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ABSTRACT OF THE DISSERTATION

On the Stability of Self-Similar Blow-Up in Nonlinear Wave Equations

by

Michael Liam McNulty

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2022

Professor Po-Ning Chen, Co-Chairperson
Professor Birgit Schörkhuber, Co-Chairperson

In this dissertation, we study the stability of self-similar blow-up for two nonlinear

wave equations: the equation of motion of the strong-field Skyrme model and the quadratic

wave equation.

We begin by studying the stability of an explicitly known, self-similar solution of

the equation of motion of the strong-field Skyrme model in the lowest energy supercritical

dimension. This model is a particular limiting case of the Skyrme model which is itself a

quasilinear modification of wave maps into a sphere. The strong-field Skyrme model restores

the scaling invariance not present in the Skyrme model which allows for the existence of

self-similar solutions. This equation is a semilinear wave equation that is, in particular,

nonlinear in the derivatives of the unknown. As a consequence, standard techniques for

a linear stability analysis of this solution do not apply. Via application to a toy model,

we present techniques that will be used to study the linear stability of this solution in a

forthcoming paper.

Next, we study the stability of an explicitly known, self-similar solution of the
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quadratic wave equation in the lowest energy supercritical dimension. For radial data

close to this self-similar blow-up solution with blow-up time T = 1 adjusted along a one-

dimensional subspace, we are able to prove convergence of the corresponding solution to

the same self-similar solution with a potentially different blow-up time. This result holds

true in a region of spacetime that extends beyond the time of blow-up and can be made

arbitrarily close to the Cauchy horizon of the singularity. This is achieved via hyperboloidal

similarity coordinates.
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Chapter 1

Introduction

In this dissertation, we consider equations of the form

�u(t, x) = N
(
t, x, u(t, x), ∂u(t, x)

)
(1.1)

for real-valued functions u on R1+d where

� = ∂2
t −∆x

is the d’Alembertian on R1+d,

∆x = ∂2
x1 + · · ·+ ∂2

xd

is the Laplacian on Rd, N : R1+d×R×R1+d → R, and ∂ denotes the spacetime gradient on

R1+d. One concerns themselves with solving the Cauchy problem, that is, finding a solution

of Equation (1.1) subject to the condition that

u(0, x) = f(x), ut(0, x) = g(x), x ∈ Rd (1.2)

for some specified functions f, g.
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As an example, consider the simple case: d = 1, N = 0, and f, g ∈ C∞(R). In

this case, one finds explicitly that

u(t, x) =
1

2

(
f(x+ t) + f(x− t)

)
+

1

2

∫ x+t

x−t
g(s)ds

is the unique solution of Equation (1.1) subject to the constraint, Equation (1.2). Of

crucial note is that u(t, ·) ∈ C∞(R) for all t ∈ R. As we will see, such a property is in

stark contrast with what can happen for nonlinear problems where solutions with smooth,

compactly supported initial data can fail to exist after a finite amount of time.

1.1 Finite-Time Blow-Up

Despite what occurs for linear problems, solutions of the Cauchy problem
�u(t, x) = N

(
t, x, u(t, x), ∂u(t, x)

)
u(0, x) = f(x), ut(0, x) = g(x)

(1.3)

do not necessarily exist for all time. We say that a solution exists locally in time if a solution

of Equation (1.3) exists for all x ∈ Rd and for |t| ≤ T for some T > 0. Of course, once one

knows that at least one such T exists, then one can consider the largest such T , i.e.,

T ∗ := sup{T > 0 : Equation (1.3) has a solution in [−T, T ]× Rd}.

If T ∗ = ∞, then we say that the solution exists globally in time. Otherwise, we say that

the solution blows up in finite time. For some standard well-posedness results, we refer the

reader to [1], [32], and [38].

By now, it is well-known that finite-time blow-up is common for nonlinear wave

2



equations1. For instance, consider the focusing nonlinear wave equation

�u = |u|p−1u (1.4)

on R1+d with p > 1. Equation (1.4) has the explicit solution

uT (t, x) := cp(T − t)−
2
p−1 , T > 0

where

cp :=

(
2(p+ 1)

(p− 1)2

) 1
p−1

which clearly becomes singular as t→ T−. By finite speed of propagation, one can obtain

smooth, compactly supported initial data for which the associated Cauchy problem with

that data has a solution that blows up in finite time. In fact, Donninger and Schörkhuber

in [16] and [17] showed that, given suitable restrictions on the relationship between p and

d, there is an entire open set of initial data centered around the previously mentioned data

that also leads to finite-time blow-up.

Now, consider a second example

�u = u2
t . (1.5)

In [26], John demonstrated that any non-trivial smooth solution of Equation (1.5) with

compactly supported data blows up in finite time. It is important to contrast this with the

similar example

�u = u2
t − |∇u|2. (1.6)

1In fact, finite-time blow-up is common for nonlinear evolution equations, though we will only concern
ourselves with wave equations here.
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In [28], Klainerman transformed the corresponding problem for Equation (1.6) via the so-

called ‘Nirenberg-trick’ by setting v = 1− e−u into
�v(t, x) = 0

v(0, x) = 1− e−u(0,x), vt(0, x) = ut(0, x)e−u(0,x)

.

This is now a linear wave equation and thus a solution exists for all time. A global solution

of Equation (1.6) can be obtained by inverting this transformation which can always be

done so long as u(0, x) and ut(0, x) are sufficiently small and compactly supported.

1.2 Wave Maps and the Skyrme Model

Another example of such an equation for which blow-up in finite time occurs is

the wave maps equation. Before introducing this it will be instructive to first consider the

more general Skyrme model.

Let’s now consider maps u : R1+d → Sd. Furthermore, we endow R1+d with the

Minkowski metric g given by

gµνdx
µdxν = dt2 −

(
(dx1))2 + · · ·+ (dxd))2

)
where µ, ν = 0, . . . , d and we make the convention that (x0, . . . , xd) are coordinates on R1+d

with x0 = t. We call (R1+d, g) the (1 + d)-dimensional Minkowski space. Furthermore, we

view Sd as a submanifold of the (1 + d)-dimensional Euclidean space R1+d with spherical

coordinates (ω0, ..., ωd−1), with ω0, ..., ωd−2 being polar angles and ωd−1 the azimuthal angle.

We can endow Sd with a Riemannian metric h defined by

habdω
adωb = (dω0)2 + sin2(ω0)dΩd−1(ω1, ..., ωd−1)2,
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with dΩ2
d−1 denoting the standard round metric on Sd−1.

Given this data, we can pull h back to R1+d which, expressed in local coordinates,

has components

(u∗h)µν = hab(u)∂µu
a∂νu

b.

For convenience, we set Sµν := (u∗h)µν . At each point of Minkowski space, u∗h is a

quadratic form on the corresponding tangent space. Thus, one can consider forming ele-

mentary symmetric polynomials of its eigenvalues. For example, Sµµ is the trace of u∗h and(
Sµµ
)2 − SµνSµν is the sum of pair products of distinct eigenvalues of u∗h. With this, one

can consider the following action functional

A[u] :=

∫
R1+d

(
α2

2
Sµµ +

β2

4

((
Sµµ
)2 − SµνSµν))dg (1.7)

for some fixed α, β ∈ R and dg denoting the volume measure on R1+d induced by the

Minkowski metric. We call the action, Equation (1.7), the Skyrme model. There are two

extreme cases of the Skyrme model worth considering:

1. α 6= 0 and β = 0 (wave maps), and

2. α = 0 and β 6= 0 (strong-field Skyrme model).

Let’s begin by examining the first extreme case. In the physics literature, this

is commonly referred to as a nonlinear sigma model or wave maps in the mathematics

literature. Nonlinear sigma models were first introduced for d = 3 by Gell-Mann and

Lévy in [22] in the context of nuclear and particle physics. The codomain of the field u

was intended to model three subatomic particles called π mesons, often also referred to as

pions, and the interactions between them.
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We will restrict our attention to co-rotational maps, i.e., maps u : R1+d → Sd with

the property that, expressed in spherical coordinates, take the form

u(t, r, ω) =
(
ψ(t, r), ω

)
for some ψ : R × R+ → R and ω ∈ Sd−1. In this extreme case, formal critical points of

Equation (1.7) with respect to compactly supported variations satisfy the following Euler-

Lagrange equation

�rad
r,d ψ +

d− 1

2

sin(2ψ)

r2
= 0 (1.8)

where

�rad
r,d = ∂2

t −∆rad
r,d

is the radial d’Alembertian on R1+d and

∆rad
r,d = ∂2

r +
d− 1

r
∂r

is the radial Laplacian on Rd. Of utmost importance is to notice that solutions of Equation

(1.8) conserve the energy

EWM [ψ] =
1

2

∫ ∞
0

(
ψ2
t + ψ2

r + (d− 1)
sin2(ψ)

r2

)
rd−1dr,

that is, EWM [ψ](t) = EWM [ψ](0) for all t ∈ R. In addition, Equation (1.8) exhibits scaling

invariance, i.e., given λ > 0 and any solution ψ,

ψλ(t, r) := ψ(t/λ, r/λ) (1.9)

defines another solution of Equation (1.8). Under this rescaling, the conserved energy

transforms according to the equation

EWM [ψλ] = λd−2EWM [ψ]. (1.10)
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Concerning the nature of the associated Cauchy problem, one often develops a

feeling of what to expect according to the physical heuristic that those solutions with the

least allowable energy will be ‘preferred’ over those with greater energy. According to

Equation (1.10), there are three distinct cases to consider concerning how to produce a

solution with less energy when already given a solution.

1. If d < 2, then one can rescale any solution as in Equation (1.9) and take λ→∞.

2. If d = 2, then one cannot rescale any solution and change λ in order to decrease

energy.

3. If d > 2, then one can rescale any solution and take λ→ 0+ .

In the first case, one says that the Cauchy problem associated to Equation (1.8) is energy

subcritical in which case global existence from large initial data is expected. In the second

case, one says that the Cauchy problem is energy critical in which case one expects that

large data leads to a mix of global existence and finite-time blow-up. In the last case, one

says that the Cauchy problem is energy supercritical in which case generic large initial data

is expected to lead to finite-time blow-up.

We will be interested in energy supercritical problems due to their connections to

physical equations such as Einstein’s equation of general relativity in three spatial dimen-

sions. For an excellent review, we refer the reader to the survey by Bizoń, [3]. To gain

intuition for why finite-time blow-up should be expected, observe that shrinking λ shrinks

the support of the solution. Thus, shrinking to smaller scales localizes a solution to a point.

Consequently, the solution concentrates at a point and becomes singular, see Figure 1.1.
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r

ψ(t, r)

ψ1/2(t, r)

ψ1/4(t, r)

Figure 1.1: A plot of rescaled versions of exemplary, compactly supported solutions of the
co-rotational wave maps equation.

In ’88, Shatah provided evidence for this heuristic for Equation (1.8). In [34], he

proved the existence of smooth, compactly supported data which lead to finite-time blow-up

for the corresponding Cauchy problem in d = 3. This was achieved by looking for so-called

self-similar solutions, i.e., solutions of the form

ψ(t, r) = f

(
r

T − t

)
, T > 0.

Self-similar solutions respect the scaling invariance of Equation (1.8). More precisely, they

are constant along lines in spacetime of the form r = c(T − t) which all intersect at the

spacetime point (t, r) = (T, 0), see Figure 1.2. A nontrivial, smooth self-similar solution

blows up at this point according to

|∂rψ(t, 0)| ' 1

T − t
→t→T− ∞.

The self-similar ansatz reduces the problem of solving Equation (1.8) to solving

8



r

t

T
2

T
3

T
4 T

T

Figure 1.2: A spacetime diagram depicting the backwards lightcone of the spacetime point
(T, 0) and rays emanating from the vertex.

the ODE

f ′′(ρ) +
d− 1− 2ρ2

ρ(1− ρ2)
f ′(ρ)−

(d− 1) sin
(
2f(ρ)

)
ρ2(1− ρ2)2

= 0 (1.11)

where ρ := r
T−t and ′ := d

dρ . Shatah proved that at least one self-similar solution had

to exist by searching for minima of a particular functional whose critical points solved

Equation (1.11). A year later, Turok and Spergel in [39] were able to find an explicit self-

similar solution in d = 3. Twenty-five years after that, Bizoń and Biernat in [4], found the

same solution in all dimensions d ≥ 3 given explicitly by

ψ∗T (t, r) = 2 arctan

(
r√

d− 2(T − t)

)
, T > 0.

The stability of this solution has a rather interesting history and, in a sense,

started the rigorous study of self-similar blow-up for energy supercritical nonlinear wave

equations at large. In ’99, Bizoń [2] initiated a numerical study of the stability of this

solution for d = 3 which, in fact, represented the ground state of a countable family of

9



self-similar solutions of Equation (1.11). Though not rigorously proven, these numerics

provided strong evidence for universality of this blow-up profile. In ’09, Donninger and

Aichelburg [12] provided the first rigorous proof for the nonexistence of unstable solutions

of the linearized equation which grow faster than the so-called gauge instability. This

unstable solution is due to the fact that ψ∗T represents a one-parameter family of solutions

of Equation (1.8) and, consequently, ∂Tψ
∗
T is a solution of the linearized equation which

grows like (T − t)−1 within backwards lightcones. Clearly, this left open the possibility that

there could be other solutions of the linearized equation which could grow like (T − t)−p for

p ∈ [0, 1). In ’12, Aichelburg, Donninger, and Schörkhuber [18] pushed this range of growth

down to p ∈ [0, 1
2 ] and provided numerical evidence for the nonexistence of solutions in the

remaining range. Using this2, in ’11, Donninger [10] showed that if ψ∗T were mode stable,

then it was stable. The condition of mode stability referred to ∂Tψ
∗
T being the only solution

of the linearized equation which became unbounded with the backwards lightcone. Mode

stability could be formulated as a condition for a second-order ordinary differential operator

though, at the time, no rigorous proof of this condition being satisfied could be established.

In ’16, Costin, Donninger, and Xia provided the first rigorous proof for mode stability

of ψ∗T which, along with [10], concluded the first stability result for self-similar blow-up

in wave maps for d = 3. Then with knowledge of the solution ψ∗T in higher dimensions,

Costin, Donninger, and Glogić [6] improved these methods for proving mode stability in ’17

and, consequently, established mode stability of ψ∗T for d ≥ 4. Then, in ’17, Chatzikaleas,

Donninger, and Glogić [5] established stabiltiy of ψ∗T for d ≥ 5 and odd. More recently, in

’19, Biernat, Donninger, and Schörkhuber [1] introduced a new system of coordinates which

2The work in [18] and [10] were done in conjunction and the confusing timeline is due to publication date.
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allowed for stability analysis of ψ∗T outside of backwards lightcones. Stability of ψ∗T outside

of co-rotational symmetry remains an open problem.

Now, let’s examine the second extreme case of Equation (1.7): α = 0 and β 6= 0.

We refer to this case as the strong-field Skyrme model. Restricting our attention again to

co-rotational maps, one finds that formal critical points of Equation (1.7) in this extreme

case solve3

�rad
d−2,rψ + cot(ψ)

(
ψ2
t − ψ2

r

)
+
d− 2

2

sin(2ψ)

r2
= 0. (1.12)

Solutions of this equation conserve the energy

ESF [ψ] :=
1

2

∫ ∞
0

sin2(ψ)

r2

(
ψ2
t + ψ2

r +
d− 2

2

sin2(ψ)

r2

)
rd−1dr.

Furthermore, Equation (1.12) is invariant under the rescaling (1.9) and the energy trans-

forms according to the equation

ESF [ψλ] = λd−4ESF [ψ].

In this case, the associated Cauchy problem is energy supercritical for d ≥ 5. Again, looking

for self-similar solutions reduces the problem of solving Equation (1.12) to the problem of

solving an ODE. In fact, if one looks for solutions of the more special form

ψ(t, r) = arccos

(
f

(
r

T − t

))
, T > 0,

Equation (1.12) reduces to the ODE

f ′′(ρ) +
d− 3− 2ρ2

ρ(1− ρ2)
f ′(ρ) +

(d− 2)f(ρ)
(
1− f(ρ)2

)
ρ2(1− ρ2)

= 0. (1.13)

3In fact, this is only true for functions ψ(t, r) which do not vanish for r > 0. For our purposes, this will
be satisfied.
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In [29], it was shown in d = 5 that Equation (1.13) has a nontrivial, smooth solution which

gives rise to a solution of Equation (1.12) that blows up in finite time. Much like the

argument of Shatah, the existence proof in [29] is abstract and does not say much about

the nature of a self-similar solution. We, in fact, now have an explicit self-similar solution

valid for any d ≥ 5 and r ≤ ρ∗d(T − t) given by

ψ∗T (t, r) = arccos

(
f0

(
r

T − t

))
, T > 0 (1.14)

where

f0(ρ) =
b1 − b2ρ2

b1 + ρ2

with

b1 :=
1

3

(
2(d− 4) +

√
3(d− 4)(d− 2)

)
,

b2 := 2

√
d− 4

3(d− 2)
+ 1

and

ρ∗d :=

√
2b1
b2 − 1

.

Observe that f0(ρ) < −1 for ρ > ρ∗d which implies that ψ∗T fails to be a real-valued solution

of Equation (1.12) for r > ρ∗d(T − t). A direct calculation shows that this solution blows up

like the wave maps solution, i.e.,

|∂rψ∗T (t, 0)| ' 1

T − t
→t→T− ∞.

Finally, let’s return to the general case of Equation (1.7). In the co-rotational

setting, formal critical points of this action solve the quasilinear wave equation(
α2+β2(d− 1)

sin2 ψ

r2

)
(ψtt − ψrr)−

(
α2 + β2(d− 3)

sin2 ψ

r2

)d− 1

r
ψr

+
d− 1

2

sin 2ψ

r2

(
α2 + β2(ψ2

t − ψ2
r ) +

β2(d− 2) sin2 ψ

r2

)
= 0.

(1.15)
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Solutions of Equation (1.15) conserve the energy

ESk[ψ] := α2EWM [ψ] + β2ESF [ψ].

Despite the fact that large data solutions, in general, do not exist globally for Equation

(1.8) with d = 3, Geba and Grillakis [21] established a large data global existence result

for the associated Cauchy problem of Equation (1.15) with d = 3. One might interpret this

as saying that the strong-field Skyrme terms are strong enough to control the finite-time

blow-up exhibited by the wave maps terms. Based on the physical heuristic, this should

be expected since the strong-field Skyrme model is not energy supercritical for d = 3. In

fact, this is related to the original motivation of Tony Skyrme’s proposal of his model in his

series of papers [35, 36, 37].

This should leave one wondering about the nature of the Cauchy problem asso-

ciated to Equation (1.15) for d ≥ 5 where the strong-field Skyrme model is energy super-

critical. A bit of rearranging, after setting α = β = 1 for simplicity, yields the equivalent

equation

�rad
d−2,rψ + cot(ψ)

(
ψ2
t − ψ2

r

)
+
d− 2

2

sin(2ψ)

r2

+
r2

(d− 1) sin2(ψ)

(
�rad
r,d ψ +

d− 1

2

sin(2ψ)

r2

)
= 0.

Though this equation is clearly not scaling invariant, if one rescales any solution ψ to obtain

ψλ, then ψλ solves the λ-dependent equation

�rad
d−2,rψλ + cot(ψλ)

((
ψλ
)2
t
−
(
ψλ
)2
r

)
+
d− 2

2

sin(2ψλ)

r2

+ λ2 r2

(d− 1) sin2(ψλ)

(
�rad
r,d ψλ +

d− 1

2

sin(2ψλ)

r2

)
= 0.

13



Consequently, as λ → 0+, the wave maps terms become negligible and one might expect

that the dynamics of the Skyrme model are dominated by the strong-field Skyrme model.

Moreover, we have the relation

ESk[ψλ] = λd−4
(
λ2EWM [ψ] + ESF [ψ]

)
which suggests that shrinking to smaller scales is energetically favorable for d ≥ 5. With

this in mind, we make the following conjecture:

Conjecture 1 The Cauchy problem associated to Equation (1.15) exhibits finite-time blow-

up for d ≥ 5 which can be described locally in terms of solutions of Equation (1.12) which

blow-up in finite time.

As a first step toward investigating this conjecture, we study the blow-up solution

defined in Equation (1.14) for d = 5 in Chapter 2. In particular, we investigate its stability,

i.e., the evolution of data close to ψ∗T . Though we will not present a complete proof, we will

present techniques which can and will be applied to provide one in a forthcoming paper.

With confidence, we state the following conjecture

Conjecture 2 Data close to ψ∗1, defined in Equation (1.14), can be evolved according to

Equation (1.12) within backwards lightcones and their evolution converges to that of ψ∗T for

some T sufficiently close to 1.

The main obstacle complicating a proof of this conjecture can be understood easily

by comparing Equations (1.8) and (1.12). Equation (1.12) contains derivative nonlinearities

whereas Equation (1.8) does not. Such a nonlinearity in Equation (1.12), when linearized

around the solution ψ∗T , gives rise to a relatively compact perturbation of some free operator.

14



Though this free operator can be understood well, perturbing it by a relatively compact

operator prevents the application of previously well-understood techniques which apply to

equations such as Equation (1.8) where the perturbation is instead only compact. Thus, we

are forced to take a much closer look at the linear evolution of such data which we carry

out in Section 2.4. Furthermore, we apply techniques to a toy model which can be used to

overcome this obstacle.

1.3 The Quadratic Wave Equation

In establishing Conjecture 2, we track the evolution of perturbations of ψ∗1 within

backwards lightcones. This leaves completely open the possibility of finite-time blow-up

within the portion of the domain of influence of the perturbation which lies outside of these

backwards lightcones. In particular, this includes a region of spacetime beyond the time of

blow-up. However, we can use a special system of coordinates to investigate the stability of

self-similar blow-up in regions of spacetime strictly larger than the corresponding backwards

lightcones.

We will investigate the stability of self-similar blow-up outside of backwards light-

cones by means of the radial quadratic wave equation

�rad
r,d u = u2. (1.16)

Observe that solutions of Equation (1.16) conserve the energy

E[u] =
1

2

∫ ∞
0

(
u2
t + u2

r −
1

3
u3
)
rd−1dr.
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r

u(t, r)

u1/2(t, r)

u1/4(t, r)

Figure 1.3: A plot of rescaled versions of exemplary, compactly supported solutions of the
radial quadratic wave equation.

Furthermore, the rescaling u 7→ uλ, λ > 0, given by

uλ(t, r) = λ−2u(t/λ, r/λ) (1.17)

leaves invariant Equation (1.16) and transforms the energy of a given solution u according

to

E[uλ] = λd−6E[u].

Thus, the associated Cauchy problem is energy supercritical for d ≥ 7. For compactly

supported solutions, the rescaling, Equation (1.17), has the effect of shrinking the support

of the solution while increasing its amplitude. Thus, as λ → 0+, the solution becomes

infinite in size and changes infinitely fast at the origin, see Figure 1.3.

This equation was recently studied by Csobo, Glogić, and Schörkhuber in [9] where

they presented for the first time an explicit, spatially nontrivial, blow-up solution which
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r

u∗
1(0, r)

u∗
1(1/2, r)

u∗
1(3/4, r)

Figure 1.4: A plot of u∗1 at various times throughout its evolution.

takes the form

u∗T (t, r) =
1

(T − t)2
U
( r

T − t

)
, T > 0

with

U(ρ) =
c1 − c2ρ

2

(ρ2 + c3)2

where

c1 =
4

25

(
(3d− 8)

√
6(d− 1)(d− 6) + 8d2 − 56d+ 48

)
,

c2 =
4

5

√
6(d− 1)(d− 6),

and

c3 =
1

15

(
3d− 18 +

√
6(d− 1)(d− 6)

)
.

See Figure 1.4 for a plot of the solution for d = 7 and T = 1 at various different fixed times.

They were able to show that for d = 9, the corresponding solution is conditionally stable
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under non-radial perturbations within backwards lightcones. The term conditionally stable

here refers to the need to remove a genuine instability present in the evolution of data close

to u∗T .

To investigate the nature of blow-up outside of backwards lightcones, we employ a

coordinate system called hyperboloidal similarity coordinates. These coordinates were first

introduced in [1] by Biernat, Donninger, and Schörkhuber in order to study the stability

of the previously mentioned self-similar solution of the co-rotational wave maps equation

outside of backwards lightcones for d = 3. Knowledge of the linear wave equation in these

coordinates was then extensively developed by Donninger and Ostermann in [14] in order

to study the stability of a well-known self-similar blow-up solution of the co-rotational,

hyperbolic Yang-Mills equation in all odd space dimensions d ≥ 5.

We will concern ourselves with studying the evolution of data close to that of u∗T

under Equation (1.16) for d = 7, the lowest energy supercritical dimension. The main ob-

stacle posed in this problem compared to that of the analogous problem for Yang-Mills is

the genuine instability investigated by Csobo, Schörkhuber, and Glogić. In hyperboloidal

similarity coordinates, proving a conditional stability result becomes a subtly difficult prob-

lem and we present a new technique for solving it. We have the following soft statement of

our result:

Theorem 3 (Soft Statement) Suitably adjusted, compactly supported perturbations of u∗1

can be evolved according to Equation (1.16) in a region of spacetime strictly containing the

backward lightcone of the point (1, 0) and their evolution converges to that of u∗T for some

T sufficiently close to 1.
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1.4 Outline

Before beginning, we present a brief outline of this dissertation. As there is a

significant amount of overlap in the strategy of proof, we simultaneously describe the ap-

proaches taken in Chapters 2 and 3. When these strategies diverge from each other, we will

begin to describe them separately.

In Chapters 2 and 3, we study the equation of motion of the strong-field Skyrme

model and the quadratic wave equation respectively. Using coordinates well-adapted to

self-similar blow-up, we are able to rewrite these equations in the abstract form

Φ̇ = LΦ + N(Φ) (1.18)

where Φ represents a perturbation of the blow-up solution in these variables, ˙ represents

differentiation with respect to some parameter of evolution, L is a particular non self-adjoint

linear operator associated to linearization around the blow-up solution, and N is the corre-

sponding nonlinear remainder. First, we establish linear stability of the blow-up solution,

i.e., well-posedness and decay for the linearized equation in a particular Sobolev space. This

consists of establishing that the linear operator L generates a strongly continuous semigroup

on this Sobolev space and showing that this semigroup decays with the evolution. To show

decay, we turn to characterizing the spectrum of L. We achieve this by studying a particular

ODE whose solutions can be connected to eigenfunctions of L. In both Chapters 2 and 3,

we will see that the evolution of generic data does not decay due to unstable eigenvalues

of the operators L. In both situations, the evolution of data away from the corresponding

eigenspaces of these unstable eigenvalues will, in fact, decay. It is worth remarking that

characterizing the spectrum of L, in both cases, is an extremely difficult problem due to
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the non self-adjoint nature of these operators. In particular, characterizing the spectrum in

Chapter 3 is exceptionally difficult. This will be elaborated on in Section 3.3.2.

At this point, Chapters 2 and 3 diverge. In Chapter 2, proving decay of the semi-

group after characterizing the spectrum of L is an unusually difficult problem. Due to

the derivative nonlinearities in Equation (1.12), linearization around ψ∗T yields a relatively

compact perturbation of some free evolution. In all previously studied problems, the analo-

gous linearization yielded a compact perturbation of some free evolution for which a general

spectral mapping theorem is now known, see [24]. From the point of view of perturbation

theory, a relatively compact perturbation can be thought of as the worst type of small per-

turbation. A priori, there is no reason to believe that linear stability should hold for our

solution. Indeed, in ’94, Renardy [31] showed that, in a physically realistic setting, linear

stability need not hold true for a hyperbolic PDE. To overcome this difficulty, we initiate

an explicit construction of the resolvent RL(λ). In a forthcoming paper, we will show that

using this explicit construction, the resolvent is uniformly bounded on the right-half plane

in order to improve the growth bound on the semigroup and obtain the desired decay. We

then present techniques for showing uniform boundedness of a toy model resolvent which

will also be applied in that same forthcoming paper.

In Chapter 3, obtaining an improved growth bound on the semigroup is simpler

due to compactness of the perturbation. After improving this growth bound, we proceed

to establish nonlinear stability. That is, we prove global well-posedness and decay for small

data for the nonlinear equation (1.18). We reformulate Equation (1.18) as a fixed-point
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problem via Duhamel’s formula,

Φ(s) = S(s)Φ(0) +

∫ s

0
S(s− s′)N

(
Φ(s′)

)
ds′

where (S(s))s≥0 here denotes the semigroup generated by L. In general, solutions with

small data will not decay due to a genuine unstable eigenfunction of L. Regardless, the

data can be adjusted along a one-dimensional subspace in order to remove this instability,

ultimately allowing for solutions to decay. This one-dimensional subspace will be spanned by

a particular solution of the quadratic wave equation linearized around the blow-up solution

which also has a very crucial property in relation to hyperboloidal similarity coordinates.

We will elaborate on this in Section 3.5.2.

1.5 Notation and Conventions

We denote by N, Z, R, and C the sets of natural numbers, integers, real numbers,

and complex numbers respectively. By N0 := N ∪ {0} we denote the nonnegative integers.

Furthermore, we will denote by R+ := {a ∈ R : a > 0} the set of positive real numbers.

Given a complex number z ∈ C, we denote by <z and =z its real and imaginary parts

respectively. We denote by H := {z ∈ C : <z > 0} the open right-half complex plane.

Given R > 0 and d ∈ N, we denote by BdR := {x ∈ Rd : |x| < R} the open ball in Rd of

radius R centered at the origin.

Given x, y ∈ R+, we say x . y if there exists a constant C > 0 such that x ≤ Cy.

Furthermore, we say that x ' y if x . y and y . x. For a one-parameter family of positive

numbers xλ, yλ, we say that xλ . yλ if there exists a constant C > 0, independent of the

parameter λ, such that xλ ≤ Cyλ for all λ.
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On a domain Ω ⊂ R and given f, g ∈ C1(Ω), we denote their Wronskian by

W (f, g)(x) = f(x)g′(x) − f ′(x)g(x). When solving initial value problems for nonlinear

wave equations for an unknown u, we will often denote by u[t0] :=
(
u(t0, ·), ut(t0, ·)

)
the

initial data with initial time t0 ∈ R. Throughout, we will adopt the Einstein summation

convention, i.e., repeated upper and lower indices indicate an implied sum over those indices.

The Schwartz space of functions on Rd will be denoted by S(Rd). We define the

Fourier transform by

Ff(ξ) :=

∫
Rd
e−iξ·xf(x)dx

for all f ∈ S(Rd). For k ∈ N0 and U ⊂ Rd open and bounded, we define the Sobolev norms

and homogeneous Sobolev norms by

‖f‖2Hk(U) :=
∑
|κ|≤k

‖∂κf‖2L2(U), ‖f‖
2
Ḣk(Ω)

:=
∑
|κ|=k

‖∂κf‖2L2(U)

for all f ∈ C∞(U) where κ = (κ1, . . . , κd) ∈ Nd is a multi-index with |κ| :=
∑d

i=1 κi. The

Sobolev spaces Hk(U) are then defined as the completion of C∞(U) with respect to the

norm ‖ · ‖Hk(U). For s ∈ R, the Sobolev norms and homogeneous Sobolev norms on Rd can

be defined via the Fourier transform as

‖f‖2Hs(Rd) := ‖〈·〉sFf‖2L2(Rd), ‖f‖
2
Ḣs(Rd)

:= ‖| · |sFf‖2L2(Rd)

where 〈x〉 :=
√

1 + |x|2 denotes the Japanese bracket.

On a Hilbert space H, we denote by B(H) the space of bounded linear operators.

For a closed operator
(
L,D(L)

)
on the Hilbert space H with domain D(L), we denote the

resolvent set by ρ(L) := {λ ∈ C | λI − L : D(L) ⊂ H → H is bounded and invertible}.

Given λ ∈ ρ(L), we denote by RL(λ) := (λI − L)−1 the resolvent operator. Furthermore,
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we denote by σ(L) := C \ ρ(L) the spectrum of
(
L,D(L)

)
. In particular we denote by

σp(L) := {λ ∈ σ(L) : ∃u ∈ D(L) \ {0} such that u ∈ ker(λI − L)} the point spectrum of(
L,D(L)

)
.

1.6 Functional Setting

Given R > 0, k ∈ N0, and d ∈ N, we define the following space of functions

Hk
rad(BdR) := {f : (0, R)→ C : f(| · |) ∈ Hk(BdR)}.

We set

HkR := Hk
rad(BdR)×Hk−1

rad (BdR)

which is a Hilbert space with inner product

(f |g)HkR := (f1|g1)Hk
rad(BdR) + (f2|g2)Hk−1

rad (BdR)

and norm

‖f‖2HkR := ‖f1‖2Hk
rad(BdR)

+ ‖f2‖2Hk−1
rad (BdR)

where f = (f1, f2) and g = (g1, g2). In the following chapters, we will often omit the

dependence on k or R in our notation though this will be made clear with context.

We also consider the space of radial functions which are smooth up to the boundary

of BdR

C∞rad(BdR) := {f ∈ C∞(BdR) : f is radial}

and the space of smooth even functions

C∞e [0, R] := {f ∈ C∞[0, R] : f (2j+1)(0) = 0 for j ∈ N0}.
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By Lemma 2.1 of [24], there is a one-to-one correspondence between C∞rad(BdR) and C∞e [0, R].

For ease of reading, we attempt to avoid switching between C∞rad(BdR) and C∞e [0, R] and stick

only with C∞e [0, R] whenever possible. We remark that C∞e [0, R] is dense in Hk
rad(BdR) which

implies C∞e [0, R]2 is dense in HkR.

In Chapter 2, we will take advantage of equivalent norms on H5
1 which significantly

simplify the analysis. First is the the Σ-norm defined by

‖u‖2Σ0
:= ‖u‖2H1(0,1) +

5∑
n=2

‖(·)n−2u(n)‖2L2(0,1)

‖u‖2Σ1
:= ‖u‖2L2(0,1) +

4∑
n=1

‖(·)n−1u(n)‖2L2(0,1)

‖u‖2Σ := ‖u1‖2Σ0
+ ‖u2‖2Σ1

, ∀u ∈ H5
1.

This norm is most useful for proving compactness properties of particular operators and

also for resolvent estimates. Second is the D7-Norm and inner product defined by

(u|v)D7 :=(D7u1|D7v1)Ḣ3(0,1) + (D7u1|D7v1)Ḣ2(0,1)

+ (D7u1|D7v1)Ḣ1(0,1) + (D7u2|D7v2)H2(0,1)

‖u‖D7 :=
√

(u|u)D7

for u ∈ H5
1 where

D7u(ρ) :=
(1

ρ

d

dρ

)2(
ρ5u(ρ)

)
with inverse on H5

1 defined by

K7u(ρ) := ρ−5K2u(ρ), Ku(ρ) :=

∫ ρ

0
su(s)ds.

This norm is most useful for proving decay of solutions to Equation (2.7). We have the

following proposition.
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Proposition 4 We have ‖ · ‖Σ ' ‖ · ‖D7 ' ‖ · ‖H5
1

on H5
1.

Proof. We leave the proof to Section 2.6.1.
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Chapter 2

On the Stability of Blow-Up for

the Strong-Field Skyrme Model

2.1 Introduction

This chapter concerns the equation of motion of the strong-field Skyrme model,

i.e.,

ψtt − ψrr −
d− 3

r
ψr + cot(ψ)

(
ψ2
t − ψ2

r

)
+
d− 2

2

sin(2ψ)

r2
= 0 (2.1)

for ψ : I × [0,∞)→ R, I ⊂ R an interval containing zero, and r = |x| for x ∈ Rd. Equation

(2.1) exhibits the scaling symmetry ψ 7→ ψλ,

ψλ(t, r) := ψ(t/λ, r/λ)

for any λ > 0. Solutions of Equation (2.1) conserve the energy

E[ψ] :=
1

2

∫ ∞
0

sin2(ψ)

r2

(
ψ2
t + ψ2

r +
d− 2

2

sin2(ψ)

r2

)
rd−1dr.
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Under this rescaling, the energy transforms according to the equation

E[ψλ] = λd−4E[ψ].

Thus, the associated Cauchy problem is energy supercritical for d ≥ 5. Restricting our

attention to d = 5, the lowest energy supercritical dimension, we find the explicit radial,

self-similar solution given by

ψ∗T (t, r) = f0

( r

T − t

)
, T > 0.

where

f0(ρ) = arccos
(5(1− ρ2)

5 + 3ρ2

)
.

Note that ψ∗T (0, r) and ∂tψ
∗
T (0, r) are smooth for r ≤

√
5. Furthermore, ψ∗T becomes singular

forward in time, i.e.

|∂rψ∗T (t, 0)| →t→T− ∞.

As a consequence of finite speed of propagation, one finds that the Cauchy problem
ψtt − ψrr − 2

rψr + cot(ψ)
(
ψ2
t − ψ2

r

)
+ 3

2
sin(2ψ)
r2

= 0 in CT

ψ(0, r) = ψ∗T (0, r), ψt(0, r) = ∂tψ
∗
T (0, r) r ≤ T

,

exhibits finite-time blow-up where

CT := {(t, r) : 0 < t < T, 0 ≤ r ≤ T − t}

is the backward lightcone of the spacetime point (T, 0).

In this chapter, we make significant progress toward establishing the stability of

the solution ψ∗1 locally around the blow-up point. That is, we make progress toward showing
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that for small perturbations f, g, there is a unique choice of T close to 1 so that the Cauchy

problem 
ψtt − ψrr − 2

rψr + cot(ψ)
(
ψ2
t − ψ2

r

)
+ 3

2
sin(2ψ)
r2

= 0 in CT

ψ(0, r) = ψ∗1(0, r) + f(r), ψt(0, r) = ∂tψ
∗
1(0, r) + g(r) r ≤ T

(2.2)

has a unique solution ψ in CT and converges to ψ∗T as t→ T− within CT in a suitable sense.

2.1.1 Similarity Coordinates

In this section, we introduce similarity coordinates. This system of coordinates is

well-adapted to the self-similar nature of the solution ψ∗T . In these coordinates, we rewrite

the Cauchy problem (2.2) as an abstract initial value problem on some suitably chosen

Hilbert space where ψ∗T becomes an equilibrium of the system.

Given T > 0, we define similarity coordinates by the map

ηT : (0,∞)× [0, 1]→ CT

(τ, ρ) 7→
(
T − Te−τ , e−τρ

)
with inverse given by

η−1
T : CT → (0,∞)× [0, 1]

(t, r) 7→
(

log
( T

T − t

)
,

r

T − t

)
,

see Figure 2.1. The derivatives transform according to the equations

∂t =
eτ

T
(∂τ + ρ∂ρ)

and

∂r =
eτ

T
∂ρ.
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r

t

T

T

ρ

τ

1

Figure 2.1: A diagram depicting how the map η−1
T transforms the backwards lightcone CT .

A direct calculation shows that, in these coordinates, ψ∗T transforms according to the equa-

tion

(ψ∗T ◦ ηT )(τ, ρ) = arccos
(
f0(ρ)

)
.

Observe that ψ∗T ◦ ηT is static and independent of the blow-up time T .

2.1.2 Statement of the Main Result

In this section, we state the intended main result of this chapter concerning the

stability of ψ∗T under small, radial perturbations.

