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ABSTRACT OF THE THESIS

Predicting the Log Returns of Illumina, Inc. Stock

by

Shelly Chopra

Master of Applied Statistics

University of California, Los Angeles, 2022

Professor Hongquan Xu, Co-Chair

Professor Nicolas Christou, Co-Chair

Corporations belonging to the biotechnology sector have the potential to provide investors

with high returns; between January 2020 and January 2021, the average share price for

European and US biotechnology companies increased at more than twice the rate of the S&P

500, outperforming sister industries such as pharmaceuticals and many other industries which

witnessed dwindling returns during the COVID-19 pandemic1.Thus, this research paper aims

to formulate time series models that accurately predict the log returns of the stock price of

Illumina, Inc. Seven time series models were formulated, including three naive models,

two Autoregressive Integrated Moving Average models (ARIMA), one simple exponential

smoothing model, and one ARIMA-GARCH model. Among the models, it was determined

that the simple exponential smoothing model outperformed the other models on the basis of

root mean square error (RMSE). This simple exponential smoothing model was then applied

to three competing biotechnology companies to assess its applicability to other companies

within the industry.

1Cancherini.
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CHAPTER 1

Introduction

The stock market is frequently perceived to be a sentiment indicator that can impact key

economic measures such as gross domestic product (GDP) negatively or positively. From

1928 to 2016, the average annual return from stock investment was approximately 8 percent-

age points higher than on 3-month Treasury Bills1, leading to sizeable return gaps between

investment in stocks compared to other investment vehicles. In particular, corporations

belonging to the biotechnology sector have the potential to provide investors with high re-

turns; between January 2020 and January 2021, the average share price for European and

US biotechnology companies increased at more than twice the rate of the S&P 500, outper-

forming sister industries such as pharmaceuticals and many other industries which witnessed

dwindling returns during the COVID-19 pandemic2. Thus, a topic of interest that is central

to this research paper is formulating models to predict the stock price returns of Illumina,

Inc., an American biotechnology company that develops, manufactures, and markets inte-

grated systems for the analysis of genetic variation and biological function. The company

provides a line of products and services that serves the sequencing, genotyping and gene

expression, and proteomics markets. The company announced its initial public offering on

July 28, 2000 at $16.00 and reached its all-time high share price of $524.84 on August 16,

2021.

The Efficient Market Hypothesis states that any new information is immediately re-

1Santoli.

2Cancherini.
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flected in stock prices and thus neither technical nor fundamental analysis can generate

excess returns3. Thus, rather than reviewing company financials to predict future stock

prices, this research paper utilizes time series analysis, namely naive models, Autoregressive

Integrated Moving Average Models (denoted ARIMA), Exponential Smoothing techniques,

and an ARIMA-GARCH model to predict future stock prices based on daily historical ad-

justed stock price closing data. The quality of the models is assessed primarily based on the

root mean square errors (RMSE)), since it penalizes larger errors more than other accuracy

metrics and is expressed in the same unit as the forecasted values; however, other accuracy

metrics are also noted, including mean error (denoted ME), mean absolute error (denoted

MAE), mean percentage error (denoted MPE), and mean absolute percentage error(denoted

MAPE). These other accuracy metrics are not as efficient if extreme values are present.

The computation for all of the aforementioned accuracy metrics can be found in the

equations below, where x̂i reflects the i
th predicted value, xi reflects the i

th actual value, and

n reflects the total number of observations.

RMSE =

√√√√ n∑
i=1

(x̂i − xi)2

n
(1.1)

ME =
1

n

n∑
i=1

(x̂i − xi) (1.2)

MAE =
1

n

n∑
i=1

|x̂i − xi| (1.3)

MPE =
100%

n

n∑
i=1

(xi − x̂i)

xi

(1.4)

MAPE =
100%

n

n∑
i=1

|xi − x̂i|
xi

(1.5)

3https://www.investopedia.com/terms/e/efficientmarkethypothesis.asp
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Upon finding the model with the highest prediction accuracy, we apply this model to the

stock price data to that of 3 competing biotechnology companies, namely Thermo Fisher

Scientific, Agilent Technologies, and Qiagen.

