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Measurement and models accounting for cell
death capture hidden variation in compound
response
Song Yi Bae1, Ning Guan 2, Rui Yan 3, Katrina Warner 4, Scott D. Taylor5 and Aaron S. Meyer 5,6,7,8

Abstract
Cancer cell sensitivity or resistance is almost universally quantified through a direct or surrogate measure of cell
number. However, compound responses can occur through many distinct phenotypic outcomes, including changes
in cell growth, apoptosis, and non-apoptotic cell death. These outcomes have divergent effects on the tumor
microenvironment, immune response, and resistance mechanisms. Here, we show that quantifying cell viability alone
is insufficient to distinguish between these compound responses. Using an alternative assay and drug-response
analysis amenable to high-throughput measurement, we find that compounds with identical viability outcomes can
have very different effects on cell growth and death. Moreover, additive compound pairs with distinct growth/death
effects can appear synergistic when only assessed by viability. Overall, these results demonstrate an approach to
incorporating measurements of cell death when characterizing a pharmacologic response.

Introduction
Quantifying cellular response to therapeutic compounds

is essential to understanding their mechanisms of action
and assessing therapeutic efficacy1–3. In the case of cancer
treatments, and often with other diseases, drug activities are
evaluated by quantifying the number of live cells after a
short period using direct or surrogate measurements4,5.
However, quantities beyond the number and viability of
cells provide valuable information about the cellular
response. Along with altering cell proliferation, promoting
cell death is another important index of drug efficacy6,7.
Incomplete eradication of drug-susceptible malignant cells
allows the survival of drug-tolerant persister cell popula-
tions that can develop resistance by multiple routes8–10.
Moreover, cell death can occur via a variety of mechanisms,
including apoptosis and necroptosis, and selection among

these outcomes can potently modulate cancer immuno-
genicity11. Limited understanding of these underlying cel-
lular responses further complicates the assessment of drug
combinations. Combination treatments are typically eval-
uated for their ability to enact greater effects than either
compound alone12, but typically only by quantifying
viability.
Here, we show that directly measuring both cell growth

and death can provide valuable information for inter-
preting the response of cells to single and combination
treatments. We propose a framework for quantifying drug
response that accounts for the compound-induced
changes in rates of cell growth and death. This
approach reveals extensive differences in cell response,
otherwise hidden by simply quantifying cell number. Of
course, trade-offs exist for the breadth versus depth of
analysis that can be performed to characterize cell-
compound response. We show that end-point analysis
preserves much of the distinct outcomes we observe for
kinetic measurements while allowing similarly high-
throughput analysis to those of live-cell number surro-
gates. These results demonstrate the need for and an
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approach to more precisely quantify the nature of cell-
compound response and interactions.

Results
Viability alone is insufficient to distinguish cell growth and
death effects
To test whether growth and death are confounded in live-

cell measurements, we first explored the uncertainty in a
model using only these measurements (Fig. 1a). We fit
typical dose–response measurements of H1299 non-small-
cell lung cancer cells to the chemotherapy doxorubicin (Fig. 1b)
to a model incorporating both cell growth and death. We
assumed no cell death in the absence of drug to show the
best-case scenario of assessing drug response. This model
was identifiable for the live-cell number (Fig. 1c), and the
IC50 and Emax of compound effect on cell viability were
narrowly defined as 21.4 ± 1.0 nM and 26.7 ± 3.4% (90%
confidence interval, CI), respectively. In contrast, the
model showed large uncertainty in inferred cellular
growth or death rates (Fig. 1d, e). At the maximum dose,
the predicted growth rate ranged 0.33–0.71 day−1 and
death rate 0.02–0.40 day−1 (90% CI). The large uncer-
tainty in outcome was due to a strong correlation in the fit
values of drug effect on the growth and death rates
(Fig. 1f). This shows that given only live-cell number one

is incapable of distinguishing between reductions in cel-
lular growth rate and increases in cell death. The number
of divisions and cell deaths can vary largely while similarly
fitting live-cell measurements. Moreover, the number of
cell divisions and cumulative dead cells can differ drasti-
cally while resulting in the same cell viability (Fig. 1g).