Theorem 5 (In progress) There exist constants δ, c, ω0 > 0 such that for any radial ini-

tial data (f, g) satisfying

∥∥| · |−1(f, g)
∥∥
H5(B7

1+δ)×H4(B7
1+δ)
≤ δ

c

the following hold:

1. There exists a unique T ∈ [1 − δ, 1 + δ] and unique function ψ : CT → R solving

Equation (2.1) in the sense of Definition 11 with ψ[0] = ψ∗1[0] + (f, g).
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2. The solution blows up at t = T and converges to ψ∗T according to

(T − t)k−
d
2

∥∥| · |−1
(
ψ(t, ·)− ψ∗T (t, ·)

)∥∥
Ḣk(B7

T−t)
≤ δ(T − t)ω0

(T − t)`+1− d
2

∥∥| · |−1
(
∂tψ(t, ·)− ∂tψ∗T (t, ·)

)∥∥
Ḣ`(B7

T−t)
≤ δ(T − t)ω0

for all k = 0, . . . , 5 and ` = 0, . . . , 4.

Remark 6 Observe that the normalizing factors (T − t)k−
d
2 and (T − t)`+1− d

2 reflect the

behavior of the self-similar solution measured in the homogeneous Sobolev norms.

Remark 7 Equation (2.1) is in the same scaling class as a focusing cubic nonlinear wave

equation, i.e. �u = u3. With this in mind, one might expect that, within integer Sobolev

spaces, that the regularity could be lowered to at least H3 × H2 in light of [17]. However,

we need to control ψ and its derivatives in L∞ to make sense of the nonlinearity around ψ∗T

which forces a regularity of H5×H4. Reducing this regularity by even one derivative would

require some deeper knowledge of how to control derivatives in this self-similar formulation

using the nonlinear structures clearly present.

2.2 The Wave Equation in Similarity Coordinates

In order to ensure regularity of the solutions, one must impose the boundary

condition ψ(·, 0) = 0. Thus, it is natural to work with ψ̂(t, r) := r−1ψ(t, r). Consequently,

Equation (2.1) becomes

ψ̂tt−ψ̂rr−
4

r
ψ̂r+r cot(rψ̂)

(
ψ̂2
t −ψ̂2

r

)
− 2

r
rψ̂ cot(rψ̂)ψ̂r+

3
2 sin(2ψ̂)− 2rψ̂ − (rψ̂)2 cot(rψ̂)

r3
= 0.
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To ensure that we have a smooth nonlinearity upon linearizing around ψ∗T , we study the

equivalent equation

ψ̂tt − ψ̂rr −
6

r
ψ̂r +

2

T − t
ψ̂t − F1

(
rψ̂, ψ̂r, ψ̂t, t, r;T

)
− r−3F2(ψ̂) = 0 (2.3)

where

F1(x, y, z, t, r;T ) :=
2

T − t
z − r cot(x)(z2 − y2)− 2

r
(1− x cot(x))y

and

F2(x) := 2x+ x2 cot(x)− 3

2
sin(2x).

2.2.1 Free Wave Evolution in Similarity Coordinates

To begin, we first analyze the following damped wave equation

ψ̂tt − ψ̂rr −
6

r
ψ̂r +

2

T − t
ψ̂t = 0

in CT . To that end, we introduce the new variables

χ1(t, r) := (T − t)ψ̂(t, r), χ2(t, r) := (T − t)2ψ̂t(t, r).

A direct calculation shows that

∂tχ1(t, r) = − 1

T − t
χ1(t, r) +

1

T − t
χ2(t, r)

and

∂tχ2(t, r) = − 4

T − t
χ2(t, r) + (T − t)∆rad

r,7 χ1(t, r).

We introduce the new variables

ψj(τ, ρ) := χj
(
t(τ, ρ), r(τ, ρ)

)
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to obtain the system∂τψ1(τ, ρ)

∂τψ2(τ, ρ)

 =

 −ψ1(τ, ρ) + ψ2(τ, ρ)− ρ∂ρψ1(τ, ρ)

∆rad
ρ,7ψ1(τ, ρ)− ρ∂ρψ2(τ, ρ)− 4ψ2(τ, ρ)

 . (2.4)

In summary, we have the equation

∂τΨ(τ) = L̃0Ψ(τ) (2.5)

where

Ψ(τ)(ρ) :=

ψ1(τ, ρ)

ψ2(τ, ρ)


and L̃0 is defined as

L̃0u(ρ) :=

 −ρu′1(ρ)− u1(ρ) + u2(ρ)

∆rad
ρ,7u1(ρ)− ρu′2(ρ)− 4u2(ρ)


which we call the free operator. We view

(
L̃0,D(L̃0)

)
as an unbounded operator on the

space H := H5
1 with domain D(L̃0) defined by

D(L̃0) :=
{
u ∈ C∞(0, 1)2 ∩H : D7u2 ∈ C3([0, 1]), D7u1 ∈ C4([0, 1]), [D7u1]′′(0) = 0

}
where D7 is defined in Section 1.6. This domain is chosen following the work in [17] though it

may be possible to take a simpler domain. As C∞e [0, 1]2 is contained in D(L̃0), we have that(
L̃0,D(L̃0)

)
is densely defined on H. Furthermore, we have the following crucial properties

of
(
L̃0,D(L̃0)

)
.

Lemma 8 Let u ∈ D(L̃0). Then

<(L̃0u|u)D7 ≤ −
1

2
‖u‖2D7

.
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Proof. Set wj := D7uj . We begin by computing

[D7(L̃0u)1]′(ρ) = w′2(ρ)− ρw′′1(ρ)− w′1(ρ)

[D7(L̃0u)1]′′(ρ) = w′′2(ρ)− ρw′′′1 (ρ)− 2w′′1(ρ)

[D7(L̃0u)2]′(ρ) = w′′′1 (ρ)− ρw′′2(ρ)− 4w′2(ρ).

Integration by parts yields

<([D7(L̃0u)1]′′, [D7u1]′′)L2(0,1) = <(w′′2 |w′′1)L2(0,1) −
1

2
|w′′1(1)|2 − 3

2
‖w′′1‖2L2(0,1)

<([D7(L̃0u)1]′, [D7u1]′)L2(0,1) = <(w′2|w′1)L2(0,1) −
1

2
|w′′1(1)|2 − 1

2
‖w′1‖2L2(0,1)

<([D7(L̃0u)2]′, [D7u2]′)L2(0,1) = <(w′′′1 |w′2)L2(0,1) −
1

2
|w′2(1)|2 − 7

2
‖w′2‖2L2(0,1)

<(D7(L̃0u)2, D7u2)L2(0,1) = <(w′′1 |w2)L2(0,1) −
1

2
|w2(1)|2 − 5

2
‖w2‖2L2(0,1).

Adding the above four lines, integrating by parts twice, and applying the Cauchy-Schwartz

inequality yields the desired estimate.

Lemma 9 For every f ∈ C∞e [0, 1]2, there exists u ∈ D(L̃0) such that

−L̃0u = f .

Proof. Trivially, for f = 0 we have u = 0. Assume f does not vanish identically. Set

F (ρ) := D7f2(ρ) + 3D7f1(ρ) + ρ[D7f1]′(ρ)

and define

w1(ρ) :=

∫ ρ

0

1

(1− s2)2

∫ 1

s
(1− t2)F (t)dtds

w2(ρ) :=
ρ

(1− ρ2)2

∫ 1

ρ
(1− s2)F (s)ds−D7f1(ρ).
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As f ∈ C∞e [0, 1]2, we have that w1 ∈ C∞(0, 1) ∩ C4[0, 1], w2 ∈ C∞(0, 1) ∩ C3[0, 1], and

w′′1(0) = 0. Direct calculation shows that w := (w1, w2) solves the system of equations

ρw′1(ρ)− w2(ρ) = D7f1(ρ)

3w2(ρ)− w′′1(ρ) + ρw′2(ρ) = D7f2(ρ).

Recall the inverse of D7, namely K7 defined in Section 1.6. Applying K7 to both sides of

the equation yields

K7w1(ρ)−K7w2(ρ) + ρ[K7w1]′(ρ) = f1(ρ)

4K7w2(ρ)−∆rad
ρ,7K7w1(ρ) + ρ[K7w1]′(ρ) = f2(ρ),

see [17] Lemma 4.5. Thus, u := K7w is a solution of −L̃0u = f . The properties of w imply

u ∈ D(L̃0) which finishes the proof.

The preceding two properties allow us to conclude the following proposition.

Proposition 10 The operator
(
L̃0,D(L̃0)

)
on H is closable and its closure,

(
L0,D(L0)

)
,

is the generator of a strongly continuous one-parameter semigroup of bounded operators on

H, (S0(τ))τ≥0, satisfying the estimate

‖S0(τ)‖H ≤Me−
1
2
τ

for all τ ≥ 0 and some constant M ≥ 1.

Proof. Lemmas 8, 9, and the equivalence of the D7 and H norms along with the Lumer-

Phillips theorem (see [20], p.83 Theorem 3.15) imply the claim.
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2.2.2 The Strong-Field Skyrme Model Equation of Motion in Similarity

Coordinates

We continue by writing Equation (2.3) as a first-order system on H. Using the

new variables from Section 2.2.1, we obtain the system∂τψ1(τ, ρ)

∂τψ2(τ, ρ)

 =

 −ψ1(τ, ρ) + ψ2(τ, ρ)− ρ∂ρψ1(τ, ρ)

∆rad
ρ,7ψ1(τ, ρ)− ρ∂ρψ2(τ, ρ)− 4ψ2(τ, ρ)



+

 0

F̃1

(
ρψ1(τ, ρ), ∂ρψ1(τ, ρ), ψ2(τ, ρ), ρ

)
+ ρ−3F2

(
ψ1(τ, ρ)

))


(2.6)

where

F̃1(x, y, z, ρ) := 2z − ρ cot(x)(z2 − y2) +
2

ρ

(
x cot(x)− 1

)
y.

The blowup solution becomes

Ψ∗T (τ)(ρ) :=

 T−t
r ψ∗T (t, r)

(T−t)2
r ∂tψ

∗
T (t, r)


∣∣∣∣∣
(t=t(τ,ρ),r=r(τ,ρ))

=

1
ρf0(ρ)

f ′0(ρ)

 .

Since we expect solutions of (2.6) which are initially close to Ψ∗1 to converge to Ψ∗T for some

T sufficiently close to 1, we insert the ansatz Ψ = Ψ∗T + Φ where

Φ(τ)(ρ) :=

ϕ1(τ, ρ)

ϕ2(τ, ρ)

 .

Furthermore, we expand the nonlinearity around
(

1
ρf0(ρ), ∂ρ

(
1
ρf0(ρ)

)
, f ′0(ρ)

)
as follows:

F̃1(ρψ1, ∂ρψ1, ρψ2, ρ) =F̃1

(
f0, ∂ρ

(1

ρ
f0

)
, f ′0, ρ

)
+ ∂1F̃1

(
f0, ∂ρ(

1

ρ
f0), f ′0, ρ

)
ρϕ1

+ ∂2F̃1

(
f0, ∂ρ(

1

ρ
f0), f ′0, ρ

)
∂ρϕ1 + ∂3F̃1

(
f0, ∂ρ(

1

ρ
f0), f ′0, ρ

)
ϕ2

+N1(ρϕ1, ∂ρϕ1, ϕ2, ρ)
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where

N1(ρϕ1, ∂ρϕ1, ϕ2, ρ) :=F̃1

(
f0 + ρϕ1, ∂ρ

(1

ρ
f0, ρ, ρ

)
+ ∂ρϕ1, f

′
0 + ϕ2

)
− F̃1

(
f0, ∂ρ

(1

ρ
f0

)
, f ′0, ρ

)
− ∂1F̃1

(
f0, ∂ρ(

1

ρ
f0), f ′0, ρ

)
ρϕ1

− ∂2F̃1

(
f0, ∂ρ(

1

ρ
f0), f ′0, ρ

)
∂ρϕ1 − ∂3F̃1

(
f0, ∂ρ(

1

ρ
f0), f ′0, ρ

)
ϕ2

and

F2(ρψ1) = F2(f0) + F ′2(f0)ρϕ1 +N2(ρϕ1)

where

N2(ρϕ1) := F2(f0 + ρϕ1)− F2(f0)− F ′2(f0)ρϕ1.

In summary, we obtain the equation

∂τΦ(τ) = L̃Φ(τ) + N
(
Φ(τ)

)
(2.7)

where

L̃ := L̃0 + L′

with L′, which we refer to as the potential1, defined as

L′u(ρ) :=

 0

V (ρ)u1(ρ) + Ṽ (ρ)ρ
(
ρu2(ρ)− u′1(ρ)

)


where V, Ṽ ∈ C∞[0, 1] are given explicitly by

V (ρ) := −
5
(
21ρ6 − 375ρ4 + 1455ρ2 − 2125

)(
5 + 3ρ2

)2(
5− ρ2

)2
1The term potential here is, potentially, not the best choice of terminology due to the presence of derivative

terms. However, in the spirit of convention, we will use this anyway.
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and

Ṽ (ρ) := −
2
(
3ρ2 − 35

)(
5 + 3ρ2

)(
5− ρ2

)
and N will be called the nonlinear remainder and is defined by

N(u)(ρ) :=

 0

N1

(
ρu1(ρ), u′1(ρ), u2(ρ), ρ

)
+ ρ−3N2

(
ρu1(ρ)

)
 .

In general, this nonlinearity is not smooth. However, if u1 > 0, then the nonlinearity is

smooth. This is easily achieved noting that ψ∗T > 0 within CT and the Sobolev embedding

L∞(B7) ↪→ H5(B7). Furthermore, L′ is uniformly bounded on the dense set C∞e [0, 1]2 and

so extends uniquely to a bounded operator on H which we will, by an abuse of notation,

refer to as L′. Thus, we view
(
L̃,D(L̃)

)
as a bounded perturbation of

(
L̃0,D(L̃0)

)
by setting

D(L̃) := D(L̃0) from which it follows that
(
L̃,D(L̃)

)
is densely defined on H.

In the following section, we will show that L̃,D(L̃)
)

is closable and its closure,

denoted by
(
L,D(L)

)
, generates a strongly continuous one-parameter semigroup of bounded

operators on H denoted by (S(τ))τ≥0. From this point on, the domains of our operators

are fixed and we refrain from referring to them unless necessary. With this semigroup, we

formulate the corresponding initial value problem of Equation (2.7) as an abstract integral

equation on H via Duhamel’s formula,

Φ(τ) = S(τ)Φ(0) +

∫ τ

0
S(τ − s)N

(
Φ(s)

)
ds. (2.8)

This leads us to the following notion of strong solution for Equation (2.2).

Definition 11 We say that ψ : CT → R is a strong lightcone solution of Equation

(2.2) if the corresponding Φ : [0,∞)→ H belongs to C
(
[0,∞),H

)
and satisfies (2.8) for all

τ ≥ 0.
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The notion of strong lightcone solution allows us to reformulate solving Equation (2.2) into

a fixed point problem in terms of similarity coordinates. In fact, given enough regularity

of the data, one can show that a strong lightcone solutions yields a classical solution of

Equation (2.2), see Proposition 2.2 of [9] for instance.

2.3 Progress Toward Linear Stability

In this section, we demonstrate significant progress toward linear stability of Ψ∗T .

More precisely, we begin by analyzing solutions of the linearized equation, i.e., the equation

∂τΦ = L̃Φ.

First, we show that L̃ is closable and its closure, denoted by L, is the generator of a

strongly continuous one-parameter semigroup of bounded operators on H. In other words,

the Cauchy problem for the linearized equation is well-posed on H. In order to show that

solutions of Equation (2.7) for sufficiently small initial data exist for all τ ≥ 0, we need

to obtain sufficient growth bounds on the semigroup generated by L. Due to the non self-

adjoint nature of L and the structure of the potential, this is, in fact, very difficult to obtain.

We demonstrate techniques which, in the future, can be easily adapted in order to obtain

the improved growth bound on the semigroup.

2.3.1 Well-Posedness of the Linearized Evolution

In this section, we show that L̃ is closable and its closure, denoted by L, is the

generator of a strongly continuous one-parameter semigroup of bounded operators on H.
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Proposition 12 The operator L̃ is closable and its closure, denoted by L, is the generator

of a strongly continuous one-parameter semigroup of bounded operators, (S(τ))τ≥0, on H.

Proof. This follows immediately from the bounded perturbation theorem (see p.159, The-

orem 1.3 of [20]) and Proposition 10.

The bounded perturbation theorem guarantees that the semigroup (S(τ))τ≥0 sat-

isfies the bound

‖S(τ)‖H ≤Me(− 1
2

+M‖L′‖H)τ (2.9)

for M ≥ 1 as in Proposition 10 and all τ ≥ 0. As M and ‖L′‖H can be very large, this bound

is useless for showing decay. To improve this bound, we intend to use the Gearhart-Prüss-

Greiner theorem (see p.302, Theorem 1.11 of [20]) which necessitates a characterization of

σ(L). From the decay estimate on the semigroup (S0(τ))τ≥0, we infer

σ(L0) ⊆ {λ ∈ C : <λ ≤ −1

2
} (2.10)

which follows from [20], p. 55, Theorem 1.10. As a first step, we prove the following

compactness property of the potential which will allow us to characterize σ(L) by checking

how L′ affects σp(L0).

Proposition 13 The operator L′ is compact relative to L0.

Proof. We show that this property holds on a dense set which, by the fact that L̃0 is

densely defined, implies the desired result. Assume that {un}n∈N ⊂ C∞e [0, 1]2 is uniformly

bounded in the graph norm of L0, i.e.,

sup
n∈N
‖un‖2L0

= sup
n∈N

(
‖un‖2H + ‖L0un‖2H

)
<∞.
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As {un}n∈N ⊂ D(L̃0), L0 acts as a classical differential operator. From this assumption and

the definition of L̃0, we have the following:

sup
n∈N
‖u1,n‖Σ0 <∞,

sup
n∈N
‖u2,n‖Σ1 <∞,

sup
n∈N
‖u2,n − u1,n − (·)u′1,n‖Σ0 <∞,

and

sup
n∈N

∥∥∥∆rad
ρ,7u1,n − 2u2,n − (·)u′2,n

∥∥∥
Σ1

<∞.

Multiplying the fourth quantity by ρ yields

sup
n∈N

∥∥(·)
(
(·)u′2,n − u′′1,n

)∥∥
Σ1
<∞

which implies

sup
n∈N

∥∥(·)
(
(·)u2,n − u′1,n

)∥∥
Σ0
<∞

Thus,
(

(·)
(
(·)u2,n−u′1,n

))
n∈N

is uniformly bounded in H5
rad(B7). Lemma 4.2 of [17] implies

that

(
D7

(
(·)
(
(·)u2,n−u′1,n

)))
n∈N

is uniformly bounded in H3(0, 1). By the compactness of

the Sobolev embedding H3(0, 1) ↪→ H2(0, 1), there exists a subsequence, again denoted by(
D7

(
(·)
(
(·)u2,n − u′1,n

)))
n∈N

, which is Cauchy in H2(0, 1). Applying the same argument
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to (u1,n)n∈N yields

‖L′un − L′um‖Σ ≤
∥∥∥V (·)

(
u1,n − u1,m

)∥∥∥
Σ1

+
∥∥∥Ṽ (·)

(
(·)
(
(·)u2,n − u′1,n

)
− (·)

(
(·)u2,m − u′1,m

))∥∥∥
Σ1

.
∥∥u1,n − u1,m

∥∥
Σ1

+
∥∥∥(·)

(
(·)u2,n − u′1,n

)
− (·)

(
(·)u2,m − u′1,m

)∥∥∥
Σ1

.‖D7

(
u1,n − u1,m

)
‖H2(0,1)

+
∥∥∥D7

(
(·)
(
(·)u2,n − u′1,n

)
− (·)

(
(·)u2,m − u′1,m

))∥∥∥
H2(0,1)

where the last inequality follows from Proposition 4. Using the equivalence of the Σ and

H norms from, namely Proposition 4, this shows that (L′un)n∈N is a Cauchy sequence and

must converge.

As a consequence, it will suffice to characterize σp(L) in order to invoke the

Gearhart-Prüss-Greiner theorem. Even more, it will turn out that studying σp(L) amounts

to studying C∞[0, 1] solutions of a certain ODE.

2.3.2 Spectral ODE Analysis

In this section, we begin to make the connection between σp(L) and a particular

ODE. In fact, this connection will make it possible to sufficiently characterize σp(L). First,

observe that for f = (f1, f2) ∈ D(L), the equation (λI−L)f = 0 implies that f := f1 solves

the ODE

−(1− ρ2)f ′′(ρ) +
(
− 6

ρ
+ 2(λ+ 3)ρ+ ρ(1− ρ2)Ṽ (ρ)

)
f ′(ρ)

+
(

(λ+ 1)(λ+ 4)− V (ρ)− (λ+ 1)ρ2Ṽ (ρ)
)
f(ρ) = 0

(2.11)

on the interval (0, 1). We will refer to this as the spectral ODE. In fact, the regularity

imposed by f ∈ D(L) implies f is a classical solution of Equation (2.11). Regularity of the
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coefficients implies that f ∈ C∞(0, 1). Now, a Frobenius analysis shows that f ∈ C∞[0, 1].

To that end, we define the following set

Σ := {λ ∈ C : <λ ≥ 0 and ∃f ∈ C∞[0, 1] solving Equation (2.11) on (0, 1)}.

We have the following proposition.

Proposition 14 Σ = {1} with unique, up to a constant multiple, solution

f(ρ; 1) =
1√

5− ρ2(5 + 3ρ2)
. (2.12)

Proof. By direct computation, one sees that f(ρ; 1) solves Equation (2.11) with λ = 1. Let

λ ∈ C \ {1} with <λ ≥ 0. We introduce a new independent variable

x =
8ρ2

5 + 3ρ2

and new dependent variable by the equation

f(ρ) = (8− 3x)
λ+2
2 (2− x)−

1
2 y(x)

which transforms Equation (2.11) into one of Heun type, namely

ÿ +
3(λ+ 5)x2 − (8λ+ 43)x+ 28

x(1− x)(8− 3x)
ẏ +

(λ− 1)
(
3(λ+ 9)x− 5λ− 51

)
4x(1− x)(8− 3x)

y = 0 (2.13)

where ˙ denotes
d

dx
. The solution f(·; 1) transforms into

y(x; 1) = 1

up to a multiplicative constant.

Frobenius theory implies that any y ∈ C∞[0, 1] solving (2.13) is analytic on [0, 1].

Thus, if y fails to be analytic at x = 1, it also fails to be smooth at x = 1. Any analytic

42



solution of Equation (2.13) yields an analytic solution of Equation (2.11) as well as the

converse. Thus, excluding the existence of an analytic solution of Equation (2.13) for those

desired λ also excludes the existence of a C∞[0, 1] solution of Equation (2.11) for those same

λ.

The Frobenius indices at x = 0 are {0,−5
2}. Without loss of generality, such a

solution y must have the expansion

y(x;λ) =
∞∑
n=0

an(λ)xn, a0(λ) = 1 (2.14)

near x = 0. Since the finite regular singular points of Equation (2.13) are x = 0, 1,
8

3
, y fails

to be analytic at x = 1 precisely when the radius of convergence of (2.14) is one.

We first derive a recurrence relation for the coefficients an(λ) given by

an+2(λ) = An(λ)an+1(λ) +Bn(λ)an(λ) (2.15)

where

An(λ) =
44n2 + 8n(4λ+ 27) + λ(5λ+ 78) + 121

16(n+ 2)(2n+ 9)

Bn(λ) = −3(λ+ 2n− 1)(λ+ 2n+ 9)

16(n+ 2)(2n+ 9)

and a−1(λ) = 0, and a0(λ) = 1. Furthermore, we define

rn(λ) :=
an+1(λ)

an(λ)
.

Since limn→∞An(λ) = 11
8 , limn→∞Bn(λ) = −3

8 , the so-called characteristic equation of

Equation (2.15) is

t2 − 11

8
t+

3

8
= 0.
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Solutions of this equation are given by t1 =
3

8
and t2 = 1. By Poincaré’s theorem on differ-

ence equations, see [19] or [25] Appendix A, we conclude that either an(λ) = 0 eventually

in n,

lim
n→∞

rn(λ) = 1 (2.16)

or

lim
n→∞

rn(λ) =
3

8
. (2.17)

In fact, an(λ) cannot go to zero eventually in n since backwards substitution would imply

a0(λ) = 0 which is a clear contradiction. We show that Equation (2.17) cannot hold.

By plugging Equation (2.15) into the definition of rn(λ), we derive a recurrence

relation for rn(λ) given by

rn+1(λ) = An(λ) +
Bn(λ)

rn(λ)

with initial condition

r0(λ) =
(λ− 1)(51 + 5λ)

112
.

Furthermore, we define an approximation to rn(λ) given by

r̃n(λ) :=
5λ2

16(n+ 1)(2n+ 7)
+

(16n+ 23)λ

8(n+ 1)(2n+ 7)
+
n+ 3

n+ 1
.

The quadratic and linear in λ terms are obtained by studying the large |λ| behavior of An(λ)

while the constant in λ term is put in by hand in order to mimic the small |λ| behavior of

the first few iterates of rn(λ). Observe that limn→∞ r̃n(λ) = 1. The approximation r̃n(λ)

is intended to behave like rn(λ) for sufficiently large n. If indeed this is true, then there is

hope to exclude Equation (2.17). To show this, we define

δn(λ) :=
rn(λ)

r̃n(λ)
− 1
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and derive a recurrence relation for it given by

δn+1(λ) = εn(λ)− Cn(λ)
δn(λ)

1 + δn(λ)

where

εn(λ) :=
An(λ)r̃n(λ) +Bn(λ)

r̃n(λ)r̃n+1(λ)
− 1

and

Cn(λ) :=
Bn(λ)

r̃n(λ)r̃n+1(λ)
,

by again plugging the recurrence relation for rn(λ) into the definition of δn(λ). Direct

calculation shows that we have the following explicit expressions for εn(λ) and Cn(λ) given

by

Cn(λ) =
P1(n;λ)

P2(n;λ)

and

εn(λ) =
P3(n;λ)

P2(n;λ)

where

P1(n;λ) := −48(1 + n)(7 + 2n)(−1 + 2n+ λ)(9 + 2n+ λ),

P2(n;λ) :=
(
336 + 32n2 + 16n(13 + 2λ) + λ(46 + 5λ)

)
×
(
576 + 32n2 + 16n(17 + 2λ) + λ(78 + 5λ)

)
,

and

P3(n;λ) :=− 32(7 + 2n)(669 + 322n+ 40n2)

+ 2
(
11809 + 4n(2742 + 467n)

)
λ

+
(
2611 + 4n(178 + 9n)

)
λ2.

45



This shows that given λ ∈ C \ {1} with <λ ≥ 0, we have that εn(λ)→ 0 and Cn(λ)→ −3

8

as n→∞.

For λ ∈ C \ {1} with <λ ≥ 0, we have the following estimates

|δ20(λ)| ≤ 1

4

|Cn(λ)| ≤ 3

8

|εn(λ)| ≤ 1

8

(2.18)

for n ≥ 20. We discuss the proof of the second estimate since the other two are obtained

via the same argument. First, we establish the desired estimate of the imaginary line. Then

we can extend the estiamte to H via the Phragmén-Lindelöf principle so long as Cn(λ) is

analytic and polynomially bounded there.

Observe that for t ∈ R, The inequality |Cn(it)| ≤ 3
8 is equivalent to the inequality

64|P1(n, it)|2 − 9|P2(n, it)|2 ≤ 0. For t ∈ R and n ≥ 20, a direct calculation shows that

the coefficients of 64|P1(n, it)|2− 9|P2(n, it)|2 are manifestly negative which establishes the

desired estimate on the imaginary line. Now, we aim to extend the estimate to all of

H. As Cn(λ) is a rational function of polynomials in Z[n, λ], it is polynomially bounded.

Furthermore, a direct calculation of the zeros of P2(n, λ) shows that they are contained

in C \ H implying the analyticity of Cn(λ) in H. Thus, the Phragmén-Lindelöf principle

extends the estimate to all of H.

With these bounds in hand, we can prove the same bound for δn, n > 20 by

induction. Suppose the estimate holds for some k > 20. Then

|δk+1(λ)| ≤ 1

8
+

3

8

1
4

1− 1
4

=
1

4

by the triangle inequality, Equation (2.18), and the induction hypothesis. This bound on
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δn(λ) is now sufficient to exclude Equation (2.17). Suppose Equation (2.17) holds. Then

1

4
≥ |δn(λ)| =

∣∣∣∣1− rn(λ)

r̃n(λ)

∣∣∣∣→n→∞
5

8

which is clearly a contradiction. Thus, Equation (2.16) must hold and so y fails to be

analytic at x = 1. Therefore, we conclude λ 6∈ Σ.

2.3.3 Spectral Analysis of the Generator

In this section, we analyze σ(L). As L′ is compact relative to L0, it will be

sufficient to characterize σp(L) in order to obtain a characterization of σ(L). First, we

define the function

f∗1 (ρ) =

f∗1,1(ρ)

f∗1,2(ρ)

 :=

 f(ρ; 1)

ρf ′(ρ; 1) + 2f(ρ; 1)

 .

According to the following proposition, f∗1 is an eigenfunction of L with eigenvalue 1.

Proposition 15 We have

σp(L) ⊆ {λ ∈ C : <λ < 0} ∪ {1}.

Proof. By direct calculation, we see that f∗1 solves (1 − L)f∗1 = 0, D7f
∗
1,1 ∈ C4[0, 1],

D7f
∗
1,2 ∈ C3[0, 1], and [D7f

∗
1,1]′′(0) = 0 which implies that 1 ∈ σp(L).

Now, suppose the claim does not hold, i.e., there exists λ ∈ σp(L) \ {1} with

<λ ≥ 0. Thus, there exists u = (u1, u2) ∈ D(L) \ {0} such that u ∈ ker(λ−L). Unpacking

the definition of L, one sees that (λ − L)u = 0 implies that u1 is a solution of Equation

(2.11) on (0, 1). Since all coefficients are smooth in (0, 1), we must have u1 ∈ C∞(0, 1). The
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Frobenius indices at the regular singular point ρ = 0 are s1 = 0 and s2 = −5. By Frobenius

theory, there exists a solution of the form

u1,1(ρ) =
∞∑
i=0

aiρ
i

which is analytic at ρ = 0. Since s1 − s2 = 6 there exists a second linearly independent

solution of the form

u1,2(ρ) = C log(ρ)u1,1(ρ) + ρ−5
∞∑
i=0

biρ
i

for some C ∈ C and b0 = 1. Observe that u1,2 does not belong to the Sobolev space

H5
rad(B7) due to the second term. Thus, near ρ = 0, u1 must be a multiple of u1,1 and we

infer u1 ∈ C∞[0, 1).

Similarly, the Frobenius indices at ρ = 1 are s1 = 0 and s2 = 1− λ. If 1− λ 6∈ Z,

then we have two linearly independent solutions

u1,1(ρ) =

∞∑
i=0

ai(1− ρ)i

and

u1,2(ρ) = (1− ρ)1−λ
∞∑
i=0

bi(1− ρ)i.

The solution u1,2 clearly does not belong to the Sobolev space H5
rad(B7). Thus, near ρ = 1,

u1 must be a multiple of u1,1 and we infer u1 ∈ C∞[0, 1].

If 1− λ = k ∈ N0, we have two fundamental solutions of the form

u1,1(ρ) = (1− ρ)k
∞∑
i=0

ai(1− ρ)i

and

u1,2(ρ) =

∞∑
i=0

bi(1− ρ)i + C log(1− ρ)u1,1(ρ).
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Since <λ ≥ 0, we must have that k = 0 or 1. Hence, u1,2 does not belong to the Sobolev

space H5
rad(B7) unless C = 0 in which case we conclude u1 ∈ C∞[0, 1].

If 1− λ = −k, with k ∈ N, we have two fundamental solutions of the form

u1,1(ρ) =

∞∑
i=0

ai(1− ρ)i

and

u1,2(ρ) = (1− ρ)−k
∞∑
i=0

bi(1− ρ)i + C log(1− ρ)u1,1(ρ).

Again, u1,2 does not belong to the Sobolev space H5
rad(B7) and we conclude that u1 ∈

C∞[0, 1].

Thus, given λ ∈ C \ {1}, we have found a nontrivial solution u1 ∈ C∞[0, 1] to

(2.11). This clearly contradicts Proposition 14 and so we obtain the desired result.

In fact, the eigenspace of 1 is one-dimensional as can be seen by the following

proposition.

Proposition 16 We have ker(1− L) = 〈f∗1 〉.

Proof. The inclusion 〈f∗1 〉 ⊆ ker(1− L) follows from 1 ∈ σp(L).

Direct calculation shows that (1− L)u = 0 is equivalent to the ODEs

−(1−ρ2)u′′1(ρ)+
(
− 6

ρ
+8ρ+ρ(1−ρ2)Ṽ (ρ)

)
u′1(ρ)+

(
10−V (ρ)−2ρ2Ṽ (ρ)

)
u1(ρ) = 0 (2.19)

and

u2(ρ) = ρu′1(ρ) + 2u1(ρ)

for ρ ∈ (0, 1) where u = (u1, u2). By direct calculation, one can verify that

Q1(ρ) :=
375 + 2125ρ2 + 10425ρ4 + 243ρ6 + 6144ρ5 log(1− ρ)− 6144ρ5 log(1 + ρ)

3ρ5
√

5− ρ2(5 + 3ρ2)
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is a solution of Equation (2.19). Furthermore, a direct calculation shows that {f∗1,1, Q1}

forms a fundamental system of Equation (2.19). Thus, the general solution of Equation

(2.19) is given by

u(ρ) = C1f
∗
1,1(ρ) + C2Q1(ρ)

for constants C1, C2,∈ C. The general solution fails to be in the Sobolev space H5
rad(B7)

unless C2 = 0. Thus, ker(1− L) ⊂ 〈f∗1 〉.

Remark 17 The existence of the eigenvalue λ = 1 is precisely due to the fact that ψ∗T

represents a one-parameter family of solutions of Equation (2.1). Indeed, a direct calcula-

tion shows that ∂Tψ
∗
T , properly rescaled and expressed in similarity coordinates, is precisely

f(ρ; 1) up to a constant multiple.

Corollary 18 We have

σ(L) ⊆ {λ ∈ C : <λ < 0} ∪ {1}.

Proof. Suppose there exists a λ ∈ σ(L) \ {1} with <λ ≥ 0. From Equation (2.10), we see

that λ 6∈ σ(L0) and that RL0(λ) exists. From the identity λ−L = [1−L′RL0(λ)](λ−L0),

we see that 1 ∈ σ
(
L′RL0(λ)

)
. Recall from Proposition 13 that L′ is compact relative to

L0. Thus, L′RL0(λ) is compact from which it follows that 1 ∈ σp
(
L′RL0(λ)

)
. Thus, there

exists a nontrivial f ∈ H such that [1 − L′RL0(λ)]f = 0. Consequently, u := RL0(λ)f 6= 0

satisfies (λ− L)u = 0. Therefore, λ ∈ σp(L) which contradicts Proposition 15.

Corollary 18 shows that 1 is an isolated eigenvalue. As a consequence, we can

define the following Riesz projection.
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Definition 19 Let γ : [0, 2π]→ C be defined by γ(t) = 1 + 1
2e
it. Then we set

P :=
1

2πi

∫
γ

RL(λ)dλ.

We have the following crucial properties of this Riesz projection.

Proposition 20 The projection P commutes with the semigroup
(
S(τ)

)
τ≥0

and we have

rg P = 〈f∗1 〉.

In addition, we have

S(τ)Pf = eτPf , τ ≥ 0. (2.20)

Proof. By definition, P commutes with L and thus commutes with the semigroup S(τ)

(see [27]).

Next, we show that 〈f∗1 〉 = rg P. In fact, it suffices to show rg P ⊆ 〈f∗1 〉 since the

reverse inclusion follows from abstract theory. To see this, first observe that P decomposes

the Hilbert space as H = rg P⊕ ker P. The operator L is decomposed into the parts LrgP

and LkerP respectively. The spectra of these operators are given by

σ(LkerP) = σ(L) \ {1}, σ(LrgP) = {1}.

As a consequence, we claim that rank P := dim rg P < ∞. If this were not true, then by

[27] p. 239 Theorem 5.28 we have that 1 ∈ σe(L). Furthermore, [27] p. 244 Theorem

5.35 shows that that σe(L) = σe(L − L′) since L′ is compact relative to L0. Clearly,

σe(L − L′) = σe(L0) ⊆ σ(L0). Thus, we conclude that 1 ∈ σ(L0) which is clearly a

contradiction.
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Now, notice that the operator 1−LrgP acts on the finite-dimensional Hilbert space

rg P and, since σ(LrgP) = {1}, 0 is the only spectral point of 1− LrgP. Thus, 1− LrgP is

nilpotent, i.e., there exists k ∈ N such that

(1− LrgP)ku = 0

for all u ∈ rg P where k is minimal. If k = 1, then 〈f∗1 〉 = rg P by Proposition 16.

Suppose k ≥ 2. Then there exists u ∈ rg P ⊆ D(L) such that (1−LrgP)u 6= 0 but

(1− LrgP)2u = 0. Thus (1− L)u = αf∗1 for some α ∈ C \ {0}. Without loss of generality,

we set α = −1. Then the first component of u solves the ODE

−(1− ρ2)u′′1(ρ) +
(
− 6

ρ
+ 8ρ+ ρ(1− ρ2)Ṽ (ρ)

)
u′1(ρ) +

(
10− V (ρ)− 2ρ2Ṽ (ρ)

)
u1(ρ) = G(ρ)

for ρ ∈ (0, 1) where

G(ρ) :=
35− 3ρ2√

5− ρ2
(
5 + 3ρ2

)2 .
Recall that we have a fundamental system {f∗1,1, Q1} of the homogeneous equation. Their

Wronskian is given explicitly by

W (ρ) = ρ−6(1− ρ2)−1(5− ρ2)−1(5 + 3ρ2)2.

By variation of parameters, the general solution of (2.3.3) can be expressed as

u1(ρ) =C1f
∗
1,1(ρ) + C2Q1(ρ)

−Q1(ρ)

∫ ρ

0

f∗1,1(s)

W (s)

G(s)

1− s2
ds+ f∗1,1(ρ)

∫ ρ

0

Q1(s)

W (s)

G(s)

1− s2
ds

for some C1, C2 ∈ C and all ρ ∈ (0, 1). Explicitly, we find

∫ ρ

0

f∗1,1(s)

W (s)

G(s)

1− s2
ds =

ρ7

(5 + 3ρ2)4
.
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Consequently, demanding u1 ∈ H5
rad(B7) implies C2 = 0. Thus, we are left with

u1(ρ) = C1f
∗
1,1(ρ)−Q1(ρ)

ρ7

(5 + 3ρ2)4
+ f∗1,1(ρ)

∫ ρ

0

Q1(s)

W (s)

G(s)

1− s2
ds

Upon further inspection, we observe that u1 fails to be in H5
rad(B7) due to the logarithmic

behavior of Q1 near ρ = 1. We conclude that there is no such solution in H5
rad(B7). Thus,

we must have k = 1.

Lastly, observe that Equation (2.20) follows from the facts that λ = 1 is an eigen-

value of L with eigenfunction f∗1 and rg P = 〈f∗1 〉.

