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Abstract. We test the reliability of two neural network
interpretation techniques, backward optimization and lay-
erwise relevance propagation, within geoscientific applica-
tions by applying them to a commonly studied geophysical
phenomenon, the Madden–Julian oscillation. The Madden–
Julian oscillation is a multi-scale pattern within the tropical
atmosphere that has been extensively studied over the past
decades, which makes it an ideal test case to ensure the in-
terpretability methods can recover the current state of knowl-
edge regarding its spatial structure. The neural networks can,
indeed, reproduce the current state of knowledge and can also
provide new insights into the seasonality of the Madden–
Julian oscillation and its relationships with atmospheric state
variables.

The neural network identifies the phase of the Madden–
Julian oscillation twice as accurately as a linear regres-
sion approach, which means that nonlinearities used by
the neural network are important to the structure of the
Madden–Julian oscillation. Interpretations of the neural net-
work show that it accurately captures the spatial structures of
the Madden–Julian oscillation, suggest that the nonlineari-
ties of the Madden–Julian oscillation are manifested through
the uniqueness of each event, and offer physically meaning-
ful insights into its relationship with atmospheric state vari-
ables. We also use the interpretations to identify the season-
ality of the Madden–Julian oscillation and find that the con-
ventionally defined extended seasons should be shifted later
by 1 month. More generally, this study suggests that neural
networks can be reliably interpreted for geoscientific appli-
cations and may thereby serve as a dependable method for
testing geoscientific hypotheses.

1 Introduction

Neural networks have the potential to improve our under-
standing of the earth system in ways that are unique from
other statistical and machine learning methods. Recent re-
search within the geosciences has shown that neural net-
works can be used to accelerate climate model parameteri-
zations (Brenowitz and Bretherton, 2018; Rasp et al., 2018),
discover patterns of earth-system variability (Toms et al.,
2020a), and make accurate global weather predictions (Weyn
et al., 2019), among numerous other applications in weather
and climate (e.g., Barnes et al., 2019; Ebert-Uphoff and
Hilburn, 2020). These advances have been rooted in the the-
ory that neural networks are universal function mappers –
that is, given a sufficient level of neural network complex-
ity and quality of input data, a neural network can map any
relationship between two datasets (Chen and Chen, 1995).

Neural networks may be particularly useful within the geo-
sciences if the relationships contained within their learned
parameters can be understood and interpreted. Numerous
methods have been proposed for such interpretation within
the computer science community and have even been shown
to be applicable to improving the understanding of geo-
scientific phenomena such as El Niño–Southern Oscillation
(ENSO), sources of seasonal predictability, and severe con-
vective storms (Toms et al., 2020a; McGovern et al., 2019;
Gagne et al., 2019; Ebert-Uphoff and Hilburn, 2020). The
critical caveat of using interpretable neural networks within
geoscience is that the interpretations must accurately portray
the relationships captured by the neural network and not mis-
lead the scientist toward incorrect conclusions. Therefore,
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4496 B. A. Toms et al.: Testing interpretable neural networks

any interpretability methods should first be tested on topics
that are well understood so that trust can be lent to studies
that use the methods to discover entirely new patterns.

The Madden–Julian oscillation (MJO; Madden and Julian,
1971; Wheeler and Hendon, 2004) has been a focus of hun-
dreds of publications across numerous decades, and although
it is not fully understood, a few of its characteristics are com-
monly accepted by the scientific community. For example,
its core characteristic is an anomaly in deep convection and
associated cloud cover within the tropics that forms within
the western tropical Indian Ocean and propagates eastward
toward the tropical eastern Pacific Ocean over the course
of 30 to 60 d (Hendon and Liebmann, 1994; Wheeler and
Hendon, 2004; Kiladis et al., 2005). While we will focus
on the tropical characteristics of the MJO, it is also gen-
erally accepted that the atmospheric response to deep con-
vective heating within the MJO can generate teleconnection
patterns across the globe (e.g., Roundy et al., 2010; Tseng
et al., 2019; Toms et al., 2020b). The formation and propaga-
tion of the MJO are not as well understood, although numer-
ous theories have been put forth (Zhang et al., 2020), one of
which suggests that the MJO propagates in response to gradi-
ents of tropical water vapor anomalies (Sobel and Maloney,
2013; Adames and Kim, 2016). Another theory suggests that
the MJO could be a large-scale envelope of eastward- and
westward-propagating gravity waves and that its eastward
propagation occurs because the eastward waves travel faster
than the westward waves (Yang and Ingersoll, 2011, 2013).
Anomalies in atmospheric state variables that coincide with
the MJO are also well documented (Kiladis et al., 2005;
Adames and Wallace, 2014; Monteiro et al., 2014; Adames
and Wallace, 2015), although their relationship with the sea-
sonality of the MJO is less clear, particularly given remain-
ing uncertainties in mechanisms driving the seasonality of
the MJO itself (Zhang and Dong, 2004; Jiang et al., 2018).
A more thorough discussion of the current understanding of
the MJO is available in the recent review paper by Jiang et al.
(2020).