High-throughput measurements of cell death quantify
compound response
To quantify pharmacologic response, we extended our

experimental measurements to those of cell death. While
quantifying the number of cells over time by phase, we used
an Annexin V probe to measure phosphatidylserine expo-
sure during apoptosis and a membrane-impermeable DNA
dye, YOYO-3, to measure permeabilized apoptotic and
dead cells (Fig. 2a)13,14. The areas occupied by cells,
Annexin V, and YOYO-3 signal in each image were then
analyzed to determine the total, apoptotic, and dead cells
relative to the whole image area. We evaluated this real-
time imaging method by measuring the response to dox-
orubicin (DOX) in H1299 cells. DOX strongly reduced the
number of cells (Fig. 2b, top), as seen before (Fig. 1b). At the
same time, we observed an increase in Annexin V while
YOYO-3 increased minimally throughout the assay. Fitting
these data to a model of cell growth and death (Fig. 2c), we

Fig. 1 Confounding effects of cell growth and death on drug-response measurements. a Schematic of drug response assessed by calculating
relative changes in live-cell number after drug treatment (gray box), and cell growth and death rate that underlie the changes (blue box). Both
growth and death rates were assumed to have a Hill curve relationship to drug concentration. b Cell viability of H1299 cells treated with doxorubicin
(DOX) at varying concentrations for 72 h (N= 3). c Model fit to live-cell measurements. d Model fit and confidence intervals for the predicted growth
rate of cells after fitting to measurements of live cell number. e Model fit and confidence intervals for the predicted death rate. f Model fit posterior
samples of DOX’s effect on growth versus its effect on cell death. g Model predictions of the cumulative number of dead cells and cell divisions
throughout the experiment for a constant drug effect of reducing cell viability by 75%. X-axis indicates the relative ratio in magnitude of growth
versus death drug effect. Y-axis indicates the varying quantity of predicted number of cell divisions or cumulative dead cells per starting cell.
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observed a strong decrease in the inferred growth rate (div),
and only a modest increase in cell death rate (deathRate;
Fig. 2d, top). We next compared these measurements to
those with another chemotherapy, vinorelbine (NVB), again
observing a dose-dependent decrease in the number of live
cells (Fig. 2b, bottom). At the same time, we observed a
large increase in both Annexin V and YOYO-3 signal. This
was reflected in our subsequent analysis, inferring an
increase in the death rate (Fig. 2d, bottom). The fraction of
cells dying through apoptosis (apopfrac) was also inferred to
be lower in NVB as compared with DOX treatment (Fig.
2d). While kinetic measurements provide a wealth of
information, end-point measurement is more amenable to
high-throughput experiments. We confirmed that our

analysis provided qualitatively similar results using only the
first and last measurements in each experiment, demon-
strating that cell growth and death can be quantified using
either kinetic or endpoint measurements (Supplementary
Fig. S1).
To independently verify these opposing outcomes upon

DOX or NVB treatment, we used a carboxyfluorescein
succinimidyl ester (CFSE)-based proliferation assay to
verify the distinct growth rate effects inferred by our
analysis. We measured CFSE intensity of untreated cells
every 24 h starting from a day after cell labeling (Fig. 2e,
left). The detected intensity over time was used to
estimate the number of times each cell had divided.
Consistent with the inferred growth rates of our model,

Fig. 2 High-throughput measurements of cell death accurately quantify compound response. a Representative images from live-cell imaging
and processing. Scale bar indicates 300 μm. b Experimental measurements of doxorubicin (DOX, top) and vinorelbine (NVB, bottom) response in
H1299 cells over time. Phase indicates total cell confluence. Each line represents the mean of triplicate measurements for individual drug dose over
time, and shaded areas show the ranges of measurements. c Schematic of the cell growth-death model. The live (L) cells grow at the rate of division
(div), and die at the rate of death (deathRate). The model considers two fractions of cells in cell death: cells dying through apoptosis (apopfrac) and
other modes (1–apopfrac). Cells in early apoptosis (A) proceed into late apoptosis (DA) by losing membrane integrity at rate d. d The model predicted
div, deathRate, and apopfrac from the data represented in (b). Violins show posterior of model after fitting. e Cell division analysis of CFSE-labeled
H1299 cells by flow cytometry. The distribution of cells according to CFSE fluorescence intensity on indicated days for untreated cells (left) or after
indicated treatments (right) for 72 h are shown in boxplots with median, lower, and upper quartiles. Median CFSE intensities of 2–4 days post-CFSE
labeling in left graph are marked as dashed lines on the right graph. f The number of generations for indicated conditions calculated by median
fluorescence intensities from CFSE-based assay and model-predicted cell growth rates from kinetic and end-point measurements. g Western blot of
cleaved-caspase-3 (cCASP3) after treating H1299 cells with indicated drug doses for 24, 48, and 72 h.
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DOX-treated cells distributed more toward higher CFSE
intensity in a dose-dependent manner, implying fewer cell
divisions than with non-treated cells (Fig. 2e, right). In
contrast, the distribution of NVB-treated cells remained
more similar to non-treated cells. Our inferred cell growth
rates and CFSE measurements were overall consistent
(Fig. 2f).
To validate the inferred cell death rates, we measured

