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Abstract

The use of multiparametric MRI scans for the evaluation
of men with prostate cancer has increased dramatically
and is likely to continue expanding as new developments
come to practice. However, it has not yet gained the same
level of acceptance of other imaging tests. Partly, this is
because of the use of suboptimal protocols, lack of
standardization, and inadequate patient preparation. In
this manuscript, we describe several practical aspects of
prostate MRI that may facilitate the implementation of
new prostate imaging programs or the expansion of
existing ones.

Key words: Prostate—Magnetic resonance—
Technique—Protocol

Multiparametric magnetic resonance imaging (mpMRI)
of the prostate combines anatomic with functional and
physiological assessment of the gland, and encompasses
various sequences, including T1- and T2-weighted MR
imaging, diffusion-weighted imaging (DWI) and appar-
ent diffusion coefficient (ADC) maps, dynamic contrast-
enhanced (DCE) MRI, and sometimes proton magnetic
resonance spectroscopic imaging (1H-MRSI) [1–3], as
shown in Fig. 1. As such, in addition to the anatomic
data, the mpMRI exam offers information about the
microscopic mobility of water (Brownian motion), bio-

chemical characteristics, neovascularity, and cellular
structure of the prostatic tissue. Since these characteris-
tics are different for malignant and benign tissues, high-
resolution mpMRI provides valuable data that helps
characterize the extent and biological behavior of pros-
tate cancer. Owing to these capabilities, MR imaging of
the prostate is increasingly being used to assist patients
and clinicians to make management decisions [4–8].

The mpMRI exam offers a comprehensive assessment
of prostatic tissues using an array of metrics that can be
tailored according to the patient’s clinical need. Among
the main patient-specific factors that determine optimal
mpMRI, performance is the patient treatment history [9].
The imaging metrics most relevant to diagnosis may
change for imaging patients after radiation [10, 11], focal
brachytherapy [12], hormone treatment [13, 14], and/or
surgery [13, 15, 16]. Additionally, implants associated
with abdominal and pelvic comorbidities—such as hip
replacements [17, 18] or lumbar fusions [19]—can sig-
nificantly affect image quality for certain modalities.
This detrimental effect of implants on MR imaging is
changing with increased usage of non-metallic implants
[20]. Irrespective of the imaging center’s abilities to per-
form an mpMRI, the individual patient history will
dictate the most appropriate imaging metrics to include
for diagnosis.

Multiparametric MRI of the prostate, however, is still
plagued by lack of standardization, which in turn leads
to a heterogeneous performance of the method. In part
aiming at this problem, the American College of Radi-
ology (ACR), the European Society of Urogenital
Radiology, and the AdMeTech Foundation have pro-
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posed the use of the Prostate Imaging Reporting and
Data System (PI-RADS), now in its second version [3].
In that document, the ACR describes, among other
important aspects of mpMRI, the minimum recom-
mended parameters for imaging patients. In this article,
we discuss various aspects of imaging acquisition and
suggest two protocols that may be used for adequate
assessment of patients with prostate cancer.

Hardware and software
considerations

Multiparametric prostate imaging was initially imple-
mented on 1.5-Tesla (1.5T) scanners [21–29]. To acquire
scans with diagnostic value, both a pelvic phased array
and an endorectal coil (ERC) were used in combination
[30]. In prostate MR imaging, ERCs provide a significant
improvement in signal-to-noise ratio (SNR) and spatial
resolution when compared to pelvic phased array coils
alone [31]. This has a profound impact on the quality of
the SNR-starved functional imaging, i.e., 1H-MRSI and
DWI. Traditional ERCs use a balloon-filled coil that
achieves nine-fold SNR improvement over a phased ar-
ray alone [31]. After insertion into the rectum, the bal-
loon is inflated, with 40–80 ml of either an inert fluid
that matches the susceptibility of the prostatic tissues,
e.g., perfluorocarbon (PFC) or barium sulfate [31], or
alternatively with air or water. Using an inert fluid in-
stead of air or water improves the homogeneity of the
magnetic field and decreases susceptibility artifacts be-
tween the rectum and the prostate [32, 33]. These
inflatable ERCs provide better coverage, are associated
with fewer motion artifacts, and are faster to position
when compared to rigid coils [31]. Using either a rigid or
an inflatable ERC will create an inhomogeneous recep-
tion profile which results in higher signal intensity (SI)
near the rectal wall and may hinder cancer detection in
the peripheral zone. Fortunately, this signal non-uni-
formity can be easily rectified using readily available
coil-correction software [34].

