series in €, 

rather than just restrict oneself to the use of Ao and AI' 

Thus, Eq. (3.403) constitutes only two independent conditions on the four 

components of r. Dotting it with c and it and using Eq. (3.350) gives c . r = 

it· r = 0, so r must lie in the parallel two-flat; that is, the particle motion is 

constrained to lie along the field lines like that of a bead sliding along a wire. 

The rapid oscillatory motion is then considered to be a modification to this motion 

along the field lines, to be transformed away except for the residual perpendicular 

drifting motion. 

What is perhaps most disturbing about Eq. (3.403) is that it gives only two 

dynamical equations of motion when there are really eight independent phase 

space coordinates. It gives us no description of the motion along the field lines, 

and no description of the rate of change of the velocity components. This is 

because the matrix of components of the zero order Lagrangjan t.wo-form is a 

eight by eight- matrix whose rank is only two. This is thus an example of a 

problem in asymptotics with no well-defined limit problem; this phenomenon is 

by no means rare and has been discussed in a general context by Kruskal [46]. 

To get a better idea of what is going on here, we should consider the full 

particle equations of motion, retaining the lowest order nonzero contributions to 
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each component of W ~ d'Y, even if some are higher order than others. We find 

e 
Wrr = -Fo + 0(1), 

€C 

Wrk = -mt, 

Wrf3 = -mkb, 

Wrw = -me, 

Wr(J = +mwa, 

(3.405) 

(3.406) 

(3.407) 

(3.408) 

(3.409) 

with all other components vanishing. Forming the equations of motion, w' • .i = 

8H/8z, we find that 

r = kt +wc, (3.410) 

so there is no longer any ambiguity in the parallel motion. Similarly we can now 

find the equations of motion for the velocity components. We get 

and 

Ie = 0(1), 

/3 = 0(1), 

to = 0(1), 

. 1 () = -nB + 0(1). 
€ 

(3.411) 

(3.412) 

(3.413) -

(3.414) 

This makes it clear that the dominant motion at lowest order is the gyration, in 

accordance with our intuition. Thus, as € -+ 0, we have the rate of change of B 

dominating that of all the other dynamical variables, including T. Hence, averages 

over the unperturbed motion will simply be averages over B . 

Note that in order to get this zero order equation of motion, we needed 'Yr 

. only to order €-l, while all the other com:ponents of'Y were needed to order unity. 

This peculiar mixing of orders persists to higher order; so to obtain the n-th order 

guiding-center equations of motion, we will need 'Yr only to order n - 1, while all 

the other components of 'Y will be needed to order n. 
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3.8 The Preparatory Lie Transform 

All treatments of guiding-center motion share one feature in common: In the 

transformation from particle position, 1', to guiding-center position, R, they all 

include the term, -wafflB. This is the gyroradius vector, and it is the most in­

tuitive term in the entire guiding-center transformation (indeed, one might argue 

that it is the only intuitive term in the entire guiding-center transformation). 

We shall make this transformation before we do anything else, as this was found 

to facilitate the remainder of the calculation in Littlejohn's nonrelativistic treat­

ment [7]. 

From Eqs. (2.30) and (2.215), we see that, to first order, the difference between 

z and Z is simply given by the components of the generator vector, 9. So since 

we want to have R = l' - wafflB, we see that we should choose 

r W ~ 
9p = - OB a, (3.415) 

where the subscript "p" denotes "preparatory." 

Now 9; is clearly boostgauge and gyrogauge invariant, but from Eq. (3.394) 

we see that a Lie transform generated by this vector alone would not preserve 

the gauge invariance of the action one-form. Consequently, we must append the 

following additional components to 9p: 

9: = _n
w a· Q, 

. HB 
(3.416) 

and 

() w ~ ", 
9p = - OB a . ,'-. (3.417) 

First note that the Hamiltonian, Eq. (3.369), is unaffected by the preparatory 

Lie transform because it is independent of r, f3 and (J (so LpH" = 0). Next, using 

Eqs. (2.272) through (2.275), we calculate the new action one-form resulting from 

the transformation generated by this vector. This transformation takes place at 
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first order only, so we may set 91 = 9p and 92 = 93 = 0 in those equations. Also, 

since we are interested in calculating the guiding-center equations of motion to 

third order (this turns out to be one order higher than the usual perpendicular 

drifts), we do not need r 3 7" 

At zero order, we have the obvious 

ro = ,0' 
This has the single nonzero component, 

e r 0 7' = -Ao. 
c 

The corresponding Lagrangian two-form, Wo, was given in Eq. (3.402). 

(3.418) 

(3.419) 

Moving on to first order, it is readily found that ipwo (where, in keeping with 

past convention, ip = i91,) has only one nonzero component, 

(3.420) 

We take SI = 0, so Eq. (2.273) gives the following nonzero component for f 1 : 

e A rl7' = -AI + mkt. 
c 

(3.421) 

Note that the aforementioned rapidly oscillating term, mwc, has been removed 

from ,1 r by the transformation. 

Before proceeding to second order, we need to calculate WI = d'Yl and 0 1 = 
df 1. The first of these has the following nonzero components: 

e --+,.,.~ 

W17'7' = - FI + mk(V t - t V) 
c -+ mw(V c - c V), 

WI7'k = -mt, 

Wl~t3 = -mkb, 

Wlrw = -me, 

WI7'9 = +mwa. 

(3.422) 

(3.423) 

(3.424) 

(3.425) 

(3.426) 
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The second has the following nonzero components: 

e --+....... +--

OIrr = -FI + mk(V t - tV), 
C 

f2Irk = -mi, 

Note that we have introduced the notation i V for the transpose of ~ t. 
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(3.427) 

(3.428) 

(3.429) 

We are now ready to proceed to second order. First note that !iPWI has the 

following nonzero components: 

(3.430) 

and 

(3.431) 

Next note that !ip Ol has the single nonzero component, 

1 1 w [e - ~ ~ - ] (-i 0 1 ) = - - - it· - Fl + mk( V t . P.l. - t V) 2 p r 2!1B C • 
(3.432) 

Now, using Eq. (2.274) and choosing S2 - 0, we can write down the nonzero 

components of r 2 , 

(3.433) 

and 

(3.434) 

Note that r2r has rapidly oscillating tenns; these will be removed by subse­

quent Lie transforms. Also note the appearance of the gyromomentum as the f) 

component of r 2. 

.. 
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Moving on to third order, we recall that we do not need r 3r. Referring to 

Eq. (2.275), it is easily seen that ,3 and ipW2 both have only an r-component, so 

we do not bother with these terms. Then ~ipdipWl has a nonzero T-component 

which we shall not calculate, and it also has a nonzero () component given by 

(3.435) 

Similarly, ~ipdipnl has a nonzero r-component which we shall not calculate, and 

it also has a nonzero () component given by 

(3.436) 

Taking S3 = 0, we see that. the nonzero components of r 3 are r 3r and 

(3.437) 

Note that this has rapidly oscillating terms which will have to be removed by 

subsequent Lie transforms. This completes the preparatory transformation. 

3.9 The Averaging Lie Transforms 

We now perform the averaging Lie transformations that will take us to the 

guiding-center action one-form. These are somewhat more difficult than the 

preparatory transformation, since we do not know the generators in advance. 

For economy of notation, we reset our variables as follows: We shall henceforth 

refer to the Hamiltonian and action one-form that resulted from the preparatory 

transformation as H" and " respectively, and these new Lie transforms will take 

us to Hilt and r. 
First consider the action one form. Once again, nothing changes at order zero, 

so 

rO = ,0, (3.438) 
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and the only nonzero component of this is 

e 
rOr = -Ao· 

c 

118 

(3.439) 

The corresponding Lagrangian two-form, Wo, was given in Eq. (3.402); its only 

nonzero component was WO rr ' 

At order one, we take gr = 0 and 51 = 0 because we have already succeeded 

in averaging r 1 r by the preparatory transformation, and we don't want to ruin 

this. It follows that i1WO = 0, and so r 1 = ,1, The only nonvanishing component 

of r 1 is then 
e . ~ 

r1r = -AI + mkt. 
c 

(3.440) 

Note that we have not yet had to specify g;, Ii, gf, or gf, since it is clear that 

these have no effect on r l' These components of gl will be useful in the averaging 

of r 2 • Also note that 0 1 = WI is given by Eqs. (3.427) through (3.429). 

A word of caution is in order concerning the coordinate r. It is not altered 

in any way by the transformation. This means that after we complete the trans-
-

formation to guiding-cent.er coordinates, r will still be the single-particle proper 

time; it will not be the guiding-center proper time. So g/J-vdr/J-drv = _&r2 , but 

9 /J-V dR!-L dRV i= - dr2. Thus, throughout the remainder of this calculation, it is best 

to regard r as simply an orbit parameter, devoid of relevant physical significance. 

Now we proceed to second order. Note that i2WO has only an r-component, 

(3.441) 

Next note that ~il01 = ~i1W1 has the following nonzero component: 

(3.442) 

We then take S2 = 0 because we have already succeeded in averaging r 29 by the 

preparatory transformation, and we don't want to ruin this. Equation (2.274) 
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then gives the following nonzero components fo~ r 2 : 

(3.443) 

and 

(3.444) 

We now proceed to third order, and once agam we do not need the r­

component of r 3 • Referring to Eq. (2.275), it is easily seen that i3WO has only 

an r-component, so we do not bother with this term. Then i 2!l1 = i2W1 has a 

nonzero r-component which we shall not calculate; its other nonzero components 

are 

(3.445) 

and 

(3.446) 

Next, i1W2 has a nonzero r-component which we shall not calculate; its other 

nonzero components are 

(3.447) 

and 

(0) mw w 
ZlW 2 (J = + OB 91 . (3.448) 

Next, ~i1di.1(W1 + ~fh) = ~i1di1W1 has a nonzero r-component which we shall 

not calculate; it has no other nonzero components. From Eq. (2.275) we see that 

the nonzero components of r 3 are r 3r and the following: 

(3.449) 

(3.450) 
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(3.451) 

and 

(3.452) 

Now we apply the Lie transform to the Hamiltonian. This is straightforward, 

and we ge~ 

H'" = Ht + €H~' + 0(€2), (3.453) 

where 

(3.454) 

and 

H '" k k w 2 = m 91 - mW91 . (3.455) 

Thus, the Hamiltonian, which emerged unscathed from the preparatory Lie trans­

form, may indeed be modified by the averaging Lie transform. 

We must now choose the vector generator components, 9;, 9~, if ,gf ,and 9~, 

and the scalar gauge transformation generator, 53, in order to average and max­

imally simplify r 2r , H~", r 3k , r 3 ,B, r 3w , and r 39 • These are given by Eqs. (3.443), 

(3.455), (3.449), (3.450), (3.451), and (3.452), respectively. We proceed by taking 

the averaged parts of these equations, . 

(3.456) 

(3.457) 

(3.458) 

(3.459) 

• 
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mw -8 883 
r 3w = OB 91 + 8w' 

mw
2 

( e ) [( e ) (- A A 0+-)] r 38 = - 401 mc Fo: mc FI + mk 'V t - t 'V 

mw - 883 

- OB 9i + 8() , 

and the fluctuating parts, 

0= 0: a· [~ +mk (v t· P.L - tv) ] 
mw

2 
(A - A A -- A) R + -- a' 'V c + c· 'Va· II 

40B 
e- -k A ir 

- -92 . Fo - m9! t - mk91 b, 
c 

0= mkg; - mwgf, 

- A 853 
o = m9~ . t + 8k ' 

o - A 853 
o = mkg2 . b + 8(3' 

o _~"8 853 

- OB 91 + 8w' 

mw3 mw - 853 
o = - 30~ - OB gi + 8() , 

121 

(3.460) 

(3.461) 

(3.462) 

(3.463) 

(3.464) 

(3.465) 

(3.466) 

(3.467) 

where we have demanded that the Hamiltonian and one-form components them­

selves be purely averaged. In the above equations, an overbar denotes the aver­

aged part of a quantity, while an overtilde denotes the fluctuating part. 

Solve Eq. (3.467) for 853 /8() in terms of 9r. Then use Eq. (3.463) to get 9f 
in terms of 9} Then dot Eq. (3.462) with t in order to get g} The result is 

853 mw
3 

A - k {w [e A A ] - = --a· 'V OB - - - -a· FI·t -mk(tta) 
8() 30~ OB OB c 

mw
2 

} + 40 B [( act) + (cat)] , (3.468) 

where the abbreviation (act) is shorthand for a· V c . t, etc. Now this equation 
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is easily integrated to give 

- . mw3 
-- wk [e A ] 

53 = - 3S13 C· V S1B + 0 2 ' ~C. PI' t - mk(ttc) 
B B 

mw2k + S12 [( ata) + (dc)] . 
8 B 

(3.469) 

We can now back substitute to get the oscillatory parts of the vector generator 

components, 

- W A kw w2 g; = ,t. PI . a + n-(tta) - n- [(act) + (cat)], 
AB HB. 4UB 

(3.470) 

- W A W w 2 

It = kAB a· PI . b - S1B (bta) + 4kS1
B 

[(acb) + (cab)], (3.471) 

_ k A k 2 kw 
g~ = -t· PI . a + -(tta) - - [(ad) + (cat)], 

AB f2B 4f2B 
(3.472) 

"8 w A -+ n k AF A 
gl = -c· V HB - --c· l' t 

f2~ WAB 
k 2 k + ~(ttc) - n- [(ata) - (dc)] , 

WUB 4UB 
(3.473) 

and 

Next we consider the equations for the averaged parts of the generators, 

Eqs. (3.456) through (3.461). These constitute nine equations (Eq. (3.456) is 

really four equations) in seventeen unknowns (the nine components of r, and the 

eight components of g). Thus, we can choose eight unknowns at will. So we 

demand 

e mw2 

r 2 =-A2 ---R 
r c 2f2B' 

~3k = 0, 

(3.475) 

(3.476) 

(3.477) 

.-
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(3.478) 

and 

(3.479) 

Here we have retained the term involving R in r 27'" in order to preserve boost gauge 

and gyrogauge invariance, according to Eq. (3.389). Taking 83 = 0, we can noW. 

solve for g. We get 

g1 =0, 

- w 2 

g; = ---n- [(cat) - (act)], 
4uB 

- w 2 

g~ = - 4kOB [(cab) - (acb)J, 

- w ~ ~ kw [( ) -( )] g-r' = ~a· FI . c + -,::;-- atc - eta , 
2AB 2HB 

if = o. 

We can now solve for H~" using Eq. (3.457) to get 

. 2 k 2 
11/ mw ~ ~ m w [( ) ( )] H2 = ---a·FI·c- atc - eta 

2AB 40B 

mw
2 

( e ) = 40~ mc Fo: [ ( e) k (--+ ~ ~ -) 1 mc FI + 2 \7 t - t \7 . 

This completes the averaging transformation. 

(3.480) 

(3.481) 

(3.482) 

(3.483) 

(3.484) 

(3.485) 

Henceforth, we shall write transformed quantities as functions of the guiding­

center variables (R,K, B, W, 8) instead of their lower-case counterparts. Note 

that this has no mathematical significance, and is done only to emphasize the 

physical interpretation of the various quantities that emerge from the theory. We 

regard functions in the mathematicians' sense of the word: functional arguments 

are nothing more than dummy placeholders. 

We may now write out the full guiding-center Hamiltonian and action one 

form to the above-described order. We have 

11/ m ( 2 2) m W
2 

( e ) [( e ) H2 = - -K + W + €-02 - Fo: - FI 
2 4 B me me 
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(3.486) 

and 

Note that f} is an ignorable coordinate, so that its canonically conjugate momen­

tum, J.L = mW2/2O, B , is conserved. This can now be identified as the gyromo­

mentum, and it is useful to eliminate the coordinate W in favor of J.L. The results 

will be denoted 

(3.488) 

and 

[ 
e A 2 ] 

rgc = €c A + mKt - €J.l'R + O(€) . dR + €J.LdE>. (3.489) 

This is the form of the guiding-center Hamiltonian and action one form that will 

be used in subsequent sections. Note that the order € term in the Hamiltonian 

may be neglected if only the classical drifts (usual gradient, polarization and 

curvature drifts) are desired. 

3.10 The Guiding-Center Poisson Brackets 

As a first step towards writing down the guiding-center equations of motion, we 

form the guiding-center Lagrangian two-form. The nonzero components are 

e --+,.. ",+--

ORR = -(Fo + €F') + mK(V t - tV), 
€C 

o'RK = -mi, 

o'RB = -mKb, 

(3.490) 

(3.491) 

(3.492) 

.. 
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o ( classical order) 

€R (higher order), 
(3.493) 

(3.494) 

where 

F'= { 
Fl ( classical order) 

Fl + €F2 - €: J.LN (higher order), 
(3.495) 

and 

.N'=dR. (3.496) 

Here we have drawn a distinction between two cases, just as we did with the 

Hamiltonian. Terms of classical order are all that are necessary to retain if only 

the usual gradient, curvature and polarization drifts are desired. If one would 

like the equations of motion to one order higher than that, one must also retain 

the terms labelled higher order. This makes a difference only in ORIl- and in the 

definition of F'. 

Now we can get the Poisson brackets using Eq. (2.168). We do ,this by in­

verting the eight by eight matrix consisting of the components of O. This is a 

tedious but straightforward exercise, and the nonvanishing results are presented 

below. We have performed this matrix inversion for both the classical-order and 

the higher-order cases separately. 

{R,R} = _ €Fo , 
. mABOBT 

i 
{R,K} = --·3, 

m 

{R,B} = ~ ·S, mK 

{ 

0 
{R, 8} =, 

€{R,R}. R 

(classical order) 

(higher order), 

e A II A 

{K B} = --t . -=: • F . b , m 2ck..... , 

(3.497) 

(3.498) 

(3.499) 

(3.500) 

(3.501) 
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{K,0} = 

{B,0} = 

and .' 

{ 

0 

€{K,R}· R 

{ 

0 

€{B,R}· R 

( classical order) 

(higher order) , 

( classical order) 

(higher order), 

where we have defined the scalar 

and the tensors 

and 

€Fo : F" . 
T = 1 + ,A2 ' 2 B 

..... €F" . Fo 

.::. = 1 + >'~T 

. mcK - ~ A <-

F" = F' + --(V t - t \7), 
e 

126 

(3.502) 

(3.503) 

(3.504) 

(3.505) 

(3.506) 

(3.507) 

and where F' is given by Eq. (3.495). Note carefully that the bracket of R with 

R is nonzero because R is really four coordinates; thus {R, R} is a four by four 

antisymmetric matrix and, consequently, its diagonal elements vanish but the 

rest of it may be nonzero. 

Note that ° and J.I. are decoupled from the other dynamical variables at the 

classical order, but that ° is not decoupled at higher order. The reason for 

this will be clarified shortly, but for now we note that this coupling is not at all 

problematic. The important point is that the set of functions of R, K and B form 

a subset of the set of all phase functions that is a closed Lie subalgebra under the 

operation of these Poisson brackets. Then, since our Hamiltonian is independent 

of 0, we can eliminate that degree of freedom and still have a valid Hamiltonian 

system for guiding centers. This is an example of the reduction of a Hamiltonian 

system, discussed in Chapter 2. 

" 

... 
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Next note that we could have expanded all of the above expressions in pure 

power series in €. For example, T appears in the denominators of several brackets, 

and consists of an order one tenn and an order € tenn. One might argue that, 

since our expressions are valid only to a certain power of € anyway, we ought 

to expand this in powers of €. There is, however, a compelling reason not to 

do this: The above brackets are guaranteed to obey the Jacobi identity exactly 

because they are elements of the inverse matrix of the matrix of components of the 

Lagrange tensor which obeys dO = ddT' = O. If we were to expand the brackets in 

€, and retain € only to a certain power, then the Jacobi identity would be satisfied 

only to that power of €. Now one might counter that in an asymptotic theory of 

this nature, that is all we have a right to demand. In practice, however, guiding­

center equations of motion are often integrated numerically, and violations of 

the Jacobi identity invalidate Liouville's theorem which guarantees phase space 

area preservation. This, in turn, can lead to an observed ''fuzziness'' of KAM 

tori which might cause one to draw erroneous conclusions about the presence of 

stochasticity. 

To elaborate on this last point, in studies of mirror-confined plasmas, for 

example, one might integrate the guiding-center equations numerically and pro­

duce a "puncture plot" of the .places where the trajectory of the guiding center 

intersects the midplane of the device. If such a plot exhibits stochasticity, one 

might well expect the radial transport of the plasma to be enhanced significantly 

as compared to a case for which the plot is a smooth KAM surface. Thus, in a 

study of mirror-plasma radial transport, one might vary some parameter to see 

for what value this transition from regular to stochastic motion takes place. The 

decision might be made by comparing the numerically-generated puncture-plots 

for several different parameter values in some range. Yet if one uses guiding­

center equations of motion that do not satisfy Liouville's theorem exactly, one 

runs the risk of misinterpreting "fuzziness" in plots that is due only to violations 
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of Liouville's theorem (which is, after all, the only reason that KAM tori exist in 

the first place) as the presence of true stochasticity. 

This is why we inverted the Lagrange tensor for the classical and the higher­

order cases separately, rather than do a single inversion for the higher-order case 

and truncate to get the classical case. As things stand, the brackets for both 

cases presented above are guaranteed to satisfy the Jacobi identity exactly. 

3.11 Guiding-Center Equations of Motion 

These brackets together with the Hamiltonian, Eq. (3.488), give the guiding­

center equations of motion according to Eq. (2.169). First consider the equation 

for R. To the classical order, this may be written 

R = {R,R}· J.L V S1B - {R,K}mK 

= Kt + >.~ T (Kt . F" + ~J.L V S1 B ) • Fo· (3.508) 

The first term contains the usual parallel motion and the E x B drift. The order 

€ contribution consists of two parts: The first contains the relativistic analog 

of the curvature and polarization drifts (they are in F"), and the second is the 

relativistic analog of the grad-B drift; these statements will be clarified when 

we cast these results in "1 + 3" notation. Of course, the above apparatus is 

sufficient to get R to one order higher than this, but the expression itself is 

ratherunenlightening to look at, so we shall not bother to write it down. 
. . 

The equations for K and B are then 

1< = {K, R}· J.L V HB 

(3.509) 

and 

B = {B,R}. J.L V S1B - {B,K}mK 

". 

.. 
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/-LA -+ eA A = - -b . :=;. V nB - -t . :=; . Fit . b. 
mK. me 

(3.510) 

-+ 

The terms containing V nB contain the mirroring force, and the contribution of 

FI contains the force due to the parallel electric field; once again, these statements 

will be clarified when we cast these results in "1 + 3" notation. 

