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The Planning of Guaranteed Targeted Display
Advertising

John Turner
The Paul Merage School of Business, University of California at Irvine, Irvine, CA 92697-3125

john.turner@uci.edu

As targeted advertising becomes prevalent in a wide variety of media vehicles, planning models become

increasingly important to ad networks that need to match ads to appropriate audience segments, provide

a high quality of service (meet advertisers’ goals), and ensure ad serving opportunities are not wasted. We

define Guaranteed Targeted Display Advertising (GTDA) as a class of media vehicles that include webpage

banner ads, video games, electronic outdoor billboards, and the next generation of digital TV, and formulate

the GTDA planning problem as a transportation problem with quadratic objective. By modeling audience

uncertainty, forecast errors, and the ad server’s execution of the plan, we derive sufficient conditions that state

when our quadratic objective is a good surrogate for several ad delivery performance metrics. Moreover, our

quadratic objective allows us to construct duality-based bounds for evaluating aggregations of the audience

space, leading to two efficient algorithms for solving large problems: the first intelligently refines the audience

space into successively smaller blocks, and the second uses scaling to find a feasible solution given a fixed

audience space partition. Near-optimal schedules can often be produced despite significant aggregation.

Key words : guaranteed targeted display advertising, advertising, planning, aggregation

1. Introduction

Targeted ads – those shown only to audience segments requested by advertisers – are embedded in

a wide spectrum of media: webpages display banner ads and video ads, video games on PC’s and

consoles like the XBox seamlessly integrate ads (Turner et al. 2011), and social media platforms like

Facebook deliver ads that match users’ profiles. Moreover, new technology is permitting targeted

advertising in previously broadcast-only media: e.g., electronic billboards in some malls use eye-

tracking technology to count ad views (Mandel 2007), and perhaps most importantly, the six largest

cable companies in the United States are collaborating to bring targeted advertising to digital

television (Arango 2008). Indeed, the market for targeted advertising is growing faster than online
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2 Turner: The Planning of Guaranteed Targeted Display Advertising

advertising, which by itself is expected to nearly double by 2013 from the $23.4B (8.7% of all U.S.

advertising) recorded in 2008 (cf. Interactive Advertising Bureau 2009 and Hallerman 2009).

This huge volume of targeted ads is channeled to viewers via ad networks – intermediaries which

package and sell ad space from multiple publishers’ websites, video games, or other media vehicles.

To match ads to appropriate audience segments, meet advertisers’ goals, and ensure opportunities

to serve advertising are not wasted, ad networks must solve complex planning problems. This

paper focuses on the planning problem of an ad network which manages what we call Guaranteed

Targeted Display Advertising (GTDA) – targeted advertising with the following properties:

• CPM Sales Model: Advertisers pay for a number of “eyeballs,” called impressions. Each impres-

sion corresponds to an individual that sees an ad at a particular point in time, e.g., by viewing a

banner ad on a webpage. Prices are quoted in cost-per-thousand (CPM); e.g., a $30 CPM means

$30 buys 1000 impressions. This is a widely used sales model, often used to price webpage banner

ads and dynamic ads in video games (cf. Surmanek 1995).

• Measurable Progress: The exact number of impressions served to date is known.

• Targeting Control: Ads shown to a specific individual can be chosen based on that individual’s

characteristics (demographic, geographic, and/or behavioral).

• Guaranteed Delivery: The network provider promises to serve each advertiser an agreed-upon

number of impressions over a fixed time period. In this sense, delivery is “guaranteed,” since ad

networks do whatever they can to avoid under-delivery. Due to considerable uncertainty in the

audience sizes of the various audience segments, ad networks must choose carefully when deciding

which individuals get served which ads.

Although we assume all of these properties hold, model extensions can handle a broader class of

targeted advertising, such as ads priced per click instead of per impression.

We solve the ad network’s single-period planning problem that allocates impressions generated

by multiple audience segments to multiple ad campaigns. The ad network prefers plans that yield

both high reach and low variance. High reach means a large number of unique individuals see

each ad campaign. Low variance means the outcome from executing the plan is highly predictable.
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Specifically, the plan can be thought of as a policy the ad network follows when serving ads over

the planning horizon; thus, due to audience uncertainty the number of impressions that get served

to each campaign under this policy is a random variable, and the ad network prefers when the

variance of the number of impressions served to each campaign is low.

We formulate the single-period planning problem as a transportation problem with a quadratic

objective, and show that this formulation is good at spreading impressions proportionally across

audience segments. Moreover, by explicitly modeling audience uncertainty, forecast errors, and the

ad server’s execution of the plan, we derive sufficient conditions for when proportionally spreading

impressions minimizes variance and maximizes expected reach. Ad managers that proportionally

spread impressions, as is common in practice, can use these conditions to verify the optimality of

existing systems or, if some conditions are not met, identify opportunities for improvement.

From a computational standpoint, ad networks must solve planning problems with millions

or even billions of audience segments. This arises because the subsets of viewers that different

advertisers target can intersect in complex ways. Therefore, even when each advertiser targets only

a handful of customer segments, the ad network must plan at a much finer resolution to account

for the interactions among the full set of advertisers that have purchased intersecting blocks of

audience. For example, if advertisers can choose to target 2 genders, 10 age categories, and 5

income levels in 500 geographic regions over 7 days and 6 dayparts in any conceivable way, the

planning problem has 2× 10× 5× 500× 7× 6 = 2.1 million viewer types. Yet over a short time

window, impressions only come from a sparse subset of these viewer types. To address this issue, we

develop two efficient algorithms for intelligently aggregating the audience space: the first assumes

management specifies a fixed clustering of audience segments to use in an aggregate problem, and

appropriately scales the aggregate solution to produce a feasible solution in the disaggregate space;

the second intelligently refines the audience space into successively smaller clusters, converging

to an optimal solution for the original disaggregate problem without ever explicitly considering

the disaggregate problem. In many cases, near-optimal schedules can often be produced despite

significant aggregation.
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To summarize, this paper contributes to the ad planning literature by defining Guaranteed

Targeted Display Advertising (GTDA) as a specific class of targeted advertising which cross-cuts

various types of media and is characterized by four structural properties that allow ads to be

planned in a common manner. We show that for GTDA, minimizing a quadratic objective is a good

surrogate for maximizing reach and minimizing variance, and derive sufficient conditions for when

reach and variance are exactly optimized. Furthermore, we introduce two algorithms to intelligently

aggregate the potentially large audience space; these algorithms exploit the spreading which our

quadratic objective induces.

Section 2 reviews the literature, §3 introduces the model, §4 formalizes reach and variance, and

§5 derives sufficient conditions for when our quadratic objective is a good surrogate for reach

and variance. Finally, §6 develops the aggregation theory for transportation problems with our

quadratic objective, introduces two aggregation algorithms, and evaluates their performance.

2. Literature Review

Our problem – the single-period planning problem of allocating impressions from audience segments

to ad campaigns – has been studied by, among others, Langheinrich et al. (1999) and Nakamura

and Abe (2005). These authors also use a transportation problem formulation, but employ a linear

objective rather than our quadratic objective. Their linear objective is appropriate for maximizing

click-throughs in the absence of audience uncertainty; in our case, however, a linear objective

would produce solutions that are not robust to audience uncertainty. Tomlin (2000) proposes

maximizing entropy to find robust advertising allocations. As is known in the traffic modeling

literature, maximizing entropy produces well-spread allocations that tend to be robust. We also

advocate spreading impressions across audience segments; however, our quadratic objective, which

is not equivalent to maxing entropy, has explicit connections to reach and variance in the context

of GTDA, which we derive.

More recently, a quadratic objective like ours has been suggested by several researchers, notably

Ghosh et al. (2009) and Yang et al. (2010), but for a different reason. These authors, as well as

Tomlin et al. (2008), Yang and Tomlin (2008), and Tomlin et al. (2009) who presented earlier
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work at professional conferences, focus on maximizing a quality they call “representativeness.” The

idea is that advertisers want impressions from all audience segments which match the targeting

requirements specified, not just the particular subset of audience that is easiest (or cheapest) for the

ad network to deliver. In this context, minimizing a quadratic objective spreads impressions across

audience segments by minimizing the L2 distance to the “most representative” allocation; i.e. one

that gives each campaign an equal proportion of each audience segment. Since we use the same

objective, our formulation also maximizes representativeness; however, we focus on determining

when reach and variance are maximized as a result of maximizing representativeness.

The algorithms we introduce in §6 to aggregate the audience space of large GTDA problems

contribute to the aggregation theory of math programs. In the context of transportation planning,

Zipkin (1980a) defines the basic aggregation framework, which is refined by Zipkin and Raimer

(1983). In our case, a crucial assumption of Zipkin (1980a) doesn’t hold: The adjacency structure

of all aggregated nodes needs to be the same to use Zipkin’s algorithm, whereas in GTDA problems

all nodes have a unique adjacency structure. Because this assumption is violated, solutions of

the aggregate problem may be infeasible after disaggregation. Much of what we do focuses on

restoring feasibility; thus, our work contributes to the aggregation literature for the special case of

quadratic transportation problems that arise in GTDA planning. We should note that in addition to

Zipkin (1980a), aggregation has been studied in the context of generalized transportation networks

(Litvinchev and Rangel 2006), linear programs (Zipkin 1980b, Zipkin 1980c, and Leisten 1997),

stochastic programs (Birge 1985, Wright 1994), and convex network programs (Zipkin 1982). The

surveys by Rogers et al. (1991) and Vakhutinsky et al. (1979) list the bounds known at that time,

and the book by Litvinchev and Tsurkov (2003) is also a good reference.

The paper by Walsh et al. (2010) deserves mention since the authors also study how to intel-

ligently partition the potentially large audience space in the context of a targeted advertising

problem. The planning problem that they study, however, is substantially different from the GTDA

planning problem. Specifically, Walsh et al. (2010) maximize the revenue generated from serving

ads over time, given budget-constrained bidders which can have different bids for different audience



6 Turner: The Planning of Guaranteed Targeted Display Advertising

segments. The authors maximize a linear revenue objective, which from our experience results in

allocations that are poorly spread across audience segments, and therefore have low reach, high

variance, and low representativeness. While Walsh et al. (2010) develop a column generation scheme

for their particular ad planning problem, our aggregation algorithms exploit the quadratic objective

and impression goal constraints which are crucial components of GTDA planning problems.

Finally, there is a significant body of online advertising literature which is tangential to this paper.

Problems studied include the design of incentive-compatible auctions for allocating advertising

(Edelman et al. 2007), allocating advertising to maximize revenue subject to budget constraints

using online algorithms (Mehta et al. 2007), packing 2D ads of different shapes and sizes into

2D areas (Adler et al. 2002, Dawande et al. 2003, Menon and Amiri 2004, Kumar et al. 2006),

revenue management (Roels and Fridgeirsdottir 2009), and pricing (Araman and Fridgeirsdottir

2008, Fridgeirsdottir and Najafi-Asadolahi 2008). Applications include scheduling ads in video

games (Turner et al. 2011) and in cellphone text messages (De Reyck and Degraeve 2003). As well,

a substantial body of literature exists in marketing journals, where the focus has been on solving

the single advertiser’s problem of allocating impressions across media vehicles rather than the ad

network’s problem of allocating multiple advertisers’ impressions across audience segments; for a

good review, see Danaher (2008).