3



CHAPTER 2

Data

Daily stock price data corresponding to Illumina, Inc. (ticker: ILMN) was scraped from

Yahoo! Finance1 from January 2nd, 2018 through June 2nd, 2022, consisting of 1,112 ob-

servations, or stock price data corresponding to 13 complete fiscal quarters2. While the

data set comprises of six continuous variables (opening price, high price, low price, closing

price, trade volume, and adjusted closing price), our response variable is adjusted closing

price, which reflects the closing price after adjustments for all applicable stock splits and

dividend distributions, adhering to Center for Research in Security Prices (CRISP) stan-

dards3. In the case of Illumina, Inc., however, the closing price is equal to the adjusted

closing price for all observations, as no dividend distributions nor stock splits have occurred

during the time frame in question. Prior to formulating models, preliminary data analysis

was performed on daily stock price data of Illumina, Inc. to understand high-level metrics

and preemptively identify potential modeling challenges. Daily stock close price movement

demonstrated record high closing prices of $524.84 on August 16th, 2021 and record low

closing prices of $209.20 on March 18th, 2020. The stock close price on June 1st, 2022 is

$235.20, which is -$172.25 lower (or -73% lower) year-over-year. Table 2.1 shows the annual

stock price highs and lows by year to demonstrate range.

1https://finance.yahoo.com/

2https://finance.yahoo.com/quote/ILMN/history?p=ILMN

3https://help.yahoo.com/kb/SLN28256.html
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2018 2019 2020 2021 June 2022 YTD

Max Adj Closing Price $367.06 $378.23 $400.74 $524.84 $423.80

Min Adj Closing Price $209.54 $266.84 $209.20 $347.28 $213.05

Range $157.52 $111.39 $191.54 $177.56 $210.75

Max vs Min, % Difference 75.2% 41.7% 91.6% 51.1% 98.9%

Table 2.1: Illumina, Inc. - Adjusted Closing Price Ranges

Figure 2.1: Time series data of original, untransformed Illumina, Inc. Stock Price Data

The volatile nature of the company’s stock price may suggest non-stationarity, which

hinders our ability to make accurate price predictions through time series models and would

therefore require transformation of the original data set. This subject is explored in greater

depth in the subsequent chapter.

For modeling purposes, the data was subset into training and testing data and corresponds

to the time frames in table 2.2; the training set was intended to incorporate the 1st fiscal

5



quarter of 2018 through the 3rd fiscal quarter of 2021 (85% of the data), while the testing

data set was intended to incorporate the 4th fiscal quarter of 2021 through the most recent

week of data in June of 2022 (15% of the data).

Type Observations Frequency Time Frame

Training 944(85%) 1/2/2018 – 9/30/2021

Testing 168(15%) 10/1/2021 – 6/1/2022

Table 2.2: Training Testing Data Splits

6



CHAPTER 3

Time Series Features

A time series, defined as a sequence of data points that occur in successive order over some

period of time1, can be decomposed into three parts as defined by the equation below:

Yt = St + Tt +Rt, for additive models, (3.1)

and

Yt = St × Tt ×Rt, for multiplicative models (3.2)

In the equation above, St represents seasonality, which is defined as cycles that repeat

regularly over time; Tt represents trend, which is defined as a pattern in the data that shows

the movement to higher/lower values over time; Rt is defined as random, irregular influences

on the time series.

A key assumption of time series models is stationarity, which implies that the mean,

variance, and covariance between the i
th

and (i+m)
th

term of the time series are constant

and not a function of time. As a result, a stationary time series should not exhibit trend nor

seasonal components. Figure 3.1 shows the additive decomposition of our time series data.

1https://www.investopedia.com/terms/t/timeseries.asp
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Figure 3.1: Illumina, Inc. - Time series additive decomposition of original stock price data

With respect to trend, the decomposition chart suggests a positive trend in the stock

price, particularly from the second half of 2019 through the first half of 2020, followed by

a plateau in price until halfway through 2021. With respect to seasonality, we observe

seasonal peaks in the middle of each year. Therefore, we predict that the data is non-

stationary and will require transformation prior to modeling. The autocorrelation (ACF)

plot in figure 3.2 further suggests non-stationary data, since the ACF values are larger and

positive (statistically significant at the 95% confidence level, since each bar extends beyond

the blue dashed line) and decrease slowly overtime; for stationary data, we expect the ACF

to drop to 0 quickly.
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Figure 3.2: Autocorrelation Plot (ACF) for original, untransformed Illumina, Inc. Stock