Next note that fJ, is exactly zero, even at the higher order; this, of course, was 

our aim all along. The higher order equation of motion for E> is 

. 1 . £ [( e ) K (- A A +-)] 
E> = -;nB + £R· R + 2AB Fo : ~c FI + 2" V t - tV. (~.511) 

The first term is the lowest-order gyromotion. The second term arises from 

the bracket structure, and corrects for the possibility that as the guiding-center 

moves in R, the perpendicular unit vectors upon which the definition of E> is based 

may rotate within the perpendicular two-Hat. This term arose from our demand 

of boostgauge and gyrogauge invariance, and it is the reason that the Poisson 

bracket of E> with R, K, and B cannot vanish at higher order. The necessity of 

this has been discussed by Littlejohn [41] and by Hagan and Frieman [42]. 

The third term on the right side of Eq. (3.511) arises from the first-order piece 

of the Hamiltonian and consists of two subterms in the square brackets. The first 

of these subterms is the correction to the gyrofrequency due to Fl' To see this, 

define the total gyrofrequeney due to both Fo and FI by nBT = eABT/me, where 

ABT is given by Eq. (3.293). We quickly find 

e J1 . nBT = - -(Fo + €Fl ) : (Fo + £FI ) + 0{£2) 
me 2 

= -=-. /A~ + €Fo : FI + 0(€2) 
me Y 

= nB + ~ (-=-) Fo : FI + 0(£2). 
2AB me 

(3.512) 

The second subterm of the third term on the right of Eq. (3.511) is the gy­

rofrequency shift due to gradients of the perpendicular electric field. This is not 

expected to .be obvious, and will be discussed further in Section 3.13, when we 

cast our results in "1 + 3" notation. 
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The geometrical significance of the second term in Eq. (3.511) is illustrated 

in Fig. 3.2 (here we temporarily revert to using lower-case r and 0). In order 

to compare the unit tetrad at one point in spacetime, r, with that at another 

point, r + or, (to see how much it rotated) we need some way of transporting 

the unit vectors from one point to another. The correct way of doing this was 

elucidated by Littlejohn [41]. Since we have assumed flat spacetime throughout 

this calculation, we can simply translate the' unit vector e2 from r to r + Or in 

the usual manner of Euclidean geometry. Of course, when we arrive at r + or, 
the translated unit vector,called e2, will not be the same as the unit vector e2. 
Furthermore, it need not even lie in the perpendicular two-flat. To remedy this, 

we project it onto the perpendicular two-flat and normalize the result to get a 

new unit vector, called e2* .The angle between e2 and e2* at the point r + or is 

defined to be 00. The calculation goes as follows: 

e; (r + or) = e2 ( r ) 

= e2( r + or - or) 
-+ 

= e2(r + or) - or· '\7 e2(r + or)+ 
1 ...... -+ 

-oror :\7'\7 e2(r + or) + .... 2 . (3.513) 

Henceforth, all quantities are evaluated at the point r + or so this will not be 

noted explicitly. Continuing, 

Thus 

002 

cos 00 = 1 - - + ... 
2 

(3.514) 

• 

.. 
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so we identify 

~ ~ ** = e2' e 2 

1· -+ 2 
= 1 - 2 (8r. V e2 . e3) + ... 

= 1 - ~ ('R. 8r)2 + .. , 
·2' 

8B = 'R. 8r. 

131 

(3.515) 

(3.516) 

This is the change in () due to the rotation of the unit vectors alone, and it 

explains the second term on the right of Eq. (3.511). A similar term, Q . R, 

would appear in the equation of motion of B if we went to higher order. 

It was noted by Littlejohn [41] that the one-form, 'R is the poteritiC!.1 for the 

gauge field IV = d'R which obeys the field equation dA! = dd'R = O. In the 

relativistic problem, we also have the gauge field M = dQ, and this also obeys 

dM = ddQ = O. These are the gauge fields corresponding to the boost.gauge and 

gyrogauge gauge groups. Note that M and IV are gauge invariant even though Q 

and 'R are not. Thus, they can be expressed in terms of t.he field tensor directly; 

in index notation 

1 'l:"er n-yf3 P 
M~II = >'B or ,BAli tIL Iher,II' (3.517) 

and 

(3.518) 

The R term of the guiding-center Lagrangian, Eq. (3.489), thus couples the two 

gauge potentials, A and 'R, and the coupling constant is the gyromomentum. 
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x 

1 -- XBL 876-3017 --, 

Figure 3.2: Change in Gyroangle due to Rotation of Basis Tetrad as Guiding 

Center Moves in Spacetime 

.. 

.. 
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3.12 Summary of Guiding-Center Transforma-

tion 

The entire transformation that we have made from the particle coordinates may 

be written in the form of Eq. (2.214) as follows: 

(3.519) 

It is possible to expand these equations in €, and plug in our expressions for 

the generators to get the coordinate transformation equations. For reference, we 

present these here: 

R = r _ €wa + €2 { w
2 a. ~ ( a ) 

DB 20B DB 

w 2a· 'Rc w A 

+ 0 2 + A 0 (PI! - P..L) . PI . C 
2 B B B 

2kw A w 2 
A 

- 0 2 (ttc)t + 0 2 [( ata) - (etc)] t 
B 8 B 

kw A w 2 
A 

+ 0 2 [(btc) + (tbc)] b - 0 2 [(aba) - (cbc)] b 
B 8 B 

+ ~i. [( eta) - (atc)] a} + O( €3), (3.520) 

[
kw w2 

K = k + € 0 B (tta) - 20 B (ad) 

+ A: i . PI . a] + O( €2), (3.521) 

[ 
w2 W 

B = f3 + € 2kOB (acb) - DB [(bta) - (atb)] 

•. w A ] 2 
- kAB b . PI . a + O( € ), (3.522) 

[ 
k2 kw 

W = w + € -(tta) - -[3(act) - (cat)] 
DB 40B 

k A F A WAF A] O( 2) +-t· I·a+-a· I·e + €, 
AB 2AB 

(3.523) 

and 
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[ 
k2 k w e = 8 + € --(ttc) - -[(ata) - (ctc)] - -(aca) 

WOB 40B nB 

w A -+ n k A F A] O( 2) 
+ O~ C' V' UB + W>"B t· I' C + £. (3.524) 

In the above equations, the capitalized variables are the guiding-center coordi­

nates and the lower case variables are the particle coordinates; it is emphasized 

that all quantities on the right hand sides of these equations (e.g. unit vectors, 

field tensor, etc.) are evaluated at the particle coordinates. The inverse transfor­

mation is given by 

R €Wa 2{ W2 A -+ ( a ) W (R P) F A ". = + -- + £ --a· V' - - II - .1 ' I' C 
OB 20B OB >"BOB 

A [2KW W
2 

] + t O~ (ttc) - 8n~ [(ata) - (ctc)] 

A [W2. KW ] + b 80~ [(aba) - (cbc)] - O~ [(btc) + (tbc)] 

[ 
W2 -+ K A K2 

+c --c· V'OB + t·FI,c- -(ttc) 01 >"BOB 0 2 

KW W2] + r\'2 [( ata) - (ctc)] + n2 (aca) 
4~£B 2~£B 

A[ WAF A K A F A + a-a· l' C - t· l' a 
2>"BOB >"BOB 

K2 KW ]} - 0 2 (tta) + 40~ [3(cat) - (act)] + 0(£3), (3.525) 

[
KWW2 

k = K - € OB (tta) - 20B (act) 

W A ] 2 + >"B t . FI . a ~ O( € ), (3.526) 

[ 
w2 W 

(3 = B - £ KO (acb) - -[(bta) - (atb)] 
2 B OB 

- K~B b . FI . a] + O( £2), (3.52i) 

[
K2 KW 

w = W - £ ;:;-(tta) - n-[3(aci) - (cat)] 
HB 4HB . 

K A F A WAF A] O( 2) + -t· l' a + -a· l' C + €, 
>"B. 2>"B 

(3.528) 

.. 



'. 
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and 
K2 K W 

B = 0 - €[--(ttc) - -[(ata) - (etc)] - -(aca) 
WS1B 4S1B S1B 

W -+ KA ] 2 + S1~ c· V S1B + W,xB t· Fl' C + O(€ ). (3.529) 

In the above equations, everything on the right is evaluated at the guiding-center 

position. 

Recall that the gyromomentum in guiding-center coordinates 1S g1ven by 

mW2/2S1B. In particle coordinates, this m,ay be written 

, mw2 
{ mw3 

-+ mw [ W 
f..Lpart = -- + € --a· V' S1B + -, --a· FI . C 

2S1B 2S11 S1B 2,xB 

k A A k
2 

kw ]} + ,xB t· Fl' a + S1
B 

(tta) - 4S1B [3(aet) - (cat)] + O(€213.530) 

This expression is useful because it gives the conserved quantity in terms of 

particle coordinates. 

3.13 Comparison with Three-Vector Formula-

tions 

In order to compare our results with the three-vector formulation g1ven by 

Northrop [43], we must be able to cast our results into "1 + 3" notation. We 

learned how to do this for the particle coordinates back at the end of Sec­

tion 3.4 where we gave the explicit transformation equations, Eqs. (3.357) through 

(3.363). These are scalar equations in phase space, and so they will retain their 

form under the guiding-center Lie transform. We need only to replace (k, (3, w, B) 

by (K,B, W,0), and to reinterpret f3 v as the guiding-center three-velocity (di­

vided by c). Then we can write down the equations of motion for f3v by dif­

ferentiating Eqs. (3.357) through (3.359) with respect to proper time, using the 

known equations of motion for the guiding-center coordinates, and expressing the 

results back in terms- of f3 v by using Eqs. (3.360) through (3.363). 



CHAPTER 3. RELATNISTIC GUIDING-CENTER THEORY 136 

The above-described program seems rather tedious. Fortunately, there are 

two things that we can do to simplify the task. First, we need only check our 

results to the order of the classical drifts. This is the order given in the text by 

Northrop [43]. Second, we can check our results in one of the "preferred" frames 

of reference, as were described back in Section 3.4. IT they hold there, they have 

to hold in all other :.frames as well because our results are in manifestly covariant 

format. These two simplifications make the problem straightforward. 

First note that in a preferred frame {3E = 0, so Eqs. (3.357) through (3.363) 

become 

and 

{3vl = tanhB 

{3 - WsinE> 
v2 - - K coshB 

{3 
- WcosE> 

v3 - - KcoshB 

K = CfvV1 - {3;1 

B = tanh -1 {3vl 

W = Cfv V {3;2 + {3;3 

e = arg( -{3v3 - i{3v2) , 

(3.531) 

(3.532) 

(3.533) 

(3.534) 

(3.535) 

(3.536) 

(3.537) 

where, as noted in the last paragraph, all variables are now guiding-center vari­

ables. In particular, the equations 

K coshB = Cfv (3.538) 

and 

(3.539) 

where VII = c{3vll will turn out to be particularly useful. The quantity B is 

sometimes called the rapidity. 

.. 



.. 

CHAPTER 3. RELATNISTIC GUIDING-CENTER THEORY 137 

Next note that, in a preferred frame, the unit vectors that we constructed in 

Eqs. (3.330) and (3.331) can be inserted into Eqs. (3.343) and (3.345) to yield 

t = ( cosh B ), b =( sinh B ). 
bsinhB bcoshB 

(3.540) 

These will also be useful in what follows. 

Now examine Eq. (3.508). We can consider the terms individually. First 

Kt-A ( IVC ) 

- IvVll b · 

follows immediately. Next 

where 

A "A mcK A - A 

t . F = t . FI + --to V t 
e 

= t· FI + -- coshB-- + sinhBb· V t A mcK ( 1 a ) A 

e cat 

A mcvlI 2 ( 0 ) = t·FI + --Iv 
eK ~~ + VII b . Vb 

+:;;/;( 0 ), 
8~l + Vllb. VUE 

ExB 
UE = c B2 ' 

. (3.541) 

(3.542) 

(3.543) 

also follows after a short computation. Note that UE vanishes in a preferred 

frame, but its derivatives may not; thus we had to apply the derivative to t . 

before specializing to a preferred frame. 

Next we write the components of FI as follows 

(3.544) 

Recall that EI must contain all of the parallel electric field. 



CHAPTER 3. RELATIVISTIC GUIDING-CENTER THEORY 138 

It now follows from Eq. (3.508) that 

d = Cfv + O(€) (3.545) 

and 

(3.546) 

where 

(3.547) 

Now take the perpendicular part of it by dotting it with 1 - bTbT, then divide 

by i to get 

d~t = n€B bT x {'v [VII (a!T + vllbT· V'bT ). 

+ (a~E + vllbT. V'UE) 1 + :'v V'S1B } + O(€2). (3.548) 

This is identical to Eq. (1.76) in the te~t by Northrop [43] in a preferred frame. 

Recall that ),B = B in a preferred frame, so that S1B in the above equation 

is simply eB fmc. The classical curvature, gradient and polarization drifts are 

readily visible in the above equation. If we had instead done the calculation for 

a general frame of reference, the E x B drift would appear as well. The reader is 

referred to Northrop [43] for a good discussion of these results. 

Next differentiate Ivvil = K sinh B to get 

d 1 . . 
-d (Iv v lI) = -(K sinhB + KBcosh B). 

t IV 
(3.549) 

Insert Eqs. (3.509) and (3.510) for k and B, respectively, and after a little algebra 

we find 

(3.550) 

.. 
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Now it follows from Eq. (3.544) that 

(3.551) 

So we finally have 

(3.552) 

This is identical to Eq. (1.77) in the text by Northrop [43] in a preferred frame. 

The tenns on the right are the mirroring force and the force due to the parallel 

electric field, respectively. 

Northrop's Eq. (1. 78) is immediately seen to be equivalent to the fact that our 

gyromomentum J..L is a constant of the motion. Note that Northrop's magnetic 

moment Mr is related to our J..L as follows: Mr = eJi/me. 

Next, we know from Eq. (3.538) that Cfv = K coshB, so 

d me . . 
-(me2,v) = .-(K coshB + K sinhBB). 
dt IV 

(3.553) 

Now use Eqs. (3.509), (3.510) and (3.551) to get 

d 2 J..L anB 
-d (me IV) = --&t + eVil Ell + O(e) 

t IV 
(3.554) 

after a short calculation. This is identical to Eq. (1. 79) In the text by 

Northrop [43] in a preferred frame. 

Finally, as promised, we discuss the nonrelativistic limit of the second sub­

term of the third tenn on the right side of Eq. (3.511). This tenn is given by 

(K/4>'B)Fo : (V i - t V). To simplify the evaluation of this term, we specialize 

to a preferred frame where the perpendicular electric field vanishes (though we 

shall be careful to retain its gradient). We also specialize to the case of time­

independent fields, spatially unifonn magnetic field, and zero parallel velocity. 

These assumptions are not at all necessary; they serve only to simplify an other­

wise tedious calculation, to aid the reader in seeing an effect that would otherwise 
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be masked by lots of other less interesting terms, and to facilitate comparison 

with Appendix C. Under these circumstances, we find that 

...... A (0 0 ) yo Kt = C"'/v , 
o Vf3E 

(3.555) 

and 

FO=(: l:b). (3.556) 

It then follows after a short calculation that 

(3.557) 

Except for the factor lv, which is clearly a relativistic effect, this is identical 

to the gyrofrequency shift due to perpendicular electric fields that is derived in 

Appendix C. This shift was discovered by Kaufman [47] in 1960, who also showed 

that it gives rise to the phenomenon of 9YT'Oviscosity. 

The reader is urged to consult the text by Northrop [43] as well as a paper 

by Vandervoort [48] for a further discussion and alternative presentation of the 

above results. 

3.14 Manifestly Boostgauge and Gyrogauge In­

variant Format 

The guiding-center equations of motion presented above contain expressions, such 

as V t, that are not boost gauge or gyrogauge invariant. Of course, the equations 

as a whole are guaranteed to be gauge invariant by our method of derivation; but 

they are not manifestly so. This is due to the fact that our chosen coordinates, 

namely (R, K, B, 11-, 0), are themselves not gauge invariant, thanks to the inclu­

sion of B and 0. This observation suggests that if we were to transform to a new 

.. 
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set of gauge invariant coordinates, we could write our results in manifestly gauge 

invariant format; that is, without any mention of the unit vectors, eQ' In this 

section, we shall derive two new versions of the Poisson brackets: The first will 

be manifestly boost gauge invariant, but it will not be manifestly gyrogauge in­

variant. The second will be both manifestly boostgauge invariant and manifestly 

gyrogauge invariant. 

3.14.1 Manifest Boostgauge Invariance 

To get manifestly boostgauge invariant results, we would like to replace K and 

B by the new boost gauge invariant coordinate 

U = Kt. (3.558) 

The inverse transformation would then be 

(3.559) 

and 

-I ( U.el(R)) 
B = tanh - U . eo(R) . (3.560) 

Alas, there is a problem with this approach. Since the new coordinate U is a 

four vector, it contains four degrees of freedom, whereas K and B represent only 

two degrees of freedom. This discrepency stems from the fact that U is not an 

arbitrary four vector because it is constrained to lie in the parallel two flat; that 

is, it obeys the constraint equation 

PJ..(R) . U = o. (3.561) 

This constraint restricts U to two degrees of freedom, but it also means that 

the coordinates R and U are no longer independent variables. The coordinate 

transformation is not a diffeomorphism (it is injective rather than bijective) and 

so we cannot proceed in the usual manner. 
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We can remedy this difficulty by temporarily relaxing the constraint in 

Eq. (3.561). We make the following coordinate transformation (where, for clarity, 

we use primes to distinguish the new coordinates): 

R' =R 

·U' = Kt(R,B) + >.~(~) c(R, 8) + Cllia(R, 8) 

J.L' = J.L 

8' = 8. (3.562) 

The reason for including >'B in the second term on the right hand side of the equa­

tion for U' will become clear in the next subsection. The inverse transformation 

is then 

R=R' 

K = )-UI. PII(R'), U' 

B = t h- l (_ U' · el(R
I ») 

an U' . eo(R') 

J.L = J.L' 

8 = 8' 

CIa = >'B(R')U' . c(R', 8') 

Clb = U' . a(R', 8'). (3.563) 

Here, U' is no longer constrained to lie in the parallel two-fiat, and its perpendic­

ular components are called Cla / >'B and Clb. In order to have the same number 

of variables before and after the transformation, we have appended CIa and Clb 

to our usual set of variables before making the transformation. 

We now have a diffeomorphism, but we still have to decide how to deal with 

these two new variables in the unprimed system. Our strategy will be to demand 

that they are Casimir functions. That way, the dynamics is constrained to lie 

on hypersurfaces for which they both are constan~. IT we start the phase space 

.. 
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trajectory on the hypersurface for which they are both zero, it will remain on 

that hypersurface. Of course, the equations of motion that we end up with will 

also be capable of describing dynamics on other hypersurfaces for which they are 

nonzero, but we ignore these other orbits as physically irrelevent. 

So our phase space coordinates before this transformation are now taken to 

be (R, K, B, /-L, 8, CIa, Clb). The bracket relations among these coordinates are 

given by Eqs. (3.497) through (3.504) for the brackets not involving CIa and Clb. 

Then, following the strategy discussed in the last paragraph, we simply say that 

the bracket of CIa or Clb with any of the other coordinates is zero. We now 

have dynamics in a ten dimensional phase space, but we are interested in what 

is going on only in the eight dimensional subspace defined by CIa = Clb = O. 

We have simply imbedded the guiding-center dynamics in a higher dimensional 

phase space. It is clear that the Poisson bracket still obeys antisymmetry and 

the Jacobi identity. 

It is now straightforward to write the Poisson bracket relations among the 

new set of coordinates, (R', U', /-L', 8'). Once we are finished doing this, it will 

be alright to set CIa and C lb equal to zero, but not until we have taken every 

derivative that needs to be taken in the process; derivatives get messed up by 

coordinate transformations that are not diffeomorphisms. 

We illustrate this calculation for the {R', U'} bracket as follows: 

{R', U'} = {R, Ki} + {R, Clae/ AB(R)} + {R, Clba} 

= {R, Ki} + {R, C1a}cjAB(R) + {R, C1b}a 

+ {R, C/ AB(R)}C1a + {R, a}C1b 
... ..... .... A 

= {R, K}t + K {R, R}· 'V t + K {R, B}h. (3.564) 

Note that all quantities on the right hand side in the above equation are expressed 

in the old coordinate system. Note also that all terms involving CIa or Clb have 

vanished, either because they are bracketed with something (recall that they are 
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Casimir functions), or because they appear in a term outside of all derivatives 

and so we have set them to zero. 

Eqs. (3.497) through (3.499) can now be substituted into the right hand side 
--to..... --+- .... 

of Eq. (3.564). The result will still contain objects such as V t and V h. Eliminate 

these by means of the easily verified relations 

,v t = (V PII) . t - Qb 

Vb = (V PII) . b - Qt. 

(3.565) 

(3.566) 

Because our results are guaranteed to be boostgauge invariant, all terms involving 

Q will cancel, leaving a manifestly boost gauge invariant result. This being the 

case, the result can be expressed in terms of the new coordinates. 

Before presenting these results, a word of warning is in order. When the term 

K(V PII ) . t is expressed in the new coordinates, the result is easily found to be 

(3.567) 

Upon applying the constraint, PII(R') . U' can be replaced by simply U'. One 

might thus be tempted to pull the following dubious maneuver: 

(v' PII(R')) . PII(R'}. u' = (v' PII(R')) . u' =V' (PII(R'). U') =V' u' = O. 

(3.568) 

This is incorrect because after the constraint is applied, R' and U' are no longer 

-' independent variables. We thus had no right to pull U' iriside the V operator, 

-' nor did we have a right to say that \7 U' = O. This is subtle but iinportant, as 

the brackets below are full of things that look like (v' PII (R')) . U', and they 

are definitely not zero. 

We now present the full set of brackets in the new coordinate system (omitting 

the primes since ambiguity should no longer result from doing so). We find 

€Fo 
{R,R} = - mABOBT" (3.569) 
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{ } 1 € [ III me (-- )] 
R, U = m PII + mA~ T' Fo' F . PII - -;- 'V PII . U , (3.570) 

{R, E>} = 
{ 

0 ( classical order) 

€{ R, R} . R (higher order), 
(3.571) , 

{U, U} = - S1~3:FO: (Fill. 3'T):Fo 
.. 2m B 

- ~ [ (PI! . 2.' . (V PII . U)) - (PI! . 3' . (V PI! . U) ) T] 

and 

€ - T (- ) -. ('V PI! . U) . Fo' 'V PII . U 
mABS1BT' 

{U,8} = 
{ 

0 

€{U,R}. R 

( classical order) 

(higher order) , 
/ 

where we have defined 

(3.572) 

(3.573) 

(3.574) 

(3.575) 

(3.576) 

(3.577) 

where F' was defined in Eq. (3.495), and where the superscripted T means "trans­

pose." Note that T', 3' and Fill are the boostgauge invariant portions of T, ::: 

and F"; that is, they are related by 

T=T', 

and 

(3.578) 

(3.579) 

(3.580) 

These new brackets may be compared to those for the old coordinates, given in 

Eqs. (3.497) to (3.504). 
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This Poisson structure has the. Casimir function, P 1. • U, so the constraint 

Eq. (3.561) is guaranteed to hold for all times if it holds initially. The physical 

motion takes place on the hypersurface for which this Casimir function has the 

value zero. 

