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Introduction 

To address the complex challenges facing agricultural sustainability, there is need for 

adaptive land management strategies that promote sustainable agricultural practices while 

adapting to changing environmental conditions. This research presents three possible approaches 

to managing agricultural sustainability at the landscape scale, utilizing the Sacramento Valley of 

California as a research template. This region was a native wetland habitat that was reclaimed for 

agricultural production and is now dominated by rice agriculture. The unique climate, 

topography, and soils of this region make it important habitat for endangered species as well. 

The three chapters of this dissertation discuss sustainability challenges and potential solutions for 

this research: (1) Methylmercury dynamics in the region’s water, plants and soil during a 

summer and winter season; (2) Crop rotation as a solution to managing limited water resources 

and weed pressure; (3) The drivers and consequences of converting rice fields into perennial tree 

crops. Each of these three sections is introduced in the following paragraphs. 

Methylmercury (MeHg) is an environmental toxin often produced in and exported from 

flooded soils. Little is known about MeHg in agricultural wetlands of the Sacramento Valley, 

where irrigation drain water flows into sensitive wetlands downstream. Soil, grain, and surface 

water (dissolved and particulate) MeHg and total mercury (THg) were monitored in six 

commercial rice fields across this region throughout a winter fallow season and subsequent 
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growing season. Both dissolved and particulate mercury fractions were higher in fallow season 

rice field-water. Total suspended solids and particulate mercury concentrations were positively 

correlated (r = 0.99 and 0.98 for THg and MeHg, respectively), suggesting that soil MeHg was 

suspended in the water column and potentially exported. Filtered THg and MeHg concentrations 

were positively correlated with absorbance at 254 nm (r = 0.47 and 0.58, respectively) in fallow 

season field water. In the growing season, fields with higher irrigation water MeHg 

concentrations (due to recycled water use) also had elevated in-field MeHg (r = 0.86, p < 0.05) 

and grain MeHg concentrations (r = 0.96, p < 0.01). A mass balance analysis shows that soil 

mercury pools were orders of magnitude larger than surface water or grain mercury pools; 

however, fallow season drainage and grain harvest were the primary pathways for MeHg export. 

Based on these findings, efforts to reduce mercury exports in rice field drainage water should 

focus on reducing discharge turbidity and the build-up of labile carbon pools during the fallow 

season.   

Crop rotation is one strategy for adapting agroecosystems to a framework that balances 

ecological diversity, sustainability, and food production. The Sacramento Valley, one of the most 

productive rice growing regions in the US, faces sustainability challenges including increasing 

herbicide resistant weed pressure and water use restrictions. Increasing crop diversity may help 

address these challenges, but this region has unique soil attributes including high clay content, 

salinity, alkalinity, and cemented subsurface layers, and the degree to which these soil properties 

influence crop rotation decisions remain unclear. The objectives of this study were to quantify 

the extent of crop rotation in this region, compare soil properties for rotated and continuous rice 

fields, and assess the potential for expanding rotations based on the geographic coverage of 

influential soil variables. Using satellite derived land cover data for 2007-2021, our analysis 
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shows that only ~5,000 ha are in rotation with rice, while 220,000 ha are in continuous rice 

production. This land cover information is fused with SSURGO soil maps in a spatial random 

forest model. The modeling approach indicates that fields with soil pH between 6.5 and 8, EC 

between 0.5 and 2 (ds m-1), and saturated hydraulic conductivity less than 2 (μm s-1) are more 

likely to be rotated. However, we estimate that only 11% of the continuous rice area has all three 

of these soil properties combined, suggesting soil limitations are an important constraint. To 

better understand barriers to agroecological diversification, this research highlights a method for 

evaluating land use decisions in relation to spatial variability of soil properties. 

Broader land use changes in California’s Central Valley over the past 20 years have been 

dominated by shifts from annual to periannual cropping systems. However, the Mediterranean 

climate of in this region is prone to drought conditions, which are increasing in frequency due to 

climate change. The northern portion of the Central Valley is dominated by commercial rice 

production. Periannual tree crops such as almond and walnut are increasing in this area, however 

large portions of the valley have unique wetland-basin soil attributes that make growing non-

flooded crops difficult. We use a remote sensing land cover information and spatial soil 

information to quantify the land use changes in the region, and to better understand the effect of 

soil type. Our analysis shows that almond and walnut have increased in the area over the past 15 

years, but that their area is limited (10% of total area). Crop prices, and revenue per hectare are 

3-4 fold higher for almond and walnut compared to rice, which has incentivized some growers to 

plant these crops. However, our random forest model reveals that continuous rice fields and 

periannual fields have distinct soil types. Clay is the most important variable in the model, and 

fields with high clay (>40%) are unlikely to be planted in almond or walnut. Many of the fields 

with high clay are in the interior basins of the rice growing region, where there are no perennial 
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tree crops. This research provides a framework for evaluating land use decision making to 

promote sustainable land management. 

Chapter 1: 

Influence of Irrigation Water and Soil on Annual Mercury Dynamics in 

Rice Fields 

1. Introduction 

Methylmercury (MeHg) is a toxic and bioaccumulative form of mercury produced by 

anaerobic microbes under conditions experienced in flooded soils (gilmour et al., 2013). Rice, a 

stable crop for most of the world’s population, is grown in flooded soils and can create effective 

habitats for converting inorganic mercury (thg) into mehg (windham-myers et al., 2014a). Mehg 

can pose risks to wildlife inhabiting rice fields, while mercury exported in drainage water can 

affect downstream habitats (Ackerman et al., 2009). Furthermore, MeHg that accumulates in rice 

grain is a potential health risk to humans (chan et al., 2010; horvat et al., 2003).  

Rice is grown on approximately 210,000 ha in the Central Valley of California (USDA - 

NASS, 2018). In the mountains surrounding this valley, natural sources, exacerbated by historic 

mercury mining and mercury use in gold processing has resulted in widespread mercury 

contamination (Alpers et al., 2016). These sources have resulted in elevated soil and water 

mercury concentrations in rice-producing areas including the Sacramento-San Joaquin Delta 

(hereafter referred to as the “Delta”) and the Sacramento Valley (Ackerman et al., 2014; Alpers et 

al., 2014; Bachand, et al., 2014; Eagles-Smith et al., 2014). While 95% of California’s rice 

production occurs in the Sacramento Valley, relatively few studies have focused on mercury 
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dynamics in the region. Tanner et al. (2017, 2018) studied two rice fields in this region and 

reported that soil and water mercury concentrations were considerably lower than in the Delta. 

However, these fields were still potential sources of MeHg to downstream habitats, particularly 

during the winter fallow—a finding consistent with other studies at sites where background soil 

mercury concentrations were elevated (Alpers et al., 2014; Eagles-Smith et al., 2014; Tanner et 

al., 2017).  

Sacramento Valley rice fields provide habitat and forage for wildlife and the water 

drained from these rice fields flows to the Delta, which is an environmentally sensitive region 

that is rich in biodiversity. Annually, California rice fields experience two flooded periods when 

MeHg production and export can occur (Tanner et al., 2017, 2018), during the rice growing 

season, when fields are flooded for rice production, and during the winter fallow season, when 

fields are flooded to aid in the decomposition of rice straw (Linquist et al., 2006) and provide 

waterfowl habitat. Tanner et al. (2018) only investigated mercury dynamics in two rice fields 

with considerably different mercury levels. Understanding the factors affecting mercury 

dynamics will help develop improved mitigation measures.  

One potential factor is the irrigation water mercury concentration. In Sacramento Valley 

rice fields, fresh irrigation water is typically used during the winter fallow season. However, 

during the growing season, rice field drainage water may be  recycled and reapplied (Marcos et 

al., 2018). Rice field drainage water has elevated MeHg concentrations (Tanner et al., 2017; 

Zhao et al., 2016), suggesting that irrigation with elevated MeHg concentrations can indirectly 

influence in-field MeHg processes by influencing the gradients between MeHg concentrations in 

the soil and overlying water, which drive in-field MeHg fluxes (Alpers et al., 2014; Bachand et 

al., 2014a; Bachand et al., 2014b).  
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The fractionation of mercury forms in the water is another important consideration for 

developing our understanding of mercy dynamics. Mercury can be broadly grouped into filter-

passing (considered dissolved or colloidal) and non-filter-passing which is considered 

particulate. Each of these fractions has different management implications. For example, 

dissolved and colloidal mercury have greater potential for further cycling and transport than 

particulate bound mercury (e.g. Alpers et al., 2014; Hammerschmidt & Fitzgerald, 2004; Zhang 

et al., 2012). Particulate mercury, on the other hand, may be linked directly to soil mercury 

suspended in the water column. Previous studies of mercury in this region (Tanner et al., 2017, 

2018) only considered whole water mercury (the sum of these fractions).  

Here, our objectives were to expand upon the findings of Tanner et al. (2018) in 

Sacramento Valley rice fields by 1) evaluating the distribution of mercury fractions between the 

dissolved and particulate in rice field inlets, in-field water, and outlets, throughout a winter 

fallow season and a growing season; 2) determining the impact of irrigation water and soil 

mercury concentrations on outlet water and grain mercury concentrations; and 3) quantifying 

seasonal mercury pools in surface water, soil, and grain in rice fields. 

MATERIALS AND METHODS 

Site Description 

This study was conducted during the 2017/18 fallow and 2018 growing season in six 

commercial rice fields located in California’s Sacramento Valley (Figure 1). All fields were 

managed by rice growers using standard management practices. Key soil characteristics and the 

timing of key water management events are provided in Supplemental Table S1. This region has 

a Mediterranean climate with warm, dry conditions during the growing season (April to 
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September), and cool, wet conditions during the fallow season (October to March). This region 

has two main rivers: the Sacramento River and the Feather River (Figure 1) which flow from 

north to south into the Delta south of Sacramento. Irrigation water is mostly from upstream 

dams. Canals direct surface irrigation water to fields and tailwater recycled onto the next field 

downslope. Individual rice fields (up to 80 ha) are divided into checks (sub-fields or basins) 

using levees and built-in weirs to manage water (Figure 1, inset). 

 
Figure 1. Map showing Sacramento Valley rice rice and the locations of the six fields in the 

study. The inset drawing shows an example field’s inlet and outlet, where water samples were 

collected, while the red crosses indicate typical in-field sampling sites where water, soil, and 

grain samples were collected. Sources: ESRI, USGS, USDA, California DWR. 

 

After field preparation in spring, fields are flooded and planted (water-seeding). Water 

management during the first month of the growing season varies based on weed management 

practices. From mid-season through drainage for harvest, irrigation inflow is adjusted to maintain 
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a constant level of water in the field, resulting in tailwater water drainage from outlet (referred to 

as “maintenance flow”). After harvest, rice straw is tilled into the soil, and fields are flooded for 

the fallow season. During the fallow season, growers supplement winter rains with irrigation to 

keep the fields full.  In both seasons, the three major hydrologic management periods are 

hereafter referred to as ‘flood’, ‘maintenance flow’, and ‘drain’.  

Water Measurements, Field Samples and Laboratory Analyses 

Hydrologic Field Measurements 

Irrigation volumes were measured and reported by the irrigation district managing each 

field. A digital flowmeter (McCrometer, Inc.) in a submerged inlet pipe was used in Fields 1 &2. 

In Fields 3 to 6, a SonTek FlowTracker was used every time inlet flow was adjusted, and every 

few days between adjustments. Rainfall data were obtained from the nearest weather station 

(CIMIS, 2018). 

Outflow was determined by measuring the head over the outlet weir using pressure 

transducers (Global Water Instrumentation, Model WL16) as described by Aydin et al. (2011) 

and Tanner et al. (2018). In a few cases, fields were drained rapidly using multiple outlets. In 

these cases, the volume of water exported was calculated as the change in field water height 

multiplied by the field area.  