the induction of cleaved caspase-3, an apoptotic marker,
after treatment with DOX or NVB (Fig. 2g). After 24-h
treatment, cleaved caspase-3 was detected in NVB-treated
cells, but not DOX-treated cells. Both drugs induced the
caspase-3 cleavage by 48-h treatment. These observations
were consistent with the inferred cell death rates, indi-
cating that NVB induces faster cell death than DOX.
Interestingly, the level of cleaved caspase-3 after 72-h
treatment was lower in NVB-treated cells compared with
DOX-treated cells. This may be explained by the lower
inferred apoptosis fraction in NVB treatment while the
cell death rates increased (Fig. 2d) implying an increase in
non-apoptotic cell death, such as caspase-independent
cell death. Alternatively, a large fraction of NVB-treated
cells are dead after 72 h. Phosphatidylserine (to which
Annexin V binds) is irreversibly externalized to the cell
surface by caspase-dependent scramblases during apop-
tosis, in contrast, it is not exposed by caspase-independent
cell death15,16, and NVB may induce caspase-independent
cell death as well as apoptosis. DOX and NVB are known
to operate through distinct mechanisms—inducing
double-stranded breaks or preventing microtubule poly-
merization, respectively. As a result, each compound has a
differing dependency on p53 status and leads to arrest in
distinct cell cycle phases, supporting that each might
engage distinct cell death programs17–19. Collectively,
measuring and analyzing phase, Annexin V and YOYO-3
signals can quantify both the growth and death rate effects
of drugs on cells.

Targeted compounds also display distinct phenotypic
consequences
We next evaluated whether the growth-death model can

dissect the response of cancer cells to targeted com-
pounds as well. We treated a non-small cell lung cancer
cell line PC9 with seven different targeted drugs whose
effects on cell growth and death we expected to vary
according to their mechanisms of action. We also used
paclitaxel, a chemotherapeutic drug that is widely known
to interfere with the cell cycle resulting in cell death and
reduced proliferation, for comparison. The total, apop-
totic and dead cell measurements from each compound
treatment were diverse (Supplementary Fig. S2), and these
differences were reflected in the inferred cell division and
death rates (Fig. 3; Supplementary Fig. S3).
We were able to classify the tested compounds into

three types: a compound that (1) both inhibits cell
division and induces cell death, (2) only inhibits cell
division, and (3) only induces cell death. As expected,
paclitaxel fell into the first type by simultaneously
exhibiting strong cell growth suppression and death.
Similar to paclitaxel, the PI3Kɑ inhibitor BYL719, the
pan-PIM kinase inhibitor PIM447, the EGFR tyrosine
kinase inhibitor erlotinib, and CDK7/12 inhibitor THZ1
were grouped into the first type. In contrast, both OSI-
906, a dual IGF-1R/INSR tyrosine kinase inhibitor, and
binimetinib, a MEK1/2 inhibitor, mainly decreased cell
division rates. OSI-906 inhibited the division rate as
effective as paclitaxel within the range of tested doses.
LCL161 is a small molecule SMAC mimetic that
antagonizes multiple inhibitor of apoptosis (IAP) family
proteins and augments apoptosis induction. Consistent
with its mechanism of action, LCL161 showed a minimal
effect on cell division while strongly enhancing cell
death. Taken together, the growth-death model allows us
to interpret the response of cancer cells to different
targeted drugs in terms of cell division and death rates,

Fig. 3 Comparing drug response for targeted compounds with distinct mechanisms of action. Model predicted cell division (a) and death
rates (b) for seven targeted and one chemotherapy compound. Measurements (phase, Annexin V, YOYO-3) are shown in Supplementary Fig. S2. The
mean value of the model posterior for each dose is plotted. c Cell division and death rates are plotted together. See Supplementary Fig. S3 for the
probability density of each compound’s inferred div, deathRate and apopfrac. The black dot indicates the control rates.
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which otherwise would not be revealed from overall
phenotypic changes without a panel of experiments.