The guiding-center Hamiltonian, Eq. (3.488), can now be expressed in the 

new boost gauge invariant coordinates: 

. m 2 fJ.l 
H.gc(R,U,J.l) = J.lOB + 2: U + 2AB 

X [(~e) Po : PI + PJ. : ((V PJ. . U) . Po)]. (3.581) 

Note that this Hamiltonian is also gyrogauge invariant, since it does not involve 

0. 

There is another way to derive the above manifestly boostgauge invariant 

Poisson brackets. We can write the phase space Lagrangian corresponding to 

Eq. (3.489) in manifestly boostgauge invariant form as follows: 

Lgc(R, U, J.l, 0, R, 0) = [fee A + mU - fJ.l'R + O(f2)] . R + €J.l0 

- AIaU . c(R, 0) - AIbU . a(R, 0) 

- Hgc(R, U,J.l). (3.582) 

The action associated with this Lagrangian may be varied to yield the same 

equations of motion given by the manifestly boost gauge invariant brackets and 

Hamiltonian, but the variation of the action must be performed subject to the 

constraint, Eq. (3.561). Hence we have introduced the Lagrange multipliers, Ala 

and Alb. Note that varying an action subject to a constraint causes the constraint 

to appear as a Casimir of the resulting Poisson structure; recall the example of 

this phenomenon given in Subsection 2.3.6. 

The equations of motion in this coordinate system are then easily found either 

by using the Poisson brackets given in Eqs. (3.569) through (3.574) with the 
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Hamiltonian given in Eq. (3.581), or by finding the Euler-Lagrange equations 

from the phase space Lagrangian given in Eq. (3.582). The results are 

-+ 

R = U _ ...,:.fJ-t_F,_o_· _\7_D_B 
mABDBT' 

+ A~fT' Fo . (Fill. PII - ~e (V PII . U)) . u. 

. DB . f [( e ) ( -+ )] o = -f- + fn . R + 2AB me Fo: FI + P.1.: (\7 P.1. . U) . Fo . 

(3.583) 

(3.584) 

(3.58.5) 

(3.586) 

These equations of motion may be compared term for term with Eqs. (3.508) 

through (3.511). In the equation for R, note that the parallel motion is given 

simply by U. The second term contains the grad-B drift, and the third term 

contains the curvature and polarization drifts. The first term of if contains the 

mirroring force, and the force due to the parallel electric field arises from the 

terms that contain FI (via their dependence on Fill). Of course, jJ, still vanishes, 

and the equation for e compares term for term with Eq. (3.511) in an obvious 

way. 

3.14.2 Manifest Boostgauge and Gyrogauge Invariance 

Now we can use the same techniques to make our results gyrogauge invariant as 

well. To do this, we would like to replace the coordinate E> by the new coordinate 

a = a(R, 0). (3.587) 
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The inverse transformation would then be 

(3.588) 

Note that &, like 0, has only one degree of freedom, even though it is a four 

vector. This is because it is subject to the constraints 

. 
PII(R)· & = 0, (3.589) 

and 

&.&=1. (3.590) 

In order to deal with this in a proper fashion, we have to use the same tech­

niques that we used above to get boostgauge invariant brackets. Write the coor­

dinate transformation 

R' =R 

, ~ ) 1 (CIa ~( ~)) U = Kt(R, B + vc;. AB(R) c R, 8) + Clba(R, 8 

f.t' = f.t 

&' = y0;a(R, 0) + ~ (-C2a t(R, 8) + A~(~) b(R,8)) 

The inverse transformation is then 

R=R' 

K = J-U'. P,,(R'), U' 

-I ( U'· el(R')) 
B = tanh - U' . eo(R') 

f.t = f.t' 

( 
&'. e3 (R')) 

8 = arctan - ~ A (R) ex'· e2 ' 

CIa = U' . Fo(R') . &' 

Clb = U' . PJ.(R') . a' 

C2a = U' . PII(R') . &' 

(3.591) 
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C2b = U' . F(R') . Q' 

C3 = Q' . P1.(R') . &' 

149 

(3.592) 

We demand that CIa, Clb, C2a , C2b and C3 are Casimir functions, and that the 

physical motion takes place on the submanifold defined by CIa = C lb = C2a = 
C2b = 0 and C3 :.- 1. 

We can now write the Poisson bracket relations among the new coordinates. 

We use the easily verified relations 

(3.593) 

(3.594) 

-+ 

'V c = (V P 1.) . c + Rit (3.595) 

-+ -+ 

V it = (V P 1.) . it - Rc. (3.596) 

Note that, because our results are guaranteed to be both boostgauge and gyro­

gauge invariant, all terms involving Q and R will cancel, leaving a manifestly 

boostgauge and gyrogauge invariant result. Also note that the Hamiltonian 

Hgc(R, U, J.l), given by Eq. (3.581), is already manifestly gyrogauge invariant (this 

is because it is 0-independent). The new manifestly boost gauge and gyrogauge 

invariant brackets are then 

(3.597) 

(3.598) 

(3.599) 
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{R,o} = { 0 .-
€{R,R}· yo P.L·o 

{U,o} = { 0 __ 
€{U, R}· V P.L . 0 

{o,tL} = +Fo· 0, 
€AB 

and 

( classical order) 

(higher order), 

( classical order) 

(higher order) , 
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(3.600) 

(3.601) 

(3.602) 

(3.603) 

This Poisson structure has the Casimir. functions, P 1. • U, 111 . 0, and 0 . O. This 

insures that the constraint Eqs. (3.561), (3.589) and (3.590) will hold at all times 

if they hold initially. The physical motion takes place on the hypersurface for 

which the first two of these Casimir functions have the value zero and the third 

has the value one. 

Note that 0, like 9, has nonvanishing brackets with R and U at higher order. 

Once again, however, the set of functions of Rand U form a subset of the set of 

all possible phase functions that is closed under the operation of these Poisson 

brackets; also, Hgc is independent of O. So we can still reduce to the guiding­

center description. 

Next, we note that these results could have been derived by varying the action 

corresponding to the phase space Lagrangian obtained by rewriting Eq. (3.489) 

in manifestly boost gauge and gyrogauge invariant format, 

- A2aU . P" . 0 - A2bU ·:Fo · 0 

- A30 . P1. . 0 - Hgc(R, U, tL). (3.604) 

This must be varied subject to the constraints, Eqs. (3.561), (3.589) and (3.590). 

We have enforced these constraints by introducing the scalar Lagrange multi-
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pliers, Ala, Alb., A2a, A2b, andA3' Note that th~ tenn involving R has disap­

peared from rgc when written in these coordin~tes, because -J.LR· R + J.L0 = 

-J.LO:. Fo .6:/AB' 

We are going to need these Lagrange multipliers in Chapter 5,' so we compute 

them here for reference. They are rather easy to calculate, especially since we 

already know the Poisson brackets. The Euler-Lagrange equations for coordinates 

U and 0: are 

R· \ Po A \ P A 8Hgc o = m - Ala o· 0: - Alb 1.' 0: - --
8U 

(3.605) 

and 

d (€J.L AD) €J.L D !. \ U R \ U ~ \ P A 8Hgc ( ) d7 AB 0: . I'O = AB I'O • 0: + A2a . ,,+ A2b . J"O + 2A3 1.' 0: + 80: ' 3.606 

respectively. Upon multiplication by 0: . Po and 0:, the first of these yields 

1 A (. 8Hgc) Al =--o:·Fo · mR---
a A2 8U 

B 
(3.607) 

and 

A ( • 8Hgc) 
Alb = 0:' mR - 8U ' (3.608) 

respectively. Upon multiplication by U, U . Fo and 0:, the second yields 

1 [A (Po) -. 8Hgel A2a = U2 U· €J.L0:. AB V'·R - 80: (3.609) 

and 

A2b = --U· Fo' €J.LO:. - V'·R - ~ -1 [- ( Po) -. 8H 1 
A1:JU2 AB - 80: 

(3.610) 

and 

\ €J.L! D A 1 A [ A ( Po) - R' 8 H gc J A3 = -0: • I'O • 0: + -0:' €J.L0:. - yo. - -A- , 
AB 2 AB 80: 

(3.611) 

respectively. Note that, in perfect analogy with Eq. (2.184), these results can be 

cast in the fonn 

A - CO 8Hgc 
II - ~II 8Zo ' 

(3.612) 
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where the label v runs over all the constraints present (la, 1b, 2a, 2b, 3), and 

where 

and 

and 

and 

and 

R rn ~ { } e1a = - ,X2 Ct • Fo' R, R 
B 

efa = - ~ a· Fo . ({R, U} - ~ 1) 
era = 0 

eta = - ;:; a . Fo . {R, a} 
B 

eft = rna· {R,R} 

eK = rna . ({ R, U} ~ ~ 1) 
eib = 0 

etb = rna . {R, a} 

e:a = ~2 U . [€Jla. (~;) v .{ R, R} ] 

efa = ~2 U . [€Jla. (~;) v .{ R, U}] 

eta = 0 

et = ~2U. [€Jla. (~;) V ·{R,a} -1] 

R -1 [~ ( Fo) - ] e2b = U2 U· Fo' €JlCt· >'B v ·{R,R} 

u -1 [~ ( Fo) - ] e2b = U2 U , Fo' €JlCt· >'B V·{R,U} 

e;b = 0 

. -1 [( Fo) - ] e~b = >'~U2 U . Fo' €Jla· >'B v .{R, a} - 1 



_. 

CHAPTER 3. RELATNISTIC GUIDING-CENTER THEORY 153 

Finally, we note that the equations of motion in these coordinates "are easily 

found either by using the Poisson brackets given in Eqs. (3.597) through (3.603) 

with the Hamiltonian given in Eq. (3.581), or by finding the Euler-Lagrange 

equations from the phase space Lagrangian given in Eq. (3.604). The results are 

R = U _ ....;.€J.L_R_o_· _V_O_B 
m).BOBT' 

€ (", mc- ) + ).2 T,Fo • F .P11 - -;-(V PII · U) . U 
B 

(3.614) 

(3.615) 

(3.616) 

~ = _e_Fo·o+o.(P.l V)·.k.--€-o.Fo• [(~) Fo : FI + P.l : ((V P.l . U). Fo)] . 
€mc 2)'~ - mc 

(3.617) 

Note that Eqs. (3.614) through (3.616) are identical to the corresponding equa-

tions in the last subsection. These were gyrogauge invariant anyway, and so were 

unaffected by the manipulations carried out in this subsection. The equation for 

o has been replaced by an equation for ~; the two may, however, be compared 

term for term in an obvious way. 
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Chapter 4 

Relativistic 

Oscillation-Center Theory 

4.1 Discussion 

In this chapter, we shall consider the perturbation of a guiding center due to the 

presence of an electromagnetic wave of eikonal form. In doing so, we shall take 

as our unperturbed problem the guiding-center equations of motion, as derived 

in Chapter 3. Thus we are effectively using the superconvergent Lie transform 

procedure as described in Subsection 2.4.1. 

We are interested in understanding the response of the guiding center to the 

presence of the wave. Towards this end, we seek a transformation to a new system 

of coordinates in which the wave perturbation is removed. Neglecting resonant 

phenomena, it turns out that it is possible to do this to first order, but not to 

second order. At second order, there remains an averaged residual perturbation 

to the Hamiltonian that gives rise to the ponderomotive force exerted by the wave 

on the guiding center. Thus, after we transform away the rapid fluctuations in 
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the guiding-center motion, we are left with the slower ponderomotive effects. 

An analogy with the guiding-center problem may be helpful here. In that 

calculation, we averaged over the rapid gyromotion to find the slower drift motion. 

The thing that is drifting is then called a "guiding center." A guiding center is 

a fictitious object whose position and momentum are the gyroaverage of the 

particle position and" momentum, respectively. Furthermore, a guiding center 

may be thought of as having an intrinsic or spin angular momentum equal to the 

orbital angular momentum of the underlying gyrating particle. Thus, by finding 

the averaging transformation that eliminates the fast degree of freedom, we have 

discovered a new "macroparticle" that lives on the slow time scale, but whose 

properties derive from those of the original charged particle gyrating on the fast 

time scale. 

Similarly, when a perturbing wave is present and we transform away the 

associated rapid fluctuations, the residual ponderomotive forces may be thought 

of as acting on a new "macroparticle" that is averaged over a wave oscillation 

time scale. We call this new object an "oscillation center." Whereas an individual 

charged particle feels wave fluctuations on a rapid time scale, an oscillation center 

feels only the slower ponderomotive effects; it also feels resonant effects (since 

these are also slow and do not average away), but we shall ignore these in our 

treatment. Thus, a kinetic equation for a plasma of oscillation centers would 

contain only ponderomotive forces and resonant effects. 

The averaged nth-order part of the ponderomotive Hamiltonian is called K n , 

and we shall derive this for a relativistic guiding center. As has already been 

noted, Kl vanishes if we neglect resonant effects. It was discovered by Cary and 

Kaufman that there exists an intimate connection between the ponderomotive 

Hamiltonian and the plasma's response to a wave. Specifically, K2 is a quadratic 

form in the amplitude of the perturbing wave, and the kernel of this quadratic 

form is the functional derivative of the linear susceptibility with respect to the 
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distribution function. Subsequently, it was found by Kaufman that this relation­

ship persists to higher order; that is, nonlinear corrections to the susceptibility 

are related to K 3 , etc. 

In the traditional approach to studying plasma response to a wave, one begins 

with the field equations and the kinetic equation, and studies perturbations in the 

fields and the distribution function about an equilibrium. Though this approach 

is not as systematic as ours, it has at least one advantage: The vector potential 

never appears, so all results obtained by such an analysis are guaranteed to be 

manifestly gauge invariant. In contrast, Hamiltonian or Lagrangian approaches 

to ponderomotive theory seem to require the use of the vector potential, so past 

attempts along these lines have produced results whose gauge invariance was 

either not established, or established only by laborious calculation after the fact. 

In this chapter, we shall find that eikonal wave perturbations to the La­

grangian action for a relativistic charged particle in the guiding-center represen­

tation can be written in manifestly gauge-invariant fonn. To do this, it is neces­

sary to abandon the usual approach of expanding the eikonal wave perturbation 

in a series of Bessel functions of kl.p. Instead, we first perform a Lagrangian 

gauge transformation, and then we expand in a series of functions that are re­

lated to indefinite integrals of Bessel functions. This allows us to develop an 

oscillation-center theory to arbitrarily high order in the wave amplitude expan­

sion parameter, and be guaranteed of manifest gauge invariance at every step of 

the way. Thus, we can enjoy the benefits of the systematic Lie transform approach 

to ponderomotive theory without fear of losing manifest gauge invariance. 
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4 .. 2 Eikonal Wave Perturbation 

In single-particle phase space coordinates, an eikonal wave has a four potential 

of the form 

Aw(1') = A(1')exp (~~(1')) +c.c., (4.618) 

where A is the amplitude and ~ is the phase, and where c.c. denotes the expres­

sion's complex conjugate. The derivative of ~ with respect to spacetime position 

is the four wavevector, k: 
-+ 

k =V~(1'). ( 4.619) 

Both A and k are slowly varying functions of 1'. That is, an eikonal wave is locally 

a plane wave. To reflect this, we have placed liE in front of the phase. Thus, 

the derivative of Aw with respect to l' is ikAw IE plus terms of order unity that 

involve derivatives of A or of k. 

Furthermore, in this work, we shall take this eikonal expansion parameter to 

be equal to the guiding-center expansion parameter (hence, it is no coincidence 

that we are calling it E). This means that we are considering waves whose char­

acteristic wavelengths are on the order of a gyroradius, and whose characteristic 

frequencies are on the order of a gyrofrequency. 

We shall now consider the effect of such a wave on the single particle action 

one form in Eq. (3.370). Replacing A in that equation by A + AAw, we write 

(4.620) 

where IW . is the perturbation in the action one form due to the wave, or 

e - (z) IW = ~A(1') . d1'exp ~~(1') + C.c. ( 4.621) 

Note that we have introduced a new expansion parameter, A, to order the wave 

amplitude. For the time being, we shall not compare A and €, though more will 

be said about this later. 
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As was remarked earlier, our starting point for the oscillation center Lie trans­

form will be the guiding-center equations of motion. Hence, it is necessary to 

write IW in guiding-center coordinates (the above form for IW is in particle coor­

dinates). We, apply the guiding-center Lie transform to the above equation for I 

to get 

I' = I'gc + AI' w, (4.622) 

where I' gc is the guiding-center action one form, calculated in Chapter 3. Then, 

I' w is given by 

(4.623) 

where 9 is the generator for the guiding-center transformation. 

Note that we are working only to first order in E. To this order we can take 

gr = -pa, where p = wlnB. All other components of 9 are unnecessary, and may 

be ignored. We shall use the boost gauge invariant set of coordinates (R, U, J.L, 8) 

described in Section 3.14. 

4.3 Manifest Gauge Invariance 

At this point in the calculation, the usual approach is to apply the Lie trans­

form in Eq. (4.623) by simply substituting R + pa for r in Eq. (4.621). This is 

straightforward, and the result is 

e ( - fA . adJ.L - ) ( i ) I' W = ~ A· dR + mpf2B + EpA· cd8 exp ~1jJ exp(ipa· k) + C.c., (4.624) 

where we have retained the leading nonvanishing order for each component of the 

one form, and where it is understood that all quantities on the right (such as A 
and c) are now evaluated at R. Since a . k is oscillatory, the second exponential 

in the above expression gives rise to a series of Bessel functions of kJ.p. 

Unfortunately, the above expression for I' w does not possess manifest gauge 

invariance. To understand why this is, we must qualify what we mean by "man-

• 
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ifest gauge invariance." A term in the action one form is gauge invariant if it is 

unchanged to within a Lagrangian gauge transformation when A is replaced by 

A + ikA, where A is any slowly varying scalar function of position. Thus, the 

quantity 

F = i(kA - Ak) (4.625) 

is gauge invariant since it is unchanged by this transformation. 'The quantity 

A . dR exp( i'lj; / e) is also gauge invariant since it transforms to itself plus the term 

(4.626) 

(where we have neglected higher-order terms in e), and this can be removed by a 

Lagrangian gauge transformation. We shall say that a term is manifestly gauge 

invariant if it has the form A . dR exp( i'lj; / e), or if it depends on A only through 

its dependence on F. 

Thus the first term on the right hand side of Eq. (4.624) is manifestly gauge 

invariant, but the other two terms are not. They are gauge invariant (as they 

must be), since to leading order in € we have 

.. (eAk. adj.L k ~d()) (i 0';) (. ~ k) 
1, mpf2B + epA . c exp ~ 'f' exp 1,pa . 

= d [e2 pAk . aexp (~'lj; ) exp( ipa . k) 1 (4.627) 

and this can be removed by a Lagrangian gauge transformation, but they are not 

manifestly gauge invariant. 

If we were to use Eq. (4.624) as the starting point for our ponderomotive the­

ory, we would obtain results for Kn that are not manifestly gauge invariant. We 

could get around this problem if there were some way of manipulating Eq. (4.624) 

into manifestly gauge-invariant form. It turns out that this can be done by mak­

ing a particular Lagrangian gauge transformation, but this transformation is far 

from obvious and needs to be motivated. As we shall now see, this motivation 

comes from the homotopy formula. 
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Return to Eq. (4.623), and expand the exponential in a series of Lie derivatives 

(4.628) 

Applying the generalized homotopy formula, Eq. (2.76), we get 

( 4.629) 

Note that we have split off the j = 0 te~ from the swn because Eq. (2.76) is 

valid only for j 2: 1. The above may now be written in the suggestive form 

r - [ ~ (_€)i (. d)i ] d [~ (_€)i . (d' )i- 1 ] 
W - TW + ~ -.-, - 1,g lW + ~ -.-, -1,g 1,g lW' 

J=l J J=l J 
(4.630) 

Note that the second term in square brackets is an exact one form, and may 

therefore be removed by a Lagrangian gauge transformation. The first term in 

square brackets has two pieces: The first is TW itself, which we know is manifestly 

gauge invariant. The second is a series of terms all of which have the operator 

igd, raised to some power, operating on TW' Thus, in all these terms, the very 

first operator to be applied to TW is the exterior derivative. Now 

e - (1,) dTW = -F: d1' 1\ d1'exp -7j;(1') + C.C. 
2€c € 

(4.631 ) 

(plus higher-order terms), and this is manifestly gauge invariant. Subsequent 

applications of ig and d preserve this manifest gauge invariance. Thus the term 

in the first square brackets on the right hand side of Eq. (4.630) is manifestly 

gauge invariant. Thus, Eq. (4.630) gives us the Lagrangian gauge transformation 

that leaves r W in manifestly gauge invariant form. 

At this point, one may wonder why we have bothered to keep all the terms 

in the above series when we have said that we are interested in only the lowest 

nonvanishing order in €. Note that when we apply differential operators to TW, as 

given by Eq. (4.621), we pull out factors of 1/€. This means that even terms with 
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very high j can make order unity contributions. Thus, it is important to keep all 

the terms of the series as given above. This situation arises as a consequence of 

the nonanalyticity of 'Yw in €. It will become more clear momentarily. 

To proceed, we need expressions for (igd)i'Yw and ig(dig)i'Yw, for j 2:: 1. To 

get such expressions, we simply evaluate them for the first few Values of j, notice 

the pattern, and prove it by mathematical induction. The results are 

[(i d)i'Yw] . - ie (~)i (gr. k)i- 1gr . Fexp (~V;) + 0 (-?-) + C.c. 
9 r C. € € €J-l 

[(igd}i-ywl" = ~: (j - 1) (;g"; k t2 ;; . p. g" exp (~,p) + 0 Ci~2) + c.c. 

[(igd)ii"wl. = ~: (j -1) Cg"; kt2 ;; . p. g" exp (H + 0 Ci~2) + c.c. 

and 

ig(dig}i-yw =~ or (g". k)ig" .Aexp (H + 0 CL) +c.c. ( 4.632) 

Note that the components of (igd)i'Yw are manifestly gauge invariant, as 

promised. Then ig(dig)i'Yw is not manifestly gauge invariant, but this is the term 

that will be removed by the Lagrangian gauge transformation. Thus, everything 

is going as planned. 