Surface Water Sampling 

HOBO salinity loggers (Bourne, Mass., USA) were installed at the inlet of each field to 

measure the electrical conductivity (EC) of the irrigation water. Four in-field sampling sites were 

established randomly in each field (Figure 1, inset). During both seasons, inlet, in-field, and 
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outlet water was sampled during the three major hydrologic management periods described 

above. Water was only sampled at the inlets or outlets if water was flowing. During the fallow 

season, there was no inflow after the initial flood period as rain was used to maintain flooded 

conditions. During the growing season, Fields 1 and 2 were drained three days after planting and 

reflooded three days later to promote even stand establishment (Williams et al., 1990). In Fields 

3-6, there was no outflow during the first 30 days, but water levels were maintained. In-field 

samples (500 mL) were collected from the four designated locations and composited into one 

representative 2-L sample.  

All water samples were collected using trace-clean sampling techniques (USEPA, 1996). 

New polyethylene terephthalate glycol (PETG) 1-L plastic bottles were double-bagged in the 

laboratory prior to water sample collection. Prior to collecting the sample, sample  bottles were 

triple rinsed with collection site water. Samples were stored on ice in a cooler and transported to 

the lab for processing within 48 hours. Samples were vacuum-filtered through a pre-weighed 

0.3-m, pre-combusted, glass-fiber filter, with the filtrate collected into a new 125-mL PETG 

bottle. A portion of the filtered sample was put in a 20-mL glass scintillation vial for absorbance 

measurements and the remaining water sample was acidified with 0.5% solution of trace-metal-

clean HCl. The particulate sample collected on the glass-fiber filters was immediately stored on 

dry ice in a cooler then stored at -80° C until further analysis.  

Laboratory Analysis 

Filter-passing (THgf and MeHgf - referred to as “dissolved”) and non-filter-passing 

(MeHgp and THgp – referred to as “particulate”) mercury were analyzed as described by Marvin-

DiPasquale et al. (2011). MeHgp and THgp, expressed as a volumetric concentration, was 
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calculated using the mass of MeHg and THg on the filter and the volume of water filtered. THgw 

and MeHgw refer to ‘whole-water’ mercury concentrations (sum of dissolved and particulate). 

For quality assurance, field blanks and field duplicates were collected and analyzed; and 

laboratory duplicates were analyzed for quality assurance of water sample filtration and averaged 

for data analyses. Method detection and reporting limits for all analyses are in Table S2. All 

sediment and grain samples were above the reporting limits. For water samples less than the 

method detection limit, estimated values based on instrument readings were used in statistical 

analysis. 

Water partitioning coefficients (Kd) were calculated as the ratio of a sample’s particulate 

mercury concentration (ng kg-1) to its dissolved concentration (ng L-1) and expressed as L kg-1. 

Total suspended solids concentration (TSS) was calculated as the total mass of the non-filter-

passing material after filtering a defined volume of sample water through the 0.3-m filters and 

drying to constant weight at 105°C. Water absorbance (A254),  an indicator of dissolved organic 

matter (DOM) concentration (Dittman et al., 2009), was determined in filtered, non-acidified 

water samples in a Shimadzu UV-1280 spectrophotometer. 

Soil Sampling and Analysis 

Soil samples were collected at the in-field water sampling sites. For baseline soil 

characteristics, dry soil samples (~ 0-15 cm) were collected at the beginning of the study (Nov 

2017) following post-harvest tillage. Four scoops (each ~125 cm3) per site were collected from 

all four in-field locations and combined. Flooded soil samples were taken in both seasons, 

approximately two weeks after flooding from the four in-field sampling sites by taking three 

cores (5-cm-diameter) per site to a depth of 5 cm and compositing into one representative field 

sample.   
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All soil samples were placed on dry ice for transport, then stored at -80° C until analysis. 

Soil samples were analyzed for THg, MeHg, and bulk density (Marvin-DiPasquale et al., 2011). 

For THg, samples were digested with aqua regia overnight and a treatment of heated oxidation 

with BrCl (USEPA, 2002). THg concentration was quantified on a Tekran 2600 THg analyzer 

with a method detection limit of 0.2 ng g-1 dry weight. For MeHg, samples were extracted with 

25% KOH in methanol for 4 hours at 60°C and then distilled and ethylated (De Wild et al., 

2002). MeHg concentration was quantified on an automated MeHg analyzer (Brooks Rand, 

MERX unit). For quality assurance, analysis of certified reference materials, laboratory 

duplicates, and matrix spikes for MeHg and THg were conducted.  

Rice Grain Sampling and Analysis 

 Rice grain samples were collected during the 2018 harvest from the four in-field 

sampling locations and composited into one representative field sample. Samples were 

transported on dry ice and then stored at -80°C. Unmilled rice grains were lyophilized, ground to 

a fine powder using a coffee grinder cleaned with ethanol between samples (Drennan-Harris et 

al., 2013), then analyzed for MeHg using the same method as for soil (Marvin-DiPasquale et al., 

2014). For THg analysis, the samples were digested with concentrated HNO3 (Kleckner, 

Kakouros, & Robin Stewart, 2017) and then quantified following BrCl addition (Marvin-

DiPasquale et al., 2011).  

Mercury Load Calculations 

 Loads were computed for mercury in irrigation water imports and drainage exports by 

integrating the products of mercury fraction concentration and flow rate data, then normalized to 

field area. Net loads were calculated as the difference between irrigation imports and drainage 

exports.  
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Mercury pools in grain and soil were calculated as the product of the substrate mass and its 

mercury concentration. Soil pool sizes were calculated based on the mass of soil (0-5 cm depth) 

and the average annual soil bulk density of each field. The grain yield was provided by the 

farmer.  

Statistical Analyses 

Flooded soil data were analyzed to examine differences in soil THg and MeHg between the 

fallow and growing seasons. Water data were analyzed to compare seasons, hydrologic 

management regimes (flood, maintenance flow, drain), and sampling locations (inlet, in-field, 

outlet). To account for potential autocorrelation of repeated sampling, data were analyzed using 

linear mixed effects regression modeling where ‘field’ was included in the model as a random 

intercept. To compute relevant comparisons within each model, orthogonal contrasts were used. 

To compare mercury pools, paired t-tests were used. 

Statistical analyses were conducted using R Studio (version 2022.7.1.554; R Studio Team, 

2022). Tests with p < 0.05 were considered significant. Model assumptions of normalcy and 

homogeneity of variance were checked using standard diagnostic plots and, where appropriate, 

natural log transformations of response variables were used. R packages ‘lme4’ (Bates et al., 

2015), ‘lmerTest’ (Kuznetsova et al., 2017), and ‘effects’ (Fox & Weisberg, 2018) were used to 

fit and test linear mixed effects regressions and to calculate model parameters. R packages 

‘emmeans’ (Searle et al., 2022) was used to compute orthogonal contrasts using model means. R 

package ‘stats’ (R Core Team, 2019) was used for paired t-tests. 

During both seasons, MeHgf, MeHgw, THgf, and THgw, % MeHg, and TSS were similar 

between in-field and outlet samples (Table S3); therefore, in-field and outlet samples were 

grouped into a new category called ‘field-water’ for analysis. 
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Pearson correlation analysis was used to determine the relationships among grain, soil, inlet 

water and in-field water THg and MeHg (seasonal average) using R libraries corrplot (Wei and 

Simko, 2021) and caret (Kuhn, 2022). To directly compare water and grain mercury 

concentrations within fields, “in-field” water mercury rather than “field-water mercury” was 

used for the correlation analysis. 

RESULTS 

Surface Water Mercury 

Inlet THgf  and THgw were similar between seasons, averaging 0.40 and 1.39 ng L-1, 

respectively (Figure 2). During the fallow season, mean field-water THgf and THgw  were higher 

than inlet concentrations and were 3- and 8-fold higher, respectively, than during the growing 

season. During the flood period (Figure 3) and fallow season (Figure S1), field-water THgf was 

4-fold and 7-fold higher, respectively, than its respective inlet samples. 

Mean inlet MeHgf and MeHgw were similar between seasons (Figure 2). However, during 

the growing season, inlet MeHgf  and %MeHgf were 1.67 and 2.40-fold higher, respectively, 

during maintenance flow than flood periods (Figure 3). Field-water MeHgf and MeHgw were 6- 

and 7-fold higher in the fallow season than in the growing season, respectively. 

 Overall, in-field water mercury was more highly correlated with inlet mercury than soil 

mercury (Table 1) in both seasons. Furthermore, grain mercury fractions were also more strongly 

correlated with in-field water MeHgw than soil mercury.  
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Figure 2. Seasonal average water Hg concentrations of rice field inlets (left) and field water (right; 

average of in-field and outlet samples) for the following: MeHgf, THgf, MeHgw, and THgw. 

Different letters above each box denote a significant difference (p < 0.05) between sites during 

each season (lower case letters are used for comparison of fallow season sites, and upper-case 

letters for the growing season). Asterisks denote significant differences across seasons at each site 

(* indicates p < 0.1, ** indicates p < 0.05). Middle lines indicate median values, lower and upper 

hinges correspond to first and third quartiles, the whiskers extend no further than 1.5 times the 

interquartile range, and dots are outliers. Mean values and number of observations, in brackets, are 

reported above each box. 
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Figure 3. Inlet (left) and field water (right; average of in-field and outlet samples) MeHgf and THgf 

concentrations and % MeHgf (top to bottom) throughout the 2018 growing season, from flood to 

drain periods. Different letters indicate significant differences (p < 0.05) between management 

periods at each sampling location, uppercase letters are used for inlets, lower cases for field water. 

Average growing season inlet and field-water concentrations were not significantly different from 

each other. Middle lines indicate median values, lower and upper hinges correspond to first and 

third quartiles, the whiskers extend no further than 1.5 times the interquartile range, and dots are 

outliers. Mean values and number of observations, in brackets, are reported above each box. 

 

Inlet EC ranged from 2.0 to 430 µS cm-1 during the fallow season, and from 3.4 to 760 

µS cm-1 during the growing season (Figure S2). Fields 1, 2, and 3 had elevated inlet EC (over 

190 µS cm-1) before and during maintenance flow, indicating the use of recycled water (Marcos 

et al., 2018; discussion with irrigation managers). Growing season inlet EC was positively 

correlated with inlet MeHgf and MeHgw (Table S4). Mean inlet MeHgw was highest during 

maintenance flows (Figure S3).  
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 TSS was positively correlated with MeHgp and THgp in both seasons (Figure 4). The 

relationship was strongest between TSS and THgp during the fallow season. Mean TSS was an 

order of magnitude higher during the fallow season than during the growing season.  

 
Figure 4. Natural logarithm (ln) transformed TSS and THgp (left) and MeHgp (right) 

concentrations during the fallow (black circles) and growing (grey triangles) seasons for all 

fields at all sampling locations. 

 

During the fallow season, A254 was positively correlated with MeHgf  and THgf  (Figure 

5).  Field-water A254 was about 2.2-fold higher during the fallow season compared to the growing 

season (Figure S5). Field-water A254 was also 7- and 4-fold greater than inlet A254 in the fallow 

and growing seasons, respectively.  
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Figure 5. Natural log-transformed absorbance (A254) and THgf (left) and MeHgf (right) during the 

fallow season for all fields at all sampling locations. Tukey t-test results between A254 and THgf 

and MeHgf during the growing season were not statistically significant (p = 0.25 and 0.21 and R2 

= 0.028 and 0.033 for THgf and MeHgf, respectively), and were not included in this figure.  

 

Inlet Kd was similar across seasons (Figure S6). Field-water KdMeHg and KdTHg values were 

significantly lower in the fallow season than in the growing season, indicating relatively more 

MeHg and THg in the dissolved than in the particulate phase. In the fallow season, KdMeHg and 

KdTHg were negatively correlated with A254 (Figure S7). 

Mercury Pools and Fluxes 

 

Surface Water Mercury Loads 

Irrigation imports of MeHgw and THgw were 5- and 2-fold greater, respectively, in the 

growing season than in the fallow season (Table 1). However, drainage exports of MeHgw and 

THgw were 10-fold greater in the fallow season than in the growing season. In the fallow season, 

all fields acted as THgw and MeHgw sources (Table S5). In the growing season, all fields acted as 

MeHgw sinks, but were variable with respect to THgw . Annually, all fields were sources of 

THgw, and five of the six fields were sources of MeHgw. 
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Table 1. Pearson correlation coefficients of field averages for 2018 growing season grain vs. soil 

and grain vs. in-field water samples; 2017-18 fallow in-field water vs. soil, and in-field water vs. 

inlet water; 2018 growing season in-field water vs soil, and in-field water vs inlet water samples. 