2.4 Explicit Construction of the Resolvent

At this point, we are almost ready to improve the growth bound on the semigroup,(
S(τ)

)
τ≥0

. In light of the Gearhart-Prüss-Greiner theorem (p.302, Theorem 1.11 of [20]),

this requires showing that the resolvent, RL(λ), is uniformly bounded on H. In fact, due to

the eigenvalue λ = 1, this cannot be done in general. Instead, one can show that the reduced

resolvent, RL(λ)(I−P), is uniformly bounded. From this, we can infer an improved growth

bound on the reduced semigroup, namely
(
S(τ)(I − P)

)
τ≥0

. For compact potentials, one

can appeal to the spectral mapping theorem of [24]. Clearly, our potential is not compact

and so this is not available to us. Nevertheless, we aim to establish uniform boundedness

by appealing to an explicit construction of the resolvent. In this section, we initiate this

construction.

For the remainder of this chapter, we will always set ε := <λ and ω := =λ. First,

53



observe that as a consequence of (2.9), standard semigroup theory allows us to conclude

‖RL(λ)‖H ≤
M

ε+ 1
2 −M‖L′‖H

(2.21)

for ε > −1
2 +M‖L′‖H. Furthermore, for f ∈ C∞(0, 1)2 ∩H, RL(λ)(I−P)f is the solution

of a particular ODE. In light of this, we can represent RL(λ)(I−P)f as an integral against

some Green’s function. For |ω| � 1, this Green’s function can be understood to leading

order in ω as the Green’s function one would obtain by representing RL0(λ)f in the same

way. These observations motivate us to decompose H into three regions: H = S1 ∪ S2 ∪ S3

where

S1 = {λ ∈ C : ε ≥M‖L′‖H},

S2 = {λ ∈ C : 0 < ε < M‖L′‖H, |ω| < R},

and

S3 = {λ ∈ C : 0 < ε < M‖L′‖H, |ω| ≥ R},

for some R > 0 sufficiently large. On S1, we immediately have uniform boundedness of

the resolvent from Inequality (2.21). On S2, we can use the fact that the reduced resolvent

is continuous on S2 to conclude it is uniformly bounded there. Lastly, we can appeal to

an explicit construction of the resolvent to show that it is uniformly bounded on S3. The

majority of the construction is devoted to proving that we can understand the Green’s

function associated to RL(λ)(I−P)f as described in S3. In fact, since 1 6∈ S3, it suffices to

show that RL(λ)f is uniformly bounded on S3

Let f ∈ C∞(0, 1)2 ∩ H and λ = ε + iω ∈ S3 for R > 0 to be determined. For

convenience, set u = RL(λ)f . Equivalently, we have that the equation (λ − L)u = f is
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satisfied and, using the explicit expressions, reads
ρu′1(ρ) + (λ+ 1)u1(ρ)− u2(ρ) = f1(ρ)

−u′′1(ρ)− 6
ρu
′
1(ρ) + ρu′2(ρ) + (λ+ 4)u2(ρ)− V (ρ)u1(ρ)− ρṼ (ρ)(ρu2(ρ)− u′1(ρ)) = f2(ρ).

The first equation allows to us express u2 in terms of u1 and f1. Consequently, the second

equation is equivalent to

−(1−ρ2)u′′(ρ) +
(
− 6

ρ
+ 2(λ+ 3)ρ+ ρ(1− ρ2)Ṽ (ρ)

)
u′(ρ)

+
(
(λ+ 1)(λ+ 4)− V (ρ)− (λ+ 1)ρ2Ṽ (ρ)

)
u(ρ) = Fλ(ρ)− ρ2Ṽ (ρ)f1(ρ)

(2.22)

where u = u1 and

Fλ(ρ) := f2(ρ) + ρf ′1(ρ) + (λ+ 4)f1(ρ). (2.23)

Thus,

[RL(λ)f ]1(ρ) =

∫ 1

0
G(ρ, s;λ)

[
Fλ(s)− s2Ṽ (s)f1(s)

]
ds

where G is a Green’s function of (2.22).

2.4.1 Constructing the Green’s Function

Now, we turn our attention toward constructing a Green’s function G in terms of

a fundamental system one could obtain for Equation (2.22) with V = Ṽ = Fλ = 0.

When studying the resolvent, we make extensive use of functions of symbol type.

Let I ⊆ R, x0 ∈ I, and α ∈ R. We say f ∈ C∞(I) is of symbol type and write f(x) =

O((x − x0)α) if |f (n)(x)| .n |x − x0|α−n for all x ∈ I and all n ∈ N0. We refer the reader

to [11] and [15] for the proofs of various properties of functions of symbol type that we will

use throughout.
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As a first step, we remove the first-order term in Equation (2.22) using the change

of variables

v(ρ) = (5− ρ2)
1
2 (5 + 3ρ2)−1ρ3(1− ρ2)

λ
2 u(ρ).

This yields the equation

v′′(ρ)− 6(1− ρ2)− 2ρ2(1− ρ2) + λ(λ− 2)ρ2

ρ2(1− ρ2)2
v(ρ) =

V̂ (ρ)

1− ρ2
v(ρ) (2.24)

where

V̂ (ρ) =
1

4

(
− 2ρ(1− ρ2)Ṽ ′(ρ) + ρ2(1− ρ2)Ṽ (ρ)2 + 2(5ρ2 − 7)Ṽ (ρ)− 4V (ρ)

)
=

2(9ρ4 + 102ρ2 − 335)

(5 + 3ρ2)2
.

Observe that if v(·;λ) is a solution of Equation (2.24), then so is v(·; 2− λ).

Now, we construct a fundamental system for Equation (2.24). An explicit funda-

mental system for Equation (2.24) with V̂ = 0 is given by

ψ1(ρ;λ) = ρ−2(1 + ρ)1−λ
2 (1− ρ)

λ
2 c+(ρ;λ)

ψ̃1(ρ;λ) = ψ1(ρ; 2− λ) = ρ−2(1− ρ)1−λ
2 (1 + ρ)

λ
2 c−(ρ;λ)

where

c+(ρ;λ) := 3 + 3(λ− 1)ρ+ (λ− 1)2ρ2 + (λ− 1)ρ3 (2.25)

c−(ρ;λ) := 3− 3(λ− 1)ρ+ (λ− 1)2ρ2 − (λ− 1)ρ3. (2.26)

A direct calculation shows that their Wronskian is precisely

W
(
ψ1(·;λ), ψ̃1(·;λ)

)
(ρ) =2(λ+ 2)λ(λ− 1)(λ− 2)(λ− 4)

=:W (λ).

(2.27)
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Note that neither solution is well-behaved near ρ = 0. A third solution which is well-behaved

near ρ = 0 is given by

ψ0(ρ;λ) := ψ1(ρ;λ)− ψ̃1(ρ;λ).

In what follows, we always impose 0 < ε < M‖L′‖H. As we proceed with this construction

of a fundamental system for Equation (2.24), we will impose conditions on ω to be stated

later.

By reduction of order, we obtain a fourth solution according to the following

lemma.

Lemma 21 Let λ = ε+ iω with ω ∈ R. There exists δ0 > 0 such that

ψ̃0(ρ;λ) = ψ0(ρ;λ)

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2ds

is a solution of Equation (2.24) with V̂ = 0 for ρ ∈ (0, δ0〈ω〉−1]. Moreover, it satisfies

ψ̃0(ρ;λ) = −3W (λ)−1ρ−2[1 +O(ρ2〈ω〉2)]

for all ρ ∈ (0, δ0〈ω〉−1]. We also have

W (ψ0(·;λ), ψ̃0(·;λ)) = −1.

Proof. Taylor expansion yields

ψ0(ρ;λ) = − 1

15
W (λ)ρ3[1 +O(ρ2〈ω〉2)].

Thus, there is a δ0 > 0 sufficiently small so that ψ0(·;λ) 6= 0 on (0, δ0〈ω〉−1]. Lemma A.3 of

[15] implies that

ψ0(ρ;λ)−1 = −15W (λ)−1ρ−3[1 +O(ρ2〈ω〉2)],
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see [15]. A straightforward calculation shows that ψ̃0(·;λ) is indeed a solution of (2.24)

with V̂ = 0. Furthermore,∫ δ0〈ω〉−1

ρ ψ0(s;λ)−2ds

45ρ−5W (λ)−2
=

1

45
ρ5W (λ)2

∫ δ0〈ω〉−1

ρ
152W (λ)−2s−6[1 +O(s2〈ω〉2)]ds

=ρ5
[
s−5
]s=δ0〈ω〉−1

s=ρ
+O(ρ2〈ω〉2)

=1 +O(ρ2〈ω〉2).

Lastly, the value of the Wronskian is also a straightforward calculation.

Now, we obtain a fundamental system for Equation (2.24) near ρ = 0 by perturbing

the fundamental system {ψ0(·;λ), ψ̃0(·;λ)} of Equation (2.24) with V̂ = 0. This will be

achieved in two steps. First, we construct a perturbation of ψ0(·;λ), namely v0(·;λ), by

Volterra iterations, i.e., reinterpreting Equation (2.24) as an integral equation of Volterra

type. Once we have this solution, we again use reduction of order to produce a second

solution ṽ0(·;λ) and prove that it is a perturbation of ψ̃0(·;λ). For the convenience of the

reader, we recall here the standard existence and uniqueness theorem for Volterra integral

equations stated in the form we will use. A proof can be found in [33]:

Lemma 22 ([33], Lemma 2.4) Let g ∈ L∞(0, 1) and K : (0, 1)2 → C satisfy

µ :=

∫ 1

0
sup

0<x<s
|K(x, s)|ds <∞.

Then there exists a unique f ∈ L∞(0, 1) solving the equation

f(x) = g(x) +

∫ x

0
K(x, s)f(s)ds.

Furthermore, one has the bound

‖f‖L∞(0,1) ≤ eµ‖g‖L∞(0,1).
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With this lemma in hand, we obtain a solution of Equation (2.24) via Volterra

iterations according to the following lemma.

Lemma 23 Let λ = ε+ iω with |ω| ≥ 1. There exists δ0 > 0 such that Equation (2.24) has

a solution of the form

v0(ρ;λ) = ψ0(ρ;λ)h0(ρ;λ)

for all ρ ∈ (0, δ0〈ω〉−1] where h0(ρ;λ) = 1 +O(ρ2〈ω〉0).

Proof. Using the fundamental system {ψ0(·;λ), ψ1(·;λ)}, variation of parameters suggests

that a solution v0 should satisfy the integral equation

v0(ρ;λ) =ψ0(ρ;λ)− ψ0(ρ;λ)

W (λ)

∫ ρ

0
ψ1(s;λ)

V̂ (s)

1− s2
v0(s;λ)ds

+
ψ1(ρ;λ)

W (λ)

∫ ρ

0
ψ0(s;λ)

V̂ (s)

1− s2
v0(s;λ)ds.

With δ0 > 0 as in the proof of Lemma 21, ψ0(·;λ) 6= 0 on (0, δ0〈ω〉−1]. Consequently, we

set h0(·;λ) = v0(·;λ)
ψ0(·;λ) to obtain the equation

h0(ρ;λ) = 1 +

∫ ρ

0
K(ρ, s λ)h0(s;λ)ds (2.28)

where

K(ρ, s;λ) =
1

W (λ)

(
ψ1(ρ;λ)

ψ0(ρ;λ)
ψ0(s;λ)2 − ψ0(s;λ)ψ1(s;λ)

)
V̂ (s)

1− s2
.

Using the explicit expression for ψ1(·;λ), the symbol estimates for ψ0(·;λ) and ψ0(·;λ)−1,

and the fact that s ≤ ρ, we obtain the estimate

|K(ρ, s;λ)| . (ρ−2 + s−2)s3 ≤ s

for all 0 ≤ s ≤ ρ ≤ δ0〈ω〉−1. Thus,∫ δ0〈ω〉−1

0
sup

ρ∈(0,δ0〈ω〉−1)

|K(ρ, s;λ)|ds . 〈ω〉−2.

59



By Lemma 22, Equation (2.28) has a unique solution and satisfies the estimate

|h0(ρ;λ)− 1| .
∫ ρ

0
|K(ρ, s;λ)|ds . ρ2.

Consequently, we obtain the estimate

h0(ρ;λ) = 1 +O(ρ2).

Since all terms in (2.28) behave like symbols under differentiation, we obtain the symbol

estimate

h0(ρ;λ) = 1 +O(ρ2〈ω〉0).

With this solution, we can obtain a second solution on an interval (0, δ0〈ω〉−1] via

reduction of order.

Lemma 24 Let λ = ε+ iω with |ω| ≥ 1. There exists δ0 > 0

ṽ0(ρ;λ) = v0(ρ;λ)

∫ δ0〈ω〉−1

ρ
v0(s;λ)−2ds

is a solution of Equation (2.24) for ρ ∈ (0, δ0〈ω〉−1]. Moreover, ṽ0 is of the form

ṽ0(ρ;λ) = ψ̃0(ρ;λ)h̃0(ρ;λ)

for all ρ ∈ (0, δ0〈ω〉−1] where h̃0(ρ;λ) = 1 +O(ρ2〈ω〉0). We also have

W (v0(·;λ), ṽ0(·;λ)) = −1.

Proof. Based on the previous symbol estimates, we can choose δ0 > 0 small enough so

that v0(·;λ), ψ0(·;λ), and ψ̃0(·;λ) have no zeros in (0, δ0〈ω〉−1]. Consequently, ṽ0(·;λ) is
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well-defined on the interval (0, δ0〈ω〉−1]. A direct calculation shows that ṽ0(·;λ) is indeed a

solution of Equation (2.24).

Using Lemmas 21 and 23, we calculate

ṽ0(ρ;λ)

ψ̃0(ρ;λ)
− 1 =

1

ψ̃0(ρ;λ)

(
ṽ0(ρ;λ)− ψ̃0(ρ;λ)

)
=

1

ψ̃0(ρ;λ)

(
v0(ρ;λ)

∫ δ0〈ω〉−1

ρ
v0(s;λ)−2ds− ψ0(ρ;λ)

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2ds

)
=
ψ0(ρ;λ)

ψ̃0(ρ;λ)

(
[1 +O(ρ2〈ω〉0)]

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2[1 +O(s2〈ω〉0)]ds

−
∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2ds

)
=
ψ0(ρ;λ)

ψ̃0(ρ;λ)

(
O(ρ2〈ω〉0)

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2[1 +O(s2〈ω〉0)]ds

+

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2O(s2〈ω〉0)ds

)
.

Now, based on the symbol estimates for ψ0(·;λ) and ψ̃0(·;λ), we find

ψ0(ρ;λ)

ψ̃0(ρ;λ)
= O(ρ3〈ω〉5)O(ρ2〈ω〉5) = O(ρ5〈ω〉10).

Furthermore,

O(ρ2〈ω〉0)

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2[1 +O(s2〈ω〉0)]ds = O(ρ2〈ω〉0)

∫ δ0〈ω〉−1

ρ
O(s−6〈ω〉−10)ds

= O(ρ−3〈ω〉−10)

and, by a similar calculation, we have

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2O(s2〈ω〉0)ds = O(ρ−3〈ω〉−10).

Thus, we obtain the symbol estimate

ṽ0(ρ;λ)

ψ̃0(ρ;λ)
− 1 = O(ρ2〈ω〉0).
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Lastly, the Wronskian follows from a direct calculation.

At this point, we have a fundamental system, {v0(·;λ), ṽ0(·;λ)}, of Equation (2.24)

which is defined on the interval (0, δ0〈ω〉−1] and is a perturbation of the fundamental system,

{ψ0(·;λ), ψ̃0(·;λ)}, of Equation (2.24) with V̂ = 0. Next, we begin an argument which

allows us to perturb the fundamental system {ψ1(·;λ), ψ̃1(·;λ)} to a fundamental system

of Equation (2.24) defined on an interval away from ρ = 0. We must handle the cases

0 < ε ≤ 3
2 and 3

2 < ε < M‖L′‖ separately due to the zeros of ψ1(·;λ) and ψ̃1(·;λ).

A complete argument will appear in a forthcoming paper where we also obtain uniform

bounds on the resolvent.

Lemma 25 Let λ = ε + iω with |ω| ≥ 1 and ε ∈ (0, 3
2 ]. There exists δ1 > 0 such that

Equation (2.24) has a solution of the form

ṽ1(ρ;λ) = ψ̃1(ρ;λ)h̃1(ρ;λ),

with

h̃1(ρ;λ) = 1 +O
(
(1− ρ)〈ω〉−1

)
, |h̃(j)

1 (ρ;λ)| . 〈ω〉−1, j = 1, 2, 3, 4, 5

for all ρ ∈ [δ1〈ω〉−1, 1).

Proof. Again, variation of parameters suggests that a solution of Equation (2.24) should

satisfy

ṽ1(ρ;λ) =ψ̃1(ρ;λ) +
ψ̃1(ρ;λ)

W (λ)

∫ ρ1

ρ
ψ1(s;λ)

V̂ (s)

1− s2
ṽ1(s;λ)ds

− ψ1(ρ;λ)

W (λ)

∫ ρ1

ρ
ψ̃1(s;λ)

V̂ (s)

1− s2
ṽ1(s;λ)ds
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for some ρ1 to be determined. A direct calculation shows that for ε ∈ (0, 3
2 ], ψ̃1(·;λ) 6= 0 on

the interval (0, 1). Thus, we set h̃1(·;λ) = ṽ1(·;λ)

ψ̃1(·;λ)
and obtain the Volterra integral equation

h̃1(ρ;λ) = 1 +

∫ ρ1

ρ
K(ρ, s;λ)h̃1(s;λ)ds

where

K(ρ, s;λ) =
1

W (λ)

(
ψ̃1(s;λ)ψ1(s;λ)− ψ1(ρ;λ)

ψ̃1(ρ;λ)
ψ̃1(s;λ)2

)
V̂ (s)

1− s2
.

Using the explicit formulas, we immediately obtain the estimate

|ψ̃1(s;λ)ψ1(s;λ)| . (1− ρ)
1
2 (1− s)

1
2 (s−4 + 〈ω〉2s−2 + 〈ω〉4)

for ρ ≤ s < 1. Similarly, we have the estimate∣∣∣∣ψ1(ρ;λ)

ψ̃1(ρ;λ)
ψ̃1(s;λ)2

∣∣∣∣ .∣∣∣c+(ρ;λ)

c−(ρ;λ)

∣∣∣(1− ρ)−1+ε(1− s)2−ε|c−(s;λ)|2

.(1− ρ)
1
2 (1− s)

1
2 (s−4 + 〈ω〉2s−2 + 〈ω〉4)

for ε ∈ (0, 3
2 ] and ρ ≤ s < 1. Thus, we have the estimate

|K(ρ, s;λ)| . (1− ρ)
1
2 (1− s)−

1
2 〈ω〉−1

for ε ∈ (0, 3
2 ] and ρ ≤ s < 1. We can now set ρ1 = 1 and obtain∫ 1

δ1〈ω〉−1

sup
ρ∈(δ1〈ω〉−1,1)

|K(ρ, s;λ)|ds . 〈ω〉−1

for some sufficiently small δ1 > 0. By Lemma 22, Equation (2.24) has a unique solution

h̃1(·;λ) satisfying

|h̃1(ρ;λ)− 1| .
∫ 1

ρ
|K(ρ, s;λ)|ds . (1− ρ)〈ω〉−1.

Differentiating Equation (2.4.1) yields

h̃′1(ρ;λ) =

∫ 1

ρ
∂ρK(ρ, s;λ)h̃1(s;λ)ds
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noting the fact that K(ρ, ρ;λ) = 0. Explicitly, we have

∂ρK(ρ, s;λ) = − 1

W (λ)
∂ρ

(
ψ1(ρ;λ)

ψ̃1(ρ;λ)

)
ψ̃1(s;λ)2 V̂ (s)

1− s2
.

Now, note the identity

ψ̃1(s;λ)2

1− s2
= −sc−(s;λ)∂s

(
(1− s)2−λ(1 + s)λ

(
3− 2(λ− 1)s+ 3s2

)
4s4

)
.

An integration by parts yields

h̃′1(ρ;λ) = g1(ρ;λ) +

∫ 1

ρ
K1(ρ, s;λ)h̃′1(ρ, s;λ)ds

where

g1(ρ;λ) :=− 1

W (λ)
∂ρ

(
ψ1(ρ;λ)

ψ̃1(ρ;λ)

)(
(1− ρ)2−λ(1 + ρ)λ

(
3− 2(λ− 1)ρ+ 3ρ2

)
4ρ4

× ρc−(ρ;λ)V̂ (ρ)h̃1(ρ;λ)

+

∫ 1

ρ

(1− s)2−λ(1 + s)λ
(
3− 2(λ− 1)s+ 3s2

)
4s3

c−(s;λ)V̂ ′(s)h̃1(s;λ)ds

+
3(λ− 1)(λ2 − 2λ+ 6)

4(λ− 3)

(1− ρ
1 + ρ

)3−λ
ρ−1(1 + ρ)4V̂ (ρ)h̃1(ρ;λ)

+
3(λ− 1)(λ2 − 2λ+ 6)

4(λ− 3)

∫ 1

ρ

(1− s
1 + s

)3−λ
∂s

(
s−1(1 + s)4V̂ (s)

)
h̃1(s;λ)ds

+
1

4

∫ 1

ρ

(1− s
1 + s

)2−λ
s−4(1 + s)2

×
(

9− 24(λ− 1)s+ 3(7λ2 − 14λ+ 10)s2 + 17(λ− 1)2s4 − 12(λ− 1)s5
)

× V̂ (s)h̃1(s;λ)ds

)
and

K1(ρ, s;λ) = − 1

W (λ)
∂ρ

(
ψ1(ρ;λ)

ψ̃1(ρ;λ)

)
(1− s)2−λ(1 + s)λ

(
3− 2(λ− 1)s+ 3s2

)
4s3

c−(s;λ)V̂ (s)

− 3(λ− 1)(λ2 − 2λ+ 6)

4(λ− 3)W (λ)
∂ρ

(
ψ1(ρ;λ)

ψ̃1(ρ;λ)

)(1− s
1 + s

)3−λ
s−1(1 + s)4V̂ (s).
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For |ω| ≥ 1 and ρ ∈ [δ1〈ω〉−1, 1), we obtain the estimates

|g1(ρ;λ)| . 〈ω〉−1

and

|K1(ρ, s;λ)| . 〈ω〉−1.

By Lemma 22, we obtain the estimate

|h̃′1(ρ;λ)| . 〈ω〉−1

for ε ∈ (0, 3
2 ], |ω| ≥ 1, and ρ ∈ [δ1〈ω〉−1, 1). We can perform similar calculations four more

times to obtain

|h̃(j)
1 (ρ;λ)| . 〈ω〉−1

for j = 2, 3, 4, 5, ε ∈ (0, 3
2 ], |ω| ≥ 1, and ρ ∈ [δ1〈ω〉−1, 1).

For completeness, we state the properties of the solution for ε ∈ [3
2 ,M‖L

′‖H) but

do not prove it. The proof is nearly identical to the previous.

Lemma 26 Let λ = ε + iω with |ω| ≥ 1 and ε ∈ [3
2 ,M‖L

′‖H). There exists δ1 > 0 such

that Equation (2.24) has a solution of the form

v1(ρ;λ) = ψ1(ρ;λ)h1(ρ;λ),

with

h1(ρ;λ) = 1 +O
(
(1− ρ)〈ω〉−1

)
, |h(j)

1 (ρ;λ)| . 〈ω〉−1, j = 1, 2, 3, 4, 5

for all ρ ∈ [δ1〈ω〉−1, 1).
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Now, we take δ1 ≤ δ0 so that the interval on which the fundamental system

{v0(·;λ), ṽ0(·;λ)} is defined overlaps with the interval on which the solutions v1(·;λ) and

ṽ1(·;λ) are defined. As a consequence, we can extend the solutions v1(·;λ) and ṽ1(·;λ) to

the interval (0, δ0〈ω〉−1] as follows.

Lemma 27 The solutions v1, ṽ1 can be extended to ρ ∈ (0, δ0〈ω〉−1], and are of the form

v1(ρ;λ) = ψ1(ρ;λ)h2(ρ;λ),

ṽ1(ρ;λ) = ψ̃1(ρ;λ)h̃2(ρ;λ),

where

h2(ρ;λ) = [1 +O(〈ω〉−1) +O(ρ2〈ω〉0)]

and

h̃2(ρ;λ) = [1 +O(〈ω〉−1) +O(ρ2〈ω〉0)]

for all ρ ∈ (0, δ0〈ω〉−1], |ω| ≥ 1.

Proof. For λ ∈ C as above and ρ ∈ (0, δ0〈ω〉−1], there exist a(λ), b(λ) ∈ C such that

v1(ρ;λ) = a(λ)v0(ρ;λ) + b(λ)ṽ0(ρ;λ),

where

a(λ) =
W
(
v1(·;λ), ṽ0(·;λ)

)
W
(
v0(·;λ), ṽ0(·;λ)

) = −W
(
v1(·;λ), ṽ0(·;λ)

)
and

b(λ) = −
W
(
v1(·;λ), v0(·;λ)

)
W
(
v0(·;λ), ṽ0(·;λ)

) = W
(
v1(·;λ), v0(·;λ)

)
.

Note that δ1 ≤ δ0 and so the expression for ṽ1 obtained in Lemma 25 is valid at the

point ρ = δ0〈ω〉−1. Furthermore, the Wronskian of any two solutions must be constant
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and so we can compute W
(
v1(·;λ), ṽ0(·;λ)

)
and W

(
v1(·;λ), v0(·;λ)

)
by evaluating them at

ρ = δ0〈ω〉−1. From Lemmas 25 and 24, we have

W
(
v1(·;λ), ṽ0(·;λ)

)
=W

(
ψ1(·;λ)h1(·;λ), ψ̃0(·;λ)[1 +O(ρ2〈ω〉0)]

)
=W

(
ψ1(·;λ), ψ̃0(·;λ)

)
h1(δ0〈ω〉−1;λ)[1 +O(〈ω〉−2)]

+ ψ1(δ0〈ω〉−1;λ)ψ̃0(δ0〈ω〉−1;λ)
)
O(〈ω〉−1)

=W
(
ψ1(·;λ), ψ̃0(·;λ)

)
[1 +O(〈ω〉−1)] +O(〈ω〉−2)

where we used the fact that ψ1(δ0〈ω〉−1;λ) = O(〈ω〉2) and ψ̃0(δ0〈ω〉−1;λ)
)

= O(〈ω〉−3)

which both follow from the explicit expressions and Lemma 21. Explicitly, we have

W
(
ψ1(·;λ), ψ̃0(·;λ)

)
= −W (λ)

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2ds− ψ1(ρ;λ)ψ0(ρ;λ)−1.

Again, since the Wronskian of any two solutions is constant, evaluation at ρ = δ0〈ω〉−1

yields

W
(
ψ1(·;λ), ψ̃0(·;λ)

)
= −ψ1(δ0〈ω〉−1;λ)ψ0(δ0〈ω〉−1;λ)−1 = O(〈ω〉0)

where we have used ψ0(δ0〈ω〉−1;λ)−1 = O(〈ω〉−2). Thus, we have

a(λ) =−W
(
v1(·;λ), ṽ0(·;λ)

)
=

(
W (λ)

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2ds+ ψ1(ρ;λ)ψ0(ρ;λ)−1

)
[1 +O(〈ω〉−1)]
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for ρ ∈ (0, δ0〈ω〉−1]. Similarly,

b(λ) =W
(
v1(·;λ), ṽ0(·;λ)

)
=W

(
ψ1(·;λ)h1(·;λ), ψ0(·;λ)[1 +O(ρ2〈ω〉0)]

)
=W

(
ψ1(·;λ), ψ0(·;λ)

)
γ1(δ0〈ω〉−1;λ)[1 +O(〈ω〉−2)]

+ ψ1(δ0〈ω〉−1;λ)ψ0(δ0〈ω〉−1;λ)
)
O(〈ω〉−1)

=−W (λ)[1 +O(〈ω〉−1)]

where we have used ψ0(δ0〈ω〉−1;λ) = O(〈ω〉2) and W (λ) = O(〈ω〉5). Thus, we have

v1(ρ;λ) =v0(ρ;λ)

(
W (λ)

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2ds+ ψ1(ρ;λ)ψ0(ρ;λ)−1

)
[1 +O(〈ω〉−1)]

− ṽ0(ρ;λ)W (λ)[1 +O(〈ω〉−1)]

=ψ0(ρ;λ)

(
W (λ)

∫ δ0〈ω〉−1

ρ
ψ0(s;λ)−2ds+ ψ1(ρ;λ)ψ0(ρ;λ)−1

)
× [1 +O(ρ2〈ω〉0)][1 +O(〈ω〉−1)]

− ψ̃0(ρ;λ)W (λ)[1 +O(ρ2〈ω〉0)][1 +O(〈ω〉−1)]

=W (λ)ψ̃0(ρ;λ)O(〈ω〉−1) + ψ1(ρ;λ)[1 +O(ρ2〈ω〉0)][1 +O(〈ω〉−1)].

Now, we use ψ̃0(ρ;λ) = O(ρ−2〈ω〉−5) and ψ1(ρ;λ)−1 = O(ρ2〈ω〉0) to obtain

v1(ρ;λ)

ψ1(ρ;λ)
=
ψ̃0(ρ;λ)

ψ1(ρ;λ)
O(〈ω〉5)O(〈ω〉−1) + [1 +O(〈ω〉−1)]

=1 +O(〈ω〉−1).

The second solution is obtained via the transformation λ 7→ 2− λ.

Now that we can make sense of the solutions v1(·;λ) and ṽ1(·;λ) on the whole

interval (0, 1), our last step is to make sense of the solution v0(·;λ) in the region [δ1〈ω〉−1, 1).
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Lemma 28 The solution v0(·;λ) has the representation

v0(ρ;λ) = v1(ρ;λ)h3(λ)− ṽ1(ρ;λ)h̃3(λ)

where

h3(λ) = 1 +O(〈ω〉−1)

and

h̃3(λ) = 1 +O(〈ω〉−1)

for all ρ ∈ [δ1〈ω〉−1, 1), |ω| ≥ 1.

Proof. Again for λ ∈ C as above, there exist a(λ), b(λ) ∈ C so that

v0(ρ;λ) = a(λ)v1(ρ;λ) + b(λ)ṽ1(ρ;λ)

where

a(λ) =
W (v0(·;λ), ṽ1(·;λ))

W (v1(·;λ), ṽ1(·;λ))

and

b(λ) = −W (v0(·;λ), v1(·;λ))

W (v1(·;λ), ṽ1(·;λ))
.

Direct calculation yields the following expression valid for all ρ ∈ [δ1〈ω〉−1, 1)

W
(
v1(·;λ), ṽ1(·;λ)

)
=W

(
ψ1(·;λ), ψ̃1(·;λ)

)
h1(ρ;λ)h̃1(ρ;λ)

+ ψ1(ρ;λ)ψ̃1(ρ;λ)W
(
h1(·;λ), h̃1(·;λ)

Since the Wronskian must be constant, we can take the limit ρ → 1− to calculate it. A

direct calculation using the explicit expressions shows that limρ→1− ψ1(ρ;λ)ψ̃1(ρ;λ) = 0.

Thus, taking the limit as ρ→ 1− yields

W (v1(·;λ), ṽ1(·;λ)) = W (λ).
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Thus,

a(λ) =
W (v0(·;λ), ṽ1(·;λ))

W (λ)

and

b(λ) = −W (v0(·;λ), v1(·;λ))

W (λ)
.

As in the proof of the previous lemma, we evaluate at ρ = δ0〈ω〉−1 to obtain

W (v0(·;λ), ṽ1(·;λ)) = W (λ)[1 +O(〈ω〉−1)].

Thus, we have

a(λ) = 1 +O(〈ω〉−1)

Similarly,

W (v0(·;λ), v1(·;λ)) = W (λ)[1 +O(〈ω〉−1)] (2.29)

which yields

b(λ) = −[1 +O(〈ω〉−1)].

Setting h3(λ) := a(λ) and h̃3(λ) := −b(λ) yields the desired result.

At this point, we have solutions v1(ρ;λ), ṽ1(ρ;λ), and v0(ρ;λ) of Equation (2.24)

which are defined for ρ ∈ (0, 1). Upon making the transformation

uj(ρ;λ) = (5 + 3ρ2)(5− ρ2)−
1
2 ρ−3(1− ρ2)−

λ
2 vj(ρ;λ), j = 0, 1

and

ũ1(ρ;λ) = (5 + 3ρ2)(5− ρ2)−
1
2 ρ−3(1− ρ2)−

λ
2 ṽ1(ρ;λ),

we obtain solutions of the homogenous version of Equation (2.22). Observe that neither

u0(·;λ) nor u1(·;λ) live in the space H5
rad(B7). From the following calculation, we see that

{u0(·;λ), u1(·;λ)} forms a fundamental system of Equation (2.22).
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Lemma 29 We have

W (u0(·;λ), u1(·;λ))(ρ) = W (λ)w0(λ)(5 + 3ρ2)2(5− ρ2)−1ρ−6(1− ρ2)−λ

where w0(λ) = 1 +O(〈ω〉−1) for ρ ∈ (0, 1), |ω| � 1. Moreover |w0(λ)| & 1 for all such λ.

Proof. We compute directly using the transformation

W (u0(·;λ), u1(·;λ)) = W (v0(·;λ), v1(·;λ))(5 + 3ρ2)2(5− ρ2)−1ρ−6(1− ρ2)−λ.

From Eqn. (2.29), we found that

W (v0(·;λ), v1(·;λ)) = W (λ)w0(λ).

with w0(λ) = 1 +O(〈ω〉−1). Upon taking |ω| � 1, we can guarantee |w0(λ)| & 1.

Before proceeding, we prove one last useful lemma.

Lemma 30 We have

1

w0(λ)
= 1 +O(〈ω〉−1)

for the function w0 from Lemma 29 where λ = ε+ iω and |ω| � 1.

Proof. This is an immediate consequence of Lemma 29 if we write

1

w0(λ)
=

w0(λ)

|w0(λ)|2
.

2.4.2 Decomposing the Resolvent and the Free Resolvent

In this section, we decompose the resolvent using the previously constructed fun-

damental system {u0(·;λ), u1(·;λ)}. In parallel, we decompose the free resolvent in order
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to highlight the similarities. We begin by explicitly constructing the free resolvent. To

that end, given λ ∈ C with 0 < ε < M‖L′‖H, we note that RL0(λ) exists. Thus, for

f ∈ C∞(0, 1)2 ∩H, setting u = (u1, u2) = RL0(λ)f implies that u1 solves

−(1− ρ2)u′′(ρ) +
(
− 6

ρ
+ 2(λ+ 3)ρ

)
u′(ρ) + (λ+ 1)(λ+ 4)u(ρ) = Fλ(ρ) (2.30)

with Fλ defined in Equation (2.23). An explicit fundamental system of Equation (2.30) is

given by

ϕ1(ρ;λ) := ρ−5(1 + ρ)1−λc+(ρ;λ)

ϕ̃1(ρ;λ) := ρ−5(1− ρ)1−λc−(ρ;λ)

where c±(ρ;λ) are defined in Equations (2.25) and (2.26). Their Wronskian is given by

W (ϕ1(·;λ), ϕ̃1(·;λ))(ρ) = W (λ)ρ−6(1− ρ2)−λ.

Note that neither solution is well-behaved near ρ = 0. Thus, we define a third solution

which is well-behaved near ρ = 0 by

ϕ0(ρ;λ) := ϕ1(ρ;λ)− ϕ̃1(ρ;λ).

For convenience, we set

Γ(ρ) := (5 + 3ρ2)(5− ρ2)−
1
2 .

Now, compared to the fundamental system of Equation (2.22) that we just constructed,

observe that we have the relations

u1(ρ;λ) = ϕ1(ρ;λ)Γ(ρ)h2(ρ;λ),

u0(ρ;λ) = ϕ0(ρ;λ)Γ(ρ)h0(ρ;λ),
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valid for ρ〈ω〉 ≤ δ0, and

u1(ρ;λ) = ϕ1(ρ;λ)Γ(ρ)h1(ρ;λ),

ũ1(ρ;λ) = ϕ̃1(ρ;λ)Γ(ρ)h̃1(ρ;λ),

u0(ρ;λ) = ϕ1(ρ;λ)Γ(ρ)h3(λ)h1(ρ;λ)− ϕ̃1(ρ;λ)Γ(ρ)h̃3(λ)h̃1(ρ;λ)

valid for ρ〈ω〉 ≥ δ1 with Wronskian given by

W (u0(·;λ), u1(·;λ))(ρ) = W (λ)w0(λ)Γ(ρ)2ρ−6(1− ρ2)−λ.

Observe that ϕ0(·;λ), ϕ1(·;λ) 6∈ H5
rad(B7) and so variation of parameters implies

[RL0(λ)f ]1(ρ) =− ϕ1(ρ;λ)

∫ ρ

0

ϕ0(s;λ)

W (ϕ0(·;λ), ϕ1(·;λ))(s)

Fλ(s)

1− s2
ds

− ϕ0(ρ;λ)

∫ 1

ρ

ϕ1(s;λ)

W (ϕ0(·;λ), ϕ1(·;λ))(s)

Fλ(s)

1− s2
ds.