Now we must plug the above results into Eq. (4.630), and sum the series over 

j. This is straightforward, and the result is 

e [ - (exP(-igr ·k) -1) (i) ] rw='Yw+~ _igr·P gr.k exp ~V; +O(€) ·dR 

e [ 8g
r 

p- r ((1 + igr 
. k) exp( _ig

r 
. k) - 1) (i ~/') ,.."( 2)] d + - -€ -. . 9 exp - 'f/ + v € J.L 

. c 8J.L (gr. k)2 € 

e [ 8g
r 

p- r ((1 + ig r 
• k) exp( _ig

r 
. k) - 1) (i ~/') ,.."( 2)] dLl + - -€-. • 9 exp - 'f/ + v € u 

c Be (gr . k)2 € 

d 
r
ite r - (exp( _ig

r
. k) -1) (i ~/') ,.."( 2)] - -g. A. exp - 'f/ + v € + C.c. 

c gr. k € 
(4.633) 

At this point, we can check the above result by actually applying the exterior 

derivative to the last term in square brackets. There is extensive cancellation, 
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and we are left with Eq. (4.624), as expected. We can now make the Lagrangian 

gauge transformation, 

(4.634) 

where 

S - i€e r - (exp( _ig
r 

. k) - 1) (i ~/')-
T=-g·A k exp -'f' +c.c., c gr. € 

( 4.635) 

thereby removing the last term of Eq. (4.633) to get a manifestly gauge invariant 

one form, as desired. 

Now gr = -pa, and we can substitute this into Eq. (4.633). Note that the 

J.L component of r~ vanishes because gr and ogr / OJ.L are both in the a direction, 

and they are both dotted into the antisymnietric two form, F. The B component 

does not vanish, however, because ogr /oB is in the c direction. We finally have 

To proceed, we must Fourier analyze the above expression in preparation for the 

oscillation-center Lie transformation. 

4.4 Fourier Expansion in Gyroangle 

We now write the components of k in the elL basis, introduced back in Chapter 3, 

as follows: 

(4.637) 

where kll lies entirely within the parallel two-flat. The geometrical situation is 

illustrated schematically in Fig. 4.1. Then, using Eq. (3.346), we find 

a· k = k.Lsin(B - a). (4.638) 
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--~------------~----------------~~e2 

-- XBL 876-3018 --

.. 

Figure 4.1: Components of the Four Wavevector 
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Now we may Fourier Expand the quantities 

and 

exp( ipS. . k) = eik.Lpsin(9-a) 

= L Je(kl..p)e il(9-a), 

e 

exp(ips.· k) - 1 

ipS.· k ikl..p sin( f) - 0:) 

= L Qe(kl..p)e ie(9-a) 

e 

( 4.639) 

( 4.640) 

(1 - ipS.· k) exp(ipa· k) - 1 
(pa. k)2 

(l- ikl..psin(f) - 0:)) e ik.Lpsin(9-a) - 1 

klp2 sin2 (f) - 0:) 

1 '" R (k ) ie(9~a) ="2 L- e l..P e , 
e 

where the Je are Bessel functions, 

Je(x) = ~ 1211' cIeei:z:sine-ue, 
21f' 0 

where we have defined the special functions 

and 

(4.641) 

( 4.642) 

(4.643) 

( 4.644) 

and where the summations over f extend from minus infinity to infinity. The 

properties of the Q and R functions will be explored in detail in Appendix D. 

Now, along with the expressions in Eqs. (4.639), (4.640) and (4.641), r w and 

r~ also contains the f)-dependent (and hence oscillatory) quantities, c and a. 

Thus we need to know how to Fourier expand these as well. Using Eq. (3.346), 

we may write 

( 4.645) 
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and 

(4.646) 

where we have defined 

A 1 (A ±'A ) 
e± = J2 e2 te3' (4.647) 

Note that these are complex unit vectors that obey e± = e=r, e± . e± = 0, and 

e± . e± = 1. Because they contain e±i9, when we multiply them by the series 

in Eqs. (4.639), (4.610) and (4.641), they will generate terms with ei (l±1)9. By 

defining new summation variables we can restore these to the forme ilB , but then 

these terms will be left with special functions that have indices /!, ± 1. 

Now then, we may write r w as follows: 

where 

and 

and where we have defined 

e -r eR = -JeA, 
c 

_ 1 +-r llL = J2 .Jl · A 
2PAB 

up _ -
rlB = M.J1. . A, 

v2c 

wl(R,B) = 1jJ(R) + d(B - o:(R)) 

and 

Similarly, we may write r~ as follows: 

(4.648) 

(4.649) 

( 4.650) 

(4.651) 

( 4.652) 

(4.653) 

(4.654) 
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where 

and 
2 , _ ep . - 2 r l9 = --,-RlFo . F + CJ(€ ), 

4CAB 

and where we have defined 

(4.655) 

(4.656) 

(4.657) 

In the above expressions, it is understood that Jl l Ql and Re are evaluated at 

k.Lp. 

Finally, note that STl as defined by Eq. (4.635), has the Fourier decornposi-

tion, 

where 

ST = < ~ STl exp (~Vl) + c.c. 

ep + -
STl = - ~ Qe • A. 

v2c 

(4.658) 

(4.659) 

Using Eqs. (4.648), (4.654) and (4.658), it is possible to check that r~ = r w+dST. 

4 .. 5 The Oscillation-Center Lie Transform 

Our aim is to perform a Lie transform that will remove all the effects of the wave 

from the Poisson structure, and put them into the Hamiltonian. Thus, when we 

have completed this task, our Pois~on brackets will be identical to those for a 

guiding center with no wave present (through order ,X2). The effect of the wave 

will be pushed into a term of order ,\2 in the Hamiltonian. We shall do this both 

for r w and for r~, in order to verify that we get the same answer either way. 

We now reset our variables, so that r w (as given by Eq. (4.648)) and r~ 

. (as given by Eq. (4.654)) will henceforth be called IW and I~' respectively. The 

oscillation-center transform will-take us to r W and r~, but we want these to 



.. 

.. 
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vanish by the above argument. Thus, in Eqs. (2.273) and (2.274) we demand that 

r 1 and r 2 vanish. This is the step at which we are neglecting resonant effects . 

Furthermore, in Eq. (2.274) we have 12 = 0 because our wave perturbation is at 

first order in A only, and fh = 0 because r 1 = o. 
First consider the oscillation-center transform of Iw. We have 

(4.660) 

and 

( 4.661) 

Meanwhile, the Hamiltonian transforms according to Eqs. (2.221) through (2.224) 

to give 

and 

(4.662) 

(4.663) 

( 4.664) 

Now we demand that K1 = -i1dHgc = o. Let io denote interior multiplication 

by i (the unperturbed flow), so iowgc = -dHgc (our unperturbed problem is the 

guiding-center problem). Then, applying io to Eq. (4.660) gives 

(4.665) 

where the last step follows as a result of our demand that K1 = o. We can 

integrate this last equation along unperturbed orbits to get S1. Then 91 is given 

by Eq. (4.660) 

(4.666) 

At second order, we can solve Eq. (4.661) for 92 as follows: 

(4.667) 
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Now then, we can insert these generators into Eq. (4.664) to get K 2 , as follows: 

1 2 
K2 = -c'2Hge + 2CIHge 

= -.c2 Hge 

= (~ilWW - dS2) . Jge . dHge 

1 . 
= 2ioilWw - S2' (4.668) 

Now we can choose S2 to remove the oscillatory part of the first term. Note 

that we cannot remove the averaged part of the first term, because that would 

introduce secular terms in S2' So the best that we can do is to take 

K2 = (~ioilWW ) . (4.669) 

This is the ponderomotive Hamiltonian. 

Now suppose that we had started with I~ = 110 + dST instead of "110' Instead 

of Eqs. (4.660) and (4.661), we would have written 

(4.670) 

and 

( 4.671) 

where in' is an obvious shorthand for ig:,., and where we are adhering to the 

convention of using primes to denote quantities arising from the Lagrangian gauge 

transformed action one form. Of course, we still would have taken Kb = Ko = 
Hge and we still would have demanded that K~ = -i1,dHge = 0 = K 1. From 

this it follows that K~ = -i2,dHge . Thus, if we could show that 92 = 9;, it would 

immediately follow that K~ = K 2 ; that is, it would follow that the ponderomotive 

Hamiltonian is invariant under the Lagrangian gauge transformation. 

From Eq. (4.670), we have 

.. 



.. . 
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so 

(4.673) 

Then 

So 91 is invariant under the Lagrangian gauge transformation. Next, from 

Eq. (4.671) we have 

(4.675) 

so 

K ' (1. dS') J dH 1.. 5" 1.. 5" 2 = -ll'Ww - 2 • gc' gc = -lOll'Ww - 2 = -ZOlIWw - 2' 
2 2 2 

(4.676) 

Thus we have 

(4.677) 

so 

(4.678) 

and so 

(4.679) 

It immediately follows that 

(4.680) 

so the ponderomotive Hamiltonian is indeed invariant under the Lagrangian 

gauge transformation. Note that 91l 92, and 52 are also thus invariant, but that 

IW and 51 are not. The latter two quantities transform under the Lagrangian 

gauge transformation as follows: 

(4.681 ) 
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and 

(4.682) 

so that the combination IW + dS1 is invariant. 

Though we have just shown that we would get the same answer for the pon­

deromotive Hamiltonian either way, it bears repeating that the advantage of 

starting with 'Y~ is its manifest gauge invariance. In the next section, we shall 

further discuss the relative merits of each of the two ways of calculating K 2 • 

While the above expression, Eq. (4.669), for the ponderom~tive Hamiltonian 

is wonderfully compact, it is also very formal. We need to plug in Eq. (4.648) 

and/or Eq. (4.654), and work it out in detail. This is done in the next section. 

4.6 The Ponderomotive Hamiltonian 

Our unperturbed equations of motion are 

if = 0(1) 

and 

(4.683) 

where Ud denotes the guiding-center drift motion, and where we do not need 

to know anything about U other than the fact that it is order unity in E. Then 

Eq. (4.665) for Sl becomes 

51 = - I: heR . (U + EUd) +'Yee f2B]exp (~we) +c.c., 
e 

and Eq. (4.672) for S~ becomes 

s; = - ~ h!R . (U + <Ud) + -y!.flB] exp G ve) + c.c. 

(4.684) 

(4.685) 



.. 

CHAPTER 4. RELATIVISTIC OSCILLATION-CENTER THEORY 171 

Integrating over unperturbed orbits, we get 

~ exp (i Wi) 
SI = if L...J h'iR . (U + fUd) + Ill~!lB] DE + c.c., 

i i 
( 4.686)" 

and 
, . ~ [ , )'] exp (~Wi) 

SI = 'Z€ L...J IlR . (U + fUd + li9!lB D + c.c., 
i i 

(4.687) 

respectively. Here we have defined the resonant denominator 

(4.688) 

Using Eqs.(4.658), (4.686) and (4.687), it is possible to verify Eq. (4.673); that 

is, it is possible to show explicitly that S~ = S1 - ST. 

Now we use Eq. (4.666) to get the components of the generator 91, 

and 

9 ~ [e - ik.L -
91=L...J - A k.Po·A1t+-,-(JHI-Ji-dU.A 

l me B 2PAB 

1 - + ] exp U 'lit) - J2 A'Ji k·U D +c.C.+O(f), 
2PAB l 

where we have defined· 

(4.689) 

( 4.690) 

( 4.691) 

(4.692) 

( 4.693) 

If we had instead used the the first of Eqs. (4.674), we would have obtained the 

following results for the components of 9~: 

,R ife ~ (UJ ip!lB ;r-) P-
91 = - L...J t + In J t . 

me t v2 
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(4.694) 

(4.695) 

(4.696) 

and 

9~(J = ie p : L [Fo . (lJe + v'2i .Je- U) ] exp (~w e) 
2mcAB e pOB De 

+ C.c. + O(€). (4.697) 

By straightforward calculation, it is' possible to directly verify that 9~ = 91, as 

required by Eq. (4.674). To do this, simply substitute F = i(kA - Ak) into 

Eqs. (4.694) through (4.697); upon simplification, the results will be Eqs. (4.689) 

through (4.692). If we had not made the Lagrangian gauge transformation, 

and had instead started with only fW and Sl, we might have had difficulty 

casting Eqs. (4.689) through (4.692) in the manifestly gauge-invariant form of 

Eqs. (4.694) through (4.697). 

Next we compute the components of Ww = dfW ' Direct calculation gives 

where 
le - -

WwlRR = -Je(kA - Ak), 
€C 

i [ + ik.l 1 -WweRj.£ = J2 k.Je - - (J£+l - Je- 1) 1 . A, 
2PAB 2 

ep ( _ v'2if ) '-
WweR(J = - .J2c k.Je + -p-Jel . A, 

( 4.698) 

(4.699) 

(4.700) 

(4.701) 

(4.702) 

.. 
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WwiUU = O( €2), (4.703) 

WwiUp. = O( €2), (4. 70~) 

WwiU8 = O( €2), (4.705) 

and 
u -

(4.706) Wwip.8 = - A2 k· Fo . AJi· 
B 

If we had instead used w~ = d...,.:o, we would have obtained the following results: 

W~ = L W~i exp ( ~ 'l1 i) + c.c'-, (4.707) 
i 

where 
, e-

wwiRR = -JeF, €C 
(4.708) 

w~iRU = O( €2), (4.709) 

, 1 - + (4.710) WwiRp. = 
V2PAB 

F· Ji , 

, , 'lep - _ 
(4.711) w wlR8 = .J2 F· Je , 

2c 

w~iUU = O( €2), (4.712) 

w~euP. = O( €2), (4.713) 

W~eu8 = O( €2), (4.714) 

and 
, €-

(4.715) Wwlp.8 = -~Fo : F JR.. 
2 B 

By direct calculation, it is once again possible to verify that w~, = d--y~ = d( IW + 
dST ) = diu! = Ww by simply substituting F = i(kA - Ak) into the results for 

the components of w~ and simplifying to get the components of W W • 

Before using the above results to calculate K 2 , we digress for one last discus­

sion about the relative merits of starting with IW and I~. First note that all of 

the components of 91 and Ww are indeed manifestly gauge invariant. If we had 
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started the calculation with I~' this would not be a surprise since I~ is itself 

manifestly gauge invariantj if however we had started the calculation with luh 

the manifest gauge invanance of the result would seem fortuitous. In the latter 

event, we would have had results in terms of A, and only through some tedious 

algebraic manipulations would we have discovered that their dependence on A 

arose only through a dependence on F. On the other hand, note that the only 

special functions that appear in the components of 91 and Ww are the Bessel func­

tions, Jt . The Qt and R t functions have all disappeared in favor of the Jt . If we 

had started the calculation with IW, this would not be a surprise since IW itself 

depends only on the Jt , and not on the Qt and Rtj if however we had started the 

calculation with I~' the disappearance of the Q t and Rt functions would seem 

fortuitous. In the latter event, we would have had results in terms of the Qe 

and Rt functions, and only through some tedious algebraic manipulations would 

we have discovered that the recursion relations and derivative formulas could be 

used to cast them in terms of Je alone. There is thus a peculiar duality between 

the presence of special functions and of manifest gauge invariance. 

We now insert the above formulas into our expression for K 2 • The averaging 

is carried out as follows: 

( 4.716) 

We get 
2 . 

K2 = ~(A* .PII·A+ A ~ k· UA* ·po .A+c.c.) + LKu , 
2r.nc B B t 

(4.717) 

where 

(4.718) 

.. 
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where c.c. denotes the complex conjugate, and where Hu. is defined in Eq. (4.693). 

If we had instead computed K~ according to Eq. (4.676), we would have obtained 

the result, 

(4.719) 

where 

(4.720) 

Once again, by substituting F = i(kA - Ak) into Eq. (4.720) and simplifying, 

it is possible t.o reduce the expression to Eq. (4.718), thus directly verifyingt.hat 

K~ = K 2 • In t.he course of t.his calculation, some of the sum rules of Appendix E 

are useful. Henceforth we shall drop the prime in our notat.ion, and refer to 

the ponderomotiveHamiltonian only as K 2 , whether or not it is in manifestly 

gauge-invariant form. 

Note that K 2 is a function of the phase space coordinates, R, U, f-L and B; in 

part.icular, it depends on R through its dependence on the background fields, 

Fo( R) and Fl (R), and through its dependence on the eikonal wave field param­

eters, F(R) and k(R). Thus we write K 2 (Z;Fi (R),F(R),k(R)), where i = 0,1. 

The ponderomotive Hamiltonian will be used extensively in the next chap­

ter where we shall study the self-consistent dynamics of magnetized relativistic 

plasma in an eikonal wave field. 
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4.7 Obtaining the Ponderomotive Hamiltonian 

Using Canonical Lie Transforms 

Grebogi and Littlejohn [8] have obtained the ponderomotive Hamiltonian by 

first performing a single noncanonical coordinate transformation to remove the 

perturbation from the action one form, and then using canonical Lie transforms 

on the Hamiltonian. We shall use that procedure in this section in order to check 

our above result for K 2. 

Let us return to the point at which the wave perturbation was first added 

to the single-particle action one form in Eq. (4.620). Recall the definition of the 

single-particle velocity u in Eq. (3.366). Suppose that we change this definition 

t.o absorb the wave perturbation; that is, 'we adopt the following new definition 

for u: 

1 ( e ) Ae - (i ) lL = - P - -A(q) + -A(q) exp -1/-' (q) + c.c. 
m c me € 

(4.721) 

This has the effect of returning the action one form to the functional form that it 

had before the wave was introduced. Of course, the definitions of the quantities 

that appear in the one form will be different; that. is, u and anyt.hing that depends 

on u (e.g. k, (3, w, and 8) will be defined differently in terms of the single-part.icle 

position and velocity. Nevertheless, the action one form is returned to the form 

t.hat it had when no wave was present, and now we can apply the usual guiding­

center transformation to take it to the guiding-center action one form r w, given 

implicitly in Eq. (3.582), with no remaining perturbation due to the wave. 

Whereas the act.ion one form has thus been simplified by this transforma­

t.ion, the Hamiltonian, Eq. (3.367), now becomes considerably more complicated. 

Using the new definition of u in Eq. (3.364), we have 

(4.722) 

.' 
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where 

'( ) m 2 HO r,u =-u 
2 

(4.723) 

e - (1. ) H~(r,u) = -~u'A(r)exp ~'l/J(r) +c.c. (4.724) 

and 

H~(r,u) = ~2A(r). A*(r) + ~2A(r). A(r)exp (2i¢(r)) + C.c. (4.725) 
2mc 2mc € 

At this point we can. apply the guiding-center transformation, (r, u) 1--+ 

(R, U, j.L, 0), which may be taken to be simply R = r - €p to the order to which 

we are working. The result may be Fourier expanded in the gyro angle using the 

usual Bessel function identities. The result is 

where 

is the usual guiding-center Hamiltonian (to lowest order), where 

with Hlf. given by Eq. (4.693), and where 

e2 _ _ 

H 2 = --2 A . A * + oscillatory terms. 
mc 

(4.726) 

, (4.727) 

(4.728) 

(4.729) 

To recap, we have applied a noncanonical transformation to remove the per­

turbation from the Poisson structure and deposit it in the Hamiltonian. We 

can now use a canonical Lie transform to remove HI (neglecting resonances) 

and average H2 to get K 2 • Note that this method does not p'reserve manifest 

gauge invariance; that was lost in the very first step when we redefined u in a 

gauge-dependent way. 
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Applying canonical Lie transform perturbation theory, at first order we have 

from Eq. (2.251) 

(4.730) 

so 

{W"Ho} = -H, ,. - ~ H" exp Uw,) + c.c. (4.731) 

Integrate this along unperturbed orbits to get the scalar generator 

W . ~,Hll. (i IT. ) 
1 = t€ L- Di exp ~ 'i.' i + c.c. 

i 

(4.732) 

Proceeding to second order, we have from Eq. (2.252) 

(4.733) 

Now W2 is chosen to average the result, so without having to explicitly calculate 

it, we can write 

K2 = \ H2 + ~{Wl,Hl})' 
After a short calculation, this reduces to the result 

e
2 - - 1 L 1 H 1112 

](2 = --2 A . A* - - {Wi, D } + c.c. 
2mc 2 l 

l 

e2 
- - * 1 L ( 1 a a ) 1 H ul 2 

= --A· A - - -kll . - + e- + c.c. 
2mc2 2 m au aIL Dl 

l 

(4.734) 

(4.735) 

That this answer is equal to our previous result for K2 may be proved by expand­

ing the derivatives in Eq. (4.735), replacing f. by [Di-k·(U +€Ud)]/nB, and using 

the sum rules of Appendix E to sum the terms with no resonant denominator. 

The result is Eqs. (4.717) and (4.718). 

Note that this is by far the easiest way to get K 2 • Furthermore, it yields the 

result in a considerably more compact form than the Lagrangian Lie transform 

approach does. On the other hand, as has already been noted, it does not yield 

the result in manifestly gauge invariant form. 
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This result may be compared with that of Grebogi and Littlejohn [8] who 

used "1 + 3" notation and whose result was gauge invariant but not manifestly 

50. To make this comparison, use the technique for translating our results into 

"1 + 3" notation that was introduced back in Section 3.13. It is then a straight­

forward exercise to show that our ponderomotive Hamiltonian gives rise to the 

same equations of motion as that of Littlejohn and Grebogi, though the two are 

not numerically equal. The reason that the two results for K2 are not numer­

ically equal can be traced back to the fact that the corresponding unperturbed 

Hamiltonians are not numerically equal. This is because Littlejohn and Grebogi 

started with the Hamiltonian (written in terms of three-vector coordinates and 

velocities ), 

( 4.736) 

which is not numerically equal to the Hamiltonian that we started with, though 

it does yield the same equations of motion. 

It is easier to compare our result with that of Achterberg [49] who used a 

four-vector approach, but who did not worry about manifest gauge invariance 

and who used essentially the same method outlined in this section. His result is 

identical to our Eq. (4.735), outside of some minor notational differences. 
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Chapter 5 

The Relativistic 

Guiding-Center Plasma 

5.1 Discussion 

The reason that a Vlasov plasma is a nonlinear mediwn is that the plasma cur­

rents generate fields which in turn drive the motion of the plasma. Up until now 

in tIlls thesis, we have dealt only with single particles (or single guiding centers 

or single guiding/oscillation centers) moving in fields that are known in advance 

as fixed functions of spacetime. In tills final chapter, we show how to pass from 

this single particle description to a self-consistent description of the dynamics of 

the guiding-center plasma; this includes the dynamics of the fields as well as that 

of the particles. We shall do this by imbedding the single particle action in a 

system action, and coupling it to the Maxwell field. 

In Section 5.2, we prove Liouville's theorem, and show how to write the Vlasov 

equation in any desired coordinate syst.em. In Section 5.3, we sum the guiding­

center Lagrangian action over a full distribution of guiding centers and couple to 

.. 