The f and w subscripts refer to filtered and whole water samples, respectively. Only correlations 

with p < 0.05 are shown (ns = not significant). Coefficient values greater than 0.90 are 

significant at p < 0.01. 
 ------ Soil ------- --------------- In-field Water --------------- 

Grain: MeHg THg MeHgw MeHgf THgw THgf 

MeHg ns ns 0.86 ns ns ns 

THg ns 0.86 0.82 ns ns ns 

       

 ------ Soil ------- --------------- Inlet Water --------------- 

Fallow season in-

field water: 

MeHg THg MeHgw MeHgf THgw THgf 

MeHgw 0.91 ns 0.95 ns 0.98 0.82 

MeHgf ns ns ns ns ns ns 

THgw 0.95 ns ns 0.82 0.82 ns 

THgf 0.86 ns 0.91 0.84 0.92 ns 

       

 ------ Soil ------- --------------- Inlet Water --------------- 

Growing season 

in-field water: 

MeHg THg MeHgw MeHgf THgw THgf 

MeHgw ns ns 0.96 ns 0.84 0.94 

MeHgf ns ns 0.92 ns ns 0.98 

THgw 0.94 0.84 ns ns ns ns 

THgf ns ns ns ns 0.83 ns 

 

Rice Grain Mercury 

MeHg in rough rice grain ranged from 0.24 to 0.91 ng g-1 while THg ranged from 0.90 to 

1.66 ng g-1 (Table S7. Rice grain harvest resulted in the removal of 750 ng MeHg m-2 and 1600 

ng THg m-2 (Table 2). THg removed in harvested grain was comparable to THg in drain period 

exports (Tables 2 and 3). However, MeHg removed in harvested grain was 19-fold greater than 

growing season MeHgw exports (P = 0.02), and about 2-fold greater than gross annual drainage 

exports of MeHgw (p = 0.02).  

Table 2: Area normalized MeHgw and THgw (mean  standard error) seasonal and annual loads 

across fields (annual MeHgw and THgw loads are the sum of growing and fallow seasons).  
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Surface Water Parameter MeHgw (ng m-2) THgw (ng m-2) 

 Irrigation imports 22.7  13.0 614  493 

Fallow Season: Drainage exports 303  274 6,150  8,730 

 Exports – imports 280  266 5,540  8,630 

 Irrigation imports 120  114 1,420  1,740 

Growing Season: Drainage exports 39.1  52.0 765  833 

 Exports -  imports -83.6  105 -652  1,590 

 Irrigation imports 145  123 2,030  2,160 

Annual: Drainage exports 342  305 6,920  9,480 

 Exports – imports 197  245 4,890  8,300 

 

Table 3. Average grain (2018 growing season) and soil (0-5cm) MeHg and THg (fallow and 

growing season) area normalized mass. 

 MeHg THg 

Grain (ng m-2) 750  550 1,660  600 

Soil: fallow season (mg m-2) 0.039  0.023 2.94  0.904 

Soil: growing season (mg m-2) 0.027  0.013 3.07  0.835 

 

Soil Mercury 

Flooded soil THg and MeHg ranged from 20.7 to 55.7 ng g-1 and 0.07 to 1.1 ng g-1, 

respectively (Table S7). Mean soil MeHg was 1.5-fold higher in the fallow season than in the 

growing season, while soil THg was similar in both seasons (Table 3). Mean surface soil 

%MeHg increased from 0.82% in the fallow season to 1.30% in the growing season. 

 Area-normalized THg pools (top 5 cm) ranged from 1.67 mg m-2 to 4.16 mg m-2 across 

all fields, with no significant differences between seasons (Table S6). Mean MeHg pools were 

0.027 mg m-2 during the growing season and 0.039 mg m-2 during the fallow season (Table 3), a 

1.5-fold increase from the growing to the fallow season. Mean MeHg in the fallow season was 

110-fold greater than gross annual MeHgw drainage exports, while mean THg in the fallow 

season was 420-fold greater than gross annual THgw drainage exports (Tables 2 and 3). 
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DISCUSSION 

Surface Water Mercury Concentrations Were Highest in the Fallow Season  

For field-water, all four mercury fractions were significantly higher in the fallow season 

than in the growing season (Figure 2), confirming results from previous studies in the Delta and 

Sacramento Valley (Alpers et al., 2014; Tanner et al., 2017, 2018). Reasons for this include, first, 

growing season plant transpiration drives dissolved surface water THg and MeHg into the sub-

surface where it is taken up by plants or accumulates in the soil (Bachand et al. 2014)while 

fallow season t transpiration and diffusion of mercury from the soil into water ceases (Rudd et 

al., 1983; Bachand et al., 2014). 

Second, soil MeHg (Table 3) and TSS were higher (Figure 4) in the fallow season than in 

the growing season. Particulate mercury fractions (THgp and MeHgp) were positively correlated 

with TSS (Figure 4). In the fallow season, high TSS caused by wind-driven turbulence across 

open water likewise suspended mercury exported during drainage.  

Third, in-field decomposition of rice straw and production of organic compounds contribute 

to field-water mercury dynamics. Windham-Myers et al. (2014a) showed that over 86% of the 

rice straw mercury was released after 28-days in laboratory incubations. Furthermore, field-water 

A254 was elevated compared to inlets in both seasons (Figure S6), but 2-fold higher in the fallow 

season (Figure 5). Higher A254 suggests more in-field production of organic compounds (Krupa 

et al., 2012) which tend to bind mercury (Weishaar et al., 2003). Filtered mercury was positively 

correlated with A254 during the fallow season but not the growing season (Figure 5). 

Furthermore, low field-water Kd during the fallow season (Figure S6) indicates that mercury 

fractions were partitioned more in the dissolved phase. The negative correlation between Kd and 
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A254 (Figure S7) supports previous findings that dissolved aromatic organic structures affect Hg 

partitioning between the dissolved and particulate phases (Babiarz et al., 1998; Dittman et al., 

2009, 2010). Greater concentrations of organic compounds and filtered mercury during the 

fallow season are likely due to decomposing rice straw in fallow rice fields, decreased 

photodegradation of DOM, and diffusion of DOM from soil (Ruark et al. 2010; Katoh et al. 

2005; Whindam-Myers et al., 2014; Bachand et al., 2014a,b). 

Irrigation Source Water Mercury Affects In-Field Water and Grain Mercury 

In-field MeHg presents a health risk to organisms that inhabit rice fields (Elphick, 2000; 

Henery et al., 2010; Holmes et al., 2021), and downstream ecosystems (Alpers et al., 2016; 

Rudd, 1995). In-field water mercury in both seasons was more strongly correlated with inlet 

irrigation water mercury than with soil mercury, and these relationships were positive (Table 1). 

In contrast, studies in the Delta, with higher background soil mercury concentrations, found that 

irrigation and in-field MeHg were inversely related (Alpers et al., 2014; Bachand et al., 2014ab). 

They hypothesized that irrigation water, already high in MeHg, reduced the diffusion rate of 

MeHg from the soil, contributing to the loss of MeHg from the water column via particle 

settling, advection into the soil via transpiration, MeHg photodegradation, and microbial 

degradation of MeHg. Our findings, suggest two alternative hypotheses: (1) irrigation water 

MeHg concentration may directly influence in-field MeHg concentrations; and (2) recycled 

irrigation water had higher DOC (fields using recycled irrigation water had 1.9-fold higher inlet 

A254; P = 0.01) which facilitates the flux of THg and MeHg from the soil to the in-field water 

(Bachand et al., 2014).  

Mercury in rice grain is also a human health concern, and grain mercury concentrations 

have been shown to be correlated with soil mercury concentrations (Horvat et al., 2003; Zhang et 
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al., 2010). While they were correlated in this study, grain mercury concentrations were also 

correlated with in-field water MeHgw (Table 1). This may be due to the relatively low 

background soil mercury concentrations in our study.  

The main driver of variation in inlet water MeHg concentration in our study was the use 

of recycled irrigation water, primarily during maintenance periods (Figure 3; Table S4). Fields 

with elevated inlet EC (indicating recycled water use), had higher inlet MeHg and in-field 

MeHg. Recycling irrigation water is more common during drought years. With more droughts 

being forecasted (Mann & Gleick, 2015), increased use of recycled irrigation water is likely to 

increase MeHg in this system.  

System Mercury Pools 

The level of mercury in rice grain was among the lowest published values (Rothenberg et 

al., 2014). Rice grain MeHg concentrations (Table S7) were comparable to those reported by 

Tanner et al. (2018) for the Sacramento Valley (0.16 to 0.70 ng g-1) but lower than reported for 

the Delta (4.2 ± 0.6 ng g−1) (Windham-Myers et al., 2014b) or in China near gold mines (> 100 

ng g-1) (Qiu et al., 2008). 

Plant mercury also represents a significant pool in the system. MeHg in rice grain was 

double surface water annual MeHgw exports (Table 2,3). While rice straw mercury was not 

determined, Tanner et al., (2018) found that rice straw had 62% lower MeHg, but 5- to 8-fold 

higher THg than grain. Assuming similar values for this study, straw THg and MeHg masses 

were comparable to the annual drainage exports (Table 2).  

Soil THg concentrations (Table S7) were similar to those reported by Tanner et al. (2018), 

and background soils elsewhere in the US (Obrist et al., 2016) and China (Rothenberg et al., 
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2014). However, soil THg concentrations were 6- to 15-fold lower than rice fields in the Delta 

(Marvin-DiPasquale et al., 2014) and orders of magnitude lower than rice growing areas near 

mercury mines in China (up to 49,000 ng g-1) (Rothenberg et al., 2012). 

Surface soils were the largest pool of mercury, consistent with Tanner et al (2018). Soil 

MeHg pools were 110-fold greater than annual MeHgw drainage exports and 50-fold greater than 

grain MeHg pools (Tables 2 & 3).      

Fields Are Sources Of Mercury in Fallow Season and Sinks During Growing season 

Seasonal mercury surface water loads this study (Table 2) confirm previous findings 

(Bachand et al., 2014; Tanner et al., 2018) that rice fields are net exporters of mercury during the 

fallow season and sinks during the growing season. Fields were net sources of mercury during 

the fallow season because of the combined factors of higher field-water concentrations and more 

drainage than during the growing season. On an annual basis, rice fields were sources of 

mercury, although there was variability among fields (Table S5). Similarly, previous studies have 

reported that some fields were MeHg sinks (Eagles-Smith et al., 2014; Tanner et al., 2018) and 

others were sources (Bachand et al., 2014; Tanner et al., 2018). These data suggest that rice fields 

in this region are not likely to become contaminated by accumulating mercury. Efforts to reduce 

mercury loads from rice fields should focus on the winter flood period.   

CONCLUSIONS 

Our study is the first to examine mercury dynamics in rice fields across in the 

Sacramento Valley. We found that rice fields in this region have relatively low soil and grain 

mercury; and that they are sources of mercury during the fallow season and sinks during the 

growing season. This finding confirms previous studies and highlights the importance of 

managing fallow season conditions to reduce the impact of rice systems on downstream 
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ecosystems. Filtered and particulate mercury and their correlations with TSS and A254 indicate 

that wind disturbance and rice straw both contribute to higher mercury in the water column 

during the fallow season. Finally, irrigation water (specifically recycled irrigation water) drives 

in-field mercury dynamics and the uptake of mercury by rice.   
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Chapter 2  

A Geospatial Assessment of Soil Properties to Identify the Potential for Crop 

Rotation in 

 

1. Introduction 

Increased crop rotation is being explored as one potential solution to global challenges in 

agricultural sustainability (Altieri et al., 2015; Cabell and Oelofse, 2012). Rice (Oryza sativa L.), 

the main staple food for nearly half the world’s population, (Awika, 2011; F.A.O., 2019; Yuan et 

al., 2021) is often grown in continuous cropping systems supporting one to three rice crops per 

year. Continuous flooded rice production can maintain high productivity due to biological and 

chemical soil processes unique to flooded agricultural soils (Pampolino et al., 2008; Cassman 

and Pingali, 1995; Waha et al., 2020; Bronson et al., 1998). However, there are agricultural 

sustainability challenges for modern continuous rice systems. To support these challenges, 

diversifying rice-based cropping systems with non-flooded crops is being explored in different 

contexts (Baste et al., 2021; Cassman and Grassini, 2020; Horton et al., 2021). 

