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ABSTRACT OF THE DISSERTATION

Computational and Comparative Proteogenomics: Annotating Genomes and

Proteomes using Tandem Mass Spectrometry

by

Nitin Gupta

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California San Diego, 2009

Professor Pavel A. Pevzner, Chair

Professor Steven P. Briggs, Co-Chair

Next generation sequencing techniques will soon lead to an explosive growth

in the number of sequenced genomes and will turn manual gene and protein annota-

tions into a luxury that can be afforded for only a small fraction of the newly sequenced

genomes. In this work, we show that mass spectrometry can be a viable alternative

high-throughput approach for accurate proteogenomic annotation. We present advances

in statistical analysis of the reliability of peptide and protein identifications from mass

spectrometry, and demonstrate how comparative analysis of multiple species or multi-

ple experimental samples can provide additional insights for new biological discovery.

We apply these approaches for correcting gene boundaries, discovering programmed

frameshifts, N-terminal methionine cleavages, signal peptide cleavages and other in-

vivo regulatory proteolytic events, post-translational modifications, analyzing specificity

of individual proteases, detecting neuropeptides in brain tissue, and improving operon

predictions. Based on this work, we recommend complementing genome sequencing

projects by mass spectrometry-based proteogenomics.
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Chapter 1

Introduction

While bacterial genome annotations have significantly improved in recent years,

techniques for bacterial proteome annotation (including post-translational chemical mod-

ifications, signal peptides, other proteolytic events, etc.) are still in their infancy. In this

work, we developed new approaches for analyzing mass spectrometry data to improve

both genome and proteome annotations, focusing on computational and comparative

proteogenomics. Computational, because we rely on improvements in computational

analysis of data to derive new insights instead of requiring new experimental proce-

dures. Comparative, because we make use of datasets from multiple organisms or mul-

tiple types of enzyme-digests to derive insights that are difficult to derive from individual

samples.

In Gupta et al., 2009 [52], we presented advances in statistical analysis of protein

error rates, showing that accurate false positive rates of individual proteins can be com-

puted efficiently using the generating function approach [75, 74], compared to the false

discovery rates computed using the traditional target-decoy approaches. We also pro-

vided evidence that the commonly accepted “two-peptide” rule negatively affects the

number of protein identifications and therefore should be abandoned [52]. Below we

provide an overview of some important proteogenomic applications (other applications

are discussed in Chapter 7).

1



2

1.1 Improving gene annotations

Recent proliferation of low-cost DNA sequencing techniques will soon lead to

an explosive growth in the number of sequenced genomes and will turn manual annota-

tions into a luxury that can be afforded for only a small fraction of the newly sequenced

genomes. The idea of querying a MS/MS dataset against a genome to identify protein

coding genes has been used earlier in different settings [148, 78, 103, 42]. Bacterial

genomes, with a simple gene structure, are a particularly attractive target for such meth-

ods. The identified peptides validate the predicted genes, correct erroneous gene annota-

tions, and reveal some completely missed genes. Church and colleagues used proteomic

data for genome analysis of relatively small bacterium, Mycoplasma pneumoniae [65],

and later on the newly sequenced Mycoplasma mobile in which 26 genes were pre-

dicted exclusively based on proteomic data [64]. Similar efforts have been made for

other bacterial genomes [140, 69]. Nevertheless, many significant technological chal-

lenges remain in using MS/MS for correcting gene annotation, discovering alternative

start codons, detecting frameshifts, finding short genes etc. Detection and mapping of

multiple peptides to a single gene can be evidence that it encodes a protein that is ex-

pressed. Similarly, multiple matches to a genomic region outside the boundary of genes

can be used to detect new genes missed during genome annotation or to suggest that

gene boundaries should be expanded. In Gupta et al., 2007 [53], we developed this

simple idea to address the some of the questions raised above.

Previous proteogenomic approaches were limited to a single genome and did

not take advantage of analyzing mass spectrometry data from multiple genomes at once.

In Gupta et al., 2008 [51], we showed that such comparative proteogenomics approach

(like comparative genomics) allows one to address the problems that remained beyond

the reach of the traditional “single proteome” approach in mass-spectrometry.

1.2 Detecting Proteolytic cleavages

Proteolytic cleavage through cellular proteases is extremely important for many

biological functions. While such cleavage is often specific and tightly regulated, pro-

tease activity in cells is relatively unexplored, primarily due to the lack of effective
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high-throughput technology to detect proteolytic events. Large MS/MS datasets offer

an unprecedented opportunity to study in-vivo cleavage specificity by looking at over-

represented non-tryptic peptides that may be manifestations of proteolytic events. In

Gupta et al., 2007 [53], we analyzed such peptides to identify N-terminal methionine

excisions and signal peptide cleavages.

Proteases are molecular scissors that play a critical role in the regulatory pro-

cesses inside the cell as well as molecular tools in the laboratory. The defining char-

acteristic of a protease is its specificity, i.e. the rule that determines the selection of

its cleavage-substrates. Knowledge of specificity is important for understanding the

function and mechanism of proteases and for their laboratory applications. One such

application of proteases is in the form of digestive enzymes in mass spectrometry-based

proteomics [1], where they are used to cleave proteins into smaller peptides that are

easier to analyze than intact proteins. Trypsin is the most commonly used protease for

this purpose, partly because of its well-defined and robust specificity rules [100]. As we

argued in [112], having precise knowledge of specificity of the protease is important not

only for peptide identification (many peptide identification tools incorporate specificity

rules into their search algorithms), but is also critical in some emerging applications of

mass spectrometry such as label-free analysis of regulatory proteolysis [131, 37, 51]. In

such studies, the sample is digested with a protease with known specificity (e.g., trypsin,

V8 protease, etc.) and a regulatory protease (e.g., a caspase) with the goal to discover the

(unknown) specificity of the regulatory protease. Tandem mass spectrometry (MS/MS)

is then employed to determine all cleavages in the resulting sample. Afterwards, one has

to “subtract” expected in vitro cleavages (e.g., trypsin induced cleavages) from all found

cleavages to identify the in vivo cleavages caused by the regulatory proteases. However,

if the model of the protease specificity is even slightly inaccurate, these studies are likely

to fail. For example, while the rule “trypsin cuts after R and K but not before P” is a rea-

sonable description of trypsin specificity for most applications, it becomes inaccurate if

one attempts to find in vivo proteolytic sites (since trypsin actually cuts before P albeit

with reduced efficiency [112]). As a result, if one uses an inaccurate rule for trypsin

specificity, the cuts before P will not be subtracted resulting in a surprising “discovery”

of many in vivo cleavage sites before P. In reality, this “discovery” reveals limitations of
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the common rule describing trypsin specificity rather than a new protease activity.

Another area that requires detailed knowledge of protease specificity is the pro-

teome wide analysis of in vivo proteolytic events in the sample subjected to trypsin

with the goal to infer the natural proteolytic cleavages induced by various proteases

(without attempting to infer the specificities of individual proteases). In the past, in-

formation about proteolysis has been mainly gained by performing in vitro experiments

with individual proteins and proteases that may not represent true in vivo scenarios at

the proteome-wide scale. Recently, Manes et al., 2007 [89], and Shen et al., 2008 [121]

addressed the challenge of proteome-wide proteolysis analysis in the studies of native

(short) peptides in Saccharomyces cerevisiae and Salmonella enterica. However, longer

native peptides require digestion with trypsin or other proteases, and there is stil no

software tool that can identify in vivo proteolytic sites from such digests.

Determining specificity of proteases has traditionally been a strenuous experi-

mental process, and consequently, often limited to analysis of a small number of sub-

strates [71]. Combinatorial library approaches address this shortcoming by employing

large libraries of substrates treated by the protease [110, 54, 138], although analyzing

the cleaved products from these libraries may require use of laborious fluorescence or

sequencing technology. Mass spectrometry presents a rapid approach for sequencing

a large number of substrates from a peptide library. Recently, Schilling and Overall,

2008 [119] described peptide libraries derived from human proteome that could be eas-

ily analyzed by mass spectrometry through standard database-search methods. This

approach, however, required the use of biotin-labeling to separate the N-terminal and

C-terminal side of the cleavage sites.

In Rodriguez et al. 2008 [112], we demonstrated that it is possible to deter-

mine accurate specificity rules for the enzyme used for digestion in a standard mass

spectrometry experiment when analyzing large spectral datasets. This approach can be

easily implemented (even if the data were generated for a different purpose), without the

requirement of expensive labeling methods. In contrast to most proteomics approaches

(that typically identify peptides with FDR 1% amd higher), this approach requires ex-

tremely accurate peptide identifications (typically FDR 0.1% and lower) since even a

small fraction of incorrect assignments may contribute many (pseudo) cleavages that
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distort the analysis of protease specificity. Rodriguez et al. 2008 [112] used doubly-

confirmed cuts to arrive at a reliable set of identified peptides. In Chapter 6, we further

extended this approach to remove the doubly-confirmed requirement, making use of

MS-GeneratingFunction [75]. In this work, we showed that comparative analysis of

multiple digests allows one to reliably identify N-terminal methionine excisions, signal

peptide cleavages and other putative proteolytic events, in the same way as we demon-

strated in Gupta et al., 2008 [51] that comparative analysis of multiple species can be

helpful in confirming proteolytic events.

1.3 Identification of Post-translational modifications

The current understanding of post-translational chemical modifications (PTMs)

in bacteria is very limited even for well-studied organisms like E. coli. Any information

that could be obtained about PTMs from large scale MS/MS studies can prove to be

very important towards gaining an understanding of the molecular biology of bacterial

genomes. In Gupta et al., 2007 [53], we analyzed the mass spectra using MS-alignment

[135], and identified more than 10,000 modified peptides in Shewanella, spanning at

least 25 well-covered modifications and many other less-frequent ones.

Diphthamide is an extremely rare histidine modification that appears on a single

gene (translation elongation factor 2) in the entire human genome [93, 139, 84]. Diph-

thamide is a target of diphtheria toxin and its position is conserved over a billion years

of evolution (from yeast to human). However, systematic identification of new impor-

tant and rare modifications remains a difficult, if not impossible, problem in shotgun

proteomics experiments. While algorithms for blind searches for unexpected modifi-

cations have been developed (e.g., MS-Alignment [136] and ModifiComb [117]), they

had to rely on the “strength in numbers” principle to distinguish real modifications from

computational artifacts. As a result, the biologically important modifications that appear

only a few times in the genome are likely to be classified as computational artifacts. For

example, each of 25 most common modifications in So appear on at least 39 sites in

the genome [53] pushing rare modifications to the twilight zone of the statistical signif-

icance. In Gupta et al., 2008 [51], we showed that comparative proteogenomics allows
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one to identify putative rare modifications in shotgun proteomics experiments.



Chapter 2

Statistical significance of protein

identifications

2.1 Introduction

Tandem mass spectrometry (MS/MS) database search tools are routinely used

for peptide identifications [1]. The results often include many false positives [20], and

a common approach for estimating the False Discovery Rate (FDR) of peptide identi-

fications is based on the use of randomized decoy databases [36, 68]. The reported set

of peptide identifications is determined by varying the score cutoff to achieve the de-

sired FDR. Intuitively, a protein must be present in the sample if a peptide within it is

identified (assuming the same peptide is not present elsewhere in the proteome). How-

ever, since peptide identification tools generate some false peptides, many researchers

are cautious about the “one-hit-wonders” [102, 21, 17], making it a common practice

to report only proteins with at least two peptides as reliable identifications (proteins

with single peptide identifications are often ignored, or delegated to the Supplementary

materials). The “two-peptide” rule has done the field a great service by providing a

stringent criterion for reporting proteomic data. However, while the “two peptide” rule

seems well-intentioned and reasonable, we are unaware of any theoretical studies sup-

porting this rule. Indeed, the question whether two identified peptides with scores x

and y (within the same protein) represent a better evidence for expression of this protein

7
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than a single peptide with score z (that is larger than x and y) depends on parameters

x, y, z (and the protein length) and remains poorly addressed. Below we show that the

“two-peptide” rule is inferior to the “single-peptide” rule that takes into account one-

hit-wonders (with appropriately chosen score threshold z). We therefore argue that the

“two-peptide” bias should be removed and that protein identifications based on single

peptides should be treated at par with identifications based on multiple peptides, instead

of salvaging them through post-processing [56].

Gupta et al., 2007 [53] estimated that 80% of the one-hit-wonders (proteins with

a single identified peptide) in proteogenomics study of Shewanella oneidensis MR-1 are

likely to be expressed. Comparative analysis of three Shewanella species revealed that

many of these one-hit-wonders are actually observed as orthologs in multiple species,

providing further support for their expression [51]. These observations indicate that the

“two-peptide” rule for protein identification is an unsubstantiated heuristic that often

results in loss of a large number of protein identifications (20%-25% of all expressed

proteins).

Another unsubstantiated assumption often made by proteomics researchers is

that maximizing the number of peptide identifications automatically results in maxi-

mizing the number of protein identifications. While peptide and protein identification

goals are closely related, there are cases when one is more important than the other.

Optimizing protein-level FDR is critical in applications such as biomarker discovery or

proteome profiling, while optimizing peptide-level FDR is important for label-free quan-

titations [86], proteogenomics [53, 51], or peptidomics [15, 39]. We demonstrate that

peptide and protein identifications are two different computational problems that should

be approached differently: maximizing the number of peptide identifications does not

necessarily result in maximizing the number of protein identifications (for example, in

cases when most peptides hit a few proteins).

While FDR among all protein identifications in a dataset can be computed using

the decoy database, computing the false positive rate (FPR) of individual protein iden-

tifications has been an open problem. The existing tools provide probabilistic scores,

which may be correlated with the FPR, but do not provide its rigorous estimate taking

into account the lengths of the proteins or the size of the spectral datasets. We ex-
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tended the generating function framework [75, 74] to suggest a different (and simple)

approach to the problem of estimating the protein-level FPR. So far, we failed to find

any evidence that the previously proposed techniques for evaluating protein identifica-

tions (often based on elaborate machine learning models and multiple peptides) improve

over a simple “single-peptide” rule combined with the generating function approach.

2.2 Methods

MS/MS Datasets. The MS/MS datasets used in this study were obtained from

Shewanella oneidensis MR-1 (generated in Dick Smith’s lab at PNNL) and human

(generated in Vivian Hook’s lab at UCSD) samples. These datasets are described in

[53, 51, 50]. The datasets were generated on Thermo LCQ mass-spectrometer for She-

wanella and Agilent XCT Ultra for human samples. The human dataset includes nearly

600 thousand spectra, while the Shewanella dataset has 14.5 million spectra. The

Shewanella dataset was searched against the Shewanella protein database (size ≈ 1.5

MB, containing 4,928 sequences), and the human dataset was searched against the IPI

database version 3.41 (size ≈ 40 MB, containing 72,155 sequences). Decoy databases

were generated by randomly shuffling the sequence of each protein in the target database

(preserving the background amino acid frequencies for each protein).

Peptide Identification. Database searches were carried out using InsPecT [126]

and X!Tandem [26]. InsPecT searches were run with the default parameter settings

(fragment ion tolerance of 0.5 Da and parent mass tolerance of 2.5 Da). X!Tandem was

run using default settings, without any protease specificity (allowing peptides of length

up to 40). MS-GeneratingFunction [75, 74] was run on InsPecT results to evaluate the

statistical significance of individual peptide identifications (spectral probabilities). We

treat the spectral probability as a score, and since MS-GF was used to rescore all In-

sPecT identifications (including even the very low scoring ones that are typically never

reported), InsPecT⊕MS-GF can be viewed as the third peptide identification tool, be-

sides InsPecT and X!Tandem. MS-GeneratingFunction (MS-GF) was recently shown to

improve upon InsPecT, X!Tandem and Sequest/PeptideProphet [75, 72].

Protein Identification. Protein identifications are inferred by applying score-
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thresholds to the peptides identified in a protein. In case of the “one-peptide” rule

(i.e. allowing one-hit-wonders), any protein that has a peptide scoring above the chosen

threshold is considered identified. This is equivalent to using a protein-level scoring

scheme where the score of a protein is computed as the score of its highest scoring pep-

tide. Similarly, in case of “two-peptide” rule, any protein that has two or more peptides

scoring above the threshold is considered identified. Each point on the ROC curves is

generated by changing this threshold, and computing the number of protein identifica-

tions by each rule, in the target and the decoy databases.

ProteinProphet was run using the Trans Proteomics Pipeline, v4.0 JETSTREAM

rev 2, to process X!Tandem search results on human dataset. Both target and decoy

protein sequences were included in the X!Tandem search results (without giving this

information to ProteinProphet a priori). The final output thus included both target and

decoy proteins with a probability-based score for each protein. The ROC curve was

computed by varying the value of this score-threshold between 0 and 1. ProteinProphet

performs better than the traditional “two-peptide” rule (as expected), but still worse than

the one-peptide rule.

2.3 Results

2.3.1 Comparison of two-peptide and single-peptide rule

The intuition behind the “two-peptide” rule is that it may result in a more se-

vere penalty to decoy hits as compared to the target hits. In other words, removing

one-hit-wonders should improve the FDR of peptide and protein identifications. Fig-

ure 2.1 shows this trend for peptide identifications in the Shewanella dataset for InsPecT

and MS-GF scoring functions. Indeed, if we discard all peptides representing one-hit-

wonders, we observe that the tradeoff between the number of peptides identified in the

target and the decoy database for different score thresholds shifts in favor of the target

hits, compared to the situation when one-hit-wonders are retained.

Common sense suggests that the increased number of peptides, for a given FDR,

should also increase the number of protein identifications. Therefore, it seems plausi-

ble that the “two-peptide” rule (discarding one-hit-wonders) should perform better than
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the “single-peptide” rule (retaining all proteins with one or more peptides). Note that

in common practice, the “two-peptide” rule is always used in the context of protein

identifications, i.e. after the peptides have been identified for a chosen FDR at peptide

level.

Figure 2.2 demonstrates that this intuitive conclusion is not substantiated by the

data as the simpler “single-peptide” rule has superior FDR as compared to the traditional

“two-peptide” approach applied to protein identifications. For example, for the same

number (21) of proteins identified in the decoy database, InsPecT [126] identifies 546

proteins in the target human database using the standard “two-peptide” approach and

742 proteins using the “single-peptide” approach, a 36% increase in the number of pro-

tein identifications. Similarly, the number of protein identifications with X!Tandem [26]

increases from 350 to 414 (Figure 2.3), while the number of protein identifications with

MS-GF [75] increases from 607 to 826. Similar trends are seen for the Shewanella

datasets (Figure 2b).

Besides the “two-peptide” rule, more complex approaches are sometimes used to

combine evidence from multiple peptides into protein identifications [67,97,41,94,143].

We compare our results with ProteinProphet [97], a popular tool that can be used to

post-process MS/MS database search results of programs like Sequest and X!Tandem.

Benchmarking ProteinProphet (combined with X!Tandem) against the “single-peptide”

approach (Figure 2.3) shows that the “single-peptide” rule has better sensitivity speci-

ficity tradeoff than ProteinProphet, in both human and Shewanella datasets. This sur-

prising result indicates that the simple “single-peptide” rule should not be discarded

without benchmarking it against seemingly more reasonable (“two-peptide” rule) and

complex (ProteinProphet) approaches.

We note that computing FDR using decoy databases (at the protein level) has

some limitations because the number of protein identifications in the decoy database

may deviate from the number of incorrect protein identifications in the target database,

particularly in datasets with high proteome coverage. However, the relative comparison

of the “single-peptide” and the “two-peptide” approaches should not be significantly

affected by this phenomenon. The next section describes an approach for computing the

protein-level error-rates without using a decoy database.
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Inference of proteins from identified peptides is complicated by the presence

of peptides that are present in multiple proteins. This problem is more pronounced in

eukaryotes (since their proteomes have many repeated peptides) as compared to bacte-

ria that have very few repeated peptides. The analysis of Shewanella in Gupta et al.,

2007 [53] revealed that 98.5% of the identified peptides were unique, but the number

can drop down to 40-50% in case of higher eukaryotes when using a sequence database

like the human IPI database containing alternatively-spliced variants of proteins. A

number of approaches have been developed to address this problem, most of which are

parsimony-based [97, 96, 3, 81]. The computation of FDR in our method can depend

on the exact method used for protein inference. For the sake of simplicity, we assign

the ambiguous peptides (that map to multiple proteins) to one of the matching proteins

randomly. To check that our results are robust to this step, we tried limiting our atten-

tion to only the unique peptides that are identified by InsPecT in the human dataset.

We still find that the “single-peptide” approach works best for protein identifications

(Figure 2.4). This shows that our conclusions are not significantly altered by peptides

matching multiple proteins.

2.3.2 Estimating statistical significance of protein identifications us-

ing spectral dictionaries

We say that a protein matches a spectrum with score Score if one of its peptides

matches the spectrum (with the same Score). Consider the following two problems:

Peptide-Spectrum Matching Problem. Given a spectrum Spectrum and a

score threshold Threshold for a spectrum-peptide scoring function, find the probability

that a random peptide matches Spectrum with score equal to or larger than Threshold.

Protein-Spectra Matching Problem. Given a spectral dataset Spectra and a

score threshold Threshold for a spectrum-peptide scoring function, find the probability

that a random protein matches a spectrum in the set Spectrawith score equal to or larger

than Threshold.

Recently, Kim et al., 2008 [75] suggested a generating function approach (MS-

GF) for solving the Peptide-Spectrum Matching Problem and thereby evaluating the

False Positive Rates (FPR) of Peptide-Spectrum Matches (PSM). In difference from
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False Discovery Rates (FDR) empirically computed by the target-decoy approaches

(that lack the ability to evaluate the statistical significance of individual PSMs), MS-

GF rigorously evaluates individual PSMs using spectral probabilities. However, Kim

et al., 2008 [75] defined the spectral probabilities for a single peptide and spectrum,

while MS/MS searches compare multiple peptides (e.g., all peptides present in a pro-

tein database) against multiple spectra. Therefore, accurate estimation of protein-level

FPRs requires a solution to the yet unsolved Protein-Spectra Matching Problem. In this

section, we address this problem by extending the generating function framework from

Peptide-Spectrum matches to Protein-Spectra matches.

We start by reviewing the terminology related to spectral probability and spectral

dictionaries [75, 74] (see Table 2.1). Given a scoring function for PSMs,

Dictionary(Spectrum, Threshold) is defined as the set of all possible peptides with

Score(Peptide, Spectrum) ≥ Threshold. The spectral dictionary framework trans-

forms the (difficult) problem of evaluating the statistical significance of a PSM with

score Threshold into a (simple) problem of evaluating the statistical significance of

matches between a set of strings (Dictionary) and a random peptide. Assuming prob-

abilities of all amino acids in a random peptide equal to 1
20

, the probability that a

Dictionary contains a random peptide (more precisely, a prefix of a sufficiently long

random string of amino acids) is given by

SpectralProbability(Dictionary) =
∑

Peptide∈Dictionary

20−|Peptide|

where |Peptide| stands for the length of Peptide. The dictionary corresponding to a

PSM (Dictionary(Peptide, Spectrum)) is defined as

Dictionary(Spectrum, Score(Peptide, Spectrum)). Similarly, the spectral probabil-

ity of a PSM is defined as

SpectralProbability(Peptide, Spectrum) =

SpectralProbability(Dictionary(Peptide, Spectrum))

This allows one to convert an arbitrary (additive) scoring function

Score(Peptide, Spectrum) into a new scoring function represented by

SpectralProbability(Peptide, Spectrum). Kim et al, 2008 [75] demonstrated that this
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new scoring function (varying between 0 and 1) results in a better sensitivity-specificity

trade-off than all other scoring functions they evaluated. Note that in this new scoring

function, the lower scores (spectral probabilities) represent “better” PSMs. As such,

given a Spectrum, one can define Dictionary(Spectrum, SPThreshold), for a spec-

tral probability threshold 0 ≤ SPThreshold ≤ 1, as the set of all peptides with

SpectralProbability(Peptide, Spectrum) ≤ SPThreshold when

SpectralProbability serves as a scoring function. We alert the reader that the term dic-

tionary refers to both dictionaries defined by the original scoring function Score and the

new scoring function SpectralProbability. We further define

SpectralProbability(Spectrum, SPThreshold) as

SpectralProbability(Dictionary(Spectrum, SPThreshold)). It is easy to see that

the SpectralProbability score (in contrast to the original Score) satisfies the important

property:

SpectralProbability(Spectrum, SPThreshold) = SPThreshold

In the remainder of this work, we assume that SpectralProbability is the scoring func-

tion being used.

The probability that a Dictionary contains a peptide from a random protein of

length n can be computed as 1 − P (Dictionary, n), where P (Dictionary, n) is the

probability that none of the peptides in the Dictionary is contained in a random string

of length n. Computing P (Dictionary, n) is a non-trivial problem that was solved

by Guibas and Odlyzko, 1981 [49] using the generating function approach. While

this approach allows one to compute P (Dictionary, n) precisely, the resulting expres-

sions and recurrences are rather difficult to analyze due to correlations between dif-

ferent strings in the Dictionary (see [49] for details). We therefore prefer to use an

approximation (that ignores correlations), a reasonable assumption for a rather large

alphabet of 20 amino acids (the effect of correlations is reduced with the increase in

the alphabet size [49]). Under this assumption, P (Dictionary, n) is approximated as

(1− SpectralProbability(Dictionary))n.

Therefore, the probability that a Dictionary contains a peptide from a random

protein Database can be approximated as



15

1− (1− SpectralProbability(Dictionary))|Database| ≈

SpectralProbability(Dictionary) · |Database|

(under the condition that SpectralProbability(Dictionary) · |Database| << 1) [75].

This condition is satisfied in practice since otherwise one ends up with spectral iden-

tifications that feature an unacceptably high FPR. Since we can represent a PSM by a

Dictionary(Peptide, Spectrum), the probability of a Protein-Spectrum Match (with

a random protein) can be similarly computed as SpectralProbability(Dictionary) ·
|Protein|. Therefore, if one accepts peptides with spectral probability score

SPThreshold and below (0 ≤ SPThreshold ≤ 1), then the probability of a match

with a random Protein (spectral probability of Protein-Spectrum Matches) is approxi-

mated as SPThreshold · |Protein|.

Accounting for protein length

The score of a protein identification was previously computed as the score of

its best scoring PSM, without taking into account the length of the protein. This is an

over-simplification since longer proteins are more likely to have spurious matches than

shorter ones. The spectral probability of Protein-Spectrum Matches

(SpectralProbability(Dictionary) · |Protein|) suggests a natural normalization for

computing protein-level FPR (note that while this normalization is applicable to the

SpectralProbability score, it is not necessarily valid for other scoring functions). Fig-

ure 2.5 compares this Protein-Spectrum score (normalized by the protein length) with

the original Peptide-Spectrum score(spectral probability before normalization) and show

that the proposed normalization makes sense (for both human and Shewanella datasets).

While this normalization does not result in a large change in the sensitivity-specificity

tradeoff (since most proteins have similar lengths), the normalized Protein-Spectrum

scoring function does show a modest increase in the number of protein identifications in

the target database. For example, for 20 proteins identified in the decoy database (human

dataset), the Peptide-Spectrum scoring identifies 838 proteins in target database while

the Protein-Spectrum scoring (normalized by the protein length) identifies 865 proteins.
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2.3.3 Accounting for the size of spectral dataset

We now extend the spectral dictionary approach from [74] to evaluating the sta-

tistical significance of matches between entire spectral dataset Spectra and a protein.