3. The Model

3.1. Definitions and Notation

We study the single-period planning problem of a network provider serving ads to multiple adver-

tisers. A content publisher (e.g., a website such as espn.com) can be a network provider, but

oftentimes ad networks such as DoubleClick fill this role by aggregating ad space from multiple pub-

lishers. The network provider manages ad inventory, which refers to the impressions, i.e. eyeballs

or page views, generated by the content’s audience. Advertisers buy impressions from the network

provider by purchasing a campaign: a contract that specifies the number of impressions to be served

over a fixed time period. A campaign’s targeting constrains the inventory it can be allocated to spe-

cific audience segments, which we call viewer types. For example, a campaign may want only viewers
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from specific media assets (e.g., www.espn.com/golf/), time periods (e.g., Saturday evening), geo-

graphic regions (e.g., France), demographic profiles (e.g., male, age 18-25), or behavioral categories

(e.g., golfers). The number of impressions a viewer type generates is called its supply. We use the

following notation:

• V = the set of all viewer types

• K = the set of all campaigns

• Vk = the set of viewer types that campaign k targets

• Kv = the set of campaigns that target viewer type v

• gk = the impression goal of campaign k

• Sv = the supply of viewer type v (a random variable)

• sv :=E[Sv] = the expected supply of viewer type v

• cv := 1/sv = the reciprocal of the expected supply of viewer type v

The viewer type partition is the partition of the audience space induced by the targeting con-

straints of all campaigns managed by the network provider.

Example 1. Figure 3a displays a viewer type partition induced by three campaigns: campaign A

targets Pittsburgh (viewer types a, d, e, and g), campaign B targets males (viewer types b, d, f , and

g), and campaign C targets the 18-25 year old age group (viewer types c, e, f , and g). The viewer

types in this example are: a={from Pittsburgh, female, not aged 18-25}, b={not from Pittsburgh,

male, not aged 18-25}, c={not from Pittsburgh, female, aged 18-25}, d={from Pittsburgh, male,

not aged 18-25}, e={from Pittsburgh, female, aged 18-25}, f={not from Pittsburgh, male, aged

18-25}, and g={from Pittsburgh, male, aged 18-25}.

We cast the planning problem as a quadratic transportation problem: we represent each viewer

type as a source node, each campaign as a sink node, and for each viewer type that a campaign

targets, we connect the corresponding source to sink with an uncapacitated arc. There are two

equivalent formulations of this planning problem (PP ): an impression formulation (PP IMP ) in

which the amount of flow on arc (v, k) represents the absolute number of impressions of viewer
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type v allocated to campaign k, and a proportion formulation (PPPROP ) in which the amount of

flow on arc (v, k) represents the proportion of viewer type v allocated to campaign k:

(PP IMP ) min
∑

k∈K,v∈Vk
cvx

2
vk

s.t.
∑

v∈Vk
xvk = gk ∀k ∈K (impression goals)∑

k∈Kv
xvk ≤ sv ∀v ∈ V (supply constraints)

xvk ≥ 0 ∀k ∈K,v ∈ Vk (nonnegativity)

(PPPROP ) min
∑

k∈K,v∈Vk
svp

2
vk

s.t.
∑

v∈Vk
svpvk = gk ∀k ∈K (impression goals)∑

k∈Kv
pvk ≤ 1 ∀v ∈ V (supply constraints)

pvk ≥ 0 ∀ k ∈K,v ∈ Vk (nonnegativity)

The impression formulation (PP IMP ) has a deterministic interpretation: Assuming supply is

known (i.e. Sv = sv), the decision variable xvk measures the number of impressions of viewer type v

allocated to campaign k. In this case, the impression goal constraint ensures each campaign is allo-

cated exactly the number of impressions it requires, and the supply constraint ensures none of the

viewer types are overallocated. The quadratic objective tends to spread impressions proportionally

across all viewer types that a campaign targets; we will see in §5 why this is important.

The proportion formulation (PPPROP ) uses scaled decision variables pvk = xvk/sv; the advantage

being that for every realization of Sv, we can consider Svpvk to be the number of impressions

generated by viewer type v that get served to campaign k. Note that E[Svpvk] = svpvk = xvk; i.e. xvk

is the number of impressions of viewer type v that will be served to campaign k in expectation.

Indeed, when Sv is uncertain, xvk should be interpreted as an allocation achieved in expectation. In

this sense, (PP ) is similar to a portfolio optimization problem in which asset weights are selected

to minimize variance subject to meeting a desired expected return. In our case, the impression

goal constraint is analogous to the portfolio optimization’s expected return constraint, and states

that in expectation, each campaign must be served exactly the number of impressions it requires.

Although we analyze (PP ) as if it is a single-period problem, it is important to note that re-solving

(PP ) with sufficient frequency is a good way to serve impressions uniformly over time.
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3.2. Model of Audience Uncertainty

The network provider’s ad server is the computer system responsible for selecting which ads to

serve at each point in time. We say an arrival occurs at the instant the ad server must select and

push ads to a single viewer. In the context of webpage banner ads, an arrival occurs when a viewer

loads a webpage in their browser; at this point, the ad server selects one ad for each of the n banner

ad slots on the page. In the context of video games, an arrival occurs when a player loads a new

game level; at this point, the ad server selects one ad for each of the n ad slots in the level.

We assume viewers of type v arrive into the system according to a Poisson process with rate λv.

This is reasonable, since a nonhomogeneous Poisson process can accurately model arrivals to home

pages of websites (Liu et al. 2001, Chlebus and Brazier 2007) as well as arrivals of people playing

video games (Turner 2010). Furthermore, we assume each arrival r of viewer type v generates an

i.i.d. random number of impressions Y r
v with mean µv and standard deviation σv. Therefore, the

supply of viewer type v can be written as:

Sv = Y 1
v + · · ·+Y Mv

v , where Mv ∼ Poisson(λv).

For banner ads, often exactly one impression is counted for each ad served, thus Y r
v = n when

there are n ad slots on a webpage. But more generally, impressions can be counted in different

ways, e.g., logging an impression once an ad is on-screen for 10 seconds, as is the case in some

video games. Since Sv is a compound Poisson1 random variable, its expectation and variance are:

E[Sv] = µvλv, Var[Sv] =
(
µ2
v +σ2

v

)
λv. (1)

3.3. Model of Ad Server Execution

Consider what happens when the ad server processes a single arrival of viewer type v. To exactly

track the plan (PP ), the ad server would like to assign a pvk-fraction of the impressions that this

arrival will generate to campaign k. However, such an exact assignment is usually not possible,

1 A random variable Y is compound Poisson if it can be written as the sum Y =
∑

n=1..N Xn, where N is a Poisson
random variable and the Xn’s are i.i.d. Since N and Xn are independent, from first principles we have E[Y ] =
E[N ]E[X] and Var[Y ] = E[N ](Var[X] +E[X]2).
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because each arrival has a discrete number of slots, and, in general, each slot generates a random

number of impressions. In particular, if the number of ad slots is less than the number of campaigns

k with pvk > 0, the ad server must randomly pick a subset of the eligible campaigns to serve to this

arrival. Modeling these details allows us to measure how well the ad server executes the plan.

Let F r
vk be the random fraction of the impressions generated by the rth arrival of viewer type v

that get served to campaign k. Since the ad server is trying to execute the plan as closely as possible,

we require E[F r
vk] = pvk to hold for any campaign k that, according to the plan, is scheduled to

receive a pvk-fraction of viewer type v’s impressions.

If any two campaigns, according to the plan, should be served the same p-fraction of viewer type

v’s impressions, we require the ad server to treat these two campaigns in a symmetric fashion.

Therefore, for all campaigns which the plan allocates a p-fraction of viewer type v, we assume the

random variables F r
vk are identically distributed over all arrivals r and campaigns k. This allows us

to define αv(p) := E[(F r
vk)

2] as the second moment of the random fraction of impressions awarded

to a campaign that is allotted a p-fraction of viewer type v. As well, we define βvk := Prob(F r
vk > 0)

as the probability that campaign k is served in one or more ad slots of an arrival of type v. Since

we require campaigns that are allocated the same p-fraction of viewer type v to be treated the

same way, we often write βv(p) in place of βvk.

Example 2. Banner ads are being served by a web server. Arrivals of all viewer types see the

same webpage, which has n ad slots to be filled, and we assume that each of the n slots will generate

exactly one impression. For an arrival of type v, the ad server would like to assign campaign k to

npvk ad slots; however, npvk may not be integral, and so the number of slots assigned to campaign

k is rounded up or down. The random fractions are defined as:

F r
vk =

{
bnpvkc
n

with probability bnpvkc+ 1−npvk
dnpvke
n

with probability npvk−bnpvkc
(2)

It is straightforward (see §EC.1) to compute E[F r
vk] = pvk; αv(p) = 2bnpc+1

n
(p− bnpc

n
) + bnpc2

n2
; and

βv(p) = min(np,1). Note that αv(p) is piecewise-linear convex increasing with n segments, while

βv(p) is piecewise-linear concave increasing with 2 segments.
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In Example 2, we allow the possibility of serving the same ad in more than one slot. The choice

to permit such “multi-impressions” as Nakamura and Abe (2005) call them depends on the desired

look of the website or medium. For example, in video games, it is usually good to serve the same ad

in multiple slots, since not all slots end up being seen during game play. Note that if F r
vk as defined

in (2) is used to model how the ad server does its low-level ad slotting, then multi-impressions can

be avoided by adding the constraint pvk ≤ 1/n to (PPPROP ), since pvk ≤ 1/n =⇒ F r
vk ≤ 1/n.

Our framework assumes the plan provides high-level guidance to the ad server, but does not

fully specify how the ad server should execute the plan. The alternative is to generate plans that

also provide lower-level direction to the ad server; i.e. plans that implicitly or explicitly include the

exact allocation of ads to slots for each arrival. Abrams et al. (2008) call the pattern of ads an

individual viewer is served a slate, and generate a plan with one or more slates for each viewer type.

When their plan is executed, slate i is shown with probability fi, exposing the viewer to the set

of campaigns in the slate. In our framework, F r
vk can be defined to model the random selection of

slates; however, since we require all campaigns assigned the same p-fraction of a viewer type to be

treated in a symmetric fashion, the slates must be generated in a way that ensures this symmetry.

In practice, it may be difficult to choose a suitable analytical expression for F r
vk that closely

matches the complex ad slotting heuristics of a given ad server; however, historical data can be used

to estimate the shape of the αv(p) and βv(p) functions, which are the crucial model components.

4. Performance Metrics: Reach and Variance

We now derive expressions for reach and variance. Later in §5, we will show that solutions to (PP )

tend to have high reach and low variance.

4.1. Reach

Let Uvk be the reach of campaign k in viewer type v – i.e. the number of unique individuals from

viewer type v that see campaign k over a fixed time period. To derive an expression for expected

reach E[Uvk], we assume the population of viewers (across all viewer types) is homogeneous, so that

each individual viewer arrives at rate η (this permits a concrete example, however our results hold
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for heterogeneous populations so long as the reach function (4) remains concave increasing in βv(p)

and is directly proportional to λv). Let mv be the number of individuals that belong to viewer

type v, and let Aiv ∼Poisson(η) be the number of arrivals of individual i in viewer type v. Then by

definition, λv = E[A1
v + · · ·+Amv

v ] =mvE[Aiv] =mvη =⇒ mv = λv/η. Furthermore, for each arrival

of individual i, campaign k is served with probability βvk; thus, individual i sees campaign k in

W i
vk ∼ Poisson(ηβvk) arrivals. Using the indicator variable Zivk := {1 if W i

vk ≥ 1, 0 otherwise}, we

have Uvk :=
∑

i=1..mv
Zivk ∼Binomial(mv,Prob(Zivk = 1))≡Binomial(λv/η,1− e−ηβvk). Therefore,

E[Uvk] =
λv
η

(
1− e−ηβvk

)
, (3)

so the expected reach of a campaign allocated a p-fraction of viewer type v is

E[Uv(p)] =
λv
η

(
1− e−ηβv(p)

)
. (4)

Finally, we assume the reach of campaign k, denoted Uk, is simply Uk
def
=
∑

v∈Vk
Uvk; i.e. reach

is additive across viewer types. Although this assumption is common in the media industry (see,

for example, Surmanek 1995), in general Uk ≤
∑

v∈Vk
Uvk due to audience duplication: individual

viewers may belong to more than one viewer type, and thus end up double-counted; e.g., if viewer

type 1 is {Males that visit www.espn.com/golf/} and viewer type 2 is {Males that visit http:

//finance.yahoo.com/}, some viewers fall into both categories, yet should only be counted once.