In California, rice production is concentrated in the Sacramento Valley, where it is grown on 

approximately 210,000 ha (USDA - NASS, 2021). California is the second largest rice growing 

state in the US, with some of the highest rice yields in the world (Hill et al., 2006). However, the 

long-term viability of the California rice industry is threatened by a number of challenges 

including increasing weed pressure and water scarcity (Hanson et al., 2014; Gebremichael et al., 
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2021). California rice has the highest number of herbicide resistant weed species of any other 

crop or region in the U.S. (Hanson et al., 2014). Also, populations of new weed species, such as 

weedy rice (also known as red rice), are evolving a suite of phenotypic traits that closely 

resemble cultivated rice, making them particularly difficult to manage (De Leon et al., 2019). 

Droughts across the Western US have led to severe water shortages, including water restrictions 

for growers (Hanak et al., 2019; Gebremichael et al., 2021). Gebremichael et al. (2021) found 

that fallow land across California’s Central Valley tripled during drought years due to water use 

restrictions. In four of the last 10 years, during periods of severe drought, rice acreage declined 

leading to widespread fallowing throughout the rice growing region (USDA - NASS, 2021). 

Drought conditions are expected to increase in frequency and severity due to climate change 

(Cayan et al., 2010), and alternative cropping system strategies are needed to maintain 

agricultural sustainability. 

Diversifying the number of crops grown in the region could be an important component of 

integrated weed management strategies and has potential benefits for water conservation. 

Rotations can be part of integrated weed management strategies by allowing for the use of 

different modes of herbicide action, and cultivation techniques and irrigation systems that are 

different from those used in typical continuous rice systems and can target different weed species 

including pervasive aquatic weeds (Kayeke et al., 2017; Beckie et al., 2004; Brim-DeForest et 

al., 2017). Rice is one of the most water intensive California crops, behind almonds, pistachios, 

and alfalfa (Cody and Johnson, 2015; Josué Medellín-Azuara et al., 2015). Common alternative 

irrigated summer annual crops in the region such as processing tomatoes, dry beans, and 

safflower use 36%, 9.2%, and 3.4% the water that rice uses annually (Cody and Johnson, 2015). 
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Rotating continuous rice with less water intensive annual crops could help maintain agricultural 

productivity while meeting water use restrictions.   

Despite the potential benefits of crop rotation for weed management and water conservation 

in rice systems, soil constraints may be a major limitation. Large portions of the Sacramento 

Valley are reclaimed wetlands that have soil properties that are suitable to flooded rice 

production but make crop rotation difficult (Hill et al., 2006). Previous studies have reported that 

more than half of the rice growing region is considered ‘rice only’, where production of other 

summer or winter crops is, due to properties of the soil, expected to fail due to poor yield and 

high input costs (Carter et al., 1994; Hill et al., 2006). The remaining half of the region has been 

described as having limited rotation capability. Soil features such as floodplains, heavy clays, 

salinity and/or alkalinity, and cemented subsurface layers are widespread in the region and are 

perceived as major limitations to rotation (LaHue and Linquist, 2021; Rosenberg et al., 2022; 

Hill et al., 2006). Some rice growers are successfully rotating rice with summer irrigated crops 

(tomatoes, corn, safflower, and dry beans), vetch and wheat as a winter annual crop, alfalfa, and 

other forages (Rosenberg et al., 2022), with most rotation occurring in a limited portion the 

Southern Sacramento Valley (Rosenberg et al., 2022; Carter et al., 1994). However, these 

evaluations of soil properties were not based on digital USDA-NRCS Soil Survey Maps, which 

offer the most detailed soil map data for the US (Soil Survey Staff, 2014), and the relative 

amount of rice area under some form of rotation is poorly quantified. Thus, there is an 

opportunity to explore the feasibility of rotations based on soil limitations using soil survey maps 

to determine the relationship between crop rotation decisions and soil properties. 

Machine learning methods are one potential approach for assessing the role of soil properties 

on future land use scenarios to improve natural resource management. Machine learnings models 
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can be used to efficiently examine relationships between multiple, interacting soil parameters and 

their influence on different land use categories at large spatial scales. For example, these 

approaches have been used to predict crop rotation in the US Midwest (Socolar et al., 2020), to 

assess the potential for dryland agriculture in the High Plains region, USA (Deines et al., 2020), 

to identify floodplains at high resolution across the continental US (Woznicki et al., 2020), to 

simulate the conversion of grasslands to grain in the great plains (Olimb and Robinson, 2019), 

and to predict future cropland expansion (Rashford et al., 2013). These studies illustrate the 

novel insights that can be gained by integrating land use maps with underlying soil properties in 

a machine learning framework.  

The overall goal of this study was to explore the potential for agroecological diversification 

of rice-based cropping systems based on a geospatial assessment of soil limitations. The method 

presented here uses land cover data, SSURGO soil data, and a spatial random forest model to 

identify key soil properties associated with continuous rice fields and rotated rice fields. The 

specific objectives were to: 1) quantify the total rice area under crop rotation and continuous 

rice; 2) evaluate differences in soil properties between rotated and continuous rice fields; and 3) 

estimate the potential continuous rice area that could support a high likelihood of rotations based 

on the most influential soil variables identified in random forest models. Results will help inform 

the feasibility of crop rotations as a tool for enhancing the long-term sustainability of California 

rice systems.  

 

2. Materials and Methods 

2.1 Data sources and processing 

 

2.1.1 Land use Data 



 xxxix 

Land use maps for the Sacramento Valley were built by integrating the Crop Land Data 

Layer (CDL) with field boundary data provided by the California Department of Water 

Resources (DWR). The CDL is a high resolution (30 m) national land cover data set that 

provides crop-level information on a yearly basis. The CDL is generated from Landsat satellite 

missions and developed by the United States Department of Agriculture/ National Agricultural 

Statistics Service (USDA/NASS) CropScape project (NASS CDL, 2021). The CDL includes up to 

141 land use classes, 117 of which are agricultural. In California, the CDL is currently available 

from 2007 to 2021, and all years were used in this analysis.  

While the CDL is considered the best available crop and land cover information over the 

United States (National Research Council, 2013), it is still prone to uncertainties that result from 

land cover classification using satellite remote sensing data. To reduce these errors and improve 

overall accuracy, the CDL was integrated with a high accuracy land cover and field boundary 

data set provided by DWR (Lark et al., 2017; Verbeng et al., 2011; Seo et al., 2014). The field 

boundary data set is prepared by LandIQ, a private mapping company based in Sacramento CA, 

and provided to the California DWR Regional Office Land Use office (DWR, 2016). The 

integration approach is as follows. Pixels, or portions of pixels, outside of field boundaries were 

excluded, managing errors where fields do not align with pixels, and where edge effects can 

influence acreage estimates (Lark et al., 2017). Within the field boundary, each field was 

reclassified as the dominant pixel type, mitigating errors where, for example, a few incorrect 

pixels are scattered across a rice field. Acreage estimates and change detection were performed 

on this reclassified, field level data set.  

After reclassifying all fields within the Sacramento Valley region, we limited the analysis 

to the rice growing area by selecting all the fields where the dominant class was rice in at least 
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one year of the 15-year data set. In total there were 13,120 fields covering 268,950 hectares. This 

region has a high diversity of annual and perennial crop types. To simplify our analysis and to 

increase accuracy (Lark et al., 2017), we grouped CDL crop classes together into eleven 

dominant groups. These groups are: rice, fallow, summer annual, winter annual, other annual, 

alfalfa, grasses, walnut, almond, other perennial, and other (See table S1 for a complete list of 

the CDL classes in each group). We used this data set to examine land use changes in the region 

including yearly changes in rice area, the acreage under rotation with rice, and the area that has 

been converted to perennial tree crops such as almonds and walnuts. To assess the accuracy of 

our custom data set, we compared our county level rice acreage estimates to NASS data (USDA 

NASS, 2021) for the eight major counties in the rice growing region. 

 

2.1.2 Soil data: 

Spatial soil information in this region was obtained from the Soil Survey Geographic 

Database (SSURGO) developed by NRCS (NRCS Soils, 2021). SSURGO data was accessed 

using the FedData package (Bocinsky, 2019), which downloads federal geospatial data directly 

from the internet and loads it into RStudio. A range of soil variables important to agricultural 

production were used in the preliminary data analyses including chemical properties (acidity, 

salinity, sodium adsorption ratio), physical properties (soil texture, saturated hydraulic 

conductivity, linear extensibility), and general descriptors of soil type (soil order, soil series, 

irrigated capability class, or the presence of subsurface layers that are restrictive to root growth).  

For all numeric soil variables, a depth weighted average was computed across all 

horizons in the rooting zone (top 30 cm of the soil profile). In this process, horizons that start 

below 30cm depth are excluded and the thickness of all remaining horizons is computed. A 
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weighted mean for each numeric soil property was calculated by multiplying the soil property 

value from each horizon by the thickness of the horizon, summing the value for all horizons 

present, and dividing by the total depth (30cm). This depth weighted average was then applied 

across the SSURGO map unit area, and field level averages were computed for each field in the 

study area. This process was conducted using the sf package in R (Pebesma, 2018). Categorical 

soil variables, such as soil order or irrigated capability class, have only one value per component 

and do not require a depth weighted average. For this data, the dominant soil component (largest 

percent composition within the map unit) was selected, and the location of each field’s centroid 

was used to determine the field level value.  

 

 

2.2 Modelling Process 

2.2.1 Data Preparation: 

To compare soil properties of continuous rice fields and rotated rice fields, a binomial 

classification approach was used. For this approach, two classes were determined from the land 

cover data set: ‘continuous rice’ fields and ‘rotated rice’ fields. These two groups had strict 

criteria: Fields that were in rice at least 12 of the 15-year data set and were fallowed in the 

alternate years (i.e. never planted in a summer annual, winter annual, alfalfa, or grass) were 

considered 'continuous rice’ fields; Fields that were in rice at least seven years and were rotated 

with summer annual crops, winter annual crops, alfalfa, or grasses on at least two separate 

occasions were considered ‘rotated rice’ fields. We used these two categories to make a direct 

comparison between continuous rice fields and fields that are in rice almost half the time but also 

rotated with other crops. The core objective was to explore the potential for rotation in fields that 

are currently continuous rice, thus we set a medium requirement of years in rice for rotated fields 

rather than including fields that were predominantly other crops or not rotated with rice on two 
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separate occasions. As a result, some rice fields were excluded from the model. Fields that were 

in rice 9 of the 15 years and other land uses the remaining years were placed into a distinct 

category called ‘rice + other’ (15.8% of total area). This includes fields that transitioned out of 

rice to urban uses, or fields that were fallowed and/or planted with other crops such as alfalfa or 

annuals only on a few occasions. Fields that were in annual crops (summer annuals, winter 

annuals, alfalfa, and grasses) 9 of the 15 years were considered ‘annual’ (6.3% of total area). 

Fields that were frequently fallowed (9 of the 15 years) were considered ‘fallow’ (1.3% of total 

area). 

 

2.2.2 Random Forest: 

After randomly splitting the data set into training and validation subsets (75% to train and 

25% to validate), a random forest classification model (Breiman, 2001) was trained to create a 

binary prediction for ‘continuous rice’ and ‘rotated rice’ based on soil variables. Random forest is 

an ensemble learning method that has recently become very popular because it combines the 

interpretability of decision trees with the performance of modern learning algorithms such as 

artificial neural networks and SVMs. Random forest models use multiple independently 

constructed decision trees, each with a unique bootstrap sample of the training data set, thus 

reducing the variance of single trees and improving prediction accuracy (Liaw and Wiener, 2002; 

Wiener; Prasad et al. 2006). Furthermore, random forest models are efficient, insensitive to 

overfitting, and are relatively straight forward to implement (Belgiu and Drăgu, 2016). 