Price Data

To confirm this, we utilize the Augmented Dickey-Fuller Test; for a simple autoregressive

(AR) time series model2 represented as

yt = ρyt−1 + ut, (3.3)

in which ρ reflects the unit root, or stationarity and ut reflects the intercept term, the

Augmented Dickey-Fuller test hypothesizes the following:

H0 : ρ = 0 (non-stationary data)

H1 : ρ ̸= 0 (stationary data)

2Verma, Yugesh.
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Upon running this test, we obtain a p-value of 0.74. Thus, we fail to reject the null

hypothesis; there is insufficient statistical evidence to claim that the data is stationary. We

must therefore identify a transformation in the data to make it stationary prior to formulating

any models.

To stabilize the variance, we will first take the log of the stock prices, followed by taking

the first order difference to detrend the data. This transformation reflects the daily log

returns of the stock price. Figure 3.3 below demonstrates that the log returns of the stock

price exhibits stationary characteristics, such as constant variance.

Figure 3.3: Illumina, Inc. - Original Time Series vs Log Returns Time Series

To confirm that the log returns transformation results in stationary data, we re-run the

Augmented Dickey-Fuller Test, which yields a p-value < 0.01. Therefore, we reject the

null hypothesis and conclude that there is sufficient statistical evidence to assume that the

log returns transformation results in stationary data, which we will then use to formulate

time series models. We will begin by creating baseline models using naive methods and

then attempt to identify models with higher predictive power using Autoregressive Moving

10



Average models (denoted as ARMA(p, q)), exponential smoothing techniques, and ARIMA-

GARCH techniques.

11



CHAPTER 4

Baseline Models

Three naive models are first created to serve as benchmarks for comparison for more advanced

models devised in subsequent chapters: naive method, average method, and a simple moving

average method. Our response variable is the log returns of the adjusted closing price for

Illumina, Inc.

4.1 Naive Model

For naive models, all forecasts are simply equal to the value of the last observations, as

delineated by the equation1 below.

ŷT+h|T = yT (4.1)

Our testing data set consists of 168 observations (15% of the total data set) corresponding

to fiscal Q3 of 2021 through the most recent of week of fiscal Q2 of 2022. Thus, the log returns

from October 1st, 2021 through June 1st, 2022 is -0.015, which is identical to the log return

corresponding to September 30th, 2021, which is the last day in our training data set.

1Hyndman and Athanasopoulos.
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4.2 Average Model

For average models, the forecasts of all future values are equal to the average of the historical

data. If historical data is denoted as y1, ..., yT , the forecasts can be defined as2:

ŷT+h|T = ȳ = (y1 + ...+ yT )/T (4.2)

The log returns forecast from October 1st, 2021 through June 1st, 2022 is 0.0006, which is

equal to the average log returns from January 2nd, 2018 to September 30th, 2021(training

data set time frame).

4.3 Moving Average Model

The simple moving average model defines the forecast for each future value as the average of

the prior m values as defined by the equation3 below. For our purposes, the moving average

took the average of the last 3 observations.

T̂t =
1

m

k∑
j=−k

yt+j (4.3)

4.4 Accuracy by Baseline Model

Accuracy metrics on our testing data set can be found in table 4.1 below for each method. Of

the models, the average baseline model had the highest accuracy, as indicated by the lowest

root mean square error (RMSE) of 0.0309. The mean error metric (ME) corresponding to

the average model is -0.0039, which is closest to 0 compared to the other models and thus

reiterates that it outperforms the naive and moving average model. We can interpret the

mean error as follows: on average, the prediction values corresponding to the average model

2Hyndman and Athanasopoulos.

3Hyndman and Athanasopoulos.
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were -0.0039 units lower than the actual value. The mean absolute error metric (MAE)

suggests that, on average, the distance of the forecasts corresponding to the naive, average,

and moving average models from the actual values is 0.0235, 0.0205, and 0.0226, respectively

(all similar values). Based on the Mean Absolute Percentage Error metric (MAPE), all 3

baseline models were greater than 100%, indicating that each model overstated the actual

log returns.