Compounds with disparate phenotypic outcomes can
appear synergistic when only analyzed by viability
Based on the changes in rate parameters by targeted

drugs in Fig. 3, we wondered how drugs with divergent
phenotypic effects might influence cell behavior when
combined. We selected one compound from each of the
three groups identified from Fig. 3; PIM447 affected both
cell division and death rates, OSI-906 affected only cell
division, and LCL161 affected only cell death. Combina-
tion treatment between OSI-906 and LCL161 or PIM447
was quantified. Each compound’s effect closely matched
those we expected from the single-agent treatments
(Figs. 3 and 4a, f; Supplementary Fig. S4a, b).
Intriguingly, the nature of each drug interaction was

dependent upon whether we took cell death into account.
A Bliss additivity model using just cell confluence
indicated that both combinations led to a synergistic
interaction (Fig. 4b, g). However, we also used our com-
bination treatment data to fit a model in which both

growth and death rates respond based on a Hill curve
dose–response relationship (Supplementary Fig. S4a, b). A
model assuming Bliss additivity for the growth rate and an
additive interaction for the death rate fit our measure-
ments much more closely, despite also having to account
for both phase and cell death measurements (Fig. 4c, h).
Investigating the source of this discrepancy, we noted that
the perceived synergy arose with an increase in cell death
(Fig. 4b/g vs. d/i). We were surprised by the difference in
outcomes between each model as the IC50 and Hill
coefficient of the latter model (Fig. 4c, h) are assumed to
be equivalent for both phenotypes. However, we expect
that the difference arises from the very distinct Emax

values for growth and death phenotypes (Fig. 4e, j). These
terms do not simplify into one maximal effect term when
entered into an exponential growth model accounting for
both growth and death (methods), indicating a complex
interaction between each phenotype’s effects. Indeed, our
model closely matched the results of just analyzing via-
bility for co-treatment with binimetinib and OSI-906,
which both preferentially inhibit growth (Fig. 4k–o).
Therefore, we conclude that not only are measures of cell

Fig. 4 Additive interactions can appear synergistic when only assessed by viability. a, f, k Heatmap of percent confluence for combinations of
LCL161 (a), PIM447 (f), or binimetinib (k) with OSI-906 at 72 h. Color scale indicates percent confluence. b, g, l Heatmap of deviation from Bliss
additivity for measurements in a, f, k. Color scale indicates deviation from additive prediction on a scale of 0–1. c, h,m Heatmap of deviation from the
additive model incorporating both growth and death processes for phase measurements. Color scale indicates deviation from additive prediction on
a scale of 0–1, where positive and negative values indicate drug synergy and antagonism, respectively. d, i, n Heatmap of percent image area positive
for Annexin V signal at 72 h. e, j, o Fit growth and death rate Emax for each drug. Fits come from the additive interaction model incorporating both
processes. The experimental measurements are shown in Supplementary Fig. S4.
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death an important component of pharmacologic
response but that ignoring cell death can lead to spurious
conclusions of drug synergy.