We use the MJO as an opportunity to test whether inter-
pretable neural networks can capture known patterns of vari-
ability within complex geoscientific data, and we then extend
our analysis into inferring new information about the MJO
itself. We also provide a new definition of MJO seasonality,
for both the conventional outgoing longwave radiation defi-
nition and across atmospheric state variables. The aim of this
paper is threefold: (1) to highlight the ability of neural net-
works to capture complex relationships within geoscientific
data; (2) to test neural network interpretation methods to en-
sure they can reliably infer the relationships captured by neu-
ral networks; and (3) to use the interpretations to gain new
insights into the MJO. This paper thereby offers a concep-
tual guideline for how a geoscientist might go about using a
neural network to discover new patterns within geoscientific
data. Those interested in the MJO itself will also find new
insights into its spatial structures and seasonality.

2 Data and methods

We first discuss the data we use to define the MJO and then
detail how we design a neural network to infer information
about its spatial structure and seasonality.

2.1 Data

We define the MJO according to the Outgoing Longwave Ra-
diation MJO Index (OMI; Kiladis et al., 2014), which tracks
the state of the MJO using anomalies in top-of-atmosphere
outgoing longwave radiation (OLR; Liebmann and Smith,
1996). Increased cloud cover inhibits the upwards ventilation
of longwave radiation to space, so outgoing longwave radia-
tion is generally used as a proxy for cloud cover in studies of
the MJO. Some of the details of OMI are listed below, and
it can generally be defined as a linear representation of the
MJO based on outgoing longwave radiation anomalies with
periods of 20 to 96 d. An important advancement of OMI
beyond other MJO indices is that the structure of the MJO
is calculated for each day of the year across a 121 d rolling
window and thereby accounts for seasonality. The index is
constructed by calculating the two leading principal compo-
nents in tropical (20◦ S to 20◦ N) outgoing longwave radia-
tion anomalies, following the removal of the seasonal cycle
and filtering the outgoing longwave radiation field to contain
only eastward-propagating waves with a periodicity of 30 to
96 d. The MJO also exhibits higher-frequency modes of vari-
ability and occasional westward propagation (Roundy and
Frank, 2004; Zhao et al., 2013), so outgoing longwave ra-
diation anomalies that include both eastward- and westward-
propagating waves with periods of 20 to 96 d are then pro-
jected onto the 30 to 96 d principal components. This pro-
jection results in OMI including all eastward- and westward-
propagating components of the MJO with periods of 20 to
96 d, with the caveat that they must coincide with the domi-
nant, eastward-propagating, 30 to 96 d mode of the MJO.

While the process of calculating OMI is complicated, the
resultant phase-space and spatial perspectives of the MJO
are relatively simple, as shown in Fig. 1. A two-dimensional
phase space is commonly used to define the phase and am-
plitude of the MJO, with each axis representing the two OMI
principal components. As the MJO progresses, it completes
a circle about its two-dimensional phase space, which repre-
sents the eastward propagation of a spatially coherent dipole
in outgoing longwave radiation anomalies (Fig. 1a). The
phase space is conventionally separated into eight octants for
convenience, so the MJO is commonly studied according to
its evolution across eight discrete phases. The phase of the
MJO is based on the azimuth of the linear combination of
the two principal components, and its magnitude is deter-
mined based on the distance of this point from the origin.
An MJO event is generally considered to be “active” once
the principal component magnitude is greater than 1, which
is delineated by the red dots in Fig. 1b. Because the prin-
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cipal components are standardized to have zero mean and
unit variance, MJO events of increasing amplitude become
increasingly rare, such that most events have low amplitude
and are clustered about the origin.

We test whether a neural network can identify the phase
of the MJO given inputs of cloud characteristics and atmo-
spheric state variables. The inputs to the neural network are
tropical (30◦ S to 30◦ N), 20 to 96 d filtered fields of out-
going longwave radiation and 850, 500, and 200 hPa zonal
wind, meridional wind, temperature, water-vapor mixing ra-
tio, and geopotential (Fig. 2a), and the outputs are the eight
discrete phases of the MJO according to OMI. Only days
during which the MJO was active are used (i.e., its princi-
pal component magnitude was greater than 1). We use at-
mospheric state variables from the NASA MERRA-2 reanal-
ysis (Gelaro et al., 2017) and outgoing longwave radiation
from the NOAA once-daily outgoing longwave radiation cli-
mate data record (Lee and NOAA CDR Program, 2014), both
spanning from 1 January 1980 through 31 December 2016.
We remove the seasonal cycle, defined as the annual-mean
cycle from all 37 years of input data, before applying a 20 to
96 d Lanczos bandpass filter with 121 weights and interpolat-
ing each variable onto a homogeneous 2◦ grid. The training
data span from 1 January 1980 through 31 December 2009,
and the validation data span from 1 January 2010 through
31 December 2016. The training and validation data gener-
ally capture similar phase and amplitude distributions across
each MJO phase (Fig. 2b).