Data/Metric ME RMSE MAE MPE MAPE

Naive 0.0114 0.0327 0.0235 92.0378 421.9247

Average −0.0039 0.0309 0.0205 100.3413 106.7252

MA(3) 0.0091 0.0312 0.0226 92.6956 362.4764

Table 4.1: Naive Time Series Models - Accuracy Metrics

14



CHAPTER 5

Autoregressive Integrated Moving Average Model

(ARIMA)

5.1 Parameter Selection

We attempt to model the log returns of the stock price data using an Autoregressive In-

tegrated Moving Average Model, denoted as ARIMA(p, d, q). Since our variable of interest

is the log returns of the data, we have already applied first order differencing to our re-

sponse variable; thus, the parameter, d, which reflects the degree of differencing, equals 0,

which makes this an Autoregressive Moving Average Model (denoted as ARMA(p, q)). We

therefore need to identify the parameters, p and q, which reflect the lag order and the size

of the moving average window, respectively. To do so, we will observe the autocorrelation

(ACF) and partial auto-correlation plots (PACF) of the data in figure 5.1. While the ACF

plot demonstrates statistically significant autocorrelations at multiple lag values (5, 6, 7, 17,

etc.) as indicated by the extension beyond the 95% confidence interval bands, there remains

a 5% chance that the correlation is random. The PACF plot shows similar conclusions to the

ACF plot; thus, we hypothesize that the parameters p = 0 and q = 0 would fit the model

best. ARMA(0, 0) reflects a white noise model, which assumes no log return dependence

between subsequent years.

To select a model, the Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC) were assessed for various parameter values in tables 5.1 and 5.2 (lowest

values of AIC and BIC are most strongly desired). Based on the tables below, the AIC

15



Figure 5.1: Illumina, Inc. - ACF and PACF Plots for Log Returns Data

criteria suggests that ARIMA(3, 0, 2) is the ideal model, while the BIC criteria suggests that

ARIMA(0, 0, 0) is the ideal model, which is in line with our initial hypothesis. The model

coefficients corresponding to ARIMA(3, 0, 2) are cited in table 5.3 below.

p d q AIC

3 0 2 −5, 017.833

3 0 3 −5, 016.753

2 0 3 −5, 016.706

4 0 2 −5, 014.888

4 0 3 −5, 014.445

0 0 0 −5, 002.376

Table 5.1: ARIMA Models - Parameter AIC Values

16



p d q BIC

0 0 0 −4, 997.363

1 0 0 −4, 983.34

0 0 1 −4, 983.34

1 0 1 −4, 976.863

2 0 2 −4, 973.119

Table 5.2: ARIMA Models - Parameter BIC Values

AR(1) AR(2) AR(3) MA(1) MA(2)

Coefficients −1.598 −0.7195 0.0635 1.6182 0.7646

Standard Error (SE) 0.086 0.1050 0.0337 0.0811 0.0912

Table 5.3: ARIMA(3, 0, 2) - Model Coefficients

Thus, both models will be evaluated for accuracy and diagnostics will be performed on

the residuals.

5.2 Model Performance

Performance metrics on the testing data set related to ARIMA(3, 0, 2) and ARIMA(0, 0, 0)

can be found in table 5.4 below. For most of the accuracy metrics (ME, RMSE, MAE), both

models had nearly identical values. Only Mean Percentage Error (MPE) and Mean Absolute

Percentage Error (MAPE) differed, in which ARIMA(0, 0, 0) had a slightly higher accuracy

rate. The mean error (ME) suggests that on average, the predictions from both models

differed from the actual values by -0.0039 units. Figures 5.2 and 5.3 display the forecasted

values for each of the models. ARIMA(0, 0, 0) exhibits less variability in the forecast as

compared to ARIMA(3, 0, 2).

17



Data/Metric ME RMSE MAE MPE MAPE

ARIMA(3, 0, 2) −0.0039 0.0309 0.0204 96.2769 110.4428

ARIMA(0, 0, 0) −0.0039 0.0309 0.0205 100.3413 106.7252

Table 5.4: ARIMA Models - Accuracy Metrics on Testing Data

Figure 5.2: ARIMA(3, 0, 2) - Forecast of Log Returns

5.3 Residuals Diagnostics

After generating our 2 models, residuals are assessed to ensure the following criteria are

satisfied: residuals are uncorrelated, have a mean of 0, exhibit homoscedasticity, and are

characterized by normal distribution.

18



Figure 5.3: ARIMA(0, 0, 0) - Forecast of Log Returns

5.3.1 ARIMA(3, 0, 2) - Residual Diagnostics

The plot in figure 5.4 shows the residuals of the model, which appear to be scattered randomly

around 0. The mean of the residuals is approximately 0 and satisfies the 0 residual mean

criteria. The variance of the residuals appears to be mostly constant and not a function of

time.