Upon setting

s6(1− s2)−1+λϕ1(s;λ) = (1− s)−1+λc0(s;λ)

and

s6(1− s2)−1+λϕ̃1(s;λ) = (1 + s)−1+λc̃0(s;λ)

where

c0(s;λ) := sc+(s;λ)

and

c̃0(s;λ) := sc−(s;λ),

we write the more convenient expression for the first component of the free resolvent

[RL0(λ)f ]1(ρ) = − 1

W (λ)

(
ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)−1+λc0(s;λ)− (1 + s)−1+λc̃0(s;λ)

)
Fλ(s)ds

+ ϕ0(ρ;λ)

∫ 1

ρ
(1− s)−1+λc0(s;λ)Fλ(s)ds

)
.
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Now, using the fundamental system obtained in Section 2.4.1, we can write the

full resolvent as

[RL(λ)f̃ ]1(ρ) =− u1(ρ;λ)

∫ ρ

0

u0(s;λ)

W (u0(·;λ), u1(·;λ))(s)

Fλ(s)− s2Ṽ (s)f̃1(s)

1− s2
ds

− u0(ρ;λ)

∫ 1

ρ

u1(s;λ)

W (u0(·;λ), u1(·;λ))(s)

Fλ(s)− s2Ṽ (s)f̃1(s)

1− s2
ds

It is convenient to first introduce a smooth cutoff function to distinguish the regions ρ close

to 0 and ρ away from 0. Let χ : R → [0, 1] be any smooth function with χ(x) = 1 for

|x| ≤ δ1, χ(x) = 0 for |x| ≥ δ0, with χ decreasing smoothly from 1 to 0 on the interval

δ1 < x < δ0. Using such a cutoff, we decompose the full resolvent as

[RL(λ)f ]1(ρ) = χ(ρ〈ω〉)[RL(λ)f ]1(ρ) + [1− χ(ρ〈ω〉)][RL(λ)f ]1(ρ).

and similarly for the free resolvent. We further decompose by introducing cutoffs inside of

the integral as follows:

χ(ρ〈ω〉)[RL0(λ)f ]1(ρ)

=− χ(ρ〈ω〉)
W (λ)

(
ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)−1+λc0(s;λ)− (1 + s)−1+λc̃0(s;λ)

)
χ(s〈ω〉)Fλ(s)ds

+ ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)−1+λc0(s;λ)− (1 + s)−1+λc̃0(s;λ)

)
[1− χ(s〈ω〉)]Fλ(s)ds

+ ϕ0(ρ;λ)

∫ 1

ρ
(1− s)−1+λc0(s;λ)χ(s〈ω〉)Fλ(s)ds

+ ϕ0(ρ;λ)

∫ 1

ρ
(1− s)−1+λc0(s;λ)[1− χ(s〈ω〉)]Fλ(s)ds

)
,
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χ(ρ〈ω〉)[RL(λ)f ]1(ρ)

=− χ(ρ〈ω〉)
W (λ)w0(λ)

(
ϕ1(ρ;λ)Γ(ρ)h2(ρ;λ)

∫ ρ

0

(
(1− s)−1+λc0(s;λ)− (1 + s)−1+λc̃0(s;λ)

)
× h0(s;λ)Γ−1(s)χ(s〈ω〉)

(
Fλ(s)− s2Ṽ (s)f̃1(s)

)
ds

+ ϕ1(ρ;λ)Γ(ρ)h2(ρ;λ)

∫ ρ

0

(
(1− s)−1+λc0(s;λ)− (1 + s)−1+λc̃0(s;λ)

)
× h0(s;λ)Γ−1(s)[1− χ(s〈ω〉)]

(
Fλ(s)− s2Ṽ (s)f̃1(s)

)
ds

+ ϕ0(ρ;λ)Γ(ρ)h0(ρ;λ)

∫ 1

ρ
(1− s)−1+λc0(s;λ)h2(s;λ)Γ−1(s)χ(s〈ω〉)

×
(
Fλ(s)− s2Ṽ (s)f̃1(s)

)
ds

+ ϕ0(ρ;λ)Γ(ρ)h0(ρ;λ)

∫ 1

ρ
(1− s)−1+λc0(s;λ)h1(s;λ)Γ−1(s)[1− χ(s〈ω〉)]

×
(
Fλ(s)− s2Ṽ (s)f̃1(s)

)
ds

)
,

[1− χ(ρ〈ω〉)][RL0(λ)f ]1(ρ)

=− [1− χ(ρ〈ω〉)]
W (λ)

(
ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)−1+λc0(s;λ)− (1 + s)−1+λc̃0(s;λ)

)
× χ(s〈ω〉)Fλ(s)ds

+ ϕ0(ρ;λ)

∫ 1

ρ
(1− s)−1+λc0(s;λ)χ(s〈ω〉)Fλ(s)ds

+ ϕ1(ρ;λ)

∫ 1

0
(1− s)−1+λc0(s;λ)[1− χ(s〈ω〉)]Fλ(s)ds

− ϕ1(ρ;λ)

∫ ρ

0
(1 + s)−1+λc̃0(s;λ)[1− χ(s〈ω〉)]Fλ(s)ds

− ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)−1+λc0(s;λ)[1− χ(s〈ω〉)]Fλ(s)ds

)
,
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and

[1− χ(ρ〈ω〉)][RL(λ)f ]1(ρ)

=− [1− χ(ρ〈ω〉)]
W (λ)w0(λ)

(
ϕ1(ρ;λ)Γ(ρ)h1(ρ;λ)

∫ ρ

0

(
(1− s)−1+λc0(s;λ)− (1 + s)−1+λc̃0(s;λ)

)
× h0(s;λ)Γ−1(s)χ(s〈ω〉)

(
Fλ(s)− s2Ṽ (s)f̃1(s)

)
ds

+ ϕ0(ρ;λ)Γ(ρ)h0(ρ;λ)

∫ 1

ρ
(1− s)−1+λc0(s;λ)h2(s;λ)Γ−1(s)χ(s〈ω〉)

×
(
Fλ(s)− s2Ṽ (s)f̃1(s)

)
ds

+ ϕ1(ρ;λ)Γ(ρ)h3(λ)h1(ρ;λ)

∫ 1

0
(1− s)−1+λc0(s;λ)h1(s;λ)Γ−1(s)[1− χ(s〈ω〉)]

×
(
Fλ(s)− s2Ṽ (s)f̃1(s)

)
ds

− ϕ1(ρ;λ)Γ(ρ)h1(ρ;λ)

∫ ρ

0
(1 + s)−1+λc̃0(s;λ)h̃3(λ)h̃1(s;λ)Γ−1(s)[1− χ(s〈ω〉)]

×
(
Fλ(s)− s2Ṽ (s)f̃1(s)

)
ds

− ϕ̃1(ρ;λ)Γ(ρ)h̃3(λ)h̃1(ρ;λ)

∫ 1

ρ
(1− s)−1+λc0(s;λ)h1(s;λ)Γ−1(s)[1− χ(s〈ω〉)]

×
(
Fλ(s)− s2Ṽ (s)f̃1(s)

)
ds

)
.

Though we will not carry it out here, the following lemma is necessary in order to

control the full resolvent.

Lemma 31 In the intermediate region δ1〈ω〉−1 ≤ ρ ≤ δ0〈ω〉−1 we have the estimate

|h0(ρ;λ)− h3(λ)h1(ρ;λ)| . 〈ω〉−2

and

|h0(ρ;λ)− h̃3(λ)h̃1(ρ;λ)| . 〈ω〉−2.

Furthermore,

h1(ρ;λ) = h2(ρ;λ).
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Proof. Upon equating the two representations of v0 available in this region, we obtain the

equation

(
h0(ρ;λ)− h3(λ)h1(ρ;λ)

)
ψ1(ρ;λ)−

(
h0(ρ;λ)− h̃3(λ)h̃1(ρ;λ)

)
ψ̃1(ρ;λ) = 0

Taking the Wronskian with
(
h0(ρ;λ)− h̃3(λ)h̃1(ρ;λ)

)
ψ̃1(ρ;λ) yields the equation

W
(
h0(ρ;λ)− h3(λ)h1(ρ;λ)

)
, h0(ρ;λ)− h̃3(λ)h̃1(ρ;λ)ψ1(ρ;λ)ψ̃1(ρ;λ)

+
(
h0(ρ;λ)− h3(λ)h1(ρ;λ)

))(
h0(ρ;λ)− h̃3(λ)h̃1(ρ;λ)

)
W (λ)

=0.

Recalling the explicit expressions for ψ1(·;λ) and ψ̃1(·;λ) and the order estimates for h1, h̃1,

h0, h3, and h̃3, we see that the first term cannot cancel the highest order term in the second

term unless it is of one order lower in 〈ω〉. Thus, either |h0(ρ;λ) − h3(λ)h1(ρ;λ)| . 〈ω〉−2

or |h0(ρ;λ) − h̃3(λ)h̃1(ρ;λ)| . 〈ω〉−2. So long as one holds, plugging this order estimate

into the original equation shows that the second estimate must also hold. Lastly, the third

claim follows from matching the two representations of v1 in this region.

2.5 Free Resolvent Estimates

In this section, we estimate the free resolvent RL0(λ) in H5
rad(B7) ×H4

rad(B7) for

0 < ε < M‖L′‖H and |ω| � 1. The techniques we use can be applied to obtaining uniform

bounds on the full resolvent, RL(λ), constructed in 2.4 which we intend to carry out in a

forthcoming paper. This can be summarized in the following lemma.
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Lemma 32 Fix R > 0 sufficiently large. We have the uniform bound

sup
λ∈C,0<<λ<− 1

2
+M‖L′‖H,|=λ|≥R

‖RL0(λ)‖H <∞.

As a consequence, we have the following theorem.

Theorem 33 We have the uniform bound

sup
λ∈H
‖RL0(λ)‖ <∞.

Proof. We decompose H as H = S1∪S2∪S3 where S1, S2, S3 are defined at the beginning of

Section 2.4 with R > 0 sufficiently large as in the previous lemma. By standard semigroup

theory [20], λ 7→ RL0(λ) is uniformly bounded on S1. Since λ 7→ RL0(λ) exists for λ ∈ S2,

it is uniformly bounded there. By Lemma 32, λ 7→ RL0(λ) is uniformly bounded on S3.

2.5.1 Preliminary Calculations and Useful Estimates

In this section, we demonstrate and record some preliminary calculations and

collect some useful estimates which will help in proving Lemma 32 in the following section.

First, we define cj+1(ρ;λ) and c̃j+1(ρ;λ), j = 0, . . . , 4, recursively by the equations

(1− ρ)−1+j+λcj(ρ;λ) =
(
(1− ρ)j+λcj+1(ρ;λ)

)′
and

(1 + ρ)−1+j+λc̃j(ρ;λ) =
(
(1 + ρ)j+λc̃j+1(ρ;λ)

)′
where ′ denotes derivative with respect to ρ. We leave the explicit expressions and useful

estimates they satisfy for the appendix. As a consequence of their definition, cj and c̃j

satisfy the equation c̃j(ρ;λ) = (−1)j+1cj(−ρ;λ).
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By Taylor expansion, we infer the existence of δ0 > 0 so that we have the following

estimate

|ϕ(j)
0 (ρ;λ)| . 〈ω〉5+j , ρ〈ω〉 ≤ δ0.

For the same values of ρ, we also have the estimates

|ϕ(j)
1 (ρ;λ)| . ρ−5+j , ρ〈ω〉 ≤ δ0

and

|ϕ̃(j)
1 (ρ;λ)| . ρ−5+j , ρ〈ω〉 ≤ δ0.

Now, we let δ1 > 0 be any number such that δ1 ≤ δ0. We have the estimates

|ϕ(j)
1 (ρ;λ)| . 〈ω〉2+jρ−3, ρ〈ω〉 ≥ δ1

and

|ϕ̃(j)
1 (ρ;λ)| . (1− ρ)1−j−ε〈ω〉2+jρ−3, ρ〈ω〉 ≥ δ1

for j ∈ N0. In addition, we define the quantities

αi,j(ρ;λ) := ϕ
(i)
1

(
(1− ρ)j+λcj+1(ρ;λ)− (1 + ρ)j+λc̃j+1(ρ;λ)

)
,

βi,j(ρ;λ) := ϕ
(i)
0 (1− ρ)j+λcj+1(ρ;λ),

and

γi,j(ρ;λ) := ϕ
(i)
1 (1 + ρ)j+λc̃j+1(ρ;λ)− ϕ̃(i)

1 (1− ρ)j+λcj+1(ρ;λ).

These quantities will show up frequently in various boundary terms when estimating the

resolvent.
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For both the free resolvent near zero and the free resolvent away from zero, their

zeroth derivatives will be handled in a different way from their remaining derivatives. For

this reason, we begin by writing the zeroth derivative of the free resolvent near zero as

χ(ρ〈ω〉)[RL0(λ)f ]1(ρ)

=
χ(ρ〈ω〉)
W (λ)

(
ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
χ(s〈ω〉)F ′λ(s)ds

− α0,0(ρ;λ)χ(ρ〈ω〉)Fλ(ρ)

+ ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
[1− χ(s〈ω〉)]F ′λ(s)ds

− α0,0(ρ;λ)[1− χ(ρ〈ω〉)]Fλ(ρ)

+ ϕ0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)F ′λ(s)ds+ β0,0(ρ;λ)χ(ρ〈ω〉)Fλ(ρ)

+ ϕ0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]F ′λ(s)ds+ β0,0(ρ;λ)[1− χ(ρ〈ω〉)]Fλ(ρ)

)
which follows after one integration by parts. This motivates defining the following formal

integral operators which, together, represent the free resolvent, properly weighted, near zero

[Q1(λ)f ](ρ) :=
〈ω〉χ(ρ〈ω〉)
W (λ)

(
ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
χ(s〈ω〉)f ′(s)ds

− α0,0(ρ;λ)χ(ρ〈ω〉)f(ρ)

)
,

[Q2(λ)f ](ρ) :=
〈ω〉χ(ρ〈ω〉)
W (λ)

(
ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× [1− χ(s〈ω〉)]f ′(s)ds

− α0,0(ρ;λ)[1− χ(ρ〈ω〉)]f(ρ)

)
,

[Q3(λ)f ](ρ) :=
〈ω〉χ(ρ〈ω〉)
W (λ)

(
ϕ0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)f ′(s)ds

+ β0,0(ρ;λ)χ(ρ〈ω〉)f(ρ)

)
,
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and

[Q4(λ)f ](ρ) :=
〈ω〉χ(ρ〈ω〉)
W (λ)

(
ϕ0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

+ β0,0(ρ;λ)[1− χ(ρ〈ω〉)]f(ρ)

)
.

Similarly, we write the zeroth derivative of the resolvent away from zero as

[1−χ(ρ〈ω〉)][RL0(λ)f ]1(ρ)

=
[1− χ(ρ〈ω〉)]

W (λ)

(
ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
χ(s〈ω〉)F ′λ(s)ds

− α0,0(ρ;λ)χ(ρ〈ω〉)Fλ(ρ)

+ ϕ0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)F ′λ(s)ds+ β0,0(ρ;λ)χ(ρ〈ω〉)Fλ(ρ)

+ ϕ1(ρ;λ)

∫ 1

0
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]F ′λ(s)ds

− ϕ1(ρ;λ)

∫ ρ

0
(1 + s)λc̃1(s;λ)[1− χ(s〈ω〉)]F ′λ(s)ds

− ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]F ′λ(s)ds

+ γ0,0(ρ;λ)[1− χ(ρ〈ω〉)]Fλ(ρ)

)

This motivates defining the following formal integral operators which, together, represent

the free resolvent, properly weighted, away from zero

[Q5(λ)f ](ρ) :=
〈ω〉[1− χ(ρ〈ω〉)]

W (λ)

(
ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× χ(s〈ω〉)f ′(s)ds

− α0,0(ρ;λ)χ(ρ〈ω〉)f(ρ)

)
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[Q6(λ)f ](ρ) :=
〈ω〉[1− χ(ρ〈ω〉)]

W (λ)

(
ϕ0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)f ′(s)ds

+ β0,0(ρ;λ)χ(ρ〈ω〉)f(ρ)

)

[Q7(λ)f ](ρ) :=
〈ω〉[1− χ(ρ〈ω〉)]

W (λ)
ϕ1(ρ;λ)

∫ 1

0
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

[Q8(λ)f ](ρ) :=− 〈ω〉[1− χ(ρ〈ω〉)]
W (λ)

(
ϕ1(ρ;λ)

∫ ρ

0
(1 + s)λc̃1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

+ ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

− γ0,0(ρ;λ)[1− χ(ρ〈ω〉)]f(ρ)

)
.

Returning to the resolvent near zero, we write its first derivative as

χ(ρ〈ω〉)[RL0(λ)f ]′1(ρ)

=
(λ+ 4)χ(ρ〈ω〉)

W (λ)

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
χ(s〈ω〉)f ′1(s)ds

+ ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
[1− χ(s〈ω〉)]f ′1(s)ds

− ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)χ(s〈ω〉)f ′′1 (s)ds− β1,1(ρ;λ)χ(ρ〈ω〉)f ′1(ρ)

− ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′1 (s)ds− β1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′1(ρ)

)
+
χ(ρ〈ω〉)
W (λ)

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× χ(s〈ω〉)

(
f2(s) + sf ′1(s)

)′
ds

+ ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
[1− χ(s〈ω〉)]

(
f2(s) + sf ′1(s)

)′
ds

+ ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)

(
f2(s) + sf ′1(s)

)′
)ds

+ ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]

(
f2(s) + sf ′1(s)

)′
ds

)
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which follows after integrating by parts once the f1 term of the integral from s = ρ to s = 1.

This motivates defining the following formal integral operators which, together, represent

the f1 terms in the first derivative of the free resolvent, properly weighted, near zero

[T1,1(λ)f ](ρ) :=
〈ω〉(λ+ 4)χ(ρ〈ω〉)

W (λ)
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× χ(s〈ω〉)f ′(s)ds,

[T2,1(λ)f ](ρ) :=
〈ω〉(λ+ 4)χ(ρ〈ω〉)

W (λ)
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× [1− χ(s〈ω〉)]f ′(s)ds,

[T3,1(λ)f ](ρ) :=− 〈ω〉(λ+ 4)χ(ρ〈ω〉)
W (λ)

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)χ(s〈ω〉)f ′′(s)ds

+ β1,1(ρ;λ)χ(ρ〈ω〉)f ′(ρ)

)
,

[T4,1(λ)f ](ρ) :=− 〈ω〉(λ+ 4)χ(ρ〈ω〉)
W (λ)

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

+ β1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)

and the f2 + (·)f ′1 terms in the first derivative of the free resolvent, properly weighted, near

zero

[R1,1(λ)f ](ρ) :=
〈ω〉χ(ρ〈ω〉)
W (λ)

ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
χ(s〈ω〉)f ′(s)ds,

[R2,1(λ)f ](ρ) :=
〈ω〉χ(ρ〈ω〉)
W (λ)

ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× [1− χ(s〈ω〉)]f ′(s)ds,

[R3,1(λ)f ](ρ) :=
〈ω〉χ(ρ〈ω〉)
W (λ)

ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)f ′(s)ds,
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[R4,1(λ)f ](ρ) :=
〈ω〉χ(ρ〈ω〉)
W (λ)

ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds.

Similarly, for the first derivative of the free resolvent away from zero, we write

[1−χ(ρ〈ω〉)][RL0(λ)f ]′1(ρ)

=− (λ+ 4)[1− χ(ρ〈ω〉)]
W (λ)

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)1+λc2(s;λ)− (1 + s)1+λc̃2(s;λ)

)
× χ(s〈ω〉)f ′′1 (s)ds− α1,1(ρ;λ)χ(ρ〈ω〉)f ′1(ρ)

+ ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)χ(s〈ω〉)f ′′1 (s)ds+ β1,1(ρ;λ)χ(ρ〈ω〉)f ′1(ρ)

+ ϕ′1(ρ;λ)

∫ 1

0
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′1 (s)ds

− ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)1+λc̃2(s;λ)[1− χ(s〈ω〉)]f ′′1 (s)ds

− ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′1 (s)ds

+ γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′1(ρ)

)
+

[1− χ(ρ〈ω〉)]
W (λ)

(
ϕ1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× χ(s〈ω〉)

(
f2(s) + sf ′1(s)

)′
ds

+ ϕ0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)

(
f2(s) + sf ′1(s)

)′
ds

+ ϕ1(ρ;λ)

∫ 1

0
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]

(
f2(s) + sf ′1(s)

)′
ds

− ϕ1(ρ;λ)

∫ ρ

0
(1 + s)λc̃1(s;λ)[1− χ(s〈ω〉)]

(
f2(s) + sf ′1(s)

)′
ds

− ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]

(
f2(s) + sf ′1(s)

)′
ds

)

which follows after integrating by parts once all of the f1 terms. This motivates defining

the following formal integral operators which, together, represent the f1 terms in the first
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derivative of the free resolvent, properly weighted, away from zero

[T5,1(λ)f ](ρ) :=− 〈ω〉(λ+ 4)[1− χ(ρ〈ω〉)]
W (λ)

×
(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)1+λc2(s;λ)− ϕ′1(ρ;λ)(1 + s)1+λc̃2(s;λ)

)
× χ(s〈ω〉)f ′′(s)ds− α1,1(ρ;λ)χ(ρ〈ω〉)f ′(ρ)

)
,

[T6,1(λ)f ](ρ) :=− 〈ω〉(λ+ 4)[1− χ(ρ〈ω〉)]
W (λ)

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)χ(s〈ω〉)f ′′(s)ds

+ β1,1(ρ;λ)χ(ρ〈ω〉)f ′(ρ)

)
,

[T7,1(λ)f ](ρ) := −〈ω〉(λ+ 4)[1− χ(ρ〈ω〉)]
W (λ)

ϕ′1(ρ;λ)

∫ 1

0
(1−s)1+λc2(s;λ)[1−χ(s〈ω〉)]f ′′(s)ds,

[T8,1(λ)f ](ρ) :=− 〈ω〉(λ+ 4)[1− χ(ρ〈ω〉)]
W (λ)

(
− ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)1+λc̃2(s;λ)

× [1− χ(s〈ω〉)]f ′′(s)ds− ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

+ γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)

and the f2 + (·)f ′1 terms in the first derivative of the free resolvent, properly weighted, away

from zero

[R5,1(λ)f ](ρ) :=
〈ω〉[1− χ(ρ〈ω〉)]

W (λ)
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
χ(s〈ω〉)f ′(s)ds

[R6,1(λ)f ](ρ) :=
〈ω〉[1− χ(ρ〈ω〉)]

W (λ)
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)f ′(s)ds

[R7,1(λ)f ](ρ) :=
〈ω〉[1− χ(ρ〈ω〉)]

W (λ)
ϕ′1(ρ;λ)

∫ 1

0
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds
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[R8,1(λ)f ](ρ) :=− 〈ω〉[1− χ(ρ〈ω〉)]
W (λ)

(
ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)λc̃1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

+ ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

)
.

For k = 2, . . . , 5, we define

[T1,k(λ)f ](ρ) :=
ρk−2(λ+ 4)χ(ρ〈ω〉)

W (λ)

× dk−1

dρk−1

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
χ(s〈ω〉)f ′(s)ds

)
,

[T2,k(λ)f ](ρ) :=
ρk−2(λ+ 4)χ(ρ〈ω〉)

W (λ)

× dk−1

dρk−1

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× [1− χ(s〈ω〉)]f ′(s)ds

)
,

[T3,k(λ)f ](ρ) :=− ρk−2(λ+ 4)χ(ρ〈ω〉)
W (λ)

dk−1

dρk−1

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)χ(s〈ω〉)f ′′(s)ds

+ β1,1(ρ;λ)χ(ρ〈ω〉)f ′(ρ)

)
,

[T4,k(λ)f ](ρ) :=− ρk−2(λ+ 4)χ(ρ〈ω〉)
W (λ)

dk−1

dρk−1

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)

× [1− χ(s〈ω〉)]f ′′(s)ds+ β1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)
,

and

[R1,k(λ)f ](ρ) :=
ρk−2χ(ρ〈ω〉)

W (λ)

dk−1

dρk−1

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
χ(s〈ω〉)f ′(s)ds

)
,

[R2,k(λ)f ](ρ) :=
ρk−2χ(ρ〈ω〉)

W (λ)

dk−1

dρk−1

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× [1− χ(s〈ω〉)]f ′(s)ds

)
,
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[R3,k(λ)f ](ρ) :=
ρk−2χ(ρ〈ω〉)

W (λ)

dk−1

dρk−1

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)f ′(s)ds

)
,

[R4,k(λ)f ](ρ) :=
ρk−2χ(ρ〈ω〉)

W (λ)

dk−1

dρk−1

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

)
which together represent the f1 and f2+(·)f ′1 terms in the kth derivative of the free resolvent

near zero, respectively. For k = 2, . . . , 4 we define

[T5,k(λ)f ](ρ) :=− 〈ω〉ρ
k−1(λ+ 4)[1− χ(ρ〈ω〉)]

W (λ)

× dk−1

dρk−1

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)1+λc2(s;λ)− ϕ′1(ρ;λ)(1 + s)1+λc̃2(s;λ)

)
× χ(s〈ω〉)f ′′(s)ds− α1,1(ρ;λ)χ(ρ〈ω〉)f ′(ρ)

)
,

[T6,k(λ)f ](ρ) :=− 〈ω〉ρ
k−1(λ+ 4)[1− χ(ρ〈ω〉)]

W (λ)

× dk−1

dρk−1

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)χ(s〈ω〉)f ′′(s)ds

+ β1,1(ρ;λ)χ(ρ〈ω〉)f ′(ρ)

)
,

[T7,k(λ)f ](ρ) := −〈ω〉ρ
k−1(λ+ 4)[1− χ(ρ〈ω〉)]

W (λ)
ϕ

(k)
1 (ρ;λ)

×
∫ 1

0
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds,

[T8,k(λ)f ](ρ) :=− 〈ω〉ρ
k−1(λ+ 4)[1− χ(ρ〈ω〉)]

W (λ)

× dk−1

dρk−1

(
− ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)1+λc̃2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

− ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

+ γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)
,
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and

[R5,k(λ)f ](ρ) :=
〈ω〉ρk−1[1− χ(ρ〈ω〉)]

W (λ)

× dk−1

dρk−1

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
χ(s〈ω〉)f ′(s)ds

)

[R6,k(λ)f ](ρ) :=
〈ω〉ρk−1[1− χ(ρ〈ω〉)]

W (λ)

dk−1

dρk−1

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)f ′(s)ds

)

[R7,k(λ)f ](ρ) :=
〈ω〉ρk−1[1− χ(ρ〈ω〉)]

W (λ)
ϕ

(k)
1 (ρ;λ)

∫ 1

0
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds,

[R8,k(λ)f ](ρ) :=− 〈ω〉ρ
k−1[1− χ(ρ〈ω〉)]

W (λ)

dk−1

dρk−1

(
ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)λc̃1(s;λ)

× [1− χ(s〈ω〉)]f ′(s)ds+ ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

)
.

which together represent the f1 and f2+(·)f ′1 terms in the kth derivative of the free resolvent

away from zero, respectively. Lastly, for the fifth derivative of the free resolvent away from

zero we define

[T5,5(λ)f ](ρ) :=− ρ3(λ+ 4)[1− χ(ρ〈ω〉)]
W (λ)

× d4

dρ4

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)1+λc2(s;λ)− (1 + s)1+λc̃2(s;λ)

)
χ(s〈ω〉)f ′′(s)ds

− α1,1(ρ;λ)χ(ρ〈ω〉)f ′(ρ)

)
,

[T6,5(λ)f ](ρ) :=− ρ3(λ+ 4)[1− χ(ρ〈ω〉)]
W (λ)

d4

dρ4

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)χ(s〈ω〉)f ′′(s)ds

+ β1,1(ρ;λ)χ(ρ〈ω〉)f ′(ρ)

)
,

[T7,5(λ)f ](ρ) := −ρ
3(λ+ 4)[1− χ(ρ〈ω〉)]

W (λ)
ϕ

(5)
1 (ρ;λ)

∫ 1

0
(1−s)1+λc2(s;λ)[1−χ(s〈ω〉)]f ′′(s)ds,
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[T8,5(λ)f ](ρ) :=− ρ3(λ+ 4)[1− χ(ρ〈ω〉)]
W (λ)

d4

dρ4

(
− ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)1+λc̃2(s;λ)

× [1− χ(s〈ω〉)]f ′′(s)ds− ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

+ γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)

and

[R5,5(λ)f ](ρ) :=
ρ3[1− χ(ρ〈ω〉)]

W (λ)

d4

dρ4

(
ϕ′1(ρ;λ)

∫ ρ

0

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× χ(s〈ω〉)f ′(s)ds

)
,

[R6,5(λ)f ](ρ) :=
ρ3[1− χ(ρ〈ω〉)]

W (λ)

d4

dρ4

(
ϕ′0(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)χ(s〈ω〉)f ′(s)ds

)
,

[R7,5(λ)f ](ρ) :=
ρ3[1− χ(ρ〈ω〉)]

W (λ)
ϕ

(5)
1 (ρ;λ)

∫ 1

0
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds,

[R8,5(λ)f ](ρ) :=− ρ3[1− χ(ρ〈ω〉)]
W (λ)

d4

dρ4

(
ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)λc̃1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

+ ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

)
.

In summary, we have the following equalities

〈ω〉[RL0(λ)f ]1(ρ) =
8∑
j=1

[Qj(λ)Fλ](ρ),

〈ω〉[RL0(λ)f ]′1(ρ) =
8∑
j=1

(
[Tj,1(λ)f̃1](ρ) + [Rj,1(λ)(f̃2 + (·)f̃ ′1)](ρ)

)
,

ρk−2χ(ρ〈ω〉)[RL0(λ)f ]
(k)
1 (ρ) =

4∑
j=1

(
[Tj,k(λ)f̃1](ρ) +

[
Rj,k(λ)(f̃2 + (·)f̃ ′1)

]
(ρ)
)

〈ω〉ρk−1[1− χ(ρ〈ω〉)][RL0(λ)f ]
(k)
1 (ρ) =

8∑
j=5

(
[Tj,k(λ)f̃1](ρ) +

[
Rj,k(λ)(f̃2 + (·)f̃ ′1)

]
(ρ)
)
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for k = 2, 3, 4, and

ρ3[RL0(λ)f ]
(5)
1 (ρ) =

8∑
j=1

(
[Tj,5(λ)f̃1](ρ) +

[
Rj,5(λ)(f̃2 + (·)f̃ ′1)

]
(ρ)
)
.

With these equalities in mind, we are motivated to prove the following lemma.

Lemma 34 Fix R > 0 sufficiently large. Given λ ∈ C with λ = ε + iω, 0 < ε < M‖L′‖H

and |ω| ≥ R, the operators

Qj(λ) : D(Qj(λ)) ⊂ H4
rad(B7)→ L2(0, 1),

Tj,k(λ) : D(Tj,k(λ)) ⊂ H5
rad(B7)→ L2(0, 1),

and

Rj,k(λ) : D(Rj,k(λ)) ⊂ H4
rad(B7)→ L2(0, 1)

with

D(Qj(λ)) = D(Tj,k(λ)) = D(Rj,k(λ)) = C∞e [0, 1]

satisfy the uniform bound

sup
λ∈C, 0<ε<‖L′‖, |ω|≥R

〈ω〉‖Qj(λ)f‖L2(0,1) . ‖f‖Σ1 , j = 1, . . . , 8,

sup
λ∈C, 0<ε<‖L′‖, |ω|≥R

‖Tj,k(λ)f‖L2(0,1) . ‖f‖Σ0 , j = 3, . . . , 8, k = 1, . . . , 5,

and

sup
λ∈C, 0<ε<‖L′‖, |ω|≥R

‖Rj,k(λ)f‖L2(0,1) . ‖f‖Σ1 , j = 1, . . . , 8, k = 1, . . . , 5.

Precisely how we define the operators Tj,k for j = 1, 2, k = 1, . . . , 5 and R8,5 is delicate due

to their singular nature. In preparation, we need the following crucial lemma.
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Lemma 35 Suppose T : D(T ) ⊂ L2(0, 1)→ L2(0, 1) is given by

D(T ) := C∞c (0, 1), [Tf ](x) :=

∫ 1

0
K(x, y)f(y)dy,

where the kernel K ∈ L1
loc

(
(0, 1)× (0, 1)

)
and satisfies the pointwise bounds

|K(x, y)| . min{x−1+δy−δ, x−δy−1+δ}

for all x, y ∈ (0, 1) and some fixed δ ∈ [0, 1
2). Then T extends to a bounded operator on

L2(0, 1).

Proof. Set Ij := [2j−1, 2j+1] and Ĩj := [2j−1, 2j+1] ∩ (0, 1), j ∈ Z and denote by 1j the

characteristic function of Ĩj . With these intervals we decompose the operator T as follows

Tf =
1

2

∑
j∈Z

T (1jf).

As a consequence, we have

‖Tf‖2L2(0,1) =
1

2

∑
j∈Z
‖1jTf‖2L2(0,1)

=
1

8

∑
j∈Z

∥∥∥∑
k∈Z

1jT (1kf)
∥∥∥2

L2(0,1)

≤
∑
j∈Z

∣∣∣∑
k∈Z
‖1jT (1kf)‖L2(0,1)

∣∣∣2
≤
∑
j∈Z

∣∣∣∑
k∈Z
‖Tjk‖L2(0,1)‖1kf‖L2(0,1)

∣∣∣2
where for each j, k ∈ Z, the bounded operator Tjk : D(Tjk) ⊂ L2(0, 1) → L2(0, 1) is given

by

D(Tjk) := C∞c (0, 1), [Tjkf ](x) :=

∫ 1

0
1j(x)K(x, y)1k(y)f(y)dy.
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Observe that if either j ≥ 1 or k ≥ 1, then ‖Tjk‖L2(0,1) = 0 since Ĩj = Ĩk = ∅. If j < 1,

k < 1, and 0 > j ≥ k, then we can use |K(x, y)| . x−1+δy−δ to show

‖Tjk‖2L2(0,1) ≤
∫ 1

0

∫ 1

0
1j(x)|K(x, y)|21k(y)dydx

=

∫
Ĩj

∫
Ĩk

|K(x, y)|2dydx

.2j+k22(−1+δ)j2−2δk

=2−(1−2δ)(j−k).

If 0 = j > k, then we again use |K(x, y)| . x−1+δy−δ to show

‖T0k‖2L2(0,1) ≤
∫ 1

0

∫ 1

0
10(x)|K(x, y)|21k(y)dydx

=

∫
Ĩ0

∫
Ĩk

|K(x, y)|2dydx

≤
∫
I0

∫
Ĩk

x2(−1+δ)y−2δdydx

.2k2−2δk

=2−(1−2δ)(−k).

Similarly, if 0 = j = k, then we again use |K(x, y)| . x−1+δy−δ to show

‖T00‖2L2(0,1) ≤
∫ 1

0

∫ 1

0
10(x)|K(x, y)|210(y)dydx

=

∫
Ĩ0

∫
Ĩ0

|K(x, y)|2dydx

≤
∫
I0

∫
I0

x2(−1+δ)y−2δdydx

.1.

Now, if j < k < 0, we use |K(x, y)| . x−δy−1+δ to show that ‖Tjk‖2L2(0,1) . 2−(1−2δ)(k−j).

Similar to the previous cases, if j < k = 0, then we again use |K(x, y)| . x−δy−1+δ to show
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‖Tjk‖2L2(0,1) . 2−(1−2δ)(−j). In summary, we have the bound

‖Tf‖2L2(0,1) .
∑
j∈Z

∣∣∣∑
k∈Z

2−( 1
2
−δ)|j−k|‖1kf‖L2(0,1)

∣∣∣2.
On the right-hand side, we have the `2(Z) norm of the convolution of the sequences

(2−( 1
2
−δ)|k|)k and (‖1kf‖L2(0,1))k. By assumption on δ, we have that (2−( 1

2
−δ)|k|)k belongs

to `1(Z). Thus, by Young’s inequality we conclude

‖Tf‖L2(0,1) .

(∑
k∈Z
‖1kf‖2L2(0,1)

)1/2

=
√

2‖f‖L2(0,1).

Remark 36 This proof is only a slight modification of the proof of Lemma 5.5 of [13] for

such operators on R+.

Remark 37 We are immediately able to conclude the same result for operators with kernels

satisfying the bound |K(x, y)| . min{(1−x)−1+δ(1−y)−δ, (1−x)−δ(1−y)−1+δ} by applying

the transformation (x, y) 7→ (1− x, 1− y) and using Lemma 35 on the resulting operator.

At this point, we are ready to prove Lemma 34. This will be achieved by estab-

lishing pointwise bounds on the various operators that can be squared and integrated to

obtain the necessary L2(0, 1) bounds.

2.5.2 Proof of Lemma 34

We begin with the operators Qj(λ), j = 1, . . . , 8. Straightforward estimates yield

∣∣[Q1(λ)f ](ρ)
∣∣ .〈ω〉−4χ(ρ〈ω〉)

(
ρ−5

∫ ρ

0
〈ω〉5s7|f ′(s)|ds+ 〈ω〉3|f(ρ)|

)
.〈ω〉−1

(
‖f ′‖L2(0,1) + |f(ρ)|

)
,
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∣∣[Q2(λ)f ](ρ)
∣∣ . 〈ω〉−1

(
‖f ′‖L2(0,1) + |f(ρ)|

)
,

and

∣∣[Q3(λ)f ](ρ)
∣∣ .〈ω〉−4χ(ρ〈ω〉)

(
〈ω〉5

∫ 1

ρ
〈ω〉−2|f ′(s)|ds+ 〈ω〉3|f(ρ)|

)
.〈ω〉−1

(
‖f ′‖L2(0,1) + |f(ρ)|

)
.

Observe that we have the estimate |c1(s;λ)| . 〈ω〉−2
(
1 + 〈ω〉s+ 〈ω〉2s2 + 〈ω〉3s3

)
. In order

to control the powers of 〈ω〉 in the region s〈ω〉 & 1, we are forced to integrate by parts the

term with 〈ω〉m m-times for m = 1, 2, 3. Doing so yields the estimate∣∣∣∣χ(ρ〈ω〉)
∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

∣∣∣∣
. 〈ω〉−2

(
‖f‖Σ1 + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

))
.

As a consequence, we have the estimate

∣∣[Q4(λ)f ](ρ)
∣∣ .〈ω〉−4χ(ρ〈ω〉)

(
〈ω〉5〈ω〉−2

(
‖f‖Σ1 + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

))
+ 〈ω〉3|f(ρ)|

)
.〈ω〉−1

(
‖f‖Σ1 + 〈ω〉−1

(
|f(ρ)|+ |f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

))
.

Now, more straightforward estimates yield

∣∣[Q5(λ)f ](ρ)
∣∣ .〈ω〉−4[1− χ(ρ〈ω〉)]

(
〈ω〉2ρ−3

∫ ρ

0
〈ω〉5s7χ(s〈ω〉)|f ′(s)|ds+ 〈ω〉3|f(ρ)|

)
.〈ω〉−1

(
‖f ′‖L2(0,1) + |f(ρ)|

)
and

∣∣[Q6(λ)f ](ρ)
∣∣ .〈ω〉−4[1− χ(ρ〈ω〉)]

(
〈ω〉5

∫ ρ

0
〈ω〉−2χ(s〈ω〉)|f ′(s)|ds+ 〈ω〉3|f(ρ)|

)
.〈ω〉−1

(
‖f ′‖L2(0,1) + |f(ρ)|

)
.
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Similar to how we controlled Q4(λ), integrating by parts the term with 〈ω〉m m-times for

m = 1, 2, 3 yields the estimate

∣∣∣∣ ∫ 1

0
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

∣∣∣∣ . 〈ω〉−2‖f‖Σ1 .

This implies the bound

∣∣[Q7(λ)f ](ρ)
∣∣ .〈ω〉−4[1− χ(ρ〈ω〉)]〈ω〉2ρ−3〈ω〉−2‖f‖Σ1

.〈ω〉−1‖f‖Σ1 .

To control the operator Q8(λ), we first observe that integrating by parts three times yields

ϕ1(ρ;λ)

∫ ρ

0
(1 + s)λc̃1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

+ ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

=− ϕ1(ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

− ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

+ γ0,3(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′′ − γ0,2(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′
+ γ0,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ).

For the integrals we have the bound

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ1(ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

+ ϕ̃1(ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

∣∣∣∣
.〈ω〉2ρ−3

∫ 1

0
〈ω〉−2

∣∣([1− χ(s〈ω〉)]f ′(s)
)(3)∣∣ds

.ρ−3‖f‖Σ1 .
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This implies the bound

∣∣[Q8(λ)f ](ρ)
∣∣ .〈ω〉−4[1− χ(ρ〈ω〉)]

(
ρ−3‖f‖Σ1 + |f (3)(ρ)|+ 〈ω〉|f ′′(ρ)|+ 〈ω〉2|f ′(ρ)|

+ 〈ω〉3|f(ρ)|
)

.〈ω〉−1
(
‖f‖Σ1 + 〈ω〉−1

(
|f(ρ)|+ |f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

))
.

Taking L2(0, 1) norms yields the desired bound.

We now turn our attention to controlling the operators T1,k(λ) for k = 1, . . . , 5.

Unfortunately, this operator is singular and cannot be handled like the operators Qj(λ).