 

2.2.3 Model Assessment: 

Following model training, model assessment was performed on our remaining validation 

data set. The primary objective was to correctly classify rotated fields within the rice area. 

Therefore, we examined classification accuracy using precision (P), recall (R), and F1 score of 
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rotated fields. Precision is how often the classified product (rotated fields) is correct when 

compared to the source data set (Eq. (1)). Recall, also known as the hit rate, is how often the 

source dataset is correctly classified by the model (Eq. (2)). F1 measures classification accuracy 

of rotated fields by combining precision and recall using their harmonic mean (Eq. (3)).   

 

𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (1) 

 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

 

𝐹1 = 2 
𝑃 𝑥 𝑅

𝑃+𝑅
   (3) 

 

Where Tp is the number of true positives (number of pixels correctly classified as rotated 

fields), Fp is the number of false positives (number of pixels incorrectly classified as rotated 

fields), and FN is the number of false negatives (number of pixels incorrectly classified as 

continuous rice fields). In our modelling process, the F1 score was used as the primary measure 

for model evaluation because it balances precision and recall. 

 

2.2.4 Model set up 

In spatial data, observations that are relatively close tend to be more related to each other, 

which means that training and validation data sets are rarely independent, violating an important 

prerequisite of model building and leading to highly optimistic evaluations of predictive power 

(Arlot and Celisse, 2010; Ploton et al., 2020). Factors other than soil properties can influence the 

spatial distribution of crop rotation across a landscape, such as market distance, access to 

equipment, or economic factors. (Socolar et al., 2020; Rosenberg et al., 2022). One method to 

deal with spatial heterogeneity in is spatial cross validation. Spatially cross validated models of 

ecological data can have better performance at predicting error estimates and predicting to new 
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data or predictor space, as well as for selecting causal predictors (Roberts et al., 2006). We used 

R’s ‘spatialsample’ package (Silge, 2021), to implement spatial cross validation. In summary, our 

training data was split into ten cross validation groups using k-means clustering of the field’s 

spatial coordinates.  

Next, model hyperparameters were defined and tuned. Because the model was assessed 

primarily with F1, these combinations of hyperparameter values were optimized for F1. F1 was 

static after a minimum of 150 trees, so 150 trees were used to ensure adequate trees for all 

models. To define the number of variables randomly selected as candidates at each split (mtries), 

and the minimum number of data points in a node that is required for the node to be split further 

(min_n), a hyperparameter grid search was performed with values from one to six and 20 to 40, 

respectively. Mtries = 3 and min_n = 31 were selected based on the highest F1 score. 

Sampling strategy is another model parameter that can require careful calibration, 

especially when there is substantial class imbalance (Woznicki et al., 2019). In our binomial data 

set, continuous rice fields were 16-times more prevalent than rotated rice fields. Sampling 

strategies that adjust the prevalence of either class in the training data can affect precision and 

recall rates (Chen et al., 2004; Woznicki et al., 2019). Thus, we also optimized for F1 in our 

model tuning process. The minority class was up sampled randomly and at 10%, 20%, and 50% 

sampling ratios. The strategy using a 20% sampling ratio had the highest F1 score, so this 

strategy was used in the final model deployment. Woznicki et al. (2019) used this sampling 

strategy and similarly found that a 20% sampling regime was optimal because of its higher 

recall. 

 

2.2.5 Variable Importance 
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An important task in machine learning interpretation is to understand which predictor 

variables have the strongest influence on the predicted outcome. To accomplish this, a ranked 

order of variable importance in the classification model was determined using the permutation 

method based on AUC. In this method, AUC is computed for each tree after permuting each 

predictor variable (Greenwell et al. 2018). This method is considered more robust towards 

instances of class imbalance (Janitza et al. 2013). Variable importance was computed in R’s ‘vip’ 

package (Greenwell et al. 2020).  

To improve interpretability, we pruned our set of predictor variables to reduce model 

complexity without compromising accuracy. Redundant soil variables were removed if they were 

highly correlated (r > 0.8). Moreover, if model predictions for a variable did not show clear 

patterns in partial dependence plots (explained below) and omission of this variable in the model 

did not affect F1 scores when evaluated on the validation data set, variables were removed. This 

included linear extensibility (%), cation exchange capacity (CEC), drainage class, the presence 

of a cemented layer, and the soil series name. The remaining set of soil variables used in the 

modeling process were pH, electrical conductivity (EC), sodium adsorption ratio (SAR), 

saturated hydraulic conductivity (Ksat), taxonomic soil order (soil order), and irrigated capability 

class (ICC) (see Table 1 for a complete description of these soil variables). 

Throughout our model tuning process, variable importance scores were often tied or closely 

ranked. To establish a clear order of variable importance, the variable importance computation 

was executed 200 times across the training data, and the variables were ranked based on their 

mean effect on the AUC score. 

 

2.2.6 Model Application 
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Once a subset of the important features was identified, expected target responses were 

computed while accounting for the average effect of the other predictors in the model. This 

produces a partial dependence plot (PDP), which is a method of visualizing the effect of each soil 

variable on the model outcome (yhat) (Hastie et al., 2009). PDPs were built in R’s ‘DALEXtra’ 

package (Maksymium et al., 2020). PDPs were built for the three most important soil variables 

from the variable importance plot.  

Another primary objective was to estimate the area of continuous rice fields that have the soil 

features of a rotated rice field based on the three most important soil variables determined by the 

model. Rather than examining Fp, which can be heavily influenced by sampling schemes (i.e. up 

sampling or down sampling) (Woznicki et al. 2020), we developed a ‘manual approach’ using 

partial dependence data to determine thresholds, i.e. ranges for each of the three important soil 

variables supporting a higher likelihood of rotation. All continuous rice fields were then 

examined to determine how many of them met each of these three soil criteria, both individually 

and combined. For all the fields in each group, we computed the acreage (sum), and median 

predicted probability that the field is rotated (denoted as yhatm and shown as a percentage). This 

manual method allowed us to investigate how soil properties may act as a barrier to crop 

rotations and to quantify the acreage of continuous rice fields that have some of the properties of 

a rotated field.  

 

3. Results and Discussion 

3.1 Continuous Rice and Rotated Rice 

According to our analysis, annual rice production area ranged from 227,000 to 161,000 

ha, which is consistent with USDA reported acreage, and represents approximately 95% of 

California’s rice growing area (USDA -NASS, 2021). Across the eight major counties in the 
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growing area, agreement between our data set and USDA NASS acreage was strong (R2 = 0.992) 

and fell along the 1:1 line (Figure 1).  

58% of the study area was in continuous rice production (Figure 2, Table 2).  Rotation 

with rice occurred more in the southern portion of the Sacramento Valley (Colusa, Sutter, and 

Yolo counties), which is consistent with previous studies(Rosenberg et al. 2022; Carter et al., 

1994). While the area under rotation area was considerably smaller than the area under 

continuous rice, there was high diversity of rotation schemes. Most fields under rotation 

transitioned from rice to another crop on two to three occasions. A small number of fields in the 

study area transitioned out of rice up to seven times during the 15-year study period, meaning 

these fields were planted back to rice every other year. According to our definition of continuous 

rice and rotated rice, which we used for binomial classification (Table 2), there were 155,640 ha 

in continuous rice (7,550 fields) and 16,650 ha of rotated rice (470 fields) (Table 2). The other 

dominant field types in the region are ‘rice + other’ and ‘annuals’, which occupy 15.8% and 

6.3% of the study area, respectively. Continuous rice production is common due to high prices 

for rice, consistent high yield, high efficiency of the production system (Hill et al., 2006), as well 

as farmer experiences or perceptions that these fields are not suitable for rotated crops (Carter et 

al., 1994; Rosenberg et al., 2021).  

Approximately 3,000 to 8,000 ha were exchanged annually between rice and other crops 

including summer annuals, winter annuals, alfalfa, and grasses (Figure 3). This exchange is 

dominated by summer annuals and winter annuals, on average 3,030 ha and 2,430 ha are 

exchanged between rice and summer annuals and rice and winter annuals each year, respectively. 

A smaller portion are rotated with grasses and alfalfa. The area in rotation also decreased 

throughout the study period (’08-’21) from roughly 8,000 ha to 4,000 ha. This decrease is likely 
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because of specialization of agricultural operations. Interviews with rice farmers suggest that 

farmers that used to rotate have stopped due to market changes and labor and equipment 

requirements for alternative crops (Rosenberg et al., 2022). Furthermore, efficient irrigation 

methods such as subsurface drip are becoming increasingly widespread in non-flooded 

agricultural systems in the region due to political and economic motivations to maintain or 

improve production while using less water (Sandoval-Solis et al., 2013). Processing tomatoes, 

for example, have seen greater than 70% conversion to subsurface drip irrigation due to 

increased water savings (Ayars et al., 2015). These are semi-permanent crop specific systems that 

make it difficult to rotate with crops using different spacing or irrigation strategies, such as 

flooded rice. 

Conversion to walnuts and almonds occupied 2.4% and 0.95% of the study area, 

respectively (Table 2). Conversion to perennial tree crops may be increasing due to increasing 

walnut and almond crop prices, despite increasing drought conditions (Gebremichael et al., 

2021). This represents a shift from annual cropping to a system that is more permanent. Walnut 

and almond fields have comparable water use to rice (Cody and Johnson, 2015) but they must be 

watered annually to prevent tree mortality, meaning these fields cannot be fallowed during 

drought periods without significant economic loss. 

 

 

 

 

3.2 Soil Properties Supporting Crop Rotations 

The overall classification accuracy of continuous rice and rotated fields evaluated on the 

validation data set using random forest models was 93.9%. While our overall accuracy score was 

high, previous studies have suggested that, when there is class imbalance in the training data, 

other criteria for model evaluation should also be considered. After hyperparameter tuning and 
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choosing an optimal sampling strategy, an F1 score of 0.62 was possible (precision was 0.52, 

recall was 0.76) (Table S2). Our F1 score of 0.62 suggests that the model performed well at 

binomial classification given the severity of class imbalance in the training data. A recall score of 

0.76 suggests the model correctly classified 76% of the rotated rice area. This performance 

indicates that soil properties are a good predictor of crop rotation in the region, but that there 

may also be other important considerations not observed in this model, such as the economic, 

cultural, or logistical factors described by Rosenberg et al. (2022). Overall, this performance is 

consistent with other large-scale land cover modeling efforts using soil predictor variables 

(Woznicki et al., 2020; Olimb and Robinson, 2020; Sangwan and Merwade, 2015; Wing et al., 

2017). 

Another objective was to assess the relative importance of soil variables in predicting 

rotated fields in the rice growing area. Figure 4 shows variable importance plots based on the 

mean decrease in AUC when each variable is permuted (Greenwell et al. 2018). The red dots 

show the variable importance score of the initial model execution. EC and Ksat had very similar 

variable importance scores, so we repeated the model execution 200 times and computed 

variable importance for each. The box and whisker plot shows the median and interquartile range 

of the 200 variable importance scores from this approach, while the violin plot shows the 

distribution of VI scores. Of the six soil properties included in our analysis, pH was the most 

influential, followed by EC and Ksat. The importance of each of these variables is discussed 

below. Soil order was the least important variable in the model. 

While variable importance plots can help rank the influence of different variables, they 

do not indicate the behavior (i.e. linear, monotonic, or more complex) or direction (i.e. positive 

or negative) of the interaction between an input feature and the target response (Hastie et al., 
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2009). To understand how the three most important variables (pH, EC and Ksat) influenced the 

likelihood of rotations, we used PDP to predict outcomes across each variable while 

marginalizing the model output over the distribution of the other features (Figure 5a-c). 

Including data density curves with each PDP allows us to examine the distribution of values for 

each soil variable, which aids our interpretation of the PDP.  