To assess residual correlation, the Ljung-Box test was performed, which states the fol-

lowing hypotheses:

H0 : Residuals are independently distributed

H1 : Residuals exhibit serial correlation

19



Figure 5.4: ARIMA(3,0,2) - Residuals Plot

The test yielded the results in table 5.5 below.

Metric ARIMA(3, 0, 2)

Total Lags Used 10

Test Statistic, Q* 11.595

p-value 0.02063

Table 5.5: ARIMA(3,0,2) - Ljung-Box Test Results

Assuming a critical value of 0.05, we reject the null hypothesis, since the p-value of

0.02063 is less than the critical value. Thus, there is sufficient evidence to claim that the

residuals exhibit serial correlation, which is a violation of the condition that residuals should

be independent.

Next, we observe the histogram of the residuals in Figure 5.5. The histogram suggests

that residuals are approximately normal, which satisfies our condition of homoscedasticity.

20



Figure 5.5: ARIMA(3, 0, 2) - Residuals Distribution Histogram

5.3.2 ARIMA (0, 0, 0) - Residual Diagnostics

The residuals plot in figure 5.6 appear to be scattered randomly around 0. The mean of the

residuals is approximately 0 and satisfies the 0 residual mean criteria. The variance of the

residuals appears to be mostly constant and not a function of time. Figure 5.7 displays the

residuals histogram and aligns with the homoscedasticity assumption.

Metric ARIMA(0, 0, 0)

Total Lags Used 10

Test Statistic, Q* 47.439

p-value 3.25e− 07

Table 5.6: ARIMA(0,0,0) - Ljung-Box Test Results

We ran the Ljung-Box test and obtained results in table 5.6. Since the p-value is close

to 0, we conclude that the residuals exhibit serial correlation.
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Figure 5.6: ARIMA(0, 0, 0) - Residuals Plot

Figure 5.7: ARIMA(0, 0, 0) - Residuals Histogram

22



CHAPTER 6

Exponential Smoothing Model

For data that does not exhibit trend nor seasonality, simple exponential smoothing (SES)

can be an effective univariate time series forecasting method, in which the weights of older

observations exponentially decrease through the use of a smoothing parameter, α, which is

often set to a value between 0 and 1. The Single Exponential Smoothing (SES) model can

be written as1

Ft = αAt−1 + (1− α)Ft−1, (6.1)

where Ft reflects the exponentially smoothed forecast at time period t, α is a smoothing

constant, At−1 is the actual value in the prior period, and Ft−1 is exponentially smoothed

forecast for period t-1.

6.1 Parameter Selection

Our first step in formulating the model is identifying an optimal smoothing parameter, α.

To do so, the root mean square error (RMSE) was evaluated for levels of α for increments of

0.01 between 0 and 1, inclusive. Figure 6.1 the RMSE for these various levels of α. Table6.1

below also shows RMSE for a sample of α values between 0.01 and 0.1. Through this method,

we identify that the minimum RMSE value of 0.0306 corresponds to α = 0.03.

1Hyndman and Athanasopoulos.
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Figure 6.1: Exponential Smoothing Model - RMSE for various smoothing parameter values

α RMSE

0.01 0.03076021

0.02 0.03065679

0.03 0.03063760

0.04 0.03067242

0.05 0.03073295

0.06 0.03080201

0.07 0.03087129

0.08 0.03093755

0.09 0.03100000

0.10 0.03105880

Table 6.1: Exponential Smoothing Parameter - RMSE Values

24



Utilizing a smoothing parameter of α = 0.03 in the model yields accuracy metrics on

the testing data set in table 6.2 and provides forecast values in figure 6.2. While model

comparisons will be explored in greater depth in a later chapter, it should be noted that

the RMSE corresponding to the simple exponential smoothing model is lower than that of

all prior models, including the ARIMA(3,0,2), ARIMA(0,0,0), and our 3 baseline models

(naive, average, and moving average models); however, residuals must be diagnosed to assess

potential drawbacks in prediction quality.