2.2 Neural network design

We design a neural network to be as simple as possible while
still ensuring it can capture any relationships between the in-
put atmospheric state variables and the phase of the MJO. We
use fully connected networks, which can be thought of as a
chain of nonlinear regression functions that map the relation-
ships between input and outputs datasets. The neural network
has one input layer, two subsequent “hidden” layers with 64
and 128 nodes each, and one output layer with eight nodes,
each of which represents a phase of the MJO (Fig. 3). The
hidden nodes all use the ReLu activation function, which ap-
plies the max(0,x) operator to the output of each node. This
activation function ensures the network can use nonlinearity
if it is helpful for connecting the input and output. A soft-
max operator is applied to the output layer, which normal-
izes the output of the neural network such that the sum across
all output nodes is equal to 1. The outputs can therefore be
thought of as a likelihood, with higher values for each node
corresponding to a higher likelihood that the input sample
belongs in that particular phase of the MJO. During labeling,
each MJO event is labeled using an eight-unit vector, and
each unit represents one phase of the MJO. An input associ-
ated with phase 3 of the MJO would therefore have an output
label of [0,0,1,0,0,0,0,0], which in the perspective of the
neural network implies a 100 % likelihood that the sample is

associated with phase 3 of the MJO. We leave the discussion
of neural networks brief to focus on this work’s scientific
outcomes, but there is an abundance of additional resources
for the reader through publications, textbooks, and other free
online resources (e.g., Goodfellow et al., 2016; Gagne et al.,
2019; Toms et al., 2020a).

We train separate neural networks on data from 121 d bins
centered on each calendar week of the year in order to study
the seasonality of the MJO. Each neural network is therefore
tasked with identifying the phase of the MJO according to
the outgoing longwave radiation and state variable patterns
during the period of the year to which it is assigned. Com-
parisons between interpretations of each neural network of-
fer insights into the seasonality of the MJO, as discussed in
subsequent sections.

Neural network interpretability generally becomes more
challenging with increasing network complexity (Montavon
et al., 2018). The neural network design we use is simple
enough to enable robust interpretations but complex enough
to capture useful relationships between the input state vari-
ables and MJO phase. We find that decreasing the number of
internal nodes reduces the accuracy, presumably because the
network is then not complex enough to model the relation-
ships between the atmospheric state variables and MJO. On
the other hand, increasing the number of nodes also reduces
the accuracy of the neural network on the validation dataset,
because it is able to overfit on meaningless noise within the
inputs using the additional weights and biases. We address
any overfitting by applying L2 regularization to the weights
connecting the input layer to the first layer of hidden nodes,
which forces the network to focus its attention on broader
spatial patterns within the inputs. We thoroughly tested the
accuracy of convolutional neural networks (CNNs) for our
particular problem and found that the fully connected net-
works were both more accurate and interpretable than their
CNN counterparts when L2 regularization is applied to the
first layer of hidden nodes.

2.3 Neural network interpretability

The novelty of this paper is the demonstrated ability to inter-
pret what the neural networks have learned and to then gather
scientific value from the interpretations. We use two inter-
pretation methods which we briefly discuss here and are ex-
plained in more extensive detail in the context of geoscience
within Toms et al. (2020a). The two methods we use are
called backward optimization and layerwise relevance prop-
agation, both of which map the decision-making process of
the neural network onto the original input dimensions.

Backward optimization uses the same method that is used
to train a neural network (i.e., backpropagation) to instead in-
terpret what a trained network has learned (Simonyan et al.,
2013; Yosinski et al., 2015; Olah et al., 2017). Rather than
updating the weights and biases of the network, the input
itself is updated to minimize the difference between the net-
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Figure 1. Spatial and phase-space perspectives of the Madden–Julian oscillation. (a) The phase space depiction of the MJO, again according
to OMI for all MJO cases from 1 January 1980 through 31 December 2016. (b) The spatial evolution of the MJO through its eight-phase
space according to the outgoing longwave radiation MJO index (OMI).

work’s associated output and a user-defined output. This pro-
cess generates a single optimized pattern associated with a
particular output and thereby offers a composite interpreta-
tion of patterns contained within a neural network. In our
case, we input blank (i.e., all-zero) maps and optimize them
to be most closely associated with a particular phase of the
MJO. In doing so, we can identify the optimal patterns in
each state variable for each phase of the MJO.