The introduction of 3-Tesla (3T) clinical scanners
presents an opportunity to enhance image quality by
trading the increased SNR for improvements in spatial
and temporal resolutions, decreasing the necessity of an
ERC. However, the SNR increase provided by an ERC
can only be partially replaced by a two-fold SNR
improvement associated with doubling the magnet
strength. Nevertheless, with advances in pulse sequence
design, several groups reported that studies done solely
with 6 to 32 phased array surface coils at 3T yielded
comparable images as the exams conducted with 1.5T
scanners with an endorectal coil [35–39]. Comparison
studies with and without ERC at 3T have shown in-
creased sensitivity (0.45, no ERC and 0.75, with ERC)
and positive predictive value (0.64, no ERC and 0.80,
ERC) for prostate cancer detection [40] (Fig. 2). How-

ever, considering patient discomfort, patient preparation,
costs, coil placement time, and anatomical distortion
associated with ERCs, the use of ERCs in prostate
imaging is still being actively debated.

Various commercially available and proprietary
softwares are used for advanced assessment of MR
images. These include software for post-processing of
DWI, MRSI, and, most commonly, DCE data. While
these technologies are not essential for imaging inter-
pretation, they often improve the workflow in the read-
ing room by optimally displaying the various MR data,
which in turn leads to faster analyses, interpretation [41],
and reporting [42]. These systems have also been shown
to increase the confidence of less experienced readers
[43]. Furthermore, many of these softwares are now used
to prepare the MR data for fusion with ultrasound
images in MR targeted biopsy systems [44].

Protocols

Patients are usually scanned in the supine position to
maximize patient comfort and minimize respiratory-in-
duced prostate motion between acquisitions. However,
when an ERC is not used, the prone position may be a
better alternative for some men. Imaging patients in the
prone position can result in higher respiratory motion
artifacts but may be necessary to facilitate comfort for
certain patients [45, 46]. MR imaging of the prostate
begins with a low-resolution 3-plane localizer ‘scout.’
These images are used to locate the prostate and establish
the orientation of the coils in relation to the gland prior
to scanning. If an endorectal coil is used, then particular
attention should be paid to the sagittal scout and axial
images, and any adjustments in ERC placement and
rotation must be made before time-intensive scanning
begins. Guidelines for 3T MRI acquisition parameters
based on the protocol used at our institution are sum-
marized in Table 1 (with an ERC) and Table 2 (without
an ERC).

T1-weighted MR imaging

A multiparametric MR imaging exam of the prostate
typically includes an axial large field-of-view T1-weigh-
ted scan of the entire pelvis to assess regional lymph
nodes for abnormal size, shape, or intensity. Identifica-
tion of these lymph nodes is facilitated by the T1 contrast
between the high signal intensity of visceral fat and lower
signal intensity of large or irregularly shaped lymph
nodes [47]. To ensure that lymph nodes in the drainage
pathway are imaged during the exam, the T1-weighted
scan prescription should extend superiorly to the aortic
bifurcation [48]. T1-weighted imaging is also useful to
diagnose post-biopsy hemorrhage, which demonstrates
high signal intensity [47]. Hemorrhage often has low T2
signal intensity, mimicking cancer, and may introduce
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significant artifact on DWI and 1H-MRSI, and con-
found results from DCE MR imaging. For this reason,
an interval of at least 6 weeks between the most recent
prostate biopsy and the MRI scan is recommended [49,
50]. In addition, these T1-weighted images offer an
opportunity to detect osseous metastases. While lesions
will be incompletely assessed with a single sequence, after

correlation with clinical history and histology, further
diagnostic steps may be taken.