Of course, when viewer types are defined using only properties of audience members, and not

properties of media vehicles, audience duplication does not occur and our definition of Uk is exact.

The total expected reach of plan (PP ) with solution p = {pvk : k ∈K,v ∈ Vk} is the expected

reach summed up across all campaigns:

E[U(p)] =
∑
k∈K

E[Uk] =
∑

k∈K,v∈Vk

E[Uv(pvk)] =
∑

k∈K,v∈Vk

λv
η

(
1− e−ηβv(pvk)

)
. (5)

4.2. Variance

Let Xvk be the actual number of impressions served to campaign k from viewer type v. If λv is

known, then Xvk is a random variable of the form:

Xvk =
∑

r=1..Mv

F r
vkY

r
v , where Mv ∼ Poisson(λv). (6)
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To compute E[Xvk] and Var[Xvk], we need estimates for the first and second moments of F r
vk and

Y r
v , as well as an estimate for λv. We assume the only parameter subject to significant estimation

error is λv; i.e. we have a reasonable understanding of the dynamics of the ad server on which the

first and second moments of F r
vk and Y r

v depend, but audience size is subject to forecast error. To

model the estimation error of λv, we assume a forecasting system uses historical data and forward-

looking statements from management to compute the estimator Λv. We insist that Λv is unbiased

(E[Λv] = λv), and that Var[Λv] – the variance of the forecasting system’s point estimate for λv –

can be computed. With forecast error of audience size accounted for, Equation (6) generalizes to:

Xvk =
∑

r=1..Mv

F r
vkY

r
v , where Mv ∼ Poisson(Λv). (7)

Using this definition of Xvk, the mean and variance of the number of impressions served to

campaign k from viewer type v are (see §EC.2 for the derivations):

E[Xvk] = µvλvpvk = svpvk (8)

Var[Xvk] = (σ2
v +µ2

v)λvαv(pvk)︸ ︷︷ ︸
Stochastic Variance

+µ2
vp

2
vkVar[Λv]︸ ︷︷ ︸

Forecast Variance

. (9)

In general, Var[Xvk] has two components: forecast variance caused by uncertainty in the fore-

casted arrival rate; and stochastic variance which, assuming a known arrival rate, is caused by

uncertainty in the number of arrivals, the number of impressions per arrival, and the number of

impressions assigned to each campaign from each arrival.

Example 3. A forecasting system uses τ periods of historical data from a server log to compute

Λv; i.e. audience size distributions are assumed stationary. Since server logs can be very large, we

use a sampled log where each arrival in the full log is sampled independently with probability γ.

Letting Ztv be the number of arrivals of viewer type v from period t in the sampled log, we treat

Ztv as an estimator – a random variable that encapsulates the variation in the number of arrivals

that could have occurred. In this case, Λv – the maximum likelihood estimator for the arrival rate

parameter λv under the assumption that arrivals are i.i.d. Poisson(λv) in all periods – is computed

by averaging the number of sampled arrivals Ztv over time periods t= 1..τ and scaling by γ:

Λv =
1

γτ

∑
t=1..τ

Ztv, where Ztv ∼ Poisson(γλv), (10)
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E[Λv] =
1

γτ

∑
t=1..τ

E[Ztv] =
1

γτ
× τ(γλv) = λv, and (11)

Var[Λv] =
1

γ2τ 2

∑
t=1..τ

Var[Ztv] =
1

γ2τ 2
× τ(γλv) =

λv
γτ

; (12)

and the variance of the number of impressions served to campaign k from viewer type v is computed

by substituting (12) into (9):

Var[Xvk] = (σ2
v +µ2

v)λvαv(pvk)︸ ︷︷ ︸
Stochastic Variance

+
µvsvp

2
vk

γτ︸ ︷︷ ︸
Forecast Variance

. (13)

Finally, we define Xk =
∑

v∈Vk
Xvk as the total number of impressions served to campaign k, and

X(p) =
∑

k∈KXk as the total number of impressions served to all campaigns under the plan (PP ).

Since variance is additive, the total stochastic variance of plan (PP ) is:

StochVar[X(p)] =
∑
k∈K

StochVar[Xk] =
∑

k∈K,v∈Vk

StochVar[Xvk] =
∑

k∈K,v∈Vk

(σ2
v +µ2

v)λvαv(pvk), (14)

and the total forecast variance of plan (PP ) is:

ForecastVar[X(p)] =
∑
k∈K

ForecastVar[Xk] =
∑

k∈K,v∈Vk

ForecastVar[Xvk] =
∑

k∈K,v∈Vk

µ2
vp

2
vkVar[Λv].

(15)

5. Model-Based Results

This section derives sufficient conditions for the solution of (PP ) to a) maximize expected reach,

b) minimize stochastic variance, and c) minimize forecast variance. We begin by plotting the main

functions of interest – α(p), β(p), expected reach, stochastic variance, and forecast variance – to

provide intuition for the results that follow. The sufficient conditions are then derived, and followed

with a discussion of when they can be expected to hold in practice.

5.1. Visualizing The Important Functions

Consider an example in which ad server execution is modeled by (2), Λv is defined by (10), and

parameters are fixed at γ = 0.1, τ = 3, µ = 5, σ = 5, η = 2.2, λv = 10, and n = 3. Figure 1 plots

several important functions of the proportion p≡ pvk of viewer type v allocated to a single campaign

k. Since there are n= 3 ad slots, α(p) and StochVar(p) have n= 3 piecewise-linear segments. The
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kinks in α(p) coincide with the proportions p ∈ { 0
n
, 1
n
, 2
n
, . . . , n

n
}= { 0

3
, 1
3
, 2
3
, 3
3
} where the ad server

can assign the campaign to exactly np slots in each arrival. Between each pair of kinks, α(p)

is linear since the ad server randomizes between giving this campaign bnpc and dnpe slots, and

the probability of rounding the number of slots up grows linearly with p. Finally, StochVar(p) is

piecewise-linear since it is a scaled version of α(p).

We also see that β(p) and Reach(p) increase until p= 1/n= 1/3, beyond which expected reach

cannot increase because β(p) = 1 implies all individuals of this viewer type see this campaign. As

well, we see ForecastVar(p) is quadratic in p, and is independent of α(p) and β(p).

0 0.5 1
0.

0.5

1.
ΑHpL

0 0.5 1
0.

0.5

1.
ΒHpL

0 0.5 1
0

2

4
ReachHpL

0 0.5 1
0

250

500
StochVarHpL

0 0.5 1
0

400

800
ForecastVarHpL

Figure 1 Important functions of the proportion p≡ pvk of viewer type v allocated to campaign k.

5.2. Sufficient Conditions for the Quadratic Objective to Optimize Reach and Variance

Let Sk :=
∑

v∈Vk
Sv be the total supply (in impressions) that campaign k targets, and let qk :=

gk/E[Sk]. We define the equal-proportion allocation q as the solution to (PPPROP ) which spreads

impressions proportionally across all targeted viewer types; i.e. {pvk = qk ∀k ∈ K,v ∈ Vk}. The

following theorem proves optimality of the equal-proportion allocation in a broad problem class.

Theorem 1. Consider the objective function f(p) =
∑

k∈K,v∈Vk
svh(pvk), where h :R→R is convex

(but possibly nondifferentiable). The equal-proportion allocation p = q is optimal for the problem:

(P1) min f(p)

s.t.
∑

v∈Vk
svpvk = gk ∀k ∈K (impression goals)

pvk ≥ 0 ∀k ∈K,∀v ∈ Vk (non-negativity)

Proof. Decomposing (P1) by campaign, Jensen’s Inequality implies the equal-proportion allo-

cation is optimal for each campaign’s subproblem. For details, see §EC.3 �
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Problem (P1) is closely related to (PPPROP ): If (PPPROP ) is uncapacitated, then it is an instance

of (P1) with h(p)
def
= p2. Therefore, if the equal-proportion allocation is feasible in (PPPROP ), supply

constraints are nonbinding and by Theorem 1 the equal-proportion allocation is optimal. On the

other hand, when supply constraints bind and the equal-proportion allocation is infeasible, the

optimal solution of (PPPROP ) is close to the equal-proportion allocation. This is because, as the

following proposition shows, the quadratic objective of (PPPROP ) minimizes what can be viewed

as a L2 distance to the equal-proportion allocation.

Proposition 1. Let d(a,b) =
√∑

k∈K,v∈Vk
sv(avk− bvk)2 be a simple modification to the usual L2

distance that accounts for the fact that viewer types with a larger audience size should be given more

weight2. Then the objectives min
∑

k∈K,v∈Vk
svp

2
vk and mind(p,q) are equivalent for (PPPROP ).

Proof. Since d is nonnegative, mind(p,q) and mind(p,q)2 are equivalent. Moreover,

d(p,q)2 =
∑

k∈K,v∈Vk

sv(pvk− qvk)2 =
∑

k∈K,v∈Vk

sv(p
2
vk− 2qkpvk− q2k)

=
∑

k∈K,v∈Vk

svp
2
vk− 2

∑
k∈K

qk
∑
v∈Vk

svpvk−
∑

k∈K,v∈Vk

svq
2
k

=
∑

k∈K,v∈Vk

svp
2
vk− 2

∑
k∈K

qkgk−
∑

k∈K,v∈Vk

svq
2
k,

where the last line follows by substituting the impression goals gk =
∑

v∈Vk
svpvk. Minimizing the

last line is equivalent to minimizing
∑

k∈K,v∈Vk
svp

2
vk since the last two terms are constants. �

Under conditions which we will describe, the expressions for expected reach, stochastic variance,

and forecast variance match the functional form of the objective in (P1). Therefore, when these

conditions hold, the equal-proportion allocation is optimal with respect to reach and variance

for uncapacitated cases of (PPPROP ). Moreover, in the capacitated case the optimal solution to

(PPPROP ) is close to the equal-proportion allocation, motivating the use of the quadratic objective

as a surrogate for reach and variance. Figure 2 summarizes the sufficient conditions which imply the

optimal solution to (PP ) maximizes reach, minimizes stochastic variance, and minimizes forecast

2 If the summation present in d(a,b) is viewed as a summation over impressions instead of viewer types, then
this is the classic L2 distance. Formally, the inner product on which this distance function is based is 〈a,b〉S =∑

k∈K,v∈Vk
svavkbvk; thus, the corresponding norm is || · ||S =

√
〈·, ·〉S , and we have d(a,b) = ||a−b||S .
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variance. For derivations of these conditions, see §EC.3.1. Note that forecast variance is optimal

even when capacity constraints bind, since under the conditions listed in Figure 2, the expression

for forecast variance simplifies to the exact quadratic objective used in (PP ).

Expected Reach
Maximized

StochVar
Minimized

ForecastVar
Minimized

1. Homogeneous mean imps/arrival (µv = µ ∀v ∈ V ) " " "

2. Homogeneous stdev imps/arrival (σv = σ ∀v ∈ V ) "

3. Homogeneous convex αv(p) "

4. Homogeneous concave βv(p) "

5. Var[Λv] = θE[Λv] ∀v ∈ V for some constant θ≥ 0 "

6. Uncapacitated (nonbinding supply constraints) " "

Figure 2 Read down a column to find the conditions which imply (PP ) optimizes that column’s objective. For
example, if all viewer types share the same mean number of impressions per arrival (µv = µ ∀v ∈ V ),
all viewer types share the same β(p) function (βv(p) = β(p) ∀v ∈ V ), the function β(p) is concave, and
supply constraints are nonbinding, then any optimal solution to (PP ) maximizes expected reach.