CHAPTER 5. THE RELATNISTIC GUIDING-CENTER PLASMA 181 

the Maxwell field in order to obtain the Lagrangian action of the full guiding­

center Vlasov plasma.· The variation of this with respect to the guiding-center 

coordinates yields the relativistic kinetic equation for guiding centers, while the 

variation with respect to the four potential yields the self-consistent field equation 

including the guiding-center magnetization and current densities. 

In Section 5.4, Noether's theorem is applied constructively to obtain covari­

ant conservation laws for the momentum-energy and the angular momentum of 

a guiding-center plasma. That is, we obtain the stress-energy and angular mo­

mentum tensors of the guiding-center plasma, including the contribution to the 

angular momentum due to guiding-center spin. 

Finally, in Section 5.5, we employ the results of Chapter 4 to generalize the 

results of Sections 5.3 and 5.4 to the case of a guiding-center plasma in an eikonal 

wave field. We begin by forming a system action, this time including the Maxwell 

action of the eikonal wave field, and the ponderomotive Hamiltonian of the guid­

ing/oscillat.ion centers. Variation with respect to the coordinates again yields the 

kinetic equation, which now includes a t.erm due to the ponderomot.ive effects 

caused by t.he wave field. Variation with respect to t.he four potential of the back­

ground field again yields the self-consistent field equation, which now includes a 

modification in the magnetization density due to t.he presence of the wave. There 

are then two new additional variations: Variation with respect to t.he eikonal wave 

field amplitude yields the linear dispersion relation for the wave, and variation 

with respect to. the eikonal wave phase yields the conservation law for wave ac­

tion. Constructive application of Noether's theorem to this new system action 

yields the laws of conservation of energy-momentum and angular momentum for 

the combined system of plasma, background field, and wave field. Specifically, 

the modification to the stress-energy and angular momentum tensors due to the 

presence of the wave field is presented and discussed. 
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5.2 Liouville's Theorem 

5.2.1 Lagrangian and Eulerian Descriptions of Relativis­

tic Plasma 

In this section, we present a version of Liouville's theorem that is valid for rel­

ativistic Hamiltonian systems with noncanonical coordinates'~ We begin by ex­

amining the difference between the Lagrangian and Eulerian descriptions of rel­

ativistic kinetic theory. 

Recall that a Lagrangian description keeps track of the trajectory of each par­

ticle of the system, whereas an Eulerian description uses a distribution functio:q 

to specify the phase-space density of particles (we discussed this brie:fty in Sec­

tion 2.3.3). Thus, a Lagrangian description for a system of relativistic particles 

might be the specification of z( TJ, 7"), where z denotes a set of n-dimensional phase 

space coordinates, TJ is a continuous particle label, and 7"( TJ) is an orbit parameter 

along the world line of the particle with label TJ. Specifying z as a function of YJ 

and 7" is equivalent to specifying t.he phase space orbit of every part.icle in the 

system. The corresponding Eulerian distribution is 

(5.737) 

Here dN (YJ) is some measure describing the number of particles with labels be­

tween YJ and YJ + dYJ. This measure appears when we pass from the discrete to the 

continuum description; that is 

L ~ J dN(TJ)· 
particles 

(5.738) 

In what follows, we shall frequently not bother to write the explicit YJ dependence 

of 7", but it should be kept in mind that each particle has its own proper time. 

Note that f(Z) has support only on a space of dimension smaller than that of 

the full n-dimensional phase space. This is because there are constraints that 
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must be satisfied by the vanous coordinates involved. For example, single­

particle dynamics must remain on the mass shell, since u . u = _c2 • Upon 

making the guiding-center transformation, this requirement is easily seen to be­

come Hge = -m~ /2 (the guiding-center transformation is a diffeomorphism, so 

the mass shell is distorted but not topologically altered). So, when using the 

(R, K, B, f,.L, 0) coordinates, f has support on a seven dimensional submanifold in 

an eight dimensional phase space. When we use the (R, U, f,.L, 0) coordinates the 

phase space is ten dimensional, and when we use the (R, U, f,.L, &.) coordinates the 

phase space is thirteen dimensional; in all cases, however, f has support only on 

a manifold of seven dimensions thanks to the constraints on these coordinates. 

The Lagrangian description keeps track of the dynamics of all the particles in 

the system as though they were distinguishable, and so it includes more degrees 

of freedom than the Eulerian description. That is why it is possible to write the 

Eulerian distribution f(Z) in terms ofthe Lagrangian description Z(77, I), but it is 

impossible to do the reverse. There are many different functional forms for z( 77, ,) 

that yield the same f(Z). Nevertheless, for a plasma of indistinguishable particles 

(we are not going to bother about species labelling in this thesis) it is clear 

that any physically relevant quantit.y can be expressed in t.erms of the Eulerian 

distribution, 1(Z). This is because any physically relevant quantity should not 

depend on the identit.y of the individual particles in the system. 

This is really a gauge invariance issue. The gauge group is the group of 

identical particle interchanges. The Lagrangian description keeps track of extra 

nonphysical gauge degrees of freedom. A physically relevant quantity can be 

written in terms of the Eulerian distribution since it is gauge invariant in this 

regard. 

Consider for example the value of some phase function, <p(z), summed over 
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all the particles in the system and integrated along world lines 

Nip = / dN(7]) / dr<P(z(7],r)). (5.739) 

This object is invariant under the gauge group of identical particle interchanges 

because it can be written in terms of the Eulerian distribution as follows: 

Nip = f dnZ! dN(7]) / dr8n(Z - z(7],r))~(Z) 

= / ~ Zfn(Z)<p(Z). (5.740) 

Though we shall frequently work with the Lagrangian description of things, we 

must be able to show that our results can be expressed in terms of the Eulerian 

distribution. Fortunately, this will pose no problem. 

The Lagrangian description of the dynamics of the system is then given by 

i(7],r) = V([z],z(7],r)), (5.741) 

where t.he dot denotes differentiation with respect to r, and where V is the 

dynamical vector field expressed as a function of z(7], r) and as a functional of Z 

(since the dynamics of one particle may depend on the phase space positions of 

all the other particles in the system). The corresponding Eulerian description of 

the dynamics is then found as follows: 

0= - / dN(7]) / ~r d~bn(z - z(7],r)) 

= / dN(7]) / drz( 7], r) . a~8n (Z - z(7], T)) 

= :z . [/ dN(7]) / dTZ(7],T)8n(Z - Z(7],T))] 

= a~· [/ dN(7]) / dTV([Z),z(7],r))8n (Z -Z(7],T))] 

= a~ . [V([Jn), Z) / dN(7]) J dT8n(Z - z(7], r))] 

a 
= az . [V([Jn), Z)Jn(Z)) . (5.742) 



.. 

• 
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The first line above follows from the fact that at any finite time T is finite, so the 

delta function vanishes at the limits of integration T -+ ±oo. Note that we had to 
, 

assume that the functional dependence of V on z could be replaced by a functional 

dependence on In; this is just a statement of the very reasonable condition that 

the dynamics cannot depend on particle labels. The resulting kinetic equation for 

In(Z)·iscalled the continuity equation, and it expresses conservation of particles. 

It is true for any relativistic system of particles, regardless of the nature of the 

forces involved (they could even be dissipative in nature). 

5.2.2 Conservation of Phase Space Volume 

One thing that distinguishes Hamiltonian systems from other dynamical systems 

is the property that phase space volume .is conserved by a Hamiltonian flow. This 

means that if we take a volume element in phase space and drag each point of its 

boundary surface along a Hamiltonian vector field for sonie parameter increment, 

the volume enclosed will be unchanged. As we shall now see, this property follows 

from the Jacobi identity; this fact was used in Section 3.10 as an argument for 

using brackets that satisfy the Jacobi identity exactly (as opposed t.o satisfying 

it only to some order in an expansion parameter). 

Suppose that we have a set. of canonical coordinates Zc, and that the Eulerian 

distribution function in these coordinat.es is Ic(Zc). Now under a (possibly non­

canonical) coordinat.e transformation, Zc ~ Z, a distribution function transforms 

in such a way as to keep the number of particles in a fixed phase space volume 

element constant. That is 

(5.743) 

where n is the number of dimensions in phase space. Thus, I transforms like a 

pseudoscalar, 

I(Z) = Ic(Zc)D, (5.744) 
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where we have defined the Jacobian of the transformation 

D(Z) = ~:i. (5.745) 

Alternatively, we can define a scalar distribution function, f( Z), which transforms 

as follows: 

(5.746) 

It follows that in any coordinate system we have 

f(Z) = f(Z)D(Z). (5.747) 

Note that f(Z) = f(Z) in any canonical coordinate system, since the Jacobian of 

a canonical transformation is unity. In noncanonical coordinates, however, f(Z) 

and f ( Z) are different. 

The Lagrangian two-form in coordinate system Z is given by 

az,: azf c 

11 1L " = aZIL az" H Q .8' 
(5.748) 

where 11c is the canonical Lagrangian two-form. Taking the det.erminant of both 

sides, we find . 

(5.749) 

We now no longer need to make reference to the canonical coordinate system, 

ZC' Eqs. (5.747) and (5.749) tell us all we need to know, and they are written 

entirely in the general coordinates, Z. 

Take t.he gradient. of both sides of Eq. (5.749) t.o get 

2DD,Q = (det11),Q 

= D2 J.8"Y11 I:? "YI-',Q, 

where we used the formula for the derivative of a determinant, 

(5.750) 

(5.751) 
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We are now ready to prove Liouville's theorem. We have 

D(za D),a = D(Ja{3 H,{3D),a 

= D2 H (Ja{3 + ~Ja{3 Jp-1I0 ) 
,(3 ,a· 2 II/J-,a 

= ~D2 H,{3J{3/J- Jail (Oll/J-,a + 11/J-a,1I + 11av,/J-) 

= 0, (5.752) 

where we used the above formula for DD,a, and where we used the Jacobi identity 

in the last step. Thus, since D is never z~ro, we have proved Liouville's theorem, 

a . 
az' (ZD) = O. 

NowEq. (5.742) may be written for a Hamiltonian system as follows: 

a . 
O=-·(Zj) az 

a . 
= az . (ZDf). 

Applying Liouville's· theorem, we get the Vlasov equation, 

. 8f 
0= z· az' 

(5.753) 

(5.754) 

(5.755) 

Our proof of this result has been quite general, and so in the future we can simply 

write down the Vlasov equation for any Hamiltonian equations of motion. 

The careful reader will have noticed that we assumed invertibility of 

the Poisson tensor in the above proof, whereas our Poisson tensors in the 

(R, U, /-L, 0) and (R, U, Ji, Q) coordinate systems are definitely singular. Re­

call, however, that we showed in Section 3.14 how these constrained coordi­

nate systems could be imbedded in larger unconstrained coordinate systems. 

That is, we can obtain the (R, U, /-L, 0) coordinates by a smooth coordinate 

transformation from the (R, K, B, /-L, 0, C la , Clb) coordinates, and we can ob­

tain the (R, U, /-L, Q) coordinates by a smooth coordinate transformation from 
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the (R, K, B, j.L, E>, CIa, Clb, C2a , C2b, C3 ) coordinates. In both cases, the physi­

cal motion takes place on the subspace for which CIa = Clb = C2a = C2b = 0 

and C3 = 1; if the initial conditions are on this subspace, the dynamics will 

keep them there. From this point 6f view, there is nothing singular about the 

transformation that led to these coordinate systems, and the only reason that 

their Poisson tensors are singular is that we enforced the constraints by setting 

CIa = Clb = C2a = C2b = 0 and C3 = 1 at the very end of the calculation that 

led to them. 

Armed with this insight, it is easy to compute the Jacobian D for these 

coordinate systems. First we consider the guiding-center transformation that led 

to the (R,K,B,j.L,E» coordinates from canonical coordinates. The Jacobian of 

this transformation is 

DI = V deU1 gc , (5.756) 

where Ogc is t.he Lagrangian two-form given in Eqs. (3.490) through (3.494). The 

result is 

(5.757) 

The coordinates (CIa, Clb, C2a , C2b , C3 ), which can be thought of as describing 

directions transverse to those described by the (R, K, B, j.L, E» coordinates, are 

unaffected by the above transformation. 

We now transform to either the (R, U, j.L, E» system or the (R, U, j.L, a) sys­

t.em.' This transformation will involve the coordinates (CIa, Clb, C2a , C2b , C3 ). 

Its Jacobian is given by 

(5.758) 

or 

(5.759) 

respectively. We can use the transformation equations, Eqs. (3.562) or (3.591), 

to calculate the above expressions. The important thing is that we take all of the 
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derivatives involved in calculating the Jacobian before enforcing the constraints 

by setting CIa = Clb = C2a = C2b = 0 and C3 = 1. The calculation is straightfor­

ward, and we find that for either the (R, U, J.1., E» or the (R, U, J.1., &) coordinates 

we get 
1 

D2 = 2K>.2 . 
B 

(5.760) 

The ovemll Jacobian of the above transformation is thus 

(5.761) 

where T' is given by Eq. (3.575). Note that this same expression may be used for 

the guiding/oscillation-center problem, since it has exactly the same brackets as 

the guiding-center problem with no wave present. This is because our osci11ation­

center Lie transform took the wave perturbation out of the brackets and put it 

into the Hamiltonian (which is how we got K2 ). 

Thus by imbedding our singular coordinate syst.ems in larger nonsingular ones, 

we are able t.o validate the above derivation of the Vlasov equation for our coordi­

nat.es. Because we had to introduce the coordinat.es (CIa, Cib, C2a , C2b , C3), how­

ever, we should ask what t.he distribut.ion function looks like, and whether or not 

t.he kinetic equation that we have started with makes sense. Consider Eq. (5.737), 

writt.en for the coordinate system Z = (R,K,B,J.1.,E>,Cla,Clb,C2a,C2b,C3). 

We adopt t.he shorthand notation Z = (Y, C) where Y = (R, K, B, J.1., E» and 

C = (CIa, Clb, C2a , C2b, C3 ). Then we have 

(5.762) 

where Y(TJ, r) and c(TJ, r) give the dynamics of Y and C, respectively. Note, 

however, that since the integral, J dN(TJ), includes only particles that obey the 

constraints CIa = Clb = C2a = C2b = 0 and C3 = 1, and since the dynamics is 

known to keep such particles on the constraint surface, it must be that c( TJ, r) = 
(0,0,0,0,1). Thus the delta functions involving C can be pulled out of the integral 
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to finally yield 

fI3(Z) = h( Cla)h( Clb)h( C2a )h( C2b )h( C3 - 1) J dN(TJ) J drh8 (Y - Y (TJ, T)) . 

(5.763) 

The proportionality of !I3 to delta functions in the C is simply a mathematical 

restatement of our earlier observation that it has support only on a space of 

dimension less than that coordinatized by Z. In fact, it has support only on 

a space of seven dimensions (there is another delta function still hiding in the 

integral on the right hand side of the above equation due to the fact that the 

Hamiltonian is a constant bf the motion). The Vlasov equation written in these 

coordinates is then 
. &£13 

0= y. BY' (5.764) 

where fI3 = f13/ DI and where the terms 6 . Of 13/ BC are not present because 

6 = O. We can now integrate the above Vlasov equation over the C coordinates 

t.o get 
_ Y· . Ofs(Y) 

0- BY' (5.765) 

where 

fsCY) = J d5 C!I3(Z) 

= J dN(TJ) J dr8s (Y - Y (TJ, T)), (5.766) 

and fs = fs/ D 1 • This is obviously the same Vlasov equation that we would 

have obtained if we had used only the clearly nonpathological (R, K, B, f.t, e) 

coordinates from the start. 

It turns out to be easier (for reasons that will become clear shortly) to write 

the Vlasov equation in terms of f and easier to write the field equation in terms 

of f. Since we know what D is, however, there is clearly no problem involved in 

writing both equations in terms of either f or f (recall that f and f are related 

by Eq. (5.747) with D given by Eq. (5.761)). 
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5.3 Self-Consistent Kinetic and Field Equations 

5.3.1 Constructing the System Action 

We begin by considering the case in which there is no eikonal wave field present. 

Our action one-form and Hamiltonian for a single guiding-center are thus given 

by Eqs. (3.604) and (3.581), respectively. In Section 5.5, we generalize our results 

to the case in which the plasma is bathed in an eikonal wave field. For now we 

Gonstruct the action for the coupled system of guiding-center plasma and Maxwell 

field. This has the form 

(5.767) 

where Sge is the total action of the guiding centers, and where Sm is the action, 

of the Maxwell field. 

Now the action of the guiding centers is found by simply summing that for a 

single guiding center over the full distribution. Thus we write 

Sge[Z, Ai] = J dN(T]) J d'T [rge (Z(T], 'T); Ai(R(T], 'T)), Fi(R(T], 'T))) . Z(T], 'T) 

- L Av(T], 'T)Cv (Z( T], 'T); Fi(R(T], 'T))) 

(5.768) 

Here we have written Z for the full set of boost gauge and .gyrogauge invari­

ant guiding-center coordinates, (R, U,}.L, 6:). We have enforced the constraints by 

means of Lagrange multipliers, using Av to denote the multiplier for constraint 

Cv , where the index v runs over all the constraints present as usual. Finally, we 

have indicated separately the functional dependence of the various terms on the 

four potential Ai and the background field Fi (here i denotes the ordering of the 

field as discussed in Section 3.7). 

Now Eq. (5.768) may be written in the form 

(5.769) 
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where a: denotes spacetime position, and where we have defined the Lagrangian 

density for the guiding centers, 

.egc(X) = J dN(TJ) J drb4 (a: - R(TJ,r) [fgc(Z(TJ,r);Ai,Fi ) . Z(TJ,r) 

- LAlI(TJ,r)CII(Z(TJ,r);Fi) - Hgc(Z(TJ,r);Fi)]. (5.770) 
II 

Here we have adopted the convention that Ai and Fi denote Ai(X) and Fi(X), 

respectively. 

The Maxwell action is well known to be (see, for example, Jackson [44]) 

where the Lagrangian density for the Maxwell field is 

1 .em = --(Fo + €FI + ... ) : (Fo + €FI + ... ). 
161r 

In this study, we shall retain terms in .em only to order €j thus we write 

1 .em = --(Fo : Fo + 2€Fo : FI ). 
161r 

5.3.2 The Vlasov Equation for Guiding Centers 

(5.771} 

(5.772) 

(5.773) 

We first vary the system action with respect to the particle field, Z (1], r). After 

a short calculation, we find 

8Hgc ( ) - 8Z Z(1], r); Fi(R(1], r)) . (5.774) 

where f2gc = df gc. This equation, coupled with the constraints 

(5.775) 
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(which are needed to determine the Lagrange multipliers), shows clearly that the 

fields, Z(1], ,), obey .the usual equations of motion for a single guiding center. 

Knowing this, and using the ideas developed in the previous section, it is now 

possible to write down the Vlasov equation, 

.&f 
0= Z· az' 

using the equations of motion for a single guiding center. 

In particular, if we use the (R, U, J.L, 8) coordinates, this becomes 

o = R . &flO + iJ . &flO + jJ, &flO + B &flO . 
8R 8U 8J.L 88 

We can now define the guiding-center distribution function, 

(5.776) 

(5.777) 

(5.778) 

This is nothing more than 27T' times the 8-average of t.he full distribution function 

flO. Now because Z is independent of 8 (thanks to our guiding-center transfor­

mation) and becausejJ, = 0, taking the 8-average of the above kinetic equation 

yields 
. af9 • af9 O=R·-+U·-

8R 8U 
(5.779) 

This is the reduced kinetic equation for the guiding-center distribution function. 

5.3.3 The Field Equations 

Generally speaking, the idea is now to vary the above action with respect to the 

four potential to get the dynamical equations for the fields. This must be done 

carefully, however, as there are two additional constraints that such variation 

must respect. Recall that in our derivation of the guiding-center action we as­

sumed that the background field scale lengths were large in comparison to the 

gyroradius, and we assumed that the zero-order fields have AE = O. We must 
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make certain that the dynamics of the fields do not evolve them into a configura­

tion for which either of these assumptions are violated.' In order to get dynamical 

equations for the fields that respect these constraints, our variation of the action 

with respect to the four potential must be a constrained variation; that is, ar­

bitrary variations of the four potential are not allowed. Only those variations 

of the four potential that preserve the vanishing of AE to lowest order and the 

smallness of the ratio of gyroradius to scale length are allowed. 

We thus begin our derivation of the field equations by examining the .variation 

of the action due to variations of the Ai, without assuming in any way that the 

variations of the Ai are arbitrary. Recall that we have indicated separately the 

functional dependence of the various terms in the action on the four potential 

Ai and the background field Fi. Of course, Fi = dAi , so when we vary with 

respect to the Ai we must take into account the Fi dependence. To do this, it 

is convenient to distinguish between total and partial functional derivatives with 

respect to Ai. We use the chain rule to write 

(5.780) 

To proceed, note that 

FiJ.Lv(x') = Aiv.J.L{x'.) - AiJ.L.v(X') 

= J ~Xb4(x - x')Aiv.J.L{x) - AiJ.L.v(X) 

= J cPx {AiJ.L[b4(x - x')J.v - Aiv[b4(x - x')].J.L} , (5.781) 

so that 

bFiJ.Lv(X') 4' 4' 
8Aip{X) = bJ.Lp[8 {x - x )].v - 8vp [b {x - x )J.J.L' (5.782) 

, Using this in Eq. (5.780), we get 

(5.783) 
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This formula is very useful in what follows. 

Using Eq. (5.783) to vary the action with respect to the four potential, we 

arrive straightforwardly at the following result: 

8S = J cfa: [.10 (a:) . 8Ao (a:) + 3da:) . bAda:)] , (5.784) 

where we have defined 

1 1 --
3 0 (a:) = -J(a:) + - V7 ·Go(a:) 

c 41T' -
(5.785) 

and 
€ € --+ 

.11 ( a:) = -J ( a:) + - \7 . G 1 ( a: ), 
C 41T' 

(5.786) 

where in turn we have defined the guiding-center current density 

J(a:) = c J dN(T}) J d-rb4 (a: - R(T}, -r)) ~2: (Z(T}, -r); Ai, Fd· Z(T},-r) 

c J J 4 argc . =; dN(T}) .d-rb (a:-R(T},-r))aA
1 

(Z(T},-r);Ai,Fd·Z(T},r) 

= ~ J dN(T}) J d-rb4 (x - R(T},r))R(T},r) 

= ~ J dR J dU J dp, J d0flO(R,U,p,,0)b4 (a: - R)R(R,U,p,) 

= ~ J dR J dU J dp,fg(R,U,p,)b4 (a:-R)R(R,U,p,), (5.787) 

and the macroscopic field tensors 

(5.788) 

(5.789) 

and where in turn we have defined the guiding-center magnetization densities 



CHAPTER 5. THE RELATIVISTIC GUIDING-CENTER PLASMA 196 

(5.791) 

Note that the magnetization came from the second term on the right of 

Eq. (5.783). Also note that the only thing that depends explicitly on PI is the 

first-order piece of the Hamiltonian, so that only the last term in square brackets 

in the above expression for MI survives; of course, PI also appears in the brack­

ets due to the Al dependence of r gc. Finally note that we were able to write 

the current and the magnetizations in terms of the reduced Eulerian distribution 

function, [g. 