T2-weighted MR imaging

Multiplanar high-resolution two-dimensional (2D) fast
spin-echo (FSE) T2-weighted MR images provide ex-

Fig. 1. An untreated 78-year-old man with serum PSA of 9.8 ng/ml showing a, A coil-corrected T2-weighted FSE image, B
MRSI choline metabolite map created in SIVIC [94], C rFOV ADC map (b = 0, 600 s/mm2), D coil-corrected rFOV DWI (b = 0,
1350 s/mm2), and DCE-derived semi-quantitative parameters of E enhancement slope, and F washout slope. Subsequent
TRUS–MRI fusion-guided biopsy revealed a Gleason 4 + 3 lesion in the left apex. Cancer regions are indicated by the arrows.
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quisite soft-tissue contrast and excellent depiction of
zonal anatomy, and are the backbone of MR imaging of
the prostate. The majority of prostate cancers are ade-
nocarcinomas that arise within the peripheral zone. Most
have low signal intensity against the background of the
bright peripheral zone tissue. Transitional zone tumors
represent most of the remaining prostate cancers. Simi-
larly to peripheral zone cancers, these lesions usually
have low signal intensity on T2-weighted MR images but
can be difficult to distinguish from benign tissue, in
particular in the presence of benign prostatic hyperplasia
(BPH). T2-weighted MR imaging is also the main se-
quence utilized to assess locoregional spread of cancer
[51, 52]; the diagnostic accuracy, though, is higher when
it is combined with other functional sequences [53].

Prognosis, management, and treatment options of pros-
tate cancer are greatly affected by cancer stage, in par-
ticular by the presence of extracapsular extension (ECE)
and/or seminal vesicle invasion (SVI).

High-resolution 2D FSE T2-weighted images are ac-
quired in the true sagittal plane, as well as the oblique
axial (Fig. 1A) and oblique coronal planes of the pros-
tate [54]. It is recommended that the slice thickness
should not be more than 3 mm, without a gap, and the
in-plane dimension of £0.7 mm (phase) x £ 0.4 mm
(frequency). For most patients, a field-of-view of 12–
18 cm will allow for the inclusion of the entire gland and
seminal vesicles. High-resolution 3D FSE T2-weighted
MR imaging has emerged as a promising technique that
allows for the acquisition of isotropic images and may

Fig. 2. An untreated 66-year-old man with no prior biopsies
and serum PSA of 7.9 ng/ml. Oblique axial 2D FSE T2-
weighted images acquired with 0.35 9 0.35 9 3 mm resolu-
tion, A with an endorectal coil and B without an endorectal

coil. This patient was scanned twice in 3 months in anticipa-
tion of the MR-guided biopsy. We observe a noticeably in-
creased noise in the image without an ERC, as well as
diminished delineation between nodules inside the gland.

Table 1. Suggested acquisition parameters for the multiparametric MRI of the prostate with ERC

Series PSD Scan plane TR (ms) TE (ms) Slice/Gap (mm) FOV (mm) Acquisition matrix NEX Sequence specific

Scout FSE 3-plane 867 83 5/1.5 400 9 400 256 9 192 1
T1 FGRE Axial 5.06 2.46 4.2/0 240 9 240 192 9 128 1 3D
T2 FSE Oblique axial 5000 96 3/0 180 9 180 256 9 256 3 2D
T2 FSE/CUBE Oblique axial 2400 142.5 1.6/0 180 9 180 256 9 224 1 3D reformatting recommended
DWI mid ss-EPI Oblique axial 4725 Min 3/0 180 9 180 128 9 64 6 b = 600 s/mm2

rFOV recommended
DWI high ss-EPI Oblique axial 4725 Min 3/0 260 9 260 128 9 64 7 b = 1350 s/mm2

MRSI 3D PRESS Oblique axial 2000 85 6/0 86.4 9 64.8 9 60 16 9 12 9 10 1 EPSI flyback
DCE 3D SPGR Oblique axial Min Min 3/0 260 9 260 192 9 128 1 Temporal resolution = 10.4 s

Table 2. Suggested acquisition parameters for the multiparametric MRI of the prostate without ERC

Series PSD Scan plane TR (ms) TE (ms) Slice/Gap (mm) FOV (mm) Acquisition matrix NEX Sequence specific

Scout FSE 3-plane 867 83 5/1.5 400 9 400 256 9 192 1
T1 FGRE axial 5.06 In Phase 5/0 240 9 240 192 9 128 2 3D
T2 FSE Oblique axial 6000 102 3/0 180 9 180 256 9 256 4 2D
T2 FSE Oblique Coronal 5000 Min 3/0 180 9 180 256 9 256 4 2D
T2 FSE Sagittal 5000 Min 3/0 180 9 180 192 9 192 2 2D
DWI mid ss-EPI Oblique axial 4000 Min 3/0 280 9 280 128 9 64 6 b = 800 s/mm2