Discussion
More than half of preclinical agents entering clinical

trials fail to be approved due to lack of efficacy20,21, and
the success rate for clinical approval of oncology drugs
remains low as 13%22. These statistics reveal the limita-
tion in current preclinical experimental models and ana-
lysis in predicting clinical outcomes. Recently, new
strategies of evaluating drug response, such as patient-
derived xenografts and organoids, have been introduced
to more closely match patient’s tumors to effective com-
pounds23–25. Two major phenotypic changes we can
observe as cellular responses to drugs are cell growth and
death. Each response differs according to the adminis-
tered drug and contributes to the overall effect. In this
paper, we demonstrate that cell viability measurements
alone cannot distinguish these phenotypic outcomes (Fig. 1).
These responses can strongly influence clinical out-
come11. Thus, we propose a high-throughput assay that
can be paired with analysis to quantify both the growth
and death effects of drug response for better estimation of
drug efficacy. Applying this analysis, we identify that
compounds can have distinct outcomes by specifically
driving growth, death, or mixed effects (Fig. 3). Cell death
can also take distinct forms, which can easily be quantified
as relatively more or less apoptotic (Fig. 2). Furthermore,
additive drug interactions in terms of cell growth or death
can appear synergistic when only assessed through cell
viability (Fig. 4). Overall, these results show that cytotoxic
drug response should be assessed by the distinct pheno-
types of cell growth and death, and then demonstrate an
approach to do so.
Separating these phenotypic outcomes provides future

opportunities for cancer treatment. A more detailed view
of phenotypic drug response should enable treatment
optimization both in a population- and patient-specific
manner26. For maximally effective cancer treatment,
single or combination treatments should likely modulate
both phenotypes. Purely cytostatic therapy leaves drug-
persister cells able to undergo genetic or epigenetic
changes giving rise to resistance9. On the other hand,
cell death may not overcome the replenishment of tumor
cells at toxicity-limiting doses. Among the targeted
therapies we evaluated, an EGFR tyrosine kinase inhi-
bitor erlotinib exhibited strong inhibition on cell division
while modest induction on cell death. Consistent with
our result, recent studies on mechanism of erlotinib
resistance reported that drug-tolerant colonies maintain
throughout drug exposure in quiescent state and expand
over long period of time acquiring resistance8,10. A
combination of erlotinib with a cell death-inducing

agent may therefore prevent the survival of drug-tolerant
subpopulation cells.
Our analysis results in drug combination also provided

a plausible cause for frequent failure of preclinical regi-
mens in clinical trials. The insulin-like growth factor-1
receptor (IGF-1R) signaling pathway is a well-
characterized pathway involved in cancer cell survival
and promoting drug resistance27. IGF-1R inhibitors have
been validated for their efficacy in various cancer types as
mono- and combined therapies in preclinical studies28–30.
Despite promising preclinical evidence, only limited
responses were observed in clinical trials31–34. From our
drug combination experiments with the IGF-1R inhibitor
OSI-906, we discovered that the analysis by cell viability
alone found a strong synergistic interaction, while our
analysis accounting cell growth and death identified an
additive response. Thus, synergy observed in preclinical
assays may have been due to the nature of the assay
moreso than molecular synergy.
This more detailed analysis of phenotypic response can

also help to optimize the microenvironment and host
immune response to cancer. For example, host response is
potently influenced by the route of cell death35,36. These
methods can be applied not only in vitro but also in more
complex, translationally relevant models, such as orga-
noids and in vivo37. By doing so, treatments could be
tailored to not just maximally reduce cell viability but
optimize cytotoxicity and cell death programs to mount a
host response38.
The approach here will benefit from improvements in

the single-cell resolution of drug response and more
exactly distinguishing cell death programs. Cell-to-cell
variability impacts both drug response and the develop-
ment of resistance39, and single-cell technologies have
enabled in-depth molecular analyses of this hetero-
geneity40,41. Within a tumor population, drug treatment
can dynamically shift the balance of variability present,
and so dynamic information will likely be critical8,42.
Automated cell tracking would enable drug-response
quantification, with single-cell resolution, while preser-
ving the lineage relationship of cells43,44. Finally, while we
distinguish relatively more or less apoptotic cell death
here, various cell death programs exist45. Improved
methods to visualize distinct forms of cell death in
populations of cells will allow distinct forms of cell death
to be separately quantified46. The diverse outcomes
observed in our study suggest that deeper phenotypic
characterization will uncover more differences between
compounds in their elicited drug responses.