Like protein length, the size of the spectral dataset also affects the statistical significance

of a protein identification. While large spectral datasets are more likely to produce

spurious identifications, some protein identification tools do not correct for the spec-

tral dataset size. When computing the probability of a match below the score thresh-

old 0 ≤ SPThreshold ≤ 1 for a single spectrum (we remind the reader that smaller

SpectralProbability scores correspond to better Peptide-Spectrum matches), one could

correct for the size of the Protein as SPThreshold·|Protein|. However, when estimat-

ing the number of hits for multiple spectra, a similar correction SPThreshold·|Spectra|
does not apply because of the correlations between the spectra within a typical spectral

dataset (e.g., multiple spectra of the same peptide). To address this problem, we intro-

duce the notion of a spectral lexicon below. We start by defining the dictionary of a

spectral dataset as

Dictionary(Spectra, Threshold) =⋃
Spectrum∈Spectra

Dictionary(Spectrum, Threshold)

A string from Dictionary is called redundant if its proper substring also belongs to

Dictionary (e.g. PEPTIDE is redundant if PEPTID, or PTIDE, or any of the shorter

substrings belong to the dictionary). We define

Lexicon(Dictionary(Spectra, Threshold)), represented more succinctly as

Lexicon(Spectra, Threshold), as the set obtained by removal of all redundant strings

from Dictionary(Spectra, Threshold). While Lexicon(Spectra, Threshold) com-

bines dictionaries of all spectra in the dataset, for all practical purposes it can be treated

as a dictionary of a single (virtual) spectrum. Moreover, the probability that a Lexicon

contains a random peptide (i.e., that a spectrum from Spectramatches a random peptide

with a score equal to or better than Threshold) is again given by

SpectralProbability(Lexicon). Similarly, the probability that a Lexicon contains a

peptide from a random Protein (i.e., the probability of a Protein-Spectra Match) can



17

be approximated as

1− (1− SpectralProbability(Lexicon))|Protein| ≈

1− e−SpectralProbability(Lexicon)·|Protein|

. Again, if SpectralProbability(Lexicon) · |Protein| << 1, this probability can be

approximated as

SpectralProbability(Lexicon) · |Protein|. We remark that while the expression

1−(1−SpectralProbability(Lexicon))|Protein| is an approximation (the exact formula

is given in [49]), it nevertheless leads to a reasonable estimate of Protein-Spectra FPR

in practice (see next section). While this simplified formula involves multiple levels of

approximations, it remains reasonable for small values of spectral probability (such as

10−11 or lower), for the typical sizes of spectral datasets (106) and protein lengths (103).

For analyzing larger datasets, we recommend using more stringent (smaller) thresholds

for spectral probability.

While SpectralProbability(Lexicon) evaluates the statistical significance of

Protein-Spectra matches (protein-level FPR), it remains unclear how to compute it. To

address this problem, we define the notion of Compression of a spectral dataset as

a way to analyze dependencies between spectra. Loosely speaking, Compression is

the ratio of the spectral probability of the lexicon (of a spectral dataset) to the sum of

spectral probabilities of individual dictionaries (of each spectrum). The ratio will often

be less than 1 due to removal of redundant peptides from the lexicon and to the fact that

many individual dictionaries share the same peptides. More precisely,

Compression(Spectra, SPThreshold) =

SpectralProbability(Lexicon(Spectra, SPThreshold))∑
Spectrum∈Spectra SpectralProbability(Dictionary(Spectrum, SPThreshold))

Since we use SpectralProbability as the scoring function,

SpectralProbability(Dictionary(Spectrum, SPThreshold)) = SPThreshold

and therefore,

Compression(Spectra, SPThreshold) =
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SpectralProbability(Lexicon(Spectra, SPThreshold))
|Spectra| · SPThreshold

Two spectra are called independent if their dictionaries do not overlap and the union

of their dictionaries does not contain redundant peptides. If all spectra in the spec-

tral dataset were independent, then Compression = 1 and the quantity |Spectra| ·
SPThreshold would provide a rigorous solution to the problem of the statistical sig-

nificance of Peptide-Spectra Matches. In reality, however, spectra of the same and

related peptides (e.g., peptides that represent subpeptides of other peptides) that are typ-

ically present in the spectral dataset reduce Compression. While it can be explicitly

computed for small spectral datasets, its efficient evaluation for large spectral datasets

remains an open problem.

Spectral compression and spectral clustering

To estimate Compression of a spectral dataset, we selected all high-accuracy

(FT) Shewanella spectra with parent mass varying between 1090 and 1100 Da result-

ing in the dataset Spectra with 12,617 spectra. For different values of SPThreshold,

Dictionary(Spectrum, SPThreshold) were generated for each spectrum in Spectra
and combined into Lexicon(Spectra, SPThreshold). Since all peptides in these dic-

tionaries have similar parent mass (and thus do not have redundant peptides), Lexicon

can be generated by simply taking a union of spectral dictionaries of individual spectra.

We find that Compression values vary between between 0.65 and 0.89 depending on

the spectral probability threshold (Table 2.2). This experiment indicates that while the

expression |Spectra|·SPThreshold over-estimates FPR, it is still within≈ 65%−89%

of the correct estimate, a reasonable approximation.

Below we describe an alternative approach to estimatingCompression via spec-

tral clustering. We assume that a spectral sample Spectra represents the set of peptides

Peptides. While the set Peptides is unknown, its size |Peptides| can be estimated by

MS-Clustering tool [45] as the number of spectral clusters. Under the “ideal” scenario,

the spectra of the same peptide (belonging to one cluster) have identical spectral dic-

tionaries, spectra of different peptides do not overlap, and all spectra are independent.
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Under these assumptions,

SpectralProbability(Lexicon(Spectra, SPThreshold)) = |Peptides|·SPThreshold

Therefore,

Compression =
|Peptides| · SPThreshold
|Spectra| · SPThreshold

=
|Peptides|
|Spectra|

In reality, dictionaries of spectra of the same peptides are not identical, dictionaries of

spectra of different peptides may overlap, and spectra may be dependent. As a result,

the parameter |Peptides|
|Spectra| typically under-estimates Compression. For example, for the

dataset Spectra consisting of spectra with parent mass between 1090 and 1100 Da,

MS-Clustering [45] found 3,584 clusters from 8,689 spectra, as shown in Table 2.3

(3928 out of 12,617 spectra were discarded as low-quality spectra). The estimated

Compression = 3584/8689 ≈ 0.41 is lower than the values observed in Table 2.2. Ta-

ble 2.4 shows that large clusters have Compression much larger than 1/ClusterSize

and illustrates that clustering under-estimates Compression.

While computing the FPR of Protein-Spectra matches enables one to evaluate

the statistical significance of individual protein identifications, it also allows one to es-

timate the expected number of false identifications among all identifications, without

requiring a decoy database. The following computational experiment shows that it is

feasible to estimate the number of protein identifications in a decoy database without

actually using a decoy database. The human spectra were searched with InsPecT⊕MS-

GF against a database of 10,000 randomly generated proteins of length 500 each, with

equal probability of each amino acid at each position. 286,717 spectra (Spectra) got

some InsPecT/MS-GF score against this database and were included in the analysis. Ta-

ble 2.5 shows the observed number of proteins that have any peptide exceeding the score

threshold (SPThreshold). The expected number of protein identifications, for different

values of SPThreshold, is given by

10000 · (1− e−SpectralProbability(Lexicon)·|Protein|)

where SpectralProbability(Lexicon) is estimated as

Compression · |Spectra| · SPThreshold. This requires an estimate for the value of

Compression for the spectral dataset that we describe below.
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Suppose that the spectral dataset Spectra is partitioned into non-overlapping

Clusters (i.e., Spectra =
⋃

Cluster∈ClustersCluster), where each Cluster represents

the set of |Cluster| spectra originating from the same peptide. If we assume that

Compression within each Cluster is 1/|Cluster|, then

SpectralProbability(Lexicon(Spectra, SPThreshold)) = |Clusters|·SPThreshold

However, Table 2.4 reveals the limitations of this estimate. A more accurate estimate is

given by:

SpectralProbability(Lexicon(Spectra, SPThreshold)) ≈∑
Cluster∈Clusters

SpectralProbability(Lexicon(Cluster, SPThreshold)) ≈

∑
Cluster∈Clusters

|Cluster| · Compression(Cluster, SPThreshold) · SPThreshold

Therefore,

Compression(Spectra, SPThreshold) ≈∑
Cluster∈Clusters |Cluster| · Compression(Cluster, SPThreshold)

|Spectra|
While the parameter Compression(Cluster, SPThreshold) can be explicitly com-

puted for each cluster, Table 2.3 shows that this parameter depends largely on the cluster

size (and SPThreshold). Therefore, we can approximate

Compression(Cluster, SPThreshold) by using the average value over the previously

analyzed clusters of the same size. Using the cluster partitioning of the human dataset

determined by MS-Clustering, the expected number of proteins was estimated using the

above formula by plugging in average Compression(Cluster, SPThreshold) values

from Table 2.3. Table 2.5 compares this expected number of protein identifications with

the number of proteins actually identified in the decoy database search and demonstrates

that this approach allows one to get a reasonably close estimate of the number of false

protein identifications without searching a decoy database.

2.3.4 Using FPR of protein identifications

This study recommends discarding the commonly used “two-peptide” rule and

instead supports reporting protein identifications (including one-hit-wonders) according
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to their rigorous statistical significance (FPR). To illustrate this, Supplementary Table 1

provides a ranked list of protein identifications in the human dataset, sorted by increas-

ing FPRs. Denote the FPR of the i′th ranked protein as FPR(i). Below we estimate the

number of protein identifications in a decoy database (and thus FDR of protein identifi-

cations) if only proteins with FPRs equal to or exceeding FPR(i) are reported.

If N is the total number of proteins in the sequence database (N = 72155 for the

human IPI database used here), one can estimate the expected number of false positives

among top i protein identifications as False(i) = N · FPR(i), and therefore, the esti-

mated FDR at that stringency level is FDR(i) = #proteins in decoy database
#proteins in target database

= N ·FPR(i)
i

.

As i is increased from 1 to ≈ 600 in this dataset, False(i) increases from 0 to 0.2 only,

indicating that these top 600 protein identifications are almost error-free. It is worth

noticing that 160 of these extremely reliable protein identifications are one-hit-wonders,

a large fraction that may be missed by the traditional approaches favoring multiple pep-

tides. When i is increased from 600 to 800, False(i) increases to 21, indicating that a

tenth (≈ 21/200) of the protein identifications in this range may be incorrect. Increas-

ing i beyond 800 rapidly increases False(i), eventually at a rate higher than the rate of

increase of i (see the last few rows in the table), thereby essentially reducing the number

of true identifications. Therefore one can choose to select the top ≈ 800 proteins in this

list (at an FDR of 21/800 ≈ 2.5%) as a reasonable set of protein identifications. This

analysis shows how the knowledge of protein-level FPRs allows one to make informed

judgement calls in selecting reliable protein identifications from many hits obtained in

database searches.

2.4 Discussion

We have demonstrated that the commonly used “two-peptide” rule jeopardizes

the sensitivity-specificity trade-off in protein identifications. This counter-intuitive ob-

servation points out that we are more likely to get a protein with two mediocre peptide

hits in the decoy database (by chance) than a single high-scoring peptide hit. Some

software tools (e.g. ProteinProphet( [97]), Panoramics( [41]) identify proteins if the

combined score from all peptides exceeds the threshold, and thus allow scoring some
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single-hit proteins higher than proteins with multiple hits. However, these approaches

are dependent on specific scoring models and require further theoretical justification to

be suitable for use with all protein identification tools. In particular, our results indicate

that the simpler “single-peptide” rule results in better sensitivity/specificity trade-off

than ProteinProphet.

One might expect that since proteins are inferred from peptides, optimizing pep-

tide identifications also optimizes protein identifications. We have provided evidence

that this intuition does not hold ground. In reality, when one attempts to maximize the

number of peptides in the target database, the additional peptides often come from the

already covered proteins (i.e., from proteins with more than 1 match) and thus do not

increase the overall number of protein identifications. However, the corresponding in-

crease in the number of peptides in the decoy database significantly raises the number

of decoy protein identifications (and thus increases FDR). Therefore, we emphasize that

optimizing FDRs for peptides and proteins must be considered as different problems

that are best addressed by different approaches.

This study does not recommend accepting all proteins with single peptide hits

but instead argues that the “single-peptide” approach must be used in conjunction with

control of the FDR. While it may be surprising that the “single-peptide” approach gen-

erates a larger set of identified proteins than the seemingly more reliable “two-peptide”

approach (without sacrificing FDR), our results indicate that it is the case. We demon-

strated that for any set of proteins identified by the “two-peptide” approach (with pep-

tide score threshold x), there is a larger set of protein identified by the “single-peptide”

approach with the same FDR (with a more stringent peptide score threshold x + ε).

Therefore, one has to choose the peptide-level score thresholds carefully to ensure that

the “single-peptide” approach and “two-peptide” approach are being used for the same

level of FDR.

We also discussed how to estimate the FPR of individual Protein-Spectra matches

using the generating function framework. Spectral clustering appears as a promising

albeit an indirect approach for approximating spectral compression and should be ex-

plored further.

While the proteomics community often takes great care in evaluating peptide-
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Figure 2.1: Identification of peptides in the Shewanella dataset using different ap-
proaches and scoring functions. Each point in the curves is generated by varying the
scoring threshold and computing the number of hits in the target and the decoy database
exceeding the threshold.

level error rates, the protein-level FDRs and FPRs are rarely computed. We suggest

that publications reporting protein identifications should also report protein-level FPRs

and/or FDRs. Lack of this checkpoint raises concerns about the validity of studies, such

as biomarker discovery, where the number of identified proteins as well as the reliability

of each individual identification is of critical importance.

Chapter 2 is, in part, a reprint of the paper “False discovery rates of protein

identifications: a strike against the two-peptide rule. N. Gupta and P.A. Pevzner (2009).

Journal of Proteome Research. 8(9):4173-81”. The dissertation author was the primary

investigator and author of this paper.
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(a)

(b)

Figure 2.2: (a) Identification of proteins in the human dataset using different approaches
and scoring functions. (b) Similar plot as in (a) for Shewanella dataset.
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(a)

(b)

Figure 2.3: (a) Protein identification in the human dataset using X!Tandem search
results with different scoring approaches at the protein level. (b) Similar plot as in (a)
for an arbitrarily selected subset of Shewanella dataset containing 1.25 million spectra.
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Figure 2.4: Identification of proteins, using the unique peptides only (peptides that are
not shared between multiple proteins), in the human dataset using InsPecT search results
with different approaches.
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(a)

(b)

Figure 2.5: (a) Identification of proteins in the human dataset using MS-GF scores,
without and with length correction. (b) Similar plot as in (a) for Shewanella dataset.



28

Ta
bl

e
2.

1:
A

n
in

tu
iti

ve
de

sc
ri

pt
io

n
of

so
m

e
fr

eq
ue

nt
ly

-u
se

d
te

rm
s

(p
le

as
e

re
fe

rt
o

th
e

te
xt

fo
rd

et
ai

ls
).

Te
rm

D
es

cr
ip

tio
n

D
ic
ti
on
a
ry

(S
pe
ct
ru
m
,T
h
re
sh
ol
d
)

A
se

t
of

pe
pt

id
es

th
at

m
at

ch
th

e
S
pe
ct
ru
m

w
ith

sc
or

es
gr

ea
te

ro
re

qu
al

to
th

e
T
h
re
sh
ol
d

S
pe
ct
ra
lP
ro
ba
bi
li
ty

(D
ic
ti
on
a
ry

)
T

he
pr

ob
ab

ili
ty

th
at

a
ra

nd
om

pe
pt

id
e

m
at

ch
es

a
se

qu
en

ce
co

nt
ai

ne
d

in
th

e
D
ic
ti
on
a
ry

L
ex
ic
on

(S
pe
ct
ra
,T
h
re
sh
ol
d
)

U
ni

on
of

th
e

di
ct

io
na

ri
es

of
al

l
sp

ec
tr

a
in

th
e

se
t
Sp
ec
tr
a

(f
or

th
e

gi
ve

n
T
h
re
sh
ol
d

),
af

te
r

re
m

ov
in

g
re

du
nd

an
tp

ep
-

tid
es

C
om

pr
es
si
on

(S
pe
ct
ra
,T
h
re
sh
ol
d
)

R
at

io
of

th
e

sp
ec

tr
al

pr
ob

ab
ili

ty
of

th
e
L
ex
ic
on

to
th

e
su

m
of

th
e

sp
ec

tr
al

pr
ob

ab
ili

tie
s

of
ea

ch
sp

ec
tr

al
di

ct
io

na
ry

D
ic
ti
on
a
ry

(S
pe
ct
ru
m
,T
h
re
sh
ol
d
)

fo
r

al
l

sp
ec

tr
a

fr
om

th
e

se
tS
pe
ct
ra



29

Ta
bl

e
2.

2:
C
om

pr
es
si
on

fo
r

di
ff

er
en

t
va

lu
es

of
sp

ec
tr

al
pr

ob
ab

ili
ty

th
re

sh
ol

d
(S
P
T
h
re
sh
ol
d

)
on

a
sm

al
l

sp
ec

tr
al

da
ta

se
t

(S
pe
ct
ra

)
co

ns
is

tin
g

of
12

,6
17

sp
ec

tr
a,

w
ith

pa
re

nt
m

as
s

be
tw

ee
n

10
90

an
d

11
00

D
a.

T
he

se
co

nd
co

lu
m

n
re

pr
es

en
ts

th
e

su
m

of
th

e
si

ze
s

of
th

e
di

ct
io

na
ri

es
of

in
di

vi
du

al
sp

ec
tr

a
an

d
th

e
th

ir
d

co
lu

m
n

re
pr

es
en

ts
th

e
si

ze
of

th
e

co
m

bi
ne

d
L
ex
ic
on

.
S
P
T
h
re
sh
ol
d

∑ S
∈
S

p
ec

tr
a
|D
ic
ti
on
a
ry

(S
,S
P
T
h
re
sh
ol
d
)|
|L
ex
ic
on

(S
pe
ct
ra
,S
P
T
h
re
sh
ol
d
)|

C
om

pr
es
si
on

1e
-1

2
44

40
27

31
43

47
0.

75
2

1e
-1

1
27

09
88

7
17

08
31

7
0.

73
7

1e
-1

0
16

91
99

10
97

82
24

7
0.

68
9



30

Table 2.3: Summary of spectral clusters produced by MS-Clustering on the set of
12,617 spectra with parent mass between 1090 and 1100 Da. 8,689 spectra were clus-
tered into 3,584 clusters, while the remaining 3,928 spectra were discarded by MS-
Clustering due to low spectral quality. The last three columns indicate the average values
of Compression for various cluster-sizes, for three different values of spectral proba-
bility threshold (SPThreshold).

Average Compression
Cluster-size # Clusters # Spectra 1e-10 1e-11 1e-12
1 2875 2875 1 1 1
2 234 468 0.96 0.97 0.98
3 115 345 0.88 0.90 0.92
4 71 284 0.87 0.88 0.90
5 47 235 0.83 0.93 0.95
6 36 216 0.80 0.86 0.88
7 24 168 0.76 0.81 0.85
8 20 160 0.75 0.84 0.95
9 17 153 0.66 0.73 0.87
10 17 170 0.68 0.80 0.84
10-15 40 506 0.71 0.81 0.83
15-20 27 475 0.60 0.65 0.75
21-30 23 584 0.47 0.55 0.65
31-40 11 380 0.48 0.65 0.77
41-50 8 370 0.28 0.41 0.50
>50 19 1300 0.23 0.47 0.45
Total 3584 8689
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Table 2.4: Compression computed for the ten largest clusters in Table 2.3, using dictio-
naries generated with the spectral probability threshold of 1e-10.

Rank (by size) Size Compression
1 125 0.246
2 82 0.211
3 77 0.128
4 75 0.126
5 74 0.080
6 72 0.495
7 72 0.066
8 71 0.235
9 70 0.237
10 66 0.361

Table 2.5: Comparison between the observed and the expected number of protein iden-
tifications for different values of spectral probability threshold (SPThreshold), when
searching the human spectral dataset against a randomly generated decoy database con-
sisting of 10,000 proteins of size 500 each. The values of Compression were estimated
by using the average values for different cluster-sizes from Table 2.3.

SPThreshold Compression Expected # IDs Observed # IDs
1e-10 0.88 125.36 80
1e-11 0.91 13.04 14
1e-12 0.92 1.32 1



Chapter 3

Proteogenomics

3.1 Introduction

Gene annotation continues to be a challenging task requiring both automated

analysis and manual curation. Even in a seemingly simple case of bacterial gene predic-

tion, many challenges remain and a large number of genes are annotated incorrectly or

even missed. This is mainly due to difficulties in prediction of short genes, genes with

unusual codon usage, as well as accurate prediction of Start codons. This challenge is

greatly magnified in recent meta-genomic projects, which seek to sample DNA from the

environment.

The goal of proteogenomic annotations is to use mass spectrometry data for

annotating genome and use the resulting genomic annotations to improve MS-based

protein identification and the proteome annotation. We argued that complementing se-

quencing projects by MS/MS projects would significantly improve both genome and

proteome annotations. However, to make this happen, automated software pipeline

for proteogenomic annotation had be developed and integrated with the existing gene

prediction tools. We emphasize that proteogenomic annotations go well beyond gene

finding and include signal peptide predictions, RNA recoding predictions, operon pre-

dictions, etc.

The idea of querying MS/MS dataset against a genome to identify protein cod-

ing genes has been used earlier in different settings [148, 78, 103, 65, 64, 140, 69, 42].

However, the problem is far from being simple and there are still no program that can

32
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automatically compare a large MS/MS dataset against a genome and to come up with

a list of new and corrected gene annotations. While such program would be of great

interest to genomics community, designing such program even for bacterial (let alone

eukaryotic) genome remains a challenge. Even more challenging is the problem of an-

notating important regulatory mechanisms like programmed frameshifts that currently

remain beyond the reach of gene prediction algorithms. While our preliminary proteoge-

nomic analysis of Shewanella oneidensis showed that mass-spectrometry can address

these important problems, many computational challenges remain in using MS/MS for

gene annotation and analyzing post-translational processing (e.g., proteolysis).

A major limitation in the development of this field was that until recently, com-

plex genome-wide MS/MS searches(like search for mutations/polymorphisms or unre-

stricted search for modifications) were not feasible since the search for mutated/modified

peptides was prohibitively time-consuming. The search becomes particularly time-

consuming in the case of non-tryptic peptides that enable identification of proteolytic

events. Moreover, our analysis revealed at least 24 modification types present in the

Shewanella oneidensis sample, a significantly larger number than the existing restricted

PTM search tools can handle under realistic parameters. Inspect/MS-Alignment re-

moved this bottleneck and allowed us to generate accurate genome-wide proteogenomic

annotations.

3.2 Results

Dick Smith’s lab (PNNL) generated a dataset of 14.5 million tandem mass spec-

tra for S. oneidensis for 17 cell culture conditions, the largest MS/MS dataset ever re-

ported for a bacterium. S. oneidensis is an aero-tolerant anaerobe able to reduce heavy

metal ions and remove them from solution, making it a model organism for biore-

mediation studies [95]. It has been extensively studied by the Shewanella Federation

(http://shewanella.org/) and the predicted genes were manually validated in a number of

studies. As a result, it is considered among the most well annotated bacterial genomes

second only to E. Coli. Moreover, Shewanella is currently the only bacterial genome

for which extensive comparative genomics information exists (multiple strands of She-
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Figure 3.1: The ribosomal protein L31 (SO 4120) is entirely covered by identified pep-
tides. The protein sequence is shown at the top in red, and the identified peptides are
shown below in blue. Tryptic peptides are shown in bold.

wanella have been sequenced) thus providing a possibility to further improve gene an-

notations. It therefore may come as a surprise that even in this well-annotated genome

we found many new and mis-annotated genes. The difficulties in gene prediction are il-

lustrated by the fact that just a year after S. oneidensis was first annotated, it was reanno-

tated with a large number of changes [29]. Some recent studies have attempted to further

improve the annotations via microarray and mass-spectrometry data [34, 35, 76, 113].

3.2.1 Using MS/MS data to find expressed proteins

Some previous proteogenomic studies [65, 64] did not attempt to measure the

rate of false peptide identification, thus raising concerns about the reliability of new gene

annotations. We searched 14.5 million MS/MS spectra against a six-frame translation

(over 10 million amino acids) of the S. oneidensis MR-1 genome using InsPecT. A

decoy database of shuffled sequences was created and searched as a negative control. In

total 1.4M spectra were annotated while searching 14.5M spectra against the forward

database.

We analyzed the locations of the identified peptides relative to the positions of

the TIGR and GeneMark genes. Of the 331 peptides not covered by a TIGR gene, 126

were covered by GeneMark predictions. This demonstrates the utility of MS/MS data

in resolving discrepancies between various gene prediction efforts.

We consider protein expression to be confirmed if at least two peptides were

identified from that protein. Using this approach we verify expression of about half of

the predicted proteome. We observed an excellent correlation of expressed proteins with
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both S. oneidensis predicted operons and various components of the cell machinery. For

example, most proteins from a (i) ribosome, (ii) tRNA aminoacylation machinery, (iii)

purine biosynthesis and (iv) central carbon metabolism are highly covered. A shift to

lower coverage is illustrated by the biosynthesis of NAD cofactor and Lipid A, pathways

that are expected to be relatively less active. A subsystem involved with the utilization of

chitin and N-acetyglucosamine provides a remarkable example of correlation between

the observed coverage and expected phenotype. Most of the genes recently implicated

in the respective regulon in S. oneidensis [147] display no coverage, consistent with the

notion that this nutrient, highly abundant in the natural marine habitat, was not a part of

growth media used in this study. Notably, a predicted transcriptional repressor of this

regulon was expressed.

3.2.2 Using MS/MS datasets to improve gene annotations

Multiple matches to a genomic region outside the boundary of genes can be used

to detect new genes missed during genome annotation or to suggest that gene boundaries

should be expanded.

To detect such cases, we examined the identified peptides falling outside the

TIGR genes. Such peptides are combined into putative coding segments if they are

located within a short distance and have compatible reading frames. These coding seg-

ments point to new genes and extensions of the TIGR genes. By analyzing the location

of these segments, we identified eight new genes and extended the 5’ boundaries for 30

genes. In difference from other proteogenomic studies (where closely related genomes

were not available), we were able to evaluate the error rates of our re-annotations via

comparative genomics approaches. It turned out that all newly proposed MS/MS-based

annotations are confirmed by comparative genomics analysis.