DCE 3D SPGR Oblique axial Min Min 3/0 260 9 260 192 9 128 1 Temporal resolution = 10.4 s
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save time by reducing the number of sequences that need
to be obtained. However, the quality of the 3D sequence
may be limited if acquired on older or low-field magnets
due to the need for thinly sliced images for adequate
reformatting. While the T2 contrast is not the same as
seen in 2D acquisitions, it is clinically acceptable [55].
Data of a study by Westphalen et al. showed that the
preference for the 2D or 3D FSE MR images varies
widely among radiologists, but without differences in
their ability to delineate the anatomy and identify cancer
[56]. This same study did find differences in image
sharpness and the presence of some artifacts. The 2D
FSE images were sharper than the 3D ones but demon-
strated more artifacts (Fig. 3).

Diffusion-weighted MR imaging

DWI exploits the random motion of water molecules in
biological tissues (Brownian motion) to characterize
disease. These images are primarily utilized to calculate
ADC maps (Fig. 1C). The glandular structure of the
normal peripheral zone of the prostate compared to the
shrunken glands or tightly packed cancerous tissue de-
fines a well-established contrast between healthy and
tumor tissue on DWI and the corresponding ADC maps
[57]. Perhaps not surprisingly, DWI has been shown to
increase the sensitivity and specificity of multiparametric
MR imaging for the detection of prostate cancer [58–60].
It has also been shown to improve the assessment of
tumor aggressiveness when combined with conventional
T2-weighted imaging, with an inverse relationship be-
tween the apparent diffusion coefficient (ADC) map
intensity and the Gleason score [61]. A threshold of
approximately 850 9 10-6 mm2/s has been used to dis-
tinguish between low- and high-grade tumors [62]. Yet,
because of substantial overlap of ADC values seen in

BPH and cancers, and variability across the various
imaging platforms and due to different acquisition
parameters, a qualitative visual assessment may be pre-
ferred.

Adequate characterization of the random motion of
water requires information about its movement in mul-
tiple directions. Accordingly, DWI usually comprised at
least three separate acquisitions, each measuring diffu-
sion in a different direction. Due to this unique sequence
structure, DWI is particularly prone to artifact from
patient motion between directional acquisitions. To
mitigate this problem, images are usually acquired with
an echo-planar imaging (EPI) pulse sequence, designed
to decrease scan time.

For prostate cancer detection on 3T scanners, the b-
values are generally divided into mid (between 500 and
800 s/mm2) and high (between 1000 and 2500 s/mm2)
(Fig. 1D) [63, 64]. Scanning on older magnets usually
excludes b-values above 1000 s/mm2 due to limits in
gradient hardware. Using a lower b-value emphasizes
extracellular effects in the resulting ADC maps, whereas
using a high b-value emphasizes intracellular motion.
Recently, it has become popular to utilize more than one
b-value for the assessment of prostate cancer. Imaging
with a mid-range b-value will normally have a greater
SNR, which can result in finer resolution and a decreased
number of signal averages per image. However, a high b-
value acquisition reduces the signal from normal pro-
static tissue, increasing the sensitivity to abnormal cel-
lular environments [65]. One method of gaining the
advantage of contrast of a high b-value while still having
the high SNR and fine resolution of a lower b-value
acquisition is to extrapolate and compute the theoretical
image output for higher b-values [66]. These images show
higher SNR than traditional DWI collected with the
equivalent high b-values and can be utilized on older

Fig. 3. An untreated 61-year-old man with biopsied Glea-
son 3 + 3 prostate cancer and serum PSA of 5.6 ng/ml
showing an oblique axial, A T2-weighted FSE anatomic im-
age and B T2-weighted 3D FSE anatomic image. The

phase-encoding direction aliasing artifact present in the FSE
image is not present in the CUBE image. However, the
3D FSE image has less contrast in comparison to
the 2D FSE.
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1.5T scanners where gradient hardware may not allow
acquisition with high b-values [67].