Instead, we first define the auxiliary operators T̃1,k(λ) : D(T̃1,k(λ)) ⊂ L2(0, 1)→ L2(0, 1) by

D(T̃1,k(λ)) = C∞c (0, 1), [T̃1,kf ](ρ) :=

∫ 1

0
K1,k(ρ, s;λ)f(s)ds

with kernels

K1,1(ρ, s;λ) :=
〈ω〉(λ+ 4)χ(ρ〈ω〉)

W (λ)
ϕ′1(ρ;λ)

(
(1−s)λc1(s;λ)−(1+s)λc̃1(s;λ)

)
χ(s〈ω〉)1R+(ρ−s)

and

K1,k(ρ, s;λ) :=
ρk−2(λ+ 4)χ(ρ〈ω〉)

W (λ)
ϕ

(k)
1 (ρ;λ)

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× χ(s〈ω〉)1R+(ρ− s).

Then, for f ∈ D(T̃1,k), we have the equalities

[T1,1(λ)f ](ρ) = [T̃1,1(λ)f ′](ρ)

and

[T1,k(λ)f ](ρ) = [T̃1,k(λ)f ′](ρ) +
ρk−2(λ+ 4)χ(ρ〈ω〉)

W (λ)

k−1∑
i=1

(
αi,0(ρ;λ)χ(ρ〈ω〉)f ′(ρ)

)(k−1−i)

(2.31)
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for k = 2, . . . , 5. Straightforward estimates show that the kernels satisfy the bound

|K1,k(ρ, s;λ)| . min{ρ−1, s−1}.

Thus, Lemma 35 implies that the operators T̃1,k extend to bounded operators on L2(0, 1).

Another straightforward estimate shows

∣∣∣∣ρk−2(λ+ 4)χ(ρ〈ω〉)
W (λ)

k−1∑
i=1

(
αi,0(ρ;λ)χ(ρ〈ω〉)f ′(ρ)

)(k−1−i)
∣∣∣∣ . |f ′(ρ)|+ 〈ω〉−1

k−1∑
i=1

|f (i)(ρ)|.

As a consequence, we have the pointwise bound

[T1,k(λ)f ](ρ) . ‖f ′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

)
for any f ∈ C∞e [0, 1]. Taking L2(0, 1) norms yields the desired bound.

The operators T2,k(λ) for k = 1, . . . , 5 are handled similarly. We first define the

auxiliary operators T̃2,k(λ) : D(T̃2,k) ⊂ L2(0, 1)→ L2(0, 1) by

D(T̃2,k(λ)) = C∞c (0, 1), [T̃2,k(λ)f ](ρ) :=

∫ 1

0
K2,k(ρ, s;λ)f(s)ds

with kernels

K2,1(ρ, s;λ) :=
〈ω〉(λ+ 4)χ(ρ〈ω〉)

W (λ)
ϕ′1(ρ;λ)

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× [1− χ(s〈ω〉)]1R+(ρ− s)

and

K2,k(ρ, s;λ) :=
ρk−2(λ+ 4)χ(ρ〈ω〉)

W (λ)
ϕ

(k)
1 (ρ;λ)

(
(1− s)λc1(s;λ)− (1 + s)λc̃1(s;λ)

)
× [1− χ(s〈ω〉)]1R+(ρ− s).
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Then, for f ∈ D(T̃1,k(λ)), we have the equalities

[T2,1(λ)f ](ρ) = [T̃2,1(λ)f ′](ρ)

and

[T2,k(λ)f ](ρ) = [T̃1,k(λ)f ′](ρ) +
ρk−2(λ+ 4)χ(ρ〈ω〉)

W (λ)

k−1∑
i=1

(
αi,0(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)(k−1−i)

for k = 2, . . . , 5. Straightforward estimates show that the kernels satisfy the bound

|K2,k(ρ, s;λ)| . min{ρ−1, s−1}.

Thus, Lemma 35 implies that the operators T̃2,k extend to bounded operators on L2(0, 1).

Another straightforward estimate shows∣∣∣∣ρk−2(λ+ 4)χ(ρ〈ω〉)
W (λ)

k−1∑
i=1

(
αi,0(ρ;λ)[1−χ(ρ〈ω〉)]f ′(ρ)

)(k−1−i)
∣∣∣∣ . |f ′(ρ)|+ 〈ω〉−1

k−1∑
i=1

|f (i)(ρ)|.

As a consequence, we have the pointwise bound

[T2,k(λ)f ](ρ) . ‖f ′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

)
for any f ∈ C∞e [0, 1]. Taking L2(0, 1) norms yields the desired bound.

We now turn our attention to the operators T3,k(λ), k = 1, . . . 5. Straightforward

estimates yield

∣∣[T3,1(λ)f ](ρ)
∣∣ .〈ω〉−3χ(ρ〈ω〉)

(
〈ω〉6

∫ 1

ρ
〈ω〉−3|f ′′(s)|ds+ 〈ω〉3|f ′(ρ)|

)
.‖f ′′‖L2(0,1) + |f ′(ρ)|,

∣∣[T3,2(λ)f ](ρ)
∣∣ .〈ω〉−4χ(ρ〈ω〉)

(
〈ω〉7

∫ 1

ρ
〈ω〉−3|f ′′(s)|ds+ 〈ω〉4|f ′(ρ)|

)
.‖f ′′‖L2(0,1) + |f ′(ρ)|,
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∣∣[T3,3(λ)f ](ρ)
∣∣ .ρ〈ω〉−4χ(ρ〈ω〉)

(
〈ω〉8

∫ 1

ρ
〈ω〉−3|f ′′(s)|ds+ 〈ω〉5|f ′(ρ)|+ 〈ω〉4|f ′′(ρ)|

)
.‖f ′′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1|f ′′(ρ)|,

∣∣[T3,4(λ)f ](ρ)
∣∣ .ρ2〈ω〉−4χ(ρ〈ω〉)

(
〈ω〉9

∫ 1

ρ
〈ω〉−3|f ′′(s)|ds+ 〈ω〉6|f ′(ρ)|+ 〈ω〉5|f ′′(ρ)|

+ 〈ω〉4|f (3)(ρ)|
)

.‖f ′′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|

)
,

and

∣∣[T3,5(λ)f ](ρ)
∣∣ .ρ3〈ω〉−4χ(ρ〈ω〉)

(
〈ω〉10

∫ 1

ρ
〈ω〉−3|f ′′(s)|ds+ 〈ω〉7|f ′(ρ)|+ 〈ω〉6|f ′′(ρ)|

+ 〈ω〉5|f (3)(ρ)|+ 〈ω〉4|f (4)(ρ)|
)

.‖f ′′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

)
.

Taking L2(0, 1) norms yields the desired bound.

We now turn our attention to the operators T4,k(λ), k = 1, . . . 5. Similar to how

we controlled the operator Q4(λ), we first observe that

|c2(s;λ)| . 〈ω〉−3
(
1 + 〈ω〉s+ 〈ω〉2s2 + 〈ω〉3s3

)
.

In the region s〈ω〉 & 1, it is again useful to integrate by parts the term with 〈ω〉m m-times

in order to control those powers of 〈ω〉. This yields the estimate

∣∣∣∣χ(ρ〈ω〉)
∫ 1

ρ
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

∣∣∣∣
. 〈ω〉−3

(
‖f‖Σ0 + 〈ω〉−1

(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

))
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As a consequence, we have the estimate

∣∣[T4,1(λ)f ](ρ)
∣∣ .〈ω〉−3χ(ρ〈ω〉)

(
〈ω〉6〈ω〉−3

(
‖f‖Σ0 + 〈ω〉−1

(
|f ′′(ρ)|+ |ρf (3)(ρ)|

+ |ρ2f (4)(ρ)|
))

+ 〈ω〉3|f ′(ρ)|
)

.‖f‖Σ0 + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

)
.

Similar straightforward estimates then yield

∣∣[T4,2(λ)f ](ρ)
∣∣ .〈ω〉−4χ(ρ〈ω〉)

(
〈ω〉7〈ω〉−3

(
‖f‖Σ0 + 〈ω〉−1

(
|f ′′(ρ)|+ |ρf (3)(ρ)|

+ |ρ2f (4)(ρ)|
))

+ 〈ω〉4|f ′(ρ)|
)

.‖f‖Σ0 + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

)
,

∣∣[T4,3(λ)f ](ρ)
∣∣ .ρ〈ω〉−4χ(ρ〈ω〉)

(
〈ω〉8〈ω〉−3

(
‖f‖Σ0 + 〈ω〉−1

(
|f ′′(ρ)|+ |ρf (3)(ρ)|

+ |ρ2f (4)(ρ)|
))

+ 〈ω〉5|f ′(ρ)|+ 〈ω〉4|f ′′(ρ)|
)

.‖f‖Σ0 + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

)
,

∣∣[T4,4(λ)f ](ρ)
∣∣ .ρ2〈ω〉−4χ(ρ〈ω〉)

(
〈ω〉9〈ω〉−3

(
‖f‖Σ0 + 〈ω〉−1

(
|f ′′(ρ)|+ |ρf (3)(ρ)|

+ |ρ2f (4)(ρ)|
))

+ 〈ω〉6|f ′(ρ)|+ 〈ω〉5|f ′′(ρ)|+ 〈ω〉4|f (3)(ρ)|
)

.‖f‖Σ0 + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

)
,

and

∣∣[T4,5(λ)f ](ρ)
∣∣ .ρ3〈ω〉−4χ(ρ〈ω〉)

(
〈ω〉10〈ω〉−3

(
‖f‖Σ0 + 〈ω〉−1

(
|f ′′(ρ)|+ |ρf (3)(ρ)|

+ |ρ2f (4)(ρ)|
))

+ 〈ω〉7|f ′(ρ)|+ 〈ω〉6|f ′′(ρ)|+ 〈ω〉5|f (3)(ρ)|+ 〈ω〉4|f (4)(ρ)|
)

.‖f‖Σ0 + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

)
.
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Taking L2(0, 1) norms yields the desired bound.

Next, we turn our attention to the operators T5,k(λ), k = 1, . . . 5. Straightforward

estimates yield

∣∣[T5,1(λ)f ](ρ)
∣∣ .〈ω〉−3[1− χ(ρ〈ω〉)]

(
〈ω〉3ρ−3

∫ ρ

0
〈ω〉−3χ(s〈ω〉)|f ′′(s)|ds+ 〈ω〉−3ρ−6|f ′(ρ)|

)
.‖f ′′‖L2(0,1) + |f ′(ρ)|,

∣∣[T5,2(λ)f ](ρ)
∣∣ .〈ω〉−3ρ[1− χ(ρ〈ω〉)]

(
〈ω〉4ρ−3

∫ ρ

0
〈ω〉−3χ(s〈ω〉)|f ′′(s)|ds+ 〈ω〉−3ρ−7|f ′(ρ)|

)
.‖f ′′‖L2(0,1) + |f ′(ρ)|,

∣∣[T5,3(λ)f ](ρ)
∣∣ .〈ω〉−3ρ2[1− χ(ρ〈ω〉)]

(
〈ω〉5ρ−3

∫ ρ

0
〈ω〉−3χ(s〈ω〉)|f ′′(s)|ds+ 〈ω〉−3ρ−7|f ′′(ρ)|

+ 〈ω〉−3ρ−8|f ′(ρ)|
)

.‖f ′′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1|f ′′(ρ)|,

∣∣[T5,4(λ)f ](ρ)
∣∣ .〈ω〉−3ρ3[1− χ(ρ〈ω〉)]

(
〈ω〉6ρ−3

∫ ρ

0
〈ω〉−3χ(s〈ω〉)|f ′′(s)|ds

+ 〈ω〉−3ρ−7|f (3)(ρ)|+ 〈ω〉−3ρ−8|f ′′(ρ)|+ 〈ω〉−3ρ−9|f ′(ρ)|
)

.‖f ′′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|

)
,

and

∣∣[T5,5(λ)f ](ρ)
∣∣ .〈ω〉−4ρ3[1− χ(ρ〈ω〉)]

(
〈ω〉7ρ−3

∫ ρ

0
〈ω〉−3χ(s〈ω〉)|f ′′(s)|ds

+ 〈ω〉−3ρ−7|f (4)(ρ)|+ 〈ω〉−3ρ−8|f (3)(ρ)|+ 〈ω〉−3ρ−9|f ′′(ρ)|

+ 〈ω〉−3ρ−10|f ′(ρ)|
)

.‖f ′′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

)
.
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Taking L2(0, 1) norms yields the desired bound.

Next, we turn our attention to the operators T6,k(λ), k = 1, . . . 5. Again, straight-

forward estimates yield

∣∣[T6,1(λ)f ](ρ)
∣∣ .〈ω〉−3[1− χ(ρ〈ω〉)]

(
〈ω〉6

∫ 1

ρ
〈ω〉−3|f ′′(s)|ds+ 〈ω〉3|f ′(ρ)|

)
.‖f ′′‖L2(0,1) + |f ′(ρ)|,

∣∣[T6,2(λ)f ](ρ)
∣∣ .〈ω〉−4[1− χ(ρ〈ω〉)]

(
〈ω〉7

∫ 1

ρ
〈ω〉−3|f ′′(s)|ds+ 〈ω〉4|f ′(ρ)|

)
.‖f ′′‖L2(0,1) + |f ′(ρ)|.

∣∣[T6,3(λ)f ](ρ)
∣∣ .〈ω〉−5[1− χ(ρ〈ω〉)]

(
〈ω〉8

∫ 1

ρ
〈ω〉−3|f ′′(s)|ds+ 〈ω〉4|f ′′(ρ)|+ 〈ω〉5|f ′(ρ)|

)
.‖f ′′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1|f ′′(ρ)|,

∣∣[T6,4(λ)f ](ρ)
∣∣ .〈ω〉−6[1− χ(ρ〈ω〉)]

(
〈ω〉9

∫ 1

ρ
〈ω〉−3|f ′′(s)|ds+ 〈ω〉4|f (3)(ρ)|+ 〈ω〉5|f ′′(ρ)|

+ 〈ω〉6|f ′(ρ)|
)

.‖f ′′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|

)
,

and

∣∣[T6,5(λ)f ](ρ)
∣∣ .〈ω〉−7[1− χ(ρ〈ω〉)]

(
〈ω〉10

∫ 1

ρ
〈ω〉−3|f ′′(s)|ds+ 〈ω〉4|f (4)(ρ)|+ 〈ω〉5|f (3)(ρ)|

+ 〈ω〉6|f ′′(ρ)|+ 〈ω〉7|f ′(ρ)|
)

.‖f ′′‖L2(0,1) + |f ′(ρ)|+ 〈ω〉−1
(
|f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|

)
.

Taking L2(0, 1) norms yields the desired bound.
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Next, we turn our attention to the operators T7,k(λ), k = 1, . . . 5. Similar to how

we integrated by parts for the operators T4,k(λ), we obtain the estimate

∣∣∣∣ ∫ 1

0
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

∣∣∣∣ . 〈ω〉−3‖f‖Σ0 .

This implies the bounds

∣∣[T7,1(λ)f ](ρ)
∣∣ .〈ω〉−3[1− χ(ρ〈ω〉)]〈ω〉3ρ−3〈ω〉−3‖f‖Σ0

.‖f‖Σ0 ,

∣∣[T7,2(λ)f ](ρ)
∣∣ .〈ω〉−3ρ[1− χ(ρ〈ω〉)]〈ω〉4ρ−3〈ω〉−3‖f‖Σ0

.‖f‖Σ0 ,

∣∣[T7,3(λ)f ](ρ)
∣∣ .〈ω〉−3ρ2[1− χ(ρ〈ω〉)]〈ω〉5ρ−3〈ω〉−3‖f‖Σ0

.‖f‖Σ0 ,

∣∣[T7,4(λ)f ](ρ)
∣∣ .〈ω〉−3ρ3[1− χ(ρ〈ω〉)]〈ω〉6ρ−3〈ω〉−3‖f‖Σ0

.‖f‖Σ0 ,

and

∣∣[T7,5(λ)f ](ρ)
∣∣ .〈ω〉−4ρ3[1− χ(ρ〈ω〉)]〈ω〉7ρ−3〈ω〉−3‖f‖Σ0

.‖f‖Σ0 .

Taking L2(0, 1) norms yields the desired bound.

Now, we turn our attention to the operators T8,k(λ), k = 1, . . . , 5. Though these

operators are not singular, controlling them is more delicate than the rest. For convenience,
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recall

[T8,1(λ)f ](ρ) =
〈ω〉(λ+ 4)[1− χ(ρ〈ω〉)]

W (λ)

(
ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)1+λc̃2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

+ ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

− γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)
.

For the integrals, observe that integrating by parts three times yields

ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)1+λc̃2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

+ ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)[1− χ(s〈ω〉)]f ′′(s)ds

=− ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)4+λc̃5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

− ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)4+λc5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ γ1,4(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)′′ − γ1,3(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)′
+ γ1,2(ρ;λ)[1− χ(ρ〈ω〉)]f ′′(ρ).

As a consequence, we obtain the bound

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)4+λc̃5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)4+λc5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

∣∣∣∣
.[1− χ(ρ〈ω〉)]〈ω〉3ρ−3

∫ 1

0
〈ω〉−3s3

∣∣[1− χ(s〈ω〉)]f ′′(s)
)(3)∣∣ds

.〈ω〉3‖f‖Σ0 .
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This implies the bound

∣∣[T8,1(λ)f ](ρ)
∣∣ .〈ω〉−3[1− χ(ρ〈ω〉)]

(
〈ω〉3‖f‖Σ0 + |f (4)(ρ)|+ 〈ω〉|f (3)(ρ)|+ 〈ω〉2|f ′′(ρ)|

+ 〈ω〉3|f ′(ρ)|
)

.‖f‖Σ0 + |f ′(ρ)|+ |f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f
(4)
1 (ρ)|.

A straightforward calculation involving one integration by parts yields

[T8,2(λ)f ](ρ) =− 〈ω〉ρ(λ+ 4)[1− χ(ρ〈ω〉)]
W (λ)

(
ϕ′′1(ρ;λ)

∫ ρ

0
(1 + s)2+λc̃3(s;λ)

×
(
[1− χ(s〈ω〉)]f ′′(s)

)′
ds

+ ϕ̃′′1(ρ;λ)

∫ 1

ρ
(1− s)2+λc3(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)′
ds

− γ2,2(ρ;λ)[1− χ(ρ〈ω〉)]f ′′(ρ)− γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′′(ρ)

+
(
γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)′)
.

For the integrals, integrating by parts twice yields

ϕ′′1(ρ;λ)

∫ ρ

0
(1 + s)2+λc̃3(s;λ)

(
[1− χ(s〈ω〉)]f ′′1 (s)

)′
ds

+ ϕ̃′′1(ρ;λ)

∫ 1

ρ
(1− s)2+λc3(s;λ)

(
[1− χ(s〈ω〉)]f ′′1 (s)

)′
ds

=ϕ′′1(ρ;λ)

∫ ρ

0
(1 + s)4+λc̃5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ ϕ̃′′1(ρ;λ)

∫ 1

ρ
(1− s)4+λc5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

− γ2,4(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)′′
+ γ2,3(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)′
.
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This implies the bound

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ′′1(ρ;λ)

∫ ρ

0
(1 + s)4+λc̃5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ ϕ̃′′1(ρ;λ)

∫ 1

ρ
(1− s)4+λc5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

∣∣∣∣
.[1− χ(ρ〈ω〉)]〈ω〉4ρ−3

∫ 1

0
〈ω〉−3s3

∣∣[1− χ(s〈ω〉)]f ′′(s)
)(3)∣∣ds

.〈ω〉3ρ−1‖f‖Σ0 .

As a consequence, we obtain the bound

∣∣[T8,2(λ)f ](ρ)
∣∣ .〈ω〉−3ρ[1− χ(ρ〈ω〉)]

(
〈ω〉3ρ−1‖f‖Σ0 + 〈ω〉|f (4)(ρ)|+ 〈ω〉2|f (3)(ρ)|

+ 〈ω〉3|f ′′(ρ)|+ 〈ω〉3ρ−1|f ′(ρ)|
)

.‖f‖Σ0 + |f ′(ρ)|+ |f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f
(4)
1 (ρ)|.

Another straightforward calculation involving one integration by parts yields

[T8,3(λ)f ](ρ) =
〈ω〉ρ2(λ+ 4)[1− χ(ρ〈ω〉)]

W (λ)

(
ϕ

(3)
1 (ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

×
(
[1− χ(s〈ω〉)]f ′′(s)

)′′
ds

+ ϕ̃
(3)
1 (ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)′′
ds

− γ3,3(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)′
+
(
γ2,2(ρ;λ)[1− χ(ρ〈ω〉)]f ′′(ρ)

)′
+
(
γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′′(ρ)

)′ − (γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)
)′′)

.
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For the integrals, integrating by parts once yields

ϕ
(3)
1 (ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)′′
ds

+ ϕ̃
(3)
1 (ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)′′
ds

=− ϕ(3)
1 (ρ;λ)

∫ ρ

0
(1 + s)4+λc̃5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

− ϕ̃(3)
1 (ρ;λ)

∫ 1

ρ
(1− s)4+λc5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ γ3,4(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)′′
.

Thus, we have the estimate

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ(3)

1 (ρ;λ)

∫ ρ

0
(1 + s)4+λc̃5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ ϕ̃
(3)
1 (ρ;λ)

∫ 1

ρ
(1− s)4+λc5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

∣∣∣∣
.[1− χ(ρ〈ω〉)]〈ω〉5ρ−3

∫ 1

0
〈ω〉−3s3

∣∣[1− χ(s〈ω〉)]f ′′(s)
)(3)∣∣ds

.〈ω〉3ρ−2‖f‖Σ0 .

This implies the bound

∣∣[T8,3(λ)f ](ρ)
∣∣ .〈ω〉−3ρ2[1− χ(ρ〈ω〉)]

(
〈ω〉3ρ−2‖f‖Σ0 + 〈ω〉2|f (4)(ρ)|+ 〈ω〉3|f (3)(ρ)|

+ 〈ω〉3ρ−1|f ′′(ρ)|+ 〈ω〉3ρ−2|f ′(ρ)|
)

.‖f‖Σ0 + |f ′(ρ)|+ |f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|.
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Again, another straightforward calculation involving one integration by parts yields

[T8,4(λ)f ](ρ) =− 〈ω〉ρ
3(λ+ 4)[1− χ(ρ〈ω〉)]

W (λ)

(
ϕ

(4)
1 (ρ;λ)

∫ ρ

0
(1 + s)4+λc̃5(s;λ)

×
(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ ϕ̃
(4)
1 (ρ;λ)

∫ 1

ρ
(1− s)4+λc5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

− γ4,4(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)′′
+
(
γ3,3(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)′)′
−
(
γ2,2(ρ;λ)[1− χ(ρ〈ω〉)]f ′′(ρ)

)′′ − (γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′′(ρ)
)′′

+
(
γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)(3)
)
.

For the integrals, we obtain the bound

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ(4)

1 (ρ;λ)

∫ ρ

0
(1 + s)4+λc̃5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ ϕ̃
(4)
1 (ρ;λ)

∫ 1

ρ
(1− s)4+λc5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

∣∣∣∣
.[1− χ(ρ〈ω〉)]〈ω〉6ρ−3

∫ 1

0
〈ω〉−3s3

∣∣[1− χ(s〈ω〉)]f ′′(s)
)(3)∣∣ds

.〈ω〉3ρ−3‖f‖Σ0 .

This implies the bound

∣∣[T8,4(λ)f ](ρ)
∣∣ .〈ω〉−3ρ3[1− χ(ρ〈ω〉)]

(
〈ω〉3ρ−3‖f‖Σ0 + 〈ω〉3|f (4)(ρ)|+ 〈ω〉3ρ−1|f (3)(ρ)|

+ 〈ω〉3ρ−2|f ′′(ρ)|+ 〈ω〉3ρ−3|f ′(ρ)|
)

. ‖f‖Σ0 + |f ′(ρ)|+ |f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|.
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One last straightforward calculation shows

[T8,5(λ)f ](ρ) =− ρ3(λ+ 4)[1− χ(ρ〈ω〉)]
W (λ)

(
ϕ

(5)
1 (ρ;λ)

∫ ρ

0
(1 + s)4+λc̃5(s;λ)

×
(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ ϕ̃
(5)
1 (ρ;λ)

∫ 1

ρ
(1− s)4+λc5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ γ4,4(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)(3) −
(
γ4,4(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)′′)′
+
(
γ3,3(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′′(ρ)

)′)′′ − (γ2,2(ρ;λ)[1− χ(ρ〈ω〉)]f ′′(ρ)
)(3)

−
(
γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′′(ρ)

)(3)
+
(
γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)(4)
)
.

Observe that the coefficient of f (5)(ρ) vanishes. For the integrals, we obtain the bound

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ(5)

1 (ρ;λ)

∫ ρ

0
(1 + s)4+λc̃5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

+ ϕ̃
(5)
1 (ρ;λ)

∫ 1

ρ
(1− s)4+λc5(s;λ)

(
[1− χ(s〈ω〉)]f ′′(s)

)(3)
ds

∣∣∣∣
.[1− χ(ρ〈ω〉)]〈ω〉7ρ−3

∫ 1

0
〈ω〉−3s3

∣∣[1− χ(s〈ω〉)]f ′′(s)
)(3)∣∣ds

.〈ω〉4ρ−3‖f‖Σ0 .

This implies the bound

∣∣[T8,5(λ)f ](ρ)
∣∣ .〈ω〉−4ρ3[1− χ(ρ〈ω〉)]

(
〈ω〉4ρ−3‖f‖Σ0 + 〈ω〉3ρ−1|f (4)(ρ)|+ 〈ω〉3ρ−2|f (3)(ρ)|

+ 〈ω〉3ρ−3|f ′′(ρ)|+ 〈ω〉3ρ−4|f ′(ρ)|
)

. ‖f‖Σ0 + |f ′(ρ)|+ |f ′′(ρ)|+ |ρf (3)(ρ)|+ |ρ2f (4)(ρ)|.

Taking L2(0, 1) norms yields the desired bound.

We turn our attention to the operators R1,k(λ), k = 1, . . . , 5. Straightforward
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estimates show

∣∣[R1,1(λ)f ](ρ)
∣∣ .〈ω〉−4χ(ρ〈ω〉)ρ−6

∫ ρ

0
〈ω〉5s7|f ′(s)|ds

. ‖f ′‖L2(0,1),

∣∣[R1,2(λ)f ](ρ)
∣∣ .〈ω〉−5χ(ρ〈ω〉)

(
ρ−7

∫ ρ

0
〈ω〉5s7|f ′(s)|ds+ 〈ω〉4|f ′(ρ)|

)
.‖f ′‖L2(0,1) + 〈ω〉−1|f ′(ρ)|,

∣∣[R1,3(λ)f ](ρ)
∣∣ .ρ〈ω〉−5χ(ρ〈ω〉)

(
ρ−8

∫ ρ

0
〈ω〉5s7|f ′(s)|ds+ 〈ω〉5|f ′(ρ)|+ 〈ω〉4|f ′′(ρ)|

)
.‖f ′‖L2(0,1) + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|

)
,

∣∣[R1,4(λ)f ](ρ)
∣∣ .ρ2〈ω〉−5χ(ρ〈ω〉)

(
ρ−9

∫ ρ

0
〈ω〉5s7|f ′(s)|ds+ 〈ω〉5ρ−1|f ′(ρ)|+ 〈ω〉5|f ′′(ρ)|

+ 〈ω〉4|f (3)(ρ)|
)

.‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
,

∣∣[R1,5(λ)f ](ρ)
∣∣ .ρ3〈ω〉−5χ(ρ〈ω〉)

(
ρ−10

∫ ρ

0
〈ω〉5s7|f ′(s)|ds+ 〈ω〉5ρ−2|f ′(ρ)|+ 〈ω〉5ρ−1|f ′′(ρ)|

+ 〈ω〉5|f (3)(ρ)|+ 〈ω〉4|f (4)(ρ)|
)

.‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|+ |ρ3f (4)(ρ)|

)
.

Taking L2(0, 1) norms yields the desired bound.

Now, we turn our attention to the operators R2,k(λ), k = 1, . . . , 5. Straightforward

estimates show

∣∣[R2,1(λ)f ](ρ)
∣∣ .〈ω〉−4χ(ρ〈ω〉)ρ−6

∫ ρ

0
〈ω〉5s7|f ′(s)|ds

. ‖f ′‖L2(0,1),
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∣∣[R2,2(λ)f ](ρ)
∣∣ .〈ω〉−5χ(ρ〈ω〉)

(
ρ−7

∫ ρ

0
〈ω〉5s7|f ′(s)|ds+ 〈ω〉4|f ′(ρ)|

)
.‖f ′‖L2(0,1) + 〈ω〉−1|f ′(ρ)|,

∣∣[R2,3(λ)f ](ρ)
∣∣ .ρ〈ω〉−5χ(ρ〈ω〉)

(
ρ−8

∫ ρ

0
〈ω〉5s7|f ′(s)|ds+ 〈ω〉5|f ′(ρ)|+ 〈ω〉4|f ′′(ρ)|

)
.‖f ′‖L2(0,1) + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|

)
,

∣∣[R2,4(λ)f ](ρ)
∣∣ .ρ2〈ω〉−5χ(ρ〈ω〉)

(
ρ−9

∫ ρ

0
〈ω〉5s7|f ′(s)|ds+ 〈ω〉5ρ−1|f ′(ρ)|+ 〈ω〉5|f ′′(ρ)|

+ 〈ω〉4|f (3)(ρ)|
)

.‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
,

and

∣∣[R2,5(λ)f ](ρ)
∣∣ .ρ3〈ω〉−5χ(ρ〈ω〉)

(
ρ−10

∫ ρ

0
〈ω〉5s7|f ′(s)|ds+ 〈ω〉5ρ−2|f ′(ρ)|+ 〈ω〉5ρ−1|f ′′(ρ)|

+ 〈ω〉5|f (3)(ρ)|+ 〈ω〉4|f (4)(ρ)|
)

.‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|+ |ρ3f (4)(ρ)|

)
.

Taking L2(0, 1) norms yields the desired bound.

We turn our attention to the operators R3,k(λ), k = 1, . . . , 5. Straightforward

estimates show

∣∣[R3,1(λ)f ](ρ)
∣∣ .〈ω〉−4χ(ρ〈ω〉)〈ω〉6

∫ 1

ρ
〈ω〉−2|f ′(s)|ds

.‖f ′‖L2(0,1),

∣∣[R3,2(λ)f ](ρ)
∣∣ .〈ω〉−5χ(ρ〈ω〉)

(
〈ω〉7

∫ 1

ρ
〈ω〉−2|f ′(s)|ds+ 〈ω〉4|f ′(ρ)|

)
.‖f ′‖L2(0,1) + 〈ω〉−1|f ′(ρ)|,
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∣∣[R3,3(λ)f ](ρ)
∣∣ .ρ〈ω〉−5χ(ρ〈ω〉)

(
〈ω〉8

∫ 1

ρ
〈ω〉−2|f ′(s)|ds+ 〈ω〉4|f ′′(ρ)|+ 〈ω〉5|f ′(ρ)|

)
. ‖f ′‖L2(0,1) + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|

)
,

∣∣[R3,4(λ)f ](ρ)
∣∣ .ρ2〈ω〉−5χ(ρ〈ω〉)

(
〈ω〉9

∫ 1

ρ
〈ω〉−2|f ′(s)|ds+ 〈ω〉4|f (3)(ρ)|+ 〈ω〉5|f ′′(ρ)|

+ 〈ω〉6|f ′(ρ)|
)

. ‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
,

and

∣∣[R3,5(λ)f ](ρ)
∣∣ .ρ3〈ω〉−5χ(ρ〈ω〉)

(
〈ω〉10

∫ 1

ρ
〈ω〉−2|f ′(s)|ds+ 〈ω〉4|f (4)(ρ)|+ 〈ω〉5|f (3)(ρ)|

+ 〈ω〉6|f ′′(ρ)|+ 〈ω〉7|f ′(ρ)|
)

. ‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|+ |ρ3f (4)(ρ)|

)
.

Taking L2(0, 1) norms yields the desired bound.

We now turn our attention to the operators R4,k(λ), k = 1, . . . , 5. Using the same

estimate we obtained for Q4(λ), we obtain the bounds

∣∣[R4,1(λ)f ](ρ)
∣∣ .〈ω〉−4χ(ρ〈ω〉)〈ω〉6〈ω〉−2

(
‖f‖Σ1 + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

))
. ‖f‖Σ1 + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
,

∣∣[R4,2(λ)f ](ρ)
∣∣ .〈ω〉−5χ(ρ〈ω〉)

(
〈ω〉7〈ω〉−2

(
‖f‖Σ1 + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

))
+ 〈ω〉4|f ′(ρ)|

)
. ‖f‖Σ1 + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
,
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∣∣[R4,3(λ)f ](ρ)
∣∣ .ρ〈ω〉−5χ(ρ〈ω〉)

(
〈ω〉8〈ω〉−2

(
‖f‖Σ1 + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|

+ |ρ2f (3)(ρ)|
))

+ 〈ω〉4|f ′′(ρ)|+ 〈ω〉5|f ′(ρ)|
)

. ‖f‖Σ1 + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
,

∣∣[R4,4(λ)f ](ρ)
∣∣ .ρ2〈ω〉−5χ(ρ〈ω〉)

(
〈ω〉9〈ω〉−2

(
‖f‖Σ1 + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|

+ |ρ2f (3)(ρ)|
))

+ 〈ω〉4|f (3)(ρ)|+ 〈ω〉5|f ′′(ρ)|+ 〈ω〉6|f ′(ρ)|
)

. ‖f‖Σ1 + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
,

and

∣∣[R4,5(λ)f ](ρ)
∣∣ .ρ3〈ω〉−5χ(ρ〈ω〉)

(
〈ω〉10〈ω〉−2

(
‖f‖Σ1 + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|

+ |ρ2f (3)(ρ)|+ |ρ3f (4)(ρ)|
))

+ 〈ω〉4|f (4)(ρ)|+ 〈ω〉5|f (3)(ρ)|+ 〈ω〉6|f ′′(ρ)|

+ 〈ω〉7|f ′(ρ)|
)

. ‖f‖Σ1 + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|+ |ρ3f (4)(ρ)|

)
.

Taking L2(0, 1) norms yields the desired bound.

Now, we turn our attention to the operators R5,k(λ), k = 1, . . . , 5. Straightforward

estimates yield

∣∣[R5,1(λ)f ](ρ)
∣∣ .〈ω〉−4[1− χ(ρ〈ω〉)]〈ω〉3ρ−3

∫ ρ

0
〈ω〉−2χ(s〈ω〉)|f ′(s)|ds

.‖f ′‖L2(0,1),

∣∣[R5,2(λ)f ](ρ)
∣∣ .〈ω〉−4ρ[1− χ(ρ〈ω〉)]

(
〈ω〉4ρ−3

∫ ρ

0
〈ω〉−2χ(s〈ω〉)|f ′(s)|ds+ 〈ω〉3ρ−1|f ′(ρ)|

)
.‖f ′‖L2(0,1) + 〈ω〉−1|f ′(ρ)|,
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∣∣[R5,3(λ)f ](ρ)
∣∣ .〈ω〉−4ρ2[1− χ(ρ〈ω〉)]

(
〈ω〉5ρ−3

∫ ρ

0
〈ω〉−2χ(s〈ω〉)|f ′(s)|ds+ 〈ω〉3ρ−1|f ′′(ρ)|

+ 〈ω〉3ρ−2|f ′(ρ)|
)

.‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|

)
,

∣∣[R5,4(λ)f ](ρ)
∣∣ .〈ω〉−4ρ3[1− χ(ρ〈ω〉)]

(
〈ω〉6ρ−3

∫ ρ

0
〈ω〉−2χ(s〈ω〉)|f ′(s)|ds+ 〈ω〉3ρ−1|f (3)(ρ)|

+ 〈ω〉3ρ−2|f ′′(ρ)|+ 〈ω〉3ρ−3|f ′(ρ)|
)

.‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
,

and

∣∣[R5,5(λ)f ](ρ)
∣∣ .〈ω〉−5ρ3[1− χ(ρ〈ω〉)]

(
〈ω〉7ρ−3

∫ ρ

0
〈ω〉−2χ(s〈ω〉)|f ′(s)|ds+ 〈ω〉3ρ−1|f (4)(ρ)|

+ 〈ω〉3ρ−2|f (3)(ρ)|+ 〈ω〉3ρ−3|f ′′(ρ)|+ 〈ω〉4ρ−3|f ′(ρ)|
)

.‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|+ |ρ3f (4)(ρ)|

)
.

Taking L2(0, 1) norms yields the desired bound.

We turn our attention to the operators R6,k(λ), k = 1, . . . , 5. Straightforward

estimates yield

∣∣[R6,1(λ)f ](ρ)
∣∣ .〈ω〉−4[1− χ(ρ〈ω〉)]〈ω〉6

∫ 1

ρ
〈ω〉−2|f ′(s)|ds

.‖f ′‖L2(0,1),

∣∣[R6,2(λ)f ](ρ)
∣∣ .〈ω〉−5[1− χ(ρ〈ω〉)]

(
〈ω〉7

∫ 1

ρ
〈ω〉−2|f ′(s)|ds+ 〈ω〉4|f ′(ρ)|

)
.‖f ′‖L2(0,1) + 〈ω〉−1|f ′(ρ)|,
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∣∣[R6,3(λ)f ](ρ)
∣∣ .〈ω〉−6[1− χ(ρ〈ω〉)]

(
〈ω〉8

∫ 1

ρ
〈ω〉−2|f ′(s)|ds+ 〈ω〉4|f ′′(ρ)|+ 〈ω〉5|f ′(ρ)|

)
.‖f ′‖L2(0,1) + 〈ω〉−1

(
|f ′(ρ)|+ |ρf ′′(ρ)|

)
,

∣∣[R6,4(λ)f ](ρ)
∣∣ .〈ω〉−7[1− χ(ρ〈ω〉)]

(
〈ω〉9

∫ 1

ρ
〈ω〉−2|f ′(s)|ds+ 〈ω〉4|f (3)(ρ)|+ 〈ω〉5|f ′′(ρ)|

+ 〈ω〉6|f ′(ρ)|
)

.‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
,

and

∣∣[R6,5(λ)f ](ρ)
∣∣ .〈ω〉−8[1− χ(ρ〈ω〉)]

(
〈ω〉10

∫ 1

ρ
〈ω〉−2|f ′(s)|ds+ 〈ω〉4|f (4)(ρ)|+ 〈ω〉5|f (3)(ρ)|

+ 〈ω〉6|f ′′(ρ)|+ 〈ω〉7|f ′(ρ)|
)

.‖f ′‖L2(0,1) + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|+ |ρ3f (4)(ρ)|

)
.

Taking L2(0, 1) norms yields the desired bound.

We turn our attention to the operators R7,k(λ), k = 1, . . . , 5. Using the bound we

obtained to control Q7(λ), we obtain the bounds

∣∣[R7,1(λ)f ](ρ)
∣∣ .〈ω〉−4[1− χ(ρ〈ω〉)]〈ω〉3ρ−3〈ω〉−2‖f‖Σ1

.‖f‖Σ1 ,

∣∣[R7,2(λ)f ](ρ)
∣∣ .〈ω〉−4ρ[1− χ(ρ〈ω〉)]〈ω〉4ρ−3〈ω〉−2‖f‖Σ1

.‖f‖Σ1 ,

∣∣[R7,3(λ)f ](ρ)
∣∣ .〈ω〉−4ρ2[1− χ(ρ〈ω〉)]〈ω〉5ρ−3〈ω〉−2‖f‖Σ1

.‖f‖Σ1 ,
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∣∣[R7,4(λ)f ](ρ)
∣∣ .〈ω〉−4ρ3[1− χ(ρ〈ω〉)]〈ω〉6ρ−3〈ω〉−2‖f‖Σ1

.‖f‖Σ1 ,

and

∣∣[R7,5(λ)f ](ρ)
∣∣ .〈ω〉−5ρ3[1− χ(ρ〈ω〉)]〈ω〉7ρ−3〈ω〉−2‖f‖Σ1

.‖f‖Σ1 .