Soil pH in the study region ranged from five to greater than nine (Figure 5a). The partial 

dependence data indicates that rotated fields are more likely between 6.5 and 8.0, while fields 

with pH less than 6.5 or greater than 8.0 are likely to be continuous rice. Annual crops, including 

rice, have highest productivity in neutral pH ranges (Havlin, 2020). Acidic soils can be managed 

with limestone, and alkaline soils can be managed with elemental sulfur, but both soil types can 

be costly and difficult to remediate, particularly alkaline soils (Fernandez and Hoeft, 2021). Soil 

flooding for rice production, however, results in in the convergence of alkaline or acidic soil pH 

to neutral, allowing rice growers to maintain high yields without additional inputs (Sahrawat, 

2013; Ponnamperuma and Kozlowski, 1984). Furthermore, flooding for rice production 

improves the availability of nutrients such as ammonium, phosphorous, potassium, and other 

exchangeable cations, which are mobilized in soil solution (Ponnamperuma 1972; Sahrawat, 

2011).  

Soil electrical conductivity (EC) is a metric of the salt content (salinity) in the soil, which 

is both an indicator of mineral nutrients in the soil that can be quickly utilized by plants, and an 

indicator of salt ions in soil that could limit crop growth (Friedman, 2005). Most of the fields in 

the study area had relatively low EC (Figure 5b). Fields with EC ranges between 0.5 and 1.5 had 

a higher likelihood of being rotated, while fields with higher EC were more likely to be in 

continuous rice. Low EC values could indicate that nutrients needed for plant growth are 
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insufficient (Friedman, 2005), while high salinity has been shown to reduce agricultural 

productivity by causing reduced water uptake by plants. High salinity can cause reduced osmotic 

pressure and ion imbalance as plants accumulate salt ions over time (Munns and Tester, 2008). 

Previous studies have indicated that the salinity threshold for field crops ranges from 1 to 2.5 dS 

m-1 (Ayers and Westcot, 1985; Maas and Grattan, 2015; Grattan et al., 2002; Machado and 

Serralheiro, 2017). In non-flooded agriculture, salinity can be managed by leaching salts, but in 

regions where there is also poor drainage this practice often requires installing costly drainage 

systems (Hanson et al., 2006). In rice production, however, high soil salinity can be managed 

with flood irrigation. For example, in the growing season, maintaining high water depth and 

allowing for tailwater drainage early in the season can help manage salinity (Marcos et al., 

2018). In the winter season, flooding of rice fields, which is commonly done to decompose rice 

straw and to promote habitat for waterbirds in this region (Linquist et al., 2006), can lead to 

diffusion of salts into the water column, where it can potentially be percolated out of the root 

zone or exported in surface water drainage (Bachand et al., 2014).  

Ksat represents how easily water can pass through saturated soil. Fields with low Ksat 

values will have little water loss to percolation and relatively high-water use efficiency for 

flooded crops (LaHue and Linquist, 2021). Ksat values in the study ranged from 0 to greater than 

50 μm s-1 and most fields in the study area have Ksat values below 15 μm s-1 (Figure 5c). Where 

Ksat is above 2 μm s-1, fields were increasingly likely to be rotated. Ksat values can vary based 

on a range of soil and hydrologic factors including soil texture, soil structure, bulk density, field 

water height, and ground water elevation (Bouman et al., 2007; LaHue and Linquist, 20201). 

Many fields in the region have low Ksat either because they have very high clay content or 

because they have a cemented subsurface soil layer. In some parts of Glenn and Colusa counties, 
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clay content was greater than 60%. These clayey soils are used for continuous rice because high 

clay content can lead to poor tilth, making it difficult to prepare a seed bed, and low water 

availability and poor aeration in non-flooded soils (Lund 1959). A cemented subsurface soil layer 

can lead to poor root-ability and poor workability, which is also determinantal to plant growth for 

non-flooded crops (Dexter, 2004). 

While sodium adsorption ratio (SAR) was not one of the three most important variables 

in the model (Figure 4), some fields in the study area had sodic and saline-sodic soil properties, 

which likely limits their suitability for rotation. Sodic soils have high pH ( > 8.5) and are also 

high in exchangeable sodium (Na+) ( >15%) (Sumner, 1993). Saline-sodic soils have both high 

salinity and high Na+. Sodium toxicity causes dispersion of soil particles leading to soil 

degradation and poor tilth, making them detrimental to growth of most plants (Qadir and Oster, 

2004). Ameliorating sodic soils requires increasing calcium (Ca2+) to replace Na+ on the 

exchange, then leaching with excessive irrigation. This process is difficult, costly, and time 

consuming, especially in soils with low Ksat limiting drainage capacity (Qadir and Oster, 2004). 

Water management in rice, however, can help the crop tolerate sodic and saline-sodic soil 

properties with irrigation techniques such as maintaining flooded conditions and excess drainage 

(Munns and Tester, 2008).  

3.3 Feasibility of Expanding Crop Rotations 

We used the partial dependence data to determine ranges of the three soil properties (pH, 

EC, Ksat) that have a higher likelihood of rotation given historical land use decisions in this 

region (grey shading in Figure 5a-c). Fields with pH between 6.5 and 8, EC values between 0.5 

and 1.5 ds m-1, and Ksat values  > 2 μm s-1 had a higher likelihood of rotation. Most data lay 

within these ranges for pH and EC, however most of the fields in our study region have low Ksat 

(Figure 5a-c).  



 liii 

We examined all the continuous rice fields in our study that meet each of these soil 

criteria to determine the extent and location of similar soil properties associated with rotations 

(Table 3). Around 69,000 ha (47%) of the continuous rice region has pH values between 6.5 and 

8.0. These fields are mostly in the northern and central portions of the study region (Butte, Glen, 

and Sutter counties) (Figure 6a). Meanwhile 73,000 ha (50% of the continuous rice fields) had 

EC values between 0.5 and 1.5 dS m-1. These fields are mostly in the center and west of the 

region (Sutter and Colusa counties) (Figure 6b). Lastly 55,000 ha (37% of the continuous rice 

area) had Ksat > 2 μm s-1. These fields are in the east (Yuba and Sutter counties) (Figure 6c). For 

all the continuous rice fields in each group, we computed the median predicted probability of 

rotation (yhatm). Continuous rice fields that met the pH criteria had a yhatm value of 32%, while 

fields meeting EC and Ksat criteria had a median yhatm of 28% and 21%, respectively. 

Combining these thresholds allowed us to examine how multiple soil factors affect the 

scope for agroecological diversification in this rice-based system (Table 3). A total of 38,720 ha 

met the combined pH and EC criteria. This accounts for about 26% of the continuous rice fields, 

and these fields have a 50.7% median predicted probability of rotation. Only 11% (16,710 ha) of 

the continuous rice area met all three of the combined criteria. These fields have yhatm of 54.1%. 

Most of these fields are nearby and to the east of current rotated rice fields, which are in the 

southern and central portion of the rice growing region (Sutter, Yolo, and southeastern Colusa 

Counties; Figure 6d), a region known for having a high diversity of agricultural systems 

including continuous rice (Carter et al., 1994; Rosenberg et al., 2022). The area that meets all 

three criteria is approximately 12,000 ha larger than the size of the decrease in rotation area over 

the past ten years (~4,000 ha) (Figure 3). The remaining area under continuous rice production 

that does not meet the combined pH and EC criteria (74%), or all three combined criteria (89%) 



 liv 

is 115,170 ha and 138,910 ha, respectively. This finding is comparable to the Carter et al. (1994) 

report on the Sacramento Valley rice area which stated  that “on at least [120,000 ha] … it would 

be very difficult under any circumstances to produce another crop”.  

While only 11% of the continuous rice area meets all three criteria, incentivizing rotation 

in this area could help manage weeds concurrently with reduced water use while maintaining 

agricultural revenue for farmers. In California, pesticide regulations have limited the number of 

herbicides available to farmers and have limited how the existing herbicides can be applied, 

leaving limited options for chemical weed management aside from increasing the number of 

herbicide applications, which has increased herbicide resistance challenges (Hill et al., 2006; 

Rosenberg et al., 2022). Crop rotation allows for integrated weed management approaches 

including aerobic irrigation and cultivation techniques and the use of herbicides with different 

modes of action, which can support weed control and limit herbicide resistance (Beckie et al., 

2004; Kayeke et al., 2017; Vencill et al., 2012).    

Currently, due to severe drought conditions in the region, many rice farmers are forced to 

fallow their fields in water districts with limited access to water rights (Pancorbo et al., 2022; 

Medellin-Azuara et al., 2022). Fallowing, however, is not an ideal solution to water scarcity as 

fallow fields inherently do not provide a harvestable cash crop or other ecosystem services such 

as wildlife habitat, and leaving bare soil causes soil erosion and degradation due to wind and 

water exposure (Pimentel and Burgess, 2013; Kaspar and Singer, 2015; Wendt et al., 1986). 

Alternative summer annual crops in the region such as processing tomatoes or dry beans use 

30% and 5%, respectively, of the annual water requirements for flooded rice (Cody and Johnson, 

2015). Winter annual crops such as wheat, oats, and rye, are predominantly rainfed and require 

little to no irrigation water unless it is a drought year. As droughts increase in severity (Cayan et 
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al., 2017), rotating rice with less water intensive crops, where possible, could help limit 

agricultural demand for water across the region while maintaining agricultural productivity.  

 

3.4 Limitations of the study 

Agricultural systems are coupled human-natural systems that depend on complex food 

supply chains and international trade (Liu et al., 2007). There are numerous drivers fueling 

agricultural decision making including soil type, economic variables, socio-cultural factors, 

government policy, climate change, and distance to networks and terminal markets for 

agricultural products (Flora et al., 2019; Rosenberg et al., 2022). This study focuses only on the 

role of soil properties. To do so, this study utilizes soil survey (SSURGO) information, which is 

only one of multiple options for investigating soil barriers to rotation. SSURGO information in 

California offers a comprehensive, detailed spatial assessment of soil variables and is an 

excellent resource for local and regional land use planning. However, SSURGO has a few key 

limitations. SSURGO does not always integrate land use information and changes to soil 

management over time, it has variable spatial detail between soil surveys of different vintage, 

and there are sometimes artificial discontinuities at political boundaries (Zhu and Woodcock, 

2001; Li et al., 2011; Gatzke et al., 2011; Subburayalu et al., 2013; Du et al., 2014; Nauman and 

Thompson, 2014). Results of our study align with Rosenberg et al. (2022) and other’s (Hill et al., 

2006; Carter et al., 1994); however, SSURGO data does not replace on-the-ground soil sampling 

or field-based experiments that test the efficacy of planting row crops in unfavorable soils. 

 

4. Conclusions 

This research uses satellite-derived land cover information and soil survey data to examine 

the feasibility of crop rotation in California’s Sacramento Valley, a region with a history of 
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continuous rice production and growing sustainability challenges. Our analysis shows that 

rotation occurs in a limited portion of the region, and that there is a high diversity of rotation 

schemes including rotation with summer annuals, winter annuals, alfalfa, and grasses. By 

comparing the soil properties of continuous rice fields to rotated rice fields using a random forest 

model, our analysis suggests that chemical and physical soil properties such as alkalinity, 

salinity, and low saturated hydraulic conductivity are key variables that may limit the potential 

for crop rotations to be easily implemented in the region. This research highlights the importance 

of including biophysical considerations such as soil properties into broader efforts to diversify 

modern agricultural systems. Research and extension efforts to implement crop rotation practice 

in the region should focus on identifying pathways to overcome soil barriers alongside access to 

markets and equipment for rotated crops. Field scale experiments may be necessary to better 

understand potential rotated crops that can tolerate the soil conditions in this region while 

providing water savings, weed management benefits, and economic value.  
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Chapter 3: 

Change from Annual to Periannual Crop Systems is Driven by Crop Prices 

and Limited by Soil Type in California’s Rice Growing Region 

 
 
 

1. Introduction 

 

Global agricultural sustainability faces numerous challenges including climate change, 

biodiversity loss, soil degradation, and water scarcity(Ericksen et al., 2009). These challenges are 

compounded by increasing demand for agricultural products due to population growth, 

urbanization, and changing dietary preferences (Steffen et al., 2005). To address these complex 

challenges, there is need for adaptive land management strategies that promote sustainable 

agricultural practices while adapting to changing environmental conditions (Liu et al., 2009). To 

develop informed land management strategies, there is need to better understand the drivers and 

consequences of agricultural land use changes across scales (Burke et al., 2021; Foley et al., 2005). 
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California’s Central Valley is one of the largest and most economically important agricultural 

regions in the world, producing more than 50% of the fruits, nuts, and vegetables grown in the US 

(Gebremichael et al., 2021). However, California’s Mediterranean climate and reliance on seasonal 

precipitation and snowpack for water supply make it highly vulnerable to drought conditions (Lund 

et al., 2015). The state has experienced multiple severe and persistent droughts over the past two 

decades, which are exacerbated by climate change and increasing water demands due to population 

growth and agricultural needs (Pathak et al., 2018). These droughts have led to significant 

environmental, economic, and societal consequences including water shortages, wildfires, crop 

losses, and heightened competition for water resources among urban, agricultural, and 

environmental uses. Agriculture accounts for 29-53% of the total water use in California (Mount 

et al., 2023). As climate models predict a future with warmer temperatures and increasingly 

precipitation variability, the need for proactive and adaptive agricultural management strategies is 

paramount.  