In addition to more heavily diffusion-weighted ima-
ges, a low b-value image is acquired with a b-value in the
range of 0–100 s/mm2 [68]. This image serves as a ref-
erence, to fit a slope to the signal per b-value per direc-
tion, which is combined to define the ADC map. The
lower b-values are also used because they remove the
effect of perfusion on the resulting ADC map.

In order to easily associate structural T2-weighted
images with functional DWI data, DWI should be per-
formed with the same or similar slice thickness and
acquisition prescription to high-resolution T2-weighed
imaging. DWI can be performed immediately after T2-
weighted imaging to increase structural similarity.

DWI is heavily affected by susceptibility artifacts,
which increase in magnitude with higher field strength
[69]. Images acquired with EPI, in particular, suffer from
severe susceptibility artifact at the interfaces of tissue
with air, blood, or fecal matter in the rectum. These
artifacts are important because they present at the border
of the rectum and affect the peripheral zone of the

prostate, where 70% of cancers are located [70]. Per-
forming a rectal enema before the exam reduces suscep-
tibility artifact from air or fecal matter in the rectum [71,
72]. A promising recent development for artifact reduc-
tion is reduced field-of-view imaging, which has been
shown to improve image quality and contrast between
tumor and healthy tissue, as well as to decrease suscep-
tibility artifact in prostate DWI [73] (Fig. 4).

Two novel methods that may improve the charac-
terization of prostate cancer are diffusion kurtosis (DK),
which examines non-Gaussian water behavior at high b-
values [74], and whole-lesion histogram analysis, which
samples every voxel within a 3D region of interest [75].
While initial studies are promising, both require dedi-
cated post-processing software for analysis and are cur-
rently exploratory techniques not suitable for use at most
clinical sites (Fig. 5).

Dynamic contrast-enhanced imaging

Dynamic contrast-enhanced imaging follows the time
course of tissue enhancement post contrast agent injec-

Fig. 5. An untreated 78-year-old man with serum PSA of
9.8 ng/ml. MRSI demonstrating highly elevated choline (right
panel) in the left apex, drastically different from the contralateral

healthy tissues (left panel) that demonstrate the presence of
citratewithout elevated choline. Subsequent TRUS–MRI fusion-
guided biopsy revealed a Gleason 4 + 3 lesion in the left apex.

Fig. 4. An untreated 74-year-old man with biopsied Gleason
3 + 3 prostate cancer and serum PSA of 6.85 ng/ml. An ob-
lique axial A T2-weighted 2D FSE anatomic image, B rFOV
ADC map, and C full FOV ADC map show the advantages of

the rFOV method for distinguishing boundaries of the prostate
and BPH nodules within the prostate. We also see suscepti-
bility artifact from fecal matter or air in the rectum, which
significantly blurs the rectal wall on (C) and less so on (B).
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tion to evaluate the properties of tissue microstructure
and neovascularity. Prostate cancer brings about changes
in the cellular structure of the tissues, which result in
altered interactions of the tissues with the injected con-
trast. It is believed that MR contrast agents do not reach
the lumen of the healthy glandular tissues [76, 77].
Conversely, prostate cancer is marked by the loss of the
basement membrane outside the glandular epithelial
cells, which allows the contrast to enter the glands,
resulting in a greater and faster tissue enhancement
seen in DCE studies. In addition to continuing alter-
ations in tissue microstructure, prostate cancer pro-
gression is also associated with neoangiogenesis [78–
82]. The rapid growth and division of tumor vascula-
ture result in disorganized, irregularly shaped, imma-
ture vessels [83–85]. DCE takes advantage of the
unique characteristics associated with the abnormal
tumor vasculature to assess aggressiveness of the dis-
ease. The usefulness of DCE in detecting, localizing,
and staging prostate cancer is well documented in lit-
erature [58, 86–90]. Additionally, several studies have
reported promising findings on the utility of DCE
parameters in discriminating prostate cancer based on
aggressiveness of the disease [91, 92]. While DCE is an
invaluable sequence in certain instances where other
acquisition sequences will show artifact (i.e., for pa-
tients with hip replacements), DCE results might be
confounded by the presence of prostatitis in the
peripheral zone [1, 5, 93] or by mixed BPH nodules in
the central gland [1, 5, 94, 95].