Based on comparative sequence alignment, extensions of the 5’ ends of all 30

genes were consistent with predicted N-termini of proteins identified in other bacte-

ria. Figure 3.2 illustrates an example of how peptides were used to identify an earlier

gene start position for SO 1175. Five frequently observed peptides (Figure 3.2(a)) align

upstream to and within the same reading frame as the original SO 1175 gene (Figure
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Figure 3.2: (a) Alignment of identified peptides (colored blue) and the hypothetical
TIGR protein SO 1175 (colored red). Numbers on the right show spectral counts The
start codon is normally read as valine. These peptide identifications demonstrate that
translation begins upstream of the annotated start site. (b) Alignment of identified pep-
tides (blue) with the nucleotide sequence of N-terminal region of SO 1175, relative to
proposed new start codon (single arrow) and to the original proposed start codon (double
arrow). A Shine Dalgarno-like site (underlined) is found upstream only to the proposed
new start site. (c) Multiple sequence alignment of SO 1175 of S. oneidensis (red) with
orthologs in other Shewanella strains.
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3.2(b)). The proposed new gene start is further validated by the detection of four pep-

tides that span the original suggested start codon. Had this GTG codon occurred at the

translational start position it would have been translated as a methionine rather than a

valine [123]. As added proof, the alignment of SO 1175 with similar proteins deduced

from other Shewanella genome sequences (Figure 3.2(c)) is consistent with the proposed

new 5’ extension of the gene.

Figure 3.3 illustrates how peptides upstream of SO 2300, which encodes trans-

lation initiation factor IF-3, led to the prediction of a non-traditional start codon (there is

currently no gene prediction software capable of predicting non-traditional Start codons).

Three peptides map upstream to and within the same reading frame as SO 2300 (Figure

3.3(a)). One of these peptides spans the original predicted GTG start codon, validating

that it is translated as a valine rather than a methionine. However, none of the more

common ATG, GTG, or TTG start codons was found upstream to the region spanned

by these three peptides. Previous studies revealed that IF-3 gene from a variety of other

bacteria is initiated at a rare ATT start codon thereby serving as a basis for autoregu-

lation [114, 106, 60, 85]. While no ATT codon was found, we speculate that SO 2300

starts at an ATA codon (Figure 3.3(b)). ATA is known to function as a rare transla-

tion initiator [120, 123] and in this case is adjacent to a strong ribosome binding signal.

One final line of evidence is shown in Figure 3.3(c) where results of Tblastn analysis

reveal conservation in sequences spanning the entire proposed N-terminal extension of

11 Shewanella species as well as a large portion of this region in more distantly related

bacteria.

3.2.3 Using MS/MS datasets to analyze mutations and modifica-

tions

MS-Alignment revealed over 4,000 mutations/modification sites with false dis-

covery rate of 5% (many of these modifications can result from chemical damage in

vitro [62]). Blind PTM search tools do not distinguish between chemical modifica-

tions and mutations with the the same DeltaMass. Some modifications correspond to

amino acid substitutions, either due to polymorphisms, or due to errors in the genomic
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sequence. In collaboration with Margie Romine (PNNL) we validate such cases by con-

sidering the sequences of other Shewanella strains. For example, a modified peptide

K.QQIG+14ENPIIVYMK.G from glutaredoxin domain protein can be explained by a

glycine-to-alanine amino acid substitution. Indeed, analysis of the raw DNA sequence

traces revealed a mistake in the genome sequence at the corresponding locus resulting

in a GGT (Gly) rather than the correct GCT (Ala).

Application of mass spectrometry for whole-genome mutations or modification

studies is a relatively unexplored territory. Even though we use the state-of-the-art

methods for detection of chemical modifications, it remains a challenge to distinguish

between in-vivo and in-vitro modifications, mutations, SAAPs, and sequencing errors.

Some modifications types were observed on many different sites. Figure 3.4 presents 24

common modification types each observed on 5 or more distinct sites. Since the false

positive rate is low it is extremely unlikely that any of these modification types represent

a computational artifact. Moreover, all but two are known modification types, further

reinforcing the conclusion that they are not artifact. We remark that the number of such

modification types is rather large, significantly larger than the usual limit imposed by

the restricted PTM search tools.

The current understanding of PTMs in bacteria is very limited even for well-

studied organisms like E. coli or Shewanella. We anticipate that many biologically

important PTMs in Shewanella and E. coli will be located on aligned positions in or-

thologous proteins. Indeed, several modifications we found appear on “orthologous”

positions to those previously reported in E. coli (we remark that there are very few pre-

viously known modifications in E. coli). For instance, [77] reported the occurrence of

β-methylthio-aspartic acid at D88 of ribosomal protein S12p in E. coli and suggested

that it is important for stabilizing the ribosome structure. We observed the same mod-

ification at D89 of the S. oneidensis protein, the homologous position to D88 of the E.

coli protein, as shown in Figure 3.6.
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3.3 Identification of Signal peptides and N-terminal me-

thionine cleavages

Signal peptide targets a protein for secretion, or for transportation to a desired

cellular location. Signal peptides are cleaved and quickly degraded to produce the ma-

ture protein sequence. While knowledge of signal peptides is important for understand-

ing protein function, they are difficult to confirm experimentally, and computational pre-

dictions are used to fill the gap. There have been some concerns [4] regarding the qual-

ity of popular signal peptide prediction algorithms (like SignalP [13] and PrediSi [57])

since these methods consider a generalized signal motif for all proteins and may not

identify interesting cases that are limited to a few proteins. Also, these tools make pre-

dictions based on a rather small sample of experimentally confirmed signal peptides,

since experimental data about signal peptides is limited. For example, SignalP makes

predictions based on a dataset of only 334 experimentally confirmed signal peptides in

all Gram-negative bacteria. The number of experimentally confirmed signal peptides

in Gram-positive bacteria is twice smaller [13]. It is clear that MS/MS evidence can

greatly increase the number of experimentally confirmed signal peptides and improve

confidence of signal peptide predictions. However, there is still no computational tools

for MS/MS-based prediction of signal peptides.

The N-terminal Methionine Cleavage(NME) is the process of cleaving Nter-

minal methionine residue by Methionyl Amino Peptidase (MAP) or Amino Peptidase

P(AmpP) from a number of cytosolic proteins. NME is specific and one of the most

common post-translational modification (it is estimated that ≈ 50% of E.Coli proteins

undergo PTM) with important implications for protein half-life [132]. While the knowl-

edge of NME is crucial for many applications in food safety, infectious diagnostics,

and counter-terrorism (it improves the quality of MS-based microorganism detection by

an order of magnitude [30]), the computational algorithms for NME prediction remain

somewhat simplistic.

NME is often crucial for function and stability of recombinant proteins [82].

Methionine, which is important during translation, may not be required (or actually be

detrimental) for the function of the protein. The role of NME remains poorly under-
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stood but the process is recognized to be the major source of N-terminal amino acid

diversity. The recognition rules for NME remain elusive resulting in a number of con-

flicting studies [30, 83, 142, 46]. Frottin et al., 2006 [46] recently estimated that the

existing ambiguities in NME recognition rules make reliable proteome annotation dif-

ficult for about 30% of bacterial proteins. This renders the production of recombinant

proteins of theraupitic interest risky, given the high antigenicity of the N-terminus if

incorrectly processed, the problem originally encountered in the production of human

growth harmone [12, 101].

In one of earlier NME studies, Hirel et al, 1989 [58] measured the efficiency of

cleavage between initial methionine and various second residues in vitro and showed

that methionine cleavage is more efficient if the second residue has a smaller side chain.

The key limitation of this and follow-up studies of NME is the limited size of the ex-

perimental dataset. As a result, the software for predicting NME sites (TermiNator) was

developed only recently [46]. We argue that analysis of large MS/MS dataset is able to

generate orders of magnitude larger training datasets for studying NME and to resolve

the problem of reliable NME annotation.

The above examples represent only two most well-studied cases of a myriad of

proteolytic events characteristic for any organism. While regulatory proteolysis is cru-

cial for many cellular processes, it remains poorly understood and there is still no high-

throughput techniques for genome-wide detection of proteolysis. We argue that tandem

mass spectrometry has a potential to become such technique as soon as computational

tools for analyzing proteolytic events via MS/MS are developed.

Large MS/MS datasets offer an unprecedented opportunity to study in-vivo cleav-

age specificity by looking at non-tryptic peptides that may be manifestations of prote-

olytic events. If a protein sample is digested with trypsin, we expect the majority of the

peptide endpoints to correspond to tryptic cleavage sites. Given trypsin’s high speci-

ficity [100], it is natural to consider that non-tryptic endpoints may reveal proteolytic

events [90]. Non-tryptic endpoints suggest the possibility of a proteolytic event, either

in vivo or in vitro. In the S. oneidensis MR-1 project (collaboration with Dick Smith

(PNNL)) we analyzed 14.5 million MS/MS spectra and arrived to peptide identifications

that include 21,297 tryptic peptides (75%), 6,670 peptides with one non-tryptic endpoint
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(24%), and 409 peptides with two non-tryptic endpoints (1%). However, caution is

needed while analyzing peptides with non-tryptic endpoints, since they can also reflect

post-digestion trimming of tryptic peptides or simply errors in peptide identifications.

These peptides may create an appearance of proteolytic events that never happened thus

calling for development of additional algorithmic and statistical analysis to distinguish

between the true and false proteolytic events. Thus special care is needed to ensure

that the rate of false positive identifications for non-tryptic peptides is low. Also, the

whole-proteome search becomes rather time-consuming in the case of non-tryptic pep-

tides that enable identification of proteolytic events. We note that 96% of non-tryptic

peptides S oneidensis fall within expressed S oneidensis proteins, similar to tryptic pep-

tides (97%). Since expressed proteins make up only 7% of the six-frame translation S

oneidensis, incorrect identifications (which are randomly distributed) are unlikely to fall

within confirmed proteins. Thus, we argue that our false discovery rate for non-tryptic

peptides is not significantly larger than that for tryptic peptides.

3.3.1 Proteolytic events and non-covered peptides

Figure 3.7 shows the N-terminal portion of a well-covered S.oneidensis protein

whose first 26 aa are not covered by any peptides. The hypothesis that these initial 26

aa represent a signal peptide is supported by the fact that the first two peptides mapped

to the protein (starting at residue 26A) have a non-tryptic N-terminus. However, it is

not the only non-tryptic endpoint observed for this peptide; for example, the peptide

SIGTDTLLQIK is also non-tryptic. Below, we present an approach to distinguishing

between proteolytic events and post-digestion trimming.

Non-tryptic peptides may arise from post-digestion breakup, due to hydroly-

sis (driven by endogenous or exogenous peptidases or by harsh chemical conditions in

course of the sample preparation) or in-source decay [100]. Of the 7,079 non-tryptic

peptides in the Shewanella dataset, 5,474 (77%) are properly contained in a longer

observed tryptic peptide, and 1,605 (23%) are not. It is likely that the majority of

non-tryptic peptides contained within other observed peptides result from post-digestion

breakup, particularly when the longer peptide is more abundant (as estimated by spec-
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trum count), although some of them may result from the partial proteolytic processing

in vivo.

In the S. oneidensis project we identified 1,372 non-tryptic peptides that are not

contained within any other peptide (such peptides are called non-covered peptides).

While the 688 proteins containing non-covered peptides may be potential proteolytic

targets, one can argue that these peptides may also represent (i) erroneous peptide iden-

tifications or (ii) instances where the containing tryptic peptide does not generate any

observed MS/MS spectra [124]. To prove that many non-covered peptides indeed corre-

spond to proteolytic events we point to the extremely non-uniform distribution of start-

ing positions of these peptides along the protein (Figure 3.8). If these peptides were

artifacts, we would expect to see a relatively uniform distribution of starting positions.

Instead we see two pronounced peaks at positions 2 and 20, reflecting two biological

phenomena: N-terminal methionine cleavage (position 2) and signal peptides (average

length of signal peptides in gram-negative bacteria is ≈25aa [98, 104]). It should be

noted that although our signal peptide peak is at 20, the distribution is skewed towards

right with average signal peptide length around 26, in strong agreement with the previ-

ously reported average of 25.

To focus on these two phenomena, we limit our attention to 366 proteins in which

the leftmost identified peptide is a non-covered peptide.

3.3.2 Predicting N-terminal methionine cleavage

Peptides starting at the second residue of a protein suggest cleavage of N-terminal

methionine (NME) in 218 proteins. To check the effect of second residue on NME

cleavage [58], we computed a cleavage efficiency factor for each of the 20 amino acids.

These efficiencies of different amino acids are similar to the results observed in vitro for

E. coli (Figure 3.9). It appears that activity in vivo may be more specific than that seen in

vitro. These observations are also in close agreement with recent results independently

obtained at the NIH Center for Proteolytic Pathways at Burnham Institute in the E. coli

model using a novel labeling technology developed by Guy Salvesen at Burnham.
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3.3.3 Predicting signal peptides

The average length of a signal targeting proteins to the Sec pathway in Gram-

negative bacteria is 25 amino acids, with most signal peptides in the range from 20 to

30 amino acids [98, 104]. The distribution of starting positions of non-covered peptides

has a pronounced peak at 20 amino acids (Figure 3.8). Of the non-covered peptides

which are not explained by N-terminal methionine cleavage, 55% start at positions 21-

30. Figure 3.8 suggests that most peptides in 21-30 aa window reflect signal peptides,

since other 10 amino acid long windows have very few peptides. It is important to note

that the bulk of protein secretion in Gram-negative bacteria occurs to the periplasmic

space, therefore the corresponding processed proteins can be experimentally observed

in the whole-cell extract.

We analyzed our peptide annotations in order to confirm or refute signal predic-

tions, and possibly to discover new signal cleavage sites. In an exploratory study we

examined peptides with non-tryptic N-termini and selected peptides with no upstream

coverage. A clear sequence motif [28] emerges when we examine the sequence imme-

diately upstream of these putative signal peptides predicted by MS/MS analysis (Figure

3.10). This motif closely matches motifs used by SignalP and PrediSi thus providing

additional support for using non-covered peptides for signal peptide identification.

SignalP and PrediSi predict 370 and 403 proteins with signal peptides. However,

there is a substantial discrepancy between these tools - only 211 signals are predicted by

both tools. MS/MS evidence provides a possibility to resolve the discrepancies between

SignalP and PrediSi as well as to identify signal peptides missed by both tools.

Figure 3.11a compares our predicted signal peptides with the predictions made

by SignalP and PrediSi on the 1,992 expressed proteins. Our results confirm a total of 94

signal peptide predictions in vivo. In 31 cases, both SignalP and PrediSi predict signal

cleavage on an expressed protein, but disagree as to the cleavage site. This ambiguity

highlights the difficulties in computation signal prediction and the potential of MS/MS

to confirm the correct prediction with MS/MS evidence.

On 119 of the confirmed proteins, the MS/MS results include peptides upstream

of the cleavage site predicted by SignalP/PrediSi and thus represent evidence against
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SignalP/PrediSi predictions. We call these the “refuted sites”. We refute 89 sites pre-

dicted by SignalP, and 38 sites predicted by PrediSi (with 8 refuted sites predicted by

both tools). It is conceivable that those peptides N-terminal to the signal site come from

mis-localized proteins, where the signal sequence is not cleaved. If cleavage is the norm,

then peptides immediately C-terminal to the refuted sites should be seen. However, they

are observed for only four of the refuted sites, and each is contained in a much more

abundant (by spectrum count) fully tryptic peptide which spans the refuted site. Thus,

the peptide evidence suggests that these refuted signal peptide predictions are indeed

incorrect.

3.4 Conclusion

The results presented here, as well as in the subsequent chapters, demonstrate

the utility of mass spectrometry in improving genomic and proteomic annotations.

Chapter 3 is, in part, a reprint of the paper “Whole proteome analysis of post-

translational modifications: applications of mass-spectrometry for proteogenomic an-

notation. N. Gupta, S. Tanner, N. Jaitly, J.N. Adkins, M. Lipton, R. Edwards, M.

Romine, A. Osterman, V. Bafna, R.D. Smith and P.A. Pevzner (2007). Genome Re-

search. 17(9):1362-77”. The dissertation author was the primary investigator and first

author of this paper jointly with Steven Tanner.
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Figure 3.3: (a) Alignment of identified peptides (blue) with the intergenic region be-
tween TIGR proteins SO 2299 and SO 2300. The starred positions indicate the last
codon of SO 2299 and the first codon of SO 2300. The arrow points to the newly
postulated translational start site for SO 2300 (IF-3 gene). (b) Nucleotide sequence of
the chromosome region between SO 2299 and SO 2300. The first red segment is the
C-terminal end of SO 2299 and the second red segment is the N-terminal region of
SO 2300. The region covered by the three identified peptides is underlined, and the
arrow indicates our suggested start position for SO 2300. (c) A Tblastn comparison
of the proposed new S. oneidensis MR-1 IF-3 N-terminus to genome sequences for S.
baltica OS155, Shewanella sp. MR-4, S. putrefaciens CN32 , S. loihica PV-4, Sodalis
glossinidius and Photobacterium profundum . The original start position is indicated by
the arrow.
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Figure 3.4: List of common modifications (observed on at least 5 distinct sites). Car-
bamidomethylation (abbreviated as CAM) is added to cysteine side chains by treatment
with iodoacetamide, but can be attached to other sites. Masses are computed as the
average modification mass over FT spectra (except entries shown with * which had no
corresponding FT spectra).
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Figure 3.5: Selected PTMs supported either by studies in other bacterial genomes or
by comparative genomics analysis. Some modifications are similar to previously de-
scribed biological modifications in prokaryotes (typically in E. coli). Substitutions are
supported by the presence of the target residue in other Shewanella strains at the or-
thologous residue. Hydroxylation of R on SO 0238, although not previous reported, is
strongly supported by our data.

Figure 3.6: Position of D+46 modification on SO 0226, and its alignment with the or-
tholog in E. coli. The modified aspartate residues are shown in bold.

Figure 3.7: Peptides from the N-terminal portion of conserved hypothetical protein
SO 3842. The peptide breakage before the starred residue is produced when the signal
peptide is cleaved and degraded. The other non-tryptic peptides are properly contained
in observed tryptic peptides, and so are most likely generated by post-digestion breakup.
The N-terminal ladder observed for the tryptic peptide QMSIGTDTLLQIK is a likely
result of aminopeptidase-driven trimming or in-source fragmentation.
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Figure 3.8: Distribution of the N-termini of all non-covered peptides, and of those which
also have no upstream coverage. Two peaks observed at 2 aa and ≈20 aa. correspond to
N-terminal methionine cleavage and signal peptides.
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Figure 3.9: Fraction of peptides undergoing cleavage of N-terminal methionine, for a
given second-position residue. Amino acids are arranged in increasing order by size
of side chain. The in vitro data comes from measurements of E. coli MAP enzyme
efficiency [58]. For the starred residues, ten or fewer N-terminal peptides were observed
with that residue at the second position. In difference from [58] we observe several cases
of an apparent cleavage before the second methionine in proteins starting with double
methionine. However, a comparative genomics analysis of other Shewanella strains
revealed that a large portion of them have orthologous proteins with a single methionine,
rather than a double methionine. Therefore, we speculate that many proteins starting
with double methionine may represent mis-annotations of the translation start site.
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Figure 3.10: Top: Sequence logo for the amino acid sequence motif of all signal peptides
identified by MS/MS analysis. Position -1 correspond to the last residue of the signal
peptide. Middle: Sequence logo for gram-negative bacteria employed by PrediSi [57].
Bottom: Sequence logo for gram-negative bacteria employed by SignalP [98].
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Figure 3.11: (a) Venn diagram of all signal peptide predictions on confirmed proteins.
A total of 94 signal peptide cleavage sites are validated by mass spectrometry (23 of
them missed by both SignalP and PrediSi). (b) Number of signal predictions by SignalP
(89) and PrediSi (38) rejected due to the observation of peptides upstream of the signal
cleavage site. Eight of these sites were predicted by both tools.

Figure 3.12: Sequence of phosphoribosylformylglycinamidine cyclo-ligase (SO 2760)
in Shewanella Oneidensis MR-1 according to TIGR annotation (red), observed non-
tryptic peptide (blue) and alignment to the orthologs in other Shewanella strains (green).



Chapter 4

Comparative Proteogenomics

4.1 Introduction

Since the sequencing of the first genome, H. influenzae [44] in 1995, the number

of sequenced genomes has been rising sharply. Every sequencing project is followed by

annotation of the genome to identify genes, pathways, etc. Comparative genomics anal-

ysis of multiple genomes has emerged as one of the key approaches for discovery of such

genomic elements that greatly improves on the existing annotation tools [11, 73, 146].

Another recent development is the application of tandem mass spectrometry (MS/MS)

for genomic annotations [64, 69, 140, 42, 125, 53]. Such proteogenomic approaches fur-

ther improve gene predictions and allow one to address problems that remained beyond

the reach of both traditional gene prediction tools and comparative genomics.

We recently developed MS-Genome software for automated proteogenomic an-

notation of bacterial genomes [53] and applied it for improving annotation of She-

wanella oneidensis MR-1, a model bacterium for studies of bioremediation and metal

reduction. However, the synergy between MS/MS data from different species was never

explored in the past. We show that such comparative proteogenomics analysis sheds

new light on the annotations of both genomes and proteomes.

Similar to Expressed Sequence Tags (EST) studies, mass spectrometry experi-

ments generate Expressed Protein Tags (EPT) that provide valuable information about

expressed proteins. However, while there are 100s of studies on using ESTs for genome

annotation, EPT studies are still in infancy [116]. This is unfortunate since EPTs may

52
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provide some advantages over ESTs and are easy to generate. In particular, unlike ESTs,

EPTs are relatively uniformly distributed along the protein length and provide informa-

tion about the translational starts, proteolytic events (e.g., signal peptides), and post-

translational modifications. Also, EPTs may be less affected by splicing artifacts (like

trans-splicing) and sequencing errors. However, some EPTs may represent errors in pep-

tide identifications (and are thus completely wrong) making it non-trivial to transform

the existing EST approaches into the EPT domain.

While recent high-throughput MS/MS studies generated large spectral datasets

for many related species, it remains unclear how to utilize these datasets across vari-

ous genomes. In this study, we analyze MS/MS datasets for three Shewanella bacteria

representing multiple growth conditions: Shewanella oneidensis MR-1 (≈14.5 million

spectra), Shewanella frigidimarina (≈ 0.955 million spectra) and Shewanella putrefa-

ciens CN-32 (≈ 0.768 million spectra). These datasets provide an opportunity to analyze

the expressed proteomes across these bacteria (henceforth referred to as So, Sf and Sp

respectively). In addition to predicting new genes and finding errors in existing anno-

tations, we show that MS/MS data helps to identify programmed frameshifts (as well

as sequencing errors), a difficult problem in genomics. We demonstrate that compara-

tive analysis of peptides across species is helpful in resolving the dilemma of “one-hit-

wonders” in proteomics. We further discuss how comparative proteogenomic analysis

enables identification of rare post-translational modifications and proteolytic events, two

difficult problems for which the high-throughput techniques are not available. Drawing

parallels from gene microarray platforms, we also use mass spectrometry based protein

expression data to analyze the conserved and differentially expressed pathways across

these species.

4.2 Results

4.2.1 Multiple Shewanella Genomes

The three Shewanella species used in this study were recently sequenced, So

containing 5,131,416 base pairs being the first one [55]. Subsequently, Sf and Sp

genomes have been sequenced (4,845,257 and 4,649,325 base pairs respectively). Sf
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(a) (b)

Figure 4.1: Expression of orthologous genes across the three species. (a) The number of
orthologs shared between different species. There are 2590 orthologous genes present
in all three species (referred to as “shared genes”). (b) The number of expressed shared
genes (confirmed by 2 or more peptides) among the three species . 1052 shared genes
are expressed in all three species, 708 shared genes are expressed in none.

and Sp genomes, unlike So, do not have accompanying publications in the literature,

although they have been cited in other studies [147]. The genome sequences and anno-

tations used in this study were obtained from the TIGR CMR database.

The protein orthology assignments across different Shewanella species were pre-

pared using Inparanoid [111], subsequently aligned by Muscle [33] (data courtesy of

LeeAnn McCue and Sean Conlan). Figure 4.1(a) shows the numbers of orthologs shared

by different Shewanella species. While 2590 genes have orthologs in all three species

(we call such triplets “shared genes”), for some proteins, orthologs were found in only

one other species, and in many cases (for example, 1715 in So) in none.1

The shared genes are used for comparative analysis in this study. The protein

sequence identity between So and Sp is about 85%, while Sf is about 70% identical to

the other two species (average among all shared genes). As a result, most orthologous

tryptic peptides for these species differ in at least one position.
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Table 4.1: Protein identification results. For each species, the total number of genes, the
number of genes confirmed as expressed proteins by two or more peptides, and num-
ber of genes with only one peptide hit are reported. The numbers in the parentheses
represent the number of shared genes, out of 2590 in total, that are present in the corre-
sponding list of genes.

S. oneidensis (So) S. putrefaciens (Sp) S. frigidimarina (Sf)
Annotated genes 4928 3972 4029
Expressed proteins 1967 (1572) 1625 (1372) 1744 (1447)
Single-hit proteins 404 (248) 462 (295) 464 (306)

4.2.2 Protein Identification

Based on the peptides identified from InsPecT searches (see Methods), expres-

sion of 40%-45% proteins is confirmed in each species. Table 4.1 provides the number

of annotated genes and our protein identifications. Interestingly, the fraction of ex-

pressed proteins among the shared genes is much higher, at ≈ 55%. This hints at a

correlation between protein expression and sequence conservation, in agreement with

the observations made in Gupta et al., 2007. In this study, we also demonstrated the use

of MS-based protein identification to analyze the expression of pathways or functional

categories.

4.2.3 Resolving One-Hit-Wonders

There are 1052 shared genes that are expressed in all three species (see Fig-

ure 4.1(b)). However, in accordance with the Proteomics Publication Guidelines [21,

17], we require at least two peptides to consider a protein as expressed. Since almost

every analysis of MS/MS datasets reveals a large number of proteins with a single iden-

tified peptide (one-hit-wonders), it leads to a significant reduction in the number of iden-

tified proteins (one-hit-wonders represent 21, 28 and 27 percent of all identified proteins

in So, Sp and Sf respectively). For example, there are 404 such proteins in So that cannot

be reported as reliable identifications. While many of them indeed represent expressed

proteins, it is not clear how to separate them from erroneous peptide identifications [53].

1Many Shewanella genes may be artifacts of existing gene finding tools that tend to over-predict short
genes. See [23] regarding the recent controversy on gene over-prediction.
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Figure 4.2: Example of correlated one-hit-wonders in shared genes. Aligned amino
acid sequences of the shared gene (annotated as hypothetical lipoprotein) are shown for
each organism (SO 0515 in So, CN32 3345 in Sp and Sfri 3590 in Sf). The identified
peptides are shown in blue.

Below we explore the use of comparative analysis across species to reliably select the

expressed proteins among the one-hit-wonders and thus remove the term “hypothetical”

from some existing gene annotations.

Table 4.2: Expression signatures for shared genes. Three values in a vector correspond
to three organisms, independent of the position. For example, (0, 0, 1) represents shared
genes that have 1 peptide in (any) one of the species, and no peptide in the other two.