In recent years, the agricultural landscape of Central Valley has undergone significant land 

use changes, primarily driven by the convergence of drought conditions and fluctuating crop 

prices. Most notably, there has been a widespread conversion from annual cropping systems and 

rangelands to perennial cropping systems across the state (Gebremichael et al., 2021; Cameron et 

al., 2014). Almond and walnut acreage have experienced the largest increase in cultivated area 

compared to any other crop (Gebremichael et al., 2021). California is now the world’s largest 

producer and exporter of these crops, bolstered by growing international demand and high 

market prices  (CDFA, 2021). While almonds and walnuts offer a potentially favorable 

alternative to less profitable crops, they are permanent crops that requiring irrigation during the 
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growing season throughout the crop’s life span, exacerbating water resources during drought 

periods every-year, especially ground water  (Scanlon et al., 2012; Lund et al., 2018). 

The northern portion of the Central Valley, known as the Sacramento Valley, is dominated by 

rice production. California is the second largest rice growing state in the US, with some of the 

highest rice yields in the world (Hill et al., 2006). This agricultural region also provides regional 

ecosystem services including habitat for endangered migratory waterfowl and for salmon rearing 

(Holmes et al., 2021). However, commercial rice production is one of the most water intensive 

crops in the state and the rice growing region faces environmental challenges including water 

scarcity. During the recent drought periods, water restrictions have led to decreases in rice 

production and widespread fallowing across the rice growing region (Gebremichael et al., 2021). 

Meanwhile, almond and walnut cultivation is increasing across the Sacramento Valley (USDA-

NASS, 2020), providing a profitable alternative to rice (Gebremichael et al., 2021). The degree to 

which perennial tree crops may replace rice in the Sacramento Valley, however, is poorly 

understood. 

In the rice growing region of California, soil type may play an important limiting factor in 

land use changes. Large portions of the Sacramento Valley were native wetland habitat before 

being reclaimed for agricultural production, and they maintain the soil attributes of a basin-

wetland ecosystem (Hill et al., 2006). Soil features including high clay content, shrink-swell, 

salinity, alkalinity, and poor drainage are widespread in this region limiting cropping options 

(Carter et al., 1994; Salvato et al., 2023). Previous studies have reported that more than half of 

the rice growing region is considered ‘rice only’, where production of other summer or winter 

crops is expected to fail due to properties of the soil (Carter et al., 1994; Hill et al., 2006). These 

soil attributes may limit the feasibility for alternative crops such as almonds and walnuts to be 
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easily planted in this region. There is a need to better understand the extent to which land use 

changes are occurring in the region, and the potential role soil properties might play in 

influencing land use shifts. 

The overall objective of this study was to explore the extent of land use shifts in the rice 

growing region based on an assessment of crop prices, drought, and soil properties using remote 

sensing and …... The specific objectives were (1) to quantify the timing and location of 

continuous rice fields, fallowing, and fields that were converted to perennial tree crops using 

remotely sensed data sources; (2) to evaluate the differences in soil properties between 

continuous rice fields and fields that have been converted to perennial tree crops using a machine 

learning framework; and (3) to examine the potential drivers and implications for these land use 

changes in the region. Results from this study will help inform the likelihood of major land use 

shifts in this region and provide a framework for science-based land management for other 

agricultural regions facing sustainability challenges.  

2. Materials and Methods 

2.1. Sacramento Valley 

The Sacramento Valley lies to the north of the Sacramento San Joaquin Delta in the 

Central Valley of California. It is approximately 450 km long and generally has a flat topography, 

bordered by the Sierra Nevada to the west and the Coast Range to the east. The climate is 

typically Mediterranean with hot, dry summers and mild, rainy winters. Two major rivers flow 

through the region, the Sacramento River and the Feather River. The Sacramento Valley receives 

most of its rainfall between November and March when > 95% of the rainfall occurs. Irrigation 

demand is primarily in April to September, and irrigation water is stored in reservoirs in the 

snowpack of the Sierra Nevada to meet this demand (Mehta et al., 2013).   
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Land use in the region is dominated by commercial rice production. Rice planting occurs 

in late April to early May, primarily using water seeding methods. Flooded irrigation is used to 

maintain water levels throughout the summer to manage weeds and promote even stand 

establishment. Periodically throughout the summer, water levels are lowered for herbicide 

application. Harvesting typically begins in late September and extends through October. 

Following harvest, fields are disked to incorporate straw and flooded with irrigation and 

rainwater to promote straw decomposition. Some farmers also receive government incentives for 

winter-flooding to provide beneficial habitat for overwintering waterfowl. 

 

2.2. Data Sources and Processing 

Land use maps were built for years 2008 to 2021 by integrating the Crop Land Data 

Layer (CDL), provided by the United States Department of Agriculture, with field boundary 

information provided by California Department of Water Resources. This process is described in 

detail in Salvato et al. (2023). In summary, the 30m raster based CDL is reclassified with DWR 

field boundaries, excluding pixels outside of the field boundary and mitigating misclassified 

pixels within the field boundary. Crop area estimates and change detection were performed on 

the field-level data. To examine land use changes in the rice growing region specifically, we 

limited the analysis to fields that were in rice at least one year of the 15-year data set, which 

includes about 268,950 hectares (13,120 fields). The region is home to hundreds of crop types, 

so to simplify our analysis and improve the accuracy (Lark et al.. 2017), we grouped the CDL 

classes together into the dominant crop types. This analysis focuses on the five groups that are 

most important to the historical land use changes across the region: ‘rice’, ‘fallow’, ‘walnut’, 

‘almond’, and ‘other perennial’. ‘Other perennial’ contains all the other perennial tree crop 
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classes in the CDL data set (pistachio, grape , pecan, pears, olive, orange, prune, avocado, 

pomegranate, nectarine, apricot, cherries, peaches, apples, plums, other citrus and other tree 

crops). ‘Annual crops’  are also a dominant crop type in this region, but they are outside the 

scope of this analysis. 

 Spatial soil data was obtained from the NRCS Soil Survey Geographic Database 

(SSURGO) (NRCS Soils, 2021). The process of selecting soil variables and aggregating them to 

the field level is described in Salvato et al. (2023). 

 To examine the role of drought on crop use changes in the region, drought information 

was obtained from the U.S. Drought Monitor (https://droughtmonitor.unl.edu/). The Drought 

Monitor is produced by the National Drought Mitigation Center at the University of Nebraska-

Lincoln, the United States Department of Agriculture, and the National Oceanic and Atmospheric 

Administration. Years when California experienced more than 20% extreme drought on an area 

basis were determined drought years for our analysis. According to this definition, years 2007 to 

2009, 2012 to 2016, and 2020 to 2021were determined drought years.  

 Crop price and crop yield data were obtained for the State from the USDA/NASS 

Quickstats database (https://quickstats.nass.usda.gov/). Mean annual price data were obtained for 

years 2000 to 2021 and were adjusted for inflation to 2021 dollars. Crop yield for almonds and 

walnuts is only available at the state level, so state level yield data was used for this analysis. 

Crop yield data were obtained for years 2012 to 2021 and 10-year average yields were 

calculated. 10-year average crop prices were also calculated and multiplied by the average yield 

value to determine 10-year average price on a per hectare basis.  

 

2.3 Comparing soil properties of rice fields and perennial fields. 

https://droughtmonitor.unl.edu/
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2.3.1 Data Preparation 

To compare the soil properties of continuous rice fields with fields that were converted to 

perennial tree crops, a binomial classification modelling approach was used. The two classes 

were established as follows: ‘Rice’ fields were in rice at least 12 of the 15-year data set and were 

never in perennial crop (n = 8,034; 164,635 hectares), ‘perennial’ fields were any field in the 

data set if almond, walnut, or other perennial was planted during the study period (n = 1,097; 

17,996 hectares).  

 Data from these two classes were randomly split into training and validation subsets 

(75% to train and 25% to validate), and a random forest (Breiman, 2001) classification model 

was trained for binomial classification for ‘rice’ and ‘perennial’ fields based on soil variables. 

Random forest is an ensemble learning method that builds independent decision trees each with a 

unique bootstrap sample of the training data, reducing the variance associated with single trees 

and improving prediction accuracy (Liaw and Wiener, 2005). For classification purposes used 

here,  output of the model is the class selected by the most trees.  

 

2.3.2 Model Assessment 

 Model assessment was performed on the remaining validation data set using precision 

(P), recall (R) and F1 metrics, which we define as: 

 

𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (1) 

 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 
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𝐹1 = 2 
𝑃 𝑥 𝑅

𝑃+𝑅
   (3) 

 

 

 Where Tp is the number of fields correctly classified as perennial fields, Fp is the number 

of fields incorrectly classified as perennial fields, and FN is the number of fields incorrectly 

classified as rice fields. F1 measures classification accuracy using the harmonic mean of 

precision and recall. 

 

2.3.2 Model Set Up 

 We recognize that there may be many unobserved factors that drive the spatial 

distribution of crop type in this region. To address potential issues of spatial autocorrelation in 

our modelling process, a spatial cross validation approach was used. In this approach, the 

training data was split into ten cross validation groups using k-means clustering of the spatial 

coordinates of the field center. This process was implemented using R’s ‘spatialsample’ package 

(Silge, 2021). Spatially cross validated models have better performance when predicting to new 

data or for determining the most important causal predictors for ecological data (Roberts et al., 

2017).  

 Next, model parameters were tuned. F1 was static after 150 trees, so 150 trees were used 

in the modelling process. To define the number of variables randomly selected at each split in a 

tree (mtries), and the number of data points in a node required for the node to be split again 

(min_n), a hyperparameter grid search approach was used, optimizing for F1. Mtries = 3 and 

min_n = 27 were selected because that combination yielded the highest F1 score. Finally, 

because rice fields were 8-fold more prevalent than perennial fields in our training data, the 
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minority class (perennial) was up sampled randomly at a 20% sampling ratio. Woznicki et al., 

(2019) and Salvato et al., (2023) found that up sampling at 20% was optimal because it led to 

higher recall. 

 Soil variables were also pruned using the same approach explained in Salvato et al. 

(2023). In summary, redundant soil variables were removed if highly correlated (r > 0.8), and 

soil variables that did not improve the F1 score were also removed. The remaining soil variables 

included in the modeling process were pH, clay content, electrical conductivity (EC), sodium 

adsorption ratio (SAR), organic matter content (OM), saturated hydraulic conductivity (Ksat), 

irrigated capability class (ICC), and soil order. 

 We used variable importance (VI) and partial dependence information to interpret the 

model results. Variable importance, which can help determine the most important soil variables 

in the model prediction, was computed using AUC as the metric after permuting each predictor 

variable (Greenwell et al., 2018). To establish a clear ranking of variable importance, the model 

was re-executed randomly 200-fold and variable importance was computed for each model 

repetition. Variables were ranked based on their mean effect on AUC. Partial dependence plots 

(PDP) were used to visualize the effect of certain soil variables on the model outcome (yhat) 

while accounting for the average effect of other predictors in the model(Hastie et al., 2009). 

PDPs were built in R’s ‘DALEXtra’ package (Maksymiuk et al., 2020).  