DCE imaging is often done with a 3D Fast Spoiled
Gradient Echo (3D-FSPGR) pulse sequence. T1-weigh-
ted images are collected before, during, and after
administration of a contrast agent. A DCE scan is often
preceded by a T1 mapping, a measurement of the native
tissue relaxation time (T10) obtained using a series of
volume acquisitions with variable flip angle values. Once
the native T1 mapping is complete, several pre-contrast

dynamic T1-weighted volumes are acquired to establish a
baseline. The contrast agent is administered as an
intravenous bolus at a rate of 2-4 ml/s followed by a 20-
ml saline flush using a power injector. To ensure patient
safety, patient’s kidney function should be evaluated
prior to contrast injection. Estimated glomerular filtra-
tion rate (eGFR) based on the blood creatinine levels are
often used as indicators of kidney health. Once injected,
the contrast agent does not penetrate the healthy pros-
tate glands but collects in the extravascular extracellular
space (EES), where it serves to shorten local relaxation
times, producing high signal intensity on T1-weighted
images. The contrast is cleared from the blood via renal
excretion.

DCE-MRI studies typically utilize weight-adjusted
(0.1 mmol/kg of body weight) paramagnetic gadolinium
chelate contrast agents. There are several agents ap-
proved by the United States Food and Drug Adminis-
tration, including gadopentetate dimeglumine
(Magnevist), gadobutrol (Gadovist), or gadodiamide
(Omniscan) [96]. Aiming for a reasonable spatiotemporal
resolution, a five-minute DCE acquisition yields dynamic
imaging with a temporal resolution in the range of 3–
10 s, a spatial resolution in the range of 0.7 9 0.7 mm to
1.9 9 1.9 mm with a slice thickness of 3–4 mm [27, 66,
91, 92, 95, 97–101]. Compressed sensing techniques have
been implemented into DCE sequences to improve spa-
tiotemporal resolution or increase the coverage. Re-
cently, Rosenkrantz et al. reported the use of a high-
spatiotemporal resolution DCE technique GRASP
(Golden-angle Radial Sparse Parallel), which allows for
image acquisition with spatial resolution of
1.1 9 1.1 9 3.0 mm and temporal resolution of 2.3 s
[102].

Tissue enhancement observed during DCE can be
interpreted either by visually inspecting the raw images
(qualitative approach) or by using semi-quantitative or
quantitative methods [103–106]. The qualitative analysis
of the DCE images [107–109] is based on the premise that
the blood vessels recruited by the prostate tumors are
leaky [110, 111]. When the contrast is injected, the
cancerous tissues demonstrate early and rapid enhance-
ment followed by a quick washout, which is noticeably
different from a slow and steady enhancement observed
for normal tissues. An observer may evaluate regions of
interest within the prostate by categorizing the overall
enhancement as 1) persistent—a steady enhancement,
usually indicative of benign pathology, 2) plateau—the
initial uptake is followed by a constant enhancement,
slightly suspicious for malignancy, and 3) washout—a
sharp uptake is followed by a steep washout, strongly
suspicion for malignancy (Fig. 6). While the qualitative
approach is quick and intuitive, it fails to comprehen-
sively assess heterogeneous tissues and is inherently
subjective and difficult to standardize among imaging
centers.
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Fig. 6. Three main types of overall enhancement seen in
prostate tissues: persistent enhancement, typically indicative
of benign pathology (green); plateau, slightly suspicious for
malignancy (blue); and washout, strongly suspicious for
malignancy (red).
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Semi-quantitative analysis characterizes the
enhancement curve on a voxel by voxel basis by calcu-
lating curve parameters such as maximum enhancement
slope (Fig. 1E), time to peak, peak enhancement, wash-
out slope (Fig. 1F), and area under the curve [92, 112].
Although this approach is extensively used in the
assessment of DCE-MRI, the semi-quantitative param-
eters provide little physiologic insight into behavior of
the tumor vessels and the usefulness of the computed
metrics can be limited when comparing data across dif-
ferent imaging protocols. Normalization to muscle has
been suggested to aid in generalization of semi-quanti-
tative parameters [76].