Expression Signature (ES) (0, 0, 0) (0, 0, 1) (0, 0, 2) (0, 1, 1) (0, 1, 2)
#proteins with given ES 434 195 182 69 187

Expression Signature (ES) (0, 2, 2) (1, 1, 1) (1, 1, 2) (1, 2, 2) (2, 2, 2)
#proteins with given ES 218 10 56 187 1052

For each shared gene, we define an expression signature with three values that

represent the number of peptide identifications in the three species. The value is 2 if

the expression is confirmed by 2 or more peptides, 1 if only 1 peptide is observed, and

0 for no peptides. For example, the signature (0, 1, 2) for a shared gene represents no

peptide identification in So, 1 peptide identification in Sp and confirmed expression with

2 or more peptides in Sf. There are 27 possible distinct expression signatures that such

a vector may take for a shared gene. We combine these into 10 position independent

values, such that (2, 1, 1) is considered the same as (1, 1, 2)) or (1, 2, 1). Table 4.2

shows the frequency of these 10 expression signatures among the 2,590 shared genes.

The argument against considering one-hit-wonders as expressed protein is that they may

be unexpressed proteins with one false peptide identification. However, we note that if

the orthologous genes of a one-hit-wonder are expressed in the other two species, it

adds support that the gene a true expressed gene. Such genes are readily identified as
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having expression signature (1, 1, 1), (1, 1, 2) or (1, 2, 2). This approach provides extra

evidence for the expression of 3× 10 + 2× 56 + 187 = 329 one-hit-wonders in total in

the three species.2

While orthologous one-hit-wonders are strong indicators of protein expression,

peptides identified at the same orthologous positions (correlated peptides) in different

species provide an overwhelming evidence that the proteins are expressed (see Methods

for description of correlated peptides). Since the likelihood of this happening by chance

is extremely small, we now dig deeper into analysis of the orthologous one-hit-wonders

and demonstrate that they often have correlated peptides. Figure 4.2 shows the example

of a shared gene (annotated as hypothetical lipoprotein) that has only 1 identified peptide

in each organism. However it turns out that these peptides, in spite of being slightly

different from each other in their sequences, are located at the same position in the

alignment of the orthologs. Thus we argue that these proteins should be considered as

expressed and re-annotated to remove the term “hypothetical” from their annotations.

One reason for observing only a single peptide from a protein is the relatively

few number (one in some cases) of detectable peptides in a protein. However, if this

is the case, the orthologous peptides should be observed in the closely related species.

We thus check if the only peptide observed in a protein is correlated between multiple

species. If the peptide identification is spurious, it is very unlikely that the peptide will

be at the same position as the observed peptides in its orthologs. Interestingly, we find 46

out of 404 one-hit-wonders in So having a correlated peptide in at least one of the other

two species, providing strong evidence for the expression of these proteins. Similarly,

50 and 85 one-hit-wonders in Sf and Sp, respectively, can be resolved as expressed

based on correlated peptides. We note that if the peptide identifying a one-hit-wonder is

an incorrect identification, and the orthologous peptides identified in the other species

are exactly the same as the one-hit-wonder peptide, they may also represent incorrect

identifications of similar mass spectra (e.g., spectra from unknown contaminants). Thus,

the correlated peptides are less reliable if they are identical. However, even a single

change in the peptide sequences significantly changes the corresponding spectra, and

2The signatures (0,1.1), (0,1,2), and (0,2,2) are also useful albeit less reliable (they may represent
biologically interesting cases when orthologous proteins are expressed in some species but not expressed
in others).
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therefore, the one-hit-wonder confirmations based on such distinct peptides are reliable.

Noticeably, 38, 47 and 70 one-hit-wonders in So, Sf and Sp respectively, confirmed by

correlated peptides, belong to this category.

4.2.4 Correcting Gene Predictions: Start Sites

Peptides that match the genome in the non protein-coding region upstream to a

gene, within 200 bp distance, are considered candidates for early start sites. These are

cases of mis-annotated genes that are shortened at their N-terminus. Cases with stop

codons between the peptide and the gene start site are discarded. To avoid spurious

candidates from incorrect peptide identifications, we consider a peptide only if there is

another identified peptide in the same reading frame within 200 bp [53]. The starting

position of the peptide (call it position X) does not necessarily correspond to the actual

start site of the gene, but only tells that the actual start should be further upstream to X .

To verify early start sites and determine their exact positions, these genes were

searched against proteins in 10 other Shewanella species, and position X for each can-

didate was compared to the start site of the aligned homolog. These species included

Shewanella loihica PV-4, S. baltica OS155, S. amazonensis SB2B, S. sp. W3-18-1, S.

denitrificans OS217, S. sp. ANA-3, S. sp MR-4 and S. sp. MR-7, besides the other

two from So, Sf and Sp (leaving the one which the candidate gene belongs to). If the

start site of homolog aligned to a particular position equal to or upstream of position X ,

then this new position was considered to be putative early start site. The most frequent

(supported by maximum number of homologs) of these putative starts is chosen as the

new start site for the gene.

23 among 28 such candidates in So are assigned new start sites based on the

comparative analysis mentioned above. Notably, 18 of these early start sites have the

expected ATG, GTG or TTG start codons, indicating that these automatically predicted

start sites are indeed reliable. 2 and 3 early start sites are identified in Sp and Sf respec-

tively.

As described in the Methods, candidates for late start sites were generated using

evidence from non-covered peptides. Such instances indicated a potential late start site

either at the beginning of the non-covered peptide (call it position X) or, if N-terminal
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cleavage occurred, one position upstream (X − 1). The sequences of these candidate

genes are aligned to the proteins in 10 other Shewanella species. Each instance where

the start of a protein in the other species aligns to the potential late start site (beginning

at position X or X − 1) is considered as confirmed by comparative genomics.

In So, 5 out of 33 late start candidates are confirmed, four of which start with

ATG codon and one with GTG (supporting the hypothesis that these are indeed start

sites). Similarly, 11 out of 16 candidates are confirmed in Sf, and 4 among the 11 are

confirmed in Sp (all of these are also found to have ATG, GTG or TTG start codon).

The table also shows that the majority of these candidates have N-terminal methionine

cleavage in the observed peptide. We find comparative proteomic evidence for one

case where the late start site (10 amino acids downstream of the annotated start site)

is conserved in the orthologs (ATP-dependent Clp protease, proteolytic subunit ClpP)

between So (SO 1794), Sf (Sfri 2596) and Sp (CN32 1490). However, we note that

this site is also found in our analysis of conserved proteolytic sites (below). While it is

unclear whether this peptide corresponds to the late start site or a proteolytic event, it

clearly represents a real non-tryptic peptide, as opposed to an incorrect identification.

We note that our approach assumes that a gene has only one translational start

site. However, if there is a gene with alternative start sites, we will detect only the most

upstream start site that has supporting peptide evidence.

4.2.5 Identification of programmed frameshifts and sequencing er-

rors

A frameshift occurs when a ribosome skips one or more nucleotides in an mRNA

sequence, thereby changing the reading frame to produce a different protein sequence

from the original frame. In programmed frameshifts, this phenomenon is built into the

translational machinery [40]. Secondary RNA structures such as pseudoknots are often

responsible for the ribosomal pause and resulting frameshift [137]. While many efforts

went into frameshift detection [107, 25, 19, 43, 92], accurate detection of frameshifts

remains an unsolved problem. Mass spectrometry, on the other hand, provides experi-

mental evidence for the actual translation products (proteins) and allows one to to detect

the frameshifts. The presence of peptides from two different reading frames within the
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region of a predicted gene may represent: (1) an incorrect peptide identification, (2) an

insertion/deletion sequencing error, (3) overlapping genes in different frames, or (4) a

programmed frameshift. We demonstrate the application of comparative approaches for

distinguishing between these possibilities.

All identified peptides are mapped to the translated frames of the genome and

compared with the annotated gene coordinates to determine alternate peptide reading

frames in the DNA region of a single gene. As depicted in Figure 4.3, three types of

cases are typically seen. In case A, multiple peptides are observed in two different

frames (only one of them being the annotated frame of the gene) in non-overlapping re-

gions. In case B, only one peptide is observed in an alternative frame at one of the ends,

while in case C, one peptide is seen out of frame with in-frame peptides on both sides.

We postpone the discussion of case C since in this case incorrect peptide identifications

or overlapping genes are more likely explanations than a frameshift. Case A provides

the most reliable evidence of a programmed frameshift since presence of multiple pep-

tides in the same region greatly reduces the probability that these peptide identifications

are spurious. The remaining case B, with only one peptide, is ambiguous and may rep-

resent either frameshifts or incorrect peptide identifications, or overlapping genes. We

exploit the sequences of multiple Shewanella species to find comparative evidence for

putative frameshifts in these cases.

Protein sequence from the original frame of the gene, as well as sequence from

the alternate frame implied by the identified peptides, is compared against the other

Shewanella species using BLAST [2]. Good matches to the alternate-frame sequence

and no matches to the gene-frame sequence provide additional evidence for a frameshift.

We note that some apparent frameshifts may be caused by sequencing errors or indels in

the genome sequence when a certain number (not multiple of 3) of bases are erroneously

added to or deleted from the sequence. To identify such sequencing errors, we take the

nucleotide sequence of the region where frameshift occurs (region between the observed

in-frame and alternate-frame peptides) and generate ClustalW [22] multiple sequence

alignment with the orthologous region in the other species. A sequencing error is visible

in this alignment as an indel in the original sequence (see Figure 4.4). Figure 4.5 shows
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Figure 4.3: Commonly observed configurations of peptides in alternative frame. Case
A: multiple peptides are observed in two different frames (one of them being the frame
of the gene) in non-overlapping regions. Case B: only peptide is observed out of frame
at one of the ends. Case C: one peptide is seen out of frame with in-frame peptides on
both sides.
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Figure 4.4: Frameshift generated by sequencing error. In top panel, the nucleotide
sequence for gene SO0590 is shown in red, the amino acid sequence of the protein is
shown in green, and the amino acid sequences of the three translated frames are shown
in black. Peptides identified by mass spectrometry are marked in blue (surrounded by
boxes). The middle panel shows the ClustalW alignment with other Shewanella species
in the region where frameshift occurs. The erroneous insertion of an extra “t” stands out
in the alignment. The bottom panel indicates that both peptides fall in the original frame
if the extra nucleotide is removed.
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Figure 4.5: An example of a programmed frameshift. The nucleotide sequence for
gene SO 0991 is shown in red, the amino acid sequence of the corresponding protein is
shown in green, and the amino acid sequences of the three translated frames are shown
in black. This gene has been correctly annotated in TIGR, and our predicted peptides in
both the original frame and the alternative frame match the protein sequence.

an example of a programmed frameshift detected through this approach.

We identified 12 frameshift candidates in So conforming to case A.All these can-

didate frameshifts were verified with significant E-values. Nine of these instances are

estimated to be sequencing errors, and three genes are putative programmed frameshifts:

SO0991 (+1), SO4538 (-1), and SO4115 (-1). SO0991 (Figure 4.5) is related to the pep-

tide chain release factor 2 in E. coli, that is known to undergo a programmed frameshift

[27]. 15 frameshift candidates were identified conforming to case B but not verified by

comparative evidence. No frameshifts candidates could be verified in Sp or Sf. This

may be attributed to the relatively small number of spectra for these two species (less

than a million spectra each) as compared to 14.5 million spectra for So.

4.2.6 Proteolytic events

In Gupta et al., 2007, we demonstrated the use of genome scale MS/MS dataset

for identification of N-terminal proteolytic events such as N-terminal methionine cleav-
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Figure 4.6: A cleavage site located within a peptide ladder. The first line shows a
section of the protein SO 0162(residues 399-432) with the cleavage site between Y and
L marked by a downward arrow. The subsequent lines show the identified peptides along
with their spectral counts in the parentheses.

age and signal peptide cleavage. An in vivo proteolytic event can be observed as a non-

tryptic peptide (assuming the proteolytic enzyme does not have the same specificity as

trypsin). However, non-tryptic peptides may also be observed due to other reasons, such

as degradation of tryptic peptides or incorrect peptide identifications. In Rodriguez et

al., 2008, we showed that the likelihood of incorrect peptide identifications can be re-

duced drastically (to less than 0.1%) by considering only doubly-confirmed cleavages

and filtering out possible degradation products [112].

By applying the same filtering approach as in Rodriguez et al., 2008 and re-

moving the cuts explained by the trypsin specificity, we obtain 365, 130 and 62 puta-

tive proteolytic sites in So, Sp and Sf respectively. To check whether some of these

sites are conserved between multiple organisms, we map them on the alignment of

orthologous protein. 31 proteolytic sites are found conserved between two or more

organisms (see Table 4.3). This is a significantly larger number of conserved sites

than expected by chance. For example, with proteomes of length ≈ 1 million amino

acids each, the expected number of sites conserved by chance between Sp and Sf is

less than (62/106) × (130/106) × 106 ≈ 0.01, but we observe 13. One may fur-

ther challenge that these cleavages may be an artifact of in-vitro peptide degradations,
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and that these peptides may be over-represented in proteins containing multiple pep-

tides. In this case, the statistical argument above must to be applied to the set of these

highly-expressed proteins rather than to all proteins. To check this, we took proteins

with 10 or more peptides (635 proteins in Sp, 671 in Sf) with total length close to

300 thousand aa in each organism, and 128 and 57 putative proteolytic sites in Sp

and Sf respectively. All 13 sites conserved between Sp and Sf belong to these highly-

expressed proteins. The expected number of sites conserved by chance in these proteins

is (128/300000)× (57/300000)× 300000 ≈ 0.02, still much smaller than the observed

13 sites. Thus we argue that the conserved sites reported here cannot be results of non-

specific degradations.

We note that many of these sites are located within peptide ladders (multiple

overlapping peptides) which also raises the possibility that these cleavage sites may be

a result of peptide degradation (see example in Figure 4.6). However, carefully look-

ing into these ladders, we see that they are more likely a union of two peptide ladders,

one coming from the proteolysed and the other from the unproteolysed protein product.

This is supported by high spectral counts for the peptides around the cleavage site in

many cases, given that one expects much lower spectral counts (usually 1) for degraded

peptides as compared to the tryptic (un-degraded) peptide in a ladder. For example, the

peptide LVNTGWTGGPHGIGK that supports the predicted cleavage site in Figure 4.6

has a spectral count of 98, even higher than the spectral counts of the covering tryptic

peptides. Based on this and the statistical evidence shown above, we expect that our

conserved cleavage sites represent in-vivo proteolytic events. Since the knowledge of

proteolytic events in bacteria is still very limited at genomic scale, we are not able to pro-

vide additional supporting information about the origin or relevance of each predicted

site individually; but we make the data available for comparison with future studies.

Note that here we used the traditional rules for trypsin specificity, allowing a cut

after arginine or lysine but not before proline. Interestingly, 5 of the 31 conserved sites

happen to be cuts between arginine and proline, indicating that these may be a result

of trypsin digestion, further supporting the conclusion in Rodriguez et al., 2008 that the

cuts after arginine and lysine followed by a proline should be considered tryptic. Other

7 sites are signal peptide cleavages also predicted by SignalP [13] providing additional
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Table 4.3: List of conserved proteolytic sites. The first column indicates the number of
organisms in which the site was observed. The next three columns tell the name of the
protein containing the site and the position (in parentheses) of the cleavage site within
the protein. The last column indicates if the site is actually a cut between arginine and
proline (denoted by R.P), or a signal peptide cleavage site.

# organisms Protein in So Protein in Sp Protein in Sf Comment
2 SO3420(20) CN32 2738(20) Signal
2 SO0162(409) CN32 3571(409)
2 CN32 2230(328) Sfri 2257(328) R.P
2 SO2402(20) CN32 2042(20)
3 SO0231(196) CN32 3759(196) Sfri 0148(196)
2 SO2328(14) CN32 1875(14)
2 SO0234(255) Sfri 0151(255)
2 SO0235(58) CN32 3755(58)
2 CN32 3753(212) Sfri 0154(212)
2 CN32 3750(37) Sfri 0157(37)
2 SO2746(19) Sfri 1464(19) Signal
2 CN32 1517(28) Sfri 2626(28)
2 SO1816(21) CN32 1510(21) Signal
2 CN32 1495(281) Sfri 2585(281)
3 SO1794(9) CN32 1490(9) Sfri 2596(10)
3 SO1638(23) CN32 1357(20) Sfri 1279(20) Signal
2 CN32 1348(47) Sfri 1270(47)
2 SO1351(202) CN32 1162(202)
3 SO3649(204) CN32 0981(204) Sfri 3087(204) R.P
3 SO0992(210) CN32 3049(210) Sfri 0583(210) R.P
3 SO0951(21) CN32 0891(21) Sfri 0664(30) Signal
2 SO0929(349) Sfri 0646(349) R.P
2 SO0781(286) CN32 3209(286)
2 SO4078(247) CN32 0594(247)
2 SO4509(52) CN32 0337(52)
2 SO0424(870) CN32 3417(870)
2 CN32 3415(149) Sfri 3775(149) R.P
2 SO0432(363) CN32 3409(363)
2 SO0432(235) CN32 3409(235)
2 SO0610(18) CN32 3274(18) Signal
2 SO3904(23) Sfri 3332(23) Signal
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support that our detected sites represent proteolytic events rather than statistical artifacts.

4.2.7 Post-translational modifications

In this section, we use the term post-translational modification (PTM) to de-

note chemical modifications of individual residues, such as phosphorylation, oxidation,

methylation etc.3 Blind PTM searches with MS-Alignment [136] or ModifiComb [117]

find all possible mass offsets (revealing potential modifications) without a priori knowl-

edge of which modifications may be present in the sample. The first applications of

these tools revealed that the world of modifications is much larger than previously

thought [144,99] and, at the same time, emphasized the still unsolved problem of finding

rare modifications. Since blind searches may yield thousands of modifications [53], the

“strength in numbers” approach [136] considers frequent modifications (e.g., offset +16

on M) as reliable and discards rare modifications as unreliable. A comparative version

of this approach would be to identify modifications that are seen in multiple samples.

After the post-processing of MS-Alignment results as described in Methods, we find

162 distinct modifications that are observed in all three species. While 74 of these rep-

resent chemical adducts that are expected in mass spectrometry experiments, 88 others

reveal biologically interesting modifications as well as other potentially important mod-

ifications that remain unknown.

The “strength in numbers” approach, while successful, leaves many rare mod-

ifications unexplained. These modifications may either represent rare and biologically

important modifications, or incorrect peptide identifications. However, it is very unlikely

to find a modification at the same site in orthologous genes in two different species just

by chance (especially if the peptides are not identical). We find 48 such modifications

that are conserved at one or more sites in the genome. For example, 48 on W is found to

be conserved at three different sites. At two of these sites, the peptides covering the or-

thologous modification position are not identical, virtually eliminating the possibility of

incorrect identifications. Most of these modifications are previously unknown, provid-

ing a refined set of candidates for experimental validations.4 While post-translational

3Mass spectrometry experiments reveal both in vivo and in vitro modifications (chemical adducts).
4Experimental validation of these modification requires chemical synthesis and remains beyond the
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modifications must be important in the metal-reducing Shewanella species, studies of

modifications in Shewanella are still in infancy [128]. Although there are currently no

reported experimental studies that can be used for verification of our comparative pro-

teogenomic predictions, we hope that our analysis provide sufficient evidence to war-

rant some experimental verifications. Note that we cannot claim the biological signifi-

cance of identified modifications; they could be either in-vivo PTMs or in-vitro chemical

adducts, although the low-frequency modifications are less likely to be conserved if they

are introduced in-vitro after digestions.5

4.3 Methods

4.3.1 Peptide Identification

Peptide identification in So was described in the earlier study [53]. The MS/MS

spectra were acquired on ion-trap mass spectrometers (LCQ, ThermoFinnigan, San Jose,

CA) using electrospray ionization. We use InsPecT [126] (July, 2007 version) to search

the spectra of each species against a database containing the six-frame translation of the

genome along with common contaminants and a decoy database of the same size. In-

spect search was run using default parameter settings (fragment ion tolerance of 0.5 Da

and parent mass tolerance of 2.5 Da). The InsPecT score threshold is selected for each

case to limit the number of identifications on the decoy database to at most 1% of the

number of identifications on the target database, to keep the false discovery rate under

control. After the filtering step, we obtained 29,160 peptides in So, 22,820 peptides in

Sf and 22,358 peptides in Sp. These include 337, 222 and 269 peptides in So, Sf, Sp

respectively that do not match the annotated proteins in these genomes. We demon-

strate that coordinated mapping of these peptides (that are usually discarded as false

identifications) represents valuable information for improving genome annotations.

scope of this study.
5We also cannot exclude the possibility that they represent a “combined” modification, i.e. two dif-

ferent modifications (let’s say with offsets X and Y) on neighboring residues that is misidentified as a
single modification (with offset X+Y). However, many of our identifications have excellent b/y ladders
indicating that such artifacts are unlikely.
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4.3.2 Analyzing late start codons

We describe an algorithm for predicting “late” start codons, i.e., the (correct)

start codons that are located downstream of the wrongly annotated start codons. While a

late start codon implies a “missing” peptide in the beginning of the protein (between

the wrongly annotated and correct start codons), such missing peptides can also be

caused by low peptide detectability [79] or may simply represent signal peptides. How-

ever, non-covered peptides (non-tryptic peptides with no upstream coverage, see [53]

for more details) in the beginning of the protein, that cannot be explained by the signal

peptide consensus sequence, point to late start codons. There are 33 cases of N-terminal-

most non-covered peptides in So, within 18 residues of the start. Conspicuously, many

of them either begin with ATG start codons or start immediately after a start codon (as

in the case of N-terminal Methionine cleavage, see [53]). If all these peptides were arti-

facts, the distribution of the codons for amino acids at positions 1 (where the observed

peptide begins) and -1 (corresponding to N-terminal Methionine cleavage) in these pep-

tides would be somewhat uniform with average 33/61 ≈ 0.5 peptides per codon. In-

stead, we see a non-uniform distribution at position 1 and -1 with a sharp peak at ATG

(standard Methionine start codon) and over-representation of other start codons (TTG

and GTG). We thus believe that all these cases cannot be artifacts (such as degradation

products or incorrect peptide identifications).

To exclude signal peptides from consideration, we consider only non-covered

peptides located within a distance of 18aa or less from the start of the protein (signal

peptides are typically longer than 18 aa). 33, 16 and 11 candidates are observed in

So, Sf and Sp respectively. Comparative analysis of the three Shewanella species is

subsequently performed to validate these candidates for late start codons.

4.3.3 Correlated peptides

Traditional MS/MS analysis is focused on identification of proteins and is less

concerned with the question of which peptides in a protein are observed or not ob-

served. In this study, we utilize the availability of proteomic data from related species

to analyze the expression of peptides at orthologous positions. In a typical mass spec-
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trometry experiment, some peptides with low detectability are always missed, resulting

in a highly non-uniform protein coverage by identified peptides [109, 79]. For example,

while most ribosomal proteins in So have high coverage (above 50%), a few have low

coverage and one of them does not have any identified peptides. Peptide detectability

may depend on several factors including protein abundance, peptide length, peptide hy-

drophobicity etc. and several groups are using large datasets to develop the ability to its

prediction [124, 88, 86].

All identified peptides in shared genes were mapped to the alignment of the

orthologs to get their coordinates with respect to the alignment. This provides a uniform

reference scale to compare the positions of observed peptides between the orthologous

proteins in the three species, as individual proteins may have different lengths. Peptides

identified by MS/MS in two species are called correlated peptides if they are observed

in the same position in the protein alignment or one of them spans another. In other

words, if one peptide is located at positions (start1, end1) in the alignment, and the other

peptide at (start2, end2), then peptides are considered correlated if start1 ≤ start2 ≤
end2 ≤ end1 or start2 ≤ start1 ≤ end1 ≤ end2.

4.4 Identification of post-translational modifications

MS-Alignment [136] was used to identify PTMs in each of the three organisms

in a blind mode, in the range from -200 to +250 Daltons. Common contaminants like

keratins were included in the protein sequence databases. A decoy database of the same

size as the actual protein database, containing shuffled sequences, was used to control

the error rates. Any hits to the decoy database are expected to be incorrect identifica-

tions. A score cut-off is chosen such that the number of PTM sites identified in the

decoy database is at most 5% of the number of identifications in the target database.

This provides a controlled PTM-site specific false-discovery rate of 5%. We note that

this is a more stringent criterion than a 5% error rate at the spectrum or peptide level,

since several peptides in the forward database may point to the same PTM-site. We

further removed all spectra that were identified in the regular Inspect search. After this

post-processing of MS-Alignment results, 9917, 7649 and 6709 PTMs were obtained
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in So, Sf and Sp respectively. We only use tryptic modified peptides in the subsequent

analysis.

4.5 Discussion

Shewanella oneidensis MR-1 is among the most carefully annotated bacterial

genomes: gene predictions in this genome were studied in two papers [95, 29] and are

being continuously improved by the Shewanella Federation http://www.shewanella.org.

Significant manual effort (that took into account comparative genomics evidence) also

went into the annotation of Shewanella frigidimarina and Shewanella putrefaciens CN-

32. We demonstrate that comparative proteogenomics approach leads to improved anno-

tations even for these well-studied genomes, let alone for genomes with only automated

annotations available. Recent proliferation of low-cost DNA sequencing techniques

will soon lead to an explosive growth in the number of sequenced genomes and will

turn manual annotations into a luxury that can be afforded for only a small fraction of

newly sequenced genomes. We therefore suggest that complementing DNA sequencing

projects by comparative proteogenomics projects can be a viable alternative approach to

improve both genomic and proteomic annotations.

Chapter 4 is, in part, a reprint of the paper “Comparative Proteogenomics: Com-

bining Mass Spectrometry and Comparative Genomics to Analyze Multiple Genomes.

N. Gupta, J. Benhamida, V. Bhargava, D. Goodman, E. Kain, I. Kerman, N. Nguyen, N.

Ollikainen, J. Rodriguez, J. Wang, M.S. Lipton, M. Romine, V. Bafna, R.D. Smith and

P.A. Pevzner (2008). Genome Research. 18:1133-1142”. The dissertation author was

the primary investigator and author of this paper.



Chapter 5

Does trypsin cut before proline?

5.1 Introduction

Trypsin is arguably the most commonly used enzyme in mass spectrometry

based proteomics to digest proteins into peptides. One of the reasons for trypsin’s suc-

cess in mass spectrometry is that it cuts exclusively after arginine and lysine [100].

However, the rules for trypsin specificity (sometimes referred to as “Keil rules” [71])

are rather involved and have long been defined in terms of the amino acids on either side

of a potential cut site. The commonly accepted rule for a trypsin cut site is [RK].[ˆP]

i.e. [RK] at position before the cut (P1 position) and [ˆP] at positions after the cut (P1’

position) forms a trypsin cleavage site. In this regular expression notation, [RK] de-

notes “either R or K”, and [ˆP] denotes “any amino acid other than P”. Similarly, it is

also believed that trypsin activity is suppressed if acidic residues are present on either

side of the cleavage site or in the case of cysteine at C-terminal. These rules are part of

the standard descriptions of commercially available trypsin from leading vendors like

Sigma-Aldrich and Promega and description of trypsin specificity at the popular Ex-

PASy (Expert Protein Analysis System) web server [http://expasy.org]. Leading peptide

identification tools like Mascot [105], X!Tandem [26], or ProteinProspector [24] incor-

porate [RK].[ˆP] rule for trypsin specificity into their search algorithms.