 

3. Results/Discussion 

3.1 Trends in Crop Area 

Rice is the dominant crop in the study area, varying  between 150,000 to 225,000 ha. From 

2007 to 2013 rice area was consistently high (~225,000 ha), however during drought periods rice 
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area decreased. During the 2012 to 2016 drought, there were two years when rice area was near 

175,000 acres. During the drought period in 2021, rice area decreased to ~160,000 ha. 2017 was 

not a drought year, however rice area was relatively low (~175,000 ha) due to late spring rain 

that led to delayed planting or fallowing of many fields (confirmed by conversations with 

growers). On average, rice area decreased throughout the study period. Mean rice area was 

31,500 ha lower in 2013 to 2021 than in 2007 to 2013.  

 

Fallow area varied between 12,000 to 70,000 ha. Fallow area was consistently low until 2013 

(less than 25,000 ha) and increased during the 2012 to 2016 drought (up to 70,000 ha). This 

drought was the most severe drought in recorded history, setting a 12-month average 

precipitation record (Diffenbaugh et al., 2015) and the lowest snowpack in 500 years 

(Belmecheri et al., 2016), leading to water use restrictions that likely led to increased fallow 

land. Rice and fallow area show inverse patterns, decreases in rice area tend to show equivalent 

increases in fallow area. Fallowing rice fields in the region has led to decreased agricultural 

revenue but allows flexible water management for the region (Medellín-Azuara et al., 2016). 

Fallowing also may incentivize the conversion to other crops, as idle land is available for larger-

scale field preparation throughout the summer season. 

Almonds, walnuts, and other perennial crops combined totaled about 1.2% of the study area 

until 2013. After 2013, almond and walnut acreage started to increase in the region, while other 

perennial acreage remained low (Figure 1). In 2021, 2.9 and 3.2 of the region had been converted 

to almonds and walnuts, respectively (7,800 and 8,600 ha, respectively), while other perennials 

still occupy less than one percent of the study area. Almond and walnut area started to increase in 

the study region throughout the 2012 to 2016 drought, the most severe drought on record. This 
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may be because rice farmers were fallowing many rice fields due to water restrictions, which 

could give them an opportunity to do field prep for almonds or walnuts, which require relatively 

intensive field-prep due including deep ripping to break up hardpans, site specific leveling to 

facilitate efficient irrigation, and installing new irrigation systems such as drip or micro-

sprinkler. Furthermore, almond and walnut crops have minimal water requirements when the 

trees are smaller (Egea et al., 2009), which may have been an incentive to convert to these crops 

during drought in hopes that of higher economic returns once water availability increases.  

On average, almonds are the most water intensive crop in California, requiring 340,000 ha-m 

of water on average (Schauer and Senay, 2019). Walnuts use considerably less water (111,000 

ha-m). Rice is somewhere in the middle, utilizing 219,00 ha-m annually. Both almond and 

walnut growers have relatively inelastic demand for water. They require are 4-6 years of start-up 

investments that can total $46,500 to $65,000 per hectare (UCANR Cost Studies).  Recouping 

these investing’s could require three to five years of high yields and high prices. This could be 

creating an incentive to continue irrigating perennial tree crops such despite water use 

restrictions, a maladaptation to drought. Across the entire central valley, increases in almond and 

walnut plantings has led to increased allotment of the state water budget to these crops relative to 

annual crops including rice, which seen a decrease in planted area during drought (Gebremichael 

et al., 2021) and an increase in water efficient irrigation techniques leading to water savings per 

harvested area (Schaeur et al., 2019). Furthermore, increased water demand to maintain perennial 

tree crops such as almonds has led to increased ground water over drafting in the Southern 

Central Valley (Gebremichael et al., 2021). While deficit irrigation techniques for almonds or 

walnuts may be a potential solution (Moldero et al., 2021), feasibility is still poorly understood 

and is site specific (Goldhamer and Fereres, 2017).  
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Spatially, almond and walnut plantings in the study area occurred on the perimeter of the rice 

growing area (Figure 2). Almond plantings are clustered in the North and West of the region, 

while walnut tend to be in Colusa and Sutter counties, where the Feather and Sacramento Rivers 

run through the rice growing region. In the interior basins of the Sacramento Valley, there are no 

almond, walnut, or other perennial plantings. 

3.2 The Role of Crop Prices 

Statewide prices for rice increased over the past twenty years, however between 2010 and 

2021 the price remained consistent (between $300-$400 per metric ton) (Figure 2). Almond and 

walnut prices peaked in 2014-2015. On a 10-year average basis (Table 1), almond and walnut 

prices ($ per metric ton) were 14- and 6-fold, respectively, higher than rice. Per hectare, almond 

and walnut prices were 3.5- and 4.5-fold, respectively, greater than rice. Both almonds and 

walnuts require substantial startup costs to get orchards established ($16,100 over six years for 

almonds and $23,100 over seven years for walnuts) (UCANR Cost Studies). Almonds and 

walnuts also have higher maintenance costs per hectare, $5,480/ha for rice, compared to 

$13,100/ha for almond and $14,300/ha for walnut. However, after excluding startup costs, annual 

net return above total costs can be up to 10- and 12-fold greater for high yielding almonds and 

walnuts, respectively, compared to high yielding rice.  

Our findings are consistent with other work showing the attractive revenue potential for 

almonds and walnuts has led to increasing cultivation of these two crops across the entire State, 

including the Sacramento Valley (Gebremichael et al., 2021). Almond and walnut prices are high 

because these crops have large international markets and consistent demand due to favorable 

consumer preferences for nuts and the promotion of dietary benefits by marketing boards, trade 

associations, and government programs (Ajibade and Saghaian, 2022). Almonds specifically are 
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recognized as one of the most valuable crops not only in California but for the entire US (CDFA, 

2020). Walnuts are also known to generate significant revenue in the long run; however, it is 

possible to observe a drop in revenue some years due to the alternate-bearing characteristics of 

these crops (CDFA, 2020; UC Davis, 2020). Both almond and walnut prices decreased since 

2014, which may be due to increased production and the negative correlation between historical 

production and price of perennial crops in California (Lobell et al., 2006). Declining prices 

which may have potential implications for future land use changes. Climate change could lead to 

yield penalties for perennial tree crops including almonds and walnuts, in some cases up to 40% 

losses depending on crop variety and the severity of climate change (Lobell et al., 2006). 

Coupled yield and price decreases could have implications for land use shifts in the near future. 

Recently, declining walnut prices has led to walnut farmers ripping out productive walnut 

orchards to look for alternative crops (https://californiaagtoday.com/high-heat-low-demand-hurt-

walnut-crop/). This indicates that the relative instability of these markets under a changing can 

have larger implications for growers who invest in the conversion from annual crop production 

to perennial tree crop production. 

 

3.3 The Role of Soil Properties 

 The model examining differences in soil properties of continuous rice fields and rice 

fields converted to perennials achieved an F1 score of 0.60 after hyperparameter tuning 

(precision was 0.55, and recall was 0.67) (Table 2). The F1 score indicates that soil properties are 

meaningful predictors of these two land uses. The recall score of 0.67 indicates that the model 

correctly classified 67% of the fields in perennial tree crops based on soil characteristics. This 

performance is consistent with recent efforts using soil variables to predict continuous rice and 

https://californiaagtoday.com/high-heat-low-demand-hurt-walnut-crop/
https://californiaagtoday.com/high-heat-low-demand-hurt-walnut-crop/
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rotated rice in the region (Salvato et al., 2023), and with other large-scale land use modeling 

using soil predictor variables. (Socolar et al., 2021; Woznicki et al., 2019). Soil properties are not 

the only driver of land use decision making in the region (Rosenberg et al., 2022; Salvato et al., 

2023), and it is also possible to manage some of the challenging soil properties. These reasons 

may explain the moderate strength of our F1 score. However, the rice growing region has a high 

diversity of soil types including challenging soil conditions for successful production of non-

flooded crops (Hill et al., 2006; Salvato et al., 2023), and conversations with growers also 

indicate that soil biogeochemical properties can be a key factor in land use decision making in 

this region (Rosenberg et al., 2021)  

 To assess the relative importance of soil variables in predicting where continuous rice 

fields may be converted to perennial tree crops, we computed the mean decrease in AUC when 

each soil variable was permuted from the model (Greenwell et al., 2018). This process was 

repeated 200 times to stabilize the variable importance scores. In figure 4, the violin plot shows 

the distribution of variable importance scores. The box and whisker plot shows the median and 

interquartile range of the 200 scores. Clay content (%) was the most important soil variable, 

followed by ICC. The implications of clay content and ICC on rice or perennial crop production 

are explained below. Soil pH, EC, and OM were the next most important, and were all closely 

ranked. Soil order was the least important soil variable included in the model.  

 The partial dependence plot for clay (Figure 5A) indicates that higher clay content values 

increase the likelihood of continuous rice. The density plot (Figure 5B) shows that rice may be 

grown on a wide range of soils with varying amounts of clay. Perennial fields, however, are  

found where the  clay content is less than 40%. High clay content can lead to poor soil tilth 

(Schjønning et al., 2012), poor workability (Obour et al., 2017), and poor soil drainage (Levy 
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and Van Der Watt, 1988), making production of non-flooded crops difficult. Clays in the 

Sacramento Valley also have high shrink-swell, meaning they shrink when dry and swell when 

wet and are difficult to cultivate(Devine et al., 2022). For rice production however, these soil 

attributes are ameliorated with flooding (Ponnamperuma and Kozlowski, 1984), allowing high 

productivity without costly management efforts. Furthermore, high clay content impedes 

drainage, making the fields relatively water efficient for flooded rice production.  ICC was the 

second most important variable in the model (Figure 4). ICC is a land use classification that 

describes the general suitability of soils for most field crops where irrigation is used (Soil Survey 

Staff, 2017). ICC includes chemical, physical, and biological soil parameters with the descriptive 

framework. Soil properties such as EC, pH, and OM, which are also included in the model 

individually, are factors in ICC. The relative importance of ICC over these parameters 

individually may indicate that the confluence of multiple soil properties used in ICC are 

important in land use decision making, while the soil properties individually may be easier to 

manage.  

Spatially, fields with high clay content are in the interior of the rice growing region (Figure 

6), where there are also no perennial tree plantings (Figure 2). This is consistent with the region’s 

geography as described by Hill et al. (2006), soils where rice is typically grown were formed 

from fine sediment deposited by the two major rivers and several tributaries producing clay and 

silty clay soils. The basin soils have clay content ranging from 40 to 60%, while the older terrace 

soils on the perimeters tend to have loamy topsoil, expanding the potential range of crop 

selection. Of the 159,000 ha of continuous rice fields in the model data, 56,200 ha have clay 

content less than 40%. This indicates that clay content may be a significant limiting factor on the 

expansion of perennial tree crops into bulk of the rice growing area of California. Soil type 
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factors other than clay influence the distribution and prevalence of non-flooded agriculture in the 

region, including pH, salinity, and drainage (Salvato et al., 2023, Rosenberg et al., 2022; Hill et 

al., 2006). Previous studies have indicated that on [120,000 hectares] it would be very difficult to 

grow any crop other than rice (Hill et al., 2006; Carter et al., 1994). Previous studies have also 

indicated that walnut rootstock may better tolerate wet and poorly drained conditions than 

almond rootstock  (Ganot and Dahlke, 2021; Vahdati et al., 2021), which may explain why 

walnuts are more commonly found along the rivers in this region (Figure 2).  

 

4. Conclusions 

The rice growing area has demonstrated its utility as a key flexibility in water resource 

management for the region, as rice area is routinely fallowed during drought periods when water 

restrictions are tightened. The rice growing region also provides critical habitat for waterfowl 

and other wetland aquatic species in a region that was formerly a native wetland habitat. A shift 

in cropping practices toward almond and walnuts in the Sacramento Valley is likely driven by 

high crop prices despite increasing drought severity. However, our results indicate that soil 

properties may play a limiting role in this conversion. Water restrictions may also limit the 

expansion of perennial tree crops into the region, as they have higher overall water use per 

hectare than rice. Results from this research indicate that both shifts in the size of irrigated land 

and a change in the relative proportion of crop types are key factors in water resource 

management. Furthermore, this research highlights the importance of including biophysical 

considerations such as soil characteristics in ongoing efforts to identify and implement feasible 

water and land management adaptations to climate change. 
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