Data/Metric ME RMSE MAE MPE MAPE

Testing 0.0003 0.0306 0.0205 98.0711 157.4763

Table 6.2: Exponential Smoothing - Accuracy Metrics on Testing Data

Figure 6.2: Simple Exponential Smoothing - Forecast Results
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6.2 Residuals Diagnostics

Visually, the plot of the residuals in figure 6.3 demonstrates even fluctuations around 0; we

confirm that the mean of the residuals is approximately 0, indicating that predictions will

not necessarily be biased; however, there appears to be some fluctuations in the variance of

the residuals(i.e. less variance between t = 300 and t = 400).the histogram of the residuals in

figure 6.4 suggests alignment with normality assumptions, indicating that prediction intervals

may be accurate.

The Ljung-Box test was also performed, obtaining a p-value of approximately 0, indicat-

ing that there is sufficient statistical evidence to conclude serial correlation among residuals.

Thus, additional transformation of the data could aid in reducing serial correlation; however,

this is beyond the scope of our current analysis.

Figure 6.3: Simple Exponential Smoothing - Residuals Plot
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Figure 6.4: Simple Exponential Smoothing - Residuals Histogram
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CHAPTER 7

ARIMA - GARCH Model

When visually assessing the time series of the daily log returns of the company’s stock in fig-

ure 2.1, we notice that the data is characterized by volatility, which can impact a statistical

model’s prediction accuracy. ARIMA models such as those formulated in chapter 5 cannot

capture volatility because their conditional variance is constant. As a result, one way to rem-

edy this issue is to incorporate Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) with an ARIMA model in order to successfully capture some known properties of

returns time series such as volatility clustering. A GARCH(p,q) process can be defined1 as:

Xt = etσt, (7.1)

in which et reflects the error term, which is a white noise process that does not necessarily

have a constant variance; σt reflects this conditional variance, which can be further expressed2

as:

σ2
t = ω + α1X

2
t−1 + ...αpX

2
t−p + β1σ

2
t−1 + ...+ βqσ

2
t−q, (7.2)

In the conditional variance equation, p represents the number of lag variances, q repre-

sents the number of lag residual errors to include in the GARCH model, and ω represents

the variance intercept. It should be noted that GARCH models can only be applied to data

that exhibits stationarity, volatility, and ARCH effects, which is explained in further detail

1Williams, Brandon.

2Williams, Brandon.
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in the next section. We already confirmed that our data is stationary in chapter 3 using the

Augmented Dickey-Fuller test.

In order to formulate an ARIMA-GARCH model, we must first confirm the existence

of ARCH effects, which measures the autocorrelation of squared residuals. Upon confirma-

tion of ARCH effects, we will then select GARCH model parameters and ARIMA model

parameters and apply this to our testing data set.

7.1 Parameter Selection

We confirm the existence of ARCH effects using Engle’s ARCH Test, which examines the

autocorrelation parameter, α, of our squared residuals. A model with ARCH effects is one in

which α is not 0. Thus, our null hypothesis suggests no ARCH effects, while our alternative

hypothesis suggests existence of ARCH effects, which can be stated as follows:

H0 : α0 = α1 = ... = αm = 0

H1 : e
2
t = α0 + α1e

2
t−1 + ...+ αme

2
t−m + et

Upon running this test, our p-value is approximately 0, which means that we reject the

null hypothesis. There is sufficient evidence to conclude that ARCH effects are present in the

data and that a GARCH model can be utilized in our case. The next step is to identify the

parameters, p and q, which will be selected based on maximum likelihood (ML) estimation,

whereby the likelihood function, defined3 as

LF = ΠN
t=1

1√
2πσ2

t

exp(
−X2

t

2σ2
t

), (7.3)

3Hyndman and Athanasopoulos.

29



is maximized. This selection process yields a GARCH model of order p = 1 and q = 1

with the conditional variance parameters in table 7.1 below:

ω α β

0.000143 0.243060 0.562652

Table 7.1: GARCH(1,1) Model - Coefficients

Next we must select parameters corresponding to our ARIMA model. From chapter 5,

we identified that ARIMA(3, 0, 2) and ARIMA(0, 0, 0) were the best fits for our data

based on AIC and BIC criteria; therefore, we will select ARIMA(0, 0, 0) for this model in

conjunction with GARCH(1, 1). Accuracy metrics can be found in table 7.2 below:

Data/Metric ME RMSE MAE MPE MAPE

Testing −0.0046 0.0310 0.0205 100.7553 118.2443

Table 7.2: ARIMA(0,0,0)-GARCH(1,1) Model – Accuracy Metrics on Testing Data

This demonstrates similar accuracy results to the ARIMA(0,0,0) and ARIMA(3,0,2)

models that did not utilize GARCH effects; the exponential smoothing model, however, has

a slightly lower RMSE than this ARIMA-GARCH model.