Using these rules as a filtering criteria, these algorithms expect to remove false

hits and, at the same time, make the searches faster by reducing the search space.

Since the number of identified peptides is affected by these criteria, it is important to

72
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have accurate rules for trypsin specificity when applied to peptide identification. Be-

low we demonstrate that enforcing the Keil rule in MS/MS database search is actually

counter-productive since it leads to losing a significant number of peptide identifica-

tions. In fact, we found that the number of peptides produced by supposedly “ille-

gitimate” [RK].[P] cleavages is higher than the number of peptides produced by le-

gitimate [RK].[C] cleavages and comparable to the number of peptides produced by

[RK].[W] cleavages. We therefore argue that for all practical purposes, the MS/MS

search engines should either remove [RK].[ˆP] filtering rule or should complement it

with [RK].[ˆC] and [RK].[ˆW] rules. We further observe that while some previously

formulated rules describing subtle variations in trypsin specificity (for example, in-

hibition of cleavage after K in CKY, DKD, CKH, CKD, and KKR as described at

ExPASy server [http://www.expasy.ch/tools/peptide-mass-doc.html] are supported by

MS/MS data, others (inhibition of cleavage after R in RRR, CRK, DRD, RRF, KRR)

are not.

From the pragmatic perspective, the improved description of trypsin specificity

leads to only a modest increase in the number of identified peptides in typical MS/MS

database searches. More importantly, the careful description of trypsin specificity is cru-

cial for emerging labeling-free approaches to studies of proteolysis. While the existing

simplistic view of trypsin specificity has been acceptable for standard MS/MS searches,

it becomes inadequate for more complex analysis, such as using MS/MS for studies of

regulatory proteolysis [131,37]. In such studies, the sample is digested with both trypsin

and a regulatory protease (e.g., a caspase) with the goal to identify the specificity of the

regulatory protease. MS/MS is then employed to determine all cleavages in the resulting

sample. Afterwards, one has to “subtract” trypsin cleavages from all found cleavages

to find the cleavages made by the regulatory protease. However, if the model of trypsin

specificity is inaccurate, these studies are likely to fail. Another area that will require

detailed knowledge of trypsin specificity is the analysis of in-vivo proteolytic events in

the sample subjected to trypsin with the goal to infer the natural proteolytic cleavages

induced by various proteases (without attempting to infer the specificities of individ-

ual proteases). We recently demonstrated that many proteolytic events can be derived

from labeling free MS/MS shotgun data [53]. For example our analysis of N-terminal
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methionine excision (NME) without any labeling in [53], showed excellent correlation

with NME cleavages revealed by labeling approaches [131] (Guy Salvesen, personal

communication). Extending these labeling free approaches to other proteolytic events

requires a very accurate description of native trypsin specificity.

Several computational and experimental methods have been used previously to

derive protease specificities [70, 130, 110, 54, 138]. In [110], positional scanning syn-

thetic peptide combinatorial libraries were used to identify the specificity of interleukin-

1 converting enzyme. A similar approach, using combinatorial fluorogenic substrate

libraries, was developed in [54]. Turk et al. [138] used pooled sequencing of peptide

library mixtures to determine specificity of six matrix-metalloproteases. Recently, at-

tempts have been made to utilize recombinant technology based methods [31], using

phage display to expose vast number of recombinant peptides to a given protease and

amplifying the peptides released through specific cleavage. More recently, Boulware et

al., 2006 [16] developed whole-cell protease activitiy assay by displaying fluorescent

reporter substrates on the surface of E. coli as N-terminus fusions. Our study comple-

ments these approaches by capitalizing on large MS/MS datasets that bypass the need

to generate combinatorial libraries.

The Keil rules for trypsin specificity were derived two decades ago based on

in vitro analysis of a relatively small sample of substrates. The follow up studies [129]

were limited to a few hundred amino acid tetramers to derive the trypsin specificity rules.

Large MS/MS datasets present an opportunity to increase the number of experimentally

confirmed cleavage sites by two-three orders of magnitude and to re-examine the Keil

rules on much larger samples obtained in vivo. However, such analysis requires caution

since erroneous peptide identifications and peptides resulting from post-digestion break-

up may give the false impression of proteolytic cleavages. Recent developments in

mass spectrometry instrumentation have enabled large scale experiments, generating

millions of spectra [141, 53, 1]. These datasets provide unprecedented opportunity to

study the specificity of the protease used for protein digestion. Given a large peptide list

(obtained without any assumptions about the enzyme specificity), we demonstrate that

it is possible to derive the specificity rules de-novo.

In this study, we specifically question the commonly accepted rule that trypsin
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does not cut after R or K if the C-terminal residue is P. We first show that a substantial

number of peptides are identified that have a cut between [RK] and P, with a strict con-

trol on the rate of false identifications. We further limit ourselves to doubly confirmed

cleavages to keep the error rate extremely low. We consider several possibilities that

may result in [RK].P cuts, whether they are results of post-digestion breakup, trypsin

digestion or digestion by a contaminant protease. We evaluate statistical evidence for

these hypotheses and all feasible alternatives indicate that cleavages before proline rep-

resent real peptides (as opposed to false peptide identifications). We thus argue that

[RK].P cleavages should be “legitimatized” in peptide identification algorithms.

Here we have suggested modifications to rules of trypsin specificity, for applica-

tion in mass-spectrometry, for one specific case: with proline at P1 position. We further

suggest that an exhaustive study is required to reconsider all possible modifications to

trypsin and other enzymes’ specificity rules, in more general fashion allowing for longer

motifs. Only recently we have begun to generate large scale datasets that can allow for

such empirical determination of these rules, complementing our existing knowledge of

enzyme specificities.

5.2 Methods

5.2.1 Doubly-Confirmed Cleavages

28,377 peptides were identified from the Shewanella oneidensis MS/MS dataset

containing 14.5 million spectra. We look at the two endpoints of all identified peptides

to analyze trypsin specificity rules. However, we note that as many as 5% of our peptide

identifications may be incorrect, thereby yielding nearly 2800 incorrect endpoints. To

avoid any bias in the specificity rules introduced by such errors, we limit analysis to

doubly-confirmed cleavages, i.e. cleavages that are supported by endpoints of at least

two peptides (see Figure 5.1). The figure shows different configurations of peptides that

may lead to a doubly confirmed cleavages.

Assuming that incorrect identifications are randomly distributed in the database,

the expected number of endpoints that are shared by two incorrect peptides is extremely

small. In this random distribution model of incorrect identifications, we note that the
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probability of seeing two adjacent peptides (sharing their C-terminal and N-terminal

endpoints respectively) is the same as the probability of seeing two overlapping peptides

both sharing their C-terminal (or both N-terminal) endpoints, and in either case, the

shared endpoint is reliably identified. Thus we obtain a set of reliable 11085 peptide

endpoints, that are shared between 21661 peptides (some peptides may have both their

termini contributing to the endpoints). On the contrary, the corresponding number of

doubly confirmed cleavages in the reverse database was found to be only 11, three orders

of magnitude lower than in the actual database (false discovery rate of less than 0.1%).

Thus, nearly all doubly confirmed cleavages represent real cleavages.

5.2.2 Post-digestion breakup

A critical challenge in using mass spectrometry derived peptides for analyzing

protease specificity lies in differentiating between the peptides produced by the protease

digestion and those produced by post-digestion breakup (degradation) of other peptides.

While the former type of peptides are representative of the proteases that were present

at the time of digestion, the post-digestion breakup products are expected to be some-

what random in their endpoints. To minimize any bias introduced by such breakup

products, we filter out any doubly confirmed endpoints that are likely to be formed by

degraded peptides. Trimming of one or two amino acids from a peptide is a commonly

observed degradation pattern [53]. Cases III and V in Figure 5.1 represent examples

of degraded peptides that may lead to a doubly confirmed endpoint, and should be re-

moved. Accordingly, we filter out a doubly confirmed endpoint if there exists another

peptide that extends beyond the endpoint by one or two amino-acids. For example, in

case III of Figure 5.1, the C-terminus of peptide QMSIVSYGEEK extends beyond the

doubly confirmed endpoint E.E by two amino acids (EK), and is thus filtered out. This

filtering step removes 1294 endpoints.

5.3 Results

We re-examine the rules for trypsin specificity by looking at the di-amino-acid

pair (di-AA) between which the peptide endpoints are located. The frequency of each
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Figure 5.1: Different types of doubly confirmed cleavages. The legend tells the type
of the endpoint: left indicates that the concerned endpoint is at the N-terminus of the
observed peptide, and right indicates the C-terminus. Numbers in the brackets indicate
the frequency of each type observed in our dataset.

di-AA is counted, and the sorted list (in decreasing order) is shown for the top 45 di-AAs

in Figure 5.2(a). This list supports Olsen et al., 2004 [100] observation that trypsin only

cuts after R and K since the only di-AA deviating from this rule is A.A. This is readily

explained by the presence of many Shewanella oneidensis signal peptides with cleavage

motif AXA.A [53]. Other less frequent cleavages (like L.A and N.S) can potentially

be explained by signal peptide with weaker recognition sites (like A.K or L.A) or still

unknown proteolytic events in Shewanella (like N.S).

Of the 400 possible pairs, if the Keil rule for trypsin specificity is correct, we

expect the list to be dominated by 38 [RK].[ˆP] pairs. However, from the pragmatic

perspective (maximizing the number of peptide identifications), Figure 5.2(a) demon-
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strates that favoring [RK].[ˆP] over [RK].[ˆC] does not make sense statistically. More-

over, the number of [RK].[W] cleavages is not dramatically larger than the number of

[RK].[P] cleavages. These rankings may be affected by the relative occurrence of dif-

ferent di-AAs in the proteome, hence we normalize the observed di-AA frequency with

its frequency in the proteome (Figure 5.2(b)). The normalized frequency of a di-AA is

same as its raw frequency multiplied by 100 and divided by its frequency of occurrence

in the confirmed proteins. Surprisingly, R.P and K.P, which are considered non-tryptic

sites, are seen ahead of all other non-tryptic sites (with the exception of A.A). This is

very unlikely to happen by chance if these di-AAs are non-tryptic like all other di-AAs,

and rather suggests that R.P and K.P are tryptic but perhaps with less propensity for

cleavage than other [RK].* sites. Therefore, we argue that since [RK].C and [RK].W

are recognized as legitimate trypsin cuts, [RK].P should also be considered valid.

There are three plausible explanations for observing [RK].P cleavages: (A) The

cut between [RK] and P is a result of the post-digestion breakup of an originally tryptic

peptide; (B) The cut between [RK] and P is induced by trypsin and (C) induced by other

contaminant protease.

Since we filter out obvious post-digestion breakup products (as described in

Methods) and still get many [RK].P cleavages, chances of (A) being the dominant source

of such cleavages is low. However, one argument in favor of (A) is that the amide bond

N-terminal to proline can be hydrolyzed upon collision induced dissociation MS/MS

or by nozzle-skimmer fragmentation [100, 61]. Depending on whether this breakup is

seen only after arginine or lysine can affect our conclusions, therefore we consider two

sub-hypothesis separately: (A1) The breakup before proline is seen irrespective of the

amino acid N-terminal to it; (A2) the breakup before proline is seen only when [RK] is

at N-terminal. If (A1) is true, the expected ratio of [RK].P and [ˆRK].P type of cuts is

roughly 2 to 18 (or slightly different if we adjust to the differences in frequency of the

20 amino acids in the proteome). However the observed number of doubly confirmed

[RK].P cuts observed in our dataset is 31, while the number of [ˆRK].P cuts is only 8.

This clearly suggests that (A1) can not be the case, and if (A) is true then (A2) must be

true, since (A1) and (A2) are mutually exclusive.

Sequencing grade modified trypsin (Promega), as described in [91] was used in
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Figure 5.2: (a) Raw and (b) Normalized frequencies of 45 most frequent di-AA pairs.
Y-axis in (a) is drawn on logarithmic scale. In (b), the normalized frequency of a di-AA
is same as its raw frequency multiplied by 100 and divided by its frequency of occur-
rence in the confirmed proteins. While this figure is largely consistent with a previous
observation [10] that the cleavage rate is higher after arginine than after lysine, it also
shows three deviations from this rule: K.Y, K.F, and K.H have higher cleavage efficiency
than R.Y, R.F, and R.H. We remark that our analysis did not support the previously sug-
gested rule [71] that trypsin cuts before proline only in the triplets WK.P and MR.P. We
observed no WK.P and MR.P cleavages but a surprisingly large proportion of AK.P and
AR.P cleavages.
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the experiments for digestion and standard laboratory protocols were followed (the same

setup has been used in multiple studies at the Pacific Northwest National Laboratories

and other places). The possibility of contamination by other proteases, either in the com-

mercially available trypsin or during the experimental procedures, cannot be completely

excluded and this might be a source of [RK].P cleavages instead of trypsin actually,

suggesting hypothesis (C). However, since the protocols used here are fairly standard,

the same cleavage patterns are likely to be seen in other experiments using trypsin for

digestion, even if some cleavages are not induced by trypsin itself. Thus we argue that

for practical applications, if there are any differences in activity of 100% pure trypsin

compared to the activity of commonly used trypsin samples in mass spectrometry, the

specificity rules based on the latter should be used in the analysis.

While we do not have sufficient evidence in this study to resolve between hy-

potheses (A2), (B) and (C), we argue that they all have the same practical implications.

Each of these cases indicates that [RK].P cuts are legitimate cleavages corresponding to

real peptides. Whether these are preferred breakups between [RK] and P (A2), trypsin

induced cleavages (B) or common contaminant protease induced (C), they represent

valid peptides like other [RK].* cuts, and should not be disregarded by the peptide iden-

tification algorithms. Either the trypsin specificity rules used in these algorithms should

be altered or separate rules should be added allowing [RK].P cuts. For the sake of sim-

plicity, we recommend the former alternative.

5.4 Discussion

Surprisingly, despite the importance of tryptic digests, there are very few MS/MS-

based rigorous statistical studies of trypsin specificity. This may be caused by the preva-

lent and deceivingly simple “after R or K unless followed by P” rule, which is a fairly

good representation of trypsin specificity for most applications. As a result, most such

studies were limited to verification of this rule rather than attempting to challenge or

modify the rule. In this work, we assume no prior knowledge of trypsin specificity

and attempt to rigorously derive it by analyzing the cleavage patterns (inferred from

large MS/MS datasets) in “discovery” rather than in “validation” mode. Our results im-
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ply that the “after R or K unless followed by P” rule is often violated. We emphasize

that our analysis refers to commercially available trypsin commonly used in MS/MS

experiments. While these products may have contaminants that introduce non-tryptic

cleavages to the sample, it is unlikely that they specifically introduce lysine-proline and

arginine-proline cleavages that we believe represent trypsin activities. We realize that

the trypsin specificity may vary between different commercial vendors and between dif-

ferent techniques for sample preparation. Our proposal to abandon the Keil rule refers

to typical vendors and to typical sample preparations rather than to an “ideally” purified

trypsin or “perfect” sample preparations.

Our approach is not limited to trypsin and can be used for analyzing specificity of

various proteases used in preparing samples for MS/MS experiments (the specificity of

some of them is poorly understood). A number of recently emerged MS/MS approaches

are based on “protease cocktails” that add a variety of proteases (like Lys-C) to the

standard tryptic digestion with the goal to improve protein identifications [145, 87, 7,

9]. These new developments often require knowledge of specificity of the proteases

commonly used in protease cocktails, and the approach described here can be helpful

for such studies.

Most MS/MS database search programs have a parameter that limits the number

of uncleaved sites. Since the cleavage before Proline is not favored but can happen, we

suggest that the search programs allow cleavages before Proline but not count them as

an uncleaved sites. Likewise, our data suggest that it may also make sense either not to

count the K.K and K.R cuts or to weigh them differently.

Finally, we remark that in this work we did not explore the use of the elution

time to analyze the post-digestion breakup (alternative A). If the peptides arise after LC

separation (from dissociation in the MS interface), the parent should be observable in the

same parent spectrum. Since two peptides will typically have greatly different elution

times it might be possible to rule out the alternative A.

Chapter 5 is, in part, a reprint of the paper “Does trypsin cut before Proline?

J. Rodriguez, N. Gupta, R.D. Smith and P.A. Pevzner (2008). Journal of Proteome

Research. 7(1):300-5”. The dissertation author was the second author and investigator

of this paper.



Chapter 6

Improving detection of proteolytic sites

6.1 Introduction

This study extends the label-free approach developed in Chapter 5 to analyze

the specificity of three other proteases used for digestion in mass spectrometry. Us-

ing multiple enzymes for digestion can be helpful for increasing the peptide-coverage

of proteins, or in applications where overlapping peptides are desirable, such as in the

construction of spectral networks and de novo protein sequencing [9, 8]. Staphylococ-

cus aureus V8 protease (also known as Glu-C), chymotrypsin and CNBr are popular

alternatives to trypsin. Here we empirically derive the known specificity rules for these

proteases and present evidence for some notable deviations from these rules, suggesting

that the reaction specificity is not as simple as previously assumed.

While Rodriguez et al. 2008 [112] introduced the doubly-confirmed cleavages to

infer reliable cleavage sites, we illustrate that it is possible to determine equally reliable

but significantly larger list of cleavage sites using MS-GeneratingFunction [75]. We

show that comparative analysis of multiple digests allows one to reliably identify N-

terminal methionine excisions, signal peptide cleavages and other putative proteolytic

events using our MS-Proteolysis software tool. MS-Proteolysis can be used to analyze

any MS/MS dataset (including ones that were not generated to study proteolysis) to

discover in vivo proteolytic events.

82
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6.2 Results

6.2.1 Peptide Identification

High-throughput LC-MS/MS experiments (see Methods) generated 1.51 mil-

lion, 1.24 million and 1.54 million spectra for Shewanella oneidensis MR-1 sample

digested with V8 protease, chymotrypsin and CNBr respectively. These spectra were

analyzed with InsPecT [126] using the default settings (fragment ion tolerance of 0.5Da

and parent mass tolerance of 2.5Da). Shewanella oneidensis MR-1 protein sequences

obtained from TIGR Comprehensive Microbial Resource, were used as the protein

database (total size ≈1.5MB). A decoy database of the same size (containing shuffled

protein sequences) was used to estimate the peptide-level False Discovery Rate (FDR)

and limit it to 5% (the spectrum-level FDR is less than 2%). 31630, 9390 and 5317

peptides were identified in V8 protease, chymotrypsin and CNBr digests respectively.

Using MS-GeneratingFunction [75] at the stringent 0.1% FDR, 19868, 6388 and

3442 peptides were identified in V8 protease, chymotrypsin and CNBr digests respec-

tively. We also analyzed the previously published Shewanella samples digested with

trypsin [53] with MS-GeneratingFunction and identified 32531 peptides at 0.1% FDR.

MS/MS spectra from trypsin digests of Saccharomyces cerevisiae proteome were

obtained from the PeptideAtlas repository [32], and analyzed using InsPecT and MS-

GeneratingFunction as in the case of Shewanella. 7488 peptides were identified at 0.1%

FDR.

6.2.2 Reliable cleavage sites

Each identified peptide reveals two cleavage sites through its end-points. A

doubly-confirmed cleavage site is defined as a position in the proteome which is an

end-point for two or more identified peptides [112]. 8635, 2146 and 866 such sites

were identified for V8 protease, chymotrypsin and CNBr digests respectively. To en-

sure that the peptides considered in this analysis are produced by the protease and not

by post-digestion breakup, a filtering step is applied before constructing the final list of

doubly-confirmed cleavages [112]. In Rodriguez et al., 2008 [112], the error rate for

doubly-confirmed sites was found to be only 0.1% when the peptide level error rate was
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5%, as in this study. Therefore, less than 9 among all doubly-confirmed cleavages in V8

protease, 2 in chymotrypsin and 1 in CNBr are expected to be false positive identifica-

tions.

A protease substrate is conventionally labeled as ..P5, P4, P3, P2, P1, P1’, P2’,

P3’, P4’, P5’.., where the cleavage is between P1 and P1’ positions. The commonly used

specificity rules for the three proteases studied here are based on the amino acid at P1

position. V8 protease is known to cleave after acidic residues D and E, CNBr is known

to cleave after M and chymotrypsin is known to cleave after aromatic amino acids Y, F

and W and partially after L. To compare these rules with the cleavages observed in our

dataset, we analyze the fraction of different amino acids at the P1 position (Table 6.1).

Figure 6.1 illustrates that the amino acids expected at the P1 position by known speci-

ficity rules are indeed highly over-represented at that position in our identified cleavages,

thus supporting the rules as well as showing that our mass spectrometry-based approach

can independently derive the specificity rules without prior knowledge. We now focus

on the disagreements between the two to see if the observed cleavages can be used to

refine the known specificity rules for these proteases.

To extend the analysis from just P1 position to a longer motif around the cleav-

age site, we constructed the sequence logos [28] for regions containing P15 to P15’

positions, shown in Figure 6.2. The figure indicates that P1 position indeed plays the

dominant role in determining the specificity of all three proteases. P1’ position reveals

a small signal, which might represent a secondary preference contingent upon P1 posi-

tion. To analyze this, we categorize each cleavage site by the pair of amino acids (di-AA)

between which the site is located (P1 and P1’ positions). The observed frequency distri-

bution for di-AAs flanking the cleavage sites can be used to better infer the specificity of

the protease used for digestion [112]. Since not all di-AAs are equally likely to occur in

the proteome, we normalize their observed frequencies by their background amino acid

frequencies in Shewanella proteome. In the following three sections, we use this data

to analyze specificity rules for each protease in detail. We will use the notation X.Y to

represent a di-AA, where X is the amino acid at P1 position and Y is the amino acid at

P1’ position (use of * for X or Y indicates that any amino acid can be present at that

position).
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6.2.3 V8 protease specificity

V8 protease is expected to cleave after D and E [59, 122], as is also observed in

our data (Figure 6.1). The figure also shows that cleavages after E are more likely than

cleavages after D, in agreement with previous observation [5]. Austen et al., 1976 [5]

claimed that the protease does not cleave between E and P, while such cleavages were

supported by Houmard et al., 1972 [59]. We find that E.P di-AA has rank 33 among

all di-AAs, well ahead of many D.* cleavages like D.Q and D.R. In fact, the relative

frequency of E.P cut is similar to the relative frequency of E.Q cut (rank 27). This

suggests that V8 protease does cleave between E and P, although the propensity of such

cleavages is lower than other E.* sites. We also notice very low propensity of E.E, D.D,

and D.E cleavages suggesting that in such cases V8 cleaves after the second amino acid.

In contrast, however, E.D cleavage is frequent.

While the standard rule suggests that the top 40 di-AA cleavage sites should be

D.* and E.*, followed by a random mix of other di-AAs, we surprisingly find 7 G.*

cleavages (G.A, G.S, G.M, G.H, G.T, G.G, G.N) among the top 50. This leads to a new

hypothesis that V8 protease also cleaves after G, although less efficiently than after D

and E. Cleavages after G have not been previously reported for this protease. We con-

structed the sequence logo to look at the sequence patterns around cleavage sites that

have G at P1 position. Figure 6.3 shows the sequences logo for these sites, and for com-

parison, the logo for sites that have E at the P1 position. While the sites with E at P1

show only modest preferences at P1’ position and none at other positions, the sites with

G at P1 position show a larger motif involving P2, P3, P1’ and P2’ positions. For exam-

ple, F and Y are over-represented at P2 position while A is over-represented at P3, P1’

and P2’. Relatively lower preference for G, as compared to D or E, at P1 position may

indicate that a longer sequence motif is needed for these sites to be recognized by the

protease. To ensure that these trends observed for G are specific to cleavages and do not

reflect a general preference of G to co-occur with certain amino acids, we constructed

the sequence logo for all positions containing G in whole Shewanella proteome. Fig-

ure 6.3c shows that there is no such bias in the proteome; therefore, the patterns observed

here are specific to the cleavages.
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6.2.4 CNBr specificity

CNBr is known to cleave after M [48], and this is also clearly visible in the

observed frequency table (Table 6.1). It appears that cleavages are less likely when the

amino acid at P1’ position is Q or T. No cleavages are observed between M and M,

which indicates that in such cases of adjacent possible cleavage sites, CNBr cleaves at

the second site. We also do not see any cleavages between M and W, and between M and

C; however, this may be because of the low frequency of these di-AAs in the proteome.

While cleavages with M at P1 position are predominant in the observed list of

di-AA pairs, we find that CNBr also shows a minor preference for R and K at P1 position

(Figure 6.1). In fact, among the ranks 15 to 55 of top di-AA pairs for this protease, 16

have K at the P1 position while 17 have R at the P1 position (while only 2 of each type

were expected by chance). This suggests that besides its primary specificity, CNBr may

also have a small propensity to cleave after the basic amino acids. Table 6.1 shows that

while R and K have some preference to be at P1 position in all proteases, the trend is

particularly strong for CNBr indicating the role of protease in these cleavages.

6.2.5 Chymotrypsin specificity

Figure 6.1 indicates that chymotrypsin cuts after a number of different amino

acids. Chymotrypsin is usually expected to cleave after F, Y and W [118]. However,

this rule is not unanimous, and some studies also include L in this list [119]. While F

and Y stand out at P1 position, we observe that the preference for H, K, L, M and R at

P1 is comparable to the preference for W (after adjusting for background distribution of

amino acids). Constructing a sequence logo for these unexpected sites (Figure 6.4(b))

indicates that positions P3, P2, P1’ and P2’ are relatively more important for specificity

at these sites than for the expected sites with F, Y or W (Figure 6.4(a)). Alanine is found

to be the most commonly present amino acid at these positions among the unexpected

sites, indicating its possible role in determining the specificity. While we cannot to-

tally discard the possibility of trypsin contamination in these samples, we argue that if

such contamination is commonplace, it is practical to include R and K in the empirical

specificity rules of chymotrypsin (and subtract the cleavages with R/K at P1), especially
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when using mass spectrometry for discovery of in vivo proteolytic events.

6.2.6 Using MS-GeneratingFunction for identifying cleavage sites

When using mass spectrometry-derived peptides to infer the specificity of pro-

teases, it is critical to have extremely low error rates at the peptide level. This becomes

even more important when the goal is to analyze the secondary (lower frequency) cleav-

age preferences, to minimize the possibility that erroneous peptide identifications are

mis-attributed as secondary cleavage sites. The notion of doubly-confirmed cleavage

sites allowed us to limit the analysis to very reliable cleavage sites [112]. However,

this approach may be too restrictive, since we do not always expect multiple peptides to

begin or end at all real cleavage sites in the proteome (particularly for low-abundance

proteins).

Below we suggest that the same level of stringency can be achieved with even

higher sensitivity, if one can control the False Positive Rate (FPR) of individual Peptide-

Spectrum matches, without restricting to doubly-confirmed cuts. Recently, Kim et al.,

2008 [75] described MS-GeneratingFunction approach that computes the FPR of in-

dividual peptide identifications, as opposed to the False Discovery Rate of all peptide

identifications computed using the standard target-decoy approaches. MS-GF, therefore,

not only controls the overall error rate but also ensures that every individual peptide

identification selected above the threshold is reliable. In particular, it identifies a much

larger number of peptides with virtually 0% FDR (i.e, no peptides identified in decoy

database for the same score threshold) than other popular tools (see [75]).