Many of the conditions listed in Figure 2 hold in practice. For example, if the ad server’s execution

is modeled by Equation (2), then α(p) is convex and β(p) is concave, as seen in panels 1 and 2

of Figure 1. Furthermore, when arrival rates are stationary, i.e. if Λv is computed from τ periods

of historical data sampled with frequency γ as in Example 3, then the assumption “Var[Λv] =

θλv ∀v ∈ V for some constant θ≥ 0” holds with θ= 1/γτ .

Conditions that require viewer types to be (partially) homogeneous can also be accommodated

in practice. This is because the network provider’s full planning problem is realistically multi-

period and involves multiple objectives and idiosyncratic constraints. In this broader context,

a math programming approach to planning necessarily involves problem decomposition. If the

decomposition is designed such that each subproblem looks like (PP ) and has homogeneous viewer

types, then variance and reach can be optimized locally for each subproblem. Sets of viewer types

likely to be homogeneous include all audience segments from websites with the same number of ad

slots, and all audience segments from all video games that induce a similar pattern of game play.

6. Aggregation

In this section, we study aggregation of the viewer type space as a way to manage the potentially

large number of viewer types, many of which correspond to very small populations of viewers. In the
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context of transportation planning, Zipkin (1980a) introduces the aggregation framework, which is

refined by Zipkin and Raimer (1983): An Aggregated Transportation Problem (ATP) is produced

from an original Transportation Problem (TP) by grouping source and destination nodes into

aggregated mega-source and mega-destination nodes, and adjusting the arc costs and capacities

accordingly. An optimal solution for (ATP) is disaggregated into a “good” feasible solution for

(TP), and the quality of this solution is assessed using a duality-based bound. The advantage of

using an aggregation algorithm is that near-optimal solutions to (TP) can be found by solving

(ATP), which is a much smaller problem.

In our case, a crucial assumption of Zipkin (1980a) does not hold: namely, the adjacency structure

of all aggregated nodes should be the same. Without this assumption, solutions of (ATP) may be

infeasible for (TP) after disaggregation. Much of this section focuses on restoring feasibility.

In terms of exposition, we deviate from Zipkin (1980a) by including the disaggregation formula

which transforms an aggregate solution into a disaggregate solution explicitly in the aggregate

problem. Therefore, the aggregate problem of Zipkin (1980a) is analogous to what we define as an

auxiliary transportation problem, and the extended formulation that we call the aggregate problem

is not explicitly defined by Zipkin (1980a). Furthermore, we only consider aggregation of viewer

types, and not campaigns; this is because the viewer type space grows exponentially in the number

of consumer characteristics, and is therefore the most important dimension for us to aggregate.

6.1. Notation and Definitions

Aggregation is accomplished by clustering viewer types into groups, which we call inventory blocks.

An inventory block partition is a clustering in which each viewer type is assigned to exactly one

inventory block. We extend the notation of §3.1 as follows:

• I = the set of all inventory blocks

• i(v) = the inventory block to which viewer type v belongs

• Vi = the set of viewer types in inventory block i

• Vik = the set of viewer types that campaign k targets in inventory block i

• Ik = the set of inventory blocks that campaign k targets
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• Ki = the set of campaigns that target inventory block i

For example, Figure 3b shows one possible inventory block partition of the viewer type space

introduced in Example 1; in this partition, all inventory from viewers in Pittsburgh is considered

inventory block 1, while all remaining inventory is considered inventory block 2. Thus, i(a) = i(d) =

i(e) = i(g) = 1, i(b) = i(c) = i(f) = 2, V2 = {b, c, f}, V2B = {b, f}, K2 = {B,C}, and IB = I = {1,2}.

 

a

b  c

d e

f

g

A

B  C

Viewer type partition

 

1 

2 2 

1 1 

2 

1 

A 

B C 

Inventory block partition

Figure 3 Viewer type and inventory block partitions.

The supply of inventory block i is Si =
∑

v∈Vi
Sv; thus si :=E[Si] =

∑
v∈Vi

E[Sv] =
∑

v∈Vi
sv. Anal-

ogously, the supply of the subset of inventory block i that campaign k targets is Sik =
∑

v∈Vik
Sv;

thus, the expected supply of inventory block i available to campaign k is sik :=E[Sik] =
∑

v∈Vik
sv.

Recall from §3.1 that the planning problem (PP ) has two equivalent formulations: the impression

formulation, which uses decision variables xvk, and the proportion formulation, which uses decision

variables pvk
def
= xvk/sv. In this section, we refer to (PP ) as the Original Planning Problem (OPP ),

and write (OPP IMP ) and (OPPPROP ) for the impression and proportion formulations respectively.

One way of aggregating (OPP ) is by adding constraints of the form pvk = pi(v),k; i.e. replacing

each occurrence from the set of variables {pvk : v ∈ Vik} with the new variable pik ≡ pi(v),k, thereby

forcing the proportional allocations for each viewer type within an inventory block to be the same.

We take a slightly more general approach. Instead, we consider the Aggregate Planning Problem

(APP ) produced from (OPP ) by adding the constraints yv = min
(
1,1
/∑

k∈Kv
pi(v),k

)
∀v ∈ V ,

and pvk = yvpi(v),k ∀k ∈ K,v ∈ Vk. The quantity yv is called the yield of viewer type v, and the

disaggregation formula pvk = yvpi(v),k is used to convert from inventory block weights pik to viewer

type proportions pvk (we prefer to call pik a weight rather than a proportion, since pik > 1 is
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allowed). Note that we do not intend to solve (APP ) directly, but will use it to structurally compare

different solution approaches.

Example 4. Consider an instance with 2 viewer types and 2 campaigns. Viewer types v and w

each supply 1 impression in expectation (sv = sw = 1). Campaign A targets viewer type v only, while

campaign B targets both viewer types v and w; thus, VA = {v}, VB = {v,w}, Kv = {A,B}, and

Kw = {B}. Impression goals are gA = 3/4 and gB = 1. The solution {pvA = 3/4, pvB = 1/4, pwB =

3/4} is optimal for (OPPPROP ). This follows because, first, all feasible solutions have pvA = 3/4,

reducing the problem to {minp2vB + p2wB s.t. pvB + pwB = 1, 0 ≤ pvB ≤ 1/4, 0 ≤ pwB ≤ 1}. There-

fore, the optimal solution spreads campaign B across viewer types v and w as much as possible,

yielding pvB = 1/4 and pwB = 3/4. Now consider aggregating both viewer types into inventory

block 1. The aggregate solution {p1A = 9/4, p1B = 3/4} is equivalent to the disaggregate solution

{pvA = 3/4, pvB = 1/4, pwB = 3/4}, as can be seen from the following substitution. Yields are

yv = min(1,1/(p1A+p1B)) = 1/3 and yw = min(1,1/p1B) = 1; hence pvA = yvp1A = (1/3)(9/4) = 3/4,

pvB = yvp1B = (1/3)(3/4) = 1/4, and pwB = ywp1B = (1)(3/4) = 3/4.

Denote the optimal values of (OPP ) and (APP ) as zOPP and zAPP respectively.

Proposition 2. (APP ) is a restriction of (OPP ). Hence, any point that is feasible in (APP ) is

feasible in (OPP ). Thus, zOPP ≤ zAPP .

Proposition 3. The supply constraints
∑

k∈Kv
pvk ≤ 1 ∀v ∈ V are redundant in (APP ).

Proof. Notice that

∑
k∈Kv

pvk =
∑
k∈Kv

yvpi(v),k =
∑
k∈Kv

min

(
1,1
/ ∑
k′∈Kv

pi(v),k′

)
pi(v),k

= min

(
1,1
/ ∑
k∈Kv

pi(v),k

) ∑
k∈Kv

pi(v),k = min

(∑
k∈Kv

pi(v),k,1

)
≤ 1. �

We introduce the quantities aik :=
∑

v∈Vik
svy

2
v, bik :=

∑
v∈Vik

svyv, and cik := aik/b
2
ik so that we

may represent (APP ) succinctly. The quantity cik is a measure of yield variability in the viewer

types of inventory block i that campaign k targets. To see this, let Yik be a random variable that

takes value yv with probability sv/sik for all v ∈ Vik. Then bik/sik and aik/sik are the first and
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second moments of Yik, respectively. A useful result, which follows directly from the fact that

Var[Yik] = E[Y 2
ik]−E[Yik]

2 ≥ 0, is that cik ≥ 1/sik. Note that if all yields are 100% (i.e. yv = 1 ∀v ∈

Vik), then aik = bik = sik, and cik = 1/sik.

Thus, we can write the number of impressions planned for campaign k in inventory block i as

xik =
∑
v∈Vik

xvk =
∑
v∈Vik

svpvk =
∑
v∈Vik

svyvpi(v),k = pik
∑
v∈Vik

svyv = bikpik,

the objective function as

∑
k∈K,
v∈Vk

cvx
2
vk =

∑
k∈K,
v∈Vk

svp
2
vk =

∑
k∈K,
i∈Ik

∑
v∈Vik

sv(yvpi(v),k)
2 =

∑
k∈K,
i∈Ik

p2ik
∑
v∈Vik

svy
2
v =

∑
k∈K,
i∈Ik

aikp
2
ik =

∑
k∈K,
i∈Ik

cikx
2
ik,

and the impression goal constraint as

∑
v∈Vk

xvk =
∑
i∈Ik

∑
v∈Vik

xvk =
∑
i∈Ik

xik = gk.

Therefore, as with (OPP ), there are two equivalent formulations for (APP ): The proportion for-

mulation (APPPROP ), which has decision variables pik, aik, and bik, and the impression formulation

(APP IMP ), which has decision variables xik and cik:

(APPPROP ) min
∑

k∈K,i∈Ik
aikp

2
ik

s.t.
∑

i∈Ik
bikpik = gk ∀ k ∈K (impression goals)

pik ≥ 0 ∀ k ∈K, i∈ Ik (nonnegativity)

(p,a,b)∈ Y PROP (nonlinear yield constraints)

where Y PROP is the set of points {pik, aik, bik ∀k ∈K, i∈ Ik} that can be extended to a solution of

the system

yv −min
(
1,1
/∑

k∈Kv
pi(v),k

)
= 0 ∀v ∈ V

aik−
∑

v∈Vik
svy

2
v = 0 ∀k ∈K, i∈ Ik

bik−
∑

v∈Vik
svyv = 0 ∀k ∈K, i∈ Ik

by picking appropriate values for the variables yv ∀v ∈ V . Similarly, the impression formulation is

(APP IMP ) min
∑

k∈K,i∈Ik
cikx

2
ik

s.t.
∑

i∈Ik
xik = gk ∀k ∈K (impression goals)

xik ≥ 0 ∀k ∈K, i∈ Ik (nonnegativity)

(x,c)∈ Y IMP (nonlinear yield constraints)
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where Y IMP is the set of points {xik, cik ∀k ∈K, i ∈ Ik} that can be extended to a solution of the

system

aik−
∑

v∈Vik
svy

2
v = 0 ∀k ∈K, i∈ Ik

bik−
∑

v∈Vik
svyv = 0 ∀k ∈K, i∈ Ik

cik− aik/b2ik = 0 ∀k ∈K, i∈ Ik
yv −min

(
1,1
/∑

k∈Kv
pi(v),k

)
= 0 ∀v ∈ V

xik− bikpik = 0 ∀k ∈K, i∈ Ik

by picking appropriate values for the variables yv ∀v ∈ V and (pik, aik, bik) ∀k ∈K, i∈ Ik.