Now because the bAi are not arbitrary, we cannot simply set J o = J I = o. 
Instead, as discussed above, we must restrict the variation so that it respects 

the constraints that AE = 0 to lowest order and that the ratio of gyroradius 

to scale length is small. To deal with the first of these constraints, let us tem­

porarily introduce Clebsch variables for the fields. We define four scalar fields, 
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o( x),,B( x), K( x), O'(x), such that in terms of these fields the four potential is given 

by 

Ao = od,B (5.792) 

(5.793) 

and consequently the field tensor is given by 

Fo = dAo = d( od,B) = do 1\ d,B (5.794) 

(5.795) 

That such scalar fields exist is guaranteed by the Darboux theorem. That is, 

because F is a closed two-form, it can be written in the form F = do 1\ d,B + 
€dK 1\ dO', where we are guaranteed enough freedom to choose 0 and ,B such that 

PII . (do 1\ d,B) = O. 

It is clear that the above construction insures t.hat 

PII · Fo = 0 .. (5.796) 

Note that we are ignoring Fi for i 2: 2, and that the parallel electric field must lie 

entirely wi thin Fl' Thus, the specificat.ion of t.he four functions 0 ( x ), ,B ( x ), K( X ), 

and 0'( x) is a coordinatization of the function space of all electromagnetic fields 

that automatically ensures t.he satisfaction of the constraint that AE = 0 to lowest 

order. 

The variation of the action with respect t.o the four pot.ent.ials may now be 

written 

hS = J ~x [.10. 15(0 V,B) +.11' h(K V 0')] 

= J ~x( 150.10' V ,B + 0.10', V h,B + hK.11· V 0' + K.11: V 150') 

= J ~x [150.10' V,B ~ h,B V '(0.10) + hK.11· V 0' - hO' V '(K.11)] (.5.797) 
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We still cannot set the coefficients of the variations equal to zero, however, be­

cause of the remaining constraint that the fields remain sufficiently slowly varying 

for the guiding-center approximation to remain' valid. This point requires some 

discussion. 

Consider a general Fourier decomposition of the electromagnetic field in and 

around a plasma. We can divide the Fourier space into three regions. The first 

consists of slowly varying fields for which the guiding-center approximation is 

clearly valid; we call these background fields. The 'Second consists of rapidly 

varying fields that are due to collective motion of the plasma; we call these wave 

fields, and their effect on a single guiding center was the subject of Chapter 4. 

Note that wave fields violate the guiding-center approximation, and the only 

reason that we were able to treat them perturbatively was our assumption that 

their amplitudes are small. The third consists of the extremely rapid fluctuations 

associated with collisions and higher correlations. 

Now fields belonging to the third region of Fourier space are clearly outside 

of the scope of this thesis; our Vlasov kinetic description of the plasma neglects 

correlations. Wave fields were studied in a single particle cont.ext in Chapter 4, 

and their self-consistent evolution will be studied in Section 5.5. For now we are 

interested in the dynamics of the background fields. We thus define a projection 

operator, P, that, when applied to an arbitrary field, projects out the part that is 

slowly varying. We shall not be specific about the nature of this operator except. 

to say that, since it is a projection operator, we expect it to be idempotent. A 

moment's thought convinces one that this means that it must be a convolution 

of the field with a filter function whose Fourier transform is piecewise constant, 

having a value of either zero or one everywhere in Fourier space. Specifically, 

it has a value of one in the first of the above-described three regions of Fourier 

space, and a value of zero in the other two regions. Exactly how one draws these 

boundaries is what we are leaving unspecified. 

.. 



.. 
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Thus, although we cannot set the coefficients of 80:( x), 8(3 ( x), 8,.;,( x), and 8(7( x) 

equal to zero in Eq. (5.797), we can enforce the constraint that the fields are slowly 

varying by requiring that their variations be slowly varying; thus 

80:( x) = P80:( x) (5.798) 

(and similarly for the other three variations). We can also decompose the coeffi: 

cients of the variations into slowly varying and rapidly varying parts; thus 

- -.10' V' (3 = P(.Jo· V' (3) + (I' - P)(.Jo· V' (3) (5.799) 

(and similarly for the other three coefficients). Thus, upon multiplying 80:( x) and 

-.10' V' (3, we get the product of the slowly varying terms and a cross term. Now 

the cross term is clearly oscillatory and vanishes upon integration over x. It is 

then legal to set the coefficients of the slowly varying parts of the variations equal 

to zero. This essentially means that we can set the projection of the coefficients 

of the variations in Eq. (5.797) equal to zero. 

Thus, we get 

P[.Jo· V (3] = 0 

-P[V' '(0:.10)] = 0 

--P[.J1 • V' (7] = 0 

P[V ·(,.;,.Jd] = o. 

Now note that from Eq. (5.787), we have 

JJL,JL = ~ J dN(TJ) J dr884 (x ;x~(TJ,r)) RJL(TJ,r) 

= -~ J dN(TJ) J dr
884 

(x ;R~(TJ,r)) RJL(TJ,r) 

= -~ J dN(TJ) J dRJL884 (x ;R~(TJ,r)) 

=0, 

(5.800) 

(5.801) 

(5.802) 

(5.803) 

(5.804) 
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where the last step follows from the fact that the delta function vanishes at the 

limits of integration for finite x. This result expresses conservation of particles. 

From this it follows that 

-- 1-- 1--
V' ·.:10 = - V' . .:11 = - V' .J = O. 

€ C 

So our field equations become 

Thus it follows that 

or 

- --P[.:1o· V' a] = P[.:1o· V' ,B] = 0 

P[.:1o· (Va V (3- V (3 Va)] = 0 

P[Fo . .:10] = 0 

P[F1 • .11 ] = o. 

(5.805) 

(5.806) 

(5.807) 

. (5.808) 

(5.809) 

(5.810) 

(5.811) 

Note that the Clebsch potentials have disappeared from our final result; this was 

essential since they have a gauge freedom and we expect our result to be gauge 

invariant. We simply used the Clebsch potentials to enforce our constraints, and 

then we got rid of them. 

The final results for the field equations are thus 

1 - 1 
P[Fo ' (- V' ·Go + -J)] = 0 

47T' C 
(5.812) 

1 -- 1 
P[F1 • (- V' ·G l + -J)] = O. 

47T' C 
(5.813) 

Note that the first describes field evolution due to perpendicular four current, 

while the second describes field evolution due to parallel four current. 



.. 
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5.3.4 Summary of Self-Consistent Kinetic and Field 

Equations 

To summarize the results of this section, we present the complete set of kinetic 

and field equations for the guiding-center plasma. The kinetic equation is 

. Bfg . Bfg 
O=R·-+U·-aR au' (5.814) 

where R = {R, Hgc} and U = {U, Hgc}, and where in turn the Poisson brack­

ets are given in Eqs. (3.569) through (3.574) and the Hamiltonian is given in 

Eq. (3.581). The field equations are then 

1 - 1 
P[Fo . (- V' ·Go + -J)] = 0 

47r C 
(5.815) 

1 - 1 
P[F1 • (- V' ·G1 + -J)] = 0, 

47r C 
(5.816) 

where the current is given by 

(5.817) 

and the macroscopic field tensors are given by 

(5.818) 

(5.819) 

and where in turn the magnetization densities are given by 
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Of course, these must be supplemented by the homogeneous field equations, 

-+ 

V '}="o =0 (5.822) 

(5~823) 

Note that fg(R,U,J.t) and fg(R,U,J.t) are related by 

(5.824) 

where the Jacobian D is given by 

(5.825) 

and where in turn Y'(R) is given by Eq. (3.575). 

5.4 Conservation Laws for the Guiding-Center 

Plasma 

5.4.1 The Noether Method 

We now employ Noether's theorem to deduce conservation laws for the energy­

momentum and the angular momentum of the guiding-center plasma. The tech­

nique has been described by Similon [12], and we shall compare oUI results to 

his. We begin by considering the variation in the Lagrangian density due to the 

variation of all the fields. We start with C, = c'gc + c'm, and apply the variation. 

Whenever terms involving the derivative of a variation appear, we replace them 

by a pure divergence minus a term for which the variation is not differentiated; 

this is almost like integration by parts, but since there is no integral sign, we 

must keep the pure divergence terms. When we are done, we shall find that 8 C, is 

equal to a pure divergence minus terms, for each field present, that consist of the 

variation of that field times the corresponding equation of motion. Thus, if we 

... 
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then use the equations of motion, we can reduce 8C to a pure divergence. The 

algebra is tedious but very straightforward, and we get 

-+ { 1 €. 
8C(x) =\7. -8Ao ' Go + -8A l . G l + Joa8{3 + JlK-{)(j . 

41T' 41T' 

+ J dN( 1]) J dT84 
( X - R( 1], T)) [R(1], T jr gc(Z( 1], T); Ai, Pi) . 8Z( 1], T) 

- 8R(1],T) (rgc (Z(1],T); Ai,Fi)· Z(1], T) 

- L All (1], T)Cv (Z( 1], T); Ai, Fi) - H( Z( 1], T); Fd)] }. (5.826) 
v 

5.4.2 Conservation of Energy-Momentum 

To derive the conservation law for energy-momentum, we consider variations in 

the coordinates that effectively translate in spacetime all the particles of the 

plasma, the ·fields in the plasma, the external coils that generate the fields, etc. 

Following Similon [12], we write these as follows: 

8R=e 

8J.L = 0 

8a = 0, 

(5.827) 

(5.828) 

(5.829) 

(5.830) 

where e is a constant vector. Thus, the particles' position coordinates are pushed 

forward without altering any of their other phase space coordinates. The fields 

translate according to the prescription 

ba = -e· \7 a 

-+ 

8{3 = -e· \7 {3 

8<7 = -e· \7 <7, 

(5.831) 

(5.832) 

(5.833) 

(5.834) 
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so 

--8Ao = 8( a V 13) .. 

--= 8a V 13+ a V 813 
~ -+ ~--+ 

.. 
= -e· Va V 13 - ae· VV 13 

-+ -+ -+--+ 

= -e . (V a V 13 + a VV' 13) 
-- --= -e· V (a V 13) 
-+ =·-e· V Ao, (5.835) 

and similarly 

(5.836) 

Finally note that the Lagrangian densities transform like scalar fields so 

(5.837) 

(5.838) 

Inserting these into Eq. (5.826), a short manipulation yields 

V·T = 0, (5.839) 

where we have introduced the stress-energy tensor 

1 € 
T(x) = --Go(x). Fo(x) - -Ol(X). F1(x) + .em! 

4-rr 41T" 

+ J dN(TJ) J dr84 (x - R(TJ,r))R(TJ,r)mU(TJ,r) .. 
1 € = --Go(x)· Fo(x) - -G1 (x). F1(x) +Cm ! 

41T" ,41T" . 
.. 

+ J dR J dU J dJ-L J d0flO(R, U,J-L, 0)84 (x - R)R(mU) 

1 € 
= --Go(x)· Fo(x) - -G1 (x). F1(x) + .em! 

41T" 41T" 

+ J dR J dU J dJ-L19(R, U, J-L)84 (x - R)R(mU) (5.840) 



.. 
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Eq. (5.839) expresses conservation of energy-momentum in the guiding-center 

plasma. Note that the last fomi for the stress-energy tensor given in Eq. (5.840) 

expresses the result in terms of the reduced Eulerian distribution function, 19' 

5.4.3 Conservation of Angular Momentum 

To derive the conservation law for angular momentum, we consider variations 

in the coordinates that effectively rotate about the origin of spacetime all the 

particles of the plasma, the fields in the plasma, the external coils that generate 

the fields, etc. Following Similon [12], we .write these as follows: 

SR=n·R (5.841) 

su = n· u (5.842) 

(5.843) 

So. = n· a, (5.844) 

where n is a constant antisymmetric second rank tensor. Thus, the particles' 

coordinates, R, U,and a, transform like vectors undergoing an infinitesimal ro­

tation. The fields rotate according to the prescription 

--+ 

Sa = -(0· :z:). \7 a 

-+ 

S/3 = -(0.. :z:). \7 /3 

S°K, = -(0.. :z:). V K, 

-+ 

S(7 = -(0.. :z:). \7 (7, 

so 

-+ 

SAo = S( a \7 /3) 
--+ 

= Sa \7 /3+ a \7 S/3 

(5.845) 

(5.846) 

(5.847) 

(5.848) 
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--+ --+ --+ -+ 

= -(0· x)· V' a V' f3 + a V' [-(0· x)· V' f3] 
-+ --+ --+ -+ -+ 

= -(0. x) . (V' a V' f3 + a V'V' (3) + aO· V' f3 
-- -- --> = -(0· x). V' (a V' (3) + O· (a V' (3) 

--= -(0. x). V' Ao + 0 . Ao, (5.849) 

and similarly 

--8AI = -(0 . x). V' Al + 0 . AI' (5.850) 

Finally note that the Lagrangian densities transform like scalar fields so 

-bc'ge = -(0 . x). V' c'ge (5.851) 

-bc'm = -(0. x). V' c'm. (5.852) 

Inserting these into Eq. (5.826), a short manipulation yields 

V' [T.n.x+ J dN(7]) J drb4 (X-R(7],r))R(7],r)rge&(Z(7],r);Ai,Fi ).n.a] 

= 0, (5.853) 

where T is the stress-energy tensor given by Eq. (5.840). Since n is the generator 

of an arbitrary rotation, this becomes 

--V' ·(L + S) = o. (5.854) 

Here we have defined the third rank orbital angular momentum ten.sor 

(5.855) 

and the third rank spin angular momentum ten.sor 

S::"f3"Y = J dN(7]) J dr84 (x - R(7], r)) 

ROt ( 7], T )[r~( Z( 7], r)j Ai, Fi)& "Y - rr( Z( 7], r)j Ai, Fdaf3] 

= J dN(7]) J dr8
4
(x - R(7],r)) A;~~~~~~))ROt(7]'T)Fg"Y(R(7],r)) 
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= J dR J dUJ dJ.£ J d0flO(R, U,J.£, 0)64 (x - R) ~:RO!(R, U,J.£)Ftr 

= J dR J q,U J dJ.£f9(R, U, J.£)64 (x - R) ~: RO!(R, U, J.£)Fg-r. (5.856) 

Eq. (5.854) expresses conservation of angUlar momentum in the guiding-center 

plasma. 

We pause to interpret our result for the guiding-center spin, Eq. (5.856). In 

a preferred frame, Fg-r = 0 if either (3 = 0 or "'f = 0, so we need consider only 

those components of SO!/3'"'t for which neither (3 nor "'f is zero; as all the rest vanish. 

Using Eq. (3.314) for Fo in a preferred frame, we quickly find that 

SO!ij = J dR J dU J dJ.£f9(R, U, J.£)64 (x - R)€J.£RO!(R, U, J.£)€ijkbk, (5.857) 

where Lat.in indices run from one to three, as usual. Now in three dimensions 

one must take the t.hree-dual of the angular momentum tensor to get the angular 

momentum vector. We can now do t.his for the last two indices of SO!ij. The first 

index is present because the relativistically covariant object is not the angular 

momentum itself, but. rather its four flux. Taking the three dual, we find 

Thus, t.o lowest order in €, when Q = 0 we get c times the spin density, which is 

the sum over the distribution of guiding centers of the vector with magnit.ude "'fvJL 

that points in the direction of b. Thus the spin angular momentum for a single 

guiding center in a preferred frame may be thought of as having magnitude "'fvJL 

and pointing in the direction of the magnetic field. For Q = I =1= 0,- it is clear that 

we get the :flux of this quantity, as the integrand has an additonal factor of vfl (to 

lowest order). This makes plausible our interpretation of S as the spin. 

Note that 
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= ryrf3 _ Tf3'Y, (5.859) 

where we have used Eq. (5.839). Using this result, we can write the angular 

momentum conservation law in the following form: 

, T-+ 
T- T + V·S = 0, (5.860) 

where the superscripted T means "transpose." Note that the antisymmetric part 

of the stress-energy tensor is equal to the divergence of the spin tensor. 

5.5 The Guiding-center Plasma in the Presence 

of an Eikonal Wave Field 

5.5.1 Constructing the System Action 

We are now ready to extend the above analysis to the situation for which the 

plasma is bathed in an eikonal wave field. The full four potential is now 

(5.861 ) 

where the eikonal wave four potential 

Aw{x) , A(x)exp (~1jJ(X)) + c.c. (5.862) 

was introduced back in Eq. (4.618) of Section 4.2. The corresponding field is then 

(5.863) 

where 

1 - (i) Fw(x)=~F(x)exp ~~(x) +c.c. (5.864) 

and 

F(x) = i(kA - Ak) + €(V A - A V) (5.865) 
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(the O( €) term in F is usually neglected in the eikonal approximation). Note 

that Fo and FI are slowly varying background fields, while Fw is the rapidly 

varying wave field. We must now construct the system action for a plasma of 

guiding/ oscillation centers immersed in this field. The presence of the wave field 

has two effects on the system action: It means that the Hamiltonian must now 

include the ponderomotive contribution, K 2 , and it means that the Maxwell 

action must now include the wave field. 

We first consider the effect on the Maxwell action. We form -F : F/167r, 

and note that it contains the product of the slowly varying terms, the product of 

the rapidly varying terms, and cross terms. The cross terms are oscillatory and 

vanish upon integration over x. The remaining Maxwell action is then 

(5.866) 

where (Sm)O is the functional form of the Maxwell action with no wave present 

(given by Eqs. (5.771) and (5.773)), and' 

Sm = -- a,4xF*: F - 1 J - -
87r 

(5.867) 

is the contribution due to the wave. Thus the effective (averaged) Lagrangian 

density is 

(5.868) 

where (.em)o is the functional form of the Lagrangian density with no wave present 

(given by Eq. (5.773)), and 

.e- 1 F-· F-m=-- : 
87r 

(5.869) 

is the contribution due to the wave. Note that .em IS quadratic in the field 

amplitude. 

We now consider the modification of the action due to the presence of the 

ponderomotive Hamiltonian. Replacing H by H + ,A2 K2 in Eq. (5.768), we see 
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that 

(5.870) 

where (Sgc)o is the functional form of the guiding-center action with no wave 

present, and 

(5.871) 

is the contribution due to the wave. Also note that the Lagrange multipliers are 
-

altered by the introduction of K2 (recall that the Lagrange multipliers depend 

on the Hamiltonian). Thus Av = (Av)O + .xv, where 

(5.872) 

and where the vectors ev were given in Eq. (3.613) at the end of Chapter 3. 

Now K2 can be expressed as a real function of the wave field amplitude, F, 
thanks to its manifest gauge invariance. Specifically, examination of Eq. (4.719) 

shows that it is a real quadratic form in the wave field amplitude. Thus it can 

be written 

(5.873) 

where the antisymmetry o.f the field tensor imparts the following symmetry prop­

erties to Ie: 

(5.874) 

and the reality of K2 implies 

(5.875) 

It is clear that a kernel, JC, with the above properties is ,defined implicitly by 

Eq. (4.719). Thus we can write 
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If we now define the fourth rank generalized susceptibility tensor 

(note that this differs from the more conventional definition of susceptibility by 

a minus sign) then we can put this in still more compact form, 

(5.878) 

Alternatively, we could write K2 as a quadratic form in the wave potential 

a1nplitude. Using P = i(kA - Ak), we find 

(5.879) 

where the kernel 

(5.880) 

is a second rank tensor. Note that we denote it by the same symbol (JC) that 

we use for the fourth rank kernel; which is meant should be clear from either the 

context or the number of indices adorning it. The guiding-center action is then 

(5.881) 

We can then define the second rank susceptibility tensor 

XOe(x,[Z,Fi, k])=2 J dN(1]) J dT84 (x-R(1],T))JCo e(Z;Fi ,k)· 

= 2k,l3kl1 Xcx,l3e 11 , (5.882) 

so that we may write 

(5.883) 

Once again note that we have used the same symbol to denote the fourth order 

and second order versions of the susceptibility. 

The guiding-center Lagrangian density is then clearly 

(5.884) 
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where (.ege)o(x) is the functional form of the Lagrangian density when no wave 

is present, and 

(5.885) 

is the contribution due to the wave. 

The total action is thus 

(5.886) 

where 

(5.887) 

and 

- - - 1 J 4 -. -S = Sm + Sge = -- d xF : c(x, [Z,Pi,k]): F, 
87r 

(5.888) 

and where in turn we have defined the fourth rank generalized dielectric ten.sor 

Alternatively, in terms of the wave potential amplitude, we have 

§ = -~ J d4 x.4* . V(x, [Z, Pi, k]) . .4, 
47r 

where we have defined the second rank dispersion tensor 

Similarly, the total Lagrangian density is thus 

.e = (.e)o + )...2.c, 

where 

(.e)o = (.em)o + (Cge)o 

and 

- - -.e = .em + .ege 

1 - -
= --P* : c(x, [Z,Fi' k]) : P 

87r 
1 - -= --A* : V(x, [Z, Pi, k)) : A 

47r 

(5.889) 

(5.890) 

(5.891) 

(5.892) 

(5.893) 

(5.894) 

.. 
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The above action must be varied with respect to the particle coordinates and 

the fields as before, but now we must also vary it with respect to the wave fields, 

A( x) and .,p( x). Note that the action depends on A only through its dependence 

on F, thanks to the manifest gauge invariance of K 2 ; variation with respect to 

A will yield the dispersion relation for linear plasma waves. Note also that the 
. -+ 

action depends on .,p only through its dependence on k ='\7 .,p, thanks to the 

averaging out of oscillating terms; thus .,p is an ignorable field coordinate, and 

variation with respect to it will yield the conservation law for wave action. 

Just as we found it useful to denote the dependence of a functional on Ai 

and Pi separately, we shall also find it useful to denote dependence on A and F 
separately. Using Eq. (5.865), the analog of Eq. (5.783) is easily found to be 

85 I - 85 _ 2i k . (85) _ 2 ~ . (85) 
8A total - 8A € 8F 8F 

(5.895) 

(in the eikonal approximation, the third term on the right hand side is usually 

. neglected). Similarly, we shall also find it useful to denote dependence on .ljJ and 

F separately (note that F contains k which is the gradient of .,p). Once again, 

we use Eq. (5.865) to write 

85 I 85 2i -+ (-... 85) 
8.,p total = 8.,p - -;- '\7' A . 8F . (5.896) 

These results are very helpful in deriving what follows. 