We used MS-GeneratingFunction to calculate the FPR of peptide identifications

for each of the three proteases, and thresholds were chosen to limit the FDR to 0.1% (at

par with doubly-confirmed cuts). From each identified peptide, a cleavage was inferred

at its N-terminus. We noticed that cleavages at C-termini show increased frequency of

basic amino acids (R/K) at P1 position (perhaps due to ionization bias and/or detection

preferences of existing MS/MS database search tools) and, therefore, were not included

in the current analysis1. Note that similar over-representation of carboxy-terminal R

1Note that trypsin contamination alone does not explain this bias, since in that case, even the cleavages
at N-termini of the peptides are expected to show similar preference for R/K at their P1 position, even if
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and K residues in peptide identifications has been previously reported in native peptides

even in absence of trypsin digestions [89].

Possible post-digestion breakup products of intact peptides were filtered off as

described earlier [112]. 13116, 5116 and 2698 cleavage sites were detected in V8 pro-

tease, chymotrypsin and CNBr digests respectively, a significant increase compared to

the doubly-confirmed cleavage approach.

Thus, MS-GeneratingFunction can be used to detect reliable cleavage sites with

the same stringency and accuracy as doubly-confirmed cleavages. The larger list of

cleavage sites obtained through this approach, however, can be particularly valuable for

detecting in vivo proteolytic events, as discussed in the next section.

6.2.7 Detection of putative in vivo regulatory proteolytic sites

While most of the cleavages detected in the proteome (after discarding the post-

digestion breakup products) are generally expected to be produced by the protease used

for digestion, biological samples may also contain some in vivo cleavages represent-

ing N-terminal methionine excisions, removal of signal peptides, and other regulatory

proteolytic events.By subtracting the cleavage sites explained by the specificity of the

protease (e.g., cleavages after R and K for trypsin), one can filter the list of all cleavage

sites to find candidates for such in vivo proteolytic events [53]. However, extra evi-

dence is usually required to confirm these candidate sites as regulatory proteolytic sites.

For example, Gupta et al., 2008 [51] compared candidate sites from three Shewanella

species to find a set of evolutionary conserved putative proteolytic sites. Here, we argue

that detection of a cleavage site across different digests of the same proteome can also

provide evidence to confirm in vivo proteolytic sites.

From the list of cleavage sites obtained by MS-GeneratingFunction at 0.1% error

rate, the sites explained by the protease specificity were excluded. The specificity rules

were kept broad (based on the results obtained above) to minimize the possibility of any

in vitro cleavage being considerd as an in vivo cleavage. We excluded all cleavages with

the following amino acids at P1 position: D/E/G for V8 protease, M/R/K for CNBr,

and F/Y/W/L/R/K/M/H for chymotrypsin. Besides the three proteases analyzed in this

those R/K residues are not present in the detected peptides.
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study, we also used trypsin as the fourth protease for increasing the coverage, using data

from Gupta et al., 2007 [53] (sites with R/K at P1 position were excluded [100]). 6226,

3728, 627 and 561 candidate proteolytic sites were detected in trypsin, V8 protease,

chymotrypsin and CNBr digests respectively (using only N-terminal cleavages, as dis-

cussed in the previous section). 513 of these cleavage sites were found in two or more

protease digests, including 28 that were found in three, and 3 that were present in all

digests.

One of the 3 sites found in all digests is between A23-A24 in protein SO1164

(dacA-1). This site represents signal peptide cleavage site that was also predicted by

SignalP and PrediSi [53,98]. Another site detected in all digests is between A52-K53 in

protein SO4509 (formate dehydrogenase, alpha subunit), which was previously detected

in orthologous positions in two Shewanella species [51]. The third site is between T106-

A107 in SO0417 which is annotated as putative pilin, and no prior knowledge is avail-

able for this protein. It is noteworthy that among the 513 sites present in two or more di-

gests, 111 have A at P1 position, indicating the presence of many signal peptides, which

are known to have a strong preference for A at P1 position in bacteria [53, 98].2 Simi-

larly, while one would expect false sites to be distributed uniformly across the lengths

of the proteins, the sites with A at P1 position tend to appear in the first 40 positions (as

expected for signal peptides). Given an average length of≈ 300 residues for Shewanella

proteins, we expect only 2 of the 513 sites to start at the second position of the proteins

by chance. However, we find 55 cleavage sites at this position indicating the presence

of many N-terminal methionine excisions (NME) [53]. Comparative analysis of mul-

tiple digests, therefore, is a promising approach for reliable identification of regulatory

proteolytic sites.

One can observe that many cleavage sites detected by MS-Proteolysis belong to

highly expressed proteins. For example, the translation elongation factor Tu (tufB) has

so many identified peptides (230) that they result in appearance of 21 putative cleavage

sites in tufB generated by MS-Proteolysis. However, while tufB is known to undergo

proteolysis in bacteria [47], most of these sites are likely to represent artifacts rather

than real proteolytic events. For example, various degradation variants of a highly ex-

2One would expect only ≈ 30 cleavage sites containing A at P1 by chance.
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pressed protein may be detectable via MS/MS thus resulting in an artificial appearance

of a cleavage site [121]. Since in vivo proteolytic events in such proteins are difficult

to distinguish from artifacts, MS-Proteolysis generates an additional table that excludes

all highly expressed proteins3 and reports only the remaining peptides. Figure 6.5(a)

shows the distribution of the starting positions of the detected cleavage sites and reveals

pronounced peaks at the beginning of the protein (NME) and around position 25 (sig-

nal peptides). We further removed from consideration NME sites expected from NME

specificity rules [53] and signal peptide cleavage sites predicted by SignalP and gener-

ated Figure 6.5(b) similar to Figure 6.5(a). Figure 6.5(b) still shows (a smaller) peak

around position 25 indicating that SignalP failed to correctly predict some signal pep-

tides. The peak becomes more pronounced, as shown in Figure 6.5(c), if we look at

only the most upstream sites in proteins, indicating N-terminal proteolytic events like

NME and signal peptide cleavage.4 Therefore MS-Proteolysis is a useful tool for de-

tecting the proteolytic events that software tools like SignalP miss. Since little is known

about regulatory proteolysis in Shewanella apart from NME and signal peptides (CutDB

database [63] does not report any proteolytic events in Shewanella), it remains to be

verified which of these 175 putative cleavage sites represent in vivo proteolytic events.

However, analysis of these sites reveals surprising biases that may warrant further stud-

ies. 33 out of these 175 sites have form A.* (19% of all sites) with surprisingly many

A.A (11) and A.S (6) cleavages. While some of these sites may correspond to signal

peptides missed by SignalP, others do not fit the profile of typical signal peptides and

may reflect a still unknown proteolytic activity. Other surprisingly frequent cleavages

are represented by Q.A and T.A (while these cleavages are expected to appear less than

once by chance, they appear 6 and 7 times, respectively).

We also analyzed yeast(S. cerevisiae) proteome with MS-Proteolysis using trypsin

digests. 7488 yeast peptides (identified with 0.1% FDR) yielded 11851 cleavage sites,

of which 1047 were not explained by trypsin specificity and represented candidates for

in vivo proteolytic sites. One of the tryptic cleavage sites is listed in CutDB database

3E.g., proteins that have over threshold = 50 identified peptides (threshold can be set to a different
value by the users depending on the levels of protein degradation in their samples)

4If the most upstream peptide identified in a protein (in a trypsin-digested sample, for example) starts
at a non-tryptic position, it provides evidence for an N-terminal proteolytic event in the protein [53].
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for S. cerevisiae, corresponding to the cleavage by protease Kexin between positions

R40-Y41 in the protein Exg1p [6]. Having only a small overlap between annotated pro-

teolytic sites in CutDB and sites revealed by MS/MS in yeast may be indicative of (i)

limited coverage of proteolytic sites in CutDB, (ii) the fact that some proteolytic events

are not represented in MS/MS sample since they appear only under specific conditions,

and (iii) peptide detectability limitations in MS/MS analysis [88].

6.3 Discussion

Mass spectrometry is a reliable technology to determine the specificity of en-

zymes. We had previously demonstrated its application previously for trypsin [112],

which was known to be very specific [100]. Here, we studied the specificity of V8 pro-

tease, chymotrypsin and CNBr), validated the known specificity rules, and found some

interesting deviations from these known rules for the conditions used. Knowledge of

these deviations is important for defining more accurate specificity rules for these pro-

teases, and for analysis of regulatory proteolysis using mass spectrometry. Using com-

parative analysis of multiple proteases, we identified a set of putative in vivo proteolytic

cleavage sites in Shewanella, which represent strong candidates for verification by future

experiments. While some of these sites may represent various experimental and com-

putational artifacts rather than than proteolytic cleavages, MS-Proteolysis represents the

first step towards utilization of vast MS/MS datasets for studies of proteolysis.

Reliable peptide identifications are important for accurate determination of pro-

tease specificity from mass spectrometry. While we used ion-trap mass spectrometers to

generate data for this study, we were able to keep the error rate extremely low by using

doubly-confirmed cleavages or MS-GeneratingFunction. For future studies, using high

precision instruments will be of additional help in detecting reliable cleavage sites.

Chapter 6 is, in part, a reprint of the submitted paper “Analyzing protease speci-

ficity and detecting in vivo proteolytic events using tandem mass-spectrometry. N.

Gupta, K. K. Hixson, D. E. Culley, R. D. Smith and P. A. Pevzner”. The dissertation
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Figure 6.1: Fraction of different amino acids at P1 position in the doubly-confirmed
cleavage sites, plotted for each of the three protease digests.

author was the primary investigator and author of this research.
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(a) (b)

(c)

Figure 6.2: Sequence logo for the observed cleavage sites in (a) V8 protease (b) CNBr
and (c) chymotrypsin. The P1 position is numbered -1 in the logos.
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(a) (b)

(c)

Figure 6.3: (a) Sequence logo for the observed cleavages in V8 protease digests at sites
that have G at P1 position. (b) Similar logo for sites with E at P1 position. (c) Logo for
all the 98,698 sites in Shewanella proteome that contain G (placed at -1 position in the
logo).
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(a) (b)

Figure 6.4: (a) Sequence logo for the observed cleavages in chymotrypsin digests at
sites that have F, W or Y at P1 position. (b) Similar logo for sites with H, K, L, M or R
at P1 position.
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(a)

(b)

(c)

Figure 6.5: (a) The histogram of positions in the corresponding protein sequence of the
proteolytic sites. A bin size of 5 is used in the construction of histogram, and the plot is
truncated at position 200 for brevity. (b) Similar plot as in (a), after removing the sites
at second positions of proteins (NME) and those predicted as signal peptide cleavage
sites by SignalP. (c) Similar plot as in (b), but keeping only the most upstream peptide
detected in a protein (to infer N-terminal proteolytic events like NME or signal peptide
cleavage [53]).
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Table 6.1: Frequency of different amino acids at P1 position in the double-confirmed
cleavage sites observed for the three protease digests. The last column indicates the
background frequency (count) of each amino acid in the entire Shewanella proteome.
The amino acids defining the commonly accepted specificity for V8, chymotrypsin, and
CNBr are shown in bold. The amino acids that do not contribute to known specificity
rules but have surprisingly large counts in P1 positions of the cleavage sites are shown
in italics.

Amino Acid V8 protease Chymotrypsin CNBr Background
A 215 22 30 136659
C 20 0 0 16251
D 1894 10 26 77030
E 5044 4 24 83281
F 47 431 6 57812
G 393 4 8 98698
H 23 101 3 34257
I 29 6 3 88040
K 146 209 135 75790
L 135 476 10 159360
M 39 96 448 37920
N 45 50 2 60337
P 53 0 1 59308
Q 164 48 13 71641
R 158 255 127 68627
S 90 10 8 95067
T 72 42 11 78882
V 32 6 6 98094
W 3 65 3 18888
Y 33 311 2 44781
Total 8635 2146 866 1460723



Chapter 7

Novel proteogenomic applications

7.1 Introduction

This chapter presents some specific applications of proteogenomic approaches

that have been developed in previous chapters. In particular, we demonstrate how the

approaches developed in this work for analyzing proteolytic sites may be adapted for

analysis of novel neuropeptides, for discovery of mutations and rare modifications us-

ing high-resolution MS/MS data. The last section discusses how mass spectrometry

based evidence may be useful in improving operon predictions which has proved to be

a difficult problem in the field of genomics.

7.2 Identification of neuropeptides

Neuropeptides are important regulators of several neurological and neuroen-

docrine physiological processes including pain, anxiety, behavior and metabolism. How-

ever, our knowledge of actual neuropeptide sequences and the mechanisms of their pro-

duction and regulation is limited. Neuropeptides are produced by proteolytic cleavage

from proproteins targeted for secretion and regulation of neurotransmitter functions.

To understand the proteolytic mechanisms underlying the production of neu-

ropeptides, we ask two important questions: (1) What cleavage sites participate in in-

vivo processing and what protease specificities would account for these cleavages? (2)

98
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What peptide products are produced from these in-vivo cleavage events? In this study,

we explore the use of mass spectrometry as a high-throughput approach to analyze the

neuropeptidome in human and bovine chromaffin granules.

Mass spectrometry is well suited for unrestricted analysis of neuropeptides in

neurological and neuroendocrine cells and tissues [80, 127]. This technique provides

direct evidence for peptide sequence, N- and C-terminal extensions and site-specific in-

formation on post-translational modifications without a priori knowledge of the target

peptide. Mass spectrometry also has the advantage of being a high-throughput tech-

nology capable of separation and analysis of highly complex biological samples. In

contrast, radioimmunoassay (RIA) is an antibody-based technique that requires precise

knowledge of the target sequence. RIA does not identify the molecular form of the target

peptide, rather it detects the presence of related peptide sequences that bind to the anti-

body. Therefore, N- or C-terminal extensions or modifications may not be observed by

RIA techniques. Furthermore, amino acid sequences between active neuropeptides and

intermediates are not observed by current RIA methods. This is important because the

best evidence for specific proteolysis of prohormones would be most indelibly etched

into these intervening peptide sequences.

7.2.1 Methods

Low molecular weight peptides were filtered from chromaffin granules from a

human adrenal pheochromocytoma tumor and normal bovine adrenal medulla. The hu-

man samples were analyzed under three conditions: without digestion, with trypsin

digestion and with V8 protease digestion. The samples were subjected to LC-MS/MS

analysis after solid phase extraction. Data sets were generated on an ion-trap instru-

ment as well as a high resolution QTOF instrument. The peptide sequences were iden-

tified with InsPecT against the human and bovine IPI databases. Since only a very

small fraction of proteins in these databases are expected to be present in the gran-

ules, we employed a two-stage database search, where the IPI databases were ini-

tially searched to prepare smaller databases containing the likely proteins, which were

rigourously searched again with a 1% false discovery rate threshold measured through

decoy databases.
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7.2.2 Results

Peptides identified in the undigested samples provided direct evidence for in-

vivo proteolytic cleavages (after filtering out in-vitro degradation products of peptides).

A total of 181 peptides (from 16 proteins) were identifed in human and 138 peptides

(from 22 proteins) were identified in the bovine samples. Neuropeptides are commonly

known to be flanked by dibasic amino acid motifs, as confirmed in Figure 7.1. We also

found a number of peptides that deviated from this rule, and these showed an abundance

of acidic amino acids (D and E), as shown in Figure 7.2. While the acidic amino acids

are spread out around the cleavage position in human samples, the bovine samples show

a remarkable preference for D at P1 position, alluding to a new cleavage mechanism

for these peptides. Significant evidence for other proteolytic cleavage sites was further

observed, with at least 5 representative sequences of R/K-Xn-R/K where n = 1 or 2

observed in proteins CgA, CgB and NPY alone. Amino-tripeptidyl cleavages were also

detected in this tissue.

In this study, we are not only interested in identifying proteins present in the

samples, but also identifying the individual peptides to better understand the processing

of these proteins. Each enzymatic condition, in the digestion step of sample prepara-

tion, allows identification of a certain set of peptides. The physiochemical properties

of peptide sequences make some of these peptides less detectable than others by mass

spectrometry [88]. To capture as many peptides as possible, we experimented with us-

ing multiple enzymes for digestion of the human samples. In addition to running the

low molecular weight fractions without digestion, the samples were also digested with

trypsin and V8 Protease. Figure 7.3 shows that majority of the peptides identified in

any enzyme are unique to that condition (relatively small overlaps). Thus using the

three enzymes in conjunction significantly increases the overall number of peptide iden-

tifications (from 181 in no-protease samples to 330 in total). The number of proteins

identified also increases by using multiple enzymatic conditions from 16 to 23.

Using multiple enzymes also results in better coverage of the proteins, as exem-
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(a) Human

(b) Human

(c) Bovine

(d) Bovine

-10                      -1  1                      10

N-terminus

C-terminus

N-terminus

C-terminus

-10                      -1  1                      10

-10                      -1  1                      10

-10                      -1  1                      10

Figure 7.1: Sequence logos for the N- and C- termini of the observed neuropeptides in
the undigested samples. Fifteen amino acids are shown on either side of the cleavage
site (between positions -1 and 1 in the above figures).
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(b) Human C-Terminus

0

0

(c) Bovine

(a) Human N-Terminus

N-Terminus

(d) Bovine C-Terminus

0

0

-10                     -1  1                      10

-10                     -1  1                      10

-10                      -1  1                      10

-10                      -1  1                      10

Figure 7.2: Sequence logos for the N- and C- termini of the observed neuropeptides in
the undigested samples, after removing the sites explained with dibasic amino acids.
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Trypsin V8 Protease

No Protease

2

6

4 1

7

(a) Peptide Overlap

Trypsin V8 Protease

No Protease

5

9

75 69

133

2811

2 1

(b) Protein Overlap

Figure 7.3: Overlap in the number of peptide and protein identifications in three human
samples. A total of 330 unique peptides and 23 proteins are identified in the three
experimental samples.
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Trap-trypsin cleavage sites
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Figure 7.4: Peptides identified by InsPecT in prochromogranin A at 1% FDR level,
from ion-trap data set, analyzed in three enzyme-conditions (no-enzyme, trypsin digests
and V8 protease digests) shown in distinct colors. The basic amino acids in the pro-
tein sequence are colored in light green, previously known cleavage sites are shown in
blocks, and previously known neuropeptides are shown in yellow. Hyphens at the end
of some lines indicate peptides that got split between two lines in making the figure.
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plified by Prochromogranin A (Figure 7.4). 36.4% of the protein sequence is covered

by endogenous peptides (without enzyme digestions) identified by InsPecT. However,

when peptides identified from trypsin and V8 digestions are included, the coverage in-

creases to 64.5%. Two neuropeptides - Chromostatin and Pancreastatin - were detected

only with trypsin and V8 digestions. Similar increase in coverage is seen in all pro-

teins that we analyzed. We therefore advocate the use of multiple enzymes routinely in

peptidomic studies.

Conspicuously absent in the proenkephalin data obtained from the ion-trap in-

strument were enkephalins. These are small neuropeptides comprised of the sequences

YGGFL (leu-enkephalin) and YGGFM (met-enkephalin) known to be produced from

this protein. These neuropeptides are 5 amino acids in length and provide few fragment

ions when subjected to collision-induced dissociation. While it was anticipated that low-

resolution fragmentation data from the ion-trap instrument would be insufficient to iden-

tify enkephalins effectively in complex database search analysis, high-resolution data

could surmount this issue. As evident in Figure 7.5, the high-resolution data from the

Agilent QTOF instrument proved sufficient to unambiguously identify met-enkephalin

directly from database search analysis. At a lower stringency level of 5% FDR (instead

of usual 1%), leu-enkephalin was also detected.

7.2.3 Discussion

We found a surprising number of peptide cleavages after D, particularly in bovine

samples. A few other striking observations about neuropeptides can be made from this

data: (i) We find that intervening sequences between known neuropeptides are, counter-

intuitively, seen with high peptide coverage. (ii) Evidence is seen for novel putative

neuropeptides with the canonical dibasic motif.

We also find that the inclusion of trypsin and V8 protease digestions significantly

increases the number of unique peptide identifications (different lengths and endpoints),

providing better insights into the processing of proproteins and the production of neu-

ropeptides. Our results indicate that the use of multiple enzymes for protein digestion is

a powerful, albeit under-utilized, approach for improving discovery rate in mass spec-
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Figure 7.5: Schematic display of endogenous peptides identified in preproenkephalin.
Peptides identified through ion-trap data as well as QTOF data, with InsPecT (Ins) and
SpectrumMill (SM) at 1% FDR are shown in distinct colors below the protein sequence
(in black). The basic amino acids in the protein sequence are colored in light green, pre-
viously known cleavage sites are shown in blocks, and previously known neuropeptides
are shown in yellow. Hyphens at the end of some lines indicate peptides that got split
between two lines in making the figure. *Leu-enkephalin was detected only at 5% FDR.
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trometry especially when the sequences of identified peptides are important, as opposed

to just the identity of proteins.

7.3 Using high-resolution MS/MS data for detecting mu-

tations and rare modifications

What do post-translational modifications (PTMs), chemical adducts, amino acid

mutations and sequencing errors have in common? They all can modify the mass of

a peptide analyzed by mass spectrometry, compared to the mass of its sequence in the

database. Indeed, spectral data sets obtained in almost every mass spectrometry experi-

ment contain such wide variety of information. Yet, we have been limited by the existing

computational approaches in exploiting this gold-mine. Analysis of modified peptides

has traditionally been limited to specific modifications of interest (such as phosphoryla-

tion).

Recent development of tools, such as MS-Alignment [136] and ModifiComb

[117], that enable unrestricted (blind) search for modified peptides alleviates this prob-

lem to some extent. However, these tools often reveal not only a large number of modifi-

cations, but a large variety of them, leading to a new challenge in interpreting the results.

To avoid calling computational artifacts as real modifications, the studies describing

MS-Alignment or ModifiComb used a “strength-in-numbers” approach to select reliable

modifications [136, 117]. While this approach allows one to identify common PTMs or

chemical adducts (such as oxidations or pyroglutamate), it has limitations in identifying

mutations and rare in vivo PTMs.

Assuming each amino acid can mutate into one of the other 19 amino acids,

there are 380 possible types of mutations in nature. However, the actual number of

mutations (or sequencing errors) present in any particular proteome sample analyzed

by mass spectrometry is usually smaller. Therefore, any particular type of mutation

detected in a blind search of modifications will typically be seen with a very low fre-

quency, making it difficult to distinguish it from computational artifacts. Moreover, the

mass shift corresponding to a mutation may coincide with the mass shift of a rare mod-

ification, making it difficult to decide whether a modified peptide actually represents a
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mutation or a PTM. In this study, we analyze high-accuracy spectra from Shewanella

oneidensis MR-1 and E. coli and develop a new computational approach for reliable

identification of mutations.

In the seoncd part of this study, we use comparative analysis of different bac-

terial species to identify rare PTMs. Important PTMs like diphthamide (observed on

histidine in translation elongation factor 2) might be seen only once in the entire pro-

teome, also making them difficult to distinguish from noise. In Gupta et al. 2008 [51],

we described a comparative analysis of three Shewanella species to identify conserved

rare modifications. However, the analysis had the limitation of using only very closely

related species (all Shewanella) and low-accuracy ion-trap data. To avoid making false

predictions, the analysis was limited to modifications that were seen at exactly the same

position on two or more orthologs. Here, we demonstrate that using high-accuracy data

and comparing with E. coli, a more distant relative of Shewanella, enables us to bypass

this restriction and increase the number of confident predictions.

7.3.1 Methods

The Shewanella dataset comprised 2 million high-accuracy spectra generated on

an FT-ICR instrument at Pacific Northwest National Laboratory, previously described

in Gupta et al, 2007 [53]. The spectra were derived from Shewanella oneidensis MR-1

cells grown under different various experimental conditions. E. coli dataset comprised

0.7 million high-acccuracy spectra generated in the same laboratory. The accuracy of

the parent mass for these spectra is expected to be 5ppm or less, i.e., usually less than

0.01 Dalton.

MS-Alignment [136] was used to identify peptides with unknown mass shifts

in the range of -200 to +250 Daltons. At most one modification was allowed on each

peptide. The searches, for each organism, were carried out against a database containing

the protein sequences of that organism and a decoy database of the same size containing

shuffled protein sequences.

MS-GeneratingFunction allows accurate computation of the false positive rate

(FPR) of individual peptide-spectrum matches, and has been shown to result in a better

sensitivity-specificity trade-off compared to traditional database search scoring func-
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tions for unmodified peptides [75]. Here, we extended MS-GeneratingFunction to han-

dle peptides with modifications by treating the modified residue as a new type of amino

acid, and computing the spectral probabilities in the 21 amino acid alphabet which could

be different for different peptides. While this is a gross simplification, it is acceptable

for this study where the goal of using MS-GeneratingFunction is only to filter out low

quality identifications that spuriously got high scores in database search, and we . At a

spectral probability threshold of 6× 10−10, 30009 peptides from MS-Alignment results

were selected in Shewanella and 6499 peptides were selected in E. coli at 0.005 false

discovery rate (FDR), estimated using the decoy database.

Unmodified peptides reported by MS-Alignment were removed. MS-Alignment

reports modifications as integer mass shifts. To take advantage of our high-accuracy

data, we derived accurate masses of the shifts by subtracting the sum of exact masses

of all amino acids in the peptide from the parent mass of the peptide. Positive mass

shifts that could be explained by a missing amino acid at one of the termini, or negative

mass shifts that could be explained as an extra amino acid at one of the termini, were

not included in the analysis.

We used ortholog clusters, obtained from the eggNOG database [66], to infer

ortholog-mappings between the two bacteria. The eggNOG database contains ortholo-

gous groups constructed from SmithWaterman alignments through identification of re-

ciprocal best matches and triangular linkage clustering. We selected all available COG

mappings for Shewanella and E. coli proteins from this database. Proteins belonging to

the same clusters were treated as orthologs.

7.3.2 Mutations

All modified peptides identified by MS-Alignment can be summarized in the

form of a frequency matrix [136]. Note that we use the term modification to represent

any observed mass shift on a peptide, irrespective of whether it represents an in vivo

PTM, a chemical artifact added during mass spectrometry, a mutation in the protein

sequence or a sequencing error. Each row in the matrix represents a possible mass shift

(we use a resolution of 0.01 Daltons here for analysis of mutations), in the range of -130

to +130 Daltons, enough to allow the mass difference between Gly and Trp, the lightest
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and the heaviest amino acids. Each of the 20 columns in the matrix represents an amino

acid on which the mass shift is observed. The frequency matrix, therefore, contains

260× 100× 20 = 520000 cells. The matrix is sparse, with heavy clusters usually seen

around some well-known PTMs.

Each of the 20 amino acids can possibly mutate into any of the other 19 amino

acids. Note that L and I have the same mass, therefore effective number of possible

mass shifts is 18 for any amino acid, leading to 360 possible mass shifts that correspond

to mutations. Since we assume an accuracy of 0.01 Daltons in our measurement of mass

shifts, a mutation an amino acid may fall into one of the two cells on adjacent rows for

the corresponding column. Therefore, 720 cells in the frequency matrix are designated

as putative mutation cells.