Although the supply constraints
∑

k∈Kv
pi(v),k ≤ 1 ∀v ∈ V are not explicitly written, they are in

fact satisfied, due to Proposition 3. As well, we can think of (APP ) as having solutions in both the

inventory block space and the viewer type space, since the disaggregation formula pvk = yvpi(v),k

can be used to express the solution in the viewer type space.

6.2. Solution Approaches

There are two main problems that we consider: solving (APP ) with a fixed inventory block parti-

tion, and solving (APP ) while simultaneously refining the inventory block partition. For the case

in which the partition is fixed, we give a heuristic that either finds a feasible solution with bounded

distance from the (OPP ) optimum or an infeasible solution with measurable shortfall for each

impression goal. For the case where we are allowed to refine the inventory block partition, we give

an algorithm that always terminates with an optimal solution to (OPP ).

6.2.1. Fixed Inventory Block Partition. Management may insist on using a specific inven-

tory block partition if, for example, the partition for planning ad server execution must coincide

with the partition used by the sales team to price and bundle ad inventory. Using a fixed partition

may also be desirable if the most accurate method for estimating viewers’ arrival rates depends on

a specific partition; e.g., see Agarwal et al. (2007), which describes a method to estimate impression

counts using a prior generated from existing data, which essentially includes a given partition.

We make use of the following family of linear programs, parameterized by the objective coeffi-

cients c = {cik : k ∈K, i∈ Ik}. We call this the Auxiliary Transportation Problem:



Turner: The Planning of Guaranteed Targeted Display Advertising 23

(AUX(c)) min
∑

k∈K,i∈Ik
cikx

2
ik

s.t.
∑

i∈Ik
xik = gk ∀k ∈K (impression goals)∑

k∈Ki
xik ≤ si ∀i∈ I (supply constraints)

0 ≤ xik ≤ sik ∀k ∈K, i∈ Ik (arc flow bounds)

Note that (AUX(c)) is equivalent to (APP IMP ) with objective coefficients fixed, nonlinear yield

constraints dropped, supply constraints added, and variable upper bounds introduced. Although

the supply constraints and upper bounds are redundant in (APP IMP ), they are not in (AUX(c)).

Proposition 4. The supply constraints and upper bounds present in (AUX(c)) can be derived

from (OPP ), thereby proving their validity.

Proof. The supply constraints are aggregated from (OPP IMP ) as follows:

∑
k∈Kv

xvk ≤ sv =⇒
∑
v∈Vi

∑
k∈Kv

xvk ≤
∑
v∈Vi

sv =⇒
∑
k∈Ki

∑
v∈Vik

xvk ≤ si =⇒
∑
k∈Ki

xik ≤ si.

The upper bound on xik is derived from (OPP IMP ) as follows:

xvk ≤ sv =⇒
∑
v∈Vik

xvk ≤
∑
v∈Vik

sv =⇒ xik ≤ sik. �

Our heuristic for finding a feasible solution to (APP ), called GetCloseAndScaleUp, begins

by assuming all yields are 100%; i.e. yv = 1 ∀v ∈ V . Therefore, aik = bik = sik ∀k ∈K, i ∈ Ik and

cik = 1/sik ∀k ∈ K, i ∈ Ik. With slight abuse of notation, we define (AUX(1/s)) as the problem

(AUX(c)) with cik = 1/sik ∀k ∈K, i ∈ Ik, and solve (AUX(1/s)) to get an impression allocation

xAUX(1/s) which is “close” to optimal for (OPP ), as well as corresponding inventory block weights

p0ik = x
AUX(1/s)
ik /bik. Scaling (Algorithm 1: ScaleInvBlockWeights) is then used to successively

increase the inventory block weights pjik at each iteration j until they hopefully converge to a

feasible solution to (APP ). The inputs for ScaleInvBlockWeights are the inventory block

weights p0 from (AUX(1/s)), as well as a threshold value ψ that limits the magnitude any element

of pj can take before the algorithm concludes that pj is not converging to a feasible solution.

ScaleInvBlockWeights terminates with pjik = fCUMk p0ik, where fCUMk = f j−1k f j−2k · · ·f1
kf

0
k ≥ 1.

When pj is feasible, the interpretation of fCUMk is the following: p0ik is the correct inventory block
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Algorithm 1 ScaleInvBlockWeights

Input(s): p0, ψ
Output: pj

1: Initialize the iteration counter at j = 0

2: Compute yields yjv := min
(

1,1
/∑

k∈Kv
pji(v),k

)
∀v ∈ V

3: Compute b
j

ik :=
∑

v∈Vik
svy

j
v ∀k ∈K, i∈ Ik

4: Compute scaling factors f jk := gk/
∑

i∈Ik
b
j

ikp
j
ik ∀k ∈K

5: if f jk = 1 ∀k ∈K then
6: pj is feasible in (APPPROP )
7: return pj

8: else if ||pj||∞ >ψ (i.e. pj is not converging to a feasible solution) then
9: pj is infeasible in (APPPROP )

10: return pj

11: else
12: Set pj+1

ik := f jkp
j
ik ∀k ∈K, i∈ Ik; set j := j+ 1; and go to step 2

13: end if

weight to use if all yields end up being 100%; but since yields are often lower, inventory block

weights must be increased by a factor of fCUMk to compensate.

Note that
∑

i∈Ik
b
j

ikp
j
ik =

∑
i∈Ik

∑
v∈Vik

svy
j
vp
j
ik =

∑
v∈Vk

svp
j
vk =

∑
v∈Vk

xjvk is the total number of

impressions allocated to campaign k at iteration j. Therefore, when ScaleInvBlockWeights

terminates, we have ∆k = gk −
∑

i∈Ik
bikp

j
ik ≥ 0 as the number of impressions that campaign k is

underallocated. When pj is infeasible, ∆k > 0 for at least one campaign k. When this happens,

management can either choose to execute this plan as-is (i.e. accept some reduction in impression

goals) or refine the partition to recover feasibility, as we do in §6.2.2.

Other variants of GetCloseAndScaleUp are also reasonable to consider. In general, this

class of iterative algorithm guesses yields y, computes yield-dependent parameters (a,b,c), solves

(AUX(c)), evaluates the actual yields y and actual yield-dependent parameters (a,b,c), adjusts

(a,b,c), and iterates, re-solving (AUX(c)) until an acceptable solution is found. Note that

GetCloseAndScaleUp is the special case with bj+1
ik = bjik/f

j
k ; aj+1

ik = ajik/(f
j
k)2; cj+1

ik = cjik = 1/sik.

Regardless of how a feasible solution to (APP ) is found, we can always bound its distance from

optimality using the optimal value from (AUX(1/s)), as we will now show. Let zAUX(1/s) denote

the optimal value of (AUX(1/s)) and zOPP denote the optimal value of (OPP ).

Theorem 2. zAUX(1/s) ≤ zOPP .
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Proof. Any optimal dual solution for (AUX(1/s)) is dual feasible in (OPP ) with dual objective

value zAUX(1/s). Since the dual problem of (OPP ) is a maximization problem, zOPP ≥ zAUX(1/s).

See §EC.5.1 for the full proof. �

Corollary 1. Let zFEAS be the value of a feasible solution to (OPP ). Then the optimality gap

is bounded: zFEAS − zOPP ≤ zFEAS − zAUX(1/s).

Corollary 1 is important, because any feasible solution to (APP ) is feasible for (OPP ), and hence

given any feasible aggregate solution, we have a bound on suboptimality that can be computed

without solving the disaggregate (original) problem.

6.2.2. Partition Refinement. If we are allowed to refine the inventory block partition during

the solution process, we can always find an optimal solution to (OPP ) by using Algorithm 2:

RefinePartitionAndSolve, which successively creates new inventory blocks for groups of viewer

types that are overallocated (i.e. have
∑

k∈Kv
pi(v),k > 1). We initialize the partition with a single

inventory block which contains all viewer types; alternatively, we could of course begin with any

inventory block partition and run the algorithm from that point forward. We have assumed that

(OPP ) is feasible; if it is not, RefinePartitionAndSolve will detect infeasibility of (OPP )

at Step 4, since eventually (AUX(1/s)) will become infeasible. Note also that we don’t need to

run RefinePartitionAndSolve to completion; we can always stop early, fix the inventory block

partition, and run GetCloseAndScaleUp to get a near-optimal or near-feasible solution.

Theorem 3. The solution pj returned by RefinePartitionAndSolve is optimal in (OPP ).

Proof. See §EC.5.2 . �

Figure 4 illustrates the progression of RefinePartitionAndSolve on an (OPP ) instance that

has 7 viewer types with expected supply of 1, and 3 campaigns with impression goals of 2. Iteration

1 (top panel) begins by aggregating all viewer types to the same inventory block (q), which has

expected supply of 7. Arcs in the aggregated network have capacities inferred from the maximum

possible flow in the original network (e.g., campaign A is incident to 4 viewer types of expected

supply 1; hence, aggregate arc (q,A) has a capacity of 4). Arcs in the aggregate network are labelled
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Algorithm 2 RefinePartitionAndSolve

1: Initialize the iteration counter at j = 0
2: Initialize the partition to one big inventory block: I0 := {1}, V 0

1 := V ; i.e. i(v) = 1 ∀v ∈ V
3: loop
4: Solve (AUX(1/s)) with partition Ij to get xj

5: Compute inventory block weights pjik := xjik/sik ∀k ∈K, i∈ I
j
k

6: Compute yields yjv := min
(

1,1
/∑

k∈Kv
pji(v),k

)
∀v ∈ V

7: For each i∈ Ij, find the set of overallocated viewer types: V̂ j
i := {v ∈ V j

i | yjv < 1}
8: Let nj := |i ∈ Ij s.t. V̂ j

i 6= ∅| be the number of inventory blocks with overallocated viewer
types

9: if nj = 0 then
10: pj is optimal in (OPP )
11: return pj

12: else
13: Set Ij+1 := Ij ∪{|Ij|+ 1, |Ij|+ 2, ..., |Ij|+nj} and m := |Ij|+ 1
14: for all i∈ Ij do
15: if V̂ j

i =∅ then
16: Keep inventory block i unchanged: V j+1

i := V j
i

17: else
18: Split inventory block i in two: V j+1

i := V j
i \V̂

j
i and V j+1

m := V̂ j
i

19: m :=m+ 1
20: end if
21: end for
22: end if
23: j := j+ 1
24: end loop

with [xik, sik]; i.e. the optimal solution to (AUX(1/s)) and arc capacity, respectively. The tables on

the right side of Figure 4 illustrate how the aggregate solution pik = xik/sik gets scaled by yields yv

to produce the disaggregate solution pvk = yvpi(v),k. Grey, black, and white bars graphically depict

the proportions of each viewer type allocated to campaigns A, B, and C respectively. We see that at

iteration 1, viewer type 3 is overallocated (i.e.
∑

k pi(3),k = 1.5> 1); the extent of which is depicted

by the second set of bars drawn above viewer type 3. This overallocation induces an impression

shortfall ∆k = gk −
∑

v∈Vk
svpvk = 2− 1.83 = 0.17 for all campaigns k. Since viewer type 3 is the

sole overallocated viewer type, it becomes its own inventory block in the subsequent iteration.

Iteration 2 (middle panel) now solves an aggregate problem with viewer type 3 as inventory block

q and viewer types {1,2,4,5,6,7} as inventory block r. At this point, viewer types 2, 4, and 6 are

overallocated, with impression shortfall ∆k = 0.11 for all campaigns. Iteration 3 (bottom panel)

modifies the previous aggregation by splintering off viewer types {2,4,6} into their own inventory
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block (the new r, with viewer types {1,5,7} becoming t). Finally, iteration 3 terminates with no

viewer types overallocated, and by Theorem 3 we have found an optimal solution to (OPP ).