Layerwise relevance propagation (LRP) interprets the neu-
ral network’s decision-making process for each individual in-
put sample (Bach et al., 2015; Montavon et al., 2017, 2018).
Given a trained neural network, an input sample is passed
forward, the associated output is collected, and the unique
pathways through which information flows from the input to
the output for that specific sample are analyzed. The path-
ways are traced by propagating information backwards from
the output layer to the input layer using rules specific to LRP.
By tracing these pathways, the “relevance” of each input
variable to the network’s associated output can be quantified
for each individual input example. The resultant relevance is
unique to each input sample, because the pathways through
which information flows through a neural network are sim-
ilarly unique for each sample. A particularly important as-
pect of LRP is that the formulation of neural network that

we use (i.e., fully connected networks with ReLu activation
functions) conserves the relevance from the output layer to
the input layer, meaning that all information important to the
network’s decision is included within the final LRP interpre-
tation. LRP traces the information that positively contributes
to the output of the neural network, so it is well suited to cat-
egorical output. So, in our case, LRP shows which regions of
atmospheric state variables are most relevant to increases in
the neural network’s confidence that the sample belongs to a
particular phase of the MJO.

3 Results

3.1 Neural network accuracy

We first ensure the neural networks are accurate enough to
offer scientifically valuable interpretations. As a reminder,
we train separate neural networks on data from 121 d win-
dows centered on each calendar week of the year. The ac-
curacy of the neural network for the window centered on
10 January is presented from both a deterministic and prob-
abilistic perspective in Fig. 4. The deterministic accuracy is
assessed by counting the number of input samples the neu-
ral network assigns to the correct phase of the MJO. The
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Figure 2. (a) An example input sample, which corresponds to a phase-7 MJO day. Each variable was standardized for each grid point to have
zero mean and unit variance across all samples from 1 January 1980 through 31 December 2016. (b) A visualization of how the samples
are split between the training and validation datasets. The red dot corresponds to the sample shown in (a), the gray dots denote the training
samples, and the purple dots denote the validation samples. The gray rings denote the training sample mean phase and amplitude for each
phase, and the blue rings denote the same but for the validation data.

https://doi.org/10.5194/gmd-14-4495-2021 Geosci. Model Dev., 14, 4495–4508, 2021
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Figure 3. Schematic for the neural network used in this study. The first layer ingests vectorized input images, with two subsequent hidden
layers (the first with 64 nodes and the second with 128 nodes) and an output layer of 8 nodes that correspond to the eight phases of the MJO.
A separate neural network is trained for each calendar week of the year.

most common error of the neural network is to assign an
input sample to a phase that is one phase prior to or after
the correct phase, which is likely caused by the MJO be-
ing a continuous phenomenon that we have discretized for
the sake of interpretation. So, another useful accuracy metric
is how often the neural network correctly assigns the input
samples into either the correct phase or one phase before or
after the correct phase. For the neural network centered on
10 January, the deterministic accuracy without a one-phase
buffer is 74 % and the accuracy with a one-phase buffer is
92 %. The deterministic accuracy for each phase from one
through eight, respectively, is as follows: 78 %, 72 %, 64 %,
88 %, 51 %, 77 %, 65 %, and 82 %. From the composite prob-
abilistic perspective (Fig. 4b), the neural network assigns the
highest likelihoods to the correct phase, although the phases
immediately before and after the correct phase also have ap-
preciably high likelihoods.

An important question regarding the usage of neural net-
works is whether they out-perform conventional methods,
such as regression. If regression performs similarly to a neu-
ral network, then the increased complexity and nonlinear-
ity of a neural network is not required. We therefore simi-
larly use a form of linear regression to identify the phase of
the MJO using the input state variables and outgoing long-
wave radiation across 121 d windows centered on each cal-
endar week. The multi-output linear regression models have
no hidden nodes and no nonlinearities but are otherwise iden-
tical to the neural networks (i.e., as in Fig. 3, but without the
blue hidden layers). These models therefore receive atmo-
spheric state variables as inputs, which are then connected to
eight output nodes, after which a softmax operator is applied
to transform the output into a normalized likelihood. This
method therefore does not allow nonlinearities but does still