The final approach to analyzing DCE images aims to
estimate physiologically interpretable, kinetic parameters
by fitting pharmacokinetic models to the enhancement
curves [88, 113, 114]. The most common is the two-com-
partment model. The two compartments are the plasma
space of the vasculature and the interstitial space between
the prostate cells. The two main parameters derived from
such models are Ktrans (the volume transfer constant be-
tween plasma and extracellular space, expressed in units of
min-1) and ve (the fractional volume of extracellular space
per unit volume of tissue) [90, 115–118]. While Ktrans maps
offer diagnostically valuable information, acquiring
stable measurements from quantitative analysis remains a
challenge. Quantitative methods are affected by a number
of variables such as changes in cardiac output, accurate
tissue T1, and arterial input function (AIF) measure-
ments, as well as the underlying assumptions made by the
software packages. Accuracy of T1 measurements is
greatly aided by T1 mapping [119]. Ideally, the AIF (the
concentration of the contrast agent in the feeding blood
supply) is measured for each individual patient in the fe-
moral artery [120–122]. Unfortunately, in a clinical set-
ting, the required temporal resolution may be difficult to
achieve. A common approach is to use a population-av-
eraged AIF in the form of a bi-exponential decay [97].
Finally, there are several open-source and commercially
available software packages for both clinical and preclin-
ical quantitative DCE analyses [123–127]. However, a few
studies have been done to assess reproducibility of phar-
macokinetic measurements obtained with different soft-
ware packages.

The recently released second version of PI-RADS
highlights the fact that DCE-MRI can be and is most
widely assessed based on direct visualization of the raw
data; optional tools, e.g., parametric maps and com-
partmental models, can be used to assist in diagnosis, but
findings should always be confirmed on source images
[3]. Last but not least, PI-RADS v2 characterizes a
positive finding on DCE-MRI as a lesion with focal
enhancement, earlier or contemporaneous with
enhancement of adjacent normal tissues, and that cor-
responds to a suspicious finding on T2- or diffusion-
weighted MR images.

Proton magnetic resonance spectroscopic
imaging

Proton magnetic resonance spectroscopic imaging is a
technique used to study in vivo cellular metabolism and
has been established as a powerful technique for assess-
ing patients with prostate cancer. Benign and malignant
tissues can be differentiated based on the metabolic
changes associated with prostate cancer [128, 129].
Normal prostatic glandular epithelial cells produce and
secrete high levels of citrate (2.5–2.7 ppm) [130, 131].
Prostate cancer disrupts the epithelial tissues and triggers
a metabolic shift from citrate production to citrate oxi-
dation; the overall effect is a substantial reduction in
citrate levels in malignant prostate tissues [132–134]
(Fig. 5). Furthermore, increased cell density and elevated
cell membrane turnover lead to increased levels of cho-
line (3.21 ppm) in prostate cancer [135–137] (Fig. 1B).
Creatine (3.02 ppm) is another metabolite of interest; it is
maintained at a relatively constant level in both healthy
and malignant prostatic tissues and serves as an internal
Ref. [134]. Lastly, some groups found it informative to
track metabolic changes associated with polyamine [129].
Polyamines (especially spermine) are found in healthy
prostate epithelial cells, and similar to citrate, their levels
are dramatically reduced in prostate cancer [138].

Due to the multifocal nature of prostate cancer, a
high-resolution metabolic mapping of the entire prostate
is required for accurate cancer localization and diagno-
sis. The 1H-MRSI acquisition has evolved from single-
voxel spectroscopy to 3D 1H-MRSI that is typically
acquired using phase encoding in all three directions but
is time consuming. Improvements in pulse sequence de-
sign have enabled the acquisition of metabolic informa-
tion from the entire prostate at high resolution within
less than 10 min with voxel sizes ranging from 0.2 to
0.5 cm3, making 1H-MRSI a clinically feasible technique
[139, 140]. These include using flyback echo-planar
readout gradients to improve efficiency and robustness
to errors and non-uniform undersampling, and com-
pressed sensing to accelerate the acquisition [141, 142]. A
number of techniques have been used to reduce the
negative effects of periprostatic fat, including outer vol-
ume saturation (OVS) with very selective suppression
(VSS) pulses [143], band selective inversion with gradient
dephasing (BASING) [144, 145], and spectral-spatial
radiofrequency pulses [146, 147].