1
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5

6

7

A

B

C

1

1

1

1

1

1

1

2

2

2

Viewer 
Types

Campaigns

Algorithm

Aggregate

A

B

C

q

2

2

2

7

[2, 4]

[2, 4]

[2, 4]

Do I call the 
aggregated 
node “q”?

Do I call 
campaigns 
A,B,C?

Notation 
should match 
prev example

Solve

v 1 2 3 4 5 6 7

pi(v),A 0.5 0.5 0.5 0.5 - - -
pi(v),B - 0.5 0.5 - 0.5 0.5 -
pi(v),C - - 0.5 0.5 - 0.5 0.5∑
k pi(v),k 0.5 1 1.5 1 0.5 1 0.5
yv 1 1 0.67 1 1 1 1

pvA 0.5 0.5 0.33 0.5 - - -
pvB - 0.5 0.33 - 0.5 0.5 -
pvC - - 0.33 0.5 - 0.5 0.5

1

2

3

4

5

6

7

A

B

C

1

1

1

1

1

1

1

2

2

2

Viewer 
Types

Campaigns

Aggregate

A

B

C

q
2

2

2

1

r6

[1/3, 1]

[1/3, 1]
[1/3, 1]

[5/3, 3]

[5/3, 3]

[5/3, 3]

Solve

v 1 2 3 4 5 6 7

pi(v),A 0.56 0.56 0.33 0.56 - - -
pi(v),B - 0.56 0.33 - 0.56 0.56 -
pi(v),C - - 0.33 0.56 - 0.56 0.56∑
k pi(v),k 0.56 1.11 1 1.11 0.56 1.11 0.56
yv 1 0.9 1 0.9 1 0.9 1

pvA 0.56 0.5 0.33 0.5 - - -
pvB - 0.5 0.33 - 0.56 0.5 -
pvC - - 0.33 0.5 - 0.5 0.56

1

2

3

4

5

6

7

A

B

C

1

1

1

1

1

1

1

2

2

2

Viewer 
Types

Campaigns

Algorithm

Aggregate

A

B

C

q
2

2

2

1

r3

[1/3, 1]

[1/3, 1]
[1/3, 1]

[1, 2] [1,2]

[1, 2]

t3

[2/3, 1]
[2/3, 1]

[2/3,1]

Solve

v 1 2 3 4 5 6 7

pi(v),A 0.67 0.5 0.33 0.5 - - -
pi(v),B - 0.5 0.33 - 0.67 0.5 -
pi(v),C - - 0.33 0.5 - 0.5 0.67∑
k pi(v),k 0.67 1 1 1 0.67 1 0.67
yv 1 1 1 1 1 1 1

pvA 0.67 0.5 0.33 0.5 - - -
pvB - 0.5 0.33 - 0.67 0.5 -
pvC - - 0.33 0.5 - 0.5 0.67

Figure 4 RefinePartitionAndSolve takes 3 iterations to solve this instance of (OPP ) to optimality.
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6.3. Computational Results

On a structurally rich set of randomly generated instances, algorithms GetCloseAndScaleUp

and RefinePartitionAndSolve efficiently find small, aggregated, near-optimal solutions to

(OPP ), thereby confirming their practicability. We generate each instance as follows: First, each

campaign and each viewer type are assigned a link intensity, and with probability (campaign link

intensity) × (viewer type link intensity), a link between campaign and viewer type is created in

the underlying transportation network, thereby defining the instance’s targeting. Next, expected

supply for each viewer type is randomly generated, and viewer types that target the same set of

campaigns are merged (summing together expected supplies). Finally, impression goals are gener-

ated by iterating through the list of campaigns and recording “reservations” from each campaign.

A campaign will attempt to reserve the same proportion of supply from each viewer type it targets,

settling for less if insufficient supply remains.

Our testing makes use of six test cases, which, in addition to size, are distinguished by sell-

through – the ratio of total impression goals to total supply – and targeting percentage – the average

proportion of viewer types targeted by a campaign. Figure 5 lists the test cases along with the

uniform distributions used to generate their link intensities and the reservation proportions used

to generate their impression goals. In all cases, expected supply is the product of a Pareto random

variable with minimum 0, mean 1, and shape parameter 5 (to model heavy-tail arrivals of viewers)

and the fixed number 32 (a reasonable rate of impressions per arrival for video games). We use the

Pareto distribution since in practice some viewer types yield a disproportionately large share of

arrivals (see Agarwal et al. 2007); however, similar results are achieved with Uniform[0,2] arrivals.

The first three columns of Figure 6 illustrate the progression of RefinePartitionAndSolve

on the “Large, Locally Tight” test case. Column 1 lists the number of refinement iterations taken,

Column 2 the number of inventory blocks introduced, and Column 3 measures feasibility, defined as

the proportion of impression goals met in expectation by the disaggregated plan. The results from

ten randomly generated instances are summarized by reporting averages, as well as the 10th and

90th percentiles; e.g., after the 10th iteration, on average 990.8 inventory blocks were introduced,



Turner: The Planning of Guaranteed Targeted Display Advertising 29

Test Case
# Cam-
paigns

# Viewer
Types

Sell-
through

Targeting
%

Campaign
Link Intensity

Viewer Type
Link Intensity

Reservation
Proportion

Small, Loose 100 10,000 67% 18.75% U[0.1, 0.4] U[0.5, 1] 3.5%
Small, Globally Tight 100 10,000 92% 18.75% U[0.1, 0.4] U[0.5, 1] 6%
Small, Locally Tight 100 10,000 95% 3.9% U[0.01, 0.12] U[0.2, 1] ∗

Large, Loose 100 100,000 63% 18.75% U[0.1, 0.4] U[0.5, 1] 3.5%
Large, Globally Tight 100 100,000 92% 18.75% U[0.1, 0.4] U[0.5, 1] 6%
Large, Locally Tight 100 100,000 94% 3.9% U[0.01, 0.12] U[0.2, 1] ∗

Figure 5 The six test cases. In cases marked ∗, reservation proportions for each campaign were drawn from
{40%, 90%, and 100%} with probabilities 0.6, 0.3, and 0.1, respectively. Globally tight cases have high
sell-through, while locally tight cases have both high sell-through and low targeting percentage.

and 974.2 and 1004.2 were the 10th and 90th percentiles. We see RefinePartitionAndSolve

performs very well: Starting from a single inventory block at iteration 0, by iteration 4 the viewer

type space was intelligently aggregated into 16 inventory blocks to yield a 97.2%-feasible solution,

and 99.9% feasibility was achieved at iteration 9 using on average 501.7 inventory blocks – a

significant level of aggregation considering there are 100,000 viewer types.

The performance of GetCloseAndScaleUp is illustrated by Columns 4-7 of Figure 6: Column

4 reports the proportion of instances that successfully terminated ; i.e. those where a 99.99%+

feasible plan was found within 100 scaling iterations and the scaling factors fCUMk did not exceed

100; Columns 5-7 report summary statistics for the subset of instances that terminated successfully.

In particular, Column 5 lists the number of scaling iterations required to find a feasible solution,

Column 6 bounds the optimality gap using Corollary 1, and Column 7 reports the actual optimality

gap. We can see that GetCloseAndScaleUp performs very well: scaled solutions are often within

a few percent of optimality even when the inventory block partition is highly aggregated.

Since the number of scaling iterations required to find a feasible solution generally drops as the

instance is disaggregated, the fastest way to find a feasible plan often involves running several

refinement iterations and then switching to the scaling algorithm. For example, in Figure 6 we

can see that after 8 iterations of RefinePartitionAndSolve, on average 254.1 inventory blocks

were introduced and a 99.8%-feasible solution was found. Running GetCloseAndScaleUp on

this solution was successful in 100% of instances, and after an average of 18.2 scaling iterations, a

feasible solution within 0.1% of both proven and actual optimality was found.

When we compare our algorithms’ performance across the six test cases from Figure 5, we find
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Refine
Iter

Inventory
Blocks

Feasibility
Scaling
Success

Scaling
Iters

Optimality
Gap Bound

Optimality
Gap Actual

0 1.0 [1.0,1.0] 0.751 [0.739,0.763] 0.0 – – –
1 2.0 [2.0,2.0] 0.835 [0.823,0.848] 0.3 88.7 [79.8,96.6] 0.148 [0.138,0.155] 0.031 [0.028,0.034]

2 4.0 [4.0,4.0] 0.905 [0.896,0.915] 0.5 77.8 [63.2,91.6] 0.061 [0.056,0.066] 0.023 [0.021,0.025]

3 8.0 [8.0,8.0] 0.948 [0.942,0.956] 0.6 70.5 [54.0,91.0] 0.030 [0.028,0.032] 0.017 [0.016,0.018]

4 16.0 [16.0,16.0] 0.972 [0.969,0.975] 0.8 68.0 [47.8,89.1] 0.015 [0.014,0.016] 0.010 [0.010,0.011]

5 32.0 [32.0,32.0] 0.984 [0.983,0.986] 0.9 59.7 [40.0,78.2] 0.007 [0.007,0.008] 0.006 [0.005,0.006]

6 64.0 [64.0,64.0] 0.991 [0.990,0.992] 1.0 51.7 [32.1,79.1] 0.003 [0.003,0.004] 0.003 [0.003,0.003]

7 127.8 [127.0,128.0] 0.995 [0.995,0.996] 1.0 31.6 [22.5,41.9] 0.002 [0.001,0.002] 0.001 [0.001,0.002]

8 254.1 [252.9,255.1] 0.998 [0.997,0.998] 1.0 18.2 [14.7,24.2] 0.001 [0.001,0.001] 0.001 [0.000,0.001]

9 501.7 [493.7,507.0] 0.999 [0.999,0.999] 1.0 10.6 [8.0,13.2] 0.000 [0.000,0.000] 0.000 [0.000,0.000]

10 990.8 [974.2,1004.2] 0.999 [0.999,0.999] 1.0 6.0 [5.0,7.2] 0.000 [0.000,0.000] 0.000 [0.000,0.000]

Figure 6 Performance of RefinePartitionAndSolve and GetCloseAndScaleUp on the “Large, Locally
Tight” test case.

that to achieve a solution a given distance from optimality, 1) larger cases take longer than smaller

ones but often require a comparable number of refinement iterations and inventory blocks, 2) locally

tight cases need the most refinement and scaling iterations and produce the most inventory blocks,

and 3) globally tight cases take the most time to solve since they are the largest to represent. In

all cases, the algorithms performed very well. For the details, see §EC.6.

7. Conclusions

Among the media vehicles that can be considered Guaranteed Targeted Display Advertising, allocat-

ing impressions from campaigns to audience segments can be done with a transportation problem

with quadratic objective. Models of audience uncertainty, forecast error, and the random slotting

of the ad server were used to derive sufficient conditions for when the quadratic objective min-

imizes the variance of the number of impressions served and maximizes expected reach, so that

ad managers can understand if and why their ad server is optimal with respect to variance and

reach. In addition, we studied aggregation of the viewer type space and gave two algorithms to

solve the original large planning problem: GetCloseAndScaleUp, which assumes a fixed par-

tition of the viewer type space and finds a feasible solution with measurable optimality gap; and

RefinePartitionAndSolve, which successively refines the partition at each iteration, terminat-

ing with an optimal solution if one exists.
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Supplementary Material

EC.1. Derivations for Example 2

In §3.3 we presented a specific example of ad server execution, and claimed that E[F r
vk] = pvk;

αv(p) = 2bnpc+1

n
(p− bnpc

n
) + bnpc2

n2
. These derivations are included here. For clarity, we take p≡ pvk.