permit the model to identify patterns unique to each phase
of the MJO. We regularize these multi-output linear regres-
sion models using L2 regularization to ensure they are not
overfit to the training data, similar to the neural networks.
The accuracies of the neural network and multi-output lin-
ear regression approaches are compared in Fig. 5. The neural
networks are nearly twice as accurate as linear regression for
all weeks of the year, which means the nonlinearities and in-
creased number of pathways for information to flow through
the neural network are essential to modeling the spatial struc-
tures of the MJO. We therefore conclude that interpretations
of the neural networks can offer insights into relationships
between the MJO and atmospheric state variables that con-
ventional linear methods can not. It is worth noting that the
neural network is less capable of identifying the MJO during
boreal summer than boreal winter. This may be caused by nu-
merous factors, including a reduced fraction of OLR variabil-
ity attributable to the MJO during boreal summer compared
to boreal winter (e.g., Kiladis et al., 2014), or the possibil-
ity that the nonlinearity of our neural network architecture is
more useful for identifying the boreal winter MJO than bo-
real summer MJO. Because of this uncertainty, we opt to not
assess the seasonality of the accuracy, although it is an inter-
esting point for future study.

3.2 Interpreting the neural network

3.2.1 Identifying the spatial structures of the MJO

We use backward optimization and layerwise relevance prop-
agation (LRP) to infer the spatial structure of the MJO and
its seasonality according to the neural networks. Examples of
LRP applied to inputs for the neural network trained on the
121 d window centered on 10 January are shown in Fig. 6. We
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Figure 4. Example visualizations of the accuracy of the neural networks, in this case for the neural network centered on 10 January. (a) De-
terministic accuracy, where samples that are correctly classified are colored gray, those assigned to phase 1 before or after the true phase
are colored blue, and those assigned to phase 2 or more different from the true phase are colored red. (b) Probabilistic accuracy, where the
average probabilities assigned to each sample within the validation dataset are shown for each target phase. The probabilities summed across
each row sum to 1.

Figure 5. The accuracy of the neural network and multi-output lin-
ear regression approaches for each calendar week throughout the
year. The neural network accuracy is plotted in blue, and the regres-
sion accuracy is plotted in red. The solid lines show the accuracy
for all input samples, and the dashed lines show the accuracy if a
one-phase error is permitted.

use four examples of MJO phase 7 for which the neural net-
work correctly identifies the phase of the MJO, and for sim-
plicity we only show the LRP maps for outgoing longwave
radiation, although similar maps are generated for each input
variable. The LRP maps show that the neural network fo-
cuses its attention on outgoing longwave radiation anomalies
across the Maritime Continent, particularly within its east-
ern extent, which is consistent with previous research on the
regions of convection associated with phase 7 of the MJO
(Wheeler and Hendon, 2004; Kiladis et al., 2014). The LRP

heatmaps also highlight the spatial uniqueness of each phase-
7 MJO event, which can not be inferred by a linear regression
model. It is likely that the increased accuracy of the neu-
ral networks compared to the multi-output linear regression
models is caused by this ability of the neural network to cap-
ture the spatial uniqueness of each event.

We next test the neural networks more rigorously and chal-
lenge them to identify the most common spatial structures of
the MJO across its eight phases. To do so, we use backward
optimization and optimize inputs such that the spatial pat-
terns within the inputs make the neural networks most confi-
dent that the inputs are associated with a particular phase of
the MJO. Numerically, this means that the outputs associated
with the optimized inputs have a likelihood of approximately
1 in the phase for which they are optimized, and likelihoods
of 0 for all other phases. We again only show the optimized
outgoing longwave radiation fields for simplicity, although
the optimization also identifies the characteristic patterns in
the 15 other state variables.

The spatial pattern of the MJO during boreal winter
(10 January) and boreal summer (1 August) according to
both OMI and the neural networks is shown in Fig. 7. The
neural networks capture similar features to OMI during both
seasons, in particular the prominent eastward propagation
during boreal winter and the transition to northeastward
propagation during boreal summer. The neural network fo-
cuses on a core of outgoing longwave radiation anomalies
across the Indo-Pacific region and within the eastern Pa-
cific, while OMI includes a greater magnitude of anoma-
lies within the central Pacific. Given the similarities between
OMI and the composite neural network interpretations, we

https://doi.org/10.5194/gmd-14-4495-2021 Geosci. Model Dev., 14, 4495–4508, 2021
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Figure 6. Example relevance heatmaps from the layerwise relevance propagation interpretation technique. The outgoing longwave radiation
fields from four example inputs into the neural network are shown, each corresponding to a separate phase-7 MJO day. The corresponding
relevance heatmaps are shown below each example outgoing longwave radiation field and show where the neural network focuses its attention
to determine that the examples are associated with a phase-7 MJO day.

conclude that nonlinearities of the MJO are primarily man-
ifested through the uniqueness of each event as highlighted
in Fig. 6. The composites of LRP relevance similarly capture
the dominant structures of the MJO during both seasons and
agree rather well with the optimized inputs (Fig. 7).