5.5.2 The Vlasov Equation for Guiding/Oscillation Cen­

ters 

It is straightforward to see that 

85 (85) 
8Z(TI,T) - 8Z(TI,T) 0 

_ >.2 8(XII CII + K 2 ) (Z( ). P·(R( )) 8Z TI,T, l TI,T, 

F( R( TI, T)), k( R( TI, T))), (5.897) 
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where, as usual, we have used a subscripted 0 to denote the functional form of 

a quantity when no wave is present. The above result yields the correction in 

the equations of motion due to the presence of the ponderomotive Hamiltonian. 

Thus, the only modification to the kinetic equation due to the wave field is the 

inclusion of the ponderomotive effects of the wave field on the guiding/oscillation 

centers of the plasma. 

5.5.3 The Field Equations 

Next, we use Eq. (5.783) to take the functional derivative of S with respect to 

the Ai to get 

:~i = (:~i)O +2),2V'[/ dN(7J) / drb
4
(x-R(7J,r)) 

~p.: BJC(Z(7J,r),Fi ,k) : p]. 
2 BFi 

Thus our field equation still follows from 

but now: 

/ d4x(JO . bAo + JI . bAd = 0, 

Ji = (Jdo + 2,,\2 V . [/ dN(7J) / drb4 (x - R(7J, r)) 

~P*: BJC(Z(7J, r), Pi, k) : p-] 
2 BFi . 

(5.898) 

(5.899) 

(5.900) 

Note that J( has no explicit dependence on FI (the only effect of PI is to alter 

the Poisson brackets), so only JO is modified. This may be interpreted as a 

modification to the guiding-center magnetization density due to the presence of 

the wave field. That is, our field equations are still given by Eqs. (5.812) and 

(5.813), but now 

(5.901) 
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Note that the guiding..:center current density is unaffected by the presence of the 

wave; this is due to our neglect of resonant effects. 

5.5.4 The Linear Susceptibility 

We now have two additional equations of motion due to the variations with 

respect to A and 'IjJ. First we consider the variation with respect to A. We use 

Eq. (5.895), and in keeping with the eikonal approximation, we neglect the third 

term on the right. We immediately get 

(5.902) 

so 

(5.903) 

This is the eikonal equation for linear plasma waves. To see it in a somewhat more 

familiar form, write F = i(kA - Ak), so after some straightforward manipulation 

we arrive at 

P(V.A) = 0, 

where we have used the dispersion tensor defined back in Eq. (5.891), 

-nt3 - k k-r ( at3 at3) 
1/ e = a C -re - C e-r 

= k 2 8.Be - k.Bke + 81l"kak'YXat3-re 

= k2 8/3 e - k/3ke + 41l"X/3 e 

(5.904) 

(5.905) 

The dispersion relc:tion for linear plasma waves is found by setting the eigen­

values of the dispersion tensor equal to zero. In "three-pIus-one" notation, the 

dispersion tensor is three by three and so it has only three eigenvalues that can 

be set to zero. It seems that we are finding an extra branch to the dispersion re­

lation, and one might wonder why this should be so. By multiplying Eq. (5.9?5) 

by k/3' however, it is easy to see that k is a null eigenvector of V. Thus, the extra 
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eigenvalue is null, so setting it equal to zero does not yield any new information. 

The other three roots yield the more interesting information about plasma waves. 

5.5.5 Conservation of Wave Action 

We next consider the equation of motion obtained by varymg 7jJ. Using.· 

Eq. (5.896), we immediately find 

8S -+ 

0= - =\7 . .1, 
8'lj; 

where we have defined the wave action four flux 

.1 = P (iA2 .4* . e : F + A2 F* : Be : F) . 
27T'€ 87T' Bk 

(5.906) 

(5.907) 

Our equation of motion thus expresses the conservation of this wave action. 

The wave action takes on a much simpler form when written in terms of the 

dispersion tensor, defined in Eq. (5.905). We find 

(5.908) 

Finally note that the wave action is gauge invariant, although this is not 

manifest in either of the two forms presented above. To prove this, we replace 

..1* by .4* - ikA* in Eq. (5.907). Using the dispersion relation, Eq. (5.903), it is 

easy to see that the term involving A vanishes, leaving .1 unchanged. 

5.5.6 Applying the Noether Method 

We now consider what happens to the conservation laws obtained by the N oether 
, 

method when we include the effects of the wave field. In this case, Eq. (5.826) is 

altered in the following way: 

-- A2 -- - - 2 -- -8£ = (8£)0- \7 ·(87jJ.J) - - \7 ·[(e : F). A*]+ A \7 ·(M· 8Ao) 
21T' 

+ ~ .{J dN(TJ) J dr8R(TJ,r)84 (x - R(TJ,r)) 
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To derive this equation, we applied the variation to the full Lagrangian density 

for the guiding/oscillation-center plasma in the presence of the wave field. We 

noted that 
- 1, - -+ - '. 

F = -kA+ V' A - (transpose), .' 
€ .. 

(5.910) 

so . . 
- 1, - 1, -+ - -+-

hF = -khA + -(V' h'lj;)A + (V' hA) - (transpose). 
€ € ' 

(5.911) 

Finally, we used the equations of motion to simplify the result, just as we did for 

the case in which there was no wave field present. 

, Note that the second term on the right hand side of Eq. (5.910) and the third 

term on the right of Eq. (5.911) are usually neglected in the eikonal approxima­

tion. They are similar in this respect to the third term on the right of Eq. (5.895), 

and the O( €) terms of Eq. (5.865) (which also must be included in the analysis 

leading toEq. (5.909)). Up until 'now, we have consistently neglected these terms 

in our analysis. It will turn out that they are also unneccessary in deriving the 

conservation law for energy-momentum, but they are necessary in the derivation 

of the conservation law for angular momentum in order to obtain the correct 

expression for the modification of the guiding-center spin due to the presence of 

the wave. 

5.5.7 Conservation of Energy-Momentum 

We now use the same translational variation of the system that we did in the 

case for which no wave was present, but now we add the variations of the wave 

quantities, 
-+ 

h'lj; = -e· V'Ij; = -e· k (5.912) 

and 
- -+ -

hA.= -e· V' A. (5.913) 
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There are five terms on the right hand side of Eq. (5.909). The fifth term 
--+ 

cancels the portion of bc'gc = -e· V' c'gc (on the left hand side) that is due to 

K 2 • The fourth term is the correction to the magnetization density due to the 

wave, as defined in Eq. (5.790). It will simply cause the magnetization density 

that appears in the conservation laws to be corrected for the presence of the wave. 

The third term is of the sort discussed above that may be neglected in the usual 
--+ 

eikonal approximation. The new stuff comes from the second term, V' .(.Jk . e), 
--+ 

and from the portion of bc'm = -e· V' c'm (on the left hand side) that is due to 

the wave. 

The new stress-energy tensor is then 

(5.914) 

where (T)o is the result with no wave field present (see Eq. (5.840)), and T is the 

modification due to t.he wave, 

T = !VI . Fo + eml + .Jk. , (5.915) 

To recap, the first t.erm on the right hand side above simply insures t.hat the 

magnetization that appears in the stress-energy tensor is that corrected for the 

presence of the wave. The second term on the right hand side above similarly 

insures that the term c'm 1 that appears in the stress-energy tensor is also cor­

rected for the presence of the wave. The third term is the stress-energy due to 

the wave itself. Note that it is the tensor product of the wave action with the 

four wavevector. This is sensible since the wave action may be interpreted as the 

number flux of wave quanta times some unit of action, and the unit of action 

times the four wavevector is the energy-momentum per quantum. 

5.5.8 Conservation of Angular Momentum 

Finally, we examine the law of conservation of angular momentum. We use the 

same rotational variation of the system that we did in the case for which no wave 
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was present, but now we add the variations of the wave quantities, 

-+ 

b1jJ = - (0 . x). V 1jJ = - (0 . x) . k (5.916) 

and 

bA = -(0· x)· ~ A + o· A. (5.917) 

Once again, we examine the five terms on the right hand side of Eq. (5.909). 
-+ -+ 

Now bc' = -(O·x)· V C, = - V .[(O·x)C,], so once again the fifth term will cancel 

with the portion of bc'gc (on the left hand side) that is due to K 2 • Similarly, it is 

straightforwardly shown that the fourth term causes the magnetization density 

that appears in the angular momentum tensor to be corrected for the presence 
-+ 

of the wave, just as it did in the stress-energy tensor. The second term is V 

·[.Jk· o· xl, and this contributes a new term in the orbital angular momentum 

tensor; so 

(5.918) 

where 

(5.919) 

Clearly, this is the orbital angular momentum due to the wave. 

This time we retain the third term on the right hand side of Eq. (5.909). It is 

>.2 -+ { -+ _ _ _} 

211' V· [ - (0 . x). VA· + 0 . A·]· c : F . (5.920) 

We shall still ignore the first term in square brackets, as it contains a gradient of 

the wave field amplitude, but we retain the second term. After some manipula-

tion, it becomes 

(5.921) 

From this we can identify a correction to the spin angular momentum tensor. We 

write 

(5.922) 
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where 

(5.923) 

This is the correction to the spm angular momentum tensor of a 

guiding/ oscillation-center plasma due to the presence of an eikonal wave field. 

This quantity is given by Soper [50] for oscillations in an electromagnetic field in 

a vacuum. He writes 

(5.924) 

(see his Equation (9.3.14)). If we set the susceptibility in Eq. (5.889) equal to 

zero, and plug the resulting vacuum dielectric into Eq. (5.923), it is clear that 

our result will reduce to Soper's. Thus, our result may be considered to be an 

extension of his result to the case of dielectric media. 

The lack of gauge invariance of our result for § is disturbing and will be 

discussed further in Chapter 6. 
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Chapter 6 

Questions for Future Study 

In this chapter, we discuss some questions raised by this study that could be 

topics for future research. These are in no particular order. 

• The neglect of resonant effects is probably the most glaring omission of this 

thesis, and probably that most likely to limit its utility. There are several 

schools of thought on how to deal with resonant effects, but they break 

down into two major categories: 

First, there are attempts to simply "patch up" the nonresonant treatment: 

For example, since our nonresonant treatment has successfully given us 

the hermitian part of the susceptibility tensor, we could use the Kramers­

Kronig relations to get the antihermitian part. Alternatively, we could 

simply dictate that all resonant denominators are to be treated according 

to the Landau prescription. These methods, while successful in describing 

resonant particle effects on plasma waves, fall far short of a unified descrip­

tion of the effects of resonant particles. Furthermore, there is something 

aesthetically displeasing about tricks of this sort. 
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Second, there are attempts to go back and redo the single particle analyses 

to include resonant effects. The general idea is that we first went astray 

when we said that we could transform away the first order part of the action 

due to the eikonal wave field. While we can certainly do this far away from· 

the resonant regions of phase space, we certainly cannot do this at (or even 

near) the resonance itself. So we should go back and retain the first order 

part of the action in the region of phase space near the resonance. Like the 

first technique, this approach explains certain things nicely, but falls short 

of a unified description of resonant particles. For example, the first order 

action that we retain will depend on the four potential of the wave, and this 

will yield a modification to the current density of a guiding-center plasma 

that is immersed in a wave field; this is the current drive due to a wave field 

that tokamak researchers st.udy. On the other hand, a good description of 

how this residual piece of the first order action gives rise to Landau damping 

does not seem to exist. Furthermore, there is a great deal of arbitrariness 

connected with how to decide just how much of this first order action to 

keep. One approach uses "window functions" of some characteristic width, 

but there is a great deal of freedom in just how these window functions 

should look (square windows, gaussian windows, etc.); Dewar [51] gives a 

variational principle for determining optimal window shape, but then we 

have to worry about just what we mean by "optimal." There is also a 

great deal of freedom in choosing the width of such windows. If we try to 

transform away the first order action too c10se to the resonance, problems 

develop due to the presence of the trapped particles, and the transformation 

ceases to be a near-identity diffeomorphism. Unfortunately, it is hard to 

quantify what we mean by "too close" in this regard. Perhaps the window 

width should itself be treated as a dynamical variable whose dynamics are 

given by some variational principle (like that of Dewar); this might be a 
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useful tool for the study of "resonance broadening" effeCts, where the width 

of the resonant region varies in time . 

• ' Pursuing the oscillation-center Lie transforms to higher order. is a natural 

and obvious extension of this thesis. In this way, one could study induced 

scattering and three-wave phenomena. Past attempts to study these have 

either not used systematic perturbation theory (e.g. Lie transforms), or 

have used Hamiltonian methods without manifest gauge invariance. This 

thesis should provide the tools needed to combine the· desiderata of sys­

tematic perturbation theory and manifest gauge invariance. Central to this 

effort has been the use of the homotopy formula, and the introduction of 

the pair of special functions, Qe and Re. 

It is interesting to note that this same program could have been carried out 

for the nonrelativistic problem. One must simply take the perturbation to 

the action due to the wave (for which there now would be both a vector 

and a scalar potential), and apply to it the guiding-center Lie transform, 

using the homotopy formula in the same way that we did here . 

• The inclusion of dissipative effects (collisions, correlations, etc.) would 

be an important generalization of the work presented here. This is un­

doubtedly related to the problems associated with the inclusion of resonant 

effects. A unified treatment of correlations would yield the appropriate col­

lision operator in the kinetic equation, and modify the energy-momentum 

conservation law to describe the flow of energy into heat. 

One way to approach this subject might be through the extended use of 

projection operators. We employed this technique in Chapter 5 to show that 

it was possible for energy-momentum and angular momentum to flow from 

one relevent region of Fourier space to another irrelevent one, and thereby 

to effectively appear as a source term in the conservatio~ laws. We did not 
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pursue this idea of partitioning Fourier space into one zone for background 

fields, one zone for wave fields, and one zone for effects of collisions (for 

example, we never introduced a second projection operator for the wave 

fields, or a third one for fields arising in collisions). This approach may 

prove useful, but it quickly leads to great complication in the procedure, 

and it is not clear how it might give rise to collision operators, etc . 

• When we applied the Noether method to the action to obtain the guiding­

center spin angular momentum, we used the version of the action that was 

both boostgauge and gyrogauge invariant. There is a good reason why we 

did this. Other versions contain the quantity R that was introduced back 

in Chapter 3. If we had tried to apply Noether's theorem to an action 

cont.aining R, we would at some point have been faced with the quest.ion 

of how to vary R wit.h respect to the four potential. It. seems that R is not 

independent of t.he four potential since it was defined in terms of t.he unit 

vectors, eo, and these, in t.urn, depend upon the background field. 

We dodged t.he issue by going to the boost-gauge and gyrogauge invariant 

coordinates for which R does not appear in the action, but it is interest.ing 

to contemplate the alternatives. If we were to simply ignore this tenn, 

we would not get guiding-center spin, and that would be unacceptable. 

Though we had to go to higher order to find this term in our firs~ derivation 

of the guiding-center action, it has the same order as the J.ld8 term which 

is obviously critically important. Indeed, now that we have the benefit 

of hindsight, we see that we could have avoided the higher order guiding­

center Lie transform altogether by examining the action at classical order 

and asking what we would have to add to it to make the J.ld8 term gyrogauge 

invariant. The answer would have been -J.lR· dR, and t.his was really the 

only important term we found at higher order. Thus, the clever application 
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of a gauge invariance requirement can save one from going to higher order 

in a perturbation calculation! 

So, since we can't ignore this term, how else could we have dealt with 

it? There are a couple of possible avenues of approach. First, recall the 

well known result that the stress-energy tensor is given by the derivative 

of the Lagrangian density with respect" to the metric tensor (this is true 

at least for spinless systems). There seems to be an analogous theorem 

(or, at least, a conjecture) enunciated by Hehl [52], that the spin angular 

momentum tensor is the derivative of the Lagrangian density with respect 

to torsion. Torsion is the result of an asymmetric affine connection, and the 

affine connection that we had to introduce in Section 3.11 to explain the 
. . 

R· R term in e is indeed asymmetric. Now it is not clear to me that R is a 

torsion, but these remarks do make it clear that R has at least something to 

do with torsron. In any event, R appears in our guiding-center action with 

a J.L in front of it, so it is possible that we could apply the above theorem 

(conjecture?) and derive guiding-center spin directly (without recourse to 

Noether's theorem). I suspect that, if this were possible, it would be of 

more interest to researchers in quantum gravity (which is the community 

to whom reference [52] was aimed) than it would be to researchers in plasma 

physics. It may be that guiding-center motion provides a unique classical 

forum within which tIllS topic of current research in the field of quantum 

gravity may be applied, tested, and better understood. 

Another possible approach to the spin problem is yet more speculative. It is 

suggested by the minimal coupling idea of gauge field theory. Recall that R 

is the gauge potential associated with the gyrogauge group. In Section 3.11, 

we even went one step further and derived the corresponding gauge field, 

N. Using the techniques of gauge field theory, it might be possible to use 

R to define a gauge covariant derivative. We could then add something like 
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N : N to the Lagrangian density, and treat A and 'R as independent gauge 

fields. Though these ideas are suggested by the analogy with gauge field 

theories, they would all have to be rigorously justified. Furthermore, it is 

not obvious how guiding-center spin would arise from these considerations. 

• Another mystery that should be mentioned is the apparant lack of gauge 

invariance of the wave modification to guiding-center spin. Our result 

is clearly the extension to dielectric media of Soper's result for the vac­

uum [50]. The lack of gauge invariance did not seem to bother him, except 

for a cryptic footnote that indicates that the result is invariant with respect 

to a certain subgroup of the full gauge group. One possible explanation 

might be that the division of angular momentum into orbital and spin con­

tributions is not a gauge-invariant division. If this were the case, however, 

one would expect that neither the orbital nor the spin angular momentum 

should be gauge invariant by itself, but that their sum should be gauge 

invariant. Alas, the orbital angular momentum seems to be gauge invariant 

all by itself, so the issue remains a mystery. 

• It would be nice to find a Hamiltonian field theoretical formulation of the ki­

netic "and field equations for the guiding-center and the guiding/oscillation­

center plasma. Manifestly covariant Hamiltonian field theories are, how­

ever, tricky to formulate. We cannot give preference to the time variable, 

and the proper time is not uniquely defined (every particle in the system has 

its own proper time). There may be ways of getting around this difficulty 

by generalizing the form of Hamiltonian equations of motion for such sys­

tems. If this could be done, it might be possible to use the energy-casimir 

method to study plasma stability to nonlinear perturbations. 

• We have developed conservation laws for energy-momentum and angular 

momentum for the guiding/oscillation-center plasma. In most studies of 
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plasma dynamics, use is made of energy conservation, but not of momentum 

or angular momentum conservation (of course, in a covariant relativistic 

treatment energy and momentum are inseparable). It is possible that these 

conserved quantities could playa far greater role in the study of, say, plasma 

stability theory than they have until now. For example l the Lyapunov 

method for assessing stability rests heavily on the discoVery of conserved 

quantities. Just how to go about doing this is not immediately clear. 
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. Appendix A 

Glossary of Notation 

In this appendix, we list all the important symbols used in this thesis, giving the 

number of the equation where they were first used (if appropriate) and a brief 

description (if appropriate). 

SYMBOL EQUATION 

a(x) (5.794) 

a (3.591) 

(3 (3.341) 

(3{x) (5.794) 

f3 E . (3.330) 

f3v (3.357) 

rge (3.489) 

'"'t 

'"'tv 

6Q 

f3 

DESCRIPTION 

Clebsch potential for field 

Gyrogauge-invariant coordinatization of gyroan-

gle 

Angular hyperbolic polar coordinate for parallel 

part of particle four velocity 

Clebsch potential for field 

Ex B/B2 

v/c 
Guiding-center action one form 

Action one-form 

Relativistic gamma factor: '"'tv = 1/ VI - (3;. 

Kronecker delta 
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€ Guiding-center expansion parameter 

€1I1 "'lIn Levi-Civita tensor in n dimensions 

a{3 (5.889) .Generalized dielectric tensor € -ye .. 
T7 (5.737) Continuous particle label 

0 (3.485) Angular polar coordinate for perpendicular part 

of guiding-center four velocity 
() (3.341) Angular polar coordinate for perpendicular part 

of particle four velocity 

~(x) (5.795) Clebsch potential for field 

A ( 4.620) Oscillation-center expansion parameter 

Al (3.287) Lorentz scalar for electromagnetic field 

A2 (3.288) Lorentz pseudoscalar for electromagnetic field 

All (3.604) Lagrange multiplier 

)..B (3.293) Related to eigenvalues of F 

)..E (3.292) Related to eigenvalues of F 

J.L (3.488) Gyromomentum 

v Co.nstraint label 

- (3.506) ..... 

=, (3.576) 

~ (5.827) Generator of infinitesimal translation in space-

time 

~~ (3.613) 

O'(x) (5.795) Clebsch potential for field 

T Proper time 

i (3.505) 

i' (3.575) 
a{3 

X -ye (5.877) Generalized susceptibility tensor 

Wi ( 4.652) 



APPENDIX A. GLOSSARY OF NOTATION 235 

'IjJ ( 4.618) Phase of eikonal wave 

f2 (5.841) Generator of infinitesimal rotation in spacetime 

f2B (3.297) Gyrofrequency with respect to proper time .. 
f2gc (3.490) Guiding-center Lagrangian two form 

w Lagrangian two-form 

A (3.281) Four-vector potential 

Ao Zero-order four-vector potential 

Al First-order four-vector potential 

Aw ( 4.618) Eikonal wave potential 

A ( 4.618) Amplitude of eikonal wave potential 

A (3.281) Three-vector potential 

a (3.346) Member of orthonormal basis tetrad 

B (3.281) Magnetic field pseudovector 

B (3.485) Angular hyperbolic polar coordinate for parallel 

part of guiding-center four velocity 

b Unit three-vector in direction of magnetic field 

b (3.345) Member of orthonormal basis tetrad 

Cv (3.592) Constraints 

c Speed of light 

c (3.344) Member of orthonormal basis tetrad 

D (5.749) Jacobian 

VOt 
f3 ( 5.905) Dispersion Tensor 

De (4.688) Resonant denominator 

e Charge 

E (3.281) Electric field vector 

F (3.281) Field tensor 

F' (3.495) 

F" (3.507) 
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F'" (3.577) 

Fo Zero-order field tensor 

FI First-order field tensor 
~' 

Fw (5.865) Eikonal wave field 

Ii' (5.865) Amplitude of eikonal wave .field 

:F (3.282) Dual field tensor 

in (5.737) Pseudoscalar Eulerian particle dis~ribution func-

tion 
fn (5.747) Scalar Eulerian particle distribution function 

In (5.737) Pseudoscalar Eulerian guiding-center distribu-

tion function 
fn (5.747) Scalar Eulerian guiding-center distribution func-

tion 

9jJ.v Metric tensor 

Go (5.788) Macroscopic field tensor for perpendicular cur-

rent 
G1 (5.789) Macroscopic field tensor for parallel current 

H Hamiltonian 

Hgc (3.488) Guiding-center Hamiltonian 

~ J=1 
2g (2.60) Interior product with respect to vector field 9 

J (5.787) Four-current density 

Jgc Guiding-center poisson tensor 

.:10 (5.785) 

.:11 (5.786) 

.:1l ( 4.653) 

k Wave four vector 

K (3.341) Radial hyperbolic polar coordinate for parallel 

part of guiding-center four velocity 
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K2 (4.669) Ponderomotive Hamiltonian 

JC (5.873) Kernel of ponderomotive Hamiltonian 

k (3.485) Radial hyperbolic polar coordinate for parallel 
,~ 

part of particle four velocity 

L (5.855) Guiding-center orbital angular momentum ten-

sor 
L (5.919) Wave contribution to guiding-center orbital an-

gular momentum tensor 

·Lgc (3.582) Guiding-center Lagrangian 

c'g (2.43) Lie derivative with respect to vector field 9 

c'm (5.773) Lagrangian density of Maxwell field 

c'm (5.869) Lagrangian density of eikonal wave field 

f ( 4.639) Index for Fourier expansion in gyroangle 

Mo (5.790) Magnetization density tensor for perpendicular 

current 
Ml (5.791) Magnetization density tensor for parallel current 

M (3.517) Boostgauge field 

m Mass 

dN(T]) (5.737) Measure of particles with labels between T] and 

T] + dT] 
N (3.518) Gyrogauge field 

PI! (3.304) Parallel projection operator 

PJ.. (3.305) Perpendicular projection operator 

'P (5.798) Smoothing projection operator 
.. 