Table 7.1: Frequency of different types of cells in the frequency matrix (cell here stands
for an element of a matrix, not to be confused with the biological meaning of cell). The
second column indicates the total number of cells of different types, and the third column
indicates their total frequency. Since a row in the frequency matrix represents a 0.01
Dalton window, each Mutation+5H cell is the cell 504 rows below the corresponding
putative mutation cell (Mutation−5H cells are defined similarly in the other direction).

Cell type Number of cells Total frequency
All 520000 2053
Putative Mutation 720 103
Mutation+ 5H 720 4
Mutation− 5H 720 5

A total of 103 peptides in Shewanella map to the 720 putative mutation cells.

To determine if this number is statistically significant, we compare it against the total

frequency of arbitrarily chosen 720 cells in the frequency matrix (Table 7.1). Since

the matrix does not have a uniform distribution (smaller mass shifts are more prevalent

than large mass shifts), randomly selecting 720 cells in the matrix might not provide an

accurate control. Instead, we select the 720 cells for comparison by finding the cells that

correspond to mass shift values of rougly 5 Daltons higher than actual putative mutation

cells. Another concern might be that an artificially selected mass shift may lead to a

biochemically infeasible composition and will therefore not provide an accurate control.

To avoid this issue, we use cells shifted by 5.04 Daltons (five times the mass of Hydrogen

atom) relative to the putative mutation cells. The control cells thus chosen are labeled
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as Mutation+ 5H cells. These cells exhibit a combined frequency of 4 in Shewanella.

Similarly, Mutation− 5H cells, selected by finding cells with mass shifts 5.04 Daltons

smaller than the putative mutation cells, show a frequency of 5. Thus, we could identify

103 candidate mutations with less than 5% error rate. Similar results are seen in the E.

coli data set.A total of 112 mutations are identified, with an error rate estimated to be

between 2% and 20% from the Mutation+ 5H and Mutation− 5H cells.

We further suggest a filtering approach to select a subset of these putative muta-

tions with extremely low error rate (albeit with lower sensitivity). This filtering makes

use of the high resolution of our MS/MS data, and the observation that many mutations

are found in both directions, i.e., if a mutation from amino acid X to Y is seen with mass

shift δ, there might be also be a mutation from Y to X with mass shift −δ on a differ-

ent peptide. This occurrence of pairs of mutations, with exactly the same magnitude

of mass shifts but in opposite directions, is not expected for computational artificats or

peptides representing PTMs, especially if one uses high resolution windows (0.01 Dal-

tons) to specify mass shifts, as done here. As shown in Table 7.2, there are 27 cells in

the frequency matrix corresponding to the paired mutations in Shewanella, with a total

frequency of 37. In contrast, the cells that are 5.04 Daltons above and below these cells

do not contain any peptides, indicating that the 37 candidate mutations are almost error-

free. In contrast, no paired mutations are detected in E. coli, indicating that while the

paired-mutation requirement can be useful where very high specificity is desired, it is

not practical in all circumstances because of low sensitivity.

Table 7.2: Modified version of Table 7.1, showing only the paired mutation cells for
Shewanella, i.e., including only mutations that are seen in both directions. Equal number
of control cells, Mutation+ 5H and Mutation− 5H , are chosen for these cells.

Cell type Number of cells Total frequency
All 520000 6695
Paired Mutation 27 37
Mutation+ 5H 27 0
Mutation− 5H 27 0

In the preceding discussion, we put no restrictions on which mutations are al-

lowed. However, in nature, mutations may be more likely between selected pairs of

amino acids (such as changing from one hydrophobic amino acid into another) com-
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pared to others. PAM substitution matrices reflect the rates of mutation between pairs

of amino acids at different evoluationary time scales. The average distance between all

possible 380 pairs of amino acids in PAM2 matrix (corresponding to the shortest pos-

sible evolutionary distance, appropriate for the mutations observed here) is -16.0. In

comparison, the average distance between the pairs of amino acids in the 103 mutations

observed in Shewanella is -11.8, a lower distance indicating that more mutations were

indeed expected between these pairs of amino acids. Similarly, the average distance for

the 112 mutations detected in E. coli is -11.4, lower than the average distance in the

matrix. These results provide additional support to the detected mutations by showing

that they agree with expected rate of substitution between amino acids.

For three of the mutations identified in Shewanella, we see an ortholog in another

Shewanella species containing the substituted amino acid at the same position. For

instance, in protein fdhB-2 Shewanella oneidensis MR-1, E78 is seen with a mass shift

of -14.02, corresponding to a mutation to D. The orthologous proteins in Shewanella

putrefaciens CN-32 and in Shewanella sp. W3181 have a D at the same position.

7.3.3 Rare PTMs

1118 and 606 cells are populated in the PTM frequency matrices in Shewanella

and E. coli respectively, out of 520000 cells in each. If the same number of cells were

randomly picked from the matrices, the expected number of cells that would be common

between them is less than 2 1. In reality, however, we find that 144 of the populated cells

in the two matrices are common, indicating that these conserved cells represent reliable

modifications as opposed to computational artifacts.

We find that many of these 144 common modifications are found on orthologous

proteins in Shewanella and E. coli. Assuming that we have K ≈ 3000 orthologous

clusters (see Methods) between the two organisms, the expected number of ortholog

pairs in each cell of the frequency matrix is given by n1 × n2/K, where n1 and n2

represent the number of peptides carrying the modification in the two organisms respec-

tively. Therefore, the total expected number of ortholog pairs can be computed as the
1This estimate (1118 × 606/520000 ≈ 1.3) assumes a uniform distribution of populated cells in the

matrix for simplicity of calculation. However, the expected number would still smaller than the observed
144 even if one takes the uneven distribution into accounts.
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sum of this fraction over the 144 cells, approximately 13. The observed number of or-

thologous pairs is 130, significantly larger than the number expected by chance, further

providing evidence in favor of the reliability of these modifications. Table 7.3 provides a

summary of the modifications that were conserved in orthologous proteins.While some

of the promiment modifications in this list are well known and expected (such as ox-

idation of Methionine, or pyroglutamte), a few are surprising and may represent rare

PTMs. For example, -18.01 modification in translation elongation factor Tu seen on the

first leucine residue in peptides ELLSEYDFPGDDLPVIQSGSALK in Shewanella and

ELLSQYDFPGDDTPIVR in E. coli suggests that this modification is evolutionarily

conserved.

Table 7.3: Number of ortholog pairs on which different PTMs were found to be con-
served between Shewanella and E. coli.

Amino acid Mass shift Ortholog Pairs
E 15.99 10
E 31.99 1
H -17.03 1
I -17.03 4
K -17.03 1
L -18.01 2
L -17.03 1
L -17.02 2
M 15.99 88
M 31.99 6
P 15.99 1
Q -17.03 4
Q 15.99 2
R -17.03 1
V -17.03 1
V -17.02 1
V 15.99 2
W 15.99 1
W 31.99 1
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7.4 Improving operon predictions using mass spectrom-

etry

Operon predictions reveal co-regulated genes, a crucial step towards understand-

ing the regulatory pathways of the cell. Most methods for predicting operons rely solely

on sequence information such as the distance between consecutive genes or functional

annotations [18, 149, 115, 14, 108]. Another method previously applied for operon pre-

dictions is the use of conserved gene clusters [18,38], assuming that the genes belonging

to the same operon will remain clustered in related species. Operon prediction, however,

has proved to be a difficult problem. In their recent review of various operon prediction

algorithms, Brouwer et al., 2008 concluded that there is much room for improvement,

and suggested that experimental evidence such as from transcriptomics can be helpful in

improving the accuracy of predictions [18]. Previous efforts to detect operons using ex-

perimental evidence have been carried out with DNA microarray experiments [18]. This

involves examining the expression profiles of genes under different growth situations to

identify adjacent genes that are co-regulated.

The sequence-based methods of operon prediction are only as good as the un-

derlying models. Since these are usually trained on a few specific organisms, their

performance on other organisms is not always satisfactory. On the other hand, using

experimental evidence, such as from microarrays, for determining operons gives more

accurate results when applied to any organism, but these experiments are rather time

consuming and expensive. Therefore, accessibility to other high-throughput experimen-

tal methods, if demonstrated to be useful for operon predictions, can be valuable as a

complementary approach to microarrays.

Advances in tandem mass spectrometry (MS/MS) now allow for rapid detection

of peptides from whole proteomes [1]. Peptide identifications from MS/MS database

searches provide clues for protein expressions, and indirectly, for gene expressions.

Since an operon produces a polycistronic mRNA, its protein products are expected to

be expressed in synchrony. We compared the operons in Pyrococcus furiosus predicted

by the sequence-based and microarray-based approaches [133] with experimental data

from tandem mass spectrometry, and checked if the protein expressions determined from
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mass spectrometry are consistent with the putative operons. Though the proteome gives

only indirect evidence towards operon prediction as compared to mRNA analysis, we

show that it is possible to derive valuable evidence for confirming and correcting the

operon annotations using proteomic data.

7.4.1 Results

We present a software tool, MS-Operon, which combines proteomic informa-

tion with sequence-based operon predictions and helps in correcting operon annotations.

Analysis in MS-Operon is carried out through queries – searches that find operons with

different type of expression patterns. MS-Operon includes queries with three basic pat-

terns of protein expression within imported operon sets. After an operon set is loaded

into MS-Operon, searches can be made into the dataset to select and analyze operons

with specific types of protein expression patterns. Users can also define the maximum

and minimum operon length for the search. We denote each protein by a 0 if it is not

supported by any peptide and by 1 if at least one supporting peptide is found. Thus

an operon can be written as a string of 1s and 0s. MS-Operon conducts three basic

searches: All Expressed (all 1s), None Expressed (all 0s), and Split (a run of 1s fol-

lowed by a run of 0s, or the converse). A fourth search option allows visualization of all

operons overlaid with protein expression information.

Whole proteome MS/MS spectra were generated from the archaeon Pyrococ-

cus furiosus (spectra have been previously reported in [134]. InsPecT [126] identified

16252 peptides in the dataset at a false discovery rate of 0.01 measured using the stan-

dard target-decoy approach. We compared the mass spectrometry data with two dif-

ferent operon sets for Pyrococcus furiosus published by Tran et al., 2007 [133]. The

first set was derived from microarray data, and the second set was from a neural net-

work (NN) predictor that combined results from three different previously published

sequence-based operon prediction algorithms [133].

MS-Operon confirmed many predicted operons, as well as provided evidence for

correcting other operons in Pyrococcus furiosus. Of the 50 operons in the microarray-

predicted dataset with length 5 or more, 13 (26%) are seen in the Split search and

are possible candidates to be split into two operons or shortening of operons. At the
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Figure 7.6: Graphical illustration of a putative operon in an MS-Operon report. The
pointed arrows, drawn on the two complementary strands of the chromosome, represent
the genes in the operon and their directions (protein names are indicated above). The
coordinates of the region of the chromosome are marked by the two numbers at the
ends. The position of the operon is indicated by the red line (user assigned name for the
operon set is indicated on the left), and one flanking gene on either side of the operon is
shown on the chromosome for reference. Arrows are white when no peptide is found for
the corresponding protein, and black through red for an increasing number of supporting
peptides. In the particular case shown here, an expressed gene (NT01PF1015) within
the operon followed by two contiguous non-expressed genes indicates a possible error
in the predicted operon (see Results for details).

Figure 7.7: Operon NT01PF1489 - NT01PF1494 in Pyrococcus furiosus. Two operon
sets, viz. microarray-determined operon set (red line) and the neural network (NN)-
determined operon set (green line), were compared with mass spectrometry data. The
first three genes in the operon show high expression (evident from multiple peptides),
while the last three genes do not show any peptide, indicating that the operon might
actually be composed of two separate operons.

same time, 10 (20%) of the 50 operons are found in All Expressed and None Expressed

searches and are therefore considered validated by proteomic evidence.

Of particular interest are the “Split” cases, where a clear border is detected di-

viding the operon into two parts. 47 such cases were detected in total. For instance,

as shown in Figure 7.6, one such case is the operon consisting of genes NT01PF1015

though NT01PF1017 in the Pyrococcus furiosus genome, as predicted by the microar-

ray experiments [Tran07]. However, in mass spectrometry, no peptides are found for

the last two proteins, while the first protein is supported by 12 peptides, giving it the

binary signature “100”. Thus the proteomics data suggests splitting the operon between
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the genes NT01PF1015 and NT01PF1016. We note that the proteomics inference is

consistent with the functional annotation of these genes, as the first gene is annotated as

an ABC transporter, while the last two as “hypothetical protein”. This is an example of

how proteomics data can provide valuable information to correct sequence or expression

based operon predictions. Similarly, a pattern like “111110” or “000001” may represent

a case when an operon might need to be shortened.

Figure 7.7 presents the case of an operon containing 6 genes, NT01PF1489 -

NT01PF1494, in both the microarray-based and neural network-based operon predic-

tions. The first three genes in the operon set (Figure 7.7) have 28, 4 and 8 peptides,

respectively, identified through mass spectrometry, while the last three genes do not

have any identified peptides. This is evidence in favour of the hypothesis that these

genes might be belong to two distinct operons instead of one, the first one spanning

NT01PF1489 - NT01PF1491 and the second one spanning NT01PF1492 - NT01PF1494.

Indeed, looking the gene annotations reveals that the first three genes are annotated as

kinase/ pyrophosphorylase, while the last three genes are annotated as putative genes

with different functions, thus supporting the hypothesis.

7.4.2 Discussion

We have presented a simple framework for complementing sequence and ex-

pression based operon predictions with proteomic data derived from mass spectrometry.

We have shown that protein expression can provide evidence for validating a predicted

operon, or provide clues for correcting it by splitting or shortening at the ends. We note

that this approach can be further refined if large-scale proteomic datasets are available

under different experimental conditions, to detect sets of proteins that turn on or off

together across conditions.

The proteomic evidence may be confounded by a few factors. Firstly, we as-

sumed that proteins within the same operon are expressed together. While this is ex-

pected to be the case for mRNA transcripts, it is unclear if proteins within an operon are

also expressed equally. However, since we only use qualitative (binarized) information

about protein expression, our approach is expected to be robust against fluctuations in

the level of protein expression as long as the proteins within an expressed operon pro-
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duce even one detectable peptide. Inconsistencies between operon annotations and the

proteomic data may also stem from secondary regulation of genes on the mRNA, protein

degradation, or from the presence of non-protein-coding genes.

A second problem with using mass spectrometry is the possibility of not detect-

ing an expressed protein. A low-abundance protein, or a short protein that has only

a small number of proteotypic peptides [88] might not always get detected. However

similar concerns also apply to microarrays and other experimental techniques.

Proteogenomic and comparative proteogenomic approaches [53,51] have shown

the utility of mass spectrometry in improving genomic and proteomic annotations for

newly sequenced organisms. With increasing availability of mass spectrometry data, and

its efficacy in complementing sequence based operon predictions, we expect proteomics

to become an important contributing technology for operon prediction and validation in

the future.

7.5 Conclusion

The framework of proteogenomics developed in the previous chapters of this

thesis was applied here for new biological discoveries, ranging from discovery of novel

neuropeptides in human brain tissue, identification of mutations and rare post-translation

modifications in bacterial genomes, and finding new structures of operons in archaea.

These pilot studies demonstrate the potential of proteogenomics, and I believe that the

coming years will see unfolding of many other novel applications of mass spectrometry

that were not feasible before.

Chapter 7 includes parts from multiple manuscripts in preparation in which the

disseration author is the first or the second author. “Evaluation of Alternative Neu-

ropeptide Processing in Human and Bovine Dense-Core Secretory Granules by Mass

Spectrometry-Based Neuropeptidomics. N. Gupta, S. Bark, W.D. Lu, L. Taupenot, D.

O’Connor, P.A. Pevzner, V. Hook”, “MS-Operon: Using tandem mass spectrometry

for operon prediction and validation. L. Wich and N. Gupta” and “Discovery of muta-

tions and rare modifications using mass spectrometry. N. Gupta, R. D. Smith and P. A.

Pevzner”.



References

[1] R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Nature,
422:198–207, 2003.

[2] S. Altschul et al. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Research, 25:3389–3402, 1997.

[3] P. Alves, R.J. Arnold, M.V. Novotny, P. Radivojac, J.P. Reilly, and H. Tang. Ad-
vancement in protein inference from shotgun proteomics using peptide detectabil-
ity. Pac Symp Biocomput, pages 409–420, 2007.

[4] H. Antelmann, H. Tjalsma, B. Voigt, S. Ohlmeier, S. Bron, J.M. van Dijl, and
M. Hecker. A Proteomic View on Genome-Based Signal Peptide Predictions.
Genome Res., 11:1484–1502, 2001.

[5] B.M. Austen and E.L. Smith. Action of staphylococcal proteinase on peptides of
varying chain length and composition. Biochem Biophys Res Commun, 72:411–
417, 1976.

[6] O. Bader, Y. Krauke, and B. Hube. Processing of predicted substrates of fungal
Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae
and Pichia pastoris. BMC microbiology, 8:116, 2008.

[7] N. Bandeira, K.R. Clauser, and P.A. Pevzner. Shotgun protein sequencing: assem-
bly of peptide tandem mass spectra from mixtures of modified proteins. Molecu-
lar & Cellular Proteomics, 6:1123–1134, 2007.

[8] N. Bandeira, V. Pham, P. Pevzner, D. Arnott, and J.R. Lill. Automated de novo
protein sequencing of monoclonal antibodies. Nature Biotechnology, 26:1336–
1338, 2008.

[9] N. Bandeira, D. Tsur, A. Frank, and P.A. Pevzner. Protein identification by spec-
tral networks analysis. PNAS, 104:6140–6145, 2007.

[10] A.J. Barrett, N.D. Rawlings, and J.F. Woessner. Handbook of proteolytic enzymes.
Academic Press San Diego, 1998.

119



120

[11] S. Batzoglou, L. Pachter, J.P. Mesirov, B. Berger, and E.S. Lander. Human and
Mouse Gene Structure: Comparative Analysis and Application to Exon Predic-
tion. Genome Res, 10:950–958, 2000.

[12] A. Ben-Bassat, K. Bauer, S.Y. Chang, K. Myambo, A. Boosman, and S. Chang.
Processing of the initiation methionine from proteins: properties of the Es-
cherichia coli methionine aminopeptidase and its gene structure. J. Bacteriol.,
169:751–757, 1987.

[13] J.D. Bendtsen, H. Nielsen, G. von Heijne, and S. Brunak. Improved prediction of
signal peptides: SignalP 3.0. J Mol Biol, 340:783–795, Jul 2004.

[14] J. Bockhorst, Y. Qiu, J. Glasner, M. Liu, F. Blattner, and M. Craven. Predicting
bacterial transcription units using sequence and expression data. BIOINFOR-
MATICS, 19(1):i34–i43, 2003.

[15] K. Boonen, B. Landuyt, G. Baggerman, S.J. Husson, J. Huybrechts, and
L. Schoofs. Peptidomics: the integrated approach of MS, hyphenated techniques
and bioinformatics for neuropeptide analysis. J Sep Sci, 31:427–445, 2008.

[16] K.T. Boulware and P.S. Daugherty. Protease specificity determination by us-
ing cellular libraries of peptide substrates (CLiPS). Proceedings of the National
Academy of Sciences, 103:7583–7588, 2006.

[17] R.A. Bradshaw, A.L. Burlingame, S. Carr, and R. Aebersold. Reporting Protein
Identification Data: The next Generation of Guidelines. Mol Cell Proteomics,
5:787–8, 2006.

[18] RW Brouwer, OP Kuipers, and SA van Hijum. The relative value of operon
predictions. Briefings in bioinformatics, 9(5):367–375, 2008.

[19] N.P. Brown, C. Sander, and P. Bork. Frame: detection of genomic sequencing
errors. Bioinformatics, 14:367–371, 1998.

[20] B.J. Cargile, J.L. Bundy, and J.L. Stephenson Jr. Potential for false positive iden-
tifications from large databases through tandem mass spectrometry. Journal of
Proteome Research, 3:1082–1085, 2004.

[21] S. Carr, R. Aebersold, M. Baldwin, A. Burlingame, K. Clauser, and A. Nesvizh-
skii. The Need for Guidelines in Publication of Peptide and Protein Identification
Data: Working Group On Publication Guidelines For Peptide And Protein Iden-
tification Data. Mol Cell Proteomics, 3:531, 2004.

[22] R. Chenna, H. Sugawara, T. Koike, R. Lopez, T.J. Gibson, D.G. Higgins, and J.D.
Thompson. Multiple sequence alignment with the Clustal series of programs.
Nucleic Acids Research, 31:3497–3500, 2003.



121

[23] M. Clamp, B. Fry, M. Kamal, X. Xie, J. Cuff, M.F. Lin, M. Kellis, K. Lindblad-
Toh, and E.S. Lander. Distinguishing protein-coding and noncoding genes in the
human genome. Proceedings of the National Academy of Sciences, 104:19428–
19433, 2007.

[24] K.R. Clauser, P. Baker, A.L. Burlingame, et al. Role of accurate mass measure-
ment (±10 ppm) in protein identification strategies employing MS or MS/MS and
database searching. Anal. Chem, 71:2871–2882, 1999.

[25] J.M. Claverie. Detecting frame shifts by amino acid sequence comparison. J Mol
Biol, 234:1140–57, 1993.

[26] R. Craig and R.C. Beavis. TANDEM: matching proteins with tandem mass-
spectra. Bioinformatics, 20:1466–1467, 2004.

[27] W.J. Craigen, R.G. Cook, W.P. Tate, and C.T. Caskey. Bacterial Peptide Chain
Release Factors: Conserved Primary Structure and Possible Frameshift Regu-
lation of Release Factor 2. Proceedings of the National Academy of Sciences,
82:3616–3620, 1985.

[28] G.E. Crooks, G. Hon, J. Chandonia, and S.E. Brenner. WebLogo: a sequence
logo generator. Genome Res, 14:1188–1190, 2004.

[29] N. Daraselia, D. Dernovoy, Y. Tian, M. Borodovsky, R. Tatusov, and T. Tatusova.
Reannotation of Shewanella oneidensis Genome. OMICS: A Journal of Integra-
tive Biology, 7:171–176, 2003.

[30] P.A. Demirev, J.S. Lin, F.J. Pineda, and C. Fenselau. Bioinformatics and mass
spectrometry for microorganism identification: proteome-wide post-translational
modifications and database search algorithms for characterization of intact H.
pylori. Analytical Chemistry, 73:4566–4573, 2001.

[31] D. Deperthes. Phage display substrate: a blind method for determining protease
specificity. Biol. Chem, 383:1107–1112, 2002.

[32] F. Desiere, E. Deutsch, A. Nesvizhskii, P. Mallick, N. King, J. Eng, A. Aderem,
R. Boyle, E. Brunner, S. Donohoe, et al. Integration with the human genome
of peptide sequences obtained by high-throughput mass spectrometry. Genome
Biology, 6:R9, 2004.

[33] R.C. Edgar and O. Journals. MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Research, 32:1792–1797, 2004.

[34] D.A. Elias, M.E. Monroe, R.D. Smith, J.K. Fredrickson, and M.S. Lipton. Con-
firmation of the expression of a large set of conserved hypothetical proteins in
Shewanella oneidensis MR-1. Journal of Microbiological Methods, 66:223–233,
2006.



122

[35] Dwayne A Elias, Matthew E Monroe, Matthew J Marshall, Margaret F Romine,
Alexander S Belieav, James K Fredrickson, Gordon A Anderson, Richard D
Smith, and Mary S Lipton. Global detection and characterization of hypothet-
ical proteins in Shewanella oneidensis MR-1 using LC-MS based proteomics.
Proteomics, 5(12):3120–3130, Aug 2005.

[36] J.E. Elias and S.P. Gygi. Target-decoy search strategy for increased confidence
in large-scale protein identifications by mass spectrometry. Nat Methods, 4:207–
214, 2007.

[37] M. Enoksson, J. Li, M.M. Ivancic, J.C. Timmer, E. Wildfang, A. Eroshkin, G.S.
Salvesen, and W.A. Tao. Identification of Proteolytic Cleavage Sites by Quanti-
tative Proteomics. J. Proteome Res, 6:2850–2858, 2007.

[38] M.D. Ermolaeva, O. White, and S.L. Salzberg. Prediction of operons in microbial
genomes. Nucleic Acids Research, 29:1216–1221, 2001.

[39] M. Falth, K. Skold, M. Norrman, M. Svensson, D. Fenyo, and P.E. Andren.
SwePep, a database designed for endogenous peptides and mass spectrometry.
Mol. Cell Proteomics, 5:998–1005, 2006.

[40] P.J. Farabaugh. Programmed translational frameshifting. Microbiology and
Molecular Biology Reviews, 60:103–134, 1996.

[41] J. Feng, D.Q. Naiman, and B. Cooper. Probability model for assessing proteins
assembled from peptide sequences inferred from tandem mass spectrometry data.
Anal. Chem, 79:3901–3911, 2007.

[42] D. Fermin, B.B. Allen, T.W. Blackwell, R. Menon, M. Adamski, Y. Xu, P. Ulintz,
G.S. Omenn, and D.J. States. Novel gene and gene model detection using a whole
genome open reading frame analysis in proteomics. Genome Biol, 7:R35, 2006.

[43] G.A. Fichant and Y. Quentin. A frameshift error detection algorithm for DNA
sequencing projects. Nucleic Acids Res, 23:2900–2908, 1995.

[44] R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, E.F. Kirkness, A.R.
Kerlavage, C.J. Bult, J.F. Tomb, B.A. Dougherty, J.M. Merrick, et al. Whole-
Genome Random Sequencing and Assembly of Haemophilus Influenzae Rd. Sci-
ence, 269:496–498, 1995.

[45] A.M. Frank, N. Bandeira, Z. Shen, S. Tanner, S.P. Briggs, R.D. Smith, and P.A.
Pevzner. Clustering millions of tandem mass spectra. J. Proteome Res, 7:113–
122, 2008.

[46] F. Frottin, A. Martinez, P. Peynot, S. Mitra, R.C. Holz, e C. Giglion, and T. Mein-
nel. The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics,
5:2336–2349, 2006.



123

[47] T. Georgiou, Y.T.N. Yu, S. Ekunwe, MJ Buttner, A.M. Zuurmond, B. Kraal,
C. Kleanthous, and L. Snyder. Specific peptide-activated proteolytic cleavage
of Escherichia coli elongation factor Tu. Proceedings of the National Academy
of Sciences, 95:2891–2895, 1998.

[48] E. Gross and B. Witkop. Selective cleavage of the methionyl peptide bonds in ri-
bonuclease with cyanogen bromide1. Journal of the American Chemical Society,
83:1510–1511, 1961.

[49] L.J. Guibas and A.M. Odlyzko. String overlaps, pattern matching, and nontran-
sitive games. J. Comb. Theory, Ser. A, 30:183–208, 1981.