E[F r
vk] =

bnpc
n

(bnpc+ 1−np) +
dnpe
n

(np−bnpc)

=
bnpc
n

(bnpc+ 1−np) +
bnpc+ 1

n
(np−bnpc)

=
bnpc
n

(bnpc+ 1−np+np−bnpc) +
1

n
(np−bnpc)

=
bnpc
n

(1) +
1

n
(np−bnpc)

=
bnpc
n

+ p− bnpc
n

= p

α(p) :=E[(F r
vk)

2] =

(
bnpc
n

)2

(bnpc+ 1−np) +

(
bnpc+ 1

n

)2

(np−bnpc)

=

(
bnpc
n

)2

(bnpc+ 1−np) +

((
bnpc
n

)2

+ 2
bnpc
n2

+
1

n2

)
(np−bnpc)

=

(
bnpc
n

)2

(bnpc+ 1−np+np−bnpc) +

(
2
bnpc
n2

+
1

n2

)
(np−bnpc)

=

(
bnpc
n

)2

(1) +

(
2
bnpc
n2

+
1

n2

)
(np−bnpc)

=
bnpc2

n2
+ 2
bnpcp
n
− 2
bnpc2

n2
+
p

n
− bnpc

n2

= 2
bnpcp
n
− bnpc

2

n2
+
p

n
− bnpc

n2

=
2bnpc+ 1

n
p− bnpc

2 + bnpc
n2

=
2bnpc+ 1

n
p− bnpc(bnpc+ 1)

n2

=
2bnpc+ 1

n
(p− bnpc

n
)− bnpc(bnpc+ 1)

n2
+

2bnpc+ 1

n
(
bnpc
n

)

=
2bnpc+ 1

n
(p− bnpc

n
)− bnpc(bnpc+ 1)

n2
+

2bnpc2

n2
+
bnpc
n2

=
2bnpc+ 1

n
(p− bnpc

n
)− bnpc

2 + bnpc− 2bnpc2−bnpc
n2

=
2bnpc+ 1

n
(p− bnpc

n
) +
bnpc2

n2

Furthermore, α(p) = 2bnpc+1

n
(p− bnpc

n
) + bnpc2

n2
is convex in p.
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Proof. We show that α(p) is piecewise-linear increasing (and hence convex). Let αj(p) =

2j+1
n

(p− j
n

) + j2

n2
, j ∈ {0..n−1}. Then α(p) = αj(p) when p∈

[
j
n
, j+1
n

)
. Each segment αj(p) is linear

in p. As well, α(p) is continuous: at the point p = j+1
n

between segments j and j + 1, we have

α( j+1
n

) = lim
p↑ j+1

n
αj(p) = lim

p↓ j+1
n
αj+1(p) = (j+1)2

n2
, since

lim
p↑ j+1

n

αj(p) = lim
p↑ j+1

n

(
2j+ 1

n

)(
p− j

n

)
+
j2

n2

=

(
2j+ 1

n

)(
j+ 1

n
− j

n

)
+
j2

n2

=

(
2j+ 1

n

)(
1

n

)
+
j2

n2

=
2j+ 1 + j2

n2

=
(j+ 1)2

n2

=

(
2(j+ 1) + 1

n

)(
j+ 1

n
− j+ 1

n

)
+

(j+ 1)2

n2

= lim
p↓ j+1

n

(
2(j+ 1) + 1

n

)(
p− j+ 1

n

)
+

(j+ 1)2

n2

= lim
p↓ j+1

n

αj+1(p).

Finally, the slope of segment j is 2j+1
n

; thus α(p) is increasing in p. �

EC.2. Derivations for the Mean and Variance of Xvk

We require the following technical lemmas:

Lemma EC.1. If Y =
∑

n=1..N Xn is the sum of a random number of i.i.d. random variables, where

the Xn’s and N are mutually independent, then from first principles we have E[Y ] =E[N ]E[X] and

Var[Y ] =E[N ]E[X2] +E[X]2(Var[N ]−E[N ]).

Lemma EC.2. If M ∼ Poisson(L), where L is a random variable, then Var[M ] = Var[L] +E[L].

Proof.

Var[M ] = Var[E[M |L]] +E[Var[M |L]]; by the law of total variance

= Var[L] +E[L]; since E[M |L] = Var[M |L] =L for M ∼ Poisson(L). �

These quantities are used in the main derivations:
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Lemma EC.3. E[F r
vkY

r
v ] = µvpvk.

Proof. E[F r
vk] = pvk, E[Y r

v ] = µv, and E[F r
vkY

r
v ] =E[F r

vk]E[Y r
v ] since F r

vk and Y r
v are independent.

�

Lemma EC.4. E[(F r
vkY

r
v )2] = (σ2

v +µ2
v)αv(pvk).

Proof. E[(F r
vk)

2] = αv(pvk), E[(Y r
v )2] = σ2

v + µ2
v, and E[(F r

vkY
r
v )2] = E[(F r

vk)
2]E[(Y r

v )2] since F r
vk

and Y r
v are independent. �

We now derive the mean and variance of the number of impressions served to campaign k from

viewer type v.

Lemma EC.5. The expected number of impressions served to campaign k from viewer type v is

E[Xvk] = λvµvpvk = svpvk.

Proof. Taking the expectation of Equation (7), we get:

E[Xvk] =E

[ ∑
r=1..Mv

F r
vkY

r
v

]
=E[Mv]E[FvkY

r
v ] by Lemma EC.1

=E[Mv]µvpvk by Lemma EC.3

= λvµvpvk = svpvk by iterating the expectation E[Mv] =E[Λv] = λv . �

Lemma EC.6. The variance of the number of impressions served to campaign k from viewer type

v is Var[Xvk] = (σ2
v +µ2

v)λvαv(pvk) +µ2
vp

2
vkVar[Λv].

Proof. Taking the variance of Equation (7), we get:

Var[Xvk] = Var

[ ∑
i=1..Mv

F r
vkY

r
v

]
=E[Mv]E[(F r

vkY
r
v )2] +E[F r

vkY
r
v ]2 (Var[Mv]−E[Mv]) by Lemma EC.1

=E[Mv]E[(F r
vkY

r
v )2] +E[F r

vkY
r
v ]2 (Var[Λv] +E[Λv]−E[Mv]) by Lemma EC.2

=E[Λv]E[(F r
vkY

r
v )2] +E[F r

vkY
r
v ]2 (Var[Λv] +E[Λv]−E[Λv])

= λvE[(F r
vkY

r
v )2] +E[F r

vkY
r
v ]2Var[Λv]

= λv(σ
2
v +µ2

v)αv(pvk) +µ2
vp

2
vkVar[Λv] by Lemmas EC.3 and EC.4. �
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EC.3. Optimality Results for the Equal-Proportion Allocation

Theorem 1. Consider the objective function f(p) =
∑

k∈K,v∈Vk
svh(pvk), where h :R→R is convex

(but possibly nondifferentiable). The equal-proportion allocation p= q is optimal for the problem:

(P1) min f(p)

s.t.
∑

v∈Vk
svpvk = gk ∀k ∈K (impression goals)

pvk ≥ 0 ∀k ∈K,∀v ∈ Vk (non-negativity)

Proof. Problem (P1) decomposes into k single-campaign planning problems of the form

(P1k) min
∑

v∈Vk
svh(pvk)

s.t.
∑

v∈Vk
svpvk = gk (impression goal)

pvk ≥ 0 ∀v ∈ Vk (non-negativity)

Since h(·) is convex, by Jensen’s Inquality

h

(∑
v∈Vk

svpvk∑
v∈Vk

sv

)
≤
∑

v∈Vk
svh(pvk)∑

v∈Vk
sv

holds for any feasible solution {pvk}v∈Vk to (P1k). Since qk = gk/
∑

v∈Vk
sv =

∑
v∈Vk

svpvk/
∑

v∈Vk
sv,

we have h(qk)≤
∑

v∈Vk
svpvk/

∑
v∈Vk

sv. Hence,
∑

v∈Vk
svh(qk)≤

∑
v∈Vk

svpvk holds for any feasible

{pvk}v∈Vk . Therefore, the equal-proportion allocation {qk, · · · , qk} is a minimizer of (P1k), and by

extension q minimizes (P1). �

EC.3.1. Corollaries

We show that under certain conditions, the expressions for expected reach, stochastic variance,

and forecast variance have the functional form required by Theorem 1; thus, the equal-proportional

allocation optimizes (P1) when using these objectives.

Corollary EC.1. Assume all viewer types share the same mean number of impressions per

arrival (µv = µ ∀v ∈ V ), and that as a function of the planned proportion p, the probability a given

campaign is served to a given arrival is the same across all viewer types (βv(p) = β(p) ∀v ∈ V ).

Then if β(p) is concave in p, the equal-proportion allocation p = q is optimal for (P1) under the

objective of maximizing expected reach.
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Proof. From Equation (5), total expected reach is f0(p) =
∑

k∈K,v∈Vk
λv
η

(
1− e−ηβ(pvk)

)
.

Because maxf0(p) ≡ min(−µη)f0(p) ≡ min
∑

k∈K,v∈Vk
µλv

(
e−ηβ(pvk)− 1

)
≡

min
∑

k∈K,v∈Vk
sv
(
e−ηβ(pvk)− 1

)
, the result follows from Theorem 1 using h(p)

def
= e−ηβ(p)− 1. Note

that β(p) concave =⇒ −ηβ(p) convex =⇒ e−ηβ(p) convex =⇒ h(p) convex. �

Corollary EC.2. Assume all viewer types share the same mean and standard deviation for the

number of impressions per arrival (µv = µ, σv = σ ∀v ∈ V ), and as a function of the planned

proportion p, the second moment of the random fraction of impressions awarded to a given cam-

paign is the same across all viewer types (αv(p) = α(p) ∀v ∈ V ). Then if α(p) is convex in p, the

equal-proportion allocation p = q is optimal for (P1) under the objective of minimizing stochastic

variance.

Proof. From Equation (14), total stochastic variance is f0(p) =
∑

k∈K,v∈Vk
(σ2 + µ2)λvα(pvk).

Since minf0(p)≡min µ
σ2+µ2

f0(p)≡min
∑

k∈K,v∈Vk
µλvα(pvk)≡min

∑
k∈K,v∈Vk

svα(pvk), the result

follows from Theorem 1 using h(p)
def
= α(p). �

Corollary EC.3. Assume all viewer types share the same mean number of impressions per

arrival (µv = µ ∀v ∈ V ). Then if Var[Λv] = θλv ∀v ∈ V , where θ ≥ 0 is a constant, the equal-

proportion allocation p= q is optimal for (P1) under the objective of minimizing forecast variance.

Proof. From Equation (15), total forecast variance is f0(p) =
∑

k∈K,v∈Vk
µ2p2vkVar[Λv]. Since

minf0(p) ≡ min 1
µ
f0(p) ≡ min

∑
k∈K,v∈Vk

µθλvp
2
vk ≡ min

∑
k∈K,v∈Vk

svp
2
vk, the result follows from

Theorem 1 using h(p)
def
= p2. �

EC.4. Quadratic Transportation Problem Duality

Consider the following transportation problem with quadratic objective. Each source s ∈ S is

connected to the set of sinks t ∈ Ts; likewise, each sink t ∈ T is connected to the set of sources

s∈ St. The cost of transporting xst units from source s to sink t is cstx
2
st, where we assume cst > 0.