Taking L2(0, 1) norms yields the desired bound.

Last, we turn our attention to the operators R8,k(λ), k = 1, . . . , 5. Similar to the

operators T8,k(λ), controlling these operators is also very delicate. In fact, R8,5(λ) is also

singular and a fair amount of care will need to be taken to control it. For convenience,

recall

[R8,1(λ)f ](ρ) =− 〈ω〉[1− χ(ρ〈ω〉)]
W (λ)

(
ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)λc̃1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

+ ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

)
.

For the integrals, integrating by parts yields

ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)λc̃1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

+ ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)λc1(s;λ)[1− χ(s〈ω〉)]f ′(s)ds

=− ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

− ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

+ γ1,3(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′′ − γ1,2(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′
+ γ1,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)
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For the integrals, we obtain the bound

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ′1(ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

+ ϕ̃′1(ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

∣∣∣∣
.[1− χ(ρ〈ω〉)]〈ω〉3ρ−3

∫ 1

0
〈ω〉−2s3

∣∣([1− χ(s〈ω〉)]f ′(s)
)(3)∣∣ds

.〈ω〉ρ−3‖f‖Σ1 .

This implies the bound

∣∣[R8,1(λ)f ](ρ)
∣∣ .〈ω〉−4[1− χ(ρ〈ω〉)]

(
〈ω〉ρ−3‖f‖Σ1 + 〈ω〉|f (3)(ρ)|+ 〈ω〉2|f ′′(ρ)|

+ 〈ω〉3|f ′(ρ)|
)

. ‖f‖Σ1 + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
.

A straightforward calculation involving one integration by parts shows

[R8,2(λ)f ](ρ) =− 〈ω〉ρ[1− χ(ρ〈ω〉)]
W (λ)

(
− ϕ′′1(ρ;λ)

∫ ρ

0
(1 + s)1+λc̃2(s;λ)

×
(
[1− χ(s〈ω〉)]f ′(s)

)′
ds

− ϕ̃′′1(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)′
ds

+ γ2,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)

which follows after one integrations by parts and recalling γ1,0(ρ;λ) = 0. Two integration
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by parts yields

ϕ′′1(ρ;λ)

∫ ρ

0
(1 + s)1+λc̃2(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)′
ds

+ ϕ̃′′1(ρ;λ)

∫ 1

ρ
(1− s)1+λc2(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)′
ds

=ϕ′′1(ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

+ ϕ̃′′1(ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

− γ2,3(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′′
+ γ2,2(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′
For the integrals, we obtain the bound

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ′′1(ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

+ ϕ̃′′1(ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

∣∣∣∣
.[1− χ(ρ〈ω〉)]〈ω〉4ρ−3

∫ 1

0
〈ω〉−2s3

∣∣([1− χ(s〈ω〉)]f ′(s)
)(3)∣∣ds

.〈ω〉2ρ−3‖f‖Σ1 .

This implies the bound

∣∣[R8,2(λ)f ](ρ)
∣∣ .〈ω〉−4ρ[1− χ(ρ〈ω〉)]

(
〈ω〉2ρ−3‖f‖Σ1 + 〈ω〉2|f (3)(ρ)|+ 〈ω〉3|f ′′(ρ)|

+ 〈ω〉3ρ−1|f ′(ρ)|
)

. ‖f‖Σ1 + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
.
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Another straightforward calculation involving one integration by parts shows

[R8,3(λ)f ](ρ) =− 〈ω〉ρ
2[1− χ(ρ〈ω〉)]
W (λ)

(
ϕ

(3)
1 (ρ;λ)

∫ ρ

0
(1 + s)2+λc̃3(s;λ)

×
(
[1− χ(s〈ω〉)]f ′(s)

)′′
ds

+ ϕ̃
(3)
1 (ρ;λ)

∫ 1

ρ
(1− s)2+λc3(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)′′
ds

− γ3,2(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′ − γ2,1(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′
+
(
γ2,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)′)
.

One integration by parts yields

ϕ
(3)
1 (ρ;λ)

∫ ρ

0
(1 + s)2+λc̃3(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)′′
ds

+ ϕ̃
(3)
1 (ρ;λ)

∫ 1

ρ
(1− s)2+λc3(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)′′
ds

=− ϕ(3)
1 (ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

− ϕ̃(3)
1 (ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

+ γ3,3(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′′
.

For the integrals, we obtain the bound

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ(3)

1 (ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

+ ϕ̃
(3)
1 (ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

∣∣∣∣
.[1− χ(ρ〈ω〉)]〈ω〉5ρ−3

∫ 1

0
〈ω〉−2s3

∣∣([1− χ(s〈ω〉)]f ′(s)
)(3)∣∣ds

.〈ω〉3ρ−3‖f‖Σ1 .
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This implies the bound

∣∣[R8,3(λ)f ](ρ)
∣∣ .〈ω〉−4ρ2[1− χ(ρ〈ω〉)]

(
〈ω〉3ρ−3‖f‖Σ1 + 〈ω〉3|f (3)(ρ)|+ 〈ω〉3ρ−1|f ′′(ρ)|

+ 〈ω〉3ρ−2|f ′(ρ)|
)

. ‖f‖Σ1 + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
.

Another straightforward calculation involving one integration by parts shows

[R8,4(λ)f ](ρ) =− 〈ω〉ρ
3[1− χ(ρ〈ω〉)]
W (λ)

(
− ϕ(4)

1 (ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

×
(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

− ϕ̃(4)
1 (ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

+ γ4,3(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′′
+ γ3,2(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′′
−
(
γ3,2(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′)′ − (γ2,1(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′)′
+
(
γ2,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)′′)

which follows after one integration by parts. For the integrals, we obtain the bound

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ(4)

1 (ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

+ ϕ̃
(4)
1 (ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

∣∣∣∣
.[1− χ(ρ〈ω〉)]〈ω〉6ρ−3

∫ 1

0
〈ω〉−2s3

∣∣([1− χ(s〈ω〉)]f ′(s)
)(3)∣∣ds

.〈ω〉4ρ−3‖f‖Σ1 .
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This implies the bound

∣∣[R8,4(λ)f ](ρ)
∣∣ .〈ω〉−4ρ3[1− χ(ρ〈ω〉)]

(
〈ω〉4ρ−3‖f‖Σ1 + 〈ω〉3ρ−1|f (3)(ρ) + 〈ω〉3ρ−2|f ′′(ρ)|

+ 〈ω〉3ρ−3|f ′(ρ)|
)

. ‖f‖Σ1 + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|

)
.

Lastly, a straightforward calculation shows

[R8,5(λ)f ](ρ) =− ρ3[1− χ(ρ〈ω〉)]
W (λ)

(
− ϕ(5)

1 (ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

×
(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

− ϕ̃(5)
1 (ρ;λ)

∫ 1

ρ
(1− s)3+λc4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

− γ4,3(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)(3)
+
(
γ4,3(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′′)′
+
(
γ3,2(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′′)′ − (γ3,2(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′)′′
−
(
γ2,1(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′)′′
+
(
γ2,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)(3)
)
.

For the first integral, we obtain the bound

[1− χ(ρ〈ω〉)]
∣∣∣∣ϕ(5)

1 (ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

∣∣∣∣
.[1− χ(ρ〈ω〉)]〈ω〉7ρ−3

∫ 1

0
〈ω〉−2s3

∣∣([1− χ(s〈ω〉)]f ′(s)
)(3)∣∣ds

.〈ω〉5ρ−3‖f‖Σ1 .

The second integral, like the operators T1,k and T2,k, is too singular at ρ = 1 to be controlled

in a straightforward manner. Instead, we define R̃8,5(λ) : D(R̃8,5(λ)) ⊂ L2(0, 1)→ L2(0, 1)

by

D(R̃8,5(λ)) = C∞c (0, 1), [R̃8,5(λ)f ](ρ) :=

∫ 1

0
K8,5(ρ, s;λ)f(s)ds
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where the kernel is given by

K8,5(ρ, s;λ) :=
ρ3[1− χ(ρ〈ω〉)]

W (λ)
ϕ̃

(5)
1 (ρ;λ)(1− s)3+λc4(s;λ)s−31R+(s− ρ).

A straightforward estimate shows that the kernel satisfies the pointwise bound

|K8,5(ρ, s;λ)| . min{(1− ρ)−1, (1− s)−1}.

Thus, Lemma 35 implies that R̃8,5(λ) extends to a bounded operator on L2(0, 1). Thus, we

have the equality

[R8,5(λ)f ](ρ) =− ρ3[1− χ(ρ〈ω〉)]
W (λ)

(
− ϕ(5)

1 (ρ;λ)

∫ ρ

0
(1 + s)3+λc̃4(s;λ)

×
(
[1− χ(s〈ω〉)]f ′(s)

)(3)
ds

− γ4,3(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)(3)
+
(
γ4,3(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′′)′
+
(
γ3,2(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′′)′ − (γ3,2(ρ;λ)
(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′)′′
−
(
γ2,1(ρ;λ)

(
[1− χ(ρ〈ω〉)]f ′(ρ)

)′)′′
+
(
γ2,1(ρ;λ)[1− χ(ρ〈ω〉)]f ′(ρ)

)(3)
)

+

[
R̃8,5(λ)

(
s3
([

1− χ
(
(·)〈ω〉

)]
f ′
)(3)

)]
(ρ)

for f ∈ C∞e [0, 1]. Consequently, we obtain the bound

∣∣[R8,5(λ)f ](ρ)
∣∣ .〈ω〉−5ρ3[1− χ(ρ〈ω〉)]

(
〈ω〉5ρ−3‖f‖Σ1 + 〈ω〉3ρ−1|f (4)(ρ)|+ 〈ω〉3ρ−2|f (3)(ρ)|

+ 〈ω〉3ρ−3|f ′′(ρ)|+ 〈ω〉3ρ−4|f ′(ρ)|
)

. ‖f‖Σ1 + 〈ω〉−1
(
|f ′(ρ)|+ |ρf ′′(ρ)|+ |ρ2f (3)(ρ)|+ |ρ3f (4)(ρ)|

)
.

Taking L2(0, 1) norms yields the desired bound.
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2.6 Appendix

2.6.1 Proof of Equivalent Norms

In this section, we prove Proposition 4. It suffices to prove the equivalence on

C∞e [0, 1]2 as the rest of H follows by density. We begin with the following lemma.

Lemma 38 We have that ‖u‖2Σ . ‖D7u1‖2H3(0,1) + ‖D7u2‖2H2(0,1) for all u ∈ C∞e [0, 1]2.

Proof. It suffices to show

‖u‖2Σ0
. ‖D7u‖2H3(0,1)

for all u ∈ C∞e [0, 1]2. A proof of the analogous estimate for ‖·‖Σ1 can be found in [17] Lemma

C.3. Begin by setting w := D7u. Then w ∈ C∞[0, 1] and w(2n)(0) = 0 for n ∈ N0. Upon

applying the fundamental theorem of calculus and using the fact that w(0) = w′′(0) = 0,

we have that

w(ρ) = ρw′(0) +

∫ ρ

0

∫ σ

0

∫ τ

0
w′′′(r)drdτdσ.

By setting Vw(ρ) :=
∫ ρ

0 w(s)ds, we infer that

K7w(ρ) = k7w
′(0) +K7V3w′′′(ρ)

for some constant k7 ∈ R. We have

‖u‖H1(0,1) . ‖D7u‖H2(0,1)

as a consequence of Lemma C.3 of [17]. Thus, it is sufficient to show

‖(·)n−2(K7w)n‖2L2(0,1) . ‖w‖
2
H3(0,1)
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for n = 2, 3, 4, 5. By direct computation, we find

(K7w)′′(ρ) =
2∑
j=0

β2,jρ
−3−2jKjV3w′′′(ρ)

ρ(K7w)′′′(ρ) =

2∑
j=0

β3,jρ
−3−2jKjV3w′′′(ρ) + α3,2ρ

−2V2w′′′(ρ)

ρ2(K7w)(4)(ρ) =
2∑
j=0

β4,jρ
−3−2jKjV3w′′′(ρ) + α4,2ρ

−2V2w′′′(ρ) + α4,1ρ
−1Vw′′′(ρ)

ρ3(K7w)(5)(ρ) =
2∑
j=0

β5,jρ
−3−2jKjV3w′′′(ρ) + α5,2ρ

−2V2w′′′(ρ)

+ α5,1ρ
−1Vw′′′(ρ) + w′′′(ρ)

for some constants βn,j , αn,j ∈ Z. Since (K2V3w′′′)(n)(0) = 0 for n = 0, 1, 2, 3, 4, 5, 6,

(KV3w′′′)(n)(0) = 0 for n = 0, 1, 2, 3, 4, and (V3w′′′)(n)(0) = 0 for n = 0, 1, 2, the desired

inequality follows by repeated application of Hardy’s inequality (see [17] Lemma A.1 for the

applicable version of Hardy’s inequality).

Having established a relationship between the Σ-norm and quantities involving the

D7 operator, we can make a connection to the D7-norm according to the following lemma.

Lemma 39 We have that ‖u‖2D7
' ‖D7u1‖2H3(0,1) + ‖D7u2‖2H2(0,1) for u ∈ C∞e [0, 1]2.

Proof. The inequality ‖u‖2D7
. ‖D7u1‖2H3(0,1) + ‖D7u2‖2H2(0,1) follows from the definition

of ‖ · ‖D7 . For the reverse direction, it suffices to show that

‖D7u1‖2L2(0,1) . ‖D7u1‖2Ḣ1(0,1)
.

This is a simple consequence of the fact that [D7u1](0) = 0. Begin by applying the funda-

mental theorem of calculus

D7u1(ρ) =

∫ ρ

0
[D7u1]′(s)ds.
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Thus,

|D7u1(ρ)| ≤
∫ 1

0

∣∣[D7u1]′(s)
∣∣ds ≤ ‖D7u

′‖
1
2

L2(0,1)

by the Cauchy-Schwarz inequality. The desired estimate follows by squaring and integrating

the above inequality.

As a consequence, we have ‖u‖Σ . ‖u‖D7 . The reverse inequality is rather easy

though we state it for completeness.

Lemma 40 We have that ‖u‖D7 . ‖u‖Σ for all u ∈ C∞e [0, 1]2.

Proof. This is an immediate consequence of the definition of D7 and the triangle inequality.

Lastly, we must now establish the equivalence with the radial Sobolev norms. We

do so by showing equivalence with the Σ-norm.

Lemma 41 Let u ∈ C∞e [0, 1]. Then

‖u‖Σ0 ' ‖u(| · |)‖H5(B7)

and

‖u‖Σ1 ' ‖u(| · |)‖H4(B7).

Proof. The second estimate is proven in [17] Lemma B.1. First, we recall that

|u(n)(|x|)|2 .
∑
|α|=n

|∂αxu(|x|)|2.

125



For a proof, see [24]. From this inequality, it follows

‖(·)3u(5)‖2L2(0,1) ' ‖u
(5)(| · |)‖2L2(B7)

.
∑
|α|=n

‖∂αxu(|x|)‖2L2(B7)

. ‖u(| · |)‖2H5(B7).

We control lower order derivatives by use of Lemma 2.12 of [24] as follows:

‖(·)2u(4)‖L2(0,1) . |u(4)(1)|+ ‖(·)3u(5)‖2L2(0,1)

. ‖(·)3u(4)‖2L2(0,1) + ‖(·)3u(5)‖2L2(0,1).

The fourth derivative term can be controlled by ‖u(| · |)‖H5(B7) by the same argument we

used for the fifth derivative term. Repeating this argument for each derivative yields the

first direction of the desired result. For the reverse direction, we recall the identity

∑
|α|=n

∂αxu(|x|) =

n∑
j=1

u(j)(|x|) Pj(x)

|x|2n−j

for some homogeneous polynomials Pj of degree n which satisfy the estimate |Pj(x)| . |x|n.

Consequently, for 2 ≤ n ≤ 5, we have

‖u(| · |)‖2
Ḣn(B7)

.
n∑
j=1

‖(·)3+j−nu(j)‖2L2(0,1)

≤ ‖(·)−1u′‖2L2(0,1) +

n∑
j=2

‖(·)j−2u(j)‖2L2(0,1)

.
n∑
j=2

‖(·)j−2u(j)‖2L2(0,1)

where the last line follows from u′(0) = 0 and an application of Hardy’s inequality. For the

first derivative, observe that

‖u(| · |)‖2
Ḣ1(B7)

. ‖(·)3u′‖2L2(0,1) ≤ ‖u
′‖2L2(0,1)
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and similarly for the zeroth derivative. This proves the claim.

2.6.2 Explicit Expressions for Resolvent Estimates

The functions cj(s;λ) and c̃j(s;λ) are given explicitly by

c0(s;λ) = 3s+ 3(λ− 1)s2 + (λ− 1)2s3 + (λ− 1)s4,

c1(s;λ) = − 1

(λ+ 1)(λ+ 4)

(
15 + 15λs+ 6(λ2 − 1)s2 + λ(λ2 − 1)s3 + (λ2 − 1)s4

)
,

c2(s;λ) =
1

(λ+ 1)(λ+ 3)(λ+ 4)(λ+ 5)

(
48(λ+ 4) + 3(11λ2 + 40λ− 11)s

+ (9λ3 + 33λ2 − 9λ− 33)s2 + (λ+ 1)2(λ2 + 2λ− 3)s3

+ (λ3 + 3λ2 − λ− 3)s4
)
,

c3(s;λ) =− 1

(λ+ 1)(λ+ 3)(λ+ 4)(λ+ 5)(λ+ 6)

(
105(λ+ 5) + 3(19λ2 + 85λ− 34)s

+ 6(2λ3 + 9λ2 − 2λ− 9)s2 + (λ4 + 5λ3 + 5λ2 − 5λ− 6)s3

+ (λ3 + 3λ2 − λ− 3)s4
)
,

c4(s;λ) =
1

(λ+ 1)(λ+ 3)(λ+ 4)(λ+ 5)(λ+ 6)(λ+ 7)

(
192(λ+ 6)

+ 3(29λ2 + 156λ− 73)s+ 3(5λ3 + 27λ2 − 5λ− 27)s2

+ (λ+ 3)2(λ2 − 1)s3 + (λ3 + 3λ2 − λ− 3)s4
)
,

c5(s;λ) =− 1

(λ+ 1)(λ+ 3)(λ+ 4)(λ+ 5)(λ+ 6)(λ+ 7)(λ+ 8)

(
315(λ+ 7)

+ 3(41λ2 + 259λ− 132)s+ 6(3λ3 + 19λ2 − 3λ− 19)s2

+ (λ4 + 7λ3 + 11λ2 − 7λ− 12)s3 + (λ3 + 3λ2 − λ− 3)s4
)
,

and c̃j(s;λ) = (−1)j+1cj(−s;λ).
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Chapter 3

Conditionally Stable Blow-Up for

the Quadratic Wave Equation on

the Whole Space

3.1 Introduction

This chapter concerns the following radial quadratic wave equation

utt − urr −
d− 1

r
ur = u2 (3.1)

for u : I × [0,∞)→ R, I ⊂ R an interval containing zero, and r = |x| for x ∈ Rd. Equation

(3.1) exhibits the scaling symmetry u 7→ uλ,

uλ(t, r) := λ−2u(t/λ, r/λ)
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for any λ > 0. This rescaling leaves invariant the energy norm Ḣ1(Rd) × L2(Rd) precisely

when d = 6 which defines the energy critical case.

Equation (3.1), in all supercritical dimensions d ≥ 7, (3.1) has a smooth, radial,

self-similar solution for (t, r) ∈ [0, T )× [0,∞) given by

u∗T (t, r) :=
1

(T − t)2
U
( r

T − t

)
, T > 0 (3.2)

with

U(ρ) :=
c1 − c2ρ

2

(ρ2 + c3)2

where

c1 =
4

25

(
(3d− 8)

√
6(d− 1)(d− 6) + 8d2 − 56d+ 48

)
,

c2 =
4

5

√
6(d− 1)(d− 6),

and

c3 =
1

15

(
3d− 18 +

√
6(d− 1)(d− 6)

)
which becomes singular forward in time as t→ T−. This solution was recently introduced in

[9] by Csobo, Glogić, and Schörkhuber where they established a co-dimension one stability

result for u∗T under non-radial perturbations in d = 9. Their result tracked the evolution

of such data within the backwards lightcone of the blow-up point (T, 0). Of course, even

radial, compactly supported perturbations of u∗T influence the corresponding solution in a

region of spacetime strictly larger than these lightcones. One should be left wondering if

the solution could blow-up in this larger region of spacetime.

Before addressing this issue, first observe that u∗T , as stated, is not defined for

t = T . However, inserting the expression for U
(

r
T−t
)

into the right-hand side of Equation
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(3.2) and rearranging shows that it is precisely given by

u∗T (t, r) =
c1(T − t)2 − c2r

2(
r2 + c3(T − t)2

)2
which is well-defined for all (t, r) 6= (T, 0). With this in mind, we can properly address the

stability of u∗T outside of lightcones which, in particular, includes regions of spacetime where

t > T . We address precisely this issue in d = 7, the lowest energy supercritical dimension,

where u∗T takes the form

u∗T (t, r) =
24
(
21(T − t)2 − 5r2

)(
3(T − t)2 + 5r2

)2 .

The key ingredient allowing us to access this larger region of spacetime is the coordinate

system called hyperboloidal similarity coordinates. These coordinates were first introduced

in [1] for the study of the stability of self-similar blow-up in wave maps outside of backwards

lightcones. They are well-adapted to self-similarity much like standard similarity coordi-

nates typically used in the study of self-similar blow-up. However, hyperboloidal similarity

coordinates have the significant advantage that they cover regions of spacetime past the

blow-up time.

Surprisingly, the stability of u∗T is a subtly difficult problem to approach. To begin

understanding this, first observe that the linearized equation, �u = 2u∗Tu, has the following

two smooth solutions given explicitly by

F ∗1 (t, r) =
(T − t)

(
7(T − t)2 − 15r2

)(
5r2 + 3(T − t)2

)3
and

F ∗4 (t, r) =
1(

5r2 + 3(T − t)2
)3 .
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After we reformulate the problem in hyperboloidal similarity coordinates, we will see that

these two solutions correspond to exponentially growing solutions of the linearized equa-

tion, i.e., solutions which can destroy any hope for stability. Regardless, these instabilities

can be accounted for in a systematic way. As a first step, notice that the existence of the

first solution is precisely due to the time translation symmetry of Equation (3.1). More

precisely, observe that ∂Tu
∗
T = −432F ∗1 . Consequently, we can account for this instability

by adjusting the blow-up time. On the other hand, F ∗4 does not appear to have a connection

with any spacetime symmetry. To account for the instability due to F ∗4 , one might expect

that adjusting perturbations of u∗T by some multiple of F ∗4 could stabilize the evolution. Un-

fortunately, our techniques rely crucially on the data having compact support and, clearly,

F ∗4 does not have this property. Thus, one might expect multiplying by a cutoff could fix

this issue. This almost works, but doing so carelessly poses major issues in controlling the

evolution of data along hyperboloids.

The main novelty of our work is in presenting a technique which stabilizes the

evolution of data close to that of a self-similar blow-up solution which has at least two

unstable directions, one not coming from any spacetime symmetry, in a region of spacetime

which can be made arbitrarily close to the Cauchy horizon of the singularity. Put simply, we

achieve this by constructing a particular smooth solution of the linearized equation which

has a special property allowing us to control the evolution of such data. Doing so requires

a delicate interplay between the standard Cauchy evolution of data along hypersurfaces of

constant physical time and that of data along hypersurfaces of constant hyperboloidal time.

This will be elaborated on extensively in Section 3.5.2.
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3.1.1 Hyperboloidal Similarity Coordinates

In this section, we introduce the hyperboloidal similarity coordinate system and

summarize their essential properties. Given T > 0, we define hyperboloidal similarity coor-

dinates by the map

ηT : R× [0,∞)→ R× [0,∞)

(s, y) 7→
(
T + e−sh(y), e−sy

)
where

h(y) =
√

2 + y2 − 2

which we call the height function. We remark that ηT defines a diffeomorphism onto its

image. The specific form of h is arbitrary except for the fact that the level-sets

{(s, y) ∈ R× [0,∞) : s = c}, c ∈ R,

are Cauchy surfaces which asymptote to a forward lightcone. Furthermore, y = 1
2 corre-

sponds to the backwards lightcone of the singularity (T, 0). See Figure 3.1

Observe that taking h(y) = −1 returns standard similarity coordinates. It is

precisely due to the nontrivial nature of the height function that the coordinates cover a

region of spacetime outside of the backwards lightcone of (T, 0).

3.1.2 Statement of the Main Result

We are now ready to state the main result of this chapter. Our theorem concerns

the evolution of small, smooth, radial, and suitably adjusted perturbations of u∗1 according

to Equation (3.1).
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t

r

(T, 0)

Figure 3.1: A spacetime diagram depicting the hyperboloidal coordinate system. The
dashed lines are the boundary of the forward and backward lightcones of the point (T, 0).
The hyperboloids correspond to s = const and the rays emanating from (T, 0) correspond
to y = const.

Theorem 42 Fix R ≥ 1
2 and consider the spacetime region

ΩT,R = {(t, r) ∈ R× [0,∞) : 0 ≤ t < T + br}, b =
h(R)

R
,

see Figure 3.2. There exist positive constants δ, r0,M0, ω0 such that the following holds.

1. There exists a pair of functions
(
Y1, Y2

)
∈ C∞e [0,∞)2 supported in the interval [0, r0)

such that for any pair of radial functions (f, g) ∈ C∞e [0,∞)2 also supported in the

interval [0, r0) and satisfying

‖(f, g)‖H10
rad(R7)×H9

rad(R7) ≤
δ

M2
0

,

there exists α ∈ [− δ
M0
, δ
M0

], T ∈ [1− δ
M0
, 1+ δ

M0
], and a unique function u ∈ C∞(ΩT,R)
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t

r

(T, 0)

ΩT,R

Figure 3.2: A spacetime diagram depicting the region ΩT,R. The dashed lines are the bound-
ary of the forward and backward lightcones of the blow-up point (T, 0). As R increases, the
top of the shaded region approaches the forward lightcone.

that satisfies 

(
∂2
t − ∂2

r − d−1
r ∂r

)
u(t, r) = u(t, r)2 (t, r) ∈ ΩT,R

u(0, r) = u∗1(0, r) + αY1(r) + f(r) r ∈ [0,∞)

∂tu(0, r) = ∂tu
∗
1(0, r) + αY2(r) + g(r) r ∈ [0,∞)

. (3.3)

2. The solution u converges to u∗T in the sense that

e−2s‖(u ◦ ηT )(s, ·)− (u∗T ◦ ηT )(s, ·)‖H6
rad(B7

R) ≤ δe−ω0s

e−2s‖∂s(u ◦ ηT )(s, ·)− ∂s(u∗T ◦ ηT )(s, ·)‖H5
rad(B7

R) ≤ δe−ω0s

(3.4)

for all s ≥ 0.

3. In the spacetime region ΩT,R \ηT
(
[s0,∞)× [0, R)

)
, where s0 = log

(
− 2h(0)

2+r0

)
, we have

u = u∗1.

Some remarks on Theorem 42 are in order.
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1. The adjustment term. The functions Y1 and Y2 will be constructed in Section 3.5.2.

As will be seen, they derive from a particular solution of the quadratic wave equation

linearized around u∗1, i.e. �u = 2u∗1u. Their presence in the data allows us to account

for the instability due to F ∗4 with T = 1 in the evolution of small perturbations of u∗1.

2. High degree of regularity. Within integer Sobolev spaces, one might expect to work

at the regularity H3×H2 in light of the well-posedness theory developed in [14]. Our

techniques necessitate the use of various Sobolev embeddings which impose the high

degree of regularity appearing in Theorem 42.

3. Normalizing factors. The factors e−2s in Equation (3.4) reflect the convergence of

the corresponding blow-up profiles. This can be seen explicitly by observing that the

blow-up solution transforms according to

(u∗T ◦ ηT )(s, y) = −
24e2s

(
5y2 − 21h(y)2

)(
3h(y)2 + 5y2

)2 .

4. Higher space dimensions. Theorem 42 is stated only for d = 7 though it can certainly

be generalized to d = 9 using the spectral results in [9]. For odd space dimensions

d ≥ 11, it is unclear whether or not the spectral problem can be solved. If it can, then

our result can also be generalized to higher odd space dimensions.

5. The spectral problem. As mentioned in the previous remark, a key step in our proof is

solving a particular spectral problem. The spectral problem we solve is exceptionally

difficult compared to similar problems encountered in the stability of self-similar blow-

up. This will be expanded upon in Section 3.3.2.
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3.2 The Wave Equation in Hyperboloidal Similarity Coordi-

nates

In this section, we reformulate Equation (3.1) as a first-order system in hyper-

boloidal similarity coordinates. First, we review the well-posedness theory for the radial

wave equation in hyperboloidal similarity coordinates as developed in [14] by Donninger

and Ostermann.

3.2.1 Free Wave Evolution in Hyperboloidal Similarity Coordinates

Let d ∈ N and u ∈ C∞(R × (0,∞)). With v = u ◦ ηT , we infer by the chain rule

the following transformation

((
∂2
t − ∂2

r −
d− 1

r
∂r

)
u

)
◦ ηT = −g00(∂2

s − cd11∂y − c12∂
2
y − cd20∂s − c21∂y∂s)v

where

g00(s, y) =− e2s 1− h′(y)2(
yh′(y)− h(y)

)2
cd11(y) =− d− 1

y

(
yh′(y)− h(y)

)
h(y)

1− h′(y)2
+
y2 − h(y)2

1− h′(y)2

yh′′(y)

yh′(y)− h(y)
+ 2

h(y)h′(y)− y
1− h′(y)2

c12(y) =
h(y)2 − y2

1− h′(y)2

cd20(y) =− 1− d− 1

y

(
yh′(y)− h(y)

)
h′(y)

1− h′(y)2
+
y2 − h(y)2

1− h′(y)2

h′′(y)

yh′(y)− h(y)

c21(y) =2
h(y)h′(y)− y

1− h′(y)2
.

Definition 43 Let R > 0 and d, k ∈ N. We define the free radial wave evolution as
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the unbounded operator
(
L̃d,D(L̃d)

)
, with D(L̃d) = C∞e [0, R]2, on HkR by

L̃df(y) :=

 f2(y)

cd11(y)f ′1(y) + c12(y)f ′′1 (y) + cd20(y)f2(y) + c21(y)f ′2(y)

 .

The linear, radial wave equation in hyperboloidal similarity coordinates is equiv-

alent to the first-order system

∂sv(s, ·) = L̃dv(s, ·)

where

v(s, ·) =

 v(s, ·)

∂sv(s, ·)

 .

In [14], it was shown that
(
L̃d,D(L̃d)

)
is closable and its closure,

(
Ld,D(Ld)

)
, generates a

strongly continuous semigroup which we recall here.

Lemma 44 ([14], Theorem 2.1) Let R ≥ 1
2 , d, k,∈ N, such that d ≥ 3 is odd and k ≥

d−1
2 . The operator

(
L̃d,D(L̃d)

)
is closable and its closure,

(
Ld,D(Ld)

)
, is the generator of

a strongly continuous semigroup
(
Sd(s)

)
s≥0

of bounded operators on HkR with the property

that there exists M ≥ 1 such that

‖Sd(s)f‖HkR ≤Me
s
2 ‖f‖HkR

for all s ≥ 0 and f ∈ HkR.

3.2.2 The Quadratic Wave Equation in Hyperboloidal Similarity Coordi-

nates

Now, we can reformulate Equation (3.1) as a first-order system in hyperboloidal

similarity coordinates. For the remainder of this chapter, we fix d = 7. We look for solutions

137



of the form u = ũ + u∗T , for some T sufficiently close to 1 yet to be determined, where ũ

represents some small perturbation of u∗T . Equation (3.1) becomes

(
∂2
t − ∂2

r −
6

r
∂r + VT

)
ũ = ũ2

where VT := −2u∗T . Setting ṽ = ũ ◦ ηT , we obtain the equation

∂2
s ṽ = c11∂yṽ + c12∂

2
y ṽ + c20∂sṽ + c21∂y∂sṽ +

VT ◦ ηT
g00

ṽ − ṽ2

g00

where c11 := c7
11 and c20 := c7

20. Observe that the function

V (y) :=
VT
(
ηT (s, y)

)
g00(s, y)

is in C∞e [0, R] for any R > 0. Furthermore, we write

− ṽ(s, y)2

g00(s, y)
= e2sN(y, e−2sṽ)

where

N(y, x) :=

(
yh′(y)− h(y)

)2
1− h′(y)2

x2.

Upon setting

ṽ(s, ·) :=

 ṽ(s, ·)

∂sṽ(s, ·)

 ,

the quadratic wave equation, as a first-order system in hyperboloidal similarity coordinates,

takes the form

∂sṽ(s, ·) = (L̃7 + L′)ṽ(s, ·) + e2sN
(
e−2sṽ(s, ·)

)
where L′ is defined by

L′f(y) :=

 0

V (y)f1(y)
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and

N
(
f
)
(y) :=

 0

N(y, f1(y))

 .

As V ∈ C∞e [0, R] for any R > 0, we see that L′ ∈ B(HkR) for any R > 0 and k ∈ N. An

autonomous equation is obtained by setting Φ(s) := e−2sṽ(s, ·) which yields

∂sΦ(s) = (L̃7 − 2I + L′)Φ(s) + N
(
Φ(s)

)
. (3.5)

In what follows, we set L̃ := L̃7− 2I + L′ in which case
(
L̃,D(L̃)

)
is an unbounded, densely

defined operator on HkR with D(L̃) := D(L̃7) for R ≥ 1
2 . From this point on, we refrain from

referring to the domains of the various operators unless absolutely necessary. Furthermore,

we fix the space HR := H6
R for R ≥ 1

2 .

Our analysis of Equation (3.5) proceeds in two steps: linear stability and nonlinear

stability. First, given R ≥ 1
2 , we show that the operator L̃ is closable and its closure, L, is

the generator of a strongly continuous semigroup
(
S(s)

)
s≥0

. In other words, the abstract

initial value problem 
∂sΦ(s) = LΦ(s)

Φ(0) = Φ0

,

is well-posed in HR. Our intent is to show that the solutions Φ decay, i.e., perturbations

of the blow-up solution become small. However, a careful analysis of the spectrum of L

will allow us to conclude that this is not true in general. After characterizing the unstable

portion of the spectrum of L, we will claim linear stability for a co-dimension two subspace

of initial data in HR.

Using this semigroup, we can reformulate the nonlinear problem as the integral
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equation

Φ(s) = S(s)Φ0 +

∫ s

0
S(s− s′)N

(
Φ(s′)

)
ds′

for Φ0 in a small ball in HR. We would like to show that for such data, this equation has

a unique solution which exists for all s ≥ 0 and decays exponentially. Similar to the linear

stability analysis, this decay will not be true in general again due to the spectrum of L.

However, we can consider a modified equation which removes this unstable portion of the

data. Ultimately, our goal will be to show that by adjusting the blow-up time and our

perturbation, this modification term vanishes. This will be explained and carried out in

Section 3.5. At that point, we will claim nonlinear stability.

3.3 Linear Stability

3.3.1 Well-Posedness of the Linearized Evolution

First, we show that L̃ is closable and its closure, L, is the generator of a strongly

continuous semigroup
(
S(s)

)
s≥0

of bounded operators on HR. In fact, this is a very simple

consequence of Lemma 44.

Lemma 45 Let R ≥ 1
2 . The operator L̃ is closable and its closure, denoted by L, is

the generator of a strongly continuous semigroup
(
S(s)

)
s≥0

of bounded operators on HR

satisfying the estimate

‖S(s)‖HR ≤Me

(
− 3

2
+M‖L′‖HR

)
s (3.6)

for M ≥ 1 as in Lemma 44 and all s ≥ 0.

Proof. From Lemma 44, we infer the existence of a strongly continuous semigroup
(
S7(s)

)
s≥0

140



of bounded operators on HR satisfying the estimate ‖S7(s)‖HR ≤ Me
s
2 for some M ≥ 1

and all s ≥ 0 generated by the the operator L7. As a consequence, the operator L7 − 2I,

with D(L7 − 2I) = D(L7), generates the strongly continuous semigroup
(
S0(s)

)
s≥0

of

bounded operators on HR given by S0(s) = e−2sS7(s), s ≥ 0 which satisfies the estimate

‖S7(s)‖HR ≤ Me−
3
2
s for all s ≥ 0. Since L′ ∈ B(HR), the bounded perturbation theorem

implies that L generates a strongly continuous semigroup
(
S(s)

)
s≥0

of bounded operators

on HR satisfying the claimed estimate.

3.3.2 Spectral Analysis

In order to the growth bound, Inequality (3.6), we first need to characterize the

spectrum of L. In fact, for R ≥ 1
2 , V ∈ C∞e [0, R] and compactness of the embedding

H6
rad(B7) ↪→ H5

rad(B7) imply that L′ is a compact operator on HR. According to the

following lemma, this allows us to restrict our attention to understanding the point spectrum

of L.

Lemma 46 Let R ≥ 1
2 and ε > 0. The set Sε := σ(L) ∩ {λ ∈ C : <λ ≥ −3

2 + ε} consists of

finitely many eigenvalues of L, all of which have finite algebraic multiplicity.

Proof. Standard semigroup theory, Theorem 1.10.ii of [20] for instance, implies that σ(L7−

2I) ⊆ {λ ∈ C : <λ ≤ −3
2}. Since L′ is compact, Theorem B.1.i of [24] implies the claim.

To improve the growth bound for the semigroup
(
S(s)

)
s≥0

, we need to characterize

the unstable portion of the spectrum, i.e., σ(L) ∩ H. Theorem B.1.ii of [24] tells us that

in order to achieve this goal, we need only characterize σp(L) ∩ H. First, we define two

functions which will be shown to be eigenfunctions of L.
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Definition 47 We set

f∗1 (y) :=
(7h(y)2 − 15y2)h(y)

(5y2 + 3h(y)2)3

1

3


and

f∗4 (y) :=
1

(5y2 + 3h(y)2)3

1

6


for y ∈ [0,∞).

Proposition 48 Let R ≥ 1
2 . We have that

σp(L) ∩H = {1, 4}.

Furthermore, ker(I− L) = 〈f∗1 〉 and ker(4I− L) = 〈f∗4 〉

Proof. For λ = 1, 4, direct calculations verify that f∗λ ∈ D(L̃) and 〈f∗λ〉 ⊆ ker(λI − L).

Thus, {1, 4} ⊆ σp(L) ∩H.