7.2 Residual Diagnostics

Visually, the plot of the residuals in figure 7.1 demonstrates even fluctuations around 0; we

confirm that the mean of the residuals is approximately 0, indicating that predictions will

not necessarily be biased. The variance also appears to be mostly constant. The histogram

of the residuals in figure 7.2 suggests alignment with normality assumptions, indicating that

prediction intervals may be accurate.

The Ljung-Box test was also performed, obtaining a p-value of approximately 0, indicat-

ing that there is sufficient statistical evidence to conclude serial correlation among residuals.
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Figure 7.1: ARIMA(0,0,0) - GARCH(1,1) – Residuals Plot

Thus, additional transformation of the data could aid in reducing serial correlation; however,

this is beyond the scope of our current analysis.

31



Figure 7.2: ARIMA(0,0,0) - GARCH(1,1) – Residuals Histogram

32



CHAPTER 8

Conclusion

8.1 Model Comparison

Table 8.1 demonstrates accuracy metrics for each model applied to the testing data set.

Data/Metric ME RMSE MAE MPE MAPE

Naive 0.0114 0.0327 0.0235 92.0378 421.9247

Average −0.0039 0.0309 0.0205 100.3413 106.7252

MA(3) 0.0091 0.0312 0.0226 92.6956 362.4764

ARIMA(3, 0, 2) −0.0039 0.0309 0.0204 96.2769 110.4428

ARIMA(0, 0, 0) −0.0039 0.0309 0.0205 100.3413 106.7252

Exponential Smoothing 0.0003 0.0306 0.0205 98.0711 157.4763

ARIMA-GARCH −0.0046 0.0310 0.0205 100.7553 118.2443

Table 8.1: Model Comparison - Accuracy Metrics on Testing Data

Table 8.1 demonstrates that all of our models performed remarkably similarly, with all

RMSE values falling between 0.030 and 0.035. According to the RMSE criteria, the ex-

ponential smoothing model, which was selected by identifying the smoothing parameter

corresponding to the lowest RMSE, was the most ideal on the testing data set. This model

also has the lowest absolute mean error (ME) value of all the models. The model with the

highest RMSE and MAPE values is the naive model, which simply set prediction values

equal to the value of the last observation in the training data set.
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8.2 Applications of Simple Exponential Smoothing Model

Since the simple exponential smoothing model outperformed the other models according

to the RMSE criteria, we will apply this model to the log returns data of 3 competitors,

namely Thermo Fisher Scientific, Qiagen, and Agilent Technologies to assess how well the

model works on other companies within the same industry. It should be noted that all 3

companies have been publicly traded during the same time as our data set for Illumina, Inc.,

so the same data set sizes and time frames were selected for each company. Stationarity

of the log returns of the stock was confirmed for each company, as the p-values from the

Augmented Dickey-Filler test were all less than 0.01.

Table 8.2 displays the accuracy metrics for the 4 companies below:

Data/Metric ME RMSE MAE MPE MAPE

Illumina, Inc. 0.0003 0.0306 0.0205 98.0711 157.4763

Thermo Fisher Scientific −0.0001 0.0184 0.0138 83.7316 108.2026

Agilent Technologies −0.0007 0.0200 0.0163 107.9193 109.7027

Qiagen −0.0003 0.0172 0.0130 Inf Inf

Table 8.2: Exponential Smoothing - Accuracy Metrics by Company

Based on table 8.2, it appears that the model actually performed better on all of the

other companies, with the RMSE being the lowest for Qiagen.

8.3 Concluding Remarks

While some models performed better than others, it should be noted that all models failed

the condition in which residuals should not exhibit serial correlation, which indicates that

additional transformation of the data or further information can be added to the models

to aid in reducing serial correlation, thereby improving model accuracy and reliability. One
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method that could be explored is time series regression, in which our time series is assumed

to have a linear relationship with another time series. With the most recent declines in the

overall stock market, it could be of value to create a model that includes a relationship with

the movement of the S&P 500, for example.
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