3.2.2 Testing the seasonality of the MJO

Because the neural network so accurately captures the sea-
sonal evolution of the MJO within the outgoing longwave
radiation composites, we now extend the interpretations to
study the seasonality of the MJO. We first test how the spatial
structure of the MJO changes across seasons using LRP. To
do so, we calculate the composite relevance for each variable
for each calendar week of the year and present the annual
evolution of the relevance in Fig. 8. The relevances of each
variable exhibit unique seasonal cycles, aside from outgo-
ing longwave radiation, which is similarly important for the
identification of the MJO throughout all periods of the year.
For example, the seasonal cycle of lower-tropospheric zonal
wind (U850) reaches a maximum in relevance during boreal
summer, whereas upper-tropospheric zonal wind (U200) is
most important during the spring and fall. Some variables ex-
hibit a uni-modal seasonal cycle (e.g., U850, T200), whereas
other variables exhibit a bimodal seasonal cycle (e.g., U200,
V200, Z850). In general, upper-tropospheric anomalies are
most important for identifying the MJO during boreal win-
ter, while lower-tropospheric anomalies are most important
during boreal summer.

The fact that upper-tropospheric anomalies are most im-
portant for identifying the MJO during boreal winter may
explain the seasonality in coupling between the MJO and the

stratosphere (Son et al., 2017; Densmore et al., 2019; Toms
et al., 2020b). Previous research has hypothesized that the
MJO can be modulated by sources of stratospheric variability
such as the quasi-biennial oscillation through a downward in-
fluence of upper-tropospheric temperature anomalies (Abhik
and Hendon, 2019; Martin et al., 2020). So, because upper-
tropospheric thermodynamic anomalies are particularly im-
portant during boreal winter (Fig. 8), any influences on the
thermodynamic structure of the upper troposphere by the
stratosphere may have an increased impact on the MJO. This
discussion highlights the capability of neural network inter-
pretations to guide and test proposed hypotheses, although a
direct test of this hypothesis is beyond the scope of this paper.

We now examine the optimal spatial patterns of the MJO
throughout the year to provide some spatial context to the
seasonality of the relevances shown in Fig. 8. Figure 9 shows
the optimal spatial patterns associated with phase 6 of the
MJO at four different times of the year, the times of which
are denoted by the dashed white lines in Fig. 8. In general,
the spring structure of the MJO is more similar to the win-
ter structure than the summer structure. The 15 April opti-
mal patterns are nearly identical to the 15 January optimal
patterns, aside from lower-tropospheric moisture anomalies
which are more similar between 15 April and 1 August. The
upper-tropospheric anomalies during boreal winter are more
representative of a Matsuno–Gill type response to convec-
tive heating (Matsuno, 1966), whereas during boreal summer
the signature is more diffuse and elongated across the Equa-
tor. Figure 9 is generally supportive of the idea that lower-
tropospheric anomalies are most important for identifying
the MJO during boreal summer, whereas upper-tropospheric
anomalies are most important during boreal winter.

Geosci. Model Dev., 14, 4495–4508, 2021 https://doi.org/10.5194/gmd-14-4495-2021
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Figure 7. (a, b) The outgoing longwave radiation fields for each MJO phase according to the OMI for the boreal winter (10 January) and
boreal summer (1 August) examples and those identified by the neural network. (c, d) The outgoing longwave radiation fields for each MJO
phase according to the neural network based on the backward optimization and layerwise relevance propagation interpretation methods. The
fill value shows the optimized outgoing longwave radiation patterns for each phase of the MJO, and the open contours show the composited
relevance from LRP for all samples within each phase.
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Figure 8. Composite normalized LRP relevance across all variables
for each calendar week throughout the year. The relevance is nor-
malized to sum to 1 across all variables for each calendar week
(i.e., along the vertical axis).

Mechanistic studies of the MJO commonly depend on ac-
curate definitions of when each MJO seasonal mode occurs,
since the spatial structures of the winter and summer modes
differ so substantially (Fig. 9). Should the seasonal defini-
tions of the MJO be inaccurate, then there is a risk that the
mechanistic studies themselves are not targeting processes
specific to each season. We therefore use the backward opti-
mization interpretations of the neural networks to define the
MJO seasonal modes. To do so, we spatially correlate the op-
timal patterns for each state variable to the optimal patterns
on 10 January and 1 August, which are generally considered
to be the peak of the boreal winter and boreal summer modes.
We then define the boreal winter mode to exist during periods
for which the optimized MJO patterns have a correlation of
greater than 0.75 with the optimized pattern for 10 January
and similarly define the boreal summer mode to exist when
the correlation is greater than 0.75 with the optimized pat-
tern for 1 August. Using our definition, the seasonality dif-
fers across atmospheric state variables, although the boreal
winter and summer modes generally span from late Novem-
ber through early March and early June through early Octo-
ber, respectively (dark colors in Fig. 10). Lower-tropospheric
variables generally lead the transition from the boreal win-
ter mode to the equinoctial transition toward the boreal sum-
mer mode, although a less clear relationship exists during the
transition back to the boreal winter mode.