[50] N. Gupta, S.J. Bark, W.D. Lu, L. Taupenot, D.T. O’Connor, P.A. Pevzner, and
V. Hook. Evaluation of Alternative Neuropeptide Processing in Human and
Bovine Dense-Core Secretory Granules by Mass Spectrometry-Based Neuropep-
tidomics. Submitted.

[51] N. Gupta, J. Benhamida, V. Bhargava, D. Goodman, E. Kain, N. Nguyen, N. Ol-
likainen, J. Rodriguez, J. Wang, M.S. Lipton, M. Romine, V. Bafna, R.D. Smith,
and P.A. Pevzner. Comparative Proteogenomics: Combining Mass Spectrome-
try and Comparative Genomics to Analyze Multiple Genomes. Genome Res.,
18:1133–1142, 2008.

[52] N. Gupta and P.A. Pevzner. False discovery rates of protein identifications: a
strike against the two-peptide rule. (under revision).

[53] N. Gupta, S. Tanner, N. Jaitly, J. Adkins, M. Lipton, R. Edwards, M. Romine,
A. Osterman, V. Bafna, R. Smith, and P. Pevzner. Whole proteome analysis of
post-translational modifications: applications of mass-spectrometry for proteoge-
nomic annotation. Genome Res, 17:1362–1377, 2007.

[54] J.L. Harris, B.J. Backes, F. Leonetti, S. Mahrus, J.A. Ellman, and C.S. Craik.
Rapid and general profiling of protease specificity by using combinatorial fluoro-
genic substrate libraries. Proc Natl Acad Sci US A, 97:7754–9, 2000.

[55] J.F. Heidelberg et al. Genome sequence of the dissimilatory metal ion-reducing
bacterium Shewanella oneidensis. Nature Biotechnology, 20:1118–1123, 2002.

[56] R. Higdon and E. Kolker. A predictive model for identifying proteins by a single
peptide match. Bioinformatics, 23:277–280, 2007.

[57] K. Hiller, A. Grote, M. Scheer, R. Munch, and D. Jahn. PrediSi: prediction
of signal peptides and their cleavage positions. Nucleic Acids Res, 32:375–379,
2004.



124

[58] P H Hirel, M J Schmitter, P Dessen, G Fayat, and S Blanquet. Extent of N-
terminal methionine excision from Escherichia coli proteins is governed by the
side-chain length of the penultimate amino acid. Proc Natl Acad Sci U S A,
86(21):8247–8251, Nov 1989.

[59] J. Houmard and G.R. Drapeau. Staphylococcal Protease: A Proteolytic Enzyme
Specific for Glutamoyl Bonds. Proceedings of the National Academy of Sciences
of the United States of America, 69:3506–3509, 1972.

[60] WS Hu, RY Wang, JW Shih, and SC Lo. Identification of a putative infC-rpmI-
rplT operon flanked by long inverted repeats in Mycoplasma fermentans (incog-
nitus strain). Gene, 127(1):79–85, 1993.

[61] D.F. Hunt, J.R. Yates, J. Shabanowitz, S. Winston, and C.R. Hauer. Protein Se-
quencing by Tandem Mass Spectrometry. Proceedings of the National Academy
of Sciences, 83:6233–6237, 1986.

[62] E. Hunyadi-Gulyas and K. Medzihradszky. Factors that contribute to the com-
plexity of protein digests. DDT: targets - mass spectrometry in proteomics sup-
plement, 3(2):S3–S10, 2004.

[63] Y. Igarashi, A. Eroshkin, S. Gramatikova, K. Gramatikoff, Y. Zhang, J.W. Smith,
A.L. Osterman, and A. Godzik. CutDB: a proteolytic event database. Nucleic
Acids Research, 35:D546, 2007.

[64] J.D. Jaffe, H.C. Berg, and G.M. Church. Proteogenomic mapping as a comple-
mentary method to perform genome annotation. Proteomics, 4:59–77, 2004.

[65] J.D. Jaffe, N. Stange-Thomann, C. Smith, D. DeCaprio, S. Fisher, J. Butler,
S. Calvo, T. Elkins, M.G. FitzGerald, N. Hafez, C.D. Kodira, J. Major, S. Wang,
J. Wilkinson, R. Nicol, C. Nusbaum, B. Birren, H.C. Berg, and G.M. Church. The
complete genome and proteome of Mycoplasma mobile. Genome Res, 14:1447–
1461, 2004.

[66] L.J. Jensen, P. Julien, M. Kuhn, C. von Mering, J. Muller, T. Doerks, and P. Bork.
eggNOG: automated construction and annotation of orthologous groups of genes.
Nucleic Acids Research, 36:250, 2008.

[67] L. Kall, J.D. Canterbury, J. Weston, W.S. Noble, and M.J. MacCoss. Semi-
supervised learning for peptide identification from shotgun proteomics datasets.
Nature Methods, 4:923–926, 2007.

[68] L. Kall, J.D. Storey, M.J. MacCoss, and W.S. Noble. Assigning significance
to peptides identified by tandem mass spectrometry using decoy databases. J.
Proteome Res., 7:29–34, 2008.



125

[69] D.E. Kalume, S. Peri, R. Reddy, J. Zhong, M. Okulate, N. Kumar, and A. Pandey.
Genome annotation of Anopheles gambiae using mass spectrometry-derived data.
BMC Genomics, 2005:128, 2005.

[70] B. Keil. Proteolysis Data Bank: specificity of alpha-chymotrypsin from compu-
tation of protein cleavages. Protein Seq Data Anal, 1:13–20, 1987.

[71] B. Keil. Specificity of Proteolysis. Springer-Verlag Berlin, Germany, 1992.

[72] A. Keller, A.I. Nesvizhskii, E. Kolker, and R. Aebersold. Empirical statistical
model to estimate the accuracy of peptide identifications made by MS/MS and
database search. Anal Chem, 74:5383–5392, Oct 2002.

[73] M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E.S. Lander. Sequencing and
comparison of yeast species to identify genes and regulatory elements. Nature,
423:241–254, 2003.

[74] S. Kim, N. Gupta, N. Banderia, and P.A. Pevzner. Spectral dictionaries: Inte-
grating de novo peptide sequencing with database search of tandem mass spectra.
Mol. Cell. Proteomics, 8:53–69, 2009.

[75] S. Kim, N. Gupta, and P.A. Pevzner. Spectral Probabilities and Generating Func-
tions of Tandem Mass Spectra: a Strike Against Decoy Databases. J. Proteome
Res., 7:3354–3363, 2008.

[76] E. Kolker, A.F. Picone, M.Y. Galperin, M.F. Romine, R. Higdon, K.S. Makarova,
N. Kolker, G.A. Anderson, X. Qiu, K.J. Auberry, et al. Global profiling of She-
wanella oneidensis MR-1: Expression of hypothetical genes and improved func-
tional annotations. Proceedings of the National Academy of Sciences, 102:2099–
2104, 2005.

[77] J A Kowalak and K A Walsh. Beta-methylthio-aspartic acid: identification of a
novel posttranslational modification in ribosomal protein S12 from Escherichia
coli. Protein Sci, 5(8):1625–1632, Aug 1996.

[78] B Kuster, P Mortensen, J S Andersen, and M Mann. Mass spectrometry allows
direct identification of proteins in large genomes. Proteomics, 1(5):641–650, May
2001.

[79] B. Kuster, M. Schirle, P. Mallick, and R. Aebersold. Scoring Proteomes With
Proteotypic Peptide Probes. Nature Reviews Molecular Cell Biology, 6:577–583,
2005.

[80] L. Li and J.V. Sweedler. Peptides in the Brain: Mass Spectrometry–Based Mea-
surement Approaches and Challenges. Annu. Rev. Anal. Chem., 1:451–483, 2008.



126

[81] Y.F. Li, R.J. Arnold, Y. Li, P. Radivojac, Q. Sheng, and H. Tang. A Bayesian
Approach to Protein Inference Problem in Shotgun Proteomics. RECOMB, pages
167–180, 2008.

[82] Y.D. Liao, J.C Jeng, C.F. Wang, S.C. Wang, and S.T. Chang. Removal of N-
terminal methionine from recombinant proteins by engineered E. coli methionine
aminopeptidase. Protein Science, 13:1802–1810, 2004.

[83] AJ Link, K. Robison, and GM Church. Comparing the predicted and observed
properties of proteins encoded in the genome of Escherichia coli K-12. Elec-
trophoresis, 18(8):1259–313, 1997.

[84] S. Liu, G.T. Milne, J.G. Kuremsky, G.R. Fink, and S.H. Leppla. Identification of
the proteins required for biosynthesis of diphthamide, the target of bacterial ADP-
ribosylating toxins on translation elongation factor 2. Mol. Cell. Biol., 24:9487–
9497, 2004.

[85] D. Liveris, J.J. Schwartz, R. Geertman, and I. Schwartz. Molecular cloning
and sequencing of encoding translation initiation factor enterobacterial species.
FEMS Microbiology Letters, 112:211–216, 1993.

[86] P. Lu, C. Vogel, R. Wang, X. Yao, and E.M. Marcotte. Absolute protein expres-
sion profiling estimates the relative contributions of transcriptional and transla-
tional regulation. Nature Biotechnology, 25:117–124, 2007.

[87] M.J. MacCoss, C.C. Wu, H. Liu, R. Sadygov, and J.R. Yates III. A correlation
algorithm for the automated quantitative analysis of shotgun proteomics data.
Anal. Chem, 75:6912–21, 2003.

[88] P. Mallick, M. Schirle, SS Chen, MR Flory, H. Lee, D. Martin, J. Ranish,
B. Raught, R. Schmitt, T. Werner, et al. Computational prediction of proteotypic
peptides for quantitative proteomics. Nat Biotechnol, 25:125–131, 2007.

[89] N.P. Manes, J.K. Gustin, J. Rue, H.M. Mottaz, S.O. Purvine, A.D. Norbeck, M.E.
Monroe, J.S.D. Zimmer, T.O. Metz, J.N. Adkins, et al. Targeted Protein Degrada-
tion by Salmonella under Phagosome-mimicking Culture Conditions Investigated
Using Comparative Peptidomics. Molecular and Cellular Proteomics, 6:717–
727, 2007.

[90] M. Mann and A. Pandey. Use of mass spectrometry-derived data to annotate
nucleotide and protein sequence databases. Trends Biochem Sci, 26(1):54–61,
2001.

[91] C. Masselon, L. Pasa-Tolic, N. Tolic, G.A. Anderson, B. Bogdanov, A.N. Vilkov,
Y. Shen, R. Zhao, W.J. Qian, M.S. Lipton, et al. Targeted comparative proteomics
by liquid chromatography-tandem Fourier ion cyclotron resonance mass spec-
trometry. Anal. Chem, 77:400–406, 2005.



127

[92] C. Medigue, M. Rose, A. Viari, and A. Danchin. Detecting and Analyzing DNA
Sequencing Errors: Toward a Higher Quality of the Bacillus subtilis Genome
Sequence. Genome Res, 9:1116–1127, 1999.

[93] J.M. Moehring, T.J. Moehring, and D.E. Danley. Posttranslational modification of
elongation factor 2 in diphtheria-toxin-resistant mutants of CHO-K1 cells. Proc.
Natl. Acad. Sci. U.S.A., 77:1010–1014, 1980.

[94] R.E. Moore, M.K. Young, and T.D. Lee. Qscore: an algorithm for evaluating
SEQUEST database search results. Journal of the American Society for Mass
Spectrometry, 13:378–386, 2002.

[95] K.H. Nealson, A. Belz, and B. McKee. Breathing metals as a way of life: geobi-
ology in action. Antonie Van Leeuwenhoek, 81:215–222, 2002.

[96] A.I. Nesvizhskii and R. Aebersold. Interpretation of shotgun proteomic data: the
protein inference problem. Mol. Cell Proteomics, 4:1419–1440, 2005.

[97] A.I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold. A statistical model for
identifying proteins by tandem mass spectrometry. Anal Chem, 75:4646–4658,
2003.

[98] H. Nielsen, J. Engelbrecht, S. Brunak, and G. von Heijne. Identification of
prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
Protein Eng, 10:1–6, 1997.

[99] M.L. Nielsen, M.M. Savitski, and R.A. Zubarev. Extent of modifications in hu-
man proteome samples and their effect on dynamic range of analysis in shotgun
proteomics. Mol Cell Proteomics, 5:2384–2391, 2006.

[100] J.V. Olsen, S. Ong, and M. Mann. Trypsin cleaves exclusively C-terminal to
arginine and lysine residues. Mol Cell Proteomics, 3:608–614, 2004.

[101] K.C. Olson, J. Fenno, N. Lin, R.N. Harkins, C. Snider, WH Kohr, M.J. Ross,
D. Fodge, G. Prender, and N. Stebbing. Purified human growth hormone from E.
coli is biologically active. Nature, 293:408–411, 1981.

[102] G.S. Omenn, D.J. States, M. Adamski, T.W. Blackwell, R. Menon, H. Herm-
jakob, R. Apweiler, B.B. Haab, R.J. Simpson, J.S. Eddes, et al. Overview of the
HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborat-
ing laboratories and multiple analytical groups, generating a core dataset of 3020
proteins and a publicly-available database. Proteomics, 5:3226–3245, 2005.

[103] G. Oshiro, L.M. Wodicka, M.P. Washburn, J.R. Yates III, D.J. Lockhart, and E.A.
Winzeler. Parallel Identification of New Genes in Saccharomyces cerevisiae.
Genome Res, 12(8):1210–1220, 2002.



128

[104] Mark Paetzel, Andrew Karla, Natalie C J Strynadka, and Ross E Dalbey. Signal
peptidases. Chem Rev, 102(12):4549–4580, Dec 2002.

[105] D.N. Perkins, D.J. Pappin, D.M. Creasy, and J.S. Cottrell. Probability-based
protein identification by searching sequence databases using mass spectrometry
data. Electrophoresis, 20:3551–3567, 1999.

[106] C.L. Pon, M. Brombach, S. Thamm, and C.O. Gualerzi. Cloning and characteri-
zation of a gene cluster from Bacillus stearothermophilus comprising infC, rpmI
and rplT. Molecular Genetics and Genomics, 218(2):355–357, 1989.

[107] J. Posfai and R.J. Roberts. Finding Errors in DNA Sequences. Proceedings of the
National Academy of Sciences, 89:4698–4702, 1992.

[108] M.N. Price, K.H. Huang, E.J. Alm, and A.P. Arkin. A novel method for accu-
rate operon predictions in all sequenced prokaryotes. Nucleic Acids Research,
33:880–892, 2005.

[109] S. Purvine, A.F. Picone, and E. Kolker. Standard Mixtures for Proteome Studies.
Omics A Journal of Integrative Biology, 8:79–92, 2004.

[110] T.A. Rano, T. Timkey, E.P. Peterson, J. Rotonda, D.W. Nicholson, J.W. Becker,
K.T. Chapman, and N.A. Thornberry. A combinatorial approach for determin-
ing protease specificities: application to interleukin-1 converting enzyme (ICE).
Chem. Biol, 4:149–155, 1997.

[111] M. Remm, C.E. Storm, and E.L. Sonnhammer. Automatic clustering of orthologs
and in-paralogs from pairwise species comparisons. J. Mol. Biol, 314:1041–1052,
2001.

[112] J. Rodriguez, N. Gupta, R.D. Smith, and P.A. Pevzner. Does trypsin cut before
proline? J Proteome Res, 7:300–305, 2008.

[113] Margaret F Romine, Dwayne A Elias, Matthew E Monroe, Kenneth Auberry,
Ruihua Fang, Jim K Fredrickson, Gordon A Anderson, Richard D Smith, and
Mary S Lipton. Validation of Shewanella oneidensis MR-1 small proteins by
AMT tag-based proteome analysis. OMICS, 8(3):239–254, Fall 2004.

[114] C. Sacerdot, G. Fayat, P. Dessen, M. Springer, JA Plumbridge, M. Grunberg-
Manago, and S. Blanquet. Sequence of a 1.26-kb DNA fragment containing the
structural gene for E. coli initiation factor IF3: presence of an AUU initiator
codon. EMBO J, 1(3):311–315, 1982.

[115] H. Salgado, G. Moreno-Hagelsieb, TF Smith, and J. Collado-Vides. Operons in
Escherichia coli: Genomic analyses and predictions. Proceedings of the National
Academy of Sciences, USA, 97(12):6652–6657, 2000.



129

[116] A. Savidor, R.S. Donahoo, O. Hurtado-Gonzales, N.C. Verberkmoes, M.B. Shah,
K.H. Lamour, and W.H. McDonald. Expressed Peptide Tags: An Additional
Layer of Data for Genome Annotation. Journal of proteome research, 5:3048–
3058, 2006.

[117] M.M. Savitski, M.L. Nielsen, and R.A. Zubarev. Modificomb, a new pro-
teomic tool for mapping substoichiometric post-translational modifications, find-
ing novel types of modifications, and fingerprinting complex protein mixtures.
Mol Cell Proteomics, 5:935–948, 2006.

[118] V. Schellenberger, K. Braune, H.J. Hofmann, and H.D. Jakubke. The specificity
of chymotrypsin. Eur. J. Biochem, 199:623–636, 1991.

[119] O. Schilling and C.M. Overall. Proteome-derived, database-searchable peptide
libraries for identifying protease cleavage sites. Nature Biotechnology, 26:685–
694, 2008.

[120] G J Schoenhals, M Kihara, and R M Macnab. Translation of the flagellar
gene fliO of Salmonella typhimurium from putative tandem starts. J Bacteriol,
180(11):2936–2942, Jun 1998.

[121] Y. Shen, K.K. Hixson, N. Tolic?, D.G. Camp, S.O. Purvine, R.J. Moore, and
R.D. Smith. Mass Spectrometry Analysis of Proteome-Wide Proteolytic Post-
Translational Degradation of Proteins. Analytical Chemistry, 80:5819–5828,
2008.

[122] S.B. Sorensen, T.L. Sorensen, and K. Breddam. Fragmentation of proteins by S.
aureus strain V 8 protease: Ammonium bicarbonate strongly inhibits the enzyme
but does not improve the selectivity for glutamic acid. FEBS Letters, 294:195–
197, 1991.

[123] J K Sussman, E L Simons, and R W Simons. Escherichia coli translation initiation
factor 3 discriminates the initiation codon in vivo. Mol Microbiol, 21(2):347–360,
Jul 1996.

[124] H. Tang, R.J. Arnold, P. Alves, Z. Xun, D.E. Clemmer, M.V. Novotny, J.P. Reilly,
and P. Rejivojac. A computational approach toward label-free protein quantifica-
tion using predicted peptide detectability. Bioinformatics, 22:e481–e488, 2006.

[125] S. Tanner, Z. Shen, J. Ng, L. Florea, R. Guigo, S.P. Briggs, and V. Bafna. Improv-
ing gene annotation using peptide mass spectrometry. Genome Res, 17:231–239,
2007.

[126] S. Tanner, H. Shu, A. Frank, L. Wang, E. Zandi, M. Mumby, P.A. Pevzner, and
V. Bafna. Inspect: Fast and accurate identification of post-translationally modi-
fied peptides from tandem mass spectra. Anal. Chem., 77:4626–4639, 2005.



130

[127] A.N. Tegge, B.R. Southey, J.V. Sweedler, and S.L. Rodriguez-Zas. Comparative
analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle. Mam-
malian Genome, 19:106–120, 2008.

[128] M.R. Thompson, D.K. Thompson, and R.L. Hettich. Systematic assessment of
the benefits and caveats in mining microbial post-translational modifications from
shotgun proteomic data: the response of Shewanella oneidensis to chromate ex-
posure. J. Proteome Res., 7:648–658, 2008.

[129] R. Thomson, T.C. Hodgman, Z.R. Yang, and A.K. Doyle. Characterizing prote-
olytic cleavage site activity using bio-basis function neural networks. Bioinfor-
matics, 19:1741–1747, 2003.

[130] T.A. Thornberry, N.A.and Rano, E.P. Peterson, D.M. Rasper, T. Timkey,
M. Garcia-Calvo, V.M. Houtzager, P.A. Nordstrom, S. Roy, J.P. Vaillancourt,
et al. A combinatorial approach defines specificities of members of the caspase
family and granzyme B. Functional relationships established for key mediators of
apoptosis. J Biol Chem, 272:17907–11, 1997.

[131] J.C. Timmer, M. Enoksson, E. Wildfang, W. Zhu, Y. Igarashi, J.B. Denault,
Y. Ma, B. Dummitt, Y.H. Chang, A.E. Mast, A. Eroshkin, J. Smith, W.A. Tao,
and G.S. Salvesen. Profiling constitutive proteolytic events in vivo. Biochem. J,
407:41–48, 2007.

[132] J.W. Tobias, T.E. Shrader, G. Rocap, and A. Varshavsky. The N-end rule in
bacteria. Science, 254:1374–1377, 1991.

[133] T.T. Tran, P. Dam, Z. Su, F.L.I.I. Poole, M.W.W. Adams, G.T. Zhou, and Y. Xu.
Operon prediction in Pyrococcus furiosus. Nucleic Acids Research, 35:11–20,
2007.

[134] S.A. Trauger, E. Kalisak, J. Kalisiak, H. Morita, M.V. Weinberg, A.L. Menon,
F.L. Poole Ii, M.W.W. Adams, and G. Siuzdak. Correlating the transcrip-
tome, proteome, and metabolome in the environmental adaptation of a hyper-
thermophile. Journal of Proteome Research, 7:1027–1035, 2008.

[135] D. Tsur, S. Tanner, E. Zandi, V. Bafna, and P.A. Pevzner. Identification of post-
translational modifications via blind search of mass-spectra. Nature Biotechnol-
ogy, 23:1562–2567, 2005.

[136] D. Tsur, S. Tanner, E. Zandi, V. Bafna, and P.A. Pevzner. Identification of post-
translational modifications via blind search of mass-spectra. Nature Biotechnol-
ogy, 23:1562–2567, 2005.

[137] C. Tu, T. Tzeng, and JA Bruenn. Ribosomal Movement Impeded at a Pseudoknot
Required for Frameshifting. Proceedings of the National Academy of Sciences,
89:8636–8640, 1992.



131

[138] B.E. Turk, L.L. Huang, E.T. Piro, and L.C. Cantley. Determination of pro-
tease cleavage site motifs using mixture-based oriented peptide libraries. Nature
Biotechnology, 19:661–667, 2001.

[139] B.G. Van Ness, J.B. Howard, and J.W. Bodley. ADP-ribosylation of elongation
factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-
diphthamide and its hydrolysis products. J. Biol. Chem., 255:10710–10716, 1980.

[140] R. Wang, J.T. Prince, and E.M. Marcotte. Mass spectrometry of the M. smegmatis
proteome: Protein expression levels correlate with function, operons, and codon
bias. Genome Res, 15:1118–1126, 2005.

[141] M.P. Washburn, D. Wolters, and J.R. Yates III. Large-scale analysis of the yeast
proteome by multidimensional protein identification technology. Nature Biotech-
nology, 19:242–247, 2001.

[142] V.C. Wasinger and I. Humphery-Smith. Small genes/gene-products in Es-
cherichia coli K-12. FEMS Microbiol Lett., 169:375–382, 1998.

[143] D.B. Weatherly, J.A. Atwood, T.A. Minning, C. Cavola, R.L. Tarleton, and R. Or-
lando. A Heuristic Method for Assigning a False-discovery Rate for Protein
Identifications from Mascot Database Search Results. Molecular & Cellular Pro-
teomics, 4:762–772, 2005.

[144] P.A. Wilmarth, S. Tanner, S. Dasari, S.R. Nagalla, M.A. Riviere, V. Bafna, P.A.
Pevzner, and L.L. David. Age-Related Changes in Human Crystallins Deter-
mined from Comparative Analysis of Post-translational Modifications in Young
and Aged Lens: Does Deamidation Contribute to Crystallin Insolubility? J. Pro-
teome Res, 5:2554–2566, 2006.

[145] C.C. Wu and J.R. Yates 3rd. The application of mass spectrometry to membrane
proteomics. Nature Biotechnology, 21:262–7, 2003.

[146] X. Xie, J. Lu, E.J. Kulbokas, T.R. Golub, V. Mootha, K. Lindblad-Toh, E.S. Lan-
der, and M. Kellis. Systematic discovery of regulatory motifs in human promoters
and 3’ UTRs by comparison of several mammals. Nature, 434:338–345, 2005.

[147] C. Yang, D.A. Rodionov, X. Li, O.N. Laikova, M.S. Gelfand, O.P. Zagnitko, M.F.
Romine, A.Y. Obraztsova, K.H. Nealson, and A.L. Osterman. Comparative Ge-
nomics and Experimental Characterization of N-Acetylglucosamine Utilization
Pathway of Shewanella oneidensis. Journal of Biological Chemistry, 281:29872–
29885, 2006.

[148] J.R. Yates, J.K. Eng, and A.L. McCormack. Mining genomes: correlating tandem
mass spectra of modified and unmodified peptides to sequences in nucleotide
databases. Anal Chem, 67(18):3202–3210, Sep 1995.



132

[149] Y. Zheng, J.D. Szustakowski, L. Fortnow, R.J. Roberts, and S. Kasif. Compu-
tational Identification of Operons in Microbial Genomes. Genome Research,
12(8):1221, 2002.


	Signature Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita and Publications
	Abstract of the Dissertation
	Introduction
	Improving gene annotations
	Detecting Proteolytic cleavages
	Identification of Post-translational modifications

	Statistical significance of protein identifications
	Introduction
	Methods
	Results
	Comparison of two-peptide and single-peptide rule
	Estimating statistical significance of protein identifications using spectral dictionaries
	Accounting for the size of spectral dataset
	Using FPR of protein identifications

	Discussion

	Proteogenomics
	Introduction
	Results
	Using MS/MS data to find expressed proteins
	Using MS/MS datasets to improve gene annotations
	Using MS/MS datasets to analyze mutations and modifications

	Identification of Signal peptides and N-terminal methionine cleavages
	Proteolytic events and non-covered peptides
	Predicting N-terminal methionine cleavage
	Predicting signal peptides

	Conclusion

	Comparative Proteogenomics
	Introduction
	Results
	Multiple Shewanella Genomes
	Protein Identification
	Resolving One-Hit-Wonders
	Correcting Gene Predictions: Start Sites
	Identification of programmed frameshifts and sequencing errors
	Proteolytic events
	Post-translational modifications

	Methods
	Peptide Identification
	Analyzing late start codons
	Correlated peptides

	Identification of post-translational modifications
	Discussion

	Does trypsin cut before proline?
	Introduction
	Methods
	Doubly-Confirmed Cleavages
	Post-digestion breakup

	Results
	Discussion

	Improving detection of proteolytic sites
	Introduction
	Results
	Peptide Identification
	Reliable cleavage sites
	V8 protease specificity
	CNBr specificity
	Chymotrypsin specificity
	Using MS-GeneratingFunction for identifying cleavage sites
	Detection of putative in vivo regulatory proteolytic sites

	Discussion

	Novel proteogenomic applications
	Introduction
	Identification of neuropeptides
	Methods
	Results
	Discussion

	Using high-resolution MS/MS data for detecting mutations and rare modifications
	Methods
	Mutations
	Rare PTMs

	Improving operon predictions using mass spectrometry
	Results
	Discussion

	Conclusion

	References