Source s can supply up to as units, and sink t demands exactly bt units. The amount of flow on

arc xst is limited to the upper bound of dst. This transportation problem is written:
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min 1
2

∑
s∈S,t∈Ts cstx

2
st

s.t.
∑

t∈Ts xst ≤ as ∀s∈ S∑
s∈St xst = bt ∀t∈ T

0≤ xst ≤ dst ∀s∈ S, t∈ Ts

In standard form, the problem is:

min 1
2

∑
s∈S,t∈Ts cstx

2
st Dual Vars

s.t.
∑

t∈Ts xst− as ≤ 0 ∀s∈ S ...us

bt−
∑

s∈St xst = 0 ∀t∈ T ...vt

−xst ≤ 0 ∀s∈ S, t∈ Ts ...wst

xst− dst ≤ 0 ∀s∈ S, t∈ Ts ...zst

The Lagrangian is therefore:

L(x,u, v,w, z) =
1

2

∑
s∈S,t∈Ts

cstx
2
st +

∑
s∈S

(∑
t∈Ts

xst− as

)
us +

∑
t∈T

(
bt−

∑
s∈St

xst

)
vt

+
∑

s∈S,t∈Ts

(−xst)wst +
∑

s∈S,t∈Ts

(xst− dst)zst

=L0 +
∑

s∈S,t∈Ts

Lst(xst), where

L0 =−
∑
s∈S

asus +
∑
t∈T

btvt−
∑

s∈S,t∈Ts

dstzst; Lst(xst) =
1

2
cstx

2
st + (us− vt−wst + zst)xst.

Since ∂L/∂xst = ∂Lst(xst)/∂xst = cstxst + us − vt −wst + zst, the Karush-Kuhn-Tucker conditions

are:

(Stationarity) cstxst =−us + vt +wst− zst ∀s∈ S, t∈ Ts
(Primal feasibility)

∑
t∈Ts xst ≤ as ∀s∈ S∑
s∈St xst = bt ∀t∈ T

0≤ xst ≤ dst ∀s∈ S, t∈ Ts
(Dual feasibility) us ≥ 0 ∀s∈ S

wst ≥ 0 ∀s∈ S, t∈ Ts
zst ≥ 0 ∀s∈ S, t∈ Ts

(Complimentary slackness)
(∑

t∈Ts xst− as
)
us = 0 ∀s∈ S

xstwst = 0 ∀s∈ S, t∈ Ts
(xst− dst)zst = 0 ∀s∈ S, t∈ Ts

We now solve for the dual objective. First, we note the Lagrangian dual function is g(u, v,w, z) :=

infxL(x,u, v,w, z) =L0 +
∑

s∈S,t∈Ts infxst Lst(xst). Since Lst is convex in xst, a minimum is obtained

by solving the first order condition ∂Lst/∂xst = 0. Since cst > 0, the first order condition yields
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x∗st = 1
cst

(−us + vt + wst − zst). Therefore, at optimality, Lst(x
∗
st) = − 1

2cst
(−us + vt + wst − zst)2.

Hence, the Lagrangian dual function is:

g(u, v,w, z) =−1

2

∑
s∈S,t∈Ts

1

cst
(−us + vt +wst− zst)2−

∑
s∈S

asus +
∑
t∈T

btvt−
∑

s∈S,t∈Ts

dstzst.

The dual problem is therefore:

max − 1
2

∑
s∈S,t∈Ts

1
cst

(−us + vt +wst− zst)2−
∑

s∈S asus +
∑

t∈T btvt−
∑

s∈S,t∈Ts dstzst

s.t. us ≥ 0 ∀s∈ S
wst ≥ 0 ∀s∈ S, t∈ Ts
zst ≥ 0 ∀s∈ S, t∈ Ts

EC.5. GTDA Aggregation Theory Proofs

EC.5.1. Proof of Theorem 2

Theorem 2. zAUX(1/s) ≤ zOPP .

Proof. Using η, γ, θ, and φ as the Lagrange multipliers for the impression goal constraints,

supply constraints, variable lower bounds (nonnegativity), and variable upper bounds, respectively,

the Lagrangian dual for (AUX(1/s)) is (see §EC.4 for the full derivation):

(DAUX(1/s)) max − 1

2

∑
k∈K,
i∈Ik

sik (−γi + ηk + θik−φik)2−
∑
i∈I

siγi +
∑
k∈K

gkηk−
∑
k∈K,
i∈Ik

sikφik

s.t. γi ≥ 0 ∀i∈ I, and θik ≥ 0, φik ≥ 0 ∀k ∈K, i∈ Ik

Similarly, the dual of (OPP IMP ) with redundant variable upper bounds xvk ≤ sv ∀k ∈K,v ∈ Vk is:

(DOPP IMP ) max − 1

2

∑
k∈K,
v∈Vk

sv (−γv + ηk + θvk−φvk)2−
∑
v∈V

svγv +
∑
k∈K

gkηk−
∑
k∈K,
v∈Vk

svφvk

s.t. γv ≥ 0 ∀v ∈ V, and θvk ≥ 0, φvk ≥ 0 ∀k ∈K,v ∈ Vk

Consider an optimal solution (η∗, γ∗, θ∗, φ∗) of (DAUX(1/s)) which has value zAUX(1/s). Let

η̂k = η∗k ∀k ∈ K, γ̂v = γ∗i(v) ∀v ∈ V , θ̂vk = θ∗i(v),k ∀k ∈ K,v ∈ Vk, and φ̂vk = φ∗i(v),k ∀k ∈ K,v ∈ Vk.

Clearly (η̂, γ̂, θ̂, φ̂) is feasible for (DOPP IMP ). Evaluating (η̂, γ̂, θ̂, φ̂) in the objective function of

(DOPP IMP ), we have:

− 1

2

∑
k∈K,
v∈Vk

sv

(
−γ̂v + η̂k + θ̂vk− φ̂vk

)2

−
∑
v∈V

svγ̂v +
∑
k∈K

gkη̂k−
∑
k∈K,
v∈Vk

svφ̂vk
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=− 1

2

∑
k∈K,
i∈Ik

∑
v∈Vik

sv
(
−γ∗i(v) + η∗k + θ∗i(v),k−φ∗i(v),k

)2−∑
i∈I

∑
v∈Vi

svγ
∗
i(v) +

∑
k∈K

gkη
∗
k −

∑
k∈K,
i∈Ik

∑
v∈Vik

svφ
∗
i(v),k

=− 1

2

∑
k∈K,
i∈Ik

(−γ∗i + η∗k + θ∗ik−φ∗ik)
2
∑
v∈Vik

sv −
∑
i∈I

γ∗i
∑
v∈Vi

sv +
∑
k∈K

gkη
∗
k −

∑
k∈K,
i∈Ik

φ∗ik
∑
v∈Vik

sv

=− 1

2

∑
k∈K,
i∈Ik

sik (−γ∗i + η∗k + θ∗ik−φ∗ik)
2−
∑
i∈I

siγ
∗
i +

∑
k∈K

gkη
∗
k −

∑
k∈K,
i∈Ik

sikφ
∗
ik

= zAUX(1/s)

Hence, there exists a dual feasible point with objective value zAUX(1/s) in (DOPP IMP ). Since

(DOPP IMP ) is a maximization problem, zOPP ≥ zAUX(1/s). �

EC.5.2. Proof of Theorem 3

Theorem 3. The solution pj returned by RefinePartitionAndSolve is optimal in (OPP ).

Proof. Say RefinePartitionAndSolve terminates at iteration j with partition Ij. Further-

more, let xj and zAUX(1/s) be an optimal solution and corresponding optimal value for (AUX(1/s))

under partition Ij, as computed in iteration j. We now show that (xj,c) = (xj,1/s) is feasible

for problem (APP IMP ) with partition Ij. First, it is clear that since (AUX(1/s)) has impres-

sion goal and nonnegativity constraints, those constraints in (APP IMP ) are satisfied by xj. We

just need to verify that (xj,1/s) satisfies the nonlinear yield constraints Y IMP of (APP IMP ). But

since RefinePartitionAndSolve always terminates with no viewer types overallocated (i.e. yjv =

1 ∀v ∈ V ), we know that (xj,1/s) ∈ Y IMP : to verify, substitute yv = 1 ∀v ∈ V , aik = bik = sik ∀k ∈

K, i ∈ Ik, and pik = pjik = xjik/sik ∀k ∈K, i ∈ Ik into Y IMP . Thus, (xj,1/s) is feasible for problem

(APP IMP ) with partition Ij.

Now we evaluate (xj,1/s) in the objective of (APP IMP ). Since cik = 1/sik ∀k ∈K, i ∈ Ik, the

objectives of (AUX(1/s)) and (APP IMP ) are identical. Hence, not only is (xj,1/s) feasible in

(APP IMP ), but this solution has value zAUX(1/s). Therefore, zAPP ≤ zAUX(1/s). But from Proposi-

tion 2 and Theorem 2 we know that for the fixed inventory block partition Ij, zAUX(1/s) ≤ zOPP ≤

zAPP . Hence, zAUX(1/s) = zOPP = zAPP .

Therefore, we have shown that the disaggregation of xj is optimal in (OPP IMP ); correspondingly,

the disaggregation of pj is optimal in (OPPPROP ). �
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EC.6. Additional Computational Results

This section reports the measured performance of RefinePartitionAndSolve and

GetCloseAndScaleUp on the six test cases from Figure 5. The details are organized in Figure

EC.1. For example, in the “Large, Locally Tight” case, 10 refinement iterations produces a solution

that is on average 99.9%-feasibile, requiring an average of 991 inventory blocks and 26 seconds (row

C); 6 refinement iterations are required before the scaling algorithm achieves 100% success, and

this requires 64 inventory blocks and 9 seconds on average (row D); to get within 0.1% of proven

optimality in 90% of instances, 8 refinement iterations were needed, which on average generated

254 inventory blocks in 14 seconds and subsequently performed 18 scaling steps in 31 seconds (row

F); finally, to get within 0.1% of measured optimality in 90% of instances, 8 refinement steps were

also required (row H).

Small Large

Loose Globally Tight Locally Tight Loose Globally Tight Locally Tight

(A) (0, 1, 1) (0, 1, 1) (2, 4, 1) (0, 1, 14) (0, 1, 14) (2, 4, 4)
(B) (0, 1, 1) (3, 8, 4) (6, 64, 1) (0, 1, 14) (3, 8, 54) (6, 64, 9)
(C) (2, 3, 3) (7, 122, 10) (10, 980, 8) (2, 3, 42) (7, 123, 108) (10, 991, 26)

(D) (0, 1, 1) (0, 1, 1) (7, 128, 2) (0, 1, 14) (0, 1, 14) (6, 64, 9)

(E) (0, 1, 1), (2, 2) (2, 4, 3), (7, 7) (7, 128, 2), (23, 3) (0, 1, 14), (2, 27) (2, 4, 40), (7, 89) (6, 64, 9), (52, 63)
(F) (0, 1, 1), (2, 2) (5, 32, 7), (4, 4) (8, 253, 3), (16, 3) (0, 1, 14), (2, 27) (5, 32, 80), (4, 55) (8, 254, 14), (18, 31)

(G) (0, 1, 1), (2, 2) (0, 1, 1), (16, 16) (7, 128, 2), (23, 3) (0, 1, 14), (2, 27) (0, 1, 14), (16, 204) (6, 64, 9), (52, 63)
(H) (0, 1, 1), (2, 2) (5, 32, 7), (4, 4) (8, 253, 3), (16, 3) (0, 1, 14), (2, 27) (5, 32, 80), (4, 55) (8, 254, 14), (18, 31)

Figure EC.1 Summary of algorithm performance. (A-C) = # of Refine (Iterations, Blocks, Seconds) to achieve
(A) 90%, (B) 99%, and (C) 99.9% feasibility; (D) = # of Refine (Iterations, Blocks, Seconds) to
achieve 100% scaling success; (E-F) = # of Refine (Iterations, Blocks, Seconds) and # of Scaling
(Iterations, Seconds) to get within (E) 1%, (F) 0.1% of proven optimality; (G-H) = # of Refine
(Iterations, Blocks, Seconds) and # of Scaling (Iterations, Seconds) to get within (G) 1%, (H) 0.1%
of measured optimality.
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