Finally, we define extended boreal winter as the period
during which the correlation between each weekly optimal
pattern and the 10 January optimal pattern is greater than
that between the weekly optimal patterns and the 1 August
optimal pattern. Extended boreal summer spans the rest of
the year. Using this definition, extended boreal winter MJO
extends from early November through late April across most
state variables and from mid-November through late April
for outgoing longwave radiation in particular (dark and light
colors in Fig. 10). Many studies of the MJO have previ-
ously used extended winter and summer seasons which span
the months of October through March and April through

September, respectively (Yoo and Son, 2016; Zhang and
Zhang, 2018). Our results suggest that these extended sea-
sons should, at a minimum, be shifted 1 month later in the
year.

4 Discussion and conclusions

We have tested the ability of interpretable neural networks
to identify complex, multi-scale geophysical phenomena via
their application to the Madden–Julian oscillation (MJO). We
first evaluated whether neural networks can identify the MJO
and then used neural network interpretability methods to
study the seasonality and spatial structure of the MJO and its
relationship to atmospheric state variables. Our study there-
fore contributes both to the general usage of neural networks
within geoscience and to knowledge of the MJO itself, so we
separate our discussion of the implications for both commu-
nities below.

4.1 Implications for neural networks in earth science

We have shown that neural networks are highly interpretable,
even for complex, multi-scale geophysical phenomena. Two
methods proposed by the computer science community –
backward optimization and layerwise relevance propagation
– provide particularly useful interpretations of neural net-
works (Toms et al., 2020a). Namely, backward optimization
offers composite interpretations, while layerwise relevance
propagation enables interpretations on either a composite
or case-by-case basis. Both methods project the decision-
making process of a neural network back onto the original
dimensions of the input, which is particularly useful for geo-
scientific applications where each input variable may have
unique physical importance to the problem being studied.

The capability of neural networks to include nonlineari-
ties and simultaneously model different input patterns that
lead to similar outputs proved useful for studying the season-
ality of the MJO. The neural networks identified the phase
of the MJO twice as accurately as the multi-output linear
regression, which implies that interpretations of the neural
network characterize the MJO more accurately than the lin-
ear regression approach. We hypothesized that the increase
in accuracy was caused by the neural networks’ ability to
model the uniqueness of each MJO event, which is not feasi-
ble using conventional linear approaches such as regression.
The amount of neural network complexity required for tasks
across the geosciences will vary greatly, so the benefits of
interpretable neural networks are also likely to vary across
sub-disciplines. We have found that a baseline approach of
comparing the accuracy of neural networks to more simple
methods such as linear regression is useful in determining
the necessity of a neural network.

Based on this study and other supporting work (Toms
et al., 2020a), the interpretations of what a neural network
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Figure 9. Optimized patterns for phase 6 of the MJO for different periods of the year. The central date on which the neural network is
trained for each optimization is shown in the title of each subfigure. Each subfigure shows outgoing longwave radiation, 850 mbar zonal
wind, 200 mbar zonal wind, 200 mbar meridional wind, 200 mbar temperature, and 850 mbar specific humidity.

learns can be used to advance geoscientific knowledge. Even
for cases where interpretability is not the main objective,
neural network interpretations can offer insights into how and
why neural networks are making their decisions and can be
used to ensure that neural networks are making decisions us-
ing reasoning consistent with physics. While we use a rela-
tively simple type of neural network, the proposed methods
are applicable to other types of neural networks as well, such
as convolutional neural networks and long short-term mem-
ory (LSTM) networks. We found fully connected networks
to be particularly useful for our application and more accu-
rate than convolutional neural networks, which, in light of the
surging popularity of convolutional neural networks within

geoscience, suggests that fully connected networks also have
utility for geospatial problems.

4.2 Implications for the Madden–Julian oscillation

We also used neural networks as an approach to better under-
stand the spatial structure and seasonality of the MJO. Our
results are generally consistent with the thorough body of
literature on the MJO, which supports the reliability and ro-
bustness of interpretable neural networks within geoscience.