Now, we aim to show σp(L)∩H ⊆ {1, 4} after which we will conclude ker(λI−L) ⊆

〈f∗λ〉 for λ = 1, 4. To that end, suppose λ ∈ σp(L) ∩H. Thus, there exists fλ = (fλ,1, fλ2) ∈

D(L) \ {0} with (λI− L)fλ = 0. A direct calculation shows that fλ,1 solves the ODE

f ′′λ,1 +
c11(y) + (λ+ 2)c21(y)

c12(y)
f ′λ,1 +

(λ+ 2)(c20(y)− λ− 2) + V (y)

c12(y)
fλ,1 = 0 (3.7)

weakly on the interval (0, R) and fλ,2 = (λ + 2)fλ,1. Furthermore, since fλ,1 ∈ H6
rad(B7),

Sobolev embedding implies fλ,1 ∈ C2(0, R) and is a classical solution of Equation (3.7) on

(0, R). As a consequence, the function v(s, y) := e(λ+2)sfλ,1(y) is in C2(R+ × (0, R)) and is

a classical solution of the equation

∂2
sv = c11∂yv + c12∂

2
yv + c20∂sv + c21∂y∂sv + V v
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on R+ × (0, R). Upon setting

V0(y) = −48(21− 5y2)

(5y2 + 3)2
,

and v(s, y) =: w
(
s − log

(
− h(y)

)
,− y

h(y)

)
, we find that w is a classical solution of the

equation

(
∂2
τ + 2ρ∂ρ∂τ −

(
1− ρ2

)
∂2
ρ −

6

ρ
∂ρ + ∂τ + 2ρ∂ρ + V0(ρ)

)
w(τ, ρ) = 0

on R+ × (0, 1). In terms of fλ,1, we have

w(τ, ρ) = e(λ+2)τ
( 2

2 +
√

2(1 + ρ2)

)λ+2
fλ,1

( 2ρ

2 +
√

2(1 + ρ2)

)
=: e(λ+2)τf(ρ).

Thus, f is a classical solution of the ODE

(1− ρ2)f ′′(ρ) +
(6

ρ
− 2(λ+ 3)ρ

)
f ′(ρ)−

(
(λ+ 2)(λ+ 3)− 48(21− 5ρ2)

(5ρ2 + 3)2

)
f(ρ) = 0. (3.8)

Smoothness of the coefficients implies f ∈ C∞(0, 1). Furthermore, Equation (3.8) has two

regular singular points: ρ = 0 with Frobenius indices {0,−5} and ρ = 1 with Frobenius

indices {0, 1− λ}. The Frobenius analysis in the proof of Proposition 3.2 of [24] with d = 5

allows us to conclude that f ∈ C∞[0, 1]. Now, our goal is to show that Equation (3.8) has

solutions in C∞[0, 1] only when λ = 1 or 4, in which case fλ ∈ 〈f∗λ〉.

First, observe that the functions

f(ρ; 1) :=
7− 15ρ2

(5ρ2 + 3)3

f(ρ; 4) :=
1

(5ρ2 + 3)3
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are indeed solutions in C∞[0, 1] with λ = 1 and λ = 4 respectively. To investigate C∞[0, 1]

solutions of Equation (3.8) with λ 6= 1, 4, we first ‘remove’ the eigenvalues λ = 1 and

λ = 4 by performing so-called supersymmetric removal. For an in-depth discussion of this

procedure, we refer the reader to [25], Appendix B and [23], Section 2.5. We begin by

making the change of variables

f(ρ) =: ρ−3(1− ρ2)−
λ
2 g(ρ)

which transforms Equation (3.8) into

−g′′(ρ)−
2
(
95ρ6 − 729ρ4 + 405ρ2 − 27

)
ρ2 (1− ρ2)2 (5ρ2 + 3)2 g(ρ) = −(λ+ 2)(λ− 4)

(1− ρ2)2 g(ρ). (3.9)

Consequently, g(ρ; 4) = ρ3(1 − ρ2)2f(ρ; 4) is a solution of Equation (3.9) with λ = 4. Our

goal is to factor the left-hand side of Equation (3.9) using the solution g(ρ; 4). Following

the procedure in [25], Appendix B and [23], Section 2.5, the left-hand side can be factored

as

−∂2
ρ −

2
(
95ρ6 − 729ρ4 + 405ρ2 − 27

)
ρ2 (1− ρ2)2 (5ρ2 + 3)2

=
(
− ∂ρ −

−5ρ4 − 36ρ2 + 9

−5ρ5 + 2ρ3 + 3ρ

)(
∂ρ −

−5ρ4 − 36ρ2 + 9

−5ρ5 + 2ρ3 + 3ρ

)
.

Setting g̃(ρ) := g′(ρ)− −5ρ4−36ρ2+9
−5ρ5+2ρ3+3ρ

g(ρ) and defining g̃(ρ) =: ρ3(1− ρ2)
λ
2 f̃(ρ) produces the

new equation

(1− ρ2)f̃ ′′(ρ) +
(6

ρ
− 2(λ+ 3)ρ

)
f̃ ′(ρ)−

(
(λ+ 2)(λ+ 3)−

18
(
5ρ4 + 30ρ2 − 3

)
ρ2 (5ρ2 + 3)2

)
f̃(ρ) = 0.

Observe that f̃(ρ; 4) := ρ−3(1−ρ2)−2g̃(ρ; 4), where g̃(ρ; 4) := g′(ρ; 4)− −5ρ4−36ρ2+9
−5ρ5+2ρ3+3ρ

g(ρ; 4), is

identically zero. In this sense, we have ‘removed’ the eigenvalue λ = 4 by transforming the

corresponding solution, f(ρ; 4), into the trivial solution. Under the above transformations
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f(ρ; 1) transforms into f̃(ρ; 1) := − 3ρ
(3+5ρ2)2

. Repeating the same transformations but with

the factorization given by the solution f̃(ρ; 1) instead produces the new equation

(1−ρ2)f̂ ′′(ρ)+
(6

ρ
−2(λ+3)ρ

)
f̂ ′(ρ)−

(
(λ+2)(λ+3)−

6
(
35ρ4 + 18ρ2 − 21

)
ρ2 (5ρ2 + 3)2

)
f̂(ρ) = 0 (3.10)

for the corresponding new dependent variable f̂ .

Now, we show that Equation (3.10) has no solutions if λ ∈ H other than the zero

solution. We achieve this by expanding any nontrivial, analytic solution around the regular

singular point ρ = 0 and showing that if λ ∈ H, then this solution cannot be analytically

continued past ρ = 1.

Observe that Equation (3.10) has seven regular singular points: ρ = 0,±1,±i
√

3
5 ,

and ±∞. We begin our analysis of Equation (3.10) by first reducing the number of regular

singular points to four via the transformation

ρ =

√
3x

8− 5x
, f̃(ρ) = x(8− 5x)

λ+2
2 y(x)

which transforms Equation (3.10) into its Heun form

y′′(x)+
(11

2x
+

λ

x− 1
+

1

2(x− 8
5)

)
y′(x)+

5(λ+ 2)(λ+ 8)x− (λ+ 26)(3λ+ 4)

20x(x− 1)(x− 8
5)

y(x) = 0 (3.11)

with the four regular singular points x = 0, 1, 8
5 ,∞. Frobenius theory implies that any

y ∈ C∞[0, 1] solving Equation (3.11) is analytic on [0, 1]. In addition, any analytic solution

of Equation (3.11) yields an analytic solution of Equation (3.10) as well as the converse.

Thus, to exclude the existence of an analytic solution of Equation (3.10), we exclude the

existence of an analytic solution of Equation (3.11).

At x = 0, the Frobenius indices are {0,−9
2}. Without loss of generality, we may
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assume that a solution for a fixed λ, denoted by y(·;λ), has the expansion

y(x;λ) =
∞∑
n=0

an(λ)xn, a0(λ) = 1 (3.12)

near x = 0. Since the finite regular singular points of Equation (3.11) are x = 0, 1, 8
5 , y(·;λ)

fails to be analytic at x = 1 precisely when the radius of convergence of (3.12) is equal to

one. To that end, we derive a recurrence relation for the coefficients given by

an+2(λ) = An(λ)an+1(λ) +Bn(λ)an(λ) (3.13)

where

An(λ) =
3λ2 + 114λ+ 52n2 + 32λn+ 348n+ 400

16(n+ 2)(2n+ 13)

and

Bn(λ) = −5(λ+ 2n+ 2)(λ+ 2n+ 8)

16(n+ 2)(2n+ 13)

with a−1(λ) = 0. For n ∈ N0, we define

rn(λ) :=
an+1(λ)

an(λ)
.

Since limn→∞An(λ) = 13
8 and limn→∞Bn(λ) = −5

8 , the so-called characteristic equation of

Equation (3.13) is

t2 − 13

8
t+

5

8
= 0

which has solutions t1 = 5
8 and t2 = 1. Poincaré’s theorem for difference equations, see [19]

or [25] Appendix A, implies that either an(λ) is zero eventually in n or

lim
n→∞

rn(λ) =
5

8
(3.14)

or

lim
n→∞

rn(λ) = 1. (3.15)
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We aim to prove that Equation (3.15) holds true.

First, observe that an(λ) cannot eventually be zero since, otherwise, backwards

substitution would allow us to conclude that a0(λ) = 0 which is in clear contradiction with

a0(λ) = 1. To rule out Equation (3.14), we first derive a recurrence relation for rn(λ) given

by

rn+1(λ) = An(λ) +
Bn(λ)

rn(λ)
(3.16)

with initial condition

r0(λ) =
a1(λ)

a0(λ)
= A−1(λ) =

1

176
(λ+ 26)(3λ+ 4).

Furthermore, we define an approximate solution of Equation (3.16) by

r̃n(λ) := λ2

(
3

16(n+ 1)(2n+ 11)
+

9

4000n2

)
+ λ

(
16n+ 41

8(n+ 1)(2n+ 11)
− 1

13n

)
+

4n+ 19

4n+ 22

for n ∈ N which we call a quasisolution. This quasisolution is intended to mimic the behavior

of the actual solution rn(λ) for large n. Observe that for fixed λ ∈ H, limn→∞ r̃n(λ) = 1.

If indeed rn(λ) remains close to the quasisolution, then we can exclude Equation (3.14)

implying that Equation (3.15) must hold. To prove this, we define

δn(λ) :=
rn(λ)

r̃n(λ)
− 1

to measure the difference between rn(λ) and the quasisolution and derive a recurrence

relation for this difference given by

δn+1(λ) = εn(λ)− Cn(λ)
δn(λ)

1 + δn(λ)

where

εn(λ) =
An(λ)r̃n(λ) +Bn(λ)

r̃n(λ)r̃n+1(λ)
− 1
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and

Cn(λ) =
Bn(λ)

r̃n(λ)r̃n+1(λ)
. (3.17)

For n ≥ 5, we have the following estimates

|δ5(λ)| ≤ 1

4

|εn(λ)| ≤ 64 + 5n

120(4 + n)

|Cn(λ)| ≤ 56 + 25n

40(4 + n)
.

We will prove the third estimate while the first and second are established analogously.

First, we bring Cn(λ) into the form of a rational function, namely Cn(λ) = P1(n,λ)
P2(n,λ) for

polynomials P1, P2 ∈ Z[n, λ]. Explicit expressions are provided in the Appendix (3.6.1).

We can prove the estimate by first establishing it on the imaginary line and then extending

it to all of H. This extension can be achieved by showing that Cn(λ) is analytic and

polynomially bounded on H at which point the Phragmén-Lindelöf principle achieves the

desired extension.

Observe that for t ∈ R, The inequality |Cn(it)| ≤ 56+25n
40(4+n) is equivalent to the

inequality (40(4 + n))2|P1(n, it)|2 − (56 + 25n)2|P2(n, it)|2 ≤ 0. For t ∈ R and n ≥ 5, a

direct calculation shows that the coefficients of (40(4+n))2|P1(n, it)|2−(56+25n)2|P2(n, it)|2

are manifestly negative which establishes the desired estimate on the imaginary line. Now,

we aim to extend the estimate to all of H. As Cn(λ) is a rational function of polynomials

in Z[n, λ], it is polynomially bounded. Furthermore, a direct calculation of the zeros of

P2(n, λ) shows that they are contained in the open left half plane implying the analyticity

of Cn(λ) in H. Thus, the Phragmén-Lindelöf principle extends the estimate to all of H.
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By induction, we prove

|δn(λ)| ≤ 1

4

for all n ≥ 5. The base case n = 5 clearly holds. Suppose the estimate holds for some

n > 5. Using the estimates for Cn(λ) and εn(λ), we find that

δn+1(λ) ≤ 64 + 5n

120(4 + n)
+

1

3

56 + 25n

40(4 + n)
=

1

4
.

Thus, the estimate holds for all n ≥ 5.

Now, suppose Equation (3.14) holds true. Then

1

4
≥ lim

n→∞
|δn(λ)| = lim

n→∞

∣∣∣∣rn(λ)

r̃n(λ)
− 1

∣∣∣∣ =
3

8

which is a clear contradiction. Thus, it must be the case that Equation (3.15) holds. By

undoing the previous transformations, we conclude that Equation (3.7) has no smooth

solution on the interval (0, R) which can be smoothly extended to [0, R] for λ ∈ H other

than those which correspond to λ = 1 and 4, i.e. fλ,1 = αf∗λ,1 for some α ∈ C \ {0}. Thus,

ker(λI− L) ⊆ 〈f∗λ〉 and (σp(L) ∩H) \ {1, 4} = ∅.

Remark 49 A natural first guess for a quasisolution would be

r̃n(λ) = λ2

(
3

16(n+ 1)(2n+ 11)

)
+ λ

(
16n+ 41

8(n+ 1)(2n+ 11)

)
+

4n+ 19

4n+ 22

following the methods in [7], [23], and [25]. The quadratic and linear terms in λ come from

studying the large |λ| behavior of An(λ) while the constant in λ term comes from fitting the

first few iterates of rn(λ) for small |λ|. However, it appears that this quasisolution does not

work when trying to obtain any reasonable estimates on δ5(λ), εn(λ), and Cn(λ). Lower-

order corrections to the linear and quadratic terms, to the best of our knowledge, appear to
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be essential in obtaining such estimates. This may be important for solving future spectral

problems with this method.

3.3.3 Decay of the Linearized Flow

Lemma 48 shows that 1, 4 ∈ σp(L) are isolated. This allows us to define the

following spectral projections.

Definition 50 Fix R ≥ 1
2 . Let γ1 : [0, 2π] → C and γ4 : [0, 2π] → C be defined by

γ1(t) = 1 + 1
2e
it and γ4(t) = 4 + 1

2e
it. Then we set

Pj :=
1

2πi

∫
γj

RL(λ)dλ, j = 1, 4.

Proposition 51 Let R ≥ 1
2 . The operators Pj ∈ B(HR), j = 1, 4, commute with the

semigroup
(
S(s)

)
s≥0

and are mutually transversal, i.e.,

P1P4 = P4P1 = 0.

Furthermore, we have

rg Pj = 〈f∗j 〉

and

S(s)Pjf = ejsPjf , s ≥ 0, f ∈ HR, j = 1, 4.

Proof. Boundedness, transversality, and commuting with semigroup follow from abstract

theory, see [20, 27]. In the following, we handle both cases j = 1 and j = 4 simultaneously

until the very end at which point the arguments slightly diverge.

Now, we aim to show rg Pj = 〈f∗j 〉. The inclusion 〈f∗j 〉 ⊆ rg Pj follows from

abstract theory, see [27]. For the reverse inclusion, first observe that Pj decomposes HR as
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HR = rg Pj⊕rg(I−Pj) and the operator L decomposes into the parts L|rgPj and L|rg(I−Pj)

acting on rg Pj and rg(I−Pj) respectively. The spectra of these operators are

σ(L|rgPj ) = {j}, σ(L|rg(I−Pj)) = σ(L) \ {j}.

We claim that rg Pj is finite-dimensional. To see this, suppose that dim rg Pj =∞. Then,

Theorem 5.28 of [27] implies that j ∈ σe(L). Since L′ is compact and the essential spectrum

is stable under compact perturbations, we also have that j ∈ σe(L − L′). This is clearly a

contradiction since L− L′ = L7 − 2I and σ(L7 − 2I) ⊆ {z ∈ C : <z ≤ −3
2}.

Thus, the part L|rgPj acts on a finite-dimensional Hilbert space with spectrum

σ(LrgPj ) = {j}. Consequently, jI− LrgP is nilpotent since 0 is its only spectral point and

is an eigenvalue. So, there exists a minimal `j ∈ N with (jI−LrgPj )
`j f = 0 for all f ∈ rg Pj .

If `j = 1, then the reverse inclusion follows.

Suppose `j 6= 1. Then there exists a nonzero fj ∈ rg Pj ⊂ H6
rad(B7

R)×H5
rad(B7

R) ⊂

C2(0, R)× C1(0, R) such that fj ∈ ker(jI− LrgPj ) ⊆ ker(jI− L). By Lemma 48, we have

ker(jI− L) = 〈f∗j 〉. Thus, fj solves the equation

αf∗j = (jI− L)fj .

for some α ∈ C \ {0}. Without loss of generality, we take α = 1. Consequently, the first

component of fj solves the ODE

f ′′j,1(y) + pj(y)f ′j,1(y) + qj(y)fj,1(y) =
Gj(y)

c12(y)
(3.18)

where

pj(y) :=
c11(y) + (j + 2)c21(y)

c12(y)
,
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qj(y) :=
(j + 2)(c20(y)− j − 2) + V (y)

c12(y)
,

and

Gj(y) = c21(y)
df∗j,1
dy

+ (c20(y)− 4− 2j)f∗j,1(y).

Let Ij(y) be an antiderivative of pj(y). For instance, the explicit functions

I1(y) =

(
y2 + 1

)√
3
√
y2 + 2− y + 4

√
3
√
y2 + 2 + y + 4

y6 (1− 4y2)
√
y2 + 2

√
y2 + 2

√
y2 + 2 + 3

and

I4(y) =

(
y2 + 1

) (
8y2 + 24

√
y2 + 2 + 34

)2

y6 (1− 4y2)4
√
y2 + 2

√
y2 + 2

√
y2 + 2 + 3

suffice. A fundamental system for the homogeneous equation is obtained via reduction of

order

φj(y) := f∗j,1(y)

ψj(y) := f∗j,1(y)

∫ y

1
4

exp
(
− Ij(y′)

)
f∗j,1(y)−2dy′

where the lower bound of integration in ψj is chosen arbitrarily. Observe that

exp
(
− Ij(y)

)
' y−6

(1

2
− y
)−j

which implies that for the second solution we have the asymptotics

|ψ1(y)| ' y−5

∣∣∣∣ log
(1

2
− y
)∣∣∣∣, |ψ′1(y)| ' y−6

(1

2
− y
)−1

and

|ψ4(y)| ' y−5
(1

2
− y
)−3

, |ψ′4(y)| ' y−6
(1

2
− y
)−4

.

By Abel’s identity, the Wronskian is precisely exp
(
− Ij(y′)

)
up to some constant multiple.

This implies the asymptotics

|W (φj , ψj)(y)| ' y−6
(1

2
− y
)−j

.
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Variation of parameters yields a solution of Equation (3.27)

fj,1(y) =c
(j)
1 φj(y) + c

(j)
2 ψj(y)

− φj(y)

∫ y

0

ψj(ρ)

W (φj , ψj)(ρ)

Gj(ρ)

c12(ρ)
dρ+ ψj(y)

∫ y

0

φj(ρ)

W (φj , ψj)(ρ)

Gj(ρ)

c12(ρ)
dρ

for y ∈ (0, 1
2). Taking the limit y → 0+ yields c

(j)
2 = 0. Thus, we are left with

fj,1(y) = c
(j)
1 φj(y)− φj(y)

∫ y

0

ψj(ρ)

W (φj , ψj)(ρ)

Gj(ρ)

c12(ρ)
dρ+ ψj(y)

∫ y

0

φj(ρ)

W (φj , ψj)(ρ)

Gj(ρ)

c12(ρ)
dρ

Based on the above asymptotics we find

lim
y→ 1

2

−

∫ y

0

ψj(ρ)

W (φj , ψj)(ρ)

Gj(ρ)

c12(ρ)
dρ

exists. As a consequence, in order to control the third term near y = 1
2 , we must have∫ 1

2

0

φj(ρ)

W (φj , ψj)(ρ)

Gj(ρ)

c12(ρ)
dρ = 0

For j = 4, the integrand has a definite sign. Thus, the above integral vanishing yields a

contradiction. For j = 1, the integral can be computed explicitly and is nonzero which

again yields a contradiction. Thus, we must have (jI − L)f = 0 for all f ∈ rg Pj which,

with Proposition 48, implies rg Pj ⊆ 〈f∗j 〉.

Lastly, the claim

S(s)Pjf = ejsPjf , s ≥ 0, f ∈ HR, j = 1, 4

is a direct consequence of rg Pj = 〈f∗j 〉

We now state and prove the main result on the linearized equation.

Theorem 52 Fix R ≥ 1
2 . Let P := P1 + P4. Then there exist ω0 > 0 and M ≥ 1 such

that

‖S(s)(I−P)f‖HR ≤Me−ω0s‖(I−P)f‖HR
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for all s ≥ 0 and f ∈ HR.

Proof. This is an immediate consequence of [24], Theorem B.1.iii since Lemma 46 and

Proposition 48 imply that there exists 0 < ε < 3
2 such that the set Sε consists of at most

finitely many eigenvalues all with finite algebraic multiplicity and negative real part.

3.4 Nonlinear Stability

3.4.1 Well-Posedness and Decay of the Nonlinear Evolution

We now turn our attention to the nonlinear problem
∂sΦ(s) = LΦ(s) + N

(
Φ(s)

)
Φ(0) = Φ0

(3.19)

for initial data Φ0 contained in a small ball in HR. Equipped with the semigroup
(
S(s)

)
s≥0

we appeal to Duhamel’s formula and reformulate Equation (3.19) as the integral equation

Φ(s) = S(s)Φ(0) +

∫ s

0
S(s− s′)N

(
Φ(s′)

)
ds′. (3.20)

As a first step, we prove a mapping property and local Lipschitz bound on the nonlinearity.

Lemma 53 Fix R ≥ 1
2 . We have N : HR → HR and the bound

‖N(f)−N(g)‖HR .
(
‖f‖HR + ‖g‖HR

)
‖f − g‖HR

for all f ,g ∈ HR.
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Proof. Recalling the definition of N, we find

‖N(f)−N(g)‖HR =
∥∥∥N(·, f1(·)

)
−N

(
·, g1(·)

)∥∥∥
H5

rad(B7
R)

.
∥∥f2

1 − g2
1

∥∥
H5

rad(B7
R)

. ‖f1 + g1‖H5
rad(B7)‖f1 − g1‖H5

rad(B7
R)

.
(
‖f‖HR + ‖g‖HR

)
‖f − g‖HR

where the second to third line follows from the Banach algebra property of H5
rad(B7

R). The

claim N : HR → HR follows from N(0) = 0.

Due to the instabilities associated to the eigenvalues λ = 1, 4, Equation (3.20)

will not, in general, have global solutions that decay. Instead, we consider a modified

equation which allows us to correct for these instabilities and achieve global existence and

decay. Upon reconnecting to the problem in physical coordinates, we will in fact show that

for suitably adjusted perturbations of u∗1, there is a choice of T close to 1 for which this

modification vanishes and the corresponding solution converges to u∗T .

Definition 54 For R ≥ 1
2 and ω0 from Theorem 52, we define the Banach space

XR := {Φ ∈ C([0,∞),HR) : ‖Φ‖XR <∞}

where

‖Φ‖XR := sup
s>0

(
eω0s‖Φ(s)‖HR

)
.

Furthermore, we define Cj : XR ×HR → rg Pj, j = 1, 4 by

Cj(Φ, f) := Pj

(
f +

∫ ∞
0

e−js
′
N
(
Φ(s′)

)
ds′
)

and set C := C1 + C4.
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With this, we study the modified equation

Φ(s) = S(s)
[
f −C(Φ, f)

]
+

∫ s

0
S(s− s′)N

(
Φ(s′)

)
ds′. (3.21)

For Equation (3.21), we show that for all sufficiently small data f , there exists a unique

solution in the space XR. In other words, the nonlinear problem is globally well-posed for

all sufficiently small initial data and the corresponding solutions decay exponentially as

s→∞.

Proposition 55 Fix R ≥ 1
2 . For all sufficiently large c > 0 and sufficiently small δ > 0

and any f ∈ HR satisfying ‖f‖HR ≤ δ
c , there exists a unique solution Φf ∈ C([0,∞),HR) of

Equation (3.21) that satisfies ‖Φf (s)‖HR ≤ δe−ω0s for all s ≥ 0. Furthermore, the solution

map f 7→ Φf is Lipschitz as a function from a small ball in HR to XR.

Proof. Set

Yδ := {Φ ∈ XR : ‖Φ‖XR ≤ δ}

and define the map

Kf (Φ)(s) := S(s)
[
f −C(Φ, f)

]
+

∫ s

0
S(s− s′)N

(
Φ(s′)

)
ds′.

We aim to show that Kf : Yδ → Yδ and is a contraction.

First, observe that by Theorem 52 and Proposition 51 we obtain

PjKf (Φ)(s) = −
∫ ∞
s

ej(s−s
′)PjN

(
Φ(s′)

)
ds′.
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From Lemma 53 and the fact that N(0) = 0, we have the estimate

‖PjKf (Φ)(s)‖HR . e
js

∫ ∞
s

e−js
′‖Φ(s′)‖2HRds

′

. ejs‖Φ‖2XR

∫ ∞
s

e−js
′−2ω0s′ds′

. δ2e−2ω0s.

By Proposition 51, we have (I−P)C(Φ, f) = 0 which implies

(I−P)Kf (Φ)(s) = S(s)(I−P)f +

∫ s

0
S(s− s′)(I−P)N

(
Φ(s′)

)
ds′.

By Theorem 52, we obtain

‖(I−P)Kf (Φ)(s)‖HR .
δ

c
‖f‖HR +

∫ s

0
e−ω0(s−s′)‖N

(
Φ(s′)

)
‖HRds

′

.
δ

c
e−ω0s + e−ω0s

∫ s

0
eω0s′‖Φ(s′)‖2HRds

′

.
δ

c
e−ω0s + ‖Φ‖2XRe

−ω0s

∫ s

0
e−ω0s′ds′

.
δ

c
e−ω0s + δ2e−ω0s

for all s ≥ 0. Thus, for all sufficiently large c and sufficiently small δ, we can ensure

‖Kf (Φ)(s)‖HR ≤ δe
−ω0s.

Consequently, we see that Kf : Yδ → Yδ.

We claim that Kf is a contraction map on Yδ. Given Φ,Ψ ∈ Yδ,

PjKf (Φ)(s)−PjKf (Ψ)(s) = −
∫ ∞
s

ej(s−s
′)Pj

(
N
(
Φ(s′)

)
−N

(
Ψ(s′)

))
ds′.
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By Lemma 53

‖PjKf (Φ)(s)−PjKf (Ψ)(s)‖HR

. ejs
∫ ∞
s

e−js
′(‖Φ(s′)‖HR + ‖Ψ(s′)‖HR

)
‖Φ(s′)−Ψ(s′)‖HRds

′

. δ‖Φ−Ψ‖XRe
js

∫ ∞
s

e−js
′−2ω0s′ds′

. δe−2ω0s‖Φ−Ψ‖XR .

Furthermore,

(I−P)Kf (Φ)(s)− (I−P)Kf (Ψ)(s) =

∫ s

0
S(s− s′)(I−P)

(
N
(
Φ(s′)

)
−N

(
Ψ(s′)

))
ds′.

By Theorem 52 and Lemma 53

‖(I−P)Kf (Φ)(s)− (I−P)Kf (Ψ)(s)‖HR

.
∫ s

0
e−ω0(s−s′)(‖Φ(s′)‖HR + ‖Ψ(s′)‖HR

)
‖Φ(s′)−Ψ(s′)‖HRds

′

. δ‖Φ−Ψ‖XRe
−ω0s

∫ s

0
e−ω0s′ds′

. δe−ω0s‖Φ−Ψ‖XR .

Thus,

‖Kf (Φ)−Kf (Ψ)‖XR . δ‖Φ−Ψ‖XR

and by considering smaller δ if necessary, we see that Kf is a contraction on Yδ. The Banach

fixed point theorem implies the existence of a unique fixed point Φf ∈ Yδ of Kf .
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We now claim that the solution map f 7→ Φf is Lipschitz. Observe that

‖Φf − Φg‖XR = ‖Kf (Φf )−Kg(Φg)‖XR

≤ ‖Kf (Φf )−Kf (Φg)‖XR + ‖Kf (Φg)−Kg(Φg)‖XR

. δ‖Φf − Φg‖XR + ‖Kf (Φg)−Kg(Φg)‖XR .

A direct calculation shows

Kf (Φg)(s)−Kg(Φg)(s) = S(s)(I−P)(f − g).

Theorem 52 yields

‖Kf (Φg)(s)−Kg(Φg)(s)‖HR . e
−ω0s‖f − g‖HR .

Thus, we have

‖Φf − Φg‖XR . δ‖Φf − Φg‖XR + ‖f − g‖HR

Again, considering smaller δ if necessary yields the result.

At this point, we can, in fact, prove a genuine co-dimension 2 stability result if we

allow ourselves to evolve data specified on a fixed hyperboloid in spacetime. However, we

aim to instead prove a conditional stability result starting with data specified at t = 0.

3.5 Preparation of Hyperboloidal Initial Data

In this section, we evolve data of the form u∗1[0] + (f, g) for sufficiently small,

smooth, compactly supported, radial functions f, g into the region ΩT,R according to Equa-

tion (3.1). As this region is not foliated by surfaces of constant physical time, this evolution

must occur in two steps: first along hypersurfaces of constant physical time and then along
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hypersurfaces of constant hyperboloidal time. Carrying out this two-step evolution is rather

nontrivial due to the fact that L has more than one unstable eigenvalue. In order to ex-

plain the nontrivial nature of this problem properly, we will first describe the most natural

approach one might naively attempt and then describe how we adapt this approach.

For the moment, let T be some number close to 1 and R ≥ 1
2 . The region ΩT,R

can be covered by a mix of hyperboloids and slices of constant physical time. With this in

mind, a natural first step would be to solve the Cauchy problem
�u = u2

u[0] = u∗1[0] + (f, g)

(3.22)

for some short amount of time. To continue the evolution to the rest of ΩT,R, one might

expect to evaluate this solution on some hyperboloid and evolve the solution further using

the nonlinear theory developed in Section 3.4. In fact, this is precisely what is done in

[1] and [14]. Of course, Equation (3.21) is not the quadratic wave equation due to the

correction term. So, one might hope that there exists at least one choice of T for which

the correction term, C, vanishes. If this were true, then solutions of Equation (3.21) could

in fact yield solutions of the quadratic wave equation in ΩT,R. An obstruction to this is

that the correction term is a sum of two terms, one for each unstable eigenvalue. That

is, C = C1 + C4 with C1 correcting for the eigenvalue λ = 1 and C4 correcting for the

eigenvalue λ = 4. Without an additional parameter to vary, one cannot hope to guarantee

the vanishing of both correction terms.

Recall the solution F ∗4 of the quadratic wave equation linearized around u∗T , namely

F ∗4 (t, r) =
1(

5r2 + 3(T − t)2
)3 .
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Translating to hyperboloidal similarity coordinates, we have (F ∗4 ◦ ηT )(s, y) = [(e6sf∗4 (y)]1.

The role of the correction term C4 is to remove the contribution of f∗4 from hyperboloidal

initial data. Thus, it seems plausible to expect that for data of the form u∗1[0]+(f, g)+αF ∗4 [0],

the correction term C4 might vanish for at least one choice of α. As stated, it is not

possible to guarantee this and continue the evolution of such data along hyperboloids using

techniques as in [1] or [14] where hyperboloidal similarity coordinates were first developed.

This is due to the fact that the physical evolution of this data cannot necessarily be contained

in a single ball on a hyperboloid and, as a consequence, the nonlinear theory from Section

3.4 cannot be applied in a meaningful way.

As a remedy, one might expect that data of the form u∗1[0] + (f, g) + αχF ∗4 [0],

for some smooth cutoff function χ and some choice of α and T might work. Though

this may be possible, it appears extremely difficult to continue the evolution of such data

along hyperboloids in a controllable way. The reason for this difficulty is that one proves

that there are parameters α and T for which C vanishes via a fixed point argument. In

order to run this fixed point argument one needs two crucial pieces of information. One

crucial bit of information needed is uniform control of the derivatives of the solution of

Equation (3.22). If αχF ∗4 were a solution of the quadratic wave equation or if χF ∗4 were a

solution of the quadratic wave equation equation linearized around u∗1, then this uniform

control could be obtained. Unfortunately, neither of the two seem to be easy to satisfy in

relation to the second bit of information. Running the fixed point argument will eventually

necessitate that the spectral projection P4 applied to a portion of the data not vanish.

Proving non-vanishing of the spectral projection applied to this portion of the data appears
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to be extremely difficult unless it happens to be something rather specific.

Finally, we have enough information to adapt the naive approach. Let’s say that

any sufficiently smooth perturbation of u∗1 of unit size can be evolved for at least a length

of time t0 > 0. For technical reasons, we impose the condition that our perturbation have

support contained in the interval [0, r0) with r0 := t0
4 . With this, we have two conditions

which determine the proper replacement, denoted by (Y1, Y2), for the term χF ∗4 [0] in our

perturbation:

1. We require that (Y1, Y2) when restricted to a particular hyperboloid be precisely χt0f
∗
4 ,

up to some constant multiple, where χt0 is a rather specific smooth cutoff function

with support determined by t0. The support of χt0 is chosen precisely so that, when

viewed in spacetime, its domain of influence at t = 0 is contained within the interval

[0, r0). Furthermore, the support is also chosen so that P4 applied to the previously

mentioned portion of the solution does not vanish.

2. We also require that Y1 be the restriction of a solution of the linearized equation

�u = 2u∗1u at t = 0 with Y2 being its time derivative at t = 0.

The first property ensures the desired condition involving the spectral projection while the

second ensures the necessary uniform control on derivatives of the local solution obtained

by solving Equation (3.22). These two properties are met by solving the linearized equation

in two different ways; first in hyperboloidal similarity coordinates and second in physical

coordinates. The condition on the support of the cutoff ensures that both ways of solving

the linearized equation produce the same result in the overlapping region. Before carrying

this out, we outline the construction and proof.
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Our goal is to construct a smooth solution of the linearized equation �u = 2u∗1u

in the region Λt0 defined by

Λt0 := [−t0, t0]× [0,∞) ∪ {(t, r) ∈ R× [0,∞) : −r + r0 ≤ t ≤ r − r0}

satisfying the above two properties. To achieve this, one can first solve the abstract initial

value problem 
∂sΦ(s) = LΦ(s)

Φ(s0) = χt0f
∗
4

for s ≥ s0 with

s0 := log
(
− 2h(0)

2 + r0

)
on the space Hk1/2 for any k ∈ N. The cutoff χt0 is chosen to be non-increasing and to

have support contained in the interval [0, y0) with y0 to be defined later. This number is

chosen precisely so that the domain of influence of supp(χt0), when viewed in spacetime, at

t = 0 is contained in the interval [0, r0). As a consequence, one can prove that the solution

is smooth and translates it to a smooth solution of �u = 2u∗1u in the spacetime region

η1([s0,∞) × [0, 1
2)) see Figure 3.3. Let’s call this solution ulin. Of course, the spacetime

region η1([s0,∞) × [0, 1
2)) does not contain all of Λt0 . In order to extend the domain of

ulin, we first realize that along the initial hyperboloid, t = 1 + e−s0h(y0) is the first time at

which, beyond that time and along the initial hyperboloid, the cutoff χt0 is guaranteed to

vanish. Thus, the uniqueness of solutions of linear wave equations, see Lemma 12.8 of [32]

for instance, guarantees that ulin vanishes in the dark gray portion of η1([s0,∞) × [0, 1
2))

depicted in Figure 3.3. With this in mind, we smoothly extend ulin(0, ·) by zero, i.e., we
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t

r
y = y0

r = r0

Figure 3.3: A spacetime diagram depicting the region η1([s0,∞) × [0, 1
2)). The cutoff χt0

is supported on the dashed portion of the hyperboloid η1({s0} × [0, 1
2)) in the bottom left

corner of the picture. The solution produced is guaranteed to vanish in the dark gray region
and is potentially nonzero in the light gray region.

define functions

U1(r) :=


ulin(0, r) r ≤ r0

0 r ≥ r0

(3.23)

and

U2(r) :=


∂tulin(0, r) r ≤ r0

0 r ≥ r0

. (3.24)

We then use these functions as initial data for the Cauchy problem
�u = 2u∗1u in Λt0

u[0] =
(
U1, U2

)
which is guaranteed to have a unique smooth solution since u∗1 is smooth in Λt0 and U1, U2

are smooth, see for instance Theorem 3.2 of [38]. Since this solution and the original agree

on the initial hyperboloid, they must agree wherever Λt0 and η1([s0,∞) × [0, 1
2)) overlap.
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t

r
r = r0

y = y0

Figure 3.4: A spacetime diagram depicting the domain of the smoothly extended ulin. The
darker region depicts a portion of where ulin was originally defined. The lighter region
depicts where ulin has been extended by solving Equation (3.29).

Thus, we will have achieved extending ulin to a larger region of spacetime which, in fact,

strictly contains Λt0 , see Figure 3.4. Thus, we have a C∞(Λt0) solution of the linearized

equation which satisfies our two conditions.

Equipped with the solution ulin, we set (Y1, Y2) = ulin[0] and evolve small, smooth,

radial perturbations of u∗1 of the form (f, g) +α(Y1, Y2) with supp(f, g) ⊆ [0, r0). Adjusting

the size of (f, g) and of |α| allows us to ensure (f, g) + α(Y1, Y2) is of unit size, i.e., data of

the form u∗1[0] + (f, g) + α(Y1, Y2) can be evolved in Λt0 via the quadratic wave equation.

Furthermore, since ulin solves the linearized equation, we are able to obtain the necessary

uniform control on the corresponding solution. Then, by allowing α and T to vary, we

are indeed able to run the necessary fixed point argument proving the vanishing of the

correction term. Thus, we are able to successfully continue the evolution into all of ΩT,R.
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3.5.1 Local Existence for Perturbations of u∗1 at t = 0

In this section, we prove a local existence and uniqueness result for sufficiently

smooth, radial perturbations of u∗1 of unit size. This will allow us to define the spacetime

region Λt0 setting the stage for proving the main result. First, we review the standard

Cauchy theory for nonlinear wave equations on balls. For the proofs of the following claims,

we refer the reader to [1].

The solution of the Cauchy problem
�u = 0 in R1+d

u[0] = (f, g)

is given by the wave propagators

u(t, ·) = cos(t|∇|)f +
sin(t|∇|)
|∇|

g

for f, g ∈ S(Rd) where φ(|∇|)f = F−1(φ(| · |)Ff) for φ ∈ C(R). The wave propagators

extend to rough data (f, g) ∈ Ḣ1 × L2(Rd) by density. Furthermore, they satisfy the

following estimates.

Proposition 56 Let d ≥ 3. Then there exists a continuous function γd : [0,∞) → [1,∞)

such that ∥∥∂`t cos(t|∇|)f
∥∥
Ḣk(BdT−t)

≤ ‖f‖Ḣk+`(BdT ),∥∥∥∥∂`t sin(t|∇|)
|∇|

f

∥∥∥∥
Ḣk(BdT−t)

≤ ‖f‖Ḣk+`−1(BdT ),∥∥∂`t cos(t|∇|)f
∥∥
L2(BdT−t)

≤ γd(T )‖f‖Ḣ1+`(BdT ),

and ∥∥∥∥∂`t sin(t|∇|)
|∇|

f

∥∥∥∥
L2(BdT−t)

≤ γd(T )‖f‖Ḣ`(BdT )
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for all f ∈ S(Rd), T > 0, t ∈ [0, T ), k ∈ N, and ` ∈ N0.