Materials and methods
All analysis was implemented in Python, and can be

found at https://github.com/meyer-lab/ps-growth-model,
release 1.0.1 (https://doi.org/10.5281/zenodo.3742188).
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Compounds and cell culture
Doxorubicin, OSI-906, BYL719, binimetinib, and pacli-

taxel were purchased from LC Laboratories (Woburn, MA).
PIM447 and LCL161 were obtained from Selleck Chemicals
(Houston, TX). Vinorelbine was purchased from Sigma-
Aldrich (St. Louis, MO). THZ1 was purchased from Cay-
man Chemical Company (Ann Arbor, MI). Human lung
carcinoma PC9 cells were obtained from Sigma-Aldrich,
and H1299 cells were provided from ATCC (Manassas,
VA). All cell lines were grown in RMPI-1640 medium
supplemented with 10% fetal bovine serum and 1%
penicillin–streptomycin, at 37 °C and 5% CO2.

End-point cell viability assay and time-lapse microscopy
For the end-point cell viability assay in Fig. 1, cells

were seeded at 1.5 × 103 cells per well in 96-well plates
and cultured overnight. Then, cells were treated with
doxorubicin. After 72 h, CellTiter Glo reagent (Pro-
mega, Madison, WI) was added to each well, and
luminescence was detected according to the manu-
facturer’s instructions.
Cells were seeded as indicated above for the time-lapse

measurements. The next day, each indicated treatment
was added, along with IncuCyte Annexin V Green
Reagent (Essen BioScience, Ann Arbor, MI) and 300 nM
YOYO-3 in media containing 1.25 mM CaCl2. Cells were
then cultured and imaged within the IncuCyte Zoom or
S3 (Essen BioScience) every 3 h. Four fields of view were
taken per well. Fluorescence images were manually thre-
sholded, and the fraction of image area with Annexin V
and/or YOYO-3 signal was quantified using IncuCyte
Zoom or S3 software (Essen BioScience). Finally, the
fraction of area occupied by cells was analyzed by
brightfield analysis.

Hill curve identifiability model related to Fig. 1
A model of exponential growth along with death was fit

to viability measurements assuming a Hill dose–response
relationship. For comparing the model to the data, the fit
residuals were assumed to be normally distributed. In the
absence of drug, the growth rate was measured and
experimentally set to be 0.0315 1/h, and cells were assumed
to not undergo cell death. The minimum growth rate (at
infinite concentration of drug) was fit using a uniform prior
between 0.0 and the growth rate in the absence of drug.
The maximal death rate (at infinite concentration of drug)
was fit using a log-normal prior of −2.0 ± 2.0 1/h (log10
scale). The Hill slope was fit using a log-normal prior of
0.0 ± 1.0 (log10 scale). Both the IC50 and Hill slope were
assumed to be the same for growth and death rates.

Growth model structure
Cell behavior was modeled using a series of kinetic

equations incorporating cell growth and death. We

represent the overall state of a population of cells as
v ¼ ½L;E;Da;Dn�, respectively indicating the number of
live cells, cells within early apoptosis, dead cells via
apoptosis, and dead cells via a non-apoptotic process.
Using such notation, the time derivative was defined as:

_v ¼ Rg � Rd
� �

L;Rd � f � L� E; τ � E;Rdð1� f ÞL� �

where Rg (or div) is the rate of cell division, Rd (or
deathRate) is the rate of cell death, f (or apopFrac) is the
fraction of dying cells which go through apoptosis, and τ
(or d) determines the rate of conversion from early to late
apoptosis.
If γ= Rg− Rd, c ¼ ðRd � f Þ=ðg þ dÞ, and m ¼ Rdð1� f Þ,

integrating these equations provides the solution:

vðtÞ ¼ eγt; c L� emtð Þ;mc L� 1ð Þ=γ þ c emt � 1ð Þ;½
m L� 1ð Þ=γ�

Growth model inference
Predicted cell numbers were fit to experimental mea-

surements using Markov chain Monte Carlo47. The per-
cent area positive for cell confluence, Annexin V stain, or
YOYO-3 stain was quantified and assumed to be pro-
portional to the number of cells positive for each marker.
Cell confluence was assumed to be the total of cells in all
states. Apoptotic cells were assumed to be positive for
Annexin V signal, then positive for both signals after late
apoptosis. Non-apoptotic cells were assumed to just be
positive for YOYO-3 signal after dying. Each rate para-
meter was fit to the corresponding measurements within a
single drug condition over time. An entire experiment,
corresponding to a set of different compounds and con-
centrations, was fit simultaneously, allowing for a back-
ground offset and conversion factor of each quantity to be
fit across the experiment.
div was set to have a uniform prior of 0.0–0.35 1/h.