Consistent with previous studies, we find that the spatial
structure of the MJO generally exhibits two dominant modes
of variability distinguished between the boreal summer and
winter. We find that the extended boreal winter mode of the

https://doi.org/10.5194/gmd-14-4495-2021 Geosci. Model Dev., 14, 4495–4508, 2021
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Figure 10. Seasonality of the Madden–Julian oscillation according
to interpretations of the neural networks. The extended boreal sum-
mer and winter modes are shown in red and blue, respectively, and
periods of transition are denoted by the lighter red and blue col-
ors. The winter (summer) mode is defined as periods during which
the correlation between the optimized MJO pattern on 10 January
(1 August) and the optimized pattern for each respective calendar
week is greater than 0.75. and the transition periods extend between
these two modes. The extended boreal winter mode is defined as
periods during which the optimized pattern for each respective cal-
endar week is more highly correlated with the 10 January optimized
pattern than the 1 August optimized pattern and vice versa for the
extended boreal summer mode.

MJO occurs between early November and late April, with the
boreal summer mode occurring throughout the remainder of
the year. This definition of the extended seasons is delayed
1 month compared to conventional definitions, which use an
extended boreal winter of October through March. Further-
more, the seasonality of the relationship between the MJO
and atmospheric state variables is more complex, with each
variable exhibiting a unique seasonality. Some state variables
such as lower-tropospheric zonal winds exhibit a uni-modal
seasonality, whereas others such as upper-tropospheric zonal
winds exhibit a bi-modal seasonality. We also find that upper-
tropospheric thermodynamic anomalies are particularly use-
ful in identifying the MJO during boreal winter, which may
relate to the enhanced coupling between the MJO and strato-
spheric processes during this season.

Consistent with previous studies, we find that the spatial
structure of the MJO generally exhibits two dominant modes
of variability distinguished between the boreal summer and
winter. We also extend our analysis to test numerous aspects
of the MJO, from its nonlinearities to its relationships with
atmospheric state variables. The key points of this analysis
are as follows:

1. The neural networks identify the phase of the MJO
twice as accurately as the multi-output linear regression
approach, which suggests that nonlinearities are impor-
tant to the structure of the MJO. These nonlinearities are
reflected in the spatial uniqueness of each MJO event,
given that the composite structure of the MJO identified

by the neural networks and linear methods are remark-
ably similar (Figs. 5, 6).

2. Each state variable exhibits a unique seasonality in its
relationship with the MJO. For example, some state
variables such as lower-tropospheric zonal winds ex-
hibit a uni-modal seasonality, whereas others such as
upper-tropospheric zonal winds exhibit a bi-modal sea-
sonality (Figs. 8, 9).

3. Upper-tropospheric thermodynamic anomalies are par-
ticularly important for identifying the MJO during bo-
real winter, which may relate to the enhanced coupling
between the MJO and stratospheric processes during
this season (Fig. 8).

4. We find that the extended boreal winter mode occurs
between early November and late April, while the bo-
real summer mode occurs throughout the remainder of
the year. This definition of the extended seasons is de-
layed 1 month compared to the conventional defini-
tion, which uses an extended boreal winter of October
through March (Fig. 10).

Our results show that neural networks are highly in-
terpretable, even for spatially complex geoscientific appli-
cations. Because of the high reliability of the interpreta-
tions, neural networks are viable tools for testing hypothe-
ses related to the MJO and other spatially complex geo-
physical phenomena. More complex hypotheses can now be
tested: for example, does horizontal advection of the lower-
tropospheric mean moisture by the MJO circulation govern
the propagation of the MJO (e.g., Jiang et al., 2018)? Or a
neural network can be used to identify whether an MJO event
will initiate given spatial inputs of atmospheric variables,
from which interpretability methods can identify important
patterns for MJO initiation. An example method for such a
project would be to input maps of atmospheric variables and
output whether an MJO event initiates at some point in the
future, similar to the categorical output in this study. A crit-
ical requirement for using neural networks in such studies
is the proven ability to reliably interpret what the networks
have learned, which is now possible.

Code and data availability. All data used in this study and an ex-
ample script for training a neural network and generating the LRP
heatmaps and optimal input fields are available at the following
DOI: https://doi.org/10.5281/zenodo.3968896 (Toms, 2020). The
unprocessed versions of the MERRA-2 reanalysis data used in
this study are available for download at the National Aeronautics
and Space Administration (NASA) Goddard Space Flight Center
(GSFC) Global Modeling and Assimilation Office website: https:
//gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (Gelaro et al., 2017).
The unprocessed versions of the NOAA once-daily outgoing
longwave radiation climate data record are available for down-
load from the following website: https://www.ncdc.noaa.gov/cdr/
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atmospheric/outgoing-longwave-radiation-daily (Lee and NOAA
CDR Program, 2014). The unprocessed MJO OMI data are avail-
able from the National Oceanic and Atmospheric Administration
Physical Sciences Laboratory (NOAA PSL) at the following web-
site: https://www.psl.noaa.gov/mjo/mjoindex/ (NOAA, 2020).
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