Again by density, these estimates hold for data in homogeneous Sobolev spaces as well.

Clearly, the wave propagators are only defined for functions on all of Rd. We

can extend the definition of the wave propagators to functions defined on balls via Sobolev

extensions as follows.

Lemma 57 Let d ∈ N. For any r > 0 there exists a linear map Er,d : L2(Bdr) → L2(Rd)

such that Er,df |Bdr = f a.e.. If f ∈ Hk(Bdr) for k ∈ N, then Er,df ∈ Hk(Rd). Furthermore,

there exists a constant Cr,k,d > 0 such that

‖Er,df‖Hk(Rd) ≤ Cr,k,d‖f‖Hk(Bdr)

for all k ∈ N0 and f ∈ Hk(Bdr).

Definition 58 Let T > 0, t ∈ [0, T ), and d ∈ N, d ≥ 3. Then we define

cos(t|∇|), sin(t|∇|)
|∇|

: L2(BdT−t)→ L2(BdT−t)

by

cos(t|∇|)f :=
(

cos(t|∇|)ET,df
)∣∣

BdT−t

and

sin(t|∇|)
|∇|

f :=

(
sin(t|∇|)
|∇|

ET,df
)∣∣∣∣

BdT−t

where ET,d is a Sobolev extension as in Lemma 57.

We remark that the wave propagators in Definition 58 are independent of the choice

of Sobolev extension. Furthermore, Proposition 56 implies that the wave propagators are

bounded linear maps from Hk(BdT ) to Hk(BdT−t) for all k ∈ N0, T > 0, and t ∈ [0, T ).
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When solving nonlinear problems, we reformulate the corresponding Cauchy prob-

lem as a fixed point problem using the wave propagators in the following Banach space.

Definition 59 Let k ∈ N0, T > 0, d ∈ N, and T ′ ∈ (0, T ). We define a Banach space

Xk
T (T ′) which consists of functions

u :
⋃

t∈[0,T ′]

{t} × BdT−t → R

such that u(t, ·) ∈ Hk(BdT−t) for each t ∈ [0, T ′] and the map t → ‖u(t, ·)‖Hk(BdT−t)
is

continuous on [0, T ′]. Furthermore, we set

‖u‖Xk
T (T ′) := max

t∈[0,T ′]
‖u(t, ·)‖Hk(BdT−t)

In this Banach space, we will look for solutions of the following equation.

Definition 60 Let k ∈ N, T > 0, T ′ ∈ (0, T ), and, d ≥ 3. Let N be some nonlinear

operator. We say that a function u :
⋃
t∈[0,T ′]{t} × BdT−t → R is a strong Hk solution of

the Cauchy problem 
�u = N

(
·, u(·)

)
in
⋃
t∈[0,T ′]{t} × BdT−t

u[0] = (f, g)

if u ∈ Xk
T (T ′) and

u(t, ·) = cos(t|∇|)f +
sin(t|∇|)
|∇|

g +

∫ t

0

sin((t− s)|∇|)
|∇|

N (s, ·, u(s, ·))ds

for all t ∈ [0, T ′].

Remark 61 Though we do not specify the particular nonlinear operator in our definition of

strong solution, when we actually look for strong solutions it will be for a specific nonlinearity

which will be clearly stated.
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Using the standard Cauchy theory just reviewed, we can evolve a large class of

perturbations of u∗1 via the quadratic wave equation at least for some amount of time t0 > 0.

In fact, the estimates that t0 must satisfy will be very important in the remainder of the

argument and so we make them apparent.

Lemma 62 There exists t0 ∈ (0, 4
9) such that for all (f, g) ∈ H10(B7

1)×H9(B7
1) satisfying

‖f‖H10(B7
1) + ‖g‖H9(B7

1) ≤ 1,

the initial value problem
�u = u2 in

⋃
t∈[0,t0]{t} × B7

1−t

u[0] = u∗1[0] + (f, g)

has a unique strong H10 solution in the truncated lightcone
⋃
t∈[0,t0]{t} × B7

1−t.

Proof. We seek to solve the Cauchy problem
�ϕ = ϕ2 + 2u∗1ϕ in

⋃
t∈[0,t0]{t} × B7

1−t

ϕ[0] = (f, g)

.

A strong H10 solution of this Cauchy problem yields a strong H10 solution of the original

Cauchy problem by setting u = u∗1 + ϕ. For t0 > 0, set

Y (t0) := {ϕ ∈ X10
1 (t0) : ‖ϕ‖X10

1 (t0) ≤ 2γ}

where γ := maxs∈[0, 1
2

] γ(1 − s) and γ(·) is the continuous function from Proposition 56.

Define a map Kf,g on Y (t0) by

Kf,g(ϕ)(t) = cos(t|∇|)f +
sin(t|∇|)
|∇|

g +

∫ t

0

sin
(
(t− s)|∇|

)
|∇|

N
(
s, ·, ϕ(s, ·)

)
ds
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where

N
(
t, x, ϕ(t, x)

)
= ϕ2(t, x) + 2u∗1(t, |x|)ϕ(t, x).

By the Banach algebra property, we infer the existence of a constant 0 < C <∞ such that

‖f̃ g̃‖H9(B7
r)
≤ C‖f̃‖H9(B7

r)
‖g̃‖H9(B7

r)
(3.25)

for any f̃ , g̃ ∈ H9(B7
r) and r ∈ [1

2 , 1]. As a consequence of this bound and the standard

Cauchy theory, we have

‖Kf,g(ϕ)(t)‖H10(B7
1−t)
≤γ‖f‖H10(B7

1) + γ‖g‖H9(B7
1) + γ

∫ t

0
‖N (s, ·, ϕ(s, ·))‖H9(B7

1−s)
ds

≤γ + γ

∫ t

0

(
‖ϕ(s, ·)2‖H9(B7

1−s)
+ 2‖u∗1(s, ·)ϕ(s, ·)‖H9(B7

1−s)

)
ds

≤γ + γCt0
(
‖ϕ‖2X10

1 (t0) + 2‖u∗1‖X10
1 (t0)‖ϕ‖X10

1 (t0)

)
≤γ + γCt0

(
(2γ)2 + 2‖u∗1‖X10

1 ( 4
9

)2γ
)
.

Thus, Kf,g : Y (t0)→ Y (t0) provided t0 is small enough so that the inequality

t0C
(
(2γ)2 + 2‖u∗1‖X10

1 ( 4
9

)2γ
)
≤ 1

holds. Similarly, given ϕ,ψ ∈ Y (t0), we have

‖Kf,g(ϕ)(t)−Kf,g(ψ)(t)‖H10(B7
1−t)

≤γ
∫ t

0
‖N (s, ·, ϕ(s, ·))−N (s, ·, ψ(s, ·))‖H9(B7

1−s)
ds

≤γ
∫ t

0

(
‖(ϕ(s, ·)− ψ(s, ·))2‖H9(B7

1−s)

+ 2‖u∗1(s, ·)(ϕ(s, ·)− ψ(s, ·))‖H9(B7
1−s)

)
ds

≤γCt0
(
4γ + 2‖u∗1‖X10

1 ( 4
9

)

)
‖ϕ− ψ‖X10

1 (t0).
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Thus Kf,g is Lipschitz on Y (t0) with Lipschitz constant at most 1
2 provided t0 is small

enough so that the inequality

γt0C
(
4γ + 2‖u∗1‖X10

1 ( 4
9

)

)
≤ 1

2

holds. Thus, Kf,g is a contraction on the closed subspace Y (t0) of the Banach space X10
1 (t0).

As a consequence, the Banach fixed point theorem implies the existence of a unique fixed

point ϕf,g,α ∈ Y (t0) of Kf,g.

3.5.2 Construction of an Adjustment Term

In this section, we use the number t0 produced in Lemma 62 to construct a partic-

ular solution of the linearized equation �u = 2u∗1u which is smooth in the spacetime region

Λt0 . This function will have the crucial property that on a particular hyperboloid, it will

be a suitably cutoff version of the unstable eigenfunction f∗4,1. This property will allow us

to run a fixed point argument to show that perturbations of u∗1 at t = 0, adjusted by this

solution of the linearized equation, evolve according to the quadratic wave equation into

something which converges to u∗T for T close to 1. In order to properly motivate this, we

first prove one of the crucial properties which allows us to successfully run this fixed point

argument and then proceed with the construction.

With t0 > 0 as in Lemma 62 and r0 := t0
4 , we define the number

y0 := es0
(4 +

√
2)r2

0 + 4(2 +
√

2)r0

8(r0 + 2 +
√

2)
. (3.26)

This number is chosen by solving the equation r − r0 = 1 + e−s0h(es0r) for r and setting
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y0 = es0r. For reasons to be made clear very soon, consider the function

F (y) =
f4,1(y)

W (y; 4)

G̃4(y)

c12(y)
−
( c21(y)f∗4,1(y)2

W (y; 4)c12(y)

)′
for y ∈ [0, 1

2 ] where

G̃4(y) = c21(y)
df∗4,1
dy

+
(
c20(y)− 12

)
f∗4,1(y)

and

W (y; 4) =

(
y2 + 1

) (
1− 4y2

)−4
(

3
√
y2 + 2− y + 4

)2 (
3
√
y2 + 2 + y + 4

)2

y6
√
y2 + 2

√
y2 + 2

√
y2 + 2 + 3

.

A direct calculation shows that there is δ0 > 0 so that F (y) > 0 for y ∈ [0, δ0). Now, let

χt0 : [0,∞) → [0, 1] be any smooth cutoff function with χt0(y) = 1 for y ≤ 1
2 min{y0, δ0}

and χt0(y) = 0 for y ≥ 3
4 min{y0, δ0}. With this, we state and prove the following crucial

lemma.

Lemma 63 Fix R ≥ 1
2 . Then (P4(χt0f

∗
4 )|f∗4 )HR 6= 0.

Proof. Observe that χt0f
∗
4 ∈ C∞e [0, R]2. Given λ ∈ ρ(L), recall that the second component

of the resolvent can be re-expressed in terms of the first component by the equation

[RL(λ)f ]2 = (λ+ 2)[RL(λ)f ]1 − f1

for any f = (f1, f2) ∈ H. This implies

[P4f ]2 = lim
λ→4

(λ− 4)[RL(λ)f ]2

= lim
λ→4

(λ− 4)
(

(λ+ 2)[RL(λ)f ]1 − f1

)
= 6[P4f ]1.

Thus, it suffices to study [P4(χt0f
∗
4 )]1.
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For λ ∈ ρ(L) the first component of u := RL(λ)(χt0f
∗
4 ) solves the ODE

u′′(y) +
c11(y) + (λ+ 2)c21(y)

c12(y)
u′(y) +

(λ+ 2)(c20(y)− λ− 2) + V (y)

c12(y)
u(y)

=
χt0(y)G̃λ(y) + c21(y)χ′t0(y)f∗4,1(y)

c12(y)

(3.27)

on the interval (0, R) where

G̃λ(y) = c21(y)
df∗4,1
dy

+
(
c20(y)− 4− 2λ

)
f∗4,1(y).

For the homogeneous equation, the Frobenius indices at the singular point y = 0 are {0,−5}

while at y = 1
2 they are {0, 1−λ}. Denote by φ1(·;λ) a solution of the homogeneous version

of Equation (3.27) taking the index −5 at y = 0 and φ0(·;λ) a solution of the homogeneous

version of Equation (3.27) taking the index 0 at y = 0. Observe that φ0(·;λ) must take

the index 1 − λ at y = 1
2 since, if otherwise, φ0(·;λ) ∈ C∞[0, 1] and this is excluded by

Proposition 48 for λ ∈ ρ(L). The Wronskian is W
(
φ1(·;λ), φ0(·;λ)

)
(y) = C(λ)W (y;λ)

where C(λ) is some constant depending on λ and

W (y;λ) =

(
y2 + 1

) (
1− 4y2

)−λ (
3
√
y2 + 2− y + 4

)λ/2 (
3
√
y2 + 2 + y + 4

)λ/2
y6
√
y2 + 2

√
y2 + 2

√
y2 + 2 + 3

.

The fact that λ = 4 is a simple pole of the resolvent implies that C(λ) must vanish to order

one at λ = 4.

Since neither of these two fundamental solutions live in H6
rad(B7

1/2), variation of

parameters implies

[RL(λ)(χt0f
∗
4 )]1(y)

=φ1(y;λ)

∫ y

0

φ0(ỹ;λ)

W
(
φ0(·;λ), φ1(·;λ)

)
(ỹ)

χt0(ỹ)G̃λ(ỹ) + c21(ỹ)χ′t0(ỹ)f∗4,1(ỹ)

c12(ỹ)
dỹ

+ φ0(y;λ)

∫ 1
2

y

φ1(ỹ;λ)

W
(
φ0(·;λ), φ1(·;λ)

) χt0(ỹ)G̃λ(ỹ) + c21(ỹ)χ′t0(ỹ)f∗4,1(ỹ)

c12(ỹ)
dỹ.
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By repeated integration by parts, one can indeed see that the above expression is in

H6
rad(B7

1/2).

Since f∗4 is an eigenfunction, we must have that φ0(·; 4) and φ1(·; 4) are multiples

of f4,1. Consequently, we obtain

[P4(χt0f
∗
4 )]1(y) = Cf∗4,1(y)

∫ 1
2

0

f∗4,1(ỹ)

W (ỹ; 4)

χt0(ỹ)G̃4(ỹ) + c21(ỹ)χ′t0(ỹ)f∗4,1(ỹ)

c12(ỹ)
dỹ

for some C ∈ C \ {0}. An integration by parts yields

∫ 1
2

0

f∗4,1(ỹ)

W (ỹ; 4)

χt0(ỹ)G̃4(ỹ) + c21(ỹ)χ′t0(ỹ)f∗4,1(ỹ)

c12(ỹ)
dỹ

=

∫ 1
2

0
χt0(ỹ)

(
f∗4,1(ỹ)

W (ỹ; 4)

G̃4(ỹ)

c12(ỹ)
−
( c21(ỹ)f∗4,1(ỹ)2

W (ỹ; 4)c12(ỹ)

)′)
dỹ

By definition of χt0 , the integrand is positive within supp(χt0) which implies

[P4(χt0f
∗
4 )]1(y) = Ct0f

∗
4,1(y)

for some Ct0 6= 0. This implies the desired claim.

With the above lemma in mind, we are motivated to construct a function which,

on an initial hyperboloid, is precisely χt0f
∗
4 .

Lemma 64 Let t0 > 0 be defined as in Lemma 62. There exists a smooth, radial solution

of �u = 2u∗1u in the spacetime region Λt0 with the following two properties:

1. (u ◦ η1)(s0, y) = e−2s0χt0(y)f∗4,1(y) for all y ∈ [0,∞) and

2. u|t=0 has support contained in the interval [0, r0).

Proof. The proof proceeds in two steps. First, we evolve the data χt0f
∗
4 according to the

linearized equation in the hyperboloidal formulation. As this data is smooth, we can in
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fact show that the solution yields a smooth solution of �u = 2u∗1u in the spacetime region

η1

(
[s0,∞) × [0, 1

2)
)
. Second, we can extend the domain of this solution to the rest of the

claimed spacetime region by evolving it in a standard way. Again, the data will be smooth

and so must be the solution.

Let k ∈ N, k ≥ 6 and consider the abstract initial value problem
∂sΦ(s) = LΦ(s)

Φ(s0) = χt0f
∗
4

on the space Hk1/2. For k = 6, we have that the unique solution in C([s0,∞),H6
1/2) is given

by

Φ(s) := S(s− s0)(χt0f
∗
4 ) s ≥ s0

where
(
S(s)

)
s≥0

is the strongly continuous semigroup from Lemma 45. For k > 6, Lemma

44 along with the bounded perturbation theorem imply that L is also the generator of

a strongly continuous semigroup of bounded operators on Hk1/2 which we will denote by(
Sk(s)

)
s≥0

. Observe that for any k ≥ 6, S(s)|Hk
1/2

= Sk(s) for all s ≥ 0 following the

argument of Lemma 3.5 of [9]. Since χt0f
∗
4 ∈ C∞e [0, R]2, we have as a consequence that Φ

is the unique solution in C([s0,∞),Hk1/2) for any k ≥ 6. Consequently, Φ(s) ∈ Hk1/2 for any

k ∈ N, k ≥ 6 and s ≥ s0 which, by Sobolev embedding, implies Φ(s)(| · |) ∈ C∞(B7
1/2)2 for

all s ≥ s0.

Since χt0f
∗
4 ∈ C∞e [0, R]2, Theorem 6.1.5 of [30] implies that Φ ∈ C1([s0,∞),Hk1/2)

and

∂sΦ(s) = S(s− s0)
(
L(χt0f

∗
4 )
)
. (3.28)

Thus, ∂sΦ(s)(| · |) ∈ C∞(B7
1/2)2 for all s ≥ s0. From Equation (3.28), we find that ∂sΦ ∈
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C1([s0,∞),Hk1/2). Thus, by an inductive argument, we conclude that for all m ∈ N, Φ ∈

Cm([s0,∞),Hk1/2) with ∂ms Φ(s) = S(s − s0)
(
Lm(χt0f

∗
4 )
)
. Again by Sobolev embedding,

∂ms Φ(s)(| · |) ∈ C∞(B7
1/2)2 for all m ∈ N and s ≥ s0. Since all s and y derivatives exist to

arbitrary order and are continuous, we conclude that Φ ∈ C∞([s0,∞)× [0, 1
2)).

Upon defining v(s, y) := e2sφ1(s, y), we have that ulin(t, r) :=
(
v ◦ η−1

1

)
(t, r) is a

smooth solution of the �u = 2u∗1u in the spacetime region η1([s0,∞) × [0, 1
2)). To begin

extending the domain of ulin, recall the smooth extensions of ulin(0, ·) and ∂tulin(0, ·), namely

U1 and U2 defined as

U1(r) :=


ulin(0, r) r ≤ r0

0 r ≥ r0

and

U2(r) :=


∂tulin(0, r) r ≤ r0

0 r ≥ r0

.

Clearly, for r > r0 all derivatives of U1 and U2 vanish. For r < r0, all derivatives of U1

and U2 exist and are continuous since, for such r, U1 and U2 are the composition of smooth

functions. All r-derivatives of ulin(0, ·) from the left vanish and ulin(0, r0) by the choice of

cutoff χt0 implying smoothness of U1 and U2 at r = r0.

Now, consider the Cauchy problem
�u = 2u∗1u in Λt0

u[0] = (U1, U2)

. (3.29)

Since u∗1 ∈ C∞(Λt0) and radial along with U1(| · |), U2(| · |) ∈ C∞(R7), the Cauchy problem

(3.29) has a unique radial solution u ∈ C∞(Λt0). Furthermore, since the data satisfies
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supp(U1, U2) ⊆ [0, r0) and is specified at t = 0, finite speed of propagation implies that

u = 0 in the spacetime region {(t, r) ∈ R × [0,∞) : r0 − r ≤ t ≤ r0 + r, r ≥ r0}. Finally,

uniqueness of solutions to linear wave equations allows us to conclude that the solution we

have just produced satisfies u(t, r) = ulin(t, r) for (t, r) ∈ η1([s0,∞)×[0, 1
2)), i.e., the solution

u smoothly extends ulin. Consequently, we have a function ulin ∈ C∞(Λt0) which solves the

linearized equation �u = 2u∗1u and satisfies ulin(1 + e−s0h(y), y) = e−2s0χt0(y)f∗4,1(y).

3.5.3 Local Existence for Adjusted Perturbations of u∗1 at t = 0

In this section, we evolve perturbations of u∗1 adjusted by some multiple of ulin in

the spacetime region Λt0 according to the quadratic wave equation. In this region, we will

obtain uniform control over enough derivatives of the evolution in order to continue the it

via the hyperboloidal formulation. For convenience, given m ∈ N, δ, ε > 0, we define

Bmδ,ε := {(f, g) ∈ C∞e ([0,∞))2 : supp(f, g) ⊂ [0, ε), ‖(f, g)‖Hm
rad(R7)×Hm−1

rad (R7) ≤ δ}.

Lemma 65 Let t0 > 0 be as in Lemma 62. For all sufficiently small δ > 0 and sufficiently

large M0 > 0, we have that for all (f, g) ∈ B10
δ/M2

0 ,t0/4
and |α| ≤ δ

M0
, the initial value problem

�u = u2

u[0] = u∗1[0] + αulin[0] + (f, g)

(3.30)

has a unique radial solution u ∈ C∞(Λt0) of the form u = u∗1 + αulin + ϕf,g,α with

sup
(t,r)∈Λt0

|∂it∂jrϕf,g,α(t, r)| . δ

M2
0

for all i, j ∈ N0 with i+ j ≤ 6.
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Proof. Since ulin[0], (f, g) ∈ C∞e [0,∞)2 and are supported in the interval [0, r0), we cer-

tainly can ensure that for all δ > 0 sufficiently small and M0 > 0 sufficiently large, the

inequality ‖αulin[0] + (f, g)‖H10(R7)×H9(R7) ≤ 1 holds. Thus, by Lemma 62, Equation (3.30)

has a unique strong H10 solution in the truncated lightcone up to time t0. It remains to

show that our solution is of the stated form in Λt0 . To that end, we consider the Cauchy

problem 
�ϕ = ϕ2 + 2(u∗1 + αulin)ϕ+ α2u2

lin

ϕ[0] = (f, g)

. (3.31)

A strong H10 solution of (3.31) yields a strong H10 solution of the original Cauchy problem

by setting u = u∗1 + αulin + ϕ. Set

Y ′(t0) :=

{
ϕ ∈ X10

1 (t0) : ‖ϕ‖X10
1 (t0) ≤ 2γ

δ

M2
0

}
.

Define a map Kf,g,α on Y ′(t0) by

Kf,g,α(ϕ)(t) := cos(t|∇|)f +
sin(t|∇|)
|∇|

g +

∫ t

0

sin
(
(t− s)|∇|

)
|∇|

Nα
(
s, ·, ϕ(s, ·)

)
ds, t ∈ [0, t0]

where

Nα
(
t, x, ϕ(t, x)

)
:= ϕ2(t, x) + 2(u∗1(t, |x|) + αulin(t, |x|))ϕ(t, x) + α2u2

lin(t, |x|).
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Similar to the proof of Lemma 62, we have

‖Kf,g,α(ϕ)(t)‖H10(B7
1−t)

≤γ‖f‖H10(B7
1) + γ‖g‖H9(B7

1) + γ

∫ t

0
‖Nα(s, ·, ϕ(s, ·))‖H9(B7

1−s)
ds

≤γ δ

M2
0

+ γC

∫ t

0

(
‖ϕ(s, ·)‖2H9(B7

1−s)

+ 2(‖u∗1(s, ·)‖H9(B7
1−s)

+ |α|‖ulin(s, ·)‖H9(B7
1−s)

)‖ϕ(s, ·)‖H9(B7
1−s)

+ α2‖ulin(s, ·)‖2H9(B7
1−s)

)
ds

≤γ δ

M2
0

+ γCt0
(
‖ϕ‖2X10

1 (t0) + 2(‖u∗1‖X10
1 ( 4

9
) + |α|‖ulin‖X10

1 (t0))‖ϕ‖X10
1 (t0)

+ α2‖ulin‖2X10
1 (t0)

)
≤γ δ

M2
0

+ γCt0

(
(2γ

δ

M2
0

)2 + 2
(
‖u∗1‖X10

1 ( 4
9

) +
δ

M0
‖ulin‖X10

1 (t0)

)
2γ

δ

M2
0

+
( δ

M0

)2‖ulin‖2X10
1 (t0)

)
where the constant C is the same constant as in Equation (3.25). Thus, we have that

Kf,g,α : Y ′(t0)→ Y ′(t0) provided that the inequality

Ct0

(
(2γ)2 δ

M2
0

+ 2
(
‖u∗1‖X10

1 ( 4
9

) +
δ

M0
‖ulin‖X10

1 (t0)

)
2γ + δ

(
‖ulin‖X10

1 (t0)

)2) ≤ 1

holds. Recalling that t0 > 0 was chosen so that the inequality

Ct0
(
(2γ)2 + 2‖u∗1‖X10

1 ( 4
9

)2γ
)
≤ 1
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held, we observe that by considering smaller δ if necessary, we can ensure that the desired

inequality is satisfied. Similarly, given ϕ,ψ ∈ Y ′(t0),

‖Kf,g,α(ϕ)(t)−Kf,g,α(ψ)(t)‖Hk(B7
1−t)

≤γ
∫ t

0
‖Nα(s, ·, ϕ(s, ·))−Nα(s, ·, ψ(s, ·))‖H9(B7

1−s)
ds

≤γ
∫ t

0

(
‖(ϕ(s, ·)− ψ(s, ·))2‖H9(B7

1−s)

+ 2‖(u∗1(s, ·) + αulin(s, ·))(ϕ(s, ·)− ψ(s, ·))‖H9(B7
1−s)

)
ds

≤γCt0
(

4γ
δ

M2
0

+ 2
(
‖u∗1‖X10

1 ( 4
9

) +
δ

M0
‖ulin‖X10

1 (t0)

))
‖ϕ− ψ‖X10

1 (t0).

Thus Kf,g,α is Lipschitz on Y ′(t0) with Lipschitz constant at most 1
2 provided that the

inequality

Cγt0

(
4γ

δ

M2
0

+ 2
(
‖u∗1‖X10

1 ( 4
9

) +
δ

M0
‖ulin‖X10

1 (t0)

))
≤ 1

2

holds. Again, recalling that t0 > 0 was chosen so that, in addition, the inequality

Cγt0
(
4γ + 2‖u∗1‖X10

1 (t0)

)
≤ 1

2

held, we observe that by considering smaller δ if necessary, we can ensure that the desired

inequality is satisfied. Thus, Kf,g,α is a contraction on the closed subspace Y ′(t0) of the

Banach space X10
1 (t0). The Banach fixed point theorem implies the existence of a unique

fixed point, namely ϕf,g,α ∈ Y ′(t0), of Kf,g,α. Setting uf,g,α = u∗1 + αulin + ϕf,g,α yields

the unique solution solution of the Cauchy problem (3.30). Theorems 2.12 and 2.14 of [1]

imply uf,g,α ∈ C∞(Λt0). The stated bound on ϕf,g,α follows from ϕf,g,α ∈ Y ′(t0), Sobolev

embedding, and finite speed of propagation.
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3.5.4 The Initial Data Operator

In this section, we use the solution obtained in Lemma 65 to obtain data on a

family of hyperboloids in order to continue its evolution into ΩT,R using the nonlinear

theory developed in Section 3.4.1. By studying the properties of this restriction, we will

eventually be able to find at least one hyperboloid in this family for which this solution can

be continued according to the quadratic wave equation from that hyperboloid. First, we

define a map which sends the data in Lemma 65 to the restriction of the solution obtained

in Lemma 65 on a family of hyperboloids.

Definition 66 Let R ≥ 1
2 and t0 > 0 as in Lemma 62. Let δ > 0 be sufficiently small and

M0 > 0 be sufficiently large so that, given (f, g) ∈ B10
δ/M2

0 ,t0/4
and α ∈ [− δ

M0
, δ
M0

], the unique

solution of Cauchy problem (3.30), uf,g,α ∈ C∞(Λt0), exists. Then we set

U((f, g), α, β) := e−2s

 uf,g,α ◦ η1+β − u∗1+β ◦ η1+β

∂s(uf,g,α ◦ η1+β)− ∂s(u∗1+β ◦ η1+β)


∣∣∣∣∣
s=s0

.

We call U the initial data operator.

We have the following mapping properties of the initial data operator.

Lemma 67 Let R ≥ 1
2 and t0 > 0 as in Lemma 62. For all δ > 0 sufficiently small and

M0 > 0 sufficiently large, the initial data operator U : B10
δ/M2

0 ,t0/4
× [− δ

M0
, δ
M0

]2 → HR is

well-defined and for any (f, g) ∈ B10
δ/M2

0 ,t0/4
, the map U((f, g), ·) : [− δ

M0
, δ
M0

]2 → HR is

continuous. Furthermore, there exists γt0 ∈ R \ {0} such that

U((f, g), α, β) = γt0βf∗1 + αχt0f
∗
4 + V((f, g), α, β), (3.32)
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and V((f, g), α, β) satisfies the bound

‖V((f, g), α, β)‖HR .
δ

M2
0

+ |α|2 + |β|2.

Proof. The initial data operator is well-defined since the hyperboloids η1+β({s0}× [0, R)),

β ∈ [− δ
M0
, δ
M0

], lie entirely in Λt0 for sufficiently small δ and sufficiently largeM0. Continuity

of U((f, g), ·) follows from u∗1+β ∈ C∞(Λt0) and continuous dependence on α of uf,g,α. To

see the stated expansion of U((f, g), α, β), we insert the form of uf,g,α and group terms as

follows

U((f, g), α, β) =e−2s

 (u∗1 + αulin + ϕf,g,α) ◦ η1+β − u∗1+β ◦ η1+β

∂s((u
∗
1 + αulin + ϕf,g,α) ◦ η1+β)− ∂s(u∗1+β ◦ η1+β)


∣∣∣∣∣
s=s0

=e−2s

 u∗1 ◦ η1+β − u∗1+β ◦ η1+β

∂s(u
∗
1 ◦ η1+β)− ∂s(u∗1+β ◦ η1+β)


∣∣∣∣∣
s=s0

+ αe−2s

 ulin ◦ η1+β − ulin ◦ η1

∂s(ulin ◦ η1+β)− ∂s(ulin ◦ η1)


∣∣∣∣∣
s=s0

+ αe−2s

 ulin ◦ η1

∂s(ulin ◦ η1)


∣∣∣∣∣
s=s0

+ e−2s

 ϕf,g,α ◦ η1+β

∂s(ϕf,g,α ◦ η1+β)


∣∣∣∣∣
s=s0

.

Now, recall

(u∗T ◦ ηT )(s, y) = −
24e2s

(
5y2 − 21h(y)2

)(
3h(y)2 + 5y2

)2 .
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which is clearly independent of T . Thus, for the first term we can write

u∗1(1 + β + e−sh(y), e−sy)− u∗1+β(1 + β + e−sh(y), e−sy)

= ∂Tu
∗
1(T + e−sh(y), e−sy)|T=1β + r1(β, s, y)β2

where

r1(β, s, y) =

∫ 1

0

(∫ 1

0
∂2
βu
∗
1(1 + βxz + e−sh(y), e−sy)dz

)
xdx.

We have that r1 is smooth and bounded since u∗1 ∈ C∞(Λt0). Furthermore, recalling

e−2s(∂Tu
∗
T ◦ ηT )|T=1(s, y) = 432esf∗1,1(y) along with a similar claim for the s derivative

yields the first term in the stated expansion. For the second term, we can write

ulin(1 + β + e−sh(y), e−sy)− ulin(1 + e−sh(y), e−sy) = r2(β, s, y)β

where

r2(β, s, y) =

∫ 1

0
∂βulin(1 + βx+ e−sh(y), e−sy)dx

which is smooth and bounded since ulin ∈ C∞(Λt0). Recalling

e−2s

 ulin ◦ η1

∂s(ulin ◦ η1)


∣∣∣∣∣
s=s0

= χt0f
∗
4

yields the second claimed term in the expansion. O(αβ) and O(β2) terms are obtained in

V from r1 and r2 along with their s derivatives. Lastly, the O( δ
M2

0
) term in V follows from

Inequality (65).

3.5.5 Hyperboloidal Evolution

At this point, we are finally ready to continue the evolution of the data we began

to evolve in Section 3.5.3. We achieve this by evolving the data U
(
(f, g), α, β

)
according to
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the nonlinear theory developed in Proposition 55. By a fixed point argument, we will show

that there is at least one choice of α and β for which the correction term vanishes. In other

words, there is at least one choice of α and β for which evolving U
(
(f, g), α, β

)
according

to the modified equation is equivalent to that of the quadratic wave equation.

Proposition 68 Let R ≥ 1
2 and t0 > 0 be as in Lemma 62. Then for all sufficiently

large M0 > 0, there exists δ > 0 such that for any pair (f, g) ∈ B10
δ/M2

0 ,t0/4
, there exists

(αf,g, βf,g) ∈ [− δ
M0
, δ
M0

]2 and a unique function Φf,g ∈ C([s0,∞),HR) that satisfies

Φf,g(s) = S(s− s0)U((f, g), αf,g, βf,g) +

∫ s

s0

S(s− s′)N(Φf,g(s
′))ds′,

and ‖Φf,g(s)‖HR ≤ δe−ω0s for all s ≥ s0.

Proof. First, let δ > 0 be sufficiently small and M0 > 0 sufficiently large so that the initial

data operator is well-defined. Furthermore, the expansion of the initial data operator,

Equation (3.32), implies that
∥∥U((f, g), α, β)

)∥∥
HR .

δ
M0

for all (f, g) ∈ B10
δ/M2

0 ,t0/4
and

(α, β) ∈ [− δ
M0
, δ
M0

]2. Thus, we require M0 & c so that
∥∥U((f, g), α, β)

)∥∥
HR ≤

δ
c for δ and c

as in Proposition 55. Thus, for (f, g) ∈ B10
δ/M2

0 ,t0/4
and (α, β) ∈ [− δ

M0
, δ
M0

]2, Proposition 55

implies the existence of a unique Φf,g,α,β ∈ C([s0,∞),HR) that satisfies

Φf,g,α,β(s) =S(s− s0)

[
U
(
(f, g), α, β

)
−C

(
Φf,g,α,β ,U

(
(f, g), α, β

))]
+

∫ s

s0

S(s− s′)N(Φf,g,α,β(s′))ds′

with the stated decay. If C
(

Φf,g,α,β ,U
(
(f, g), α, β

))
= 0, then we are done. To this end,

define the function Γf,g : [− δ
M0
, δ
M0

]2 → R2 by Γf,g =
(

Γ
(1)
f,g,Γ

(4)
f,g

)
where

Γ
(1)
f,g(α, β) =

(
C1

(
Φf,g,α,β ,U

(
(f, g), α, β

))∣∣∣∣f∗1)
HR
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Γ
(4)
f,g(α, β) =

(
C4

(
Φf,g,α,β ,U

(
(f, g), α, β

))∣∣∣∣f∗4)
HR

Proposition 55 and continuity of the initial data operator implies continuity of Γf,g. Ac-

cording to the expansion of the initial data operator and transversality of the spectral

projections, there exists a nonzero constant γ̃t0 such that

Γ
(1)
f,g(α, β) = γ̃t0β + α(P1(χt0f

∗
4 )|f∗1 )HR + φ

(1)
f,g(α, β)

and

Γ
(4)
f,g(α, β) = α(P4(χt0f

∗
4 )|f∗4 )HR + φ

(4)
f,g(α, β)

where φf,g =
(
φ

(1)
f,g(α, β), φ

(4)
f,g(α, β)

)
: [− δ

M0
, δ
M0

]2 → R2 is continuous and satisfies the

estimate |φf,g| . δ
M2

0
+ δ2.

The equation Γf,g(α, β) = 0 is equivalent to the existence of a fixed point of the

map (α, β) 7→ A−1
t0
φf,g(α, β) where

At0 = −

(P1(χt0f
∗
4 )|f∗1 )HR γ̃t0

(P4(χt0f
∗
4 )|f∗4 )HR 0

 .

This matrix is invertible since γ̃t0 , (P4(χt0f
∗
4 )|f∗4 )HR 6= 0, the second following from Lemma

63. Denoting by ‖ · ‖M2(C) the matrix norm on M2(C), we have that

|A−1
t0
φf,g(α, β)| ≤ ‖A−1

t0
‖M2(C)|φf,g(α, β)|

.
( δ

M2
0

+ δ2
)
.

Thus, for M0 sufficiently large, one can take δ . 1
2M0

in order to show that this map sends

[− δ
M0
, δ
M0

]2 to itself. Thus, the Brouwer fixed point theorem implies the existence of a fixed

point. An inductive argument analogous to the proof of Lemma 64 shows that Φf,g is indeed

smooth.
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3.5.6 Proof of the Main Result

By Lemma 65 and Proposition 68, there exist positive constants t0, δ,M0 > 0 such

that for any pair of functions (f, g) ∈ B10
δ/M2

0 ,t0/4
, there exists (α, β) ∈ [− δ

M0
, δ
M0

]2 and a

unique u ∈ C∞(ΩT,R) solving Equation (3.3) where T = 1 +β. For (s, y) ∈ [s0,∞)× [0, R),

we have the equality

(u ◦ ηT )(s, y) = (uT ◦ ηT )(s, y) + e2sφ1(s)(y).

By Theorem 2.12 of [1], we have u = u∗1 in ΩT,R \ ηT ([s0,∞) × [0, R)). Lastly, the stated

convergence follows from the decay of Φf,g.

3.6 Appendix

3.6.1 Explicit Expressions for Proposition 48

Cn(λ) = P1(n,λ)
P2(n,λ) and εn(λ) = P3(n,λ)

P2(n,λ) where

P1(n, λ) = −845000000n2(n+ 1)3(2n+ 11)(λ+ 2n+ 2)(λ+ 2n+ 8),

P2(n, λ) =
(
1287λ2 + 52(192λ2 + 4125λ+ 9500)n2 + 2000(48λ+ 299)n3 + 104000n4

+ λ(1521λ− 44000)n
)(

52(246λ2 + 5125λ+ 23000)

+ 4(2496λ2 + 125625λ+ 728000)n2

+ 6000(16λ+ 169)n3 + 104000n4 + (21489λ2 + 673000λ+ 3198000)n
)
,
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and

P3(n, λ) =− 33462λ2(117λ2 − 4000λ− 4000)− 4000(74344λ2 + 1012375λ+ 14196000)n6

+ 1000(57408λ3 − 1058203λ2 − 34820500λ− 237276000)n5

− 8(292032λ4 − 66226875λ3 − 854777500λ2 + 11226312500λ+ 52728000000)n4

− 10(2021409λ4 − 113476350λ3 − 1831007400λ2

+ 9749350000λ+ 33360600000)n3

− 5(6739551λ4 − 166553400λ3 − 1369066800λ2

+ 8543600000λ+ 19468800000)n2

+ 78000000(4λ− 65)n7 − 325λ(22113λ3 − 1579680λ2

+ 11482600λ+ 14080000)n.

Also, δ5(λ) = R1(λ)
R2(λ) where

R1(λ) =− 597051λ12 − 43222410λ11 + 5068245600λ10 + 633420595440λ9

+ 23910688879632λ8 + 308544639036000λ7 − 3181221429731200λ6

− 155692128689456640λ5 − 2167560072357216256λ4 − 15251720333529661440λ3

− 55976373542617907200λ2 − 95372978774016000000λ− 51994908426240000000

and

R2(λ) =2(64623λ2 + 4285625λ+ 38025000)

×
(
81λ10 + 19710λ9 + 1886400λ8 + 92781360λ7 + 2577603408λ6 + 41940364000λ5

+ 401332867200λ4 + 2206815715840λ3 + 6537890727936λ2 + 8994221424640λ

+ 3845731123200
)
.

187



188



Bibliography

[1] P. Biernat, R. Donninger, and B. Schörkhuber. Hyperboloidal similarity coordinates
and a globally stable blowup profile for supercritical wave maps. International Math-
ematics Research Notices, 2021(21):16530–16591, 11 2019.
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[23] I. Glogić. On the existence and stability of self-similar blowup in nonlinear wave equa-
tions. PhD thesis, The Ohio State University, The Ohio State University, 2018.
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