The 1H-MRSI sequence is usually prescribed off
the axial T2-weighted MR images with a volume se-
lected to maximally cover the prostate while excluding
the seminal vesicles, periprostatic fat, and as much of
the rectum as possible. Standard post-processing in-
volves zero-filling, apodization using Gaussian or
Lorentzian filtering, and Fourier transform of the free
induction decay signal, as well as baseline and phase
corrections [148–151].
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Interpretation of 1H-MRSI data is often done on a
voxel-by-voxel basis, which can be time consuming and
introduce interobserver variability. An alternative ap-
proach to review these metabolites is to observe peak
area ratios, such as the choline + creatine to citrate ratio
within each voxel: choline and creatine are typically
combined due to signal overlap. In 2004, Jung et al.
proposed a standardized scoring system for peripheral
zone tissues based on metabolic data, ranging from 1
(definitely normal) to 5 (definitely cancer) [152]. And in
2007, Futterer et al. introduced standardized thresholds
for differentiation of benign and malignant tissues in the
peripheral zone and central gland of the prostate [153].
Several studies reported significant correlations between
peak area ratios and Gleason scores [154, 155]; yet,
interpretation can be hindered by choline contamination
from the seminal vesicles or urethra [134, 156] or by
prostatitis [157, 158], which can result in false positive
findings.

It is also important to note that the data of some
studies were unfavorable to the clinical usefulness of 1H-
MRSI, more notoriously those of the ACRIN 6659 study
published by Weinreb et al. that found no incremental
benefit for 1H-MRSI compared with MRI alone in sex-
tant tumor localization [29]. Based on such data, and
possibly on the complexity of imaging acquisition and
interpretation, 1H-MRSI, which was an optional tool in
the initial version of PI-RADS, no longer influences the
assessment of lesion in PI-RADS v2.

Patient preparation

We have anecdotally noted that providing patients with
information detailing the procedure and the required
preparation prior to the exam improves patient compli-
ance. Patients with severe claustrophobia may be re-
quired or advised to bring prescription sedatives to the
exam. In some centers, antispasmodic agents like
butylscopolamine are administered immediately prior to
scanning to decrease bowel peristalsis and potential
artifacts related to motion. However, peristaltic sup-
pression is controversial, as some groups have failed to
identify a significant improvement of image quality in
studies performed on 3T scanner without an ERC [159–
161]. Patients undergoing scans with an ERC should be
advised to perform a saline laxative enema within a 3-h
window of the exam to facilitate proper endorectal coil
placement and minimize susceptibility artifacts associ-
ated with air or fecal contamination. Enemas are not
required prior to scans done without an ERC, though, as
the improvement in image quality is at best marginal
[162]. Some imaging facilities also recommend patients to
abstain from ejaculating 1–3 days prior to the MR scan
in order to maintain distention of the seminal vesicles
and increase conspicuity of possible tumor invasion. The
validity of this claim, however, has not been tested. In a

pilot study, Medved et al. reported decreased signal
intensity on T2-weighted imaging and the apparent dif-
fusion coefficient maps in the peripheral zone after
ejaculation, possibly reflecting a reduction in the volume
of ejaculatory fluid within the gland [163]. The authors
did not observe any dramatic differences in image quality
or significant changes in prostate volume after ejacula-
tion. Since the study was done in healthy volunteers, the
effect of ejaculation on prostate cancer diagnosis has not
been established.

Conclusion

Use of mpMRI exams for the diagnosis and staging of
prostate cancer has become prominent at medical centers
around the world [164–166] and is likely to continue
expanding into increasing modalities in the age of pre-
cision medicine. However, mpMRI of the prostate did
not yet gain the same level of acceptance of other
imaging tests; and this is at least in part due to the use of
suboptimal protocols, lack of standardization, and
inadequate patient preparation. The American College
of Radiology, in conjunction with the European Society
of Urogenital Radiology and the AdMeTech Founda-
tion, has developed standards for the Prostate Imaging
Reporting and Data System (PI-RADS) [3]. Currently, in
its version number 2, in addition to providing guidelines
for interpretation and reporting of mpMRI, PI-RADS
establishes the minimum acceptable technical parameters
for scanning patients. Finally, regardless of the magnet
strength, the use of an endorectal coil, or the details of
the imaging protocol, patient preparation is essential to
acquiring the highest quality images while maintaining
maximal patient comfort and compliance. Equally
important in providing the best imaging exam for patient
diagnosis is the communication between primary physi-
cians, radiologists, researchers, and staff.
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