deathRate, and d were set to have log-normal prior dis-
tributions of mean 0.01 1/h with standard deviation 0.5
(log10 scale). By inspecting a calibration experiment and
manually counting the cells within a field, we measured
the conversion between number of cells and area of signal
for the confluence, Annexin V, and YOYO-3 images. In
addition, we quantified the ratio of positive area for each
pair of signals when a single cell was positive for both.
Each of these were set as log-normal prior distributions
on the conversion values between number of cells and
positive area. Finally, we observed appreciable back-
ground in the Annexin V and YOYO-3 signal, leading to
signal in the absence of cells. Therefore, we set log-normal
priors for the background levels with mean 0.1% of area
and standard deviation of 0.1 (log10 scale). Each data point
was assumed to have independent, normally distributed
error around the model prediction.
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Sampling convergence was verified by checking that two
independent runs generated insignificant differences,
checking for ergodicity through the Geweke criterion
comparing the first and second half of each run, and
verifying an effective sample size of greater than 200.
Sampling failures were solved by increasing the number of
tuning samples.

CFSE-based cell proliferation analysis
Cell division was measured using carboxyfluorescein

diacetate succinimidyl ester (CFSE) dilution analysis. Cells
were labeled with 5 μM CFSE (Invitrogen, Carlsbad, CA)
according to the manufacturer’s protocol. The stained
cells were seeded overnight in 60-mm dishes at a density
of 2 × 105 cells per dish, and then treated with indicated
drugs next day. For 72 h at 24-h intervals, cells were
collected and fixed in 4% paraformaldehyde prior to
acquisition on a BD LSRFortessa flow cytometer (BD
Biosciences, San Jose, CA). CFSE signal intensity of 1 ×
104 cells was recorded and analyzed to measure cell
divisions. The same cell line was labeled the day of the
analysis to determine initial labeling.

Western blot analysis
Cells were seeded at a density of 2 × 105 cells per 60-mm

dish 24 h prior to drug treatment then treated with the
indicated conditions for 24, 48, and 72 h. After incubation,
cells were lysed in 10 mM Tris-HCl pH 8.0, 1 mM EDTA,
1% Triton-X 100, 0.1% Na deoxycholate, 0.1% SDS, and
140mM NaCl, freshly supplemented with protease and
phosphatase inhibitor (Boston Bio Products, Ashland,
MA). Protein concentration was measured by a bicinch-
oninic acid assay. In total, 10 μg of protein from each cell
lysate was subjected to SDS-PAGE, and then transferred
to a polyvinylidene difluoride membrane. Each membrane
was incubated overnight with antibody against cleaved
caspase-3 (Cell Signaling Technology, Danvers, MA,
#9664) or 1.5 h with HRP-conjugated β-actin antibody
(Cell Signaling Technology, #12262). β-actin was used as a
loading control for western blot analysis.

Drug interaction fitting
Drug interaction was assumed to follow the Bliss inde-

pendence model48. Where indicated, this was taken to be
defined as a proportional decrease in the viability of cells.
That is, cell viability was normalized to 1.0 for the control
condition, and then the proportional decrease in cell
viability was calculated by 1.0 minus cell viability. Synergy
or antagonism was identified by a greater or lesser
decrease in viability than predicted, respectively.
Alternatively, Bliss additivity was defined in conjunction

with a model incorporating cell death. d and apopfrac
were assumed to be constant across drug concentration or
combination and fit using the same priors as before. The

growth rate in the absence of drug was fit using the log-
normal prior of −1.5 ± 0.1/h (log10 scale) based on
experimental growth measurement. Cells were assumed
to undergo no cell death in the absence of drug. An Emax

of growth inhibition was fit using a Beta prior (ɑ= 1.0,
β= 1.0), where 1.0 indicates complete growth inhibition
and 0.0 no growth inhibition. The Emax of death effect was
fit using a log-normal prior of −2.0 ± 0.5/h (log10 scale),
where the value indicates the maximal death rate. The
half-maximal concentration (EC50 or IC50) and Hill
coefficient of each compound were fit using the same
priors as before for these quantities and assumed to be the
same for both growth and death effects.
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