
UCLA
UCLA Electronic Theses and Dissertations

Title
Generalized Mackey and Tambara Functors

Permalink
https://escholarship.org/uc/item/97k1m8p5

Author
Spitz, Benjamin

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/97k1m8p5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Generalized Mackey and Tambara Functors

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Benjamin Ezra Spitz

2024

© Copyright by

Benjamin Ezra Spitz

2024

ABSTRACT OF THE DISSERTATION

Generalized Mackey and Tambara Functors

by

Benjamin Ezra Spitz

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Michael A. Hill, Co-Chair

Professor Burt Totaro, Co-Chair

We present a definition of Bi-Incomplete Generalized Mackey and Tambara Functors, which

in special cases reduces to both the notion of (bi-incomplete) G-Mackey and G-Tambara

functors and the notion of motivic Mackey and Tambara functors (as defined in [2]). We

then prove a foundational theorem about these generalized objects, whose incarnation for

G-Mackey and G-Tambara functors is due to Mazur [18], Hoyer [14], and Chan [10].

A G-Mackey functor is a product-preserving functor AG−set → Set satisfying a certain

additivity condition (G-Tambara functors have a similar definition). Here AG−set is a certain

category constructed from the category G−set of finite G-sets. The perspective we take is that

the category G-set may be replaced here by another category C to obtain a generalized notion

of Mackey/Tambara functor. We furthermore generalize the notion of bi-incompleteness

introduced by Blumberg and Hill [4] to our setting. We spell out precisely the conditions

needed on C to interpret the definitions of bi-incomplete Mackey and Tambara functors and

prove the generalized Hoyer-Mazur theorem in question. Finally, we discuss applications of

this generalized theorem to computations with motivic Tambara functors.

ii

The dissertation of Benjamin Ezra Spitz is approved.

Raphael Alexis Rouquier

Anna Marie Bohmann

Paul Balmer

Burt Totaro, Committee Co-Chair

Michael A. Hill, Committee Co-Chair

University of California, Los Angeles

2024

iii

To the joy of working with a purpose.

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Locally Cartesian Closed Categories . 3

1.2 LCCDC Categories . 9

1.2.1 Mackey and Tambara Functors . 13

1.2.2 Mackey Functors . 17

1.2.3 The Polynomial Category . 20

1.2.4 Tambara Functors . 23

2 (Bi-)Incompleteness and Separability . 26

2.1 (Bi-)Incompleteness in Equivariant Homotopy Theory 26

2.2 Indexing Subcategories and Compatibility 28

2.2.1 Incomplete Mackey Functors . 29

2.2.2 Compatible Pairs of Indexing Categories 31

2.2.3 Bi-Incomplete Tambara Functors . 33

2.3 Compatibility with Slices . 34

2.4 Separability . 39

3 A Generalized Hoyer-Mazur Theorem . 41

3.1 Comparing Kan Extensions along Σ and Π 46

3.1.1 The Natural Transformation ω . 49

3.1.2 Universality . 55

3.1.3 Naturality in α . 62

v

3.2 Separability and Preservation of Mackey Structure 62

3.3 Conclusions . 68

A Technical Lemmas . 71

A.1 The Proof of Proposition 1.2.3 . 71

A.2 The Proof of Lemma 1.2.6 . 73

A.3 The Proof of Proposition 1.2.18 . 75

A.4 Hoyer’s Lemma 2.3.5 . 78

vi

LIST OF FIGURES

1.1 A dictionary between classical and equivariant algebra. 1

vii

ACKNOWLEDGMENTS

First and foremost, I give my sincere gratitude to my advisor, Mike Hill. From the very

beginning of my time as his student, Mike has been supportive, kind, and dedicated to my

growth. As a mathematician, he is wildly knowledgeable and sharp, a clear teacher, and a

tremendous resource. He guided me towards a research area which is both fascinating to me

and important to others, and helped me develop the confidence and capability to attack the

work in this thesis. Beyond this, Mike organized an algebraic topology group at UCLA which

is extraordinary for both its mathematical power and its strong sense of community. I have

learned so much from Mike about how to be a good mathematician, in every possible sense

of both words, and I am so grateful to have been his student.

I’ve been blessed for many years with incredible friends whose support has been essential

to me and without whom I could not have completed this dissertation. Thank you to Joshua

Mundinger, Cole Hugelmeyer, Rachel Burd, Max Waters, and Maxx Harvey for pushing me

forward from the very beginning. Thank you to Alexander Song and Matthew Uffenheimer for

taking the undergraduate journey with me. Thank you to Abigail Hickok, Ben Jarman, Alex

Johnson, Clark Lyons, Redmond McNamara, Bar Roytman, Talon Stark, Morgan Opie, Brian

Shin, Thomas Brazelton, and all of the other mathematical friends I’ve made in graduate

school, for guiding me and giving me the motivation to keep working.

Throughout my carrer, I have been continually inspired by the kindness, brilliance,

generosity, and spirit of amazing teachers and mathematical mentors. I cannot give enough

thanks to Cheryl Speckl, Maribel Bueno, Birge Huisgen-Zimmermann, and Paul Balmer for

their guidance, time, care, and knowledge.

My family is the source of everything in my life. To my mother Patrice: you are the

kindest and most empathetic person I know. I learned how to follow my heart from your

example, and that is by far the most valuable gift I have ever received. To my father Glenn:

you are a shining beacon of agency, integrity, and dedication. I learned from you how to

viii

search for understanding, how to do what is right, and how to find the things that matter; I

use those lessons every day. To my sister Juliet: you are the first person I remember meeting,

and I am connected to you more deeply than anyone else. You continually inspire me to be

my best self, and I will always be so proud to be your brother. I love you.

I am extremely and eternally grateful to so many people whose care, friendship, love,

and advice has guided me to this point in my life. There are many people listed in these

acknowledgements, and even more I did not name; it would be impossible to list everyone to

whom I am endebted on this single page. To every single person who has been a part of my

life and made me who I am today: thank you.

This work was supported by NSF Grant DMS-2136090.

ix

VITA

2018 B.S. (Mathematics), University of California, Santa Barbara.

2021 M.A. (Mathematics), University of California, Los Angeles.

x

CHAPTER 1

Introduction

Good morning!

Joshua Mundinger

LetG be a finite group. InG-equivariant homotopy theory, the primary algebraic invariants

of interest are G-Mackey functors and G-Tambara functors. These are generalizations of

abelian groups and commutative rings (respectively) “in the equivariant direction”, meaning

that for G = 1 the respective notions coincide. Whenever one would see an abelian group in

ordinary homotopy theory, one can expect to find a Mackey functor in equivariant homotopy

theory; likewise for commutative rings and Tambara functors.

Classical Algebra ⇝ Equivariant Algebra

Abelian groups ⇝ G−Mackey functors

commutative rings ⇝ G−Tambara functors

Figure 1.1: A dictionary between classical and equivariant algebra.

An abelian group is a commutative monoid with inverses, and a commutative monoid

is simply an algebraic structure with exactly one operation of each arity. Said another way,

operations Mn → M on a commutative monoid M are in bijective correspondence with

functions n→ 1; there is exactly one of each.

More generally, if M is a commutative monoid and n,m are natural numbers, the

operations Mn →Mm are indexed by isomorphism classes of spans from n to m (diagrams

1

of the form n← • → m) in finite sets. Explicitly, a span

n
f←− k

g−→ m

encodes the operation

(xj)
n
j=1 7→

 ∑
z∈g−1(i)

xf(z)

m

i=1

: Mn →Mm.

There is a category Aset (to be formally defined later) whose objects are finite sets and

whose morphisms are isomorphism classes of spans; it will turn out that the category of

product-preserving functors Aset → Set is equivalent to the category CMon of commutative

monoids. In other words, Aset is the Lawvere theory of commutative monoids, and CMon is

the category of Lawvere algebras of Aset.

Among commutative monoids, there are some which admit inverses, and these objects are

called abelian groups. The corresponding subcategory of the category of product-preserving

functors Aset → Set therefore gives a “purely syntactic” construction of Ab.

In a very similar way, the the operations of a G-Mackey functor are (ignoring additive

inverses) indexed by spans of finite G-sets. To define G-Mackey functors, we begin by

generalizing the construction of the Lawvere theory Aset of commutative monoids, replacing

finite sets with finite G-sets to obtain a category AG−set. Then we take the Lawvere algebras

of AG−set, and consider only those which admit inverses (in a precise sense to be defined

later). These objects are called G-Mackey functors.

There is an analogous story with Tambara functors: we take the construction of the

Lawvere theory Pset of commutative semirings, and replace set with G−set to obtain a

category PG−set. Then we take the Lawvere algebras of PG−set, and consider only those which

admit additive inverses. These objects are called G-Tambara functors.

We need not stop here. Instead of replacing set by G−set, we could use any category C,

so long as we can still interpret the constructions of AC and PC, and so long as we can still

2

interpret what it means for a Lawvere algebra of AC or PC to admit additive inverses. The

structure needed by C to interpret all of this is that C is locally cartesian closed with finite

disjoint coproducts (abbreviated LCCDC).

This procedure gives us a definition of “C-Mackey functors” and “C-Tambara functors” for

any LCCDC category C. Of particular interest are the category of finite G-sets (for G some

finite group) and the category of finite étale S-schemes (for some scheme S). The former

recovers precisely the classical notions of G-Mackey functors and G-Tambara functors; on

the other hand, the latter yields precisely the notion of (naive) motivic Tambara functors, as

first defined in [2].

In this thesis, we make precise this generalized notion of Mackey and Tambara functors.

Following this, we generalize a theorem of Mazur, Hoyer, and Chan about G-Tambara functors,

and subsequently apply it to motivic Tambara functors.

1.1 Locally Cartesian Closed Categories

A category C is said to be cartesian if it admits all finite products (including the empty

product, i.e. a terminal object). Dually, a category is said to be cocartesian if it admits

all finite coproducts. Of course, any complete category is in particular cartesian, but there

are many important examples of categories which are cartesian but not complete, e.g. the

category of schemes.

“Cartesian” is a property of categories, but it can also be viewed as a structure. Every

cartesian category C has a “canonical” monoidal structure called the cartesian monoidal

structure – the monoidal operation is given by the categorical product, and the unit is

the terminal object. The word canonical is in quotes in the preceeding sentence because

this description does not, strictly speaking, uniquely determine a monoidal structure on C.

However, it does determine a monoidal structure unique up to unique isomorphism, as things

usually go in category theory.

3

So, in the case that C is cartesian, we may ask whether or not this canonical monoidal

structure is closed – i.e. if, for all objects x ∈ C, the functor x×− : C → C admits a right

adjoint. If this condition is met, we say that C is cartesian closed. This is a much stronger

condition than simply being cartesian – for example, the category of schemes is cartesian but

not cartesian closed.

Finally, for any property P of categories, we can speak of categories which are “locally

P”, meaning that each slice category has property P . To recall:

Definition 1.1.1. Given a category C and an object x ∈ C, the slice category C/x is the

category whose:

• Objects are morphisms in C with codomain x;

• Morphisms α → β are morphisms γ : a→ b in C such that β ◦ γ = α, where a and b

are the domains of α and β, respectively, as in the diagram below

a b

x
α β

γ

;

• Composition is performed as in C.

There are a few particular instances of local properties we will be most interested in here,

so we highlight these:

Definition 1.1.2. A category C is said to be

1. locally cartesian iff the slice category C/x is cartesian for all objects x ∈ C;

2. locally cocartesian iff the slice category C/x is cocartesian for all objects x ∈ C;

3. locally cartesian closed iff the slice category C/x is cartesian closed for all objects x ∈ C.

We will often abbreviate “locally cartesian closed” as LCC.

4

It is worth making explicit what these properties amount to. C/x always has a terminal

object, namely idx. Now, given two objects α, β ∈ C/x, it turns out that their product in

C/x (if it exists) is simply their pullback in C, i.e. the limit of the diagram • α−→ x
β←− •. Thus,

C being locally cartesian is equivalent to C admitting all pullbacks.

Pullbacks will play a central role in this work, so we introduce some terminology:

Definition 1.1.3. A commutative square

x a

b z

is said to be cartesian if it exhibits x as the pullback of the cospan a → z ← b. We may

indicate that a given square is cartesian by decorating it with the symbol ⌟ in the corner

where the pullback object sits.

A basic but important feature of cartesian squares is that they satisfy part of a “2-out-of-3”

property.

Proposition 1.1.4. Let C be any category, and consider a commutative diagram in C of the

form
• • •

• • •
(A) (B)

Then:

1. If (A) and (B) are both cartesian, then the composite square is cartesian;

2. If the composite square and (B) are both cartesian, then (A) is cartesian.

Proof. This is an easy exercise in category theory, and appears as e.g. [17, §3.5, Exercise

8b].

5

Now consider a morphism i : x→ y in C. There is a canonical functor Σi : C/x→ C/y,

given by Σi(α) = i ◦ α, as in the diagram below:

•

x y
i

α
Σiα

Assuming that C is locally cartesian guarantees that this functor has a right adjoint i∗,

given by sending β ∈ C/y to its pullback i∗β in the diagram

• •

x y
i

βi∗β
⌟

More precisely, there may be many functors i∗ which are right adjoint to Σi, but for each of

them we have that i∗β and β fit in a pullback square with i as above. And, as always, i∗ is

unique up to unique isomorphism. In practice, however, we often find that the category C

comes equipped with a canonical pullback construction, yielding a canonical choice of i∗.

To summarize the story so far: having that C is locally cartesian (i.e. C/x is cartesian

for all x) is equivalent to saying that, for each morphism i : x → y in C, the functor

Σi : C/x→ C/y admits a right adjoint i∗.

Being LCC is indeed a stronger condition – it amounts to saying that the right adjoint to

each Σi admits a further right adjoint.

Proposition 1.1.5. A category C is LCC if and only if, for all morphisms i : x→ y in C,

the functor Σi : C/x→ C/y fits in an adjoint triple Σi ⊣ i∗ ⊣ Πi.

For a proof, we refer the reader to [15], Corollary A1.5.3.

Again, Σi is always precisely defined by α 7→ i ◦ α, but i∗ and Πi are only determined

up to unique isomorphism, as are the particular choices of adjunction data (i.e. the unit

and counit of each adjunction). In any case, these functors are often known by the names

“dependent sum” (Σi), “pullback” (i∗), and “dependent product” (Πi).

6

In light of Proposition 1.1.5, an LCC category comes with a plethora of functors between

its slices. These operations (in some sense) encode the structure of Tambara functors, and so

it will be necessary to get a handle on the behavior of these operations and the slice categories

of an LCC category. We refer the curious reader to [11] for a thorough introduction to the

topic, with more detail than we will be able to cover here.

Before we continue, we fix some notation for working with slice categories.

Definition 1.1.6. Let F : C → D be a functor, and let x be an object of C. Then F induces

a functor C/x→ D/Fx, which we denote by F/x.

Now we note one small fact of functor yoga. Using our previous observation that products

in slice categories are given by pullback squares, we have that

Proposition 1.1.7. For any morphism i : x→ y in an LCC category C, Σi ◦ i∗ and i×−

are isomorphic as endofunctors of C/y.

Proof. Let α be an arbitrary object of C/y. Pulling back along i yields a cartesian square

• •

• •
i∗α

i

α
⌟

Now Σii
∗α = i ◦ i∗α exhibits the top-left corner of the square as an object over y – since

this square is cartesian, this is is also the product of i and α in C/y.

Now, we make an observation about local properties of categories in general.

Proposition 1.1.8. Let P be a property of categories which is invariant under isomorphism,

and let C be a category which is locally P . Then for all objects x ∈ C, C/x is locally P .

7

Proof. The key idea is an expression frequently relayed to me by Mike Hill,

Slogan 1. A slice of a slice is a slice.

Let α : a→ x be an object of C/x. Then (C/x)/α is isomorphic to C/a by sending

an object β : b → a of C/a to β : α ◦ β → α in (C/x)/α (and acting as the identity on

morphisms). Since C/a is P by assumption, (C/x)/α is also P . Since α was arbitrary, we

conclude that C/x is locally P .

Corollary 1.1.9. Every slice category of an LCC category is LCC.

Next, we make an interesting observation about LCC categories – they admit no nontrivial

morphisms to initial objects (just as how, in Set, there are no functions from a nonempty set

to the empty set).

Proposition 1.1.10. Let C be a locally cartesian closed category. Let x ∈ C be some object

and let ∅ ∈ C be an initial object. Then any morphism x→ ∅ is an isomorphism; i.e. C/∅

is equivalent to the terminal category.

Proof. In the category C/∅, id∅ is both initial and terminal. Since C is locally cartesian

closed, C/∅ is cartesian closed, and so we apply Lemma 1.1.11 below.

Lemma 1.1.11. Let C be a cartesian closed category with an object 0 ∈ C which is both

initial and terminal. Then C is equivalent to the terminal category; i.e. every object in C is

isomorphic to 0.

Proof. Let x, y ∈ C be arbitrary. Then C(x, y) ∼= C(x× 0, y) because 0 is terminal, and

C(x× 0, y) ∼= C(0, [x, y]) by cartesian closure. Finally, C(0, [x, y]) is a singleton because 0

is initial. Since y was arbitrary, this shows that x is initial, and thus x ∼= 0. Since x was

8

arbitrary, this completes the proof.

1.2 LCCDC Categories

Being locally cocartesian is a condition which does not admit a nice reformulation in terms

of adjoint functors. However, it is worth noting that (in contrast with cartesian structure)

cocartesian structure is automatically inherited by slice categories.

Proposition 1.2.1. Let C be a cocartesian category. Then C is locally cocartesian, and

in particular the coproduct of a tuple of objects (αi : ai → x)ni=1 in C/x is the object

(αi)
n
i=1 :

∐n
i=1 ai → x with structure morphisms αj →

∐n
i=1 αi equal to the structure morphisms

aj →
∐n

i=1 ai in C.

In this paper we will consider categories which are locally cartesian closed, cocartesian,

and satisfying one additional condition, namely that finite coproducts are disjoint.

Definition 1.2.2. A category C is said to have finite disjoint coproducts if it is cocartesian

and, for all coproduct diagrams x
i−→ z

j←− y, the following three conditions hold:

1. i is a monomorphism;

2. j is a monomorphism;

3. The square
∅ x

y z

i

j

is cartesian, where ∅ is an initial object of C.

Intuitively, this says that the coproduct in C behaves more like a “disjoint union” operation

(in e.g. Set) than a “max” operation (in e.g. a poset). Indeed, Set is an examle of a cocartesian

category with disjoint coproducts, while the poset ({0, 1},≤) is an example of a cocartesian

category whose coproducts are not disjoint.

9

The importance of this condition for us is that in cocartesian, locally cartesian closed

categories satisfying this disjointness property, slice categories over coproducts are well-

behaved – an object living over a⨿ b splits into a piece living over a and a piece living over

b.

Proposition 1.2.3. Let C be a category which is locally cartesian closed and cocartesian with

disjoint coproducts. Then any coproduct diagram x
i−→ x⨿ y

j←− y induces an equivalence of

categories

C/(x⨿ y)
(i∗,j∗)−−−→ C/x× C/y.

The quasi-inverse functor is the composite

C/x× C/y Σi×Σj−−−−→ (C/(x⨿ y))× (C/(x⨿ y))
⨿−→ C/(x⨿ y);

we relegate the proof to Appendix A. This property of the category C is known as extensivity

[9], and the content of this proposition that all LCCDC categories are extensive.

It will be convenient to have a shorthand phrase for “locally cartesian closed categories

which are cocartesian with disjoint coproducts”, since these will be our main objects of study.

Thus,

Definition 1.2.4. We will say that a category C is LCCDC if it is locally cartesian closed,

cocartesian, and has disjoint coproducts.

Just as with LCC, LCCDC is a local property. That is,

Proposition 1.2.5. Let C be an LCCDC category. Then, for all x ∈ C, the slice category

C/x is LCCDC.

Proof. That C/x is LCC is covered by Corollary 1.1.9. Proposition 1.2.1 says that C/x

is cocartesian, and moreover that a coproduct diagram in C/x is a coproduct diagram

a
i−→ a ⨿ b

j←− b in C which happens to lie over x. The assumption that C has disjoint

coproducts says that i and j are monomorphisms in C and that the cospan a
i−→ a⨿ b

j←− b

10

has pullback ∅ in C. Consequently, the pullback of a
i−→ a ⨿ b

j←− b in C/x is an object

over x whose domain (as an object of C) admits a map to ∅. By Proposition 1.1.10,

this shows that the limit of a
i−→ a ⨿ b

j←− b in C/x is also ∅, which is initial in C/x by

Proposition 1.2.1. Furthermore, since i and j are monic in C, they are also monic in

C/x.

We now record a couple straightforward lemmas about the mechanics of LCCDC categories.

Lemma 1.2.6. Let C be an LCCDC category and let f : x→ y and g : x′ → y′ be morphisms

in C. Let ix : x→ x⨿ x′ and iy : y → y ⨿ y′ be the canonical inclusions. Then

x y

x⨿ x′ y ⨿ y′

f

ix

f⨿g

iy

is a cartesian square.

We again relegate this proof to Appendix A.

Corollary 1.2.7. Let C be an LCCDC category and let f : x→ y be a morphism in C. Let

∇x : x⨿ x→ x and ∇y : y ⨿ y → y be the codiagonals. Then

x⨿ x y ⨿ y

x y

f⨿f

∇x

f

∇y

is a cartesian square.

Proof. f ∗ : C/y → C/x is both a left and right adjoint, so it preserves finite coproducts

and terminal objects. Thus, we have

f ∗∇y = f ∗(idy ⨿ idy) = f ∗ idy ⨿f ∗ idy = idx⨿ idx = ∇x.

11

This establishes that there is a cartesian square of the form

x⨿ x y ⨿ y

x y

∇x ∇y

f

and we need only identify the top morphism. To do so, we form a further pullback

• y

x⨿ x y ⨿ y

x y

⌟

i1

idy

∇x ∇y

f

since the right-hand triangle commutes, the left-hand column must compose to f ∗ idy =

idx, and thus the top morphism in this diagram must be f . We would get a similar result

forming a further pullback along i2 : y → y ⨿ y, and thus by Proposition 1.2.3 we have

established the claim.

Lemma 1.2.8. Let C be a category with finite disjoint coproducts. Let ∅ be an initial object

of C, and let φ : ∅→ z be an epimorphism. Then φ is an isomorphism.

Proof. Since φ is an epimorphism and ∅ is initial, we have |C(z, y)| ≤ 1 for all objects y.

In particular, the two coprojections i1, i2 : z → z ⨿ z are equal. Note that the following

two squares are both cartesian:

∅ z z z

z z ⨿ z z z ⨿ z

i2

id

id i1

i1 i1

Since i1 = i2, the top-left corners of these squares must be isomorphic, i.e. ∅ ∼= z. Thus

φ is an isomorphism.

Lemma 1.2.9. Let i : x→ y be an epimorphism in an LCCDC category C. Then Πi : C/x→

C/y sends initial objects to initial objects.

12

Proof. We will use the symbol ∅ to denote all initial objects, with the specific meaning

to be interpreted from context. The existence of the counit i∗Πi∅→ ∅ forces i∗Πi∅ = ∅

by Proposition 1.1.10. Thus, we have a cartesian square

∅ z

x y

(Πi∅)∗i

⌟
Πi∅

i

Since i is epic and (Πi∅)∗ is a left adjoint, the top morphism is also epic. By Lemma 1.2.8,

we conclude that z = ∅, i.e. Πi∅ = ∅.

1.2.1 Mackey and Tambara Functors

We will now introduce the notions of Mackey and Tambara functors, which are our key

objects of study. This comes in two stages: first, we define categories AC and PC, which

syntactically encode the operations in Mackey and Tambara functors. Then, we define Mackey

and Tambara functors to be certain types of functors from these categories to Set.

For the remainder of this chapter, we fix an LCCDC category C. The prototypical example

of such a category for us is the category of finite G-sets, where G is some group. Here are

some other examples:

Example 1.2.10. The category étalé of topological spaces with local homeomorphisms

between them is an LCCDC category. To see this, we make use of a crucial fact: if

X Y

Z

f

h g

is a commutative diagram of topological spaces, and h and g are local homeomorphisms,

then f is a local homeomorphism. Thus, every slice category étalé/X is the same as the

13

category of étalé spaces over X, with all continuous maps between them. We conclude

that étalé/X is equivalent to Sh(X) (the category of sheaves of sets on X) by the étalé

space construction. We know that Sh(X) is cartesian closed, so we conclude that étalé is

LCC. Additionally, étalé clearly admits finite disjoint coproducts (by disjoint union).

Example 1.2.11. Any Grothendieck topos is an LCCDC category. This is because

Grothendieck topoi admit finite disjoint coproducts, Grothendieck topoi are cartesian

closed, and every slice of a Grothendieck topos is a Grothendieck topos.

Example 1.2.12. Let fét denote the category of schemes with finite étale maps between

them. Then fét is an LCCDC category (see [2]), and thus so is fét/S for any scheme S.

1.2.1.1 The Lindner Category

We will first produce from C a category AC, from which we will define the notion of C-Mackey

functors. When C = G−set, these will exactly coincide with the standard notions of G-Mackey

functors.

Definition 1.2.13. The Lindner category of C, denoted AC, is the category whose:

• Objects are the same as the objects of C;

• Morphisms x → y are isomorphism classes of diagrams x ← z → y in C, where two

diagrams x ← z → y and x ← z′ → y are said to be isomorphic if and only if there

exists an isomorphism z → z′ making

z

x y

z′

∼=

commute.

14

• Composition is given by pullback: given morphisms [x← z → y] and [w ← u→ x], we

form a pullback
•

u z

w x y

⌟

to obtain a diagram w ← • → y, whose isomorphism class is declared to be the

composite [x← z → y] ◦ [w ← u→ x].

Since we only needed to construct pullbacks to define the category AC, this construction

makes sense for any locally cartesian category C. There are a few unsurprising facts to learn

about the Lindner category. First, it is self-dual: “flipping” morphisms

[x← z → y] 7→ [y ← z → x]

yields an isomorphism Aop
C → AC.

Next, AC is essentially small whenever C is — of course, the collection of objects of AC

is always in bijection with that of C, and when C0 is a small skeleton of C, any morphism

x→ y in AC can be realized by a span x← z → y in C with z ∈ C0, from which it follows

that AC(x, y) is small.

Our last unsurprising fact is that every morphism [x
f←− z

g−→ y] in AC factors as Tg ◦Rf ,

where

Tg := [z
idz←− z

g−→ y]

Rf := [x
f←− z

idz−→ z];

in other words, we have

[x
f←− z

g−→ y] = [z
idz←− z

g−→ y] ◦ [x f←− z
idz−→ z]

for all f, g.

There is another important perspective one can take on the category AC:

15

Slogan 2. The morphisms Tg and Rf in AC syntactically model the functors Σg and f ∗

(respectively) between the slices of C.

In other words, assigning to each object x the slice category C/x and to each morphism

Tg ◦ Rf the functor Σg ◦ f ∗ yields a faithful functor from AC to the category of categories

with isomorphism classes of functors between them. In particular, for every cartesian square

• •

• •
f

g

g′

f ′
⌟

in C, the equality Tg ◦Rf = Rf ′ ◦ Tg′ is reflected by the fact that Σg ◦ f ∗ ∼= (f ′)∗ ◦ Σg′ . This

isomorphism of functors is sometimes known as the Beck-Chevalley isomorphism.

As a result, facts about dependent sum and pullback translate to give facts about AC.

With Proposition 1.2.3 in mind, we obtain:

Proposition 1.2.14. AC admits all finite products, given by the coproduct in C. That is:

• Any initial object of C is terminal in AC;

• Given a coproduct diagram x
i1−→ x⨿ y

i2←− y in C,

x
Ri1←−− x⨿ y

Ri2−−→ y

is a product diagram in AC.

Proof. First, let ∅ be initial in C. A morphism x → ∅ in AC is given by a diagram

x ← z → ∅ in C. Proposition 1.1.10 nows tells us that this diagram is isomorphic to

x← ∅→ ∅, and thus is uniquely determined up to isomorphism. Thus, ∅ is terminal

in AC.

Next, we claim that the natural transformation

AC(−, x⨿ y)
((Ri1

)∗,(Ri2
)∗)−−−−−−−−→ AC(−, x)×AC(−, y)

16

has inverse

AC(−, x)×AC(−, y)
(Ti1

)∗×(Ti2
)∗−−−−−−−−→ AC(−, x⨿ y)×AC(−, x⨿ y)

+−→ AC(−, x⨿ y),

where + sends a pair of morphisms

([t← z → x⨿ y], [t← w → x⨿ y])

to

([t← z ⨿ w → x⨿ y]).

Checking that these natural transformations are inverses is a direct translation of the

proof of Proposition 1.2.3.

Since AC is self-dual, these finite products are also finite coproducts, and indeed AC

admits all finite biproducts. We state Proposition 1.2.14 in the form above to align both with

Proposition 1.2.3 and (later) with Proposition 1.2.23.

By Proposition 1.2.5 and Proposition 1.2.14, we see:

Corollary 1.2.15. If C is an LCCDC category, then we can also speak of AC/x for any object

x ∈ C, which again admits all finite products.

1.2.2 Mackey Functors

A Mackey functor is a functor F : AC → Set satisfying two important conditions. The first

is easy to state, and must be assumed in order to even interpret the second. Thus, we give

functors satisfying just this first condition a name:

Definition 1.2.16. A C-semi-Mackey functor is a finite-product-preserving functor AC →

Set. The category of semi-Mackey functors (indexed by C), denoted SMack(C), is the full

subcategory of Fun(AC, Set) spanned by the semi-Mackey functors.

In light of Proposition 1.2.14, a semi-Mackey functor F satisfies F (x⨿y) ∼= F (x)×F (y) for

17

all objects x, y ∈ AC, where ⨿ denotes the coproduct in C. More specifically, if x
i1−→ x⨿y i2←− y

is a coproduct diagram, then this isomorphism is given by (F (Ri1), F (Ri2)) : F (x ⨿ y) →

F (x)× F (y). Now, given a semi-Mackey functor F and an object x ∈ AC, we can consider

the morphism

∇ := (idx, idx) : x⨿ x→ x

in C, which yields the morphism T∇ : x ⨿ x → x in AC. Then since F is finite-product-

preserving, we obtain a binary operation

F (x)× F (x)
(F (Ri1

),F (Ri2
))−1

−−−−−−−−−−−→ F (x⨿ x)
F (T∇)−−−→ F (x)

which we denote by +F,x (or simply + when clear from context). It is not hard to check that

this operation is associative and has an identity element, i.e.

Proposition 1.2.17. +F,x makes F (x) into a commutative monoid.

We should make note of what this identity element is. Since ∅ (the initial object of C)

is terminal in AC, F being finite-product-preserving implies that F (∅) is a singleton. Now

given an object x, we take the unique morphism ! : ∅→ x and consider T! : ∅→ x in AC.

F (T!) is then a function from the singleton set F (∅) to F (x). The element of F (x) in the

image of this function is the identity element of (F (x),+). That this element actually is an

identity essentially follows from the categorical fact ∅ ⨿ − is naturally isomorphic to the

identity functor C → C.

So, each semi-Mackey functor F : AC → Set comes with a canonical commutative monoid

structure on each of its output objects, and actually even more is true – we can fully upgrade

F to a functor AC → CMon.

Proposition 1.2.18. If F : AC → Set is a semi-Mackey functor, then F factors uniquely

through the forgetful functor CMon → Set. This unique factorization is given by endowing

each output set F (x) with the binary operation +F,x.

18

We relegate the proof to Appendix A.

Noting that the forgetful functor CMon→ Set preserves and reflects products, we have

Corollary 1.2.19. SMack(C) is isomorphic to the category of finite-product-preserving

functors AC → CMon via postcomposition with the forgetful functor CMon→ Set.

We are now ready to state the full definition of a Mackey functor:

Definition 1.2.20. A C-Mackey functor is a semi-Mackey functor F : AC → Set such that

(F (x),+) is an abelian group for all x. The category of Mackey functors (indexed by C),

denoted Mack(C), is the full subcategory of SMack(C) spanned by the Mackey functors.

In other words, a semi-Mackey functor is Mackey if and only if, for all objects x, the

binary operation +F,x admits inverses. Corollary 1.2.19 tells us that, equivalently, Mack(C)

can be viewed as the category of finite-product-preserving functors AC → Ab.

Since Ab is a reflective and coreflective subcategory of CMon, it follows that Mack(C) is

reflective and coreflective in SMack(C). That is:

Proposition 1.2.21. The inclusion Mack(C) → SMack(C) admits both a left and right

adjoint.

Proof. Let (−)+, (−)∗ : CMon→ Ab denote the left and right adjoints (respectively) to

the inclusion Ab→ CMon. To remind, for a commutative monoid X, X+ is the abelian

group generated by the elements of X modulo the relations present in X, and X∗ is the

submonoid of invertible elements in X.

These functors both preserve products: (−)∗ clearly because it is a right adjoint,

and (−)+ because it is a left adjoint and CMon and Ab both have finite biproducts.

Thus, postcomposition with these functors define functors SMack(C) → Mack(C). It

follows formally that these functors are left and right adjoint to the inclusion Mack(C)→

19

SMack(C).

We denote the left adjoint of the inclusion Mack(C)→ SMack(C) by (−)+ and the right

adjoint (−)∗.

1.2.3 The Polynomial Category

We now produce from C a category PC, from which we will define the notion of C-Tambara

functors. When C = G−set, these will exactly coincide with the standard notions of G-

Tambara functors.

Definition 1.2.22. The Polynomial Category of C, denoted PC, is the category whose:

• Objects are the same as the objects of C;

• Morphisms x → y are isomorphism classes of diagrams x ← z → w → y, where two

diagrams x← z → w → y and x← z′ → w′ → y are said to be isomorphic if and only

if there exist isomorphisms z → z′ and w → w′ making

z w

x y

z′ w′

∼= ∼=

commute.

In order to define the composition in PC, we will temporarily introduce an auxilliary

construction of a category P ′
C. The objects of P ′

C are the same as those of PC, i.e. they are the

same as the objects of C. Each morphism f : x→ y in C will give rise to three distinguished

morphisms in P ′
C, denoted by Tf : x→ y, Nf : x→ y, and Rf : y → x. The category P ′

C will

be generated by these morphisms, modulo some relations which we will now describe.

Just as with AC, these generating morphisms are meant to syntactically encode the

functors Σf , f∗, and Πf between slices of C which are given to us by the locally cartesian

20

closed structure. As such, the morphisms of type T and R will compose exactly as in AC,

and it suffices to explain how composition with morphisms of type N works.

First of all, we set Na ◦Nb = Na◦b for any pair of composable morphisms (a, b) in C. Next,

given any cartesian square

a b

c d

g′

f ′

f

g
⌟

we set Rg ◦Nf = Nf ′ ◦Rg′ .

Finally, we introduce a complicated composition relation. Given a pair of composable

morphisms x
f−→ y

g−→ z in C, we take a dependent product along g to get

•

y zg

Πgf

and then form a pullback along g to get

• •

y zg

Πgf

(Πgf)∗g

g∗Πgf
⌟

Now the counit of the adjunction g∗ ⊣ Πg gives a morphism

εcoindf : g∗Πgf → f

in C/y, and so in total we have a commutative diagram (called a distributor diagram1)

• •

x y zg

Πgf

(Πgf)∗g

⌟

f

εcoindf

in C. We then declare that

Ng ◦ Tf = TΠgf ◦N(Πgf)∗g ◦Rεcoindf
.

1These are also sometimes called exponential diagrams in the literature.

21

With these generators and relations (plus the relations between T ’s and R’s as in AC) in

place, we certainly obtain some category P ′
C. Moreover, every morphism in P ′

C can be written

in the form TfNgRh, since a composite of two such morphisms can be reduced as

(TNR)(TNR)⇝ TN(TR)NR

⇝ T (TNR)RNR

⇝ TNRNR

⇝ TN(NR)R

⇝ TNR.

Moreover, it turns out that two parallel morphisms TfNgRh and Tf ′Ng′Rh′ are equal if

and only if the bispans

• h←− • g−→ • f−→ •

and

• h′
←− • g′−→ • f ′

−→ •

are isomorphic – see [11, Lemma 2.15] for a proof. Thus, for any objects x, y, we obtain a

bijective correspondence between the Hom-sets PC(x, y) and P ′
C(x, y). We can then transport

the composition operation from P ′
C to PC, and henceforth entirely identify these categories.

With this identification in place, we have that

Tf = [x
idx←− x

idx−→ x
f−→ y]

Nf = [x
idx←− x

f−→ y
idy−→ y]

Rf = [y
f←− x

idx−→ x
idx−→ x]

and

TfNgRh = [x
h←− z

g−→ w
h−→ y].

22

Slogan 3. The morphisms Th, Ng, and Rf in PC syntactically model the functors Σh, Πg,

and f ∗ (respectively) between the slices of C.

For a careful account of the category PC, its construction, and its properties, we refer the

reader to [11] (for general LCC categories) and [20] (in the case of G−set).

As opposed to AC, PC is typically not self-dual. However, it is still true that PC is

essentially small whenever C is. And, as with AC, the existence of finite disjoint coproducts

in C induces finite products in PC.

Proposition 1.2.23. If C is LCCDC, then PC admits all finite products, given by the

coproduct in C. That is:

• Any initial object of C is terminal in PC;

• Given a coproduct diagram x
i1−→ x⨿ y

i2←− y in C,

x
Ri1←−− x⨿ y

Ri2−−→ y

is a product diagram in PC.

Proof. The proof is exactly the same as that of Proposition 1.2.14, since the natural

transformations involved are all of the form T∗ and R∗, which compose in PC in exactly

the same way that they do in AC.

1.2.4 Tambara Functors

Definition 1.2.24. A C-semi-Tambara functor is a finite-product-preserving functor PC →

Set. We write STamb(C) to denote the category of C-semi-Tambara functors (which is a full

subcategory of Fun(PC, Set)).

Now given a semi-Tambara functor F : PC → Set and an object x ∈ PC, the morphism

T∇ : x⨿x→ x in PC yields a binary operation +F,x on F (x), and the morphismN∇ : x⨿x→ x

23

yields a binary operation ·F,x on F (x). As before, (F (x),+F,x) is a commutative monoid,

and by the same argument so is (F (x), ·F,x). Distributor diagrams are so named because

the composition relation they impose in PC says in particular that ·F,x distributes over +F,x.

Thus, (F (x),+, ·) is a commutative semiring2 for all objects x.

Definition 1.2.25. A Tambara functor (indexed by C) is a semi-Tambara functor F such

that (F (x),+, ·) is a ring for all x. We write Tamb(C) to denote the category of C-Tambara

functors (which is a full subcategory of STamb(C)).

Warning. As opposed to (semi-)Mackey functors, Tambara functors cannot be viewed as

functors into commutative monoids, or semirings, etc. This is because, given a semi-Tambara

functor F : PC → Set, the functions F (Nf) will generally not respect the additive structure,

and the functions F (Tf) will generally not respect the multiplicative structure. Indeed, in the

other direction, if F : PC → CMon preserves products, the composition PC → CMon→ Set

with the forgetful functor will be a semi-Tambara functor, and the Eckman-Hilton argument

will show that + and · coincide on each F (x). Then by uniqueness of identity elements, we

will have that 0 = 1 in each commutative semiring F (x), and thus F (x) = 0 for all x.

Since the morphisms of type T and R in PC compose exactly as in AC, AC embeds as a

wide subcategory of PC. More explictly, this embedding functor e : AC → PC acts as the

identity on objects and acts on morphisms by

[x
f←− z

g−→ y] 7→ [x
f←− z

id−→ z
g−→ y].

Proposition 1.2.14 and Proposition 1.2.23 tell us that e sends product diagrams in AC to

product diagrams in PC; i.e. e preserves products. Thus, precomposition with e yields a

“forgetful functor”

STamb(C)→ SMack(C)

2A semiring is a triple (A,+, ·) satisfying the same axioms as a ring, except that we do not require the
existence of additive inverses. These are also sometimes known as rigs.

24

which we will denote by U . This forgetful functor also preserves the binary operation +,

i.e. +F,x and +U(F),x are equal for all semi-Tambara functors F and all objects x. Thus, U

restricts to a functor Tamb(C)→ Mack(C) (which we will also denote by U). From this point

of view, a Tambara functor is just a semi-Tambara functor whose underlying semi-Mackey

functor is Mackey. In total, we obtain a pullback diagram

Tamb(C) STamb(C)

Mack(C) SMack(C)

U U

For an appropriate choice of C, this recovers precisely the notion of motivic Tambara

functors introduced by Bachmann.

Proposition 1.2.26. Fix a scheme S, and let fét be the category of schemes with finite étale

morphisms between them. Then a fét/S-Tambara functor is precisely the notion of Tambara

functor defined in [2] (which are also called naive motivic Tambara functors in [1]).

25

CHAPTER 2

(Bi-)Incompleteness and Separability

There is no math without courage.

Bar Roytman

2.1 (Bi-)Incompleteness in Equivariant Homotopy Theory

In equivariant homotopy theory, G-Tambara functors arise as the π0 of genuine G−E∞ ring

spectra, by which we mean an algebra in genuine G-spectra for a so-called “G−E∞” operad.

The operations encoded by such an operad give rise to the norm maps in the resulting

Tambara structure on π0, and G−E∞ ring spectra arise naturally in practice (they played a

key role in the work of Hill, Hopkins, and Ravenel in their resolution of the Kervaire Invariant

One Problem). However, it is also common to encounter equivariant ring spectra without

quite as much structure: for example, a Bousfield localization of a G−E∞ ring spectrum

always admits a homotopy-coherent multiplication (on π0, this gives norms along codiagonals

x ⨿ x → x), but will not always retain the structure of a G−E∞ algebra. So, we can ask:

what are the possible collections of norm maps that an equivariant spectrum may admit?

The answer is certainly not “any collection whatsoever”, since for example the collection of

norm maps which a given spectrum admits will be closed under composition.

In [6], Blumberg and Hill axiomatize these possible collections of norm maps and define

the operads indexing these collections of operations, which they christened “N∞ operads”.

Furthermore, in combination with the following work of Bonventre-Pereira [7], Gutierrez-

26

White [12], and Rubin [19], they show that the homotopy category of N∞ operads (for a

fixed finite group G) is equivalent to a finite poset (the poset of indexing systems for the

group G). For a fixed N∞ operad O, the π0 of an O-algebra in geniune G-spectra will be a

Tambara functor admitting some norms but perhaps not all – such objects were christened

“incomplete Tambara functors” in [5].

The very same indexing systems which describe admissable collections of norms can also

be viewed as describing admissable collections of transfers in a Mackey functor, and so we

can also consider “incomplete Mackey functors”, and from here we could ask what is possible

if one wishes to simultaneously restrict the admissible norms and transfers of a Tambara

functor. This was first explored by Blumberg and Hill in [4], and the resulting notion of

bi-incomplete Tambara functors was introduced. These bi-incomplete Tambara functors arise,

for example, as the π0 of algebras in equivariant spectra for an N∞ operad (specifying the

admissable norms), where the equivariant stable homotopy category is developed with respect

to a not-necessarily-complete G-universe (specifying the admissable transfers).

(Bi-)incompleteness also turns out to be very important in the study of motivic Tambara

functors. When motivic Tambara functors were first introduced in [2], Bachmann considered

only complete Tambara functors indexed by fét/S, since his main objects of interest had this

structure. Later, in [1] and [3], Bachmann and Bachmann-Hoyois investigate incomplete and

bi-incomplete Tambara functors indexed by Sm/S, fét/S, and related categories. Actually,

the categories over which they index are not neccesarily LCCDC (e.g. Sm/S is not, because

it does not admit dependent products along all morphisms), so it is not quite right to say (in

our terminology) that Bachmann and Hoyois study bi-incomplete Tambara functors indexed

over Sm/S. Instead, their observation is that Sm/S does admit dependent products along

finite étale morphisms, and so a version of the polynomial category can still be constructed

so as to ensure that every dependent product which needs to be computed does indeed exist,

from which these sorts of Tambara functors can be defined. This exactly parallels (at a more

categorical level) the idea of bi-incomplete Tambara functors, as we will see in this chapter.

27

In forthcoming work, we will investigate this not-quite-LCCDC situation further. For now,

to keep the discussion focused, we will develop a theory of bi-incomplete Tambara functors

indexed over an arbitrary LCCDC category.

The point of developing this theory here is to prove (in the proceeding chapter) a new

theorem for generalized Tambara functors, e.g. naive motivic Tambara functors. Mazur [18]

(for cyclic p-groups) and Hoyer [14] (for arbitrary finite groups) showed that Tambara functors

are the same as G-commutative monoids in Mackey functors, in the sense of [13]. Later, Chan

[10] generalized their work to prove the conjecture of Blumberg and Hill that bi-incomplete

Tambara functors are the same as O-commutative monoids in incomplete Mackey functors.

Our work in the proceeding chapter will generalize this further to the context of bi-incomplete

Tambara functors indexed over arbitrary LCCDC categories.

2.2 Indexing Subcategories and Compatibility

Definition 2.2.1. Let C be a cocartesian and locally cartesian category. A subcategory O of

C is said to be an indexing category on C (or an indexing subcategory of C) if it is:

1. Wide, i.e. all objects of C are also objects of O;

2. Pullback stable, i.e. for all morphisms f in O and all cartesian squares

• •

• •
ff ′

⌟

in C, f ′ is in O;

3. Finite-coproduct complete, i.e. the initial object of C is also initial in O, and every

binary coproduct diagram of C is a binary coproduct diagram in O (and in particular

lies in O).

Definition 2.2.2. Let C be a cocartesian and locally cartesian category and let O be an

28

indexing category on C. The category AC,O is defined to be the wide subcategory of AC

containing precisely the morphisms TfRg such that f ∈ O.

The second condition in Definition 2.2.1 ensures that AC,O is closed under composition;

and the first condition ensures that AC,O contains all identity morphisms of AC. The third

condition ensures that AC,O is finite-product complete.

Proposition 2.2.3. Let C be an LCCDC category and let O be an indexing category on C.

Then AC,O is a finite-product complete subcategory of AC – in particular, AC,O admits all

finite products and the inclusion AC,O → AC is finite-product-preserving.

In fact, something more general is true. Indexing subcategories of C form a (possibly large)

poset IC under inclusion, and any inclusion of indexing categories yields a finite-product-

complete inclusion of Lindner categories.

Proposition 2.2.4. Let C be an LCCDC category and let O ⊆ O′ be an inclusion of indexing

subcategories of C. Then AC,O is a finite-product complete subcategory of AC,O′.

Clearly, for any subclass S ⊆ IC, we have
⋂
S ∈ IC. In particular, IC has a maximum

element, namely C itself, and a minimal element Otriv, which consists of finite coproducts

of morphisms isomorphic to codiagonal maps. In other words, the morphisms in Otriv are

precisely those of the form(
a1∐
i=1

x1

)
⨿ · · · ⨿

(
an∐
i=1

xn

)
(f1)

a1
i=1⨿···⨿(fn)

an
i=1−−−−−−−−−−−→ y1 ⨿ · · · ⨿ yn

where each fi : xi → yi is an isomorphism and each ai is a natural number. Proposition 2.2.3

is the special case of Proposition 2.2.4 for an inclusion O ⊆ C.

2.2.1 Incomplete Mackey Functors

The purpose of defining these “incomplete Lindner categories” is to index the operations of

“incomplete Mackey functors”. So, we make the following definition.

29

Definition 2.2.5. Let C be an LCCDC category and let O be an indexing category on

C. An (C,O)-semi-Mackey functor is a finite-product-preserving functor AC,O → Set. The

category of (C,O)-semi-Mackey functors (denoted SMack(C,O)) is the full subcategory of

Fun(AC,O, Set) spanned by the O-semi-Mackey functors.

Since AC,O is finite-product-complete in AC,O, it contains all the morphisms needed in the

definition of the binary operation +. Thus, we can also define the notion of a (C,O)-Mackey

functor.

Definition 2.2.6. Let C be an LCCDC category and let O be an indexing category on C. A

(C,O)-Mackey functor is a (C,O)-semi-Mackey functor F such that (F (x),+) is an abelian

group for all objects x. The category of (C,O)-Mackey functors (denoted Mack(C,O)) is the

full subcategory of SMack(C,O) spanned by the (C,O)-Mackey functors.

Exactly as before, a (C,O)-semi-Mackey functor factors uniquely through CMon, and

consequently the inclusion of (C,O)-Mackey functors into (C,O)-semi-Mackey functors has

both a left and right adjoint.

Proposition 2.2.7. Let C be an LCCDC category, and let O be an indexing subcategory

of C. Then every (C,O)-semi-Mackey functor F : AC,O → Set factors uniquely through the

forgetful functor CMon→ Set.

Proposition 2.2.8. Let C be an LCCDC category, and let O be an indexing subcategory of

C. Then the inclusion Mack(C,O)→ SMack(C,O) has both a left and right adjoint, given by

post-composition with the left and right adjoints (respectively) of the inclusion Ab→ CMon.

In light of Proposition 2.2.4, an inclusion of indexing subcategories also gives a forgetful

functor between the corresponding categories of (semi-)Mackey functors:

Proposition 2.2.9. Let C be an LCCDC category, and let O ⊆ O′ be an inclusion of indexing

categories on C. Then precomposition with the inclusion AC,O → AC,O′ yields a forgetful

30

functor from (C,O′)-(semi-)Mackey functors to (C,O)-(semi-)Mackey functors, forming a

commutative square

Mack(C,O′) SMack(C,O′)

Mack(C,O) SMack(C,O)

2.2.2 Compatible Pairs of Indexing Categories

Definition 2.2.10. Let C be an LCCDC category, and let (Oa,Om) be a pair of indexing

subcategories of C. We say that (Oa,Om) is compatible if, for all morphisms i : x→ y in Om

and all morphisms α : a→ x in Oa, Πiα lies in Oa.

Warning. Compatibility is not a symmetric notion, i.e. it is possible for one of (Oa,Om)

and (Om,Oa) to be compatible but not the other.

The definition of indexing category was cooked up precisely so that the morphisms in the

indexing category could be used as the T -components of spans, yielding a nice subcategory

of the entire Lindner category. Likewise, a compatible pair (Oa,Om) of indexing categories

yields a nice subcategory of the polynomial category, where the morphisms in Oa are the

T -components of morphisms and the morphisms in Om are the N -components.

Definition 2.2.11. Let C be an LCCDC category and let O = (Oa,Om) be a compatible

pair of indexing subcategories of C. PC,O is the wide subcategory of PC containing precisely

the morphisms TfNgRh with f ∈ Oa and g ∈ Om.

The well-definedness of the incomplete Linder category was obvious, but it is less imme-

diately clear that the above description of PC,O is actually well-defined. In particular, we

must check that morphisms of the form TfNgRh with f ∈ Oa and g ∈ Om are closed under

composition. The only nontrivial part of this check is that a composition Ng ◦Tf with g ∈ Om

and f ∈ Oa is still of this desired form. Recalling the discussion of distributor diagrams from

31

Section 1.2.3, we have

Ng ◦ Tf = TΠgf ◦N(Πgf)∗g ◦Rεcoindf
.

But we know that Πgf ∈ Oa by the compatiblity condition, and so that (Πgf)
∗g ∈ Om by

pullback stability, whence things are fine.

The canonical partial order on indexing categories induces a partial order on compatible

pairs of indexing categories: we say (Oa,Om) ≤ (O′
a,O′

m) if and only if Oa ⊆ O′
a and

Om ⊆ O′
m. We use BC to denote the poset of compatible pairs of indexing categories.

Proposition 2.2.12. Let C be an LCCDC category and let O ≤ O′ be a morphism in BC.

Then PC,O is a finite-product-complete subcategory of PC,O′.

Again, BC has a maximum element, namely (C, C), and so the above proposition implies

(in particular) that finite products in PC,O are the same as finite products in PC. And,

analogously to the complete setting, we have

Proposition 2.2.13. Let C be an LCCDC category and let Oa be an indexing subcategory

of C. Then, for any indexing subcategory Om of C such that (Oa,Om) is compatible, AC,Oa

naturally embeds as a wide, finite-product-complete subcategory of PC,Oa,Om, via sending a

morphism [x
f←− z

g−→ y] to [x
f←− z

id−→ z
g−→ y].

For any indexing categoryO, the pair (O,Otriv) is compatible, because forming a dependent

product along a codiagonal is the same as forming a product in a slice category – since O is

pullback-stable and closed under composition, it follows that it is closed under dependent

products along codiagonals.

It is also the case that (C,O) is compatible for all O – the compatibility condition becomes

trivial. Overall, we see that BC has a minimum element (Otriv,Otriv) and a maximum element

(C, C).

For the remainder of this chapter, we will often have in play a triple (C,Oa,Om) of an

LCCDC category C and a compatible pair (Oa,Om) of indexing categories on C. It will

32

become cumbersome to continue writing out such a triple of data in full, so we now introduce

a definition to simply the notation in our exposition.

Definition 2.2.14. An index is a triple (C,Oa,Om), where C is an LCCDC category and

(Oa,Om) is a compatible pair of indexing categories on C. We will often abuse notation and

use the same symbol (in this case, C) to refer to both the index and the underlying LCCDC

category. In this case we will use Ca and Cm to denote the two components of the compatible

pair of indexing categories.

If C is simply an LCCDC category, we may also view it as an index (C, C, C) (the “fully

complete index” on C). We may do this in the following work when clear from context.

Definition 2.2.15. For an index C, we will use AC to denote the category AC,Ca and PC to

denote the category PC,Ca,Cm . Note that, when C is the fully complete index on an LCCDC

category, AC and PC agree with their definitions from Chapter 1.

2.2.3 Bi-Incomplete Tambara Functors

The point of introducing indices was to define a generalized notion of bi-incomplete Tambara

functors, which we will now do.

Definition 2.2.16. Let C be an index. A C-semi-Tambara functor is finite-product-preserving

functor PC → Set. The category of C-semi-Tambara functors (denoted STamb(C)) is the full

subcategory of Fun(PC, Set) spanned by the C-semi-Tambara functors.

Since finite products in PC are the same as finite products in PC, each C-semi-Tambara

functor comes equipped with a semiring structure on each of its output sets. Thus, we can

define

Definition 2.2.17. Let C be an index. A C-Tambara functor is a C-semi-Tambara functor F

such that (F (x),+) is an abelian group for all objects x. The category of C-Tambara functors

(denoted Tamb(C)) is the full subcategory of STamb(C) spanned by the C-Tambara functors.

33

The rest of the basic setup falls into place exactly as expected.

Proposition 2.2.18. Let C be an index. Precomposition with the canonical embedding

AC → PC defines a forgetful functor U : STamb(C)→ SMack(C) which identifies Tamb(C) as

the full subcategory of STamb(C) lying over Mack(C).

Proposition 2.2.19. Let C be an LCCDC category, and let O ≤ O′ be an inclusion of pairs

of compatible indexing categories on C. Then precomposition with the inclusion PC,O → PC,O′

yields a forgetful functor from (C,O′)-(semi-)Tambara functors to (C,O)-(semi-)Tambara

functors, forming a commutative square

Tamb(C,O′) STamb(C,O′)

Tamb(C,O) STamb(C,O)

This assembles with the forgetful functors of Proposition 2.2.18 and the square of Proposi-

tion 2.2.9 to form a commutative cube

Tamb(C,O′) STamb(C,O′)

Tamb(C,O) STamb(C,O)

Mack(C,O′) SMack(C,O′)

Mack(C,O) SMack(C,O)

2.3 Compatibility with Slices

As mentioned, we wish to develop this theory of bi-incomplete Tambara functors for the

purpose of generalizing a theorem of Hoyer and Mazur. This Hoyer-Mazur theorem concerns

the norm functor NG
H : Tamb(H−set) → Tamb(G−set) for H ≤ G an inclusion of finite

groups, and this norm functor is given by left Kan extension along the induction functor

H−set→ G−set. At first glance, it is not clear how this should be generalized to the context

34

of LCCDC categories – what relationships would we have in general between two LCCDC

categories like H−set and G−set? However, there is an interesting observation to be made

about this setup which greatly clarifies the situation.

Proposition 2.3.1. Let G be a finite group. Given a morphism f : X → G/H in G−set,

the fiber f−1(H) above the trivial coset is a sub-H-set of X. Sending f to f−1(H) defines an

equivalence of categories G−set/(G/H)→ H−set (where we act on morphisms by restriction).

Now, via the equivalences G−set/(G/G) ∼= G−set and G−set/(G/H) ∼= H−set, the

restriction functor G−set → H−set corresponds to pulling back along the unique map

i : G/H → G/G. Thus, induction (which is left adjoint to restriction) corresponds to Σi –

the functor we wanted to Kan extend along was actually encoded by the LCC structure of

G−set! From this perspective, we see that the Hoyer-Mazur theorem is really about a single

LCCDC category (G−set) and Tambara functors indexed over its slice categories.

For this reason, if we want to prove a bi-incomplete version of the generalized Hoyer-Mazur

theorem, we need to understand how indexing categories interact with slices. The news here

is good – everything works very smoothly.

Definition 2.3.2. Let O be an indexing subcategory of C. For an object x ∈ C, we use O/x

to denote the subcategory of C/x consisting of precisely those morphisms

a b

x

f

with f ∈ O. Note that O is wide in C, so O/x is wide in C/x: the object a→ x itself need

not lie in O!

This does overload our notation – the meaning of O/x now depends on whether O is

viewed as an indexing subcategory of C or independently as a category with no relationship

to C. In what follows, we will take care to make sure it is clear from context which is meant.

35

Proposition 2.3.3. Let C be an LCCDC category, and let Oa be an indexing subcategory

of C. Then, for each object x ∈ C, Oa/x is an indexing subcategory of C/x. Moreover, for

any indexing subcategory Om such that (Oa,Om) is compatible, (Oa/x,Om/x) is a compatible

pair of indexing subcategories of C/x.

Proof. Let (Oa,Om) be a compatible pair of indexing subcategories of C. Then Oa/x is

wide (because Oa is wide) and pullback-stable (because pullbacks in C/x are computed as

in C). Proposition 1.2.1 shows that the initial object of C/x is ∅ (which is also initial in

O/x), and binary coproduct diagrams in C/x are simply coproduct diagrams in C which

happen to lie over x – since the binary coproduct diagrams in C all lie in Oa, the binary

coproduct diagrams in C/x all lie in Oa/x. Thus, Oa/x is an indexing subcategory of

C/x. We only used that Oa is indexing, so Om/x is also an indexing subcategory of C/x.

For (Oa/x,Om/x) to be compatible means that, for all morphisms i : α→ β in Om/x

and all morphisms g : γ → α in Oa/x, Πig lies in Oa/x. Diagramatically, this setup looks

like
• • •

x

g

γ

i

α
β

with g ∈ Oa and i ∈ Om. Then compatibility of (Oa,Om) says that Πig ∈ Oa, as

desired.

In light of the above proposition, when C is an index, we obtain an index C/x for each

object x ∈ C.

Proposition 2.3.4. Let C1 and C2 be LCCDC categories, let O1 be an indexing category on

C1, and let O2 be an indexing category on C2. Let F : C1 → C2 be a functor which preserves

cartesian squares, and sends morphisms in O1 to morphisms in O2. Then F induces a functor

AF : AC1,O1 → AC2,O2 by sending a morphism TfRg to TF (f)RF (g). If F preserves finite

coproducts, then AF preserves finite products.

36

Corollary 2.3.5. Let C be an index. For any morphism f : x → y in Ca, Σf induces a

finite-product-preserving functor between AC/x → AC/y. For any morphism i : x→ y in Cm,

Πi induces a functor AC/x → AC/y.

Proof. Σf preserves cartesian squares by Proposition A.4.3, and sends morphisms in

Ca/x to morphisms in Ca/y since it acts as the identity on morphisms. Additionally, Σf

preserves finite coproducts because it is a left adjoint.

Πi preserves cartesian squares because it is a right adjoint, and sends morphisms in

Ca/x to morphisms in Ca/y by the compatibility condition.

Proposition 2.3.6. Let C1 and C2 be indices. Let F : C1 → C2 be a functor which preserves

cartesian squares, distributor diagrams, and sends morphisms in (C1)a (resp. (C1)m) to

morphisms in (C2)a (resp. (C2)m). Then F induces a functor PF : PC1 → PC2 by sending a

morphism TfNgRh to TF (f)NF (g)RF (f). If F preserves finite coproducts, then PF preserves

finite products.

Here, “preserves distributor diagrams” means that, given NfTg = TaNbRc in PC1 , we also

have NF (f)TF (g) = TF (a)NF (b)RF (c) in PC2 .

Corollary 2.3.7. Let C be an index. For any morphism i : x → y in Om, Σi induces a

finite-product-preserving functor PC/x → PC/y.

Proof. We know that Σi preserves cartesian squares by Proposition A.4.3. Σi sends

morphisms in Ca/x (resp. Cm/x) to morphisms in Ca/y (resp. Cm/y) because it acts as

the identity on morphisms. Σi preserves finite coproducts because it is a left adjoint.

All that remains to be shown is that Σi preserves distributor diagrams, which turns out

to be (essentially) just an application of Slogan 1. So, begin with a composable pair of

37

morphisms α
f−→ β

g−→ γ in C/x. Diagramatically, in C, we have

a b c

x

f

α

g

β γ

We then form Πgf ∈ (C/x)/γ, whence g∗Πgf ∈ (C/x)/β, and put these together to form

our distributor diagram in C/x:

• •

a b c

x

εcoindf
g∗Πgf Πgf

f

α

g

β γ

Here, we are viewing Πg as a functor (C/x)/β → (C/x)/γ, defined by being right adjoint

to g∗ : (C/x)/γ → (C/x)/β. But by Slogan 1, we have isomorphisms (C/x)/β ∼= C/b and

(C/x)/γ ∼= C/c under which g∗ : (C/x)/γ → (C/x)/β is identified with g∗ : C/c → C/b.

Thus, Πg : (C/x)/β → (C/x)/γ is also identified with Πg : C/b → C/c. Likewise, the

counit εcoindf : g∗Πgf → f in (C/x)/α coincides with the counit εcoindf : g∗Πgf → f in

C/b. In other words, the entire construction of the distributor diagram can be performed

simply in C, forgetting the structure maps to x.

Thus, when we form the distributor diagram for the composable pair (Σif,Σig) in

C/y, we can also perform this construction directly in C, forgetting the structure maps

to y. But Σi acts as the identity on morphisms, so this distributor diagram we end up

constructing for (Σif,Σig) is precisely the same as the distributor diagram we constructed

originally for (f, g) (which is the same as its image under Σi).

The reason for establishing this corollary is that the functor PΣi
: PC/x → PC/y gives rise

to an interesting construction on Tambara functors, called “restriction”, which will play a

central role in the next chapter.

Proposition 2.3.8. Let C be an index. For any morphism i : x→ y in Cm, precomposition

38

with PΣi
: PC/x → PC/y gives a functor STamb(C/y) → STamb(C/x) which restricts to a

functor Tamb(C/y)→ Tamb(C/x).

Proof. Let F ∈ Tamb(C/y). Its image under precomposition with PΣi
is a semi-Tambara

functor because PΣi
preserves finite products. For any object α ∈ C/x, the operation

+F◦PΣi
,α is exactly equal to the operation +F,Σiα, which has additive inverses by assumption.

2.4 Separability

A crucial tool in the study of G-Tambara functors is the result of Mazur [18] which states

in particular that, for all G-Tambara functors S, all morphisms X → Y between transitive

G-sets, and all a, b ∈ S(X), S(Nf)(a) + S(Nf)(b) is a summand of S(Nf)(a + b). This is

in fact true of semi-Tambara functors, and implies that in a semi-Tambara functor, norms

between transitive G-sets preserve additively invertible elements. We would like to have a

similar result in the generalized context, but to do so an additional assumption on the index

is required.

Definition 2.4.1. A morphism f : a→ c in a category C is said to be complemented if there

exists a morphism g : b→ c such that a
f−→ c

g←− b is a coproduct diagram.

Definition 2.4.2. Let C be an index. For any f : x→ y in Cm, letting ∇x : x⨿x→ x denote

the codiagonal, we obtain an object Πf∇x ∈ C/y. Let jf : idy → Πf∇x denote the adjunct of

the first coprojection f ∗ idy
∼= idx → ∇x (noting that ∇x is the coproduct idx⨿ idx in C/x).

We say that C is separable if jf is complemented in C/y for all f ∈ Cm.

We note that jf is always a monomorphism, because idy is terminal in C/y. So, if C

is such that all monomorphisms in slices of C are complemented, then C is separable. For

example, this is true of the category of finite G-sets.

39

Proposition 2.4.3. If C = G−set, then C is separable.

Proof. In this case (by Proposition 2.3.1 and Proposition 1.2.3), a slice C/y is equivalent

to G1−set × · · · × Gn−set for some finite collection of finite groups G1, . . . , Gn. Since

all monomorphisms in each Gi−set are complemented, all monomorphisms in C/y are

complemented.

Separability also holds in the motivic context, although this is slightly less trivial.

Proposition 2.4.4. If C = fét/S, then C is separable.

Proof. For all x ∈ fét/S, ∇x is a separated finite étale morphism. Then for any finite

étale f : x→ y, Πf∇x is separated finite étale ([8, §7.6, Proposition 5] for separated and

[2, §3] for finite étale). Now we apply Lemma 2.4.5 below.

Lemma 2.4.5. Let f : X → Y be a separated finite étale morphism of schemes. Then any

section of f is complemented.

Proof. Let g : Y → X be a section of f . Thinking of g as a morphism of Y -schemes,

its domain and codomain are étale, so g is étale. Since g is a section of a morphism, it

has degree 1. Moreover, idY = f ◦ g is finite, and f is separated, so g is finite. Since

finite morphisms are closed and étale morphisms are open, we conclude that g is an

isomorphism onto its image, which is clopen in X. Thus, g is complemented.

40

CHAPTER 3

A Generalized Hoyer-Mazur Theorem

...represent...

Nobuo Yoneda

In [14], Hoyer establishes, for each inclusion of finite groups H ≤ G, a commutative square

Tamb(H−set) Tamb(G−set)

Mack(H−set) Mack(G−set)

(3.1)

where the vertical arrows are the forgetful functors, the top arrow is left adjoint to

the restriction functor Tamb(G−set) → Tamb(H−set) (and is given by left Kan extension

along induction H−set → G−set), and the bottom arrow is given by left Kan extension

along coinduction H−set→ G−set (but is not left adjoint to any functor Mack(G−set)→

Mack(H−set)).

Actually, we should pause to be a bit more precise here. The induction functor IndG
H :

H−set→ G−set (defined by IndG
H X = G×H X) enjoys many nice properties: it preserves

cartesian squares, finite coproducts, and distributor diagrams. So, by Proposition 2.3.6,

it induces a finite-product-preserving functor IndG
H : PH−set → PG−set, and the restriction

operation Tamb(G−set) → Tamb(H−set) is given by precomposition with IndG
H – which

indeed sends semi-Tambara functors to semi-Tambara functors because IndG
H : PH−set →

PG−set preserves finite products! It is also not hard to see that this operation sends Tambara

41

functors to Tambara functors: given a G-Tambara functor A and a finite H-set X, the

restriction of A evaluated at X is simply the commutative monoid A(IndG
H X), which we know

is an abelian group. So, it is easy to establish the restriction operation RG
H : Tamb(G−set)→

Tamb(H−set) in question. The name “restriction” comes from the fact that (RG
HA)(H/K) =

A(G/K) for all subgroups K ≤ H – i.e. the K-fixed points of the restriction of A are the

same as the K-fixed points of A.

In any case, by universal property, left Kan extension along IndG
H : PH−set → PG−set is

left adjoint to precomposition with IndG
H : PH−set → PG−set, assuming that this global left

Kan extension functor even exists. The first bit of good news is that the global left Kan

extension does exist (by the “Kan lemma”: H-set is essentially small and Set is cocomplete),

at least as a functor Fun(PH−set, Set)→ Fun(PG−set, Set). Moreover, global left Kan extension

functors preserve finite-product-preserving functors [16, Proposition 2.5], so this operation

sends semi-Tambara functors to semi-Tambara functors. A separate argument is required

to show that this operation actually sends Tambara functors to Tambara functors – we will

return to this point later.

Such is the real story of the top arrow in the square which introduces this chapter. The

story for the bottom arrow NG
H : Mack(H−set)→ Mack(G−set) is similar, but not exactly the

same. This operation on Mackey functors is defined to be left Kan extension along CoIndG
H :

AH−set → AG−set, where again this coinduction functor between Lindner categories is actually

induced from the coinduction functor H−set → G−set (defined by X 7→ MapH(G,X)).

Similarly, it is necessary to note that functor between Lindner categories is well-defined (see

Proposition 2.3.4), and then that this global left Kan extension functor exists at the level

of functor categories (by the Kan lemma [17, X.3. Corollary 2]), and sends semi-Mackey

functors to semi-Mackey functors (by [16, Proposition 2.5]), and indeed furthermore sends

Mackey functors to Mackey functors (which requires a separate argument that we again elide

for now). It is surely tempting at this point to think that this left Kan extension operation

is necessarily left adjoint to precomposition with CoIndG
H : AH−set → AG−set! While this is

42

true at the level of functor categories, it is false at the level of categories of (semi-)Mackey

functors. The problem is that CoIndG
H : H−set→ G−set does not preserve finite coproducts

(unless H = G), and so CoIndG
H : AH−set → AG−set does not preserve finite products, and

thus precomposition with CoIndG
H : AH−set → AG−set does not preserve semi-Mackey functors.

Indeed, one can show that NG
H : Mack(H−set)→ Mack(G−set) does not preserve coproducts,

and so it cannot be a left adjoint at all. Nonetheless, the square (3.1) commutes.

We now recall Proposition 2.3.1, which we re-print here due to its importance:

Proposition. Let G be a finite group. Given a morphism f : X → G/H in G−set, the

fiber f−1(H) above the trivial coset is a sub-H-set of X. Sending f to f−1(H) defines an

equivalence of categories G−set/(G/H)→ H−set (where we act on morphisms by restriction).

Via the equivalences G−set/(G/G) ∼= G−set and G−set/(G/H) ∼= H−set, the restriction

functor G−set→ H−set corresponds to pulling back along the unique map i : G/H → G/G.

Thus, induction (which is left adjoint to restriction) corresponds to Σi, and coinduction

(which is right adjoint to restriction) corresponds to Πi. Putting this all together, we can

rewrite the commutative square (3.1) as

Tamb(G−set/(G/H)) Tamb(G−set/(G/G))

Mack(H−set/(G/H)) Mack(G−set/(G/G))

LanPΣi

LanAΠi

The main result in this chapter is a generalized version of Hoyer’s theorem, where we

replace i : G/H → G/G with an arbitrary multiplicative morphism i : x→ y in an arbitrary

index. If you have been keeping track at home, we will need to check a few things to ensure

that this even parses – in particular, we need that:

1. Σi : C/x→ C/y induces a product-preserving functor PC/x → PC/y;

2. Πi : C/x→ C/y induces a functor AC/x → AC/y;

43

3. The functors LanPΣi
: Fun(PC/x, Set)→ Fun(PC/y, Set) and LanAΠi

: Fun(AC/x, Set)→

Fun(AC/y, Set) exist;

4. The functors LanPΣi
: Fun(PC/x, Set)→ Fun(PC/y, Set) and LanAΠi

: Fun(AC/x, Set)→

Fun(AC/y, Set) send Mackey (resp. Tambara) functors to Mackey (resp. Tambara)

functors.

The first two points have already been covered by Corollary 2.3.7 and Corollary 2.3.5.

For the third point, we would like to use the Kan lemma, but in order to do so we would

need to know that C/x is essentially small! So, in what follows, we will make this assumption,

i.e. we will assume that C is locally essentially small. In the examples of primary interest to

us (fét/S for any scheme S and G−set for any group G), this sufficient condition is satisfied.

Finally we come to the fourth point, which, as mentioned earlier, is not completely

formal and automatic. We will not prove both parts of this final point directly. Instead,

we will first prove that the desired square commutes at the level of semi-Tambara and

semi-Mackey functors. Then, we will identify in which circumstances it happens to be the

case that this commutative square of functors between categories of semi-Tambara and

semi-Mackey functors restricts to give a square of functors between categories of Tambara

and Mackey functors – it will turn out that we are in such a circumstance if and only if

i is an epimorphism and C is separable. Having already established the commutativity

of the square at the semi-Tambara/semi-Mackey level, it will then suffice to show that

LanAΠi
: SMack(C/x)→ SMack(C/y) sends Mackey functors to Mackey functors.

With this overview of the setting, we are finally ready to state the main theorem of this

chapter.

Theorem 3.0.1. Let C be an index which is also locally essentially small. For each i : x→ y

44

in Cm, we obtain a square

STamb(C/x) STamb(C/y)

SMack(C/x) SMack(C/y)

LanPΣi

LanAΠi

(3.2)

which commutes up to natural isomorphism, where the vertical maps are the forgetful functors

of Proposition 2.2.18.

Moreover, when C is separable and i is an epimorphism, each functor in this square

preserves Mackey structure, i.e. the above square restricts to give a square

Tamb(C/x) Tamb(C/y)

Mack(C/x) Mack(C/y)

which commutes up to natural isomorphism.

There is prior work in this direction due to Chan [10], who proved this theorem for

bi-incomplete G-Tambara functors (with G any finite group), where i is a morphism between

transitive G-sets (note that such morphisms are necessarily surjective). Our generalization is

to allow any underlying LCCDC category in the index C, which places some restriction on

the techniques we can use in the proof.

Our proof strategy is as follows: first, we note that all of these functors are restricted

from functor categories (e.g. STamb(C/x) is a full subcategory of Fun(PC/x, Set)), and so

square (3.2) is restricted from

Fun(PC/x, Set) Fun(PC/y, Set)

Fun(AC/x, Set) Fun(AC/y, Set)

LanPΣi

e∗ e∗

LanAΠi

45

Thus, it suffices to show that this square commutes. But all of the functors here are

cocontinuous1, so it is equivalent to show that the two composites

Pop
C/x

よ−→ Fun(PC/x, Set)⇒ Fun(AC/y, Set)

are naturally isomorphic, where よ represents the Yoneda embedding.

Once we have established this, we must further show that LanAΠi
sends Mackey functors

to Mackey functors, which will require the additional assumption that C is separable and i is

an epimorphism.

3.1 Comparing Kan Extensions along Σ and Π

In this section, we will complete the first step outlined above, that is, showing that the two

composites

Pop
C/x

よ−→ Fun(PC/x, Set)⇒ Fun(AC/y, Set)

coming from the square

Fun(PC/x, Set) Fun(PC/y, Set)

Fun(AC/x, Set) Fun(AC/y, Set)

LanPΣi

e∗ e∗

LanAΠi

are naturally isomorphic. For readability, we will abuse notation a bit and write AΠi

and PΣi
simply as Πi and Σi, respectively, since this is their action on both objects and

morphisms.

1Notably, these functors are not all cocontinuous between the categories of semi-Mackey and semi-Tambara
functors, where colimits are not computed pointwise! It is essential to consider their extensions to the full
functor categories here.

46

Taking an arbitrary object α ∈ Pop
C/x and going around the bottom-left of the square, we

get

LanΠi
e∗よα = LanΠi

e∗PC/x(α,−) = LanΠi
PC/x(α, e(−)).

On the other hand, going around the top-right, we get

e∗ LanΣi
よα = e∗ LanΣi

PC/x(α,−) = e∗PC/y(Σiα,−) = PC/y(Σiα, e(−)).

So, we aim to show that, for all α ∈ C/x,

PC/y(Σiα, e(−)) : AC/y → Set

is the left Kan extension of

PC/x(α, e(−)) : AC/x → Set

along Πi : AC/x → AC/y, and then that this identification with the left Kan extension is

natural in α.

Notation. For readability, we will henceforth elide writing the inclusion functors e, and use

the shorthand notations

Px := PC/x

Py := PC/y

Ax := AC/x

Ay := AC/y

Thus, the desired Kan extension will be witnessed by a universal natural transformation

ω as in the following triangle

Ax Ay

Set

Px(α,−) Py(Σiα,−)

Πi

ω
(3.3)

47

Universality here means that, for any functor F : Ay → Set and any natural transformation

τ : Px(α,−) → F ◦ Πi, there is a unique natural transformation σ : Py(Σiα,−) → F such

that σΠi ◦ ω = τ .

We will begin by constructing ω, then proceed to show it is universal. In what follows,

we fix adjunction data Σi ⊣ i∗ ⊣ Πi in the form of unit/counit pairs.

Notation. The unit and counit of Σi ⊣ i∗ will be denoted ηind and εind, respectively, and the

unit and counit of i∗ ⊣ Π will be denoted ηcoind and εcoind, respectively.

Our proof is similar to Chan’s in [10], with some essential differences coming from the

fact that C is arbitrary. A crucial tool in the proof below will be Proposition A.4.8, which

generalizes [14, Lemma 2.3.5]. This will be proved in Appendix A, but we state it here for

accessibility to the reader:

Proposition (A.4.8). For any morphism i : x → y in an LCC category C and any object

b ∈ C/y, the functors Πεindb
◦ (Σi/i

∗b) and (ηcoindb)∗ ◦ (Πi/i
∗b) are naturally isomorphic.

We will also make use of some key facts about the adjunction Σi ⊣ i∗. Namely:

Lemma (A.4.1, cf. Slogan 1). Let C be a category, and let i : x → y be a morphism in C.

For any object α ∈ C/x, the functor Σi/α : (C/x)/α→ (C/y)/Σiα is an isomorphism.

Proposition (A.4.2, A.4.3, A.4.4). Let C be a locally cartesian category and let i : x→ y be

a morphism in C. Then:

1. Σi preserves and reflects cartesian squares;

2. i∗ preserves cartesian squares;

3. Each naturality square for the unit and counit of the adjunction Σi ⊣ i∗ is cartesian;

48

4. A commutative square (A) is cartesian if and only if its adjunct (B) is.

Σia c a i∗c

Σib d b i∗d

Σip q p i∗q(A) (B)

With these notations and results in place, we are ready to continue the proof.

3.1.1 The Natural Transformation ω

To define the desired natural transformation ω from (3.3), we begin with an auxilliary

construction.

Proposition 3.1.1. There is a natural transformation t filling in the square

Ax Ay

Px Py

Πi

e

Σi

et

defined by components

tα := NεindΠiα
RΣiεcoindα

= [Σiα
Σiε

coind
α←−−−− Σii

∗Πiα
εindΠiα−−→ Πiα

id−→ Πiα]

for α ∈ Ax.

Proof. First, we must ensure that the definition of tα above parses at all. That is, we

must check that εindΠiα
lies in Om/y. For this, we note that εindidy

: Σii
∗ idy → idy is simply

the morphism i : i→ idy, and thus we have a naturality square for εind

Σii
∗Πiα Πiα

i idy

εindΠiα

i

By Proposition A.4.3, this square is cartesian, and since i ∈ Om/y, we conclude that

49

εindΠiα
∈ Om/y by pullback-stability.

Next, we must check naturality. So, let φ = [α
g←− ζ

f−→ β] be an arbitrary morphism

in Ax. Then Σieφ = TΣifRΣig and eΠiφ = TΠifRΠig, so we must show that

Σiα Πiα

Σiβ Πiβ

tα

TΠif
RΠig

TΣif
RΣig

tβ

commutes in Py. First, we will go around the top-right. We have

TΠifRΠigtα = TΠifRΠigNεindΠiα
RΣiεcoindα

(definition of t)

= TΠifNεindΠiζ
RΣii∗ΠigRΣiεcoindα

(∗)

= TΠifNεindΠiζ
RΣi(εcoindα ◦i∗Πig) (Ra ◦Rb = Rb◦a)

= TΠifNεindΠiζ
RΣi(g◦εcoindζ) (naturality of εcoind)

where the starred equality comes from the square

Σii
∗Πiζ Πiζ

Σii
∗Πiα Πiα

εindΠiζ

Σii
∗Πig

εindΠiα

Πig

which we know to be cartesian by Proposition A.4.3.

Next, we go around the bottom-left. To start, we form a cartesian square

γ i∗Πiβ

ζ β

(εcoindβ)∗f

h′ εcoindβ

f

⌟

(3.4)

50

For convenience, we denote (εcoindβ)∗f by f ′. Then by Proposition A.4.3,

Σiγ Σii
∗Πiβ

Σiζ Σiβ

Σih
′

Σif

Σif
′

Σiε
coind
β

(3.5)

is also cartesian. Thus,

tβTΣifRΣig = NεindΠiβ
RΣiεcoindβ

TΣifRΣig (definition of t)

= NεindΠiβ
TΣif ′RΣih′RΣig ((3.5) is cartesian)

= NεindΠiβ
TΣif ′RΣi(g◦h′) (Ra ◦Rb = Rb◦a)

Next, we will commute the NεindΠiβ
past the TΣif ′ . So, we form a distributor diagram

• •

Σiγ Σii
∗Πiβ Πiβ

εindΠiβ

Π
εind
Πiβ

Σif
′

(Π
εind
Πiβ

Σif
′)∗εindΠiβ

⌟

Σif
′

εcoind
Σif

′
(3.6)

By Proposition A.4.8, we have a natural isomorphism

(C/x)/i∗Πiβ (C/y)/Σii
∗Πiβ

(C/y)/Πii
∗Πiβ (C/y)/Πiβ

Σi/i
∗Πiβ

(ηcoindΠiβ
)∗

Π
εind
Πiβ

∼=Πi/i
∗Πiβ

of functors (C/x)/i∗Πiβ → (C/y)/Πiβ. The fact that Πi preserves pullbacks gives an

isomorphism

(Πiε
coind
β)∗ → Πi ◦ (εcoindβ)∗

of functors (C/x)/β → (C/y)/Πii
∗Πiβ. We can paste this natural isomorphism onto the

51

above square to obtain

(C/x)/i∗Πiβ (C/y)/Σii
∗Πiβ

(C/x)/β (C/y)/Πii
∗Πiβ (C/y)/Πiβ

Σi/i
∗Πiβ

(ηcoindΠiβ
)∗

Π
εind
Πiβ

∼=Πi/i
∗Πiβ

(Πiε
coind
β)∗

(εcoindβ)∗

∼=

Then, the unit-counit identities give us

(C/x)/i∗Πiβ (C/y)/Σii
∗Πiβ

(C/x)/β (C/y)/Πii
∗Πiβ (C/y)/Πiβ

Σi/i
∗Πiβ

Πi/i
∗Πiβ

Π
εind
Πiβ

(εcoindβ)∗

(Πiε
coind
β)∗

Πi/β

∼=

(ηcoindΠiβ
)∗

∼=

∼=

From this, we have that

ΠεindΠiβ
Σif

′ = ΠεindΠiβ
Σi(ε

coind
β)∗f (3.7)

∼= (ηcoindΠiβ
)∗Πi(ε

coind
β)∗f (3.8)

∼= (ηcoindΠiβ
)∗(Πiε

coind
β)∗f (3.9)

∼= Πif (3.10)

Now we take (3.6) and pull back along this isomorphism to obtain

• Πiζ

• •

Σiγ Σii
∗Πiβ Πiβ

εindΠiβ
Σif

′

εcoind
Σif

′
Π

εind
Πiβ

Σif
′

(Π
εind
Πiβ

Σif
′)∗εindΠiβ

Πif

∼= ∼=
⌟

52

The composite of the two cartesian squares in this diagram is a cartesian square

• Πiζ

Σii
∗Πiβ Πiβ

Πif

εindΠiβ

⌟

But now by Proposition A.4.3, this square is isomorphic to

Σii
∗Πiζ Πiζ

Σii
∗Πiβ Πiβ

εindΠiζ

ΠifΣii
∗Πif

εindΠiβ

This gives a new diagram

Σii
∗Πiζ Πiζ

Σiγ Σii
∗Πiβ Πiβ

εindΠiζ

δ
Σii

∗Πif

⌟

Πif

Σif
′ εindΠiβ

whose encoded bispan (going around the top of the diagram) is isomorphic to the original

from (3.6). The diagonal morphism δ factors as

Σii
∗Πiζ

∼=−→ •
εcoind
Σif

′
−−−→ Σiγ,

and underlies a morphism Σii
∗Πif → Σif

′ in (C/y)/Σii
∗Πiβ. The isomorphism in this

factorization is (εindΠiβ
)∗ applied to the isomorphism (3.7) from Πif to ΠεindΠiβ

Σif
′, and so

the composite δ is the adjunct of the isomorphism (3.7) with respect to the adjunction

(εindΠiβ
)∗ ⊣ ΠεindΠiβ

.

Also, by Lemma A.4.1, δ is Σi applied to a morphism d : i∗Πif → f ′ in (C/x)/i∗Πiβ.

53

This morphism d fits in the diagram

i∗Πiζ

γ i∗Πiβ

ζ β

f ′

h′ εcoindβ

f

⌟

d

i∗Πif

and, by tracing through the factorization above via the proof of Proposition A.4.8, we

have h′ ◦ d = εcoindζ . We conclude that

NεindΠiβ
TΣif ′ = TΠifNεindΠiζ

RΣid.

Over all, this yields

tβTΣifRΣig = NεindΠiβ
TΣif ′RΣi(g◦h′)

= TΠifNεindΠiζ
RΣidRΣi(g◦h′)

= TΠigNεindΠiζ
RΣi(g◦h′◦d)

= TΠigNεindΠiζ
RΣi(g◦εcoindζ),

which is precisely the expression we found earlier for TΠifRΠigtα.

With this in place, the definition of ω is straightforward.

Definition 3.1.2. We define ω : Px(α,−)→ Py(Σiα,Πi−) to be the composite

Px(α, e−)
PΣi−−→ Py(Σiα,Σie−)

t∗−→ Py(Σiα, eΠi−),

where we recall that PΣi
: Px → Py is a well-defined functor by Corollary 2.3.7.

54

3.1.2 Universality

Now we must show that ω is the initial natural transformation from Px(α,−) to a functor

precomposed with Πi. Thus, let f : Ay → Set be an arbitrary functor, and let τ : Px(α,−)→

Π∗
iF be an arbitrary natural transformation. We then aim to show that there exists a unique

natural transformation σ : Py(Σiα,−)→ F such that σΠi ◦ ω = τ .

So, suppose we are given some equivalence class of bispans

[Σiα
h←− a→ • → β] ∈ Py(Σiα, β).

By Lemma A.4.1, the map h : a→ Σiα can also be (canonically) expressed as Σih : Σiαh→

Σiα, where now h : αh→ α is a morphism in C/x. In other words, elements of Py(Σiα, β) can

be canonically expressed in the form TfNgRΣih = [Σiα
Σih←−− Σia

g−→ b
f−→ c] for some morphism

h : a→ α in C/x. Now, if σ is to exist as desired, it will need to satisfy a naturality square

Py(Σiα, b) F (b)

NgRΣih σb(NgRΣih)

TfNgRΣih

F (Tf)(σb(NgRΣih))

= σβ(TfNgRΣih)

Py(Σiα, β) F (β)

σb

(Tf)∗

σβ

F (Tf)

and thus it suffices to define σ only on morphisms of the form NgRΣih. We will next argue

that the behaviour of σ on such morphisms is completely forced. To do so, we make use of

the following observation:

Lemma 3.1.3.

Rηcoindb
◦ ω(Ng!Rh) = NgRΣih

55

where g! : a→ i∗b is the adjunct of g : Σia→ b.

Proof. By definition,

Rηcoindb
◦ ω(Ng!Rh) = Rηcoindb

◦ ti∗b ◦NΣig!RΣih = Rηcoindb
Nεind

Πii
∗b
RΣiεcoindi∗b

NΣig!RΣih.

Now take a cartesian square

c i∗Πii
∗b

a i∗b
g!

εcoind
i∗b

p

q

⌟

and apply Σi (using Proposition A.4.3) to obtain a cartesian square

Σic Σii
∗Πii

∗b

Σia Σii
∗b

Σig
!

Σiε
coind
i∗b

Σip

Σiq
⌟

showing that

RΣiεcoindi∗b
NΣig! = NΣipRΣiq.

Thus,

Rηcoindb
◦ ω(Ng!Rh) = Rηcoindb

Nεind
Πii

∗b
RΣiεcoindi∗b

NΣig!RΣih

= Rηcoindb
Nεind

Πii
∗b
NΣipRΣiqRΣih.

Now, by Proposition A.4.3, the naturality square

Σii
∗b b

Σii
∗Πii

∗b Πii
∗b

εind
Πii

∗b

ηcoindb

εindb

Σii
∗ηcoindb

for εind is cartesian. Thus,

Rηcoindb
Nεind

Πii
∗b
= Nεindb

RΣii∗ηcoindb
,

56

and so

Rηcoindb
◦ ω(Ng!Rh) = Rηcoindb

Nεind
Πii

∗b
NΣipRΣiqRΣih

= Nεindb
RΣii∗ηcoindb

NΣipRΣiqRΣih.

Now, form a further pullback

• Σii
∗b

Σic Σii
∗Πii

∗b

Σia Σii
∗b

Σig
!

Σiε
coind
i∗b

Σip

Σiq
⌟

Σii
∗ηcoindb

⌟

By the unit-counit identities, the composite of the right column is

Σiε
coind
i∗b ◦ Σii

∗ηcoindb = Σi(ε
coind
i∗b ◦ i∗ηcoindb) = Σi idi∗b = idΣii∗b,

and thus (up to isomorphism) this diagram is of the form

Σia Σii
∗b

Σic Σii
∗Πii

∗b

Σia Σii
∗b

Σig
!

Σiε
coind
i∗b

Σip

Σiq
⌟

Σii
∗ηcoindb

Σig
!

s
⌟

with Σiq ◦ s = idΣia. Now we have that RΣii∗ηcoindb
NΣip = NΣig!Rs, and so

Rηcoindb
◦ ω(Ng!Rh) = Nεindb

NΣig!RsRΣiqRΣih

= Nεindb ◦Σig!
RΣih◦Σiq◦s.

57

By definition of εind, εindb ◦ Σig
! = g, and since Σiq ◦ s is an identity, we conclude that

Rηcoindb
◦ ω(Ng!Rh) = Nεindb ◦Σig!

RΣih◦(Σiq◦s) = NgRΣih,

exactly as desired.

Now, consider the following diagram.

Px(α, i
∗b)

Py(Σia,Πii
∗b) FΠii

∗b

Py(Σa, b) Fb

ω

(R
ηcoind
b

)∗

σΠi∗b

σb

F (R
ηcoind
b

)

τi∗b

In order for σ to be natural and satisfy σΠi ◦ ω = τ , this diagram must commute. Now,

starting with the element Ng!Rh ∈ Px(α, i
∗b), we chase

Ng!Rh

ω(Ng!Rh) τi∗b(Ng!Rh)

NgRΣih F (Rηcoindb
)(τi∗b(Ng!Rh))

and conclude that σb(NgRΣih) must equal F (Rηcoindb
)(τi∗b(Ng!Rh)). This completely determines

σ, which we can now write a complete formula for:

Definition 3.1.4. σ : Py(Σiα,−)→ F is given by the components

σβ([Σiα
Σih←−− Σia

g−→ b
f−→ β]) = F (TfRηcoindb

)(τi∗b(Ng!Rh)),

where g! : a→ i∗b denotes the adjunct of g : Σia→ b.

We must show that σ is natural and satisfies σΠi ◦ ω = τ . Once that is done, the above

argument implies that σ is the unique natural transformation satisfying σΠi ◦ ω = τ , so this

will complete the proof.

58

First, to show naturality of σ, let [β
q←− ζ

p−→ β′] be an arbitrary morphism in AC/y. Then

we wish to show that

Py(Σiα, β) Fβ

Py(Σiα, β
′) Fβ′

σβ

(TpRq)∗ F (TpRq)

σβ′

commutes. So, let φ := [Σiα
Σih←−− Σia

g−→ b
f−→ β] ∈ Py(Σiα, β) be arbitrary. Going around

the bottom-left, we have

σβ′((TpRq)∗(φ)) = σβ′(TpRqTfNgRΣih) = σβ′(TpTf ′Rq′NgRΣih)

= σβ′(Tp◦f ′Ng′RΣih◦q′′) = σβ′(Tp◦f ′Ng′RΣi(h◦q′′)) = F (Tp◦f ′Rηcoindz
)(τi∗z(Ng′!Rh◦q′′))

= F (Tp◦f ′Rηcoindz
)(τi∗z(Ng′!Rq′′Rh))

where f ′, g′, q′, q′′ come from forming pullback squares

• z

Σia b ζ

Σiα β

Σih

g

f q

f ′q′

g′

q′′ ⌟
⌟

(A)

59

Next, going around the top-right of the square, we have

F (TpRq)(σβ(φ)) = F (TpRq)(σβ(TfNgRΣih)) (Definition of φ)

= F (TpRq)(F (TfRηcoindb
)(τi∗b(Ng!Rh))) (Definition of σ)

= F (TpRqTfRηcoindb
)(τi∗b(Ng!Rh)) (Functoriality of F)

= F (TpTf ′Rq′Rηcoindb
)(τi∗b(Ng!Rh)) ((A) is cartesian)

= F (Tp ◦ Tf ′Rηcoindb ◦q′)(τi∗b(Ng!Rh)) (Ra◦b = Rb ◦Ra)

= F (Tp◦f ′Rηcoindb ◦q′)(τi∗b(Ng!Rh)) (Ta◦b = Ta ◦ Tb)

= F (Tp◦f ′RΠii∗q′◦ηcoindz
)(τi∗b(Ng!Rh)) (Naturality of ηcoind)

= F (Tp◦f ′Rηcoindz
RΠii∗q′)(τi∗b(Ng!Rh)) (Ra ◦Rb = Rb◦a)

= F (Tp◦f ′Rηcoindz
◦ ΠiRi∗q′)(τi∗b(Ng!Rh)) (ΠiRa = RΠia)

= F (Tp◦f ′Rηcoindz
)(F (ΠiRi∗q′)(τi∗b(Ng!Rh))) (Functoriality of F)

= F (Tp◦f ′Rηcoindz
)(τi∗z(Ri∗q′Ng!Rh)) (Naturality of τ)

Now the cartesian square

• z

Σia b

g′

q′

g

q′′

above yields (by Corollary A.4.4) a cartesian square

• i∗z

a i∗b

g′!

i∗q′

g!

q′′

Thus,

F (TpRq)(σβ(φ)) = F (Tp◦f ′Rηcoindz
)(τi∗z(Ri∗q′Ng!Rh)) = F (Tp◦f ′Rηcoindz

)(τi∗z(Ng′!Rq′′Rh)),

as desired. This establishes the naturality of σ, and it only remains to be shown that

σΠi ◦ ω = τ .

60

So, let β ∈ Ax and [α
h←− a

g−→ b
f−→ β] ∈ Px(α, β) be arbitrary. Then

ωb(NgRh) = tbNΣihRΣih = NεindΠib
RΣiεcoindb

NΣigRΣh

= NεindΠib
NΣig′RΣieRΣih

= NεindΠib
◦Σig′RΣi(h◦e)

where g′ and e come from choosing a cartesian square

z i∗Πib

a bg

εcoindb

g′

e

Then

σΠib(ωb(NgRh)) = F (RηcoindΠib
)(τi∗Πib(N(εindΠib

◦Σig′)!Rh◦e))

= F (RηcoindΠib
)(τi∗Πib(N(εindΠib

◦Σig′)!ReRh)).

Where we recall that (εindΠib
◦ Σig

′)! denotes the adjunct of εindΠib
◦ Σig

′ under the adjunction

Σi ⊣ i∗. Of course, by definition of εind, we have (εindΠib
◦ Σig

′)! = g′. Thus,

σΠib(ωb(NgRh)) = F (RηcoindΠib
)(τi∗Πib(Ng′ReRh)) = F (RηcoindΠib

)(τi∗Πib(Rεcoindb
NgRh)).

Then, by naturality of τ , we obtain

σΠib(ωb(NgRh)) = F (RηcoindΠib
)(F (ΠiRεcoindb

)(τb(NgRh))) = F (RηcoindΠib
RΠiεcoindb

)(τb(NgRh)).

By the unit-counit identities, Πiε
coind
b ◦ ηcoindΠib

= idΠb
. Thus, we have

σΠib(ωb(NgRh)) = τb(NgRh).

Finally, by naturality of τ , ω, and σ, we have

σΠiβ(ωβ(TfNgRh)) = σΠiβ((ΠiTf)∗ωb(NgRh)

= F (ΠiTf)(σΠib(ωb(NgRh)))

= F (ΠiTf)(τb(NgRh))

= τβ(TfNgRh).

61

Since β and [α
h←− a

g−→ b
f−→ β] were arbitrary, we conclude that σΠi ◦ ω = τ . This completes

the proof.

3.1.3 Naturality in α

We have now exhibited Py(Σiα,Πi−) as the left Kan extension of Px(α,−) along Πi, i.e. we

have demonstrated that (3.2) commutes up to pointwise isomorphism. To show that this

isomorphism is natural in α ∈ Pop
x , we need only show that, for any morphism φ : α→ α′ in

Px, the natural isomorphisms ω fit in a commutative square

Px(α
′,−) Py(Σiα,Πi−)

Px(α,−) Py(Σiα,Πi−)

ω

φ∗

ω

(Σiφ)
∗

However, this is straightforward: by definition, the square above factors as

Px(α
′,−) Py(Σiα

′,Σi−) Py(Σiα,Πi−)

Px(α,−) Py(Σiα,Σi−) Py(Σiα,Πi−)

φ∗ (Σiφ)
∗

Σi t∗

(Σiφ)
∗

t∗Σi

Both sub-squares commute by direct computation.

This completes the proof that (3.2) commutes up to natural isomorphism.

3.2 Separability and Preservation of Mackey Structure

We have completed the proof of the first half of the theorem, and would now like to show

that left Kan extension of semi-Mackey functors along AΠi
sends Mackey functors to Mackey

functors. This requires some additional assumption on i, as shown by the following example.

62

Example 3.2.1. Consider the morphism i : ∅→ G/e in G−set. G−set/∅ is the terminal

category, so SMack(G−set/∅) is equivalent to the terminal category – each semi-Mackey

functor indexed by G−set/∅ sends id∅ to a singleton. In particular, every semi-Mackey

functor indexed by G−set/∅ is Mackey.

On the other hand, G−set/(G/e) is equivalent to set, so SMack(G−set/(G/e)) is

equivalent to the category of commutative monoids.

So, now consider the (G−set/∅)-Mackey functor F represented by id∅. Then LanΠi
F

is represented by Πi id∅ = idG/e. Under the equivalence G−set/(G/e) ≃ set, idG/e

corresponds to a singleton set, so LanΠi
F corresponds to the set-semi-Mackey functor

represented by a singleton, i.e. the free commutative monoid on a singleton. In other

words, we have

Mack(G−set/∅) SMack(G−set/(G/e)) CMon

F N

LanΠi ∼=

Since N is not an abelian group, we conclude that LanΠi
does not preserve Mackey

functors in this case.

It turns out that the correct assumption to place on i is that it is an epimorphism. We

can see that this should be the case by the following heuristic:

Slogan 4. LanΠi
preserving Mackey functors is a categorification of A(Ni) preserving

additively invertible elements for all semi-Tambara functors A.

Indeed, we see that A(Ni)(0) = 1 when the domain of i is an initial object. 1 is not

additively invertible at every level of an arbitrary semi-Tambara functor over an arbitrary

index C, so we cannot expect LanΠi
to preserve Mackey functors when the domain of i is an

initial object. On the other hand, A(Ni)(0) = 0 for all semi-Tambara functors A whenever i

63

is an epimorphism. Thus, we should expect that LanΠi
preserves Mackey functors whenever

i is an epimorphism, and 0 is always additively invertible.

To leverage the fact that A(Ni)(0) = 0 to prove that A(Ni) preserves additively invertible

elements, we would like to make use of a formula akin to Mazur’s [18, §1.4.1] for G-Tambara

functors:

A(Nf)(a+ b) = A(Nf)(a) + A(Nf)(b) + (other terms) (3.11)

We don’t actually need something quite this strong; it would suffice to have a formula like

A(Nf)(a+ b) = A(Nf)(a) + (other terms). (3.12)

Then, whenever a is additively invertible and A(Nf)(0) = 0, we would have

0 = A(Nf)(0) = A(Nf)(a+ (−a)) = A(Nf)(a) + (other terms),

and so A(Nf)(a) is additively invertible. Thinking about what (3.12) would say about a

representable semi-Tambara functor, we find exactly that we need C to be separable.

Proposition 3.2.2. Let C be an index. The following are equivalent:

(i) C is separable;

(ii) For every C-semi-Tambara functor A, every morphism i : x→ y in Cm, and all elements

a, b ∈ A(x), A(Ni)(a) is a summand of A(Ni)(a+ b);

(iii) For every representable C-semi-Tambara functor A, every morphism i : x→ y in Cm,

every morphism i : x→ y in Cm, and all elements a, b ∈ A(x), A(Ni)(a) is a summand

of A(Ni)(a+ b).

Proof. It’s clear that (ii) implies (iii), so we will prove that (i) implies (ii) and that (iii)

implies (i).

First, suppose C is separable. Let A ∈ STamb(C), i : x→ y in Cm, and a, b ∈ A(x) be

64

arbitrary. The element A(Ni)(a+ b) is produced by

A(x)× A(x) A(x⨿ x) A(x) A(y)

(a, b) a+ b A(Ni)(a+ b)

∼=
A(T∇) A(Ni)

Now we compute Ni◦T∇ by forming a distributor diagram step-by-step. First, we produce

the dependend product of ∇ along i, and recall by separability of C that this decomposes

as Πi∇ = idy ⨿γ for some γ ∈ C/y. Thus, we have

y ⨿ c

x⨿ x x y

(idy ,γ)

∇ i

Now we pull back along i (recalling that i∗ commutes with coproducts) and attach the

counit of the adjunction i∗ ⊣ Πi, to get

x⨿ c′ y ⨿ c

x⨿ x x y

i⨿ζ

(idx,γ′)
⌟

(idy ,γ)

∇ i

By naturality of the counit, the diagonal morphism is equal to idx⨿γ. Now we have that

NfT∇ = T(idy ,γ)Ni⨿ζRidx ⨿γ. This gives us a commutative diagram

A(x)× A(x) A(x)× A(c′) A(y)× A(c) A(y)× A(y)

A(x⨿ x) A(x⨿ c′) A(y ⨿ c) A(y ⨿ y) A(y)

id×A(Rγ′)

∼=

A(Ni)×A(Nζ)

∼=

id×A(Tγ)

∼= ∼=
+

A(Ridx ⨿γ′) A(Ni⨿ζ) A(Tidy ⨿γ) A(T∇)

Going along the top, we see that (a, b) is sent to A(Ni)(a) + (stuff). On the other hand,

this is a factorization of NfT∇, so also (a, b) is sent to A(Ni)(a+ b). Thus, A(Ni)(a) is a

summand of A(Ni)(a+ b).

65

Next, suppose (iii) holds, and let i : x→ y in Cm be arbitrary. Let A be the C-semi-

Tambara functor represented by x. In A(x), we have idx+ idx = T∇R∇. We have by

assumption that A(Ni)(idx) = Ni is a summand of A(Ni)(idx + idx) = NiT∇R∇. Now we

form a distributor diagram to compute NiT∇:

• •

x⨿ x x y

(Πi∇)∗i

i∗Πi∇
⌟

Πi∇

∇ i

and note by commutativity of the triangle therein that

NiT∇R∇ = TΠi∇N(Πi∇)∗iRi∗Πi∇.

Now the claim that Ni is a summand of this morphism says that there is a decomposition

(Πi∇)∗i (up to isomorphism) as a coproduct i⨿ ζ for some morphism ζ, in such a way

that the class

[x
i∗Πi∇←−−− • (Πi∇)∗i−−−−→ • Πi∇−−→ y]

equals

[x
(idx,γ′)←−−−− x⨿ c′

i⨿ζ−−→ y ⨿ c′
(idy ,γ)−−−−→ y]

for some bispan x
γ′
←− c′

ζ−→ c
γ−→ y. In particular, this demonstrates that ji : idy → Πi∇ is

complemented. Since i was arbitrary, we conclude that C is separable.

So, we will now prove that LanΠi
preserves Mackey functors whenever C is separable and

i is an epimorphism.

Proposition 3.2.3. Let C be an index, and let F ∈ STamb(C) be arbitrary. Let i : x→ y be an

epimorphism lying in Cm. For each object α ∈ C/x, the unit map η : F (α)→ (LanΠi
F)(Πiα)

sends 0 to 0.

66

Proof. We recall that the element 0 ∈ F (α) is the image under F (T!) of the unique

element of F (∅), where ! : ∅→ α is a morphism from an initial object. By naturality of

η, we have a commutative square

F (∅) (LanΠi
F)(Πi∅)

F (α) (LanΠi
F)(Πiα)

η

F (T!) (LanΠi
F)(TΠi!

)

η

so we may assume α = ∅. Now Lemma 1.2.9 tells us that Πi∅ = ∅ (this is where we use

that i is an epimorphism), so (LanΠi
F)(Πi∅) = (LanΠi

F)(∅) is the singleton {0}, and

we are done.

Proposition 3.2.4. Let C be a separable index, and let F ∈ STamb(C) be arbitrary. Let

i : x→ y be an epimorphism lying in Cm. For each object α ∈ C/x, the unit map η : F (α)→

(LanΠi
F)(Πiα) preserves invertible elements.

Proof. Let s ∈ F (α) be an arbitrary invertible element, with inverse s′. By separability,

the inclusion j : Πiα → Πi(α ⨿ α) is complemented; let k : Q → Πi(α ⨿ α) be a

complement. Now we have

F (α ⨿ α) (LanΠi
F)(Πi(α ⨿ α)) (LanΠi

F)(Πiα ⨿Q)

(LanΠi
F)(Πiα ⨿ Πiα)

F (α) (LanΠi
F)(Πiα)

η

F (T∇)

(LanΠi
F)(T(j,k)−1)

(LanΠi
F)(TΠi∇)

(LanΠi
F)(id⨿TΠi∇◦k)

(LanΠi
F)(T∇)

η

The left-hand square commutes by naturality of η, and the right-hand quadrilateral

67

commutes because

Πi(α ⨿ α) Πiα ⨿Q

Πiα ⨿ Πi(α ⨿ α)

Πiα Πiα ⨿ Πiα

Πi∇

(j,k)

(id,k)

(id,Πi∇◦k)

(id,Πi∇)

∇

commutes. Overall, we conclude that

0 = η(0) = η(s+ s′) = η(s) + (other terms),

and thus η(s) is invertible.

Proposition 3.2.5. Let C be a separable bi-incomplete index, and let i : x → y be an

epimorphism lying in Cm. Then LanAΠi
: SMack(C/x)→ SMack(C/y) sends Mackey functors

to Mackey functors.

Proof. Let F ∈ Mack(C/x) and β ∈ C/y be arbitrary. Take an arbitrary element

t ∈ (LanΠi
F)(β). Then there is some α ∈ C/x, some morphism φ : Πiα → β in AC/y,

and some element s ∈ F (α) such that t is the image of s under

F (α)
η−→ (LanΠi

F)(Πiα)
(LanΠiF

)(φ)
−−−−−−−→ (LanΠiF)(β).

We know that η sends invertible elements to invertible elements, and (LanΠiF)(φ) is a

homomorphism of commutative monoids. Since F is a Mackey functor, s is invertible, so

we are done.

3.3 Conclusions

We now summarize the results of this chapter and their consequences. In the case that

i : x→ y is an epimorphism in Cm for C a locally essentially small, separable index, the two

68

commutative squares established in Theorem 3.0.1 give a commutative cube

Tamb(C/x) Tamb(C/y)

STamb(C/x) STamb(C/y)

Mack(C/x) Mack(C/y)

SMack(C/x) SMack(C/y)

Ni

Ni

Ni

Ni

For emphasis, we will spell out what this tells us. Under these hypotheses, two things are

true:

1. The restriction functor Ri : Tamb(C/y) → Tamb(C/x) has a left adjoint Ni :

Tamb(C/x)→ Tamb(C/y).

2. Given a Tambara functor A ∈ Tamb(C/x), we can compute the underlying Mackey

functor of NiA by LanAΠi
e∗A, where e∗A is the underlying Mackey functor of A.

In particular, this result holds for naive motivic Tambara functors. The only part of the

assumptions which we have not yet checked is that fét is locally essentially small, which we

will now show.

Proposition 3.3.1. For any scheme S, fét/S is essentially small.

Proof. In fact, the category of schemes finite over S is already essentially small. Recall

that a morphism f : X → S of schemes is finite if and only if there exists an open

cover {Ui}i∈I of S by affine subschemes such that for each i, f−1(Ui) is affine the ring

homomorphism OS(Ui)→ OX(f
−1(Ui)) is finite.

So, a finite morphism X → S is determined up to isomorphism by the data of an affine

open cover {Ui}i∈I of S, a set of (isomorphism classes of) finite ring homomorphisms

69

{OS(Ui)→ Ai}i∈I , and gluing data for the set of maps {Spec(Ai)→ Ui ↪→ S}i∈I .

There is a set of affine open covers of S. For a fixed affine open cover {Ui}i∈I of S and

a fixed i ∈ I, there is a set’s worth of isomorphism classes of finite ring homomorphisms

OS(Ui)→ Ai (because there is a set’s worth of isomorphism classes of finitely generated

OS(Ui)-modules, and a set of OS(Ui)-algebra structures on any given finitely generated

OS(Ui)-module). Finally, for a fixed affine open cover {Ui}i∈I of S and a fixed set of

finite ring homomorphisms {OS(Ui)→ Ai}, there is a set of possible gluing data for the

maps {Spec(Ai)→ Ui ↪→ S}i∈I . We conclude that the collection of isomorphism classes

of finite S-schemes forms a set, and thus the category of finite S-schemes is essentially

small.

Corollary 3.3.2. For any finite étale cover f : X → S of schemes, the restriction functor

Rf : Tamb(fét/S)→ Tamb(fét/X)

between categories of naive motivic Tambara functors given by

(RfA)(g) = A(f ◦ g)

has a left adjoint

Nf : Tamb(fét/X)→ Tamb(fét/S)

such that the value of NfA on an object h ∈ fét/S can be computed (as an abelian group)

with the coend

(NfA)(h) =

∫ g∈fét/S
Afét/S(Πig, h)× A(g).

70

APPENDIX A

Technical Lemmas

A.1 The Proof of Proposition 1.2.3

Proposition. Let C be a category which is locally cartesian closed and cocartesian with

disjoint coproducts. Then any coproduct diagram x
i−→ x⨿ y

j←− y induces an equivalence of

categories

C/(x⨿ y)
(i∗,j∗)−−−→ C/x× C/y.

Proof. The desired quasi-inverse functor is given by the composite

C/x× C/y Σi×Σj−−−−→ C/(x⨿ y)× C/(x⨿ y)
⨿−→ C/(x⨿ y),

where the second functor is the categorical coproduct described by Proposition 1.2.1.

We will show that both composites are naturally isomorphic to the identity. First, let

α ∈ C/(x⨿ y) be arbitrary. Then we have a natural isomorphism

Σii
∗α ⨿ Σjj

∗α ∼= (i× α)⨿ (j × α) ∼= (i⨿ j)× α

in C/(x⨿ y), where the first isomorphism comes from Proposition 1.1.7 and the second

isomorphism comes from the fact that −×α is a left adjoint (since C/(x⨿ y) is cartesian

closed), and thus commutes with coproducts. However, we also have that i⨿ j ∼= idx⨿y

(this follows simply from the characterization of coproducts in a slice category from

71

Proposition 1.2.1). Since idx⨿y is terminal in C/(x⨿ y), we conclude that

Σii
∗α ⨿ Σjj

∗α ∼= α

naturally in α. Thus, the composite

C/(x⨿ y)→ C/x× C/y → C/(x⨿ y)

is naturally isomorphic to the identity.

Next, let β ∈ C/x and γ ∈ C/y be arbitrary. We have

i∗(Σiβ ⨿ Σjγ) ∼= i∗Σiβ ⨿ i∗Σjγ,

so we want to show that i∗Σjγ ∼= ∅ and i∗Σiβ ∼= β naturally in β. Now notice that

Σjγ naturally lives as an object of (C/(x⨿ y))/j, and thus, i∗Σjγ lives as an object of

(C/x)/i∗j. But, since finite coproducts in C are disjoint, i∗j is the initial object of C/x. By

Proposition 1.1.10, we conclude that i∗Σjγ ∼= ∅. Next, we wish to show that i∗Σiβ ∼= β

naturally in β. By hypothesis of disjointness of coproducts, i is a monomorphism, so

x x

x x⨿ y

idx

idx

i

i

is a cartesian square. This says also that i∗Σi idx = i∗i ∼= idx (with this isomorphism

being unique since idx is terminal in C/x). Now we view Σiβ as an object of (C/(x⨿y))/i

and pull back along i to obtain

• •

x x

x x⨿ y

idx

idx

i

i

β

Σiβi∗Σiβ

72

where the composite square is cartesian, thus exhibiting i∗Σiβ as an object of (C/x)/ idx.

By Proposition 1.1.4, since the lower square and composite square are cartesian, the

upper square is also cartesian. This forces the diagram to be of the form

• •

x x

x x⨿ y

idx

idx

i

i

idx

β

Σiβi∗Σiβ

β

Commutativity of this diagram now implies that i∗Σiβ ∼= idx ◦β = β.

We conclude that i∗(Σiβ⨿Σjγ) ∼= β naturally in β. Symmetrically, j∗(Σiβ⨿Σjγ) ∼= γ

naturally in γ. Thus, the composite

C/x× C/y → C/(x⨿ y)→ C/x× C/y

is naturally isomorphic to the identity.

A.2 The Proof of Lemma 1.2.6

Lemma. Let C be an LCCDC category and let f : x→ y and g : x′ → y′ be morphisms in C.

Let ix : x→ x⨿ x′ and iy : y → y ⨿ y′ be the canonical inclusions. Then

x y

x⨿ x′ y ⨿ y′

f

ix

f⨿g

iy

is a cartesian square.

Proof. First, we note that the square commutes, simply by definition of coproduct. Since

73

C is locally cartesian, we know that there exists some cartesian square

• y

x⨿ x′ y ⨿ y′

iyt

⌟

f⨿g

and we wish to show that this square is isomorphic to the original square in the statement

of the lemma. To do so, we claim that it will suffice to show that t is isomorphic (as an

object of C/(x⨿ x′)) to ix – then we will have a commutative diagram

x • y

x⨿ x′ x⨿ x′ y ⨿ y′
f⨿g

iyt

⌟

∼=

ix

id

The left-hand square is cartesian because it commutes and its horizontal arrows are

isomorphisms, whence the composite square is also cartesian. This gives a cartesian

square
• y

x⨿ x′ y ⨿ y′
f⨿f ′

iyix

⌟

We then note that replacing the top morphism with f would make the square commute,

and iy is a monomorphism (by the LCCDC hypothesis on C). Thus, the top morphism

equals f , and we have the desired cartesian square.

So, we have left to show that t is isomorphic to ix in C/(x⨿x′), and for this purpose we

make use of Proposition 1.2.3 – letting ix′ : x→ x⨿ x′ denote the canonical inclusion, it

will suffice to show that i∗xt
∼= i∗xix and i∗x′t ∼= i∗x′ix. We will tackle these two isomorphisms

in order. First, we form a further pullback

• • y

x x⨿ x′ y ⨿ y′
f⨿g

iyt

⌟

ix

i∗xt

⌟

(A.1)

74

Now the bottom row composes to give (f ⨿ g) ◦ ix = iy ◦ f , and so the composite square

can also be formed by pulling back iy first along iy and then along f . Since C is LCCDC,

iy is monic, i.e.

y y

y y ⨿ y′

iy

id

iy

id

⌟

is cartesian. So the composite square of (A.1) is also the composite square in

x y y

x y y ⨿ y′

iy

id

iy

id

⌟

f

f

id

⌟

In particular, we have i∗xt
∼= idx, and since ix is monic we also have i∗xix

∼= idx. Thus

i∗xt
∼= i∗xix.

We only have left to show that i∗x′t ∼= i∗x′ix, and so we consider the pullback

• • y

x′ x⨿ x′ y ⨿ y′
f⨿g

iyt

⌟

ix′

i∗
x′ t

⌟

The bottom row composes to give (f ⨿ g) ◦ ix′ = iy′ ◦ g, where iy′ : y
′ → y ⨿ y′ is the

canonical inclusion. So, the composite square can also be obtained by pulling back iy

first along iy′ and then along g. Since C is LCCDC, this first step of pulling back iy along

iy′ gives us ∅. Then pulling back further still yields ∅ (for example, since g∗ is a left

adjoint and therefore preserves initial objects). Thus, i∗x′t ∼= ∅. Since C is LCCDC, we

also have i∗x′ix ∼= ∅, and so indeed i∗x′t ∼= i∗x′ix.

A.3 The Proof of Proposition 1.2.18

Proposition. If F : AC → Set is a semi-Mackey functor, then F factors uniquely through

the forgetful functor CMon→ Set. This unique factorization is given by endowing each output

75

set F (x) with the binary operation +F,x.

Proof. The existence part of this claim amounts to checking that, for each morphism

φ : x→ y in AC, F (φ) : F (x)→ F (y) is a monoid homomorphism with respect to +F,x

and +F,y. First, let ! : ∅→ x be the unique morphism in C from a chosen initial object

to x. Then φ ◦ T! is a morphism ∅→ y in AC, but ∅ is initial in AC (it is terminal by

Proposition 1.2.14 and AC is self-dual), and so φ ◦T! = T!!, where !! : ∅→ y is the unique

morphism in C. Thus F (T!!) (which picks out the identity element of (F (y),+)) is equal

to F (φ) ◦ F (T!). In other words, F (φ) sends the identity element of (F (x),+) to the

identity element of (F (y),+). Next, we must check that F (φ) commutes with the binary

operation +. We will show this separately for morphisms of type T and R.

First, suppose φ = Tf for some f : x→ y in C. Then consider the diagram

F (x)× F (x) F (x⨿ x) F (x)

F (y)× F (y) F (y ⨿ y) F (y)

∼= F (T∇)

F (Tf)F (Tf⨿f)

F (T∇)

F (Tf)×F (Tf)

∼=

The right-hand square commutes because f ◦ ∇x = ∇y ◦ (f ⨿ f) in C. To check that the

left-hand square commutes, we invert the isomorphisms on top and bottom to obtain

F (x)× F (x) F (x⨿ x)

F (y)× F (y) F (y ⨿ y)

F (Tf)×F (Tf)

(F (Ri1
),F (Ri2

))

(F (Ri1
),F (Ri2

))

F (Tf⨿f)

The two composites we must show are equal are morphisms F (x ⨿ x)→ F (y)× F (y),

so we check the two components separately. For the first component, we must compare

F (Tf) ◦ F (Ri1) with F (Ri1) ◦ F (Tf⨿f). So, it suffices to prove Tf ◦Ri1 = Ri1 ◦ Tf⨿f . For

76

this, it suffices to prove that

x y

x⨿ x y ⨿ y

f

i1

f⨿f

i1

is cartesian in C, but this is just a special case of Lemma 1.2.6. Thus, the composite

square commutes, which says exactly that F (Tf) commutes with +.

Now suppose φ = Rg for some g : y → x in C. Then

F (x)× F (x) F (x⨿ x)

F (y)× F (y) F (y ⨿ y)

F (Rg)×F (Rg)

(F (Ri1
),F (Ri2

))

(F (Ri1
),F (Ri2

))

F (Rg⨿g)

commutes, because (g ⨿ g) ◦ i1 = i1 ◦ g and (g ⨿ g) ◦ i2 = i2 ◦ g in C. Inverting the

horizontal arrows, we get that

F (x)× F (x) F (x⨿ x)

F (y)× F (y) F (y ⨿ y)

F (Rg)×F (Rg)

∼=

∼=

F (Rg⨿g)

commutes. We only have left to show that

F (x⨿ x) F (x)

F (y ⨿ y) F (y)

F (T∇)

F (Rg)F (Rg⨿g)

F (T∇)

commutes, for which it suffices to show that Rg ◦ T∇ = T∇ ◦ Rg⨿g. For this claim, it

suffices to show that

y ⨿ y x⨿ x

y x

g⨿g

∇∇

g

is cartesian. This is Corollary 1.2.7.

77

We have now established that F : AC → Set factors through CMon. For uniqueness,

suppose we have some other factorization, i.e. on each F (x) we have a commutative

monoid operation · such that F (φ) commutes with · for all morphisms φ ∈ AC. Then

+ = F (T∇) ◦ (F (Ri1), F (Ri2))
−1 : F (x)× F (x)→ F (x) is a monoid homomorphism with

respect to ·. The Eckmann-Hilton argument now shows that · = +.

A.4 Hoyer’s Lemma 2.3.5

Now we build up to an important technical lemma which is key the theorem in Chapter 3.

Lemma A.4.1. Let C be a category, and let i : x→ y be a morphism in C. For any object

α ∈ C/x, the functor Σi/α : (C/x)/α→ (C/y)/Σiα is an isomorphism.

Proof. This is essentially another rephrasing of Slogan 1. Both (C/x)/α and (C/y)/Σiα

are canonically isomorphic to C/ dom(α), and via these isomorphisms Σi/α factors as

the identity.

Lemma A.4.2. Let C be a locally cartesian category and let i : x→ y be a morphism in C.

Then Σi : C/x→ C/y preserves and reflects pullbacks.

Proof. Consider an arbitrary commutative square (A) in C/x

α β

γ δ

e

f g

h

(A)

and let (B) be its image under Σi:

Σiα Σiβ

Σiγ Σiδ

Σie

Σif

Σih

Σig(B)

78

Note that (A) is cartesian iff γ
f←− α

e−→ β is a product diagram in (C/x)/δ. By

Lemma A.4.1, Σi/δ is an isomorphism, so this happens iff Σiγ
Σif←−− Σiα

Σie−−→ Σiβ is a

product diagram in (C/y)/Σiδ. This happens iff (B) is cartesian.

Proposition A.4.3. Let C be a locally cartesian category and let i : x→ y be a morphism in

C. Then:

1. Σi and i∗ preserve cartesian squares;

2. Each naturality square for the unit and counit of the adjunction is cartesian.

Proof. By Lemma A.4.2, Σi preserves pullbacks, and i∗ preserves pullbacks because it is

a right adjoint. Next we must check that the naturality squares for the unit and counit

are cartesian.

We begin with the counit. Let f : α → β be an arbitrary morphism in C/y, where

α : a→ y and β : b→ y are any objects. Then pull back along i to get the commuting

triangular prism below.

i∗a i∗b

a b

x

y

i
α

β

i∗α i∗β

f

i∗f

The “left and right faces”
i∗a a

x y

i∗α

i

α and
i∗b b

x y

β

i

i∗β are cartesian by construc-

tion. By Proposition 1.1.4, the “top face”
i∗a i∗b

a b

i∗f

f

is then cartesian, because

pasting with the right face yields the left face. The naturality square for the counit

79

of the adjunction and the morphism f is then cartesian, because it is essentially the

aforementioned top face:

i∗a i∗b

a b

y

α β

i∗f

Σii
∗α

Σii
∗β

f

Next, we will show that the naturality squares for the unit of the adjunction are cartesian.

Let f : α → β now be an arbitrary morphism in C/x. The naturality square in

question is

α i∗Σiα

β i∗Σiβ

ηα

f

ηβ

i∗Σif(A)

The image of (A) under Σi is

Σiα Σii
∗Σiα

Σiβ Σii
∗Σiβ

Σiηα

Σif

Σiηβ

Σii
∗Σif(A′)

By the triangle identities, (A′) fits in the commutative diagram

Σiα Σii
∗Σiα Σiα

Σiβ Σii
∗Σiβ Σiβ

Σiηα

Σif

Σiηβ

Σii
∗Σif

εΣiα

Σif

εΣiβ

id

id

(A′)

The right-hand square is the naturality square of the counit η, which we showed above is

cartesian. The composite square is the “identity square” of Σif , which is also cartesian.

80

We conclude that (A′) is cartesian. By Lemma A.4.2, Σi reflects pullbacks, so (A) is

cartesian, as desired.

Corollary A.4.4. A commutative square (A) is cartesian if and only if its adjunct (B) is.

Σia c a i∗c

Σib d b i∗d

Σip q p i∗q(A) (B)

Lemma A.4.5. Let D and D′ be categories such that D admits all (binary) pullbacks. If

F : D → D′ is left adjoint to G : D′ → D and d ∈ D is some object, then F/d is left adjoint

to η∗d ◦ (G/Fd), where ηd : d→ GFd is the unit of F ⊣ G.

Proof. Consider arbitrary objects α : a→ d in D/d and β : b→ Fd in D′/Fd. Then

HomD/d(α, η
∗
d(G/Fd)β)

=

f ∈ HomD(a,Gb)

∣∣∣∣∣∣∣∣
a Gb

d GFd

f

α Gβ

ηd

commutes


∼=

g ∈ HomD′(Fa, b)

∣∣∣∣∣∣∣∣
Fa b

Fd Fd

g

Fα β

idFd

commutes


= HomD′/Fd((F/d)α, β)

and this bijection is natural in α and β.

Lemma A.4.6. Let F : D → D′ and G : D′ → D′′ be functors, and let d ∈ D be an object.

Then (G ◦ F)/d = (G/Fd) ◦ (F/d).

Proof. Unravel the definitions.

Lemma A.4.7. For all objects β ∈ C/y, we have (εindβ)∗ = (Σi ◦ i∗)/β.

81

Proof. Let b be the domain of β, so that i∗β fits in the pullback square

i∗b b

x yi

i∗β β
⌟

By definition, Σii
∗β = i ◦ i∗β, so we can notice that εindb : Σii

∗β → β is actually the

top morphism in the above square. Now we let γ ∈ (C/y)/β be arbitrary and form the

further pullback

(εindb)∗c c

i∗b b

x yi

i∗β β

εindb

⌟

γ(εindb)∗γ
⌟

Now since both squares are pullbacks, the composite rectangle is a pullback as well. This

says precisely that ((Σi ◦ i∗)/β)γ equals (εindb)∗γ as an object of (C/y)/Σii
∗β.

Proposition A.4.8 (cf. [14], Lemma 2.3.5). The functors Πεindb
◦ (Σi/i

∗b) and (ηcoindb)∗ ◦

(Πi/i
∗b) are naturally isomorphic for all objects b ∈ C/y.

Proof. We have isomorphisms

Hom(C/y)/b(c, (η
coind
b)∗(Πi/i

∗b)a)

∼= Hom(C/x)/i∗b((i
∗/b)c, a) (Lemma A.4.5)

∼= Hom(C/y)/Σii∗b((Σi/i
∗b)(i∗/b)c, (Σi/i

∗b)a) (Lemma A.4.1)

= Hom(C/y)/Σii∗b(((Σi ◦ i∗)/b)c, (Σi/i
∗b)a) (Lemma A.4.6)

= Hom(C/y)/Σii∗b((ε
ind
b)∗c, (Σi/i

∗b)a) (Lemma A.4.7)

∼= Hom(C/y)/b(c,Πεindb
(Σi/i

∗b)a) ((εindb)∗ ⊣ Πεindb
)

natural in a ∈ (C/x)/i∗b and c ∈ (C/y)/b.

82

Bibliography

[1] Tom Bachmann. “Motivic Tambara functors”. In: Mathematische Zeitschrift 297.3

(Apr. 1, 2021), pp. 1825–1852. issn: 1432-1823. doi: 10.1007/s00209-020-02581-x.

url: https://doi.org/10.1007/s00209-020-02581-x.

[2] Tom Bachmann. “Some remarks on units in Grothendieck-Witt rings”. In: Journal of

Algebra 499 (2018), pp. 229–271. issn: 0021-8693. doi: https://doi.org/10.1016/j.

jalgebra.2017.12.004. url: https://www.sciencedirect.com/science/article/

pii/S0021869317306567.

[3] Tom Bachmann and Marc Hoyois. “Norms in motivic homotopy theory”. In: Astérisque

425 (Sept. 2021). issn: 2492-5926. doi: 10.24033/ast.1147. url: http://dx.doi.

org/10.24033/ast.1147.

[4] Andrew J. Blumberg and Michael A. Hill. “Bi-incomplete Tambara Functors”. In:

Equivariant Topology and Derived Algebra. London Mathematical Society Lecture Note

Series. Cambridge University Press, 2021, pp. 276–313.

[5] Andrew J. Blumberg and Michael A. Hill. “Incomplete Tambara functors”. In: Algebraic

& Geometric Topology 18.2 (Mar. 12, 2018), pp. 723–766. issn: 1472-2739, 1472-2747.

doi: 10.2140/agt.2018.18.723. arXiv: 1603.03292. url: http://arxiv.org/abs/

1603.03292.

[6] Andrew J. Blumberg and Michael A. Hill. “Operadic multiplications in equivariant

spectra, norms, and transfers”. In: Advances in Mathematics 285 (2015), pp. 658–

708. issn: 0001-8708. doi: https://doi.org/10.1016/j.aim.2015.07.013. url:

https://www.sciencedirect.com/science/article/pii/S000187081500256X.

[7] Peter Bonventre and Lúıs A. Pereira. “Genuine equivariant operads”. In: Advances in

Mathematics 381 (2021), p. 107502. issn: 0001-8708. doi: https://doi.org/10.1016/

83

https://doi.org/10.1007/s00209-020-02581-x
https://doi.org/10.1007/s00209-020-02581-x
https://doi.org/https://doi.org/10.1016/j.jalgebra.2017.12.004
https://doi.org/https://doi.org/10.1016/j.jalgebra.2017.12.004
https://www.sciencedirect.com/science/article/pii/S0021869317306567
https://www.sciencedirect.com/science/article/pii/S0021869317306567
https://doi.org/10.24033/ast.1147
http://dx.doi.org/10.24033/ast.1147
http://dx.doi.org/10.24033/ast.1147
https://doi.org/10.2140/agt.2018.18.723
https://arxiv.org/abs/1603.03292
http://arxiv.org/abs/1603.03292
http://arxiv.org/abs/1603.03292
https://doi.org/https://doi.org/10.1016/j.aim.2015.07.013
https://www.sciencedirect.com/science/article/pii/S000187081500256X
https://doi.org/https://doi.org/10.1016/j.aim.2020.107502
https://doi.org/https://doi.org/10.1016/j.aim.2020.107502

j.aim.2020.107502. url: https://www.sciencedirect.com/science/article/

pii/S0001870820305302.

[8] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron Models. Berlin,

Heidelberg: Springer, 1990. isbn: 978-3-642-08073-9 978-3-642-51438-8. doi: 10.1007/

978-3-642-51438-8. url: http://link.springer.com/10.1007/978-3-642-

51438-8.

[9] Aurelio Carboni, Stephen Lack, and R.F.C. Walters. “Introduction to extensive and

distributive categories”. In: Journal of Pure and Applied Algebra 84.2 (1993), pp. 145–

158. issn: 0022-4049. doi: https://doi.org/10.1016/0022-4049(93)90035-R. url:

https://www.sciencedirect.com/science/article/pii/002240499390035R.

[10] David Chan. “Bi-incomplete Tambara functors as O-commutative monoids”. In:

Tunisian Journal of Mathematics 6.1 (Jan. 2024), pp. 1–47. issn: 2576-7658. doi:

10.2140/tunis.2024.6.1. url: http://dx.doi.org/10.2140/tunis.2024.6.1.

[11] Nicola Gambino and Joachim Kock. “Polynomial functors and polynomial monads”.

In: Mathematical Proceedings of the Cambridge Philosophical Society 154.1 (2013),

pp. 153–192. doi: 10.1017/S0305004112000394.

[12] Javier J Gutiérrez and David White. “Encoding equivariant commutativity via operads”.

In: Algebraic & Geometric Topology 18.5 (Aug. 2018), pp. 2919–2962. issn: 1472-2747.

doi: 10.2140/agt.2018.18.2919. url: http://dx.doi.org/10.2140/agt.2018.18.

2919.

[13] Michael A. Hill and Michael J. Hopkins. “Equivariant symmetric monoidal structures”.

In: (2016). doi: 10.48550/ARXIV.1610.03114. url: https://arxiv.org/abs/1610.

03114.

[14] Rolf Hoyer. “Two topics in stable homotopy theory”. ISBN: 9781321033380 Publication

Title: ProQuest Dissertations and Theses Section: 0330. PhD thesis. United States –

84

https://doi.org/https://doi.org/10.1016/j.aim.2020.107502
https://doi.org/https://doi.org/10.1016/j.aim.2020.107502
https://doi.org/https://doi.org/10.1016/j.aim.2020.107502
https://www.sciencedirect.com/science/article/pii/S0001870820305302
https://www.sciencedirect.com/science/article/pii/S0001870820305302
https://doi.org/10.1007/978-3-642-51438-8
https://doi.org/10.1007/978-3-642-51438-8
http://link.springer.com/10.1007/978-3-642-51438-8
http://link.springer.com/10.1007/978-3-642-51438-8
https://doi.org/https://doi.org/10.1016/0022-4049(93)90035-R
https://www.sciencedirect.com/science/article/pii/002240499390035R
https://doi.org/10.2140/tunis.2024.6.1
http://dx.doi.org/10.2140/tunis.2024.6.1
https://doi.org/10.1017/S0305004112000394
https://doi.org/10.2140/agt.2018.18.2919
http://dx.doi.org/10.2140/agt.2018.18.2919
http://dx.doi.org/10.2140/agt.2018.18.2919
https://doi.org/10.48550/ARXIV.1610.03114
https://arxiv.org/abs/1610.03114
https://arxiv.org/abs/1610.03114

Illinois: The University of Chicago, 2014. 93 pp. url: https://www.proquest.com/

docview/1559962111/abstract/7D1C5DB5A9F546EDPQ/1.

[15] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium: Volume

1. Oxford Logic Guides. Oxford, New York: Oxford University Press, Sept. 12, 2002.

562 pp. isbn: 978-0-19-853425-9.

[16] G. M. Kelly and Stephen Lack. “Finite-product-preserving functors, Kan extensions,

and strongly-finitary 2-monads”. In: Applied Categorical Structures 1.1 (Mar. 1, 1993),

pp. 85–94. issn: 1572-9095. doi: 10.1007/BF00872987. url: https://doi.org/10.

1007/BF00872987.

[17] Saunders Mac Lane. Categories for the Working Mathematician. Vol. 5. Graduate Texts

in Mathematics. New York, NY: Springer, 1978. isbn: 978-1-4419-3123-8 978-1-4757-

4721-8. doi: 10.1007/978-1-4757-4721-8. url: http://link.springer.com/10.

1007/978-1-4757-4721-8.

[18] Kristen Luise Mazur. “On the Structure of Mackey Functors and Tambara Func-

tors”. ISBN: 9781303458828. PhD thesis. United States – Virginia: University of

Virginia. 106 pp. url: https://www.proquest.com/docview/1445384784/abstract/

4CF83495B6304024PQ/1.

[19] Jonathan Rubin. “Combinatorial N∞ operads”. In: Algebraic & Geometric Topology

21.7 (Dec. 2021), pp. 3513–3568. issn: 1472-2747. doi: 10.2140/agt.2021.21.3513.

url: http://dx.doi.org/10.2140/agt.2021.21.3513.

[20] Neil Strickland. “Tambara functors”. In: arXiv:1205.2516 [math] (May 11, 2012). arXiv:

1205.2516. url: http://arxiv.org/abs/1205.2516.

85

https://www.proquest.com/docview/1559962111/abstract/7D1C5DB5A9F546EDPQ/1
https://www.proquest.com/docview/1559962111/abstract/7D1C5DB5A9F546EDPQ/1
https://doi.org/10.1007/BF00872987
https://doi.org/10.1007/BF00872987
https://doi.org/10.1007/BF00872987
https://doi.org/10.1007/978-1-4757-4721-8
http://link.springer.com/10.1007/978-1-4757-4721-8
http://link.springer.com/10.1007/978-1-4757-4721-8
https://www.proquest.com/docview/1445384784/abstract/4CF83495B6304024PQ/1
https://www.proquest.com/docview/1445384784/abstract/4CF83495B6304024PQ/1
https://doi.org/10.2140/agt.2021.21.3513
http://dx.doi.org/10.2140/agt.2021.21.3513
https://arxiv.org/abs/1205.2516
http://arxiv.org/abs/1205.2516

	Introduction
	Locally Cartesian Closed Categories
	LCCDC Categories
	Mackey and Tambara Functors
	Mackey Functors
	The Polynomial Category
	Tambara Functors

	(Bi-)Incompleteness and Separability
	(Bi-)Incompleteness in Equivariant Homotopy Theory
	Indexing Subcategories and Compatibility
	Incomplete Mackey Functors
	Compatible Pairs of Indexing Categories
	Bi-Incomplete Tambara Functors

	Compatibility with Slices
	Separability

	A Generalized Hoyer-Mazur Theorem
	Comparing Kan Extensions along Σ and Π
	The Natural Transformation ω
	Universality
	Naturality in α

	Separability and Preservation of Mackey Structure
	Conclusions

	Technical Lemmas
	The Proof of *prop:disjoint-coproducts-slice-products
	The Proof of *lem:restriction-commutes-with-sum
	The Proof of *prop:smack-factors
	Hoyer's Lemma 2.3.5