Qt. ( 4.643) Special Function 

Q (3.384) 

r Particle spacetime position 

Re ( 4.644) Special function 

R (3.385) 
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R 

S 

S 

T 

T 

t 

U 

u 

v 

w 

w 

x 

z 

(5.856) 

(5.923) 

(5.768) 

(5.771) 

(5.867) 

(5.840) 

(5.915) 

(3.343) 

(3.562) 

(3.289) 

(3.485) 

(3.341) 

The set of real numbers 

Guiding-center spin angular momentum tensor 

Wave contribution to guiding-center spin angular 

momentum tensor 
Guiding-center action 

Maxwell action 

Maxwell action due to eikonal wave 

Guiding-center stress-energy tensor 

Wave contribution to guiding-center stress-

energy tensor 

Member of orthonormal basis tetrad 

Boost gauge-invariant coordinatization 

guiding-center parallel velocity 

Particle four-velocity 

Three-veloci ty 

of 

Radial polar coordinate for perpendicular part of 

guiding-center four velocity 

Radial polar coordinate for perpendicular part of 

particle four velocity 

Spacetime coordinates 

Generic coordinates 

Double index contraction: A: B == AJl.",BJl."'. 
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Appendix B 

Vector Spaces, Dual Spaces, 

Algebras, and Modules 

This appendix is included to establish the set-theoretical foundations of tensor 

calculus and exterior algebra, as these ideas are used extensively in this thesis. It 

is intended to provide a review for people already familiar with these topics, and 

to establish notation. The reader is expected to be familiar with linear algebra 

and with the topology of the real numbers. If anything herein is unfamiliar, the 

reader is urged to consult one of the above-mentioned introductory references. 

We begin with some set-theoretical notation: Given two sets, A and B, we 

define the Cartesian product, A x B, to be the set of all ordered pairs, (a, b), such 

that a E A and b E B. The symbol V is read "for all," and the symbol j is read 

"there exists." A set is said to be partitioned if there exist subsets such that each 

and every element of the set is a member of one and only one subset. A map 

that associates an element of a set, B, to each element of a set, A, is denoted by 

A f-+ B. 

A relation, R, among the elements of a set, A, is defined to be a subset of 
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A x Ai we write RcA x A. Two elements of A, say al and a2, are then said 

to be related if (aI' a2) E R. In this case, we may write al "" a2' A relation is 

reflexive if a "" a for all a E A. A relation is symmetric if a '" b implies b '" a 

for all a, b E A. A relation is transitive if a '" b and b '" c implies a '" c for 

all a, b, c E A. A relation that is reflexive, symmetric and transitive is called 

an equivalence relation. An equivalence relation naturally partitions a set into 

subsets called equivalence classes. Any two members of the same equivalence class 

are related to each other by the equivalence relation, and members of different 

equivalence classes are not related by the equivalence relation. For example, 

the equivalence relation of "similarity" partitions the set of all triangles into an 

infinity of equivalence classes, and the equivalence relation of "equality modulo 

three" partitions the set of integers into three classes. The relation "is the same 

height or taller than" is not an equivalence relation on the set of all trees, because, 

although it is ,reflexive and transitive, it is not symmetric, etc. 

The set of all real numbers will be denoted by ~. The set of all n-tuples of 

real numbers will be denoted by ~n, and the reader is assumed to have some 

familiarity with its usual topology. In particular, by using, say, the Euclidean 

norm, it is possible to define open sets as neighborhoods, and thus to have a 

concept of nearness, continuity, convergence, etc. 

Let V be a set with U, V, W, . .. E V, and let a, b, c, . .. E R Let + denote 

an operation that takes two elements of V and returns a third one; that is, + is 
a map V x V I---t V. Let . denote an operation that takes an element of R and 

an element of V and returns an element of Vi that is, . is a map ~ x V I---t V. 

Then V is a vector space over the field of real numbers if and only if the following 

conditions hold: 

Condition B.0.8.1 VU, V, W E V : U + (V + W) = (U + V) + W. 

Condition B.0.8.2 VU, V E V : U + V = V + U. 

... 
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Condition B.0.8.3 30 E V: 'IV E V: V + 0 = V . 

Condition B.0.8.4 VU E V: 3VE V : U + V = o. 

Condition B.0.8.5 Va, b E ~,U E V : (ab). U = a· (b. U). 

Condition B.0.8.6 Va, b E ~,U E V : (a + b). U = a· U + b· U. 

Condition B.0.8.7 Va E ~,U, V E V : a· (U + V) = a· U + a . V. 

Condition B.0.8.8 VU E V : 1 . U = U. 
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A set of vectors, U1 , ••• , Un, is said to be linearly independent if and only if 

the only real numbers, Cl, ••• , Cn , satisfying 

Cl • U 1 + ... Cn . Un = 0 (B.925) 

are Cl = ... = Cn = o. Otherwise, the vectors are said to be linearly dependent. 

The number of elements in the largest possible set of linearly independent vectors 

is called the dimension of the vector space. If a vector space has dimension n, 

then any set of n linearly independent vectors constitutes a basis for that vector 

space. If VI, ... , Vn is a basis for V, then any vector, U, in V can be expressed 

(B.926) 

where the real constants, a, are uniquely detennined by U, and can be computed 

by standard techniques of linear algebra. In this case, we say that the basis spans 

the vector space. A vector subspace of a vector space, V, is a subset of V that is 

itself a vector space closed under· and +. The dimension of the vector subspace 

is the minimal number of basis vectors needed to span it. 

Vector spaces can be finite or infinite dimensional. An example of an infinite 

dimensional vector space is the space of all infinitely differentiable (COO) real­

valued functions on R. The addition and multiplication operations are then 

(I + 9)(X) = I(x) + 9(X) (B.927) 
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and 

(a . f)( x) = a . f ( x) . (B.928) 

This very important space will be called A(R). A basis for this vector space 

would have to contain an infinite number of elements; the theory of Fourier series 

provides an example of how to go ab01!t constructing and using such bases. The 

set of all polynomial functions of a real argument is a vector subspace of A(R). 

A functional, U·, operating on a vector space, V, is a map V 1-+ R. Equiva­

lently, we can think of functionals as objects which pair with vectors to yield real 

numbers. The notation for this pairing is (U*, V) E R. Note that we frequently 

denote functionals with superscripted stars. It is possible to define operations of 

addition and real number multiplication on the space of functionals as follows: 

(U· + V·, W) = (U*, W) + (V*, W) (B.929) 

and 

(a. U*, W) = a(U*, W). (B.930) 

It is readily verified that these operations make the space of all functionals oper­

ating on V into a vector space which we shall denote by V*, and which we shall 

call the dual space to the vector space, V. Furthennore, it is also readily verified 

that the dimensions of V and V· are equal. An example of this from linear al­

gebra may be instructive: The dual space to the vector space of column vectors 

may be identified with the vector space of row vectors, since a row vector and a 

col'l.lIIln vector pair to yield a real number under matrix multiplication. 

If a vector space, V is endowed with a further bilinear operation that maps 

V x V 1-+ V, then it is called an algebra. Since this operation pairs vectors with 

other vectors, it can be written in the form (U, V) E V. By "bilinear," we mean 

(a. U + b . V, W) .= a . (U, W) + b . (V, W) (B.931) 
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and 

(U, a . V + b· W) = a· (U, V) + b· (U, W). (B.932) 

An algebra is commutative if VU, V E V : (U, V) = (V, U). An algebra is asso­

ciative if VU, V, W E V : (U,(V, W)) = ((U, V), W). The set of real numbers, 

R, becomes a commutative, associative algebra when equipped with the opera­

tion of multiplication of real numbers. The space A(R) described above is also a 

commutative, associative algebra if we equip it with the multiplication 

(fg)(x) = f(x)g(x). (B.933) 

In linear algebra, the set of all n by n square matrices is a vector space of 

dimension n 2 with the usual definitions of matrix addition and multiplication 

by real numbers; it becomes an associative (but not commutative) algebra when 

equipped with matrix multiplication. 

An algebra, V, is called a Lie algebra if and only if it is anticommutative 

VU, V E V: (U, V) = -(V,U), (B.934) 

and satisfies the Jacobi identity 

VU, V, WE V : (U, (V, W)) + (V, (W, U)) + (W, (U, V)) = o. (B.935) 

The space of vectors in ?R3 becomes a Lie algebra when equipped with the usual 

cross ·product. 

A vector subspace of an algebra is called a subalgebra if it is closed under the 

algebra's multiplication rule. For example, the space of all polynomial functions 

of a real argument is a sub algebra of A(R). A sub algebra of a Lie algebra is called 

a Lie subalgebra. 

We can generalize the concept of a vector field somewhat by relaxing the 

requirement that a and b in Conditions B.O.8.5 through B.O.8.8 above are real 

numbers. Suppose instead that they are members of any associative algebra, A. 
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Then Conditions B.O.8.S through B.O.8.8 still make sense, though the number 1 

that appears in Condition B.O.8.8 must be reinterpreted to refer to the identity 

element of the algebra, A. In this case, V is said to be a module over the algebra, 

A. For example, in linear algebra, the space of column vectors is a module over 

the above.;.described algebra of square matrices. 

Given an algebra, V, with subspace, U, we say that U is an ideal of V if and 

only if (U, V) E U and (V, U) E U for all U E U, and V E V. For example, let V 

be the vector space of all polynomial functions of a real argument, X; Recall that 

this is a subalgebra of A(~). Then, the subspace, U C V, of all polynomials with 

zeros at some particular location( s) is an ideal of V. 

Throughout this thesis, when a scalar multiplies a vector, the dot is sup­

pressed; that is, a . V is written simply a V. The dot notation is used for other 

t.hings. Also, boldface type is used to denote a vector, though its components in 

a given coordinate system are denoted by the same letter in ordinary typeface 

(with a superscripted index to label components). 

'.<1 
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Appendix C 

Gyrofrequency Shift· for 

Two-Dimensional 

N onrelativistic 

G uiding-C enter Motion 

As a straightforward but nontrivial example of the vector Lie transform technique, 

we consider two-dimensional nonrelativistic guiding-center motion in a magnetic 

field of the form 

B = B(x,y)z, (C.936) 

and a perpendicular electric field of the form 

E = Ez(x,y)x + Ey{x, y)y. (C.937) 

To lowest order, the gyrofrequency is given by n = eB fmc. We shall address the 

problem of computing the correction to this quantity due to the spatial depen-
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dence of Band E. 

The single-particle equations of motion are 

x=u 

y=v 

U = ~E;c +flv 
m 

v = ~Ey - flu. 
m 

Introduce the perpendicular velocity and the gyroangle, 

W = vu2 +v2 

0= arg( -v - iu), 

so that 

u = -wsinO 

v = -wcosO. 

In terms of w and 0 the equations of motion are found to be 

x = -wsinO 

if = -w cos 0 

tV = -~ (E;c sinO + Ey cosO) 
m 

. 1 e 
0= -0 - - (E;c cosO - Ey sinO) 

t mw 
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(C.938) 

(C.939) 

(C.940) 

(C.941) 

Here we have introduced the formal ordering parameter t, and have ordered the 

equations of motion by the prescription e ~ elt and E ~ tE. 

Though it is most useful and quite elegant to treat this problem with Hamil­

tonian perturbation theory, we shall instead use Lie t.ransforms directly on the 

dynamical vector field. We do this for the purposes of illustration. In Chapter 3 of 

this thesis, we treat the much more general problem of relativistic guiding-center 

motion in arbitrary electromagnetic field geometry in space-time (including per­

pendicular electric fields that may be order unity in the guiding-center expansion 

' .. , 



,.,. 
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parameter, €), and there we make full use of the Hamiltonian nature of the equa­

tions of motion and we spend a great deal of time studying the associated Poisson 

structure. It is useful to compare the two approaches. 

We denote the phase-space coordinates by z = (x, y, w, ()), and the equations 

of motion by 

where the dynamical vector field is described by 

and 

VIY = -w cos () 

VI
w = - ~ (g/:. sin () + Ey cos B) 

m 

VIe = __ e_ (Ez cos B - Ey sin B). 
mw 

The unperturbed problem, z = Vo/€, thus has the solution 

x = Xo 

y = Yo 

w =Wo 

() = ()o + nt I €, 

(C.942) 

(C.943) 

(C.944) 

(C.945) 

so that averages over the unperturbed motion are equivalent to averages over (). 

At first order, Eq. (2.222) tells us that 

(C.946) 
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where V denotes the Lie transformed dynamical vector field at first order. The 

separate components of the above equation are then 

n B;z: V;Z: . B 
H BB9l = 1 + w sm 

B y _ y o BB9l - VI + w cosB 

o :Bif = vr + : (E;z: sin B + Ey cos B) 

o !9f = vf + ":'w (E;z: cosB - Ey sinB) + 9:0 ,;z: + 9iO,y' (C.947) 

We demand that the generator vector gl be purely oscillatory (single-valued in 

B). Thus, averaging the above equations immediately yields 

Then, we can solve Eqs. (C.947) for the components of gl. We get 

;z: w B 
91 = - 0 cos 

9i = w sinB o 
9f = :0 (-E;z: cos B + Ey sin B) 

(C.948) 

(} e. wO,;z:. wO,y ) 
91 = mwO (E;z: smB + Ey cosB) - fi'2 smB - fi'2 cosB. (C.949 

Thus we have completely removed the perturbation in the dynamical vector field 

at first order. The guiding-center equations of motion will appear at the next 

order, as will the desired correction to the gyrofrequency. 

At second order, Eq. (2.223) tells us that 

121 
V2 = -.e2 V o - .e l V 1 + 2.el V O = -c'2V O - 2.e1V l • (C.950) 

The generator g2 must be chosen so that V2 is purely averaged. Thus, without 

having to actually compute g2, we can deduce 

(C.951) 

... 
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To get the shift in gyrofrequency, we need only V~. Because both VIand gl 

contain oscillatory tenns, the Lie derivative of one with respect to the other will 

contain products of oscillatory terms, and some of these will not average to zero. 

After some tedious algebra, we find 

(C.952) 

This is the gyrofrequency shift. The first term is the shift due to the spatial 

dependence of the perpendicular electric field, and the second tenn is the shift 

due to the spatial dependence of the magnetic field. The first of these terms was 

discovered by Kaufman [47] in 1960, who also showed that it gives rise to the 

phenomenon of gyroviscosity. 

It is interesting to note that, when the results of Chapter 3 are cast into 

"1 + 3" notation and the nonrelativistic limit is taken, the first of the above pair 

of tenns is present but the second is not. This is because the ordering scheme 

used is quite different. In this appendix, we treated the perpendicular electric 

field as an order € quantity, whereas in Chapter 3 we took it to be order unity. 

Thus both tenns appear at the same order above (the first term has a spatial 

gradient and an electric field, and the second t.enn has two spatial gradients), 

whereas in Chapter 3 the second tenn would appear at one higher order than 

the first tenn (and we did not calculate to high enough order there to see it). It 

is also interesting to note that the tenn involving 1(. in Eq. (3.511) of Chapter 3 

is a three (or higher) dimensional effect, and has no analog in two-dimensional 

guiding-center motion. 
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Appendix D 

Properties of the Special 

Functions 

The following is a list of properties of the Q e and Re functions that follow directly 

from their definitions given in Section 4.4. 

D.O.9 The Q Functions· 

Property D.D.9.1 (Defining. Integral) 

Property D.D.9.2 (Relationship with Bessel Functions) 

d 
dx [xQe(x)] = Je(x) 
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Property D.O.9.3 (Power Series) 

00 (-1)i(x/2)2i+1. (x/2)/. 
Q/.(x) = t; (2j + f t l)j!(£ + j)! = (£ + I)! + ... 

Property D.O.9.4 (Asymptotic Behavior for Large Argument) 

1 {f.. ( 1T' 1T') Q 1.( x) '" - + - sm x - -f - - + ... 
X 1T'X3 2 4 

Property D.O.9.5 (Recursion Relations) 

Property D.O.9.6 (Formula for Derivative) 

Graphs of the Q functions are presented in Fig. D.l. 

D.O.IO The R Functions 
Property D.O.IO.I (Defining Integral) 

Property D.O.IO.2 (Relationship with Bessel Functions) 
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Property 0.0.10.3 (Power Series) 

. 00 (_1)i(x/2)2i+l 2(x/2)l 
Rl(X) . 2 ~ (2j +£ + 2)j!(£ + j)! = (£ + 2)£! + ... 

Property 0.0.10.4 (Asymptotic Behavior for Large Argument) 

Property 0.0.10.5 (Recursion Relations) 

Property 0.0.10.6 (Formula for Derivative) 

R~(x) = ~ [Je(x) - Re(x)] 
x 

Graphs of the R functions are presented in Fig. D.2 . 

• 
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Appendix E 

Useful Bessel Function 

Sums 

All of the Bessel function summation formulas used in Chapter 4 can be derived 

from the following theorems: 

and 

L JHk(Z)Ji-k(Z) = bkO 
i 

L Ji+k+l(Z)Ji-k(Z) = 0, 
e 

the 'usual Bessel function recursion relations 

and 

and the parity rule 

(E.953) 

(E.954) 

(E.955) 

(E.956) 

(E.957) 
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To verify Eq. (E.953), let us define 

fk(Z) = L JHk(Z)Jl-k(Z), 
l 

and differentiate with respect to Z to get 

f~(z) = L (J~+kh-k + J~+kJ~_k) 
l 

= ~ L [( JHk - 1 - JHk+d Jl- k + Jl+k (Jl- k- 1 - Jl - k+1)] 
l 

256 

(E.958) 

= ~ L (JHk - 1Jl -k - JHk+iJl-k + JHk+1 Jl-k - Jl+k-lJl-k) 2 . 
l 

= 0, (E.959) 

where we have used Eq. (E.956) in the second line and have redefined the sum­

mation variable in the third line (we have also omitted explicit indication of the 

functional dependence of Jl on z since no ambiguity can result from doing so). 

This means that f k ( z) cannot depend on z, so it is a constant for each value of 

k. To find the value of this constant, set z equal to zero in Eq. (E.953), Recalling 

that Je(O) = beD, we see that fdz) = bkO , and the theorem is proved. 

To verify Eq. (E.954), use the parity rule, Eq. (E.957). We have 

L JHk+lJl-k = ~ L (JHk+1Je-k + J-l-k-.lJ-Hk) 
l l 

= ~ L (Jl+k+1Je- k + (_1)2l+1 Je+k+1Je-k) 
2 l 

= ~ L (JHk+lJe-k - Jl+k+1 Je-k) 
2 e 

= 0, (E.960) 

where we have redefined the summation variable in the first line (f f-+ -f in the 

second term), and· used the parity rule in the second line. 

These theorems can be used to derive sum rules with summands that are 

quadratic in the Bessel functions. To do this, note first that setting k = 0 in 
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Eqs. (E.953) and (E.954) immediately yields 

(E.961) 

and 

L Ji+1Ji = L JiJi - 1 = o. (E.962) 
i i 

To derive a sum rule that includes e raised to some power, first use Eq. (E.955) to 

get rid of the power of e. To derive a sum rule that includes a derivative of a Bessel 

function, first use Eq. (E.956) to express the Bessel function derivative in terms 

of undifferentiated Bessel functions; alternatively, if a sum rule that includes 

a Bessel function derivative can be expressed as the derivative of another sum 

rule with undifferentiated Bessel functions, then this is usually a better way to 

proceed. 

As an example of some generality, consider the sum over e of f.4JiJ~. This can 

be expressed as follows: 

Now note 

r JI = f2 (fJi )2 
f2 z2 

= 4 (JI-l + 2Ji - 1Ji +1 + JI+1) 

= :2 { [( f _ 1) 2 + 2( f - 1) + 1] JI-1 
+ 2 [(f - l)(f + 1) + 1] Je-1Je+1 

+ [(f + 1)2 - 2(f + 1) + 1] JI+1} 

z2 { [z2 2 Z 2 ] ="4 "4 (Je- 2 + Ji ) + 22 (Ji - 2 + Je) Ji - 1 + Je- l 

+ 2 [~ (Je- 2 + Ji ) (Ji + JH2 ) + Ji-1Ji + l ] 

+ [z: (Je + JH2 )2 - 2~ (Jl + JH2) Jl+1 + Ji+l]}' 

(E.963) 

(E.964) 
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so that application of our theorems to this last equation yields 

L/4 Ji = : { [:2 (1 + 2 . 0 + 1) + z (0 + 0) + 1] 
l 

Thus, we finally get 

+2[: (0+0+1+0)+0] 

+ [: (1 + 2·0 + 1) - z (0 + 0) + 1] } 

z2 3z4 

=2+8· 

Z 3z3 

"\:" r JeJ! = - + -. 
~ L 2 4 

l 
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(E.965) 

(E.966) 

The following is a list of useful results that can be established in the above 

manner: 

LJeJ/ = 0 
l 

Lf.JlJ/ = -; Fo· k 
e 2AB. 

"\:" - * '7+ z L-Je ..Ie = r-Fo 
e B 

Lf.Je-* Je+ = PJ. 

e 

L (Je- 1 - Je+d J[-* = - k V; Fo· k. 
l J. B 

(E.967) 

(E.968) 

(E.969) 

(E.970) 

(E.971) 

These sum rules are needed in the proof that the results for K 2 in Eqs. (4.717), 

(4.719) and (4.735) are indeed